WorldWideScience

Sample records for genome size constraint

  1. Cell size, genome size and the dominance of Angiosperms

    Science.gov (United States)

    Simonin, K. A.; Roddy, A. B.

    2016-12-01

    Angiosperms are capable of maintaining the highest rates of photosynthetic gas exchange of all land plants. High rates of photosynthesis depends mechanistically both on efficiently transporting water to the sites of evaporation in the leaf and on regulating the loss of that water to the atmosphere as CO2 diffuses into the leaf. Angiosperm leaves are unique in their ability to sustain high fluxes of liquid and vapor phase water transport due to high vein densities and numerous, small stomata. Despite the ubiquity of studies characterizing the anatomical and physiological adaptations that enable angiosperms to maintain high rates of photosynthesis, the underlying mechanism explaining why they have been able to develop such high leaf vein densities, and such small and abundant stomata, is still incomplete. Here we ask whether the scaling of genome size and cell size places a fundamental constraint on the photosynthetic metabolism of land plants, and whether genome downsizing among the angiosperms directly contributed to their greater potential and realized primary productivity relative to the other major groups of terrestrial plants. Using previously published data we show that a single relationship can predict guard cell size from genome size across the major groups of terrestrial land plants (e.g. angiosperms, conifers, cycads and ferns). Similarly, a strong positive correlation exists between genome size and both stomatal density and vein density that together ultimately constrains maximum potential (gs, max) and operational stomatal conductance (gs, op). Further the difference in the slopes describing the covariation between genome size and both gs, max and gs, op suggests that genome downsizing brings gs, op closer to gs, max. Taken together the data presented here suggests that the smaller genomes of angiosperms allow their final cell sizes to vary more widely and respond more directly to environmental conditions and in doing so bring operational photosynthetic

  2. Evolutionary constraints on yeast protein size

    Directory of Open Access Journals (Sweden)

    Blomberg Anders

    2006-08-01

    Full Text Available Abstract Background Despite a strong evolutionary pressure to reduce genome size, proteins vary in length over a surprisingly wide range also in very compact genomes. Here we investigated the evolutionary forces that act on protein size in the yeast Saccharomyces cerevisiae utilizing a system-wide bioinformatics approach. Data on yeast protein size was compared to global experimental data on protein expression, phenotypic pleiotropy, protein-protein interactions, protein evolutionary rate and biochemical classification. Results Comparing the experimentally determined abundance of individual proteins, highly expressed proteins were found to be consistently smaller than lowly expressed proteins, in accordance with the biosynthetic cost minimization hypothesis. Yeast proteins able to maintain a high expression level despite a large size tended to belong to a very distinct set of protein families, notably nuclear transport and translation initiation/elongation. Large proteins have significantly more protein-protein interactions than small proteins, suggesting that a requirement for multiple interaction domains may constitute a positive selective pressure for large protein size in yeast. The higher frequency of protein-protein interactions in large proteins was not accompanied by a higher phenotypic pleiotropy. Hence, the increase in interactions may not reflect an increase in function differentiation. Proteins of different sizes also evolved at similar rates. Finally, whereas the biological process involved was found to have little influence on protein size the biochemical activity exerted by the protein represented a dominant factor. More than one third of all biochemical activity classes were enriched in one or more size intervals. Conclusion In yeast, there is an inverse relationship between protein size and protein expression such that highly expressed proteins tend to be of smaller size. Also, protein size is moderately affected by protein

  3. Genomic selective constraints in murid noncoding DNA.

    Directory of Open Access Journals (Sweden)

    Daniel J Gaffney

    2006-11-01

    Full Text Available Recent work has suggested that there are many more selectively constrained, functional noncoding than coding sites in mammalian genomes. However, little is known about how selective constraint varies amongst different classes of noncoding DNA. We estimated the magnitude of selective constraint on a large dataset of mouse-rat gene orthologs and their surrounding noncoding DNA. Our analysis indicates that there are more than three times as many selectively constrained, nonrepetitive sites within noncoding DNA as in coding DNA in murids. The majority of these constrained noncoding sites appear to be located within intergenic regions, at distances greater than 5 kilobases from known genes. Our study also shows that in murids, intron length and mean intronic selective constraint are negatively correlated with intron ordinal number. Our results therefore suggest that functional intronic sites tend to accumulate toward the 5' end of murid genes. Our analysis also reveals that mean number of selectively constrained noncoding sites varies substantially with the function of the adjacent gene. We find that, among others, developmental and neuronal genes are associated with the greatest numbers of putatively functional noncoding sites compared with genes involved in electron transport and a variety of metabolic processes. Combining our estimates of the total number of constrained coding and noncoding bases we calculate that over twice as many deleterious mutations have occurred in intergenic regions as in known genic sequence and that the total genomic deleterious point mutation rate is 0.91 per diploid genome, per generation. This estimated rate is over twice as large as a previous estimate in murids.

  4. Genome size variation in Begonia.

    Science.gov (United States)

    Dewitte, Angelo; Leus, Leen; Eeckhaut, Tom; Vanstechelman, Ives; Van Huylenbroeck, Johan; Van Bockstaele, Erik

    2009-10-01

    The genome sizes of a Begonia collection comprising 37 species and 23 hybrids of African, Asiatic, Middle American, and South American origin were screened using flow cytometry. Within the collection, 1C values varied between 0.23 and 1.46 pg DNA. Genome sizes were, in most cases, not positively correlated with chromosome number, but with pollen size. A 12-fold difference in mean chromosome size was found between the genotypes with the largest and smallest chromosomes. In general, chromosomes from South American genotypes were smaller than chromosomes of African, Asian, or Middle American genotypes, except for B. boliviensis and B. pearcei. Cytological chromosome studies in different genotypes showed variable chromosome numbers, length, width, and total chromosome volume, which confirmed the diversity in genome size. Large secondary constrictions were present in several investigated genotypes. These data show that chromosome number and structure exhibit a great deal of variation within the genus Begonia, and likely help to explain the large number of taxa found within the genus.

  5. Genome size variation in the genus Avena.

    Science.gov (United States)

    Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A

    2016-03-01

    Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.

  6. Evaluating the role of genome downsizing and size thresholds from genome size distributions in angiosperms.

    Science.gov (United States)

    Zenil-Ferguson, Rosana; Ponciano, José M; Burleigh, J Gordon

    2016-07-01

    Whole-genome duplications (WGDs) can rapidly increase genome size in angiosperms. Yet their mean genome size is not correlated with ploidy. We compared three hypotheses to explain the constancy of genome size means across ploidies. The genome downsizing hypothesis suggests that genome size will decrease by a given percentage after a WGD. The genome size threshold hypothesis assumes that taxa with large genomes or large monoploid numbers will fail to undergo or survive WGDs. Finally, the genome downsizing and threshold hypothesis suggests that both genome downsizing and thresholds affect the relationship between genome size means and ploidy. We performed nonparametric bootstrap simulations to compare observed angiosperm genome size means among species or genera against simulated genome sizes under the three different hypotheses. We evaluated the hypotheses using a decision theory approach and estimated the expected percentage of genome downsizing. The threshold hypothesis improves the approximations between mean genome size and simulated genome size. At the species level, the genome downsizing with thresholds hypothesis best explains the genome size means with a 15% genome downsizing percentage. In the genus level simulations, the monoploid number threshold hypothesis best explains the data. Thresholds of genome size and monoploid number added to genome downsizing at species level simulations explain the observed means of angiosperm genome sizes, and monoploid number is important for determining the genome size mean at the genus level. © 2016 Botanical Society of America.

  7. Genome Size Dynamics and Evolution in Monocots

    Directory of Open Access Journals (Sweden)

    Ilia J. Leitch

    2010-01-01

    Full Text Available Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small (1C=1.9 pg, there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.

  8. Sauropod dinosaurs evolved moderately sized genomes unrelated to body size.

    Science.gov (United States)

    Organ, Chris L; Brusatte, Stephen L; Stein, Koen

    2009-12-22

    Sauropodomorph dinosaurs include the largest land animals to have ever lived, some reaching up to 10 times the mass of an African elephant. Despite their status defining the upper range for body size in land animals, it remains unknown whether sauropodomorphs evolved larger-sized genomes than non-avian theropods, their sister taxon, or whether a relationship exists between genome size and body size in dinosaurs, two questions critical for understanding broad patterns of genome evolution in dinosaurs. Here we report inferences of genome size for 10 sauropodomorph taxa. The estimates are derived from a Bayesian phylogenetic generalized least squares approach that generates posterior distributions of regression models relating genome size to osteocyte lacunae volume in extant tetrapods. We estimate that the average genome size of sauropodomorphs was 2.02 pg (range of species means: 1.77-2.21 pg), a value in the upper range of extant birds (mean = 1.42 pg, range: 0.97-2.16 pg) and near the average for extant non-avian reptiles (mean = 2.24 pg, range: 1.05-5.44 pg). The results suggest that the variation in size and architecture of genomes in extinct dinosaurs was lower than the variation found in mammals. A substantial difference in genome size separates the two major clades within dinosaurs, Ornithischia (large genomes) and Saurischia (moderate to small genomes). We find no relationship between body size and estimated genome size in extinct dinosaurs, which suggests that neutral forces did not dominate the evolution of genome size in this group.

  9. Genome size and longevity in fish.

    Science.gov (United States)

    Griffith, O L; Moodie, G E E; Civetta, A

    2003-03-01

    The wide variety of genome sizes (measured as C-value) observed across taxa is not related to organismal complexity or number of coding genes. Partial answers to this C-value enigma have been found by establishing associations between C-value and particular phenotypic characteristics. One such controversial association has been recently suggested between genome size and longevity in birds. In order to determine whether genome size is a general predictor of longevity, we have extended the analysis to the Actinoptergyian fish, a widely divergent group in terms of both longevity and genome size. We collected data on genome size, longevity and body mass for species covering fourteen orders of bony fish. Analysis of covariance using order as a cofactor shows a significant effect of genome size on longevity (corrected for body mass), with lifespan increasing as a function of genome size. Analysis of phylogenetically independent contrasts for orders with a large number of species with a well resolved phylogenetic relationship (Acipenseriformes, Cypriniformes, and Salmoniformes) found the same trend of longer lifespan with increases in genome size but the relationship was not significant. Our results consistently show an increase in lifespan for fish with larger genomes.

  10. Genome size analyses of Pucciniales reveal the largest fungal genomes

    Directory of Open Access Journals (Sweden)

    Silvia eTavares

    2014-08-01

    Full Text Available Rust fungi (Basidiomycota, Pucciniales are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 151.5 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi. In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1,800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp. Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94 %. The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7,000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research.

  11. Genome size is inversely correlated with relative brain size in parrots and cockatoos.

    Science.gov (United States)

    Andrews, Chandler B; Gregory, T Ryan

    2009-03-01

    Genome size (haploid nuclear DNA content) has been found to correlate positively with cell size and negatively with cell division rate in a variety of taxa. These cytological relationships manifest in various ways at the organism level, for example, in terms of body size, metabolic rate, or developmental rate, depending on the biology of the organisms. In birds, it has been suggested that high metabolic rate and strong flight ability are linked to small genome size. However, it was also hypothesized that the exceptional cognitive abilities of birds may impose additional constraints on genome size through effects on neuron size and differentiation, as has been observed in amphibians. To test this hypothesis, a comparative analysis was made between genome size, cell (erythrocyte) size, and brain size in 54 species of parrots and cockatoos (order Psittaciformes, family Psittacidae). Relative brain volume, which is taken as an indicator of investment in brain tissue and is widely correlated with behavioural and ecological traits, was found to correlate inversely with genome size. Several possible and mutually compatible explanations for this relationship are described.

  12. On the Relationship between Pollen Size and Genome Size

    Directory of Open Access Journals (Sweden)

    Charles A. Knight

    2010-01-01

    Full Text Available Here we test whether genome size is a predictor of pollen size. If it were, inferences of ancient genome size would be possible using the abundant paleo-palynolgical record. We performed regression analyses across 464 species of pollen width and genome size. We found a significant positive trend. However, regression analysis using phylogentically independent contrasts did not support the correlated evolution of these traits. Instead, a large split between angiosperms and gymnosperms for both pollen width and genome size was revealed. Sister taxa were not more likely to show a positive contrast when compared to deeper nodes. However, significantly more congeneric species had a positive trend than expected by chance. These results may reflect the strong selection pressure for pollen to be small. Also, because pollen grains are not metabolically active when measured, their biology is different than other cells which have been shown to be strongly related to genome size, such as guard cells. Our findings contrast with previously published research. It was our hope that pollen size could be used as a proxy for inferring the genome size of ancient species. However, our results suggest pollen is not a good candidate for such endeavors.

  13. The evolution of genome size in ants

    Directory of Open Access Journals (Sweden)

    Spagna Joseph C

    2008-02-01

    Full Text Available Abstract Background Despite the economic and ecological importance of ants, genomic tools for this family (Formicidae remain woefully scarce. Knowledge of genome size, for example, is a useful and necessary prerequisite for the development of many genomic resources, yet it has been reported for only one ant species (Solenopsis invicta, and the two published estimates for this species differ by 146.7 Mb (0.15 pg. Results Here, we report the genome size for 40 species of ants distributed across 10 of the 20 currently recognized subfamilies, thus making Formicidae the 4th most surveyed insect family and elevating the Hymenoptera to the 5th most surveyed insect order. Our analysis spans much of the ant phylogeny, from the less derived Amblyoponinae and Ponerinae to the more derived Myrmicinae, Formicinae and Dolichoderinae. We include a number of interesting and important taxa, including the invasive Argentine ant (Linepithema humile, Neotropical army ants (genera Eciton and Labidus, trapjaw ants (Odontomachus, fungus-growing ants (Apterostigma, Atta and Sericomyrmex, harvester ants (Messor, Pheidole and Pogonomyrmex, carpenter ants (Camponotus, a fire ant (Solenopsis, and a bulldog ant (Myrmecia. Our results show that ants possess small genomes relative to most other insects, yet genome size varies three-fold across this insect family. Moreover, our data suggest that two whole-genome duplications may have occurred in the ancestors of the modern Ectatomma and Apterostigma. Although some previous studies of other taxa have revealed a relationship between genome size and body size, our phylogenetically-controlled analysis of this correlation did not reveal a significant relationship. Conclusion This is the first analysis of genome size in ants (Formicidae and the first across multiple species of social insects. We show that genome size is a variable trait that can evolve gradually over long time spans, as well as rapidly, through processes that may

  14. Genome sizes for all genera of Cycadales.

    Science.gov (United States)

    Zonneveld, B J M

    2012-01-01

    Nuclear DNA content (2C) is reported for all genera of the Cycadales, using flow cytometry with propidium iodide. Nuclear DNA content ranges from 24 to 64 pg in cycads. This implies that the largest genome contains roughly 40 × 10(9) more base pairs than the smallest genome. The narrow range in nuclear DNA content within a genus is remarkable for such an old group. Furthermore, 42 of the 58 plants measured, covering five genera, have 18 chromosomes. They vary from 36.1 to 64.7 pg, covering the whole range of genome sizes (excluding the genome of Cycas). Hence, their does not seem to be a correlation between genome size and the number of chromosomes.

  15. Genome size and genome evolution in diploid Triticeae species.

    Science.gov (United States)

    Eilam, T; Anikster, Y; Millet, E; Manisterski, J; Sagi-Assif, O; Feldman, M

    2007-11-01

    One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops, the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum. No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group's distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed.

  16. Patterns of genome size variation in snapping shrimp.

    Science.gov (United States)

    Jeffery, Nicholas W; Hultgren, Kristin; Chak, Solomon Tin Chi; Gregory, T Ryan; Rubenstein, Dustin R

    2016-06-01

    Although crustaceans vary extensively in genome size, little is known about how genome size may affect the ecology and evolution of species in this diverse group, in part due to the lack of large genome size datasets. Here we investigate interspecific, intraspecific, and intracolony variation in genome size in 39 species of Synalpheus shrimps, representing one of the largest genome size datasets for a single genus within crustaceans. We find that genome size ranges approximately 4-fold across Synalpheus with little phylogenetic signal, and is not related to body size. In a subset of these species, genome size is related to chromosome size, but not to chromosome number, suggesting that despite large genomes, these species are not polyploid. Interestingly, there appears to be 35% intraspecific genome size variation in Synalpheus idios among geographic regions, and up to 30% variation in Synalpheus duffyi genome size within the same colony.

  17. Comparative genomics of brain size evolution

    OpenAIRE

    Enard, Wolfgang

    2014-01-01

    Which genetic changes took place during mammalian, primate and human evolution to build a larger brain? To answer this question, one has to correlate genetic changes with brain size changes across a phylogeny. Such a comparative genomics approach provides unique information to better understand brain evolution and brain development. However, its statistical power is limited for example due to the limited number of species, the presumably complex genetics of brain size evolution and the large ...

  18. Comparative genomics of brain size evolution

    OpenAIRE

    2014-01-01

    Which genetic changes took place during mammalian, primate and human evolution to build a larger brain? To answer this question, one has to correlate genetic changes with brain size changes across a phylogeny. Such a comparative genomics approach provides unique information to better understand brain evolution and brain development. However, its statistical power is limited for example due to the limited number of species, the presumably complex genetics of brain size evolution and the large ...

  19. Comparative genomics of brain size evolution

    Directory of Open Access Journals (Sweden)

    Wolfgang eEnard

    2014-05-01

    Full Text Available Which genetic changes took place during mammalian, primate and human evolution to build a larger brain? To answer this question, one has to correlate genetic changes with brain size changes across a phylogeny. Such a comparative genomics approach provides unique information to better understand brain evolution and brain development. However, its statistical power is limited for example due to the limited number of species, the presumably complex genetics of brain size evolution and the large search space of mammalian genomes. Hence, it is crucial to add functional information, for example by limiting the search space to genes and regulatory elements known to play a role in the relevant cell types during brain development. Similarly, it is crucial to experimentally follow up on hypotheses generated by such a comparative approach. Recent progress in understanding the molecular and cellular mechanisms of mammalian brain development, in genome sequencing and in genome editing, promises to make a close integration of evolutionary and experimental methods a fruitful approach to better understand the genetics of mammalian brain size evolution.

  20. Characterization of evolutionary rates and constraints in three mammalian genomes

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Gregory M.; Brudno, Michael; Stone, Eric A.; Dubchak, Inna; Batzoglou, Serafim; Sidow, Arend

    2004-02-15

    We present an analysis of rates and patterns of microevolutionary phenomena that have shaped the human, mouse, and rat genomes since their last common ancestor. We find evidence for a shift in the mutational spectrum between the mouse and rat lineages, with the net effect being a relative increase in GC content in the rat genome. Our estimate for the neutral point substitution rate separating the two rodents is 0.196 substitutions per site, and 0.65 substitutions per site for the tree relating all three mammals. Small insertions and deletions of 1-10 bp in length (''microindels'') occur at approximately 5 percent of the point substitution rate. Inferred regional correlations in evolutionary rates between lineages and between types of sites support the idea that rates of evolution are influenced by local genomic or cell biological context. No substantial correlations between rates of point substitutions and rates of microindels are found, however, implying that the influences that affect these processes are distinct. Finally, we have identified those regions in the human genome that are evolving slowly, which are likely to include functional elements important to human biology. At least 5 percent of the human genome is under substantial constraint, most of which is noncoding.

  1. Genome size estimation: a new methodology

    Science.gov (United States)

    Álvarez-Borrego, Josué; Gallardo-Escárate, Crisitian; Kober, Vitaly; López-Bonilla, Oscar

    2007-03-01

    Recently, within the cytogenetic analysis, the evolutionary relations implied in the content of nuclear DNA in plants and animals have received a great attention. The first detailed measurements of the nuclear DNA content were made in the early 40's, several years before Watson and Crick proposed the molecular structure of the DNA. In the following years Hewson Swift developed the concept of "C-value" in reference to the haploid phase of DNA in plants. Later Mirsky and Ris carried out the first systematic study of genomic size in animals, including representatives of the five super classes of vertebrates as well as of some invertebrates. From these preliminary results it became evident that the DNA content varies enormously between the species and that this variation does not bear relation to the intuitive notion from the complexity of the organism. Later, this observation was reaffirmed in the following years as the studies increased on genomic size, thus denominating to this characteristic of the organisms like the "Paradox of the C-value". Few years later along with the no-codification discovery of DNA the paradox was solved, nevertheless, numerous questions remain until nowadays unfinished, taking to denominate this type of studies like the "C-value enigma". In this study, we reported a new method for genome size estimation by quantification of fluorescence fading. We measured the fluorescence intensity each 1600 milliseconds in DAPI-stained nuclei. The estimation of the area under the graph (integral fading) during fading period was related with the genome size.

  2. GRAIN SIZE CONSTRAINTS ON HL TAU WITH POLARIZATION SIGNATURE

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Akimasa; Dullemond, Cornelis P [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Momose, Munetake; Tsukagoshi, Takashi, E-mail: kataoka@uni-heidelberg.de [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan)

    2016-03-20

    The millimeter-wave polarization of the protoplanetary disk around HL Tau has been interpreted as the emission from elongated dust grains aligned with the magnetic field in the disk. However, the self-scattering of thermal dust emission may also explain the observed millimeter-wave polarization. In this paper, we report a modeling of the millimeter-wave polarization of the HL Tau disk with the self-polarization. Dust grains are assumed to be spherical and to have a power-law size distribution. We change the maximum grain size with a fixed dust composition in a fixed disk model to find the grain size to reproduce the observed signature. We find that the direction of the polarization vectors and the polarization degree can be explained with the self-scattering. Moreover, the polarization degree can be explained only if the maximum grain size is ∼150 μm. The obtained grain size from the polarization is different from that which has been previously expected from the spectral index of the dust opacity coefficient (a millimeter or larger) if the emission is optically thin. We discuss that porous dust aggregates may solve the inconsistency of the maximum grain size between the two constraints.

  3. Coevolution between simple sequence repeats (SSRs and virus genome size

    Directory of Open Access Journals (Sweden)

    Zhao Xiangyan

    2012-08-01

    Full Text Available Abstract Background Relationship between the level of repetitiveness in genomic sequence and genome size has been investigated by making use of complete prokaryotic and eukaryotic genomes, but relevant studies have been rarely made in virus genomes. Results In this study, a total of 257 viruses were examined, which cover 90% of genera. The results showed that simple sequence repeats (SSRs is strongly, positively and significantly correlated with genome size. Certain repeat class is distributed in a certain range of genome sequence length. Mono-, di- and tri- repeats are widely distributed in all virus genomes, tetra- SSRs as a common component consist in genomes which more than 100 kb in size; in the range of genome  Conclusions We conducted this research standing on the height of the whole virus. We concluded that genome size is an important factor in affecting the occurrence of SSRs; hosts are also responsible for the variances of SSRs content to a certain degree.

  4. Paleogenomic data suggest mammal-like genome size in the ancestral amniote and derived large genome size in amphibians.

    Science.gov (United States)

    Organ, C L; Canoville, A; Reisz, R R; Laurin, M

    2011-02-01

    An unsolved question in evolutionary genomics is whether amniote genomes have been expanding or contracting since the common ancestor of this diverse group. Here, we report on the polarity of amniote genome size evolution using genome size estimates for 14 extinct tetrapod genera from the Paleozoic and early Mesozoic Eras using osteocyte lacunae size as a correlate. We find substantial support for a phylogenetically controlled regression model relating genome size to osteocyte lacunae size (P of slopes amphibians, contractions along the diapsid lineage, and no directional change within the synapsid lineage leading to mammals.

  5. Grain Constraint and Size Effects in Shape Memory Alloy Microwires

    Science.gov (United States)

    Ueland, Stian Melhus

    Shape memory alloys exhibit interesting and useful properties, such as the shape memory effect and superelasticity. Among the many alloy families that have been shown to exhibit shape memory properties the ones based on copper are interesting because they are relatively inexpensive and show excellent properties when made as single crystals. However, the performance ofthese alloys is severely compromised by the introduction of grain boundaries, to the point where they are too poor for commercial applications. This thesis studies the mechanical properties of fine Cobased wires with a bamboo microstructure, i.e., where triple junctions are absent and grain boundaries run perpendicular to the wire axis. These microwires are not single crystals, but their microstructure is not as complex as that of polycrystals either: we call this new class of shape memory alloys oligocrystals. This thesis seeks to better understand the relationship between microstructure and properties in these alloys through a combination of mechanical testing, in situ experiments and modeling. First, in situ scanning electron microscopy, together with finite element modeling, is used to understand the role of grain constraint on the martensitic transformation. Grain constraints are observed to be much less severe in oligocrystalline wires as compared to polycrystals. Oligocrystalline microwires are then thermomechanically tested and shown to exhibit excellent properties that approach those of single crystals. Next, property evolution during cycling is investigated, revealing training effects as well as fatigue life and fracture. Finally, size effects in damping and transformation morphology are studied and it is shown that a transition from a many-domain to a single domain martensite morphology takes place when the wire diameter is decreased. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  6. Structural constraints in the packaging of bluetongue virus genomic segments.

    Science.gov (United States)

    Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C; Roy, Polly

    2014-10-01

    The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by biochemical data analysis suggested that a conformational motif formed by interaction of the 5' and 3' ends of the molecule was necessary and sufficient for packaging. A similar structural signal was also identified in S8 of BTV serotype 1. Furthermore, the same conformational analysis of secondary structures for positive-sense ssRNAs was used to generate a chimeric segment that maintained the putative packaging motif but contained unrelated internal sequences. This chimeric segment was packaged successfully, confirming that the motif identified directs the correct packaging of the segment.

  7. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    Science.gov (United States)

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-06-03

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome.

  8. A first exploration of genome size diversity in sponges.

    Science.gov (United States)

    Jeffery, Nicholas W; Jardine, Catherine B; Gregory, T Ryan

    2013-08-01

    The phyla known as early-branching lineages of animals have become the subject of increasing interest from the perspectives of genomics and evolutionary biology. Unfortunately, data on even the most fundamental properties of their genomes, such as genome size, remain very scarce. In this study, genome size estimates are reported for 75 species of sponges (phylum Porifera) representing 33 families and 12 orders, marking the first large survey of genome size diversity for an early-branching phylum. Sponge genome sizes averaged around 0.2 pg but exhibited a 17-fold range overall (0.04-0.63 pg). In addition, the results of comparisons of two methods of genome size quantification (flow cytometry and Feulgen image analysis densitometry) are presented, thereby facilitating future work on these animals. Some particularly promising avenues for future investigation are highlighted.

  9. Genome-scale constraint-based modeling of Geobacter metallireducens

    Directory of Open Access Journals (Sweden)

    Famili Iman

    2009-01-01

    Full Text Available Abstract Background Geobacter metallireducens was the first organism that can be grown in pure culture to completely oxidize organic compounds with Fe(III oxide serving as electron acceptor. Geobacter species, including G. sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic matter and renewable biomass. The constraint-based modeling approach enables the development of genome-scale in silico models that can predict the behavior of complex biological systems and their responses to the environments. Such a modeling approach was applied to provide physiological and ecological insights on the metabolism of G. metallireducens. Results The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697 reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains 118 unique reactions that reflect many of G. metallireducens' specific metabolic capabilities. Detailed examination of the G. metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate. These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches were applied to accelerate G. metallireducens research. For example, growth of G. metallireducens with different electron donors and electron acceptors were studied using the genome

  10. Physical constraints on body size in teleost embryos

    NARCIS (Netherlands)

    Kranenbarg, S.; Muller, M.; Gielen, J.L.W.; Verhagen, J.H.G.

    2000-01-01

    All members of the subphylum "Vertebrata" display the characteristics of the vertebrate body plan. These characteristics become apparent during the phylotypic period, in which all vertebrate embryos have a similar body shape and internal organization. Phylogenetic constraints probably limit the

  11. Comparative genomic analysis of sixty mycobacteriophage genomes: Genome clustering, gene acquisition and gene size

    Science.gov (United States)

    Hatfull, Graham F.; Jacobs-Sera, Deborah; Lawrence, Jeffrey G.; Pope, Welkin H.; Russell, Daniel A.; Ko, Ching-Chung; Weber, Rebecca J.; Patel, Manisha C.; Germane, Katherine L.; Edgar, Robert H.; Hoyte, Natasha N.; Bowman, Charles A.; Tantoco, Anthony T.; Paladin, Elizabeth C.; Myers, Marlana S.; Smith, Alexis L.; Grace, Molly S.; Pham, Thuy T.; O'Brien, Matthew B.; Vogelsberger, Amy M.; Hryckowian, Andrew J.; Wynalek, Jessica L.; Donis-Keller, Helen; Bogel, Matt W.; Peebles, Craig L.; Cresawn, Steve G.; Hendrix, Roger W.

    2010-01-01

    Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of sixty – all infecting a common bacterial host – provides further insight into their diversity and evolution. Of the sixty phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, five of which can be further divided into subclusters; five genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the six genomes in cluster D share more than 97.5% average nucleotide similarity with each other. In contrast, similarity between the two genomes in Cluster I is barely detectable by diagonal plot analysis. The total of 6,858 predicted ORFs have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit smaller average size than genes of their host (205 residues compared to 315), phage genes in higher flux average only ∼100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains. PMID:20064525

  12. Size-selected genomic libraries: the distribution and size-fractionation of restricted genomic DNA fragments by gel electrophoresis.

    Science.gov (United States)

    Gondo, Y

    1995-02-01

    By using one-dimensional genome scanning, it is possible to directly identify the restricted genomic DNA fragment that reflects the site of genetic change. The subsequent strategies to obtain the molecular clones of the corresponding restriction fragment are usually as follows: (i) the restriction of a mass quantity of an appropriate genomic DNA, (ii) the size-fractionation of the restricted DNA on a preparative electrophoresis gel in order to enrich the corresponding restriction fragment, (iii) the construction of the size-selected libraries from the fractionated genomic DNA, and (iv) the screening of the library to obtain an objective clone which is identified on the analytical genome scanning gel. A knowledge of the size distribution pattern of restriction fragments of the genomic DNA makes it possible to calculate the heterogeneity or complexity of the restriction fragment in each size-fraction. This manuscript first describes the distribution of the restriction fragments with respect to their length. Some examples of the practical application of this theory to genome scanning is then discussed using presumptive genome scanning gels. The way to calculate such DNA complexities in the prepared size-fractionated samples is also demonstrated. Such information should greatly facilitate the design of experimental strategies for the cloning of a certain size of genomic DNA after digestion with restriction enzyme(s) as is the case with genome scanning.

  13. Microeconomic principles explain an optimal genome size in bacteria.

    Science.gov (United States)

    Ranea, Juan A G; Grant, Alastair; Thornton, Janet M; Orengo, Christine A

    2005-01-01

    Bacteria can clearly enhance their survival by expanding their genetic repertoire. However, the tight packing of the bacterial genome and the fact that the most evolved species do not necessarily have the biggest genomes suggest there are other evolutionary factors limiting their genome expansion. To clarify these restrictions on size, we studied those protein families contributing most significantly to bacterial-genome complexity. We found that all bacteria apply the same basic and ancestral 'molecular technology' to optimize their reproductive efficiency. The same microeconomics principles that define the optimum size in a factory can also explain the existence of a statistical optimum in bacterial genome size. This optimum is reached when the bacterial genome obtains the maximum metabolic complexity (revenue) for minimal regulatory genes (logistic cost).

  14. Size and complexity of the nuclear genome of Colletotrichum graminicola.

    Science.gov (United States)

    Randhir, R J; Hanau, R M

    1997-10-01

    DNA reassociation was used to estimate GC content, size, and complexity of the nuclear genomes of Colletotrichum from maize and sorghum. Melting-temperature analysis indicated that the GC content of the maize pathotype DNA was 51% and that the GC content of the sorghum pathotype was 52%. DNA reassociation kinetics employing S1 nuclease digestion and an appropriately modified second-order equation indicated that the genome sizes of the maize and sorghum pathotypes were 4.8 x 10(7) bp, and 5.0 x 10(7) bp, respectively. Genomic reconstruction experiments based on Southern blot hybridization between a cloned single-copy gene, PYR1 (orotate phosphoribosyl transferase), and maize-pathotype DNA confirmed the size of the nuclear genome. The single-copy component of the genomes of both pathotypes was estimated at about 90%. For both pathotypes, ca. 7% of the genome represented repetitive DNA, and 2 to 3% was foldback DNA.

  15. Evolution of genome size and complexity in Pinus.

    Directory of Open Access Journals (Sweden)

    Alison M Morse

    Full Text Available BACKGROUND: Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea. If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. CONCLUSIONS/SIGNIFICANCE: Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes.

  16. Metabolic 'engines' of flight drive genome size reduction in birds.

    Science.gov (United States)

    Wright, Natalie A; Gregory, T Ryan; Witt, Christopher C

    2014-03-22

    The tendency for flying organisms to possess small genomes has been interpreted as evidence of natural selection acting on the physical size of the genome. Nonetheless, the flight-genome link and its mechanistic basis have yet to be well established by comparative studies within a volant clade. Is there a particular functional aspect of flight such as brisk metabolism, lift production or maneuverability that impinges on the physical genome? We measured genome sizes, wing dimensions and heart, flight muscle and body masses from a phylogenetically diverse set of bird species. In phylogenetically controlled analyses, we found that genome size was negatively correlated with relative flight muscle size and heart index (i.e. ratio of heart to body mass), but positively correlated with body mass and wing loading. The proportional masses of the flight muscles and heart were the most important parameters explaining variation in genome size in multivariate models. Hence, the metabolic intensity of powered flight appears to have driven genome size reduction in birds.

  17. Recent updates and developments to plant genome size databases

    Science.gov (United States)

    Garcia, Sònia; Leitch, Ilia J.; Anadon-Rosell, Alba; Canela, Miguel Á.; Gálvez, Francisco; Garnatje, Teresa; Gras, Airy; Hidalgo, Oriane; Johnston, Emmeline; Mas de Xaxars, Gemma; Pellicer, Jaume; Siljak-Yakovlev, Sonja; Vallès, Joan; Vitales, Daniel; Bennett, Michael D.

    2014-01-01

    Two plant genome size databases have been recently updated and/or extended: the Plant DNA C-values database (http://data.kew.org/cvalues), and GSAD, the Genome Size in Asteraceae database (http://www.asteraceaegenomesize.com). While the first provides information on nuclear DNA contents across land plants and some algal groups, the second is focused on one of the largest and most economically important angiosperm families, Asteraceae. Genome size data have numerous applications: they can be used in comparative studies on genome evolution, or as a tool to appraise the cost of whole-genome sequencing programs. The growing interest in genome size and increasing rate of data accumulation has necessitated the continued update of these databases. Currently, the Plant DNA C-values database (Release 6.0, Dec. 2012) contains data for 8510 species, while GSAD has 1219 species (Release 2.0, June 2013), representing increases of 17 and 51%, respectively, in the number of species with genome size data, compared with previous releases. Here we provide overviews of the most recent releases of each database, and outline new features of GSAD. The latter include (i) a tool to visually compare genome size data between species, (ii) the option to export data and (iii) a webpage containing information about flow cytometry protocols. PMID:24288377

  18. Phylogeny, rate variation, and genome size evolution of Pelargonium (Geraniaceae).

    Science.gov (United States)

    Weng, Mao-Lun; Ruhlman, Tracey A; Gibby, Mary; Jansen, Robert K

    2012-09-01

    The phylogeny of 58 Pelargonium species was estimated using five plastid markers (rbcL, matK, ndhF, rpoC1, trnL-F) and one mitochondrial gene (nad5). The results confirmed the monophyly of three major clades and four subclades within Pelargonium but also indicate the need to revise some sectional classifications. This phylogeny was used to examine karyotype evolution in the genus: plotting chromosome sizes, numbers and 2C-values indicates that genome size is significantly correlated with chromosome size but not number. Accelerated rates of nucleotide substitution have been previously detected in both plastid and mitochondrial genes in Pelargonium, but sparse taxon sampling did not enable identification of the phylogenetic distribution of these elevated rates. Using the multigene phylogeny as a constraint, we investigated lineage- and locus-specific heterogeneity of substitution rates in Pelargonium for an expanded number of taxa and demonstrated that both plastid and mitochondrial genes have had accelerated substitution rates but with markedly disparate patterns. In the plastid, the exons of rpoC1 have significantly accelerated substitution rates compared to its intron and the acceleration was mainly due to nonsynonymous substitutions. In contrast, the mitochondrial gene, nad5, experienced substantial acceleration of synonymous substitution rates in three internal branches of Pelargonium, but this acceleration ceased in all terminal branches. Several lineages also have dN/dS ratios significantly greater than one for rpoC1, indicating that positive selection is acting on this gene, whereas the accelerated synonymous substitutions in the mitochondrial gene are the result of elevated mutation rates.

  19. Genome size increases in recently diverged hornwort clades.

    Science.gov (United States)

    Bainard, Jillian D; Villarreal, Juan Carlos

    2013-08-01

    As our knowledge of plant genome size estimates continues to grow, one group has continually been neglected: the hornworts. Hornworts (Anthocerotophyta) have been traditionally grouped with liverworts and mosses because they share a haploid dominant life cycle; however, recent molecular studies place hornworts as the sister lineage to extant tracheophytes. Given the scarcity of information regarding the DNA content of hornworts, our objective was to estimate the 1C-value for a range of hornwort species within a phylogenetic context. Using flow cytometry, we estimated genome size for 36 samples representing 24 species. This accounts for roughly 10% of known hornwort species. Haploid genome sizes (1C-value) ranged from 160 Mbp or 0.16 pg (Leiosporoceros dussii) to 719 Mbp or 0.73 pg (Nothoceros endiviifolius). The average 1C-value was 261 ± 104 Mbp (0.27 ± 0.11 pg). Ancestral reconstruction of genome size on a hornwort phylogeny suggests a small ancestral genome size and revealed increases in genome size in the most recently divergent clades. Much more work is needed to understand DNA content variation in this phylogenetically important group, but this work has significantly increased our knowledge of genome size variation in hornworts.

  20. Nuclear DNA content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa.

    Science.gov (United States)

    Zaitlin, David; Pierce, Andrew J

    2010-12-01

    The Gesneriaceae (Lamiales) is a family of flowering plants comprising >3000 species of mainly tropical origin, the most familiar of which is the cultivated African violet (Saintpaulia spp.). Species of Gesneriaceae are poorly represented in the lists of taxa sampled for genome size estimation; measurements are available for three species of Ramonda and one each of Haberlea, Saintpaulia, and Streptocarpus, all species of Old World origin. We report here nuclear genome size estimates for 10 species of Sinningia, a neotropical genus largely restricted to Brazil. Flow cytometry of leaf cell nuclei showed that holoploid genome size in Sinningia is very small (approximately two times the size of the Arabidopsis genome), and is small compared to the other six species of Gesneriaceae with genome size estimates. We also documented intraspecific genome size variation of 21%-26% within a group of wild Sinningia speciosa (Lodd.) Hiern collections. In addition, we analyzed 1210 genome survey sequences from S. speciosa to characterize basic features of the nuclear genome such as guanine-cytosine content, types of repetitive elements, numbers of protein-coding sequences, and sequences unique to S. speciosa. We included several other angiosperm species as genome size standards, one of which was the snapdragon (Antirrhinum majus L.; Veronicaceae, Lamiales). Multiple measurements on three accessions indicated that the genome size of A. majus is ~633 × 10⁶ base pairs, which is approximately 40% of the previously published estimate.

  1. Hawaiian Drosophila genomes: size variation and evolutionary expansions.

    Science.gov (United States)

    Craddock, Elysse M; Gall, Joseph G; Jonas, Mark

    2016-02-01

    This paper reports genome sizes of one Hawaiian Scaptomyza and 16 endemic Hawaiian Drosophila species that include five members of the antopocerus species group, one member of the modified mouthpart group, and ten members of the picture wing clade. Genome size expansions have occurred independently multiple times among Hawaiian Drosophila lineages, and have resulted in an over 2.3-fold range of genome sizes among species, with the largest observed in Drosophila cyrtoloma (1C = 0.41 pg). We find evidence that these repeated genome size expansions were likely driven by the addition of significant amounts of heterochromatin and satellite DNA. For example, our data reveal that the addition of seven heterochromatic chromosome arms to the ancestral haploid karyotype, and a remarkable proportion of ~70 % satellite DNA, account for the greatly expanded size of the D. cyrtoloma genome. Moreover, the genomes of 13/17 Hawaiian picture wing species are composed of substantial proportions (22-70 %) of detectable satellites (all but one of which are AT-rich). Our results suggest that in this tightly knit group of recently evolved species, genomes have expanded, in large part, via evolutionary amplifications of satellite DNA sequences in centric and pericentric domains (especially of the X and dot chromosomes), which have resulted in longer acrocentric chromosomes or metacentrics with an added heterochromatic chromosome arm. We discuss possible evolutionary mechanisms that may have shaped these patterns, including rapid fixation of novel expanded genomes during founder-effect speciation.

  2. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae).

    Science.gov (United States)

    Veleba, Adam; Šmarda, Petr; Zedek, František; Horová, Lucie; Šmerda, Jakub; Bureš, Petr

    2017-02-01

    Studies in the carnivorous family Lentibulariaceae in the last years resulted in the discovery of the smallest plant genomes and an unusual pattern of genomic GC content evolution. However, scarcity of genomic data in other carnivorous clades still prevents a generalization of the observed patterns. Here the aim was to fill this gap by mapping genome evolution in the second largest carnivorous family, Droseraceae, where this evolution may be affected by chromosomal holokinetism in Drosera METHODS: The genome size and genomic GC content of 71 Droseraceae species were measured by flow cytometry. A dated phylogeny was constructed, and the evolution of both genomic parameters and their relationship to species climatic niches were tested using phylogeny-based statistics. The 2C genome size of Droseraceae varied between 488 and 10 927 Mbp, and the GC content ranged between 37·1 and 44·7 %. The genome sizes and genomic GC content of carnivorous and holocentric species did not differ from those of their non-carnivorous and monocentric relatives. The genomic GC content positively correlated with genome size and annual temperature fluctuations. The genome size and chromosome numbers were inversely correlated in the Australian clade of Drosera CONCLUSIONS: Our results indicate that neither carnivory (nutrient scarcity) nor the holokinetism have a prominent effect on size and DNA base composition of Droseraceae genomes. However, the holokinetic drive seems to affect karyotype evolution in one of the major clades of Drosera Our survey confirmed that the evolution of GC content is tightly connected with the evolution of genome size and also with environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Dynamics of genome size evolution in birds and mammals

    Science.gov (United States)

    Feschotte, Cédric

    2017-01-01

    Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified “accordion” model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives. PMID:28179571

  4. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size.

    Directory of Open Access Journals (Sweden)

    Tai Kubo

    Full Text Available Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade, yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals are above 500 g, except for macroscelid mammals (i.e., elephant shrew, a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs. When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope's rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna.

  5. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size.

    Science.gov (United States)

    Kubo, Tai; Kubo, Mugino O

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals) are above 500 g, except for macroscelid mammals (i.e., elephant shrew), a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs). When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope's rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna.

  6. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny.

    Science.gov (United States)

    Clark, James; Hidalgo, Oriane; Pellicer, Jaume; Liu, Hongmei; Marquardt, Jeannine; Robert, Yannis; Christenhusz, Maarten; Zhang, Shouzhou; Gibby, Mary; Leitch, Ilia J; Schneider, Harald

    2016-05-01

    The genome evolution of ferns has been considered to be relatively static compared with angiosperms. In this study, we analyse genome size data and chromosome numbers in a phylogenetic framework to explore three hypotheses: the correlation of genome size and chromosome number, the origin of modern ferns from ancestors with high chromosome numbers, and the occurrence of several whole-genome duplications during the evolution of ferns. To achieve this, we generated new genome size data, increasing the percentage of fern species with genome sizes estimated to 2.8% of extant diversity, and ensuring a comprehensive phylogenetic coverage including at least three species from each fern order. Genome size was correlated with chromosome number across all ferns despite some substantial variation in both traits. We observed a trend towards conservation of the amount of DNA per chromosome, although Osmundaceae and Psilotaceae have substantially larger chromosomes. Reconstruction of the ancestral genome traits suggested that the earliest ferns were already characterized by possessing high chromosome numbers and that the earliest divergences in ferns were correlated with substantial karyological changes. Evidence for repeated whole-genome duplications was found across the phylogeny. Fern genomes tend to evolve slowly, albeit genome rearrangements occur in some clades. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Exploring variation in active network size : Constraints and ego characteristics

    NARCIS (Netherlands)

    Roberts, Sam G. B.; Dunbar, Robin I. M.; Pollet, Thomas V.; Kuppens, Toon

    2009-01-01

    Studies of active personal networks have primarily focused on providing reliable estimates of the size of the network. In this study, we examine how compositional properties of the network and ego characteristics are related to Variation in network size. There was a negative relationship between mea

  8. Genome size evolution in Ontario ferns (Polypodiidae): evolutionary correlations with cell size, spore size, and habitat type and an absence of genome downsizing.

    Science.gov (United States)

    Henry, Thomas A; Bainard, Jillian D; Newmaster, Steven G

    2014-10-01

    Genome size is known to correlate with a number of traits in angiosperms, but less is known about the phenotypic correlates of genome size in ferns. We explored genome size variation in relation to a suite of morphological and ecological traits in ferns. Thirty-six fern taxa were collected from wild populations in Ontario, Canada. 2C DNA content was measured using flow cytometry. We tested for genome downsizing following polyploidy using a phylogenetic comparative analysis to explore the correlation between 1Cx DNA content and ploidy. There was no compelling evidence for the occurrence of widespread genome downsizing during the evolution of Ontario ferns. The relationship between genome size and 11 morphological and ecological traits was explored using a phylogenetic principal component regression analysis. Genome size was found to be significantly associated with cell size, spore size, spore type, and habitat type. These results are timely as past and recent studies have found conflicting support for the association between ploidy/genome size and spore size in fern polyploid complexes; this study represents the first comparative analysis of the trend across a broad taxonomic group of ferns.

  9. Genome size evolution in pufferfish: an insight from BAC clone-based Diodon holocanthus genome sequencing

    Directory of Open Access Journals (Sweden)

    Gan Xiaoni

    2010-06-01

    Full Text Available Abstract Background Variations in genome size within and between species have been observed since the 1950 s in diverse taxonomic groups. Serving as model organisms, smooth pufferfish possess the smallest vertebrate genomes. Interestingly, spiny pufferfish from its sister family have genome twice as large as smooth pufferfish. Therefore, comparative genomic analysis between smooth pufferfish and spiny pufferfish is useful for our understanding of genome size evolution in pufferfish. Results Ten BAC clones of a spiny pufferfish Diodon holocanthus were randomly selected and shotgun sequenced. In total, 776 kb of non-redundant sequences without gap representing 0.1% of the D. holocanthus genome were identified, and 77 distinct genes were predicted. In the sequenced D. holocanthus genome, 364 kb is homologous with 265 kb of the Takifugu rubripes genome, and 223 kb is homologous with 148 kb of the Tetraodon nigroviridis genome. The repetitive DNA accounts for 8% of the sequenced D. holocanthus genome, which is higher than that in the T. rubripes genome (6.89% and that in the Te. nigroviridis genome (4.66%. In the repetitive DNA, 76% is retroelements which account for 6% of the sequenced D. holocanthus genome and belong to known families of transposable elements. More than half of retroelements were distributed within genes. In the non-homologous regions, repeat element proportion in D. holocanthus genome increased to 10.6% compared with T. rubripes and increased to 9.19% compared with Te. nigroviridis. A comparison of 10 well-defined orthologous genes showed that the average intron size (566 bp in D. holocanthus genome is significantly longer than that in the smooth pufferfish genome (435 bp. Conclusion Compared with the smooth pufferfish, D. holocanthus has a low gene density and repeat elements rich genome. Genome size variation between D. holocanthus and the smooth pufferfish exhibits as length variation between homologous region and different

  10. Methodology significantly affects genome size estimates: quantitative evidence using bryophytes.

    Science.gov (United States)

    Bainard, Jillian D; Fazekas, Aron J; Newmaster, Steven G

    2010-08-01

    Flow cytometry (FCM) is commonly used to determine plant genome size estimates. Methodology has improved and changed during the past three decades, and researchers are encouraged to optimize protocols for their specific application. However, this step is typically omitted or undescribed in the current plant genome size literature, and this omission could have serious consequences for the genome size estimates obtained. Using four bryophyte species (Brachythecium velutinum, Fissidens taxifolius, Hedwigia ciliata, and Thuidium minutulum), three methodological approaches to the use of FCM in plant genome size estimation were tested. These included nine different buffers (Baranyi's, de Laat's, Galbraith's, General Purpose, LB01, MgSO(4), Otto's, Tris.MgCl(2), and Woody Plant), seven propidium iodide (PI) staining periods (5, 10, 15, 20, 45, 60, and 120 min), and six PI concentrations (10, 25, 50, 100, 150, and 200 microg ml(-1)). Buffer, staining period and staining concentration all had a statistically significant effect (P = 0.05) on the genome size estimates obtained for all four species. Buffer choice and PI concentration had the greatest effect, altering the 1C-values by as much as 8% and 14%, respectively. As well, the quality of the data varied with the different methodology used. Using the methodology determined to be the most accurate in this study (LB01 buffer and PI staining for 20 min at 150 microg ml(-1)), three new genome size estimates were obtained: B. velutinum: 0.46 pg, H. ciliata: 0.30 pg, and T. minutulum: 0.46 pg. While the peak quality of flow cytometry histograms is important, researchers must consider that changes in methodology can also affect the relative peak positions and therefore the genome size estimates obtained for plants using FCM.

  11. Total centromere size and genome size are strongly correlated in ten grass species.

    Science.gov (United States)

    Zhang, Han; Dawe, R Kelly

    2012-05-01

    It has been known for decades that centromere size varies across species, but the factors involved in setting centromere boundaries are unknown. As a means to address this question, we estimated centromere sizes in ten species of the grass family including rice, maize, and wheat, which diverged 60~80 million years ago and vary by 40-fold in genome size. Measurements were made using a broadly reactive antibody to rice centromeric histone H3 (CENH3). In species-wide comparisons, we found a clear linear relationship between total centromere size and genome size. Species with large genomes and few chromosomes tend to have the largest centromeres (e.g., rye) while species with small genomes and many chromosomes have the smallest centromeres (e.g., rice). However, within a species, centromere size is surprisingly uniform. We present evidence from three oat-maize addition lines that support this claim, indicating that each of three maize centromeres propagated in oat are not measurably different from each other. In the context of previously published data, our results suggest that the apparent correlation between chromosome and centromere size is incidental to a larger trend that reflects genome size. Centromere size may be determined by a limiting component mechanism similar to that described for Caenorhabditis elegans centrosomes.

  12. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints.

    Directory of Open Access Journals (Sweden)

    Yuchun Guo

    Full Text Available An essential component of genome function is the syntax of genomic regulatory elements that determine how diverse transcription factors interact to orchestrate a program of regulatory control. A precise characterization of in vivo spacing constraints between key transcription factors would reveal key aspects of this genomic regulatory language. To discover novel transcription factor spatial binding constraints in vivo, we developed a new integrative computational method, genome wide event finding and motif discovery (GEM. GEM resolves ChIP data into explanatory motifs and binding events at high spatial resolution by linking binding event discovery and motif discovery with positional priors in the context of a generative probabilistic model of ChIP data and genome sequence. GEM analysis of 63 transcription factors in 214 ENCODE human ChIP-Seq experiments recovers more known factor motifs than other contemporary methods, and discovers six new motifs for factors with unknown binding specificity. GEM's adaptive learning of binding-event read distributions allows it to further improve upon previous methods for processing ChIP-Seq and ChIP-exo data to yield unsurpassed spatial resolution and discovery of closely spaced binding events of the same factor. In a systematic analysis of in vivo sequence-specific transcription factor binding using GEM, we have found hundreds of spatial binding constraints between factors. GEM found 37 examples of factor binding constraints in mouse ES cells, including strong distance-specific constraints between Klf4 and other key regulatory factors. In human ENCODE data, GEM found 390 examples of spatially constrained pair-wise binding, including such novel pairs as c-Fos:c-Jun/USF1, CTCF/Egr1, and HNF4A/FOXA1. The discovery of new factor-factor spatial constraints in ChIP data is significant because it proposes testable models for regulatory factor interactions that will help elucidate genome function and the

  13. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints.

    Science.gov (United States)

    Guo, Yuchun; Mahony, Shaun; Gifford, David K

    2012-01-01

    An essential component of genome function is the syntax of genomic regulatory elements that determine how diverse transcription factors interact to orchestrate a program of regulatory control. A precise characterization of in vivo spacing constraints between key transcription factors would reveal key aspects of this genomic regulatory language. To discover novel transcription factor spatial binding constraints in vivo, we developed a new integrative computational method, genome wide event finding and motif discovery (GEM). GEM resolves ChIP data into explanatory motifs and binding events at high spatial resolution by linking binding event discovery and motif discovery with positional priors in the context of a generative probabilistic model of ChIP data and genome sequence. GEM analysis of 63 transcription factors in 214 ENCODE human ChIP-Seq experiments recovers more known factor motifs than other contemporary methods, and discovers six new motifs for factors with unknown binding specificity. GEM's adaptive learning of binding-event read distributions allows it to further improve upon previous methods for processing ChIP-Seq and ChIP-exo data to yield unsurpassed spatial resolution and discovery of closely spaced binding events of the same factor. In a systematic analysis of in vivo sequence-specific transcription factor binding using GEM, we have found hundreds of spatial binding constraints between factors. GEM found 37 examples of factor binding constraints in mouse ES cells, including strong distance-specific constraints between Klf4 and other key regulatory factors. In human ENCODE data, GEM found 390 examples of spatially constrained pair-wise binding, including such novel pairs as c-Fos:c-Jun/USF1, CTCF/Egr1, and HNF4A/FOXA1. The discovery of new factor-factor spatial constraints in ChIP data is significant because it proposes testable models for regulatory factor interactions that will help elucidate genome function and the implementation of combinatorial

  14. Silk elasticity as a potential constraint on spider body size.

    Science.gov (United States)

    Rodríguez-Gironés, Miguel A; Corcobado, Guadalupe; Moya-Laraño, Jordi

    2010-10-07

    Silk is known for its strength and extensibility and has played a key role in the radiation of spiders. Individual spiders use different glands to produce silk types with unique sets of proteins. Most research has studied the properties of major ampullate and capture spiral silks and their ecological implications, while little is known about minor ampullate silk, the type used by those spider species studied to date for bridging displacements. A biomechanical model parameterised with available data shows that the minimum radius of silk filaments required for efficient bridging grows with the square root of the spider's body mass, faster than the radius of minor ampullate silk filaments actually produced by spiders. Because the morphology of spiders adapted to walking along or under silk threads is ill suited for moving on a solid surface, for these species there is a negative relationship between body mass and displacement ability. As it stands, the model suggests that spiders that use silk for their displacements are prevented from attaining a large body size if they must track their resources in space. In particular, silk elasticity would favour sexual size dimorphism because males that must use bridging lines to search for females cannot grow large. 2010 Elsevier Ltd. All rights reserved.

  15. Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models.

    Science.gov (United States)

    Hamilton, Joshua J; Dwivedi, Vivek; Reed, Jennifer L

    2013-07-16

    Constraint-based methods provide powerful computational techniques to allow understanding and prediction of cellular behavior. These methods rely on physiochemical constraints to eliminate infeasible behaviors from the space of available behaviors. One such constraint is thermodynamic feasibility, the requirement that intracellular flux distributions obey the laws of thermodynamics. The past decade has seen several constraint-based methods that interpret this constraint in different ways, including those that are limited to small networks, rely on predefined reaction directions, and/or neglect the relationship between reaction free energies and metabolite concentrations. In this work, we utilize one such approach, thermodynamics-based metabolic flux analysis (TMFA), to make genome-scale, quantitative predictions about metabolite concentrations and reaction free energies in the absence of prior knowledge of reaction directions, while accounting for uncertainties in thermodynamic estimates. We applied TMFA to a genome-scale network reconstruction of Escherichia coli and examined the effect of thermodynamic constraints on the flux space. We also assessed the predictive performance of TMFA against gene essentiality and quantitative metabolomics data, under both aerobic and anaerobic, and optimal and suboptimal growth conditions. Based on these results, we propose that TMFA is a useful tool for validating phenotypes and generating hypotheses, and that additional types of data and constraints can improve predictions of metabolite concentrations.

  16. Determination of sample size in genome-scale RNAi screens.

    Science.gov (United States)

    Zhang, Xiaohua Douglas; Heyse, Joseph F

    2009-04-01

    For genome-scale RNAi research, it is critical to investigate sample size required for the achievement of reasonably low false negative rate (FNR) and false positive rate. The analysis in this article reveals that current design of sample size contributes to the occurrence of low signal-to-noise ratio in genome-scale RNAi projects. The analysis suggests that (i) an arrangement of 16 wells per plate is acceptable and an arrangement of 20-24 wells per plate is preferable for a negative control to be used for hit selection in a primary screen without replicates; (ii) in a confirmatory screen or a primary screen with replicates, a sample size of 3 is not large enough, and there is a large reduction in FNRs when sample size increases from 3 to 4. To search a tradeoff between benefit and cost, any sample size between 4 and 11 is a reasonable choice. If the main focus is the selection of siRNAs with strong effects, a sample size of 4 or 5 is a good choice. If we want to have enough power to detect siRNAs with moderate effects, sample size needs to be 8, 9, 10 or 11. These discoveries about sample size bring insight to the design of a genome-scale RNAi screen experiment.

  17. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.; Cao, Jun; Cheng, Jan-Fang; Clark, Richard M.; Fahlgren, Noah; Fawcett, Jeffrey A.; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hollister, Jesse D.; Ossowski, Stephan; Ottilar, Robert P.; Salamov, Asaf A.; Schneeberger, Korbinian; Spannagl, Manuel; Wang, Xi; Yang, Liang; Nasrallah, Mikhail E.; Bergelson, Joy; Carrington, James C.; Gaut, Brandon S.; Schmutz, Jeremy; Mayer, Klaus F. X.; Van de Peer, Yves; Grigoriev, Igor V.; Nordborg, Magnus; Weigel, Detlef; Guo, Ya-Long

    2011-04-29

    In our manuscript, we present a high-quality genome sequence of the Arabidopsis thaliana relative, Arabidopsis lyrata, produced by dideoxy sequencing. We have performed the usual types of genome analysis (gene annotation, dN/dS studies etc. etc.), but this is relegated to the Supporting Information. Instead, we focus on what was a major motivation for sequencing this genome, namely to understand how A. thaliana lost half its genome in a few million years and lived to tell the tale. The rather surprising conclusion is that there is not a single genomic feature that accounts for the reduced genome, but that every aspect centromeres, intergenic regions, transposable elements, gene family number is affected through hundreds of thousands of cuts. This strongly suggests that overall genome size in itself is what has been under selection, a suggestion that is strongly supported by our demonstration (using population genetics data from A. thaliana) that new deletions seem to be driven to fixation.

  18. Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog?

    Science.gov (United States)

    Hodgson, J G; Sharafi, M; Jalili, A; Díaz, S; Montserrat-Martí, G; Palmer, C; Cerabolini, B; Pierce, S; Hamzehee, B; Asri, Y; Jamzad, Z; Wilson, P; Raven, J A; Band, S R; Basconcelo, S; Bogard, A; Carter, G; Charles, M; Castro-Díez, P; Cornelissen, J H C; Funes, G; Jones, G; Khoshnevis, M; Pérez-Harguindeguy, N; Pérez-Rontomé, M C; Shirvany, F A; Vendramini, F; Yazdani, S; Abbas-Azimi, R; Boustani, S; Dehghan, M; Guerrero-Campo, J; Hynd, A; Kowsary, E; Kazemi-Saeed, F; Siavash, B; Villar-Salvador, P; Craigie, R; Naqinezhad, A; Romo-Díez, A; de Torres Espuny, L; Simmons, E

    2010-04-01

    Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of 'this ecological circumstance' is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this 'missing link': the primary determinant of genome size. Stomata are crucial for photosynthesis and their size affects functional efficiency. Stomatal and leaf characteristics were measured for 1442 species from Argentina, Iran, Spain and the UK and, using PCA, some emergent ecological and taxonomic patterns identified. Subsequently, an assessment of the relationship between genome-size values obtained from the Plant DNA C-values database and measurements of stomatal size was carried out. Stomatal size is an ecologically important attribute. It varies with life-history (woody species angiosperms. Correlation is not, however, proof of causality and here our interpretation is hampered by unexpected deficiencies in the scientific literature. Firstly, there are discrepancies between our own observations and established ideas about the ecological significance of stomatal size; very large stomata, theoretically facilitating photosynthesis in deep shade, were, in this study (and in other studies), primarily associated with vernal geophytes of unshaded habitats. Secondly, the lower size limit at which stomata can function efficiently, and the ecological circumstances under which these minute stomata might occur, have not been satisfactorally resolved. Thus, our hypothesis, that the optimization of stomatal size for functional efficiency is a major ecological determinant of genome size, remains unproven.

  19. Patterns of genome size diversity in bats (order Chiroptera).

    Science.gov (United States)

    Smith, Jillian D L; Bickham, John W; Gregory, T Ryan

    2013-08-01

    Despite being a group of particular interest in considering relationships between genome size and metabolic parameters, bats have not been well studied from this perspective. This study presents new estimates for 121 "microbat" species from 12 families and complements a previous study on members of the family Pteropodidae ("megabats"). The results confirm that diversity in genome size in bats is very limited even compared with other mammals, varying approximately 2-fold from 1.63 pg in Lophostoma carrikeri to 3.17 pg in Rhinopoma hardwickii and averaging only 2.35 pg ± 0.02 SE (versus 3.5 pg overall for mammals). However, contrary to some other vertebrate groups, and perhaps owing to the narrow range observed, genome size correlations were not apparent with any chromosomal, physiological, flight-related, developmental, or ecological characteristics within the order Chiroptera. Genome size is positively correlated with measures of body size in bats, though the strength of the relationships differs between pteropodids ("megabats") and nonpteropodids ("microbats").

  20. Genome size, karyotype polymorphism and chromosomal evolution in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Renata T Souza

    Full Text Available BACKGROUND: The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener. However, high allelic variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in defining the structure of T. cruzi chromosomes. A large amount of information is now available for T. cruzi and Trypanosoma brucei, providing the opportunity to compare and describe the overall patterns of chromosomal evolution in these parasites. METHODOLOGY/PRINCIPAL FINDINGS: The genome sizes, repetitive DNA contents, and the numbers and sizes of chromosomes of nine strains of T. cruzi from four lineages (TcI, TcII, TcV and TcVI were determined. The genome of the TcI group was statistically smaller than other lineages, with the exception of the TcI isolate Tc1161 (José-IMT. Satellite DNA content was correlated with genome size for all isolates, but this was not accompanied by simultaneous amplification of retrotransposons. Regardless of chromosomal polymorphism, large syntenic groups are conserved among T. cruzi lineages. Duplicated chromosome-sized regions were identified and could be retained as paralogous loci, increasing the dosage of several genes. By comparing T. cruzi and T. brucei chromosomes, homologous chromosomal regions in T. brucei were identified. Chromosomes Tb9 and Tb11 of T. brucei share regions of syntenic homology with three and six T. cruzi chromosomal bands, respectively. CONCLUSIONS: Despite genome size variation and karyotype polymorphism, T. cruzi lineages exhibit conservation of chromosome structure. Several syntenic groups are conserved among all isolates analyzed in this study. The syntenic regions are larger than expected if rearrangements occur randomly, suggesting that they are conserved owing to positive selection. Mapping of the syntenic regions on T. cruzi chromosomal bands

  1. Interplay between Constraints, Objectives, and Optimality for Genome-Scale Stoichiometric Models

    NARCIS (Netherlands)

    Maarleveld, T.R.; Wortel, M.; Olivier, B.G.; Teusink, B.; Bruggeman, F.J.

    2015-01-01

    High-throughput data generation and genome-scale stoichiometric models have greatly facilitated the comprehensive study of metabolic networks. The computation of all feasible metabolic routes with these models, given stoichiometric, thermodynamic, and steady-state constraints, provides important ins

  2. Small Scale Yielding Correction of Constraint Loss in Small Sized Fracture Toughness Test Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Maan Won; Kim, Min Chul; Lee, Bong Sang; Hong, Jun Hwa [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Fracture toughness data in the ductile-brittle transition region of ferritic steels show scatter produced by local sampling effects and specimen geometry dependence which results from relaxation in crack tip constraint. The ASTM E1921 provides a standard test method to define the median toughness temperature curve, so called Master Curve, for the material corresponding to a 1T crack front length and also defines a reference temperature, T{sub 0}, at which median toughness value is 100 MPam for a 1T size specimen. The ASTM E1921 procedures assume that high constraint, small scaling yielding (SSY) conditions prevail at fracture along the crack front. Violation of the SSY assumption occurs most often during tests of smaller specimens. Constraint loss in such cases leads to higher toughness values and thus lower T{sub 0} values. When applied to a structure with low constraint geometry, the standard fracture toughness estimates may lead to strongly over-conservative estimates. A lot of efforts have been made to adjust the constraint effect. In this work, we applied a small-scale yielding correction (SSYC) to adjust the constraint loss of 1/3PCVN and PCVN specimens which are relatively smaller than 1T size specimen at the fracture toughness Master Curve test.

  3. The bat genome: GC-biased small chromosomes associated with reduction in genome size.

    Science.gov (United States)

    Kasai, Fumio; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A

    2013-12-01

    Bats are distinct from other mammals in their small genome size as well as their high metabolic rate, possibly related to flight ability. Although the genome sequence has been published in two species, the data lack cytogenetic information. In this study, the size and GC content of each chromosome are measured from the flow karyotype of the mouse-eared bat, Myotis myotis (MMY). The smaller chromosomes are GC-rich compared to the larger chromosomes, and the relative proportions of homologous segments between MMY and human differ among the MMY chromosomes. The MMY genome size calculated from the sum of the chromosome sizes is 2.25 Gb, and the total GC content is 42.3%, compared to human and dog with 41.0 and 41.2%, respectively. The GC-rich small MMY genome is characterised by GC-biased smaller chromosomes resulting from preferential loss of AT-rich sequences. Although the association between GC-rich small chromosomes and small genome size has been reported only in birds so far, we show in this paper, for the first time, that the same phenomenon is observed in at least one group of mammals, implying that this may be a mechanism common to genome evolution in general.

  4. An optimality criterion for sizing members of heated structures with temperature constraints. [considering aerospace structures

    Science.gov (United States)

    Rao, G. V.; Shore, C. P.; Narayanaswami, R.

    1977-01-01

    A thermal optimality criterion is presented for sizing members of heated structures with multiple temperature constraints. The optimality criterion is similar to an existing optimality criterion for design of mechanically loaded structures with displacement constraints. Effectiveness of the thermal optimality criterion is assessed by applying it to one- and two-dimensional thermal problems where temperatures can be controlled by varying the material distribution in the structure. Results obtained from the optimality criterion agree within 2 percent with results from a closed-form solution and with results from a mathematical programming technique. The thermal optimality criterion augments existing optimality criteria for strength and stiffness related constraints and offers the possibility of extension of optimality techniques to sizing structures with combined thermal and mechanical loading.

  5. Genome size determination in peronosporales (Oomycota) by Feulgen image analysis.

    Science.gov (United States)

    Voglmayr, H; Greilhuber, J

    1998-12-01

    Genome size was determined, by nuclear Feulgen staining and image analysis, in 46 accessions of 31 species of Peronosporales (Oomycota), including important plant pathogens such as Bremia lactucae, Plasmopara viticola, Pseudoperonospora cubensis, and Pseudoperonospora humuli. The 1C DNA contents ranged from 0.046 (45. 6 Mb) to 0.163 pg (159.9 Mb). This is 0.041- to 0.144-fold that of Glycine max (soybean, 1C = 1.134 pg), which was used as an internal standard for genome size determination. The linearity of Feulgen absorbance photometry method over this range was demonstrated by calibration of Aspergillus species (1C = 31-38 Mb) against Glycine, which revealed differences of less than 6% compared to the published CHEF data. The low coefficients of variation (usually between 5 and 10%), repeatability of the results, and compatibility with CHEF data prove the resolution power of Feulgen image analysis. The applicability and limitations of Feulgen photometry are discussed in relation to other methods of genome size determination (CHEF gel electrophoresis, reassociation kinetics, genomic reconstruction) that have been previously applied to Oomycota. Copyright 1998 Academic Press.

  6. Genome Size in Diploids, Allopolyploids, and Autopolyploids of Mediterranean Triticeae

    Directory of Open Access Journals (Sweden)

    T. Eilam

    2010-01-01

    Full Text Available Nuclear DNA amount, determined by the flow cytometry method, in diploids, natural and synthetic allopolyploids, and natural and synthetic autopolyploids of the tribe Triticeae (Poaceae is reviewed here and discussed. In contrast to the very small and nonsignificant variation in nuclear DNA amount that was found at the intraspecific level, the variation at the interspecific level is very large. Evidently changes in genome size are either the cause or the result of speciation. Typical autopolyploids had the expected additive DNA amount of their diploid parents, whereas natural and synthetic cytologically diploidized autopolyploids and natural and synthetic allopolyploids had significantly less DNA than the sum of their parents. Thus, genome downsizing, occurring during or immediately after the formation of these polyploids, provides the physical basis for their cytological diploidization, that is, diploid-like meiotic behavior. Possible mechanisms that are involved in genome downsizing and the biological significance of this phenomenon are discussed.

  7. Quantitative metagenomic analyses based on average genome size normalization

    DEFF Research Database (Denmark)

    Frank, Jeremy Alexander; Sørensen, Søren Johannes

    2011-01-01

    Over the past quarter-century, microbiologists have used DNA sequence information to aid in the characterization of microbial communities. During the last decade, this has expanded from single genes to microbial community genomics, or metagenomics, in which the gene content of an environment can...... by estimating average genome sizes. This normalization can relieve comparative biases introduced by differences in community structure, number of sequencing reads, and sequencing read lengths between different metagenomes. We demonstrate the utility of this approach by comparing metagenomes from two different...... marine sources using both conventional small-subunit (SSU) rRNA gene analyses and our quantitative method to calculate the proportion of genomes in each sample that are capable of a particular metabolic trait. With both environments, to determine what proportion of each community they make up and how...

  8. Genome constraint through sexual reproduction: application of 4D-Genomics in reproductive biology.

    Science.gov (United States)

    Horne, Steven D; Abdallah, Batoul Y; Stevens, Joshua B; Liu, Guo; Ye, Karen J; Bremer, Steven W; Heng, Henry H Q

    2013-06-01

    Assisted reproductive technologies have been used to achieve pregnancies since the first successful test tube baby was born in 1978. Infertile couples are at an increased risk for multiple miscarriages and the application of current protocols are associated with high first-trimester miscarriage rates. Among the contributing factors of these higher rates is a high incidence of fetal aneuploidy. Numerous studies support that protocols including ovulation-induction, sperm cryostorage, density-gradient centrifugation, and embryo culture can induce genome instability, but the general mechanism is less clear. Application of the genome theory and 4D-Genomics recently led to the establishment of a new paradigm for sexual reproduction; sex primarily constrains genome integrity that defines the biological system rather than just providing genetic diversity at the gene level. We therefore propose that application of assisted reproductive technologies can bypass this sexual reproduction filter as well as potentially induce additional system instability. We have previously demonstrated that a single-cell resolution genomic approach, such as spectral karyotyping to trace stochastic genome level alterations, is effective for pre- and post-natal analysis. We propose that monitoring overall genome alteration at the karyotype level alongside the application of assisted reproductive technologies will improve the efficacy of the techniques while limiting stress-induced genome instability. The development of more single-cell based cytogenomic technologies are needed in order to better understand the system dynamics associated with infertility and the potential impact that assisted reproductive technologies have on genome instability. Importantly, this approach will be useful in studying the potential for diseases to arise as a result of bypassing the filter of sexual reproduction.

  9. Genome Size in North American Fireflies: Substantial Variation Likely Driven by Neutral Processes

    Science.gov (United States)

    Johnston, J. Spencer; Stanger-Hall, Kathrin F.; Hjelmen, Carl E.; Hanrahan, Shawn J.; Korunes, Katharine; Hall, David

    2017-01-01

    Abstract Eukaryotic genomes show tremendous size variation across taxa. Proximate explanations for genome size variation include differences in ploidy and amounts of noncoding DNA, especially repetitive DNA. Ultimate explanations include selection on physiological correlates of genome size such as cell size, which in turn influence body size, resulting in the often-observed correlation between body size and genome size. In this study, we examined body size and repetitive DNA elements in relationship to the evolution of genome size in North American representatives of a single beetle family, the Lampyridae (fireflies). The 23 species considered represent an excellent study system because of the greater than 5-fold range of genome sizes, documented here using flow cytometry, and the 3-fold range in body size, measured using pronotum width. We also identified common genomic repetitive elements using low-coverage sequencing. We found a positive relationship between genome size and repetitive DNA, particularly retrotransposons. Both genome size and these elements were evolving as expected given phylogenetic relatedness. We also tested whether genome size varied with body size and found no relationship. Together, our results suggest that genome size is evolving neutrally in fireflies. PMID:28541478

  10. Transcriptome and genome size analysis of the Venus flytrap.

    Science.gov (United States)

    Jensen, Michael Krogh; Vogt, Josef Korbinian; Bressendorff, Simon; Seguin-Orlando, Andaine; Petersen, Morten; Sicheritz-Pontén, Thomas; Mundy, John

    2015-01-01

    The insectivorous Venus flytrap (Dionaea muscipula) is renowned from Darwin's studies of plant carnivory and the origins of species. To provide tools to analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library synthesized from mRNA isolated from D. muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified into functional categories. A total of 15,547 full-length cDNA sequences were identified, from which open reading frames were detected in 10,941. Comparative GO analyses revealed that D. muscipula is highly represented in molecular functions related to catalytic, antioxidant, and electron carrier activities. Also, using a single copy sequence PCR-based method, we estimated that the genome size of D. muscipula is approx. 3 Gb. Our genome size estimate and transcriptome analyses will contribute to future research on this fascinating, monotypic species and its heterotrophic adaptations.

  11. Transcriptome and genome size analysis of the Venus flytrap.

    Directory of Open Access Journals (Sweden)

    Michael Krogh Jensen

    Full Text Available The insectivorous Venus flytrap (Dionaea muscipula is renowned from Darwin's studies of plant carnivory and the origins of species. To provide tools to analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library synthesized from mRNA isolated from D. muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO and classified into functional categories. A total of 15,547 full-length cDNA sequences were identified, from which open reading frames were detected in 10,941. Comparative GO analyses revealed that D. muscipula is highly represented in molecular functions related to catalytic, antioxidant, and electron carrier activities. Also, using a single copy sequence PCR-based method, we estimated that the genome size of D. muscipula is approx. 3 Gb. Our genome size estimate and transcriptome analyses will contribute to future research on this fascinating, monotypic species and its heterotrophic adaptations.

  12. Do online social media cut through the constraints that limit the size of offline social networks?

    Science.gov (United States)

    Dunbar, R I M

    2016-01-01

    The social brain hypothesis has suggested that natural social network sizes may have a characteristic size in humans. This is determined in part by cognitive constraints and in part by the time costs of servicing relationships. Online social networking offers the potential to break through the glass ceiling imposed by at least the second of these, potentially enabling us to maintain much larger social networks. This is tested using two separate UK surveys, each randomly stratified by age, gender and regional population size. The data show that the size and range of online egocentric social networks, indexed as the number of Facebook friends, is similar to that of offline face-to-face networks. For one sample, respondents also specified the number of individuals in the inner layers of their network (formally identified as support clique and sympathy group), and these were also similar in size to those observed in offline networks. This suggests that, as originally proposed by the social brain hypothesis, there is a cognitive constraint on the size of social networks that even the communication advantages of online media are unable to overcome. In practical terms, it may reflect the fact that real (as opposed to casual) relationships require at least occasional face-to-face interaction to maintain them.

  13. Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in angiosperms.

    Science.gov (United States)

    Puttick, Mark N; Clark, James; Donoghue, Philip C J

    2015-12-07

    Angiosperms represent one of the key examples of evolutionary success, and their diversity dwarfs other land plants; this success has been linked, in part, to genome size and phenomena such as whole genome duplication events. However, while angiosperms exhibit a remarkable breadth of genome size, evidence linking overall genome size to diversity is equivocal, at best. Here, we show that the rates of speciation and genome size evolution are tightly correlated across land plants, and angiosperms show the highest rates for both, whereas very slow rates are seen in their comparatively species-poor sister group, the gymnosperms. No evidence is found linking overall genome size and rates of speciation. Within angiosperms, both the monocots and eudicots show the highest rates of speciation and genome size evolution, and these data suggest a potential explanation for the megadiversity of angiosperms. It is difficult to associate high rates of diversification with different types of polyploidy, but it is likely that high rates of evolution correlate with a smaller genome size after genome duplications. The diversity of angiosperms may, in part, be due to an ability to increase evolvability by benefiting from whole genome duplications, transposable elements and general genome plasticity. © 2015 The Authors.

  14. A macrophysiological analysis of energetic constraints on geographic range size in mammals.

    Directory of Open Access Journals (Sweden)

    Salvatore J Agosta

    Full Text Available Physiological processes are essential for understanding the distribution and abundance of organisms, and recently, with widespread attention to climate change, physiology has been ushered back to the forefront of ecological thinking. We present a macrophysiological analysis of the energetics of geographic range size using combined data on body size, basal metabolic rate (BMR, phylogeny and range properties for 574 species of mammals. We propose three mechanisms by which interspecific variation in BMR should relate positively to geographic range size: (i Thermal Plasticity Hypothesis, (ii Activity Levels/Dispersal Hypothesis, and (iii Energy Constraint Hypothesis. Although each mechanism predicts a positive correlation between BMR and range size, they can be further distinguished based on the shape of the relationship they predict. We found evidence for the predicted positive relationship in two dimensions of energetics: (i the absolute, mass-dependent dimension (BMR and (ii the relative, mass-independent dimension (MIBMR. The shapes of both relationships were similar and most consistent with that expected from the Energy Constraint Hypothesis, which was proposed previously to explain the classic macroecological relationship between range size and body size in mammals and birds. The fact that this pattern holds in the MIBMR dimension indicates that species with supra-allometric metabolic rates require among the largest ranges, above and beyond the increasing energy demands that accrue as an allometric consequence of large body size. The relationship is most evident at high latitudes north of the Tropics, where large ranges and elevated MIBMR are most common. Our results suggest that species that are most vulnerable to extinction from range size reductions are both large-bodied and have elevated MIBMR, but also, that smaller species with elevated MIBMR are at heightened risk. We also provide insights into the global latitudinal trends in range

  15. A macrophysiological analysis of energetic constraints on geographic range size in mammals.

    Science.gov (United States)

    Agosta, Salvatore J; Bernardo, Joseph; Ceballos, Gerardo; Steele, Michael A

    2013-01-01

    Physiological processes are essential for understanding the distribution and abundance of organisms, and recently, with widespread attention to climate change, physiology has been ushered back to the forefront of ecological thinking. We present a macrophysiological analysis of the energetics of geographic range size using combined data on body size, basal metabolic rate (BMR), phylogeny and range properties for 574 species of mammals. We propose three mechanisms by which interspecific variation in BMR should relate positively to geographic range size: (i) Thermal Plasticity Hypothesis, (ii) Activity Levels/Dispersal Hypothesis, and (iii) Energy Constraint Hypothesis. Although each mechanism predicts a positive correlation between BMR and range size, they can be further distinguished based on the shape of the relationship they predict. We found evidence for the predicted positive relationship in two dimensions of energetics: (i) the absolute, mass-dependent dimension (BMR) and (ii) the relative, mass-independent dimension (MIBMR). The shapes of both relationships were similar and most consistent with that expected from the Energy Constraint Hypothesis, which was proposed previously to explain the classic macroecological relationship between range size and body size in mammals and birds. The fact that this pattern holds in the MIBMR dimension indicates that species with supra-allometric metabolic rates require among the largest ranges, above and beyond the increasing energy demands that accrue as an allometric consequence of large body size. The relationship is most evident at high latitudes north of the Tropics, where large ranges and elevated MIBMR are most common. Our results suggest that species that are most vulnerable to extinction from range size reductions are both large-bodied and have elevated MIBMR, but also, that smaller species with elevated MIBMR are at heightened risk. We also provide insights into the global latitudinal trends in range size and MIBMR

  16. A Macrophysiological Analysis of Energetic Constraints on Geographic Range Size in Mammals

    Science.gov (United States)

    Ceballos, Gerardo; Steele, Michael A.

    2013-01-01

    Physiological processes are essential for understanding the distribution and abundance of organisms, and recently, with widespread attention to climate change, physiology has been ushered back to the forefront of ecological thinking. We present a macrophysiological analysis of the energetics of geographic range size using combined data on body size, basal metabolic rate (BMR), phylogeny and range properties for 574 species of mammals. We propose three mechanisms by which interspecific variation in BMR should relate positively to geographic range size: (i) Thermal Plasticity Hypothesis, (ii) Activity Levels/Dispersal Hypothesis, and (iii) Energy Constraint Hypothesis. Although each mechanism predicts a positive correlation between BMR and range size, they can be further distinguished based on the shape of the relationship they predict. We found evidence for the predicted positive relationship in two dimensions of energetics: (i) the absolute, mass-dependent dimension (BMR) and (ii) the relative, mass-independent dimension (MIBMR). The shapes of both relationships were similar and most consistent with that expected from the Energy Constraint Hypothesis, which was proposed previously to explain the classic macroecological relationship between range size and body size in mammals and birds. The fact that this pattern holds in the MIBMR dimension indicates that species with supra-allometric metabolic rates require among the largest ranges, above and beyond the increasing energy demands that accrue as an allometric consequence of large body size. The relationship is most evident at high latitudes north of the Tropics, where large ranges and elevated MIBMR are most common. Our results suggest that species that are most vulnerable to extinction from range size reductions are both large-bodied and have elevated MIBMR, but also, that smaller species with elevated MIBMR are at heightened risk. We also provide insights into the global latitudinal trends in range size and MIBMR

  17. Genome downsizing and karyotype constancy in diploid and polyploid congeners: a model of genome size variation.

    Science.gov (United States)

    Poggio, Lidia; Realini, María Florencia; Fourastié, María Florencia; García, Ana María; González, Graciela Esther

    2014-06-26

    Evolutionary chromosome change involves significant variation in DNA amount in diploids and genome downsizing in polyploids. Genome size and karyotype parameters of Hippeastrum species with different ploidy level were analysed. In Hippeastrum, polyploid species show less DNA content per basic genome than diploid species. The rate of variation is lower at higher ploidy levels. All the species have a basic number x = 11 and bimodal karyotypes. The basic karyotypes consist of four short metacentric chromosomes and seven large chromosomes (submetacentric and subtelocentric). The bimodal karyotype is preserved maintaining the relative proportions of members of the haploid chromosome set, even in the presence of genome downsizing. The constancy of the karyotype is maintained because changes in DNA amount are proportional to the length of the whole-chromosome complement and vary independently in the long and short sets of chromosomes. This karyotype constancy in taxa of Hippeastrum with different genome size and ploidy level indicates that the distribution of extra DNA within the complement is not at random and suggests the presence of mechanisms selecting for constancy, or against changes, in karyotype morphology.

  18. Reassessment of the Genome Size in Elaeis guineensis and Elaeis oleifera, and Its Interspecific Hybrid.

    Science.gov (United States)

    Camillo, Julceia; Leão, André P; Alves, Alexandre A; Formighieri, Eduardo F; Azevedo, Ana Ls; Nunes, Juliana D; de Capdeville, Guy; de A Mattos, Jean K; Souza, Manoel T

    2014-01-01

    Aiming at generating a comprehensive genomic database on Elaeis spp., our group is leading several R&D initiatives with Elaeis guineensis (African oil palm) and Elaeis oleifera (American oil palm), including the whole-genome sequencing of the last. Genome size estimates currently available for this genus are controversial, as they indicate that American oil palm genome is about half the size of the African oil palm genome and that the genome of the interspecific hybrid is bigger than both the parental species genomes. We estimated the genome size of three E. guineensis genotypes, five E. oleifera genotypes, and two interspecific hybrids genotypes. On average, the genome size of E. guineensis is 4.32 ± 0.173 pg, while that of E. oleifera is 4.43 ± 0.018 pg. This indicates that both genomes are similar in size, even though E. oleifera is in fact bigger. As expected, the hybrid genome size is around the average of the two genomes, 4.40 ± 0.016 pg. Additionally, we demonstrate that both species present around 38% of GC content. As our results contradict the currently available data on Elaeis spp. genome sizes, we propose that the actual genome size of the Elaeis species is around 4 pg and that American oil palm possesses a larger genome than African oil palm.

  19. Selection and constraints on offspring size-number trade-offs in sand lizards (Lacerta agilis).

    Science.gov (United States)

    Ljungström, G; Stjernstedt, M; Wapstra, E; Olsson, M

    2016-05-01

    The trade-off between offspring size and number is a central component of life-history theory, postulating that larger investment into offspring size inevitably decreases offspring number. This trade-off is generally discussed in terms of genetic, physiological or morphological constraints; however, as among-individual differences can mask individual trade-offs, the underlying mechanisms may be difficult to reveal. In this study, we use multivariate analyses to investigate whether there is a trade-off between offspring size and number in a population of sand lizards by separating among- and within-individual patterns using a 15-year data set collected in the wild. We also explore the ecological and evolutionary causes and consequences of this trade-off by investigating how a female's resource (condition)- vs. age-related size (snout-vent length) influences her investment into offspring size vs. number (OSN), whether these traits are heritable and under selection and whether the OSN trade-off has a genetic component. We found a negative correlation between offspring size and number within individual females and physical constraints (size of body cavity) appear to limit the number of eggs that a female can produce. This suggests that the OSN trade-off occurs due to resource constraints as a female continues to grow throughout life and, thus, produces larger clutches. In contrast to the assumptions of classic OSN theory, we did not detect selection on offspring size; however, there was directional selection for larger clutch sizes. The repeatabilities of both offspring size and number were low and we did not detect any additive genetic variance in either trait. This could be due to strong selection (past or current) on these life-history traits, or to insufficient statistical power to detect significant additive genetic effects. Overall, the findings of this study are an important illustration of how analyses of within-individual patterns can reveal trade-offs and

  20. Relaxation of selective constraints causes independent selenoprotein extinction in insect genomes.

    Directory of Open Access Journals (Sweden)

    Charles E Chapple

    Full Text Available BACKGROUND: Selenoproteins are a diverse family of proteins notable for the presence of the 21st amino acid, selenocysteine. Until very recently, all metazoan genomes investigated encoded selenoproteins, and these proteins had therefore been believed to be essential for animal life. Challenging this assumption, recent comparative analyses of insect genomes have revealed that some insect genomes appear to have lost selenoprotein genes. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we investigate in detail the fate of selenoproteins, and that of selenoprotein factors, in all available arthropod genomes. We use a variety of in silico comparative genomics approaches to look for known selenoprotein genes and factors involved in selenoprotein biosynthesis. We have found that five insect species have completely lost the ability to encode selenoproteins and that selenoprotein loss in these species, although so far confined to the Endopterygota infraclass, cannot be attributed to a single evolutionary event, but rather to multiple, independent events. Loss of selenoproteins and selenoprotein factors is usually coupled to the deletion of the entire no-longer functional genomic region, rather than to sequence degradation and consequent pseudogenisation. Such dynamics of gene extinction are consistent with the high rate of genome rearrangements observed in Drosophila. We have also found that, while many selenoprotein factors are concomitantly lost with the selenoproteins, others are present and conserved in all investigated genomes, irrespective of whether they code for selenoproteins or not, suggesting that they are involved in additional, non-selenoprotein related functions. CONCLUSIONS/SIGNIFICANCE: Selenoproteins have been independently lost in several insect species, possibly as a consequence of the relaxation in insects of the selective constraints acting across metazoans to maintain selenoproteins. The dispensability of selenoproteins in insects may

  1. The dynamic evolutionary history of genome size in North American woodland salamanders.

    Science.gov (United States)

    Newman, Catherine E; Gregory, T Ryan; Austin, Christopher C

    2017-04-01

    The genus Plethodon is the most species-rich salamander genus in North America, and nearly half of its species face an uncertain future. It is also one of the most diverse families in terms of genome sizes, which range from 1C = 18.2 to 69.3 pg, or 5-20 times larger than the human genome. Large genome size in salamanders results in part from accumulation of transposable elements and is associated with various developmental and physiological traits. However, genome sizes have been reported for only 25% of the species of Plethodon (14 of 55). We collected genome size data for Plethodon serratus to supplement an ongoing phylogeographic study, reconstructed the evolutionary history of genome size in Plethodontidae, and inferred probable genome sizes for the 41 species missing empirical data. Results revealed multiple genome size changes in Plethodon: genomes of western Plethodon increased, whereas genomes of eastern Plethodon decreased, followed by additional decreases or subsequent increases. The estimated genome size of P. serratus was 21 pg. New understanding of variation in genome size evolution, along with genome size inferences for previously unstudied taxa, provide a foundation for future studies on the biology of plethodontid salamanders.

  2. Meta-basic estimates the size of druggable human genome.

    Science.gov (United States)

    Plewczynski, Dariusz; Rychlewski, Leszek

    2009-06-01

    We present here the estimation of the upper limit of the number of molecular targets in the human genome that represent an opportunity for further therapeutic treatment. We select around approximately 6300 human proteins that are similar to sequences of known protein targets collected from DrugBank database. Our bioinformatics study estimates the size of 'druggable' human genome to be around 20% of human proteome, i.e. the number of the possible protein targets for small-molecule drug design in medicinal chemistry. We do not take into account any toxicity prediction, the three-dimensional characteristics of the active site in the predicted 'druggable' protein families, or detailed chemical analysis of known inhibitors/drugs. Instead we rely on remote homology detection method Meta-BASIC, which is based on sequence and structural similarity. The prepared dataset of all predicted protein targets from human genome presents the unique opportunity for developing and benchmarking various in silico chemo/bio-informatics methods in the context of the virtual high throughput screening.

  3. Formation of spherical stomatocyte of high-genus vesicle under pore-size constraint

    CERN Document Server

    Noguchi, Hiroshi

    2016-01-01

    Nuclear pores have an approximately uniform distribution in the nuclear envelope of most living cells. Hence, the morphology of the nuclear envelope is a spherical stomatocyte with a high genus. We have investigated the morphology of high-genus vesicles under pore-size constraint using dynamically triangulated membrane simulations. Bending-energy minimization without volume or other constraints produces a circular-cage stomatocyte, where the pores are aligned in a circular line on an oblate inner bud. As the pore radius is reduced, the circular-pore alignment is more stabilized than a random pore distribution on a spherical bud. However, we have clarified the conditions for the formation of a spherical stomatocyte: a small reduced volume, osmotic pressure within the inner bud, and repulsion between the pores. When area-difference elasticity is taken into account, the formation of cylindrical or budded tubules from the stomatocyte and discoidal stomatocyte is found.

  4. Nitrogen limitation as a driver of genome size evolution in a group of karst plants

    OpenAIRE

    Kang, Ming; Wang, Jing; Huang, Hongwen

    2015-01-01

    Genome size is of fundamental biological importance with significance in predicting structural and functional attributes of organisms. Although abundant evidence has shown that the genome size can be largely explained by differential proliferation and removal of non-coding DNA of the genome, the evolutionary and ecological basis of genome size variation remains poorly understood. Nitrogen (N) and phosphorus (P) are essential elements of DNA and protein building blocks, yet often subject to en...

  5. Genomic Sequencing of Orientia tsutsugamushi Strain Karp, an Assembly Comparable to the Genome Size of the Strain Ikeda.

    Science.gov (United States)

    Liao, Hsiao-Mei; Chao, Chien-Chung; Lei, Haiyan; Li, Bingjie; Tsai, Shien; Hung, Guo-Chiuan; Ching, Wei-Mei; Lo, Shyh-Ching

    2016-08-18

    Orientia tsutsugamushi, an intracellular bacterium, belongs to the family Rickettsiaceae This study presents the draft genome sequence of strain Karp, with 2.0 Mb as the size of the completed genome. This nearly finished draft genome sequence was annotated with the RAST server and the contents compared to those of the other strains.

  6. Genomic Sequencing of Orientia tsutsugamushi Strain Karp, an Assembly Comparable to the Genome Size of the Strain Ikeda

    Science.gov (United States)

    Liao, Hsiao-Mei; Chao, Chien-Chung; Lei, Haiyan; Li, Bingjie; Tsai, Shien; Hung, Guo-Chiuan

    2016-01-01

    Orientia tsutsugamushi, an intracellular bacterium, belongs to the family Rickettsiaceae. This study presents the draft genome sequence of strain Karp, with 2.0 Mb as the size of the completed genome. This nearly finished draft genome sequence was annotated with the RAST server and the contents compared to those of the other strains. PMID:27540052

  7. Evidence for the morphological constraint hypothesis and optimal offspring size theory in the Mexican mud turtle (Kinosternon integrum).

    Science.gov (United States)

    Macip-Ríos, Rodrigo; Brauer-Robleda, Pablo; Casas-Andreu, Gustavo; Arias-Cisneros, María de Lourdes; Sustaita-Rodríguez, Víctor Hugo

    2012-01-01

    Optimal offspring size theory states that natural selection should balance reproductive output by optimizing between offspring size and offspring number. If a species has evolved an optimal offspring size, the fitness of larger females should be increased by simply producing more offspring of an optimum size. In contrast, when offspring size is not optimized, the morphological constraint hypothesis may apply, and in this case, maternal fitness is increased by producing the greatest number of the largest offspring that mothers are physically capable of producing. We used a log-log allometric regression approach on clutch size, egg size, and body size data to test the application of optimal offspring size theory and the morphological constraint hypothesis in the Mexican mud turtle (Kinosternon integrum) in southern Mexico. Our results indicate that this turtle seems to follow the morphological constraint hypothesis when all data are analyzed together, but when data are divided between small ( 140 mm plastron length), optimal offspring (egg) size theory was supported only in large females, while the morphological constraint hypothesis was supported in small females. Our results thus indicate that K. integrum females may increase their fitness in two different, size-dependent ways as they grow from size at sexual maturity to maximum body size.

  8. First genome size estimations for some eudicot families and genera

    Directory of Open Access Journals (Sweden)

    Garcia, S.

    2010-12-01

    Full Text Available Genome size diversity in angiosperms varies roughly 2400-fold, although approximately 45% of angiosperm families lack a single genome size estimation, and therefore, this range could be enlarged. To contribute completing family and genera representation, DNA C-Values are here provided for 19 species from 16 eudicot families, including first values for 6 families, 14 genera and 17 species. The sample of species studied is very diverse, including herbs, weeds, vines, shrubs and trees. Data are discussed regarding previous genome size estimates of closely related species or genera, if any, their chromosome number, growth form or invasive behaviour. The present research contributes approximately 1.5% new values for previously unreported angiosperm families, being the current coverage around 55% of angiosperm families, according to the Plant DNA C-Values Database.

    La diversidad del tamaño del genoma en angiospermas es muy amplia, siendo el valor más elevado aproximadamente unas 2400 veces superior al más pequeño. Sin embargo, cerca del 45% de las familias no presentan ni una sola estimación, por lo que el rango real podría ser ampliado. Para contribuir a completar la representación de familias y géneros de angiospermas, este estudio contribuye con valores C para 19 especies de 16 familias de eudicoticotiledóneas, incluyendo los primeros valores para 6 familias, 14 géneros y 17 especies. La muestra estudiada es muy diversa, e incluye hierbas, malezas, enredaderas, arbustos y árboles. Se discuten los resultados en función de estimaciones previas del tamaño del genoma de especies o géneros estrechamente relacionados, del número de cromosomas, la forma de crecimiento o el comportamiento invasor de las especies analizadas. El presente estudio contribuye aproximadamente en un 1,5% de nuevos valores para familias de angiospermas no estudiadas previamente, de las que actualmente existe información para el 55%, según la base de datos

  9. Intrapopulation Genome Size Variation in D. melanogaster Reflects Life History Variation and Plasticity

    Science.gov (United States)

    Ellis, Lisa L.; Huang, Wen; Quinn, Andrew M.; Ahuja, Astha; Alfrejd, Ben; Gomez, Francisco E.; Hjelmen, Carl E.; Moore, Kristi L.; Mackay, Trudy F. C.; Johnston, J. Spencer; Tarone, Aaron M.

    2014-01-01

    We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions. PMID:25057905

  10. Intrapopulation genome size variation in D. melanogaster reflects life history variation and plasticity.

    Directory of Open Access Journals (Sweden)

    Lisa L Ellis

    2014-07-01

    Full Text Available We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions.

  11. Sample size planning with the cost constraint for testing superiority and equivalence of two independent groups.

    Science.gov (United States)

    Guo, Jiin-Huarng; Chen, Hubert J; Luh, Wei-Ming

    2011-11-01

    The allocation of sufficient participants into different experimental groups for various research purposes under given constraints is an important practical problem faced by researchers. We address the problem of sample size determination between two independent groups for unequal and/or unknown variances when both the power and the differential cost are taken into consideration. We apply the well-known Welch approximate test to derive various sample size allocation ratios by minimizing the total cost or, equivalently, maximizing the statistical power. Two types of hypotheses including superiority/non-inferiority and equivalence of two means are each considered in the process of sample size planning. A simulation study is carried out and the proposed method is validated in terms of Type I error rate and statistical power. As a result, the simulation study reveals that the proposed sample size formulas are very satisfactory under various variances and sample size allocation ratios. Finally, a flowchart, tables, and figures of several sample size allocations are presented for practical reference.

  12. Genome size diversity in angiosperms and its influence on gene space.

    Science.gov (United States)

    Dodsworth, Steven; Leitch, Andrew R; Leitch, Ilia J

    2015-12-01

    Genome size varies c. 2400-fold in angiosperms (flowering plants), although the range of genome size is skewed towards small genomes, with a mean genome size of 1C=5.7Gb. One of the most crucial factors governing genome size in angiosperms is the relative amount and activity of repetitive elements. Recently, there have been new insights into how these repeats, previously discarded as 'junk' DNA, can have a significant impact on gene space (i.e. the part of the genome comprising all the genes and gene-related DNA). Here we review these new findings and explore in what ways genome size itself plays a role in influencing how repeats impact genome dynamics and gene space, including gene expression. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Genome Sizes of Nine Insect Species Determined by Flow Cytometry and k-mer Analysis

    Science.gov (United States)

    He, Kang; Lin, Kejian; Wang, Guirong; Li, Fei

    2016-01-01

    The flow cytometry method was used to estimate the genome sizes of nine agriculturally important insects, including two coleopterans, five Hemipterans, and two hymenopterans. Among which, the coleopteran Lissorhoptrus oryzophilus (Kuschel) had the largest genome of 981 Mb. The average genome size was 504 Mb, suggesting that insects have a moderate-size genome. Compared with the insects in other orders, hymenopterans had small genomes, which were averagely about ~200 Mb. We found that the genome sizes of four insect species were different between male and female, showing the organismal complexity of insects. The largest difference occurred in the coconut leaf beetle Brontispa longissima (Gestro). The male coconut leaf beetle had a 111 Mb larger genome than females, which might be due to the chromosome number difference between the sexes. The results indicated that insect invasiveness was not related to genome size. We also determined the genome sizes of the small brown planthopper Laodelphax striatellus (Fallén) and the parasitic wasp Macrocentrus cingulum (Brischke) using k-mer analysis with Illunima Solexa sequencing data. There were slight differences in the results from the two methods. k-mer analysis indicated that the genome size of L. striatellus was 500–700 Mb and that of M. cingulum was ~150 Mb. In all, the genome sizes information presented here should be helpful for designing the genome sequencing strategy when necessary. PMID:27932995

  14. Karyotype and genome size in Euterpe Mart. (Arecaceae) species

    Science.gov (United States)

    Oliveira, Ludmila Cristina; de Oliveira, Maria do Socorro Padilha; Davide, Lisete Chamma; Torres, Giovana Augusta

    2016-01-01

    Abstract Euterpe (Martius, 1823), a genus from Central and South America, has species with high economic importance in Brazil, because of their palm heart and fruits, known as açaí berries. Breeding programs have been conducted to increase yield and establish cultivation systems to replace the extraction of wild material. These programs need basic information about the genome of these species to better explore the available genetic variability. The aim of this study was to compare Euterpe edulis (Martius, 1824), Euterpe oleracea (Martius, 1824) and Euterpe precatoria (Martius, 1842), with regard to karyotype, type of interphase nucleus and nuclear DNA amount. Metaphase chromosomes and interphase nuclei from root tip meristematic cells were obtained by the squashing technique and solid stained for microscope analysis. The DNA amount was estimated by flow cytometry. There were previous reports on the chromosome number of Euterpe edulis and Euterpe oleracea, but chromosome morphology of these two species and the whole karyotype of Euterpe precatoria are reported for the first time. The species have 2n=36, a number considered as a pleisomorphic feature in Arecoideae since the modern species, according to floral morphology, have the lowest chromosome number (2n=28 and 2n=30). The three Euterpe species also have the same type of interphase nuclei, classified as semi-reticulate. The species differed on karyotypic formulas, on localization of secondary constriction and genome size. The data suggest that the main forces driving Euterpe karyotype evolution were structural rearrangements, such as inversions and translocations that alter chromosome morphology, and either deletion or amplification that led to changes in chromosome size. PMID:27186334

  15. Digital image correlation involves an inverse problem: A regularization scheme based on subset size constraint

    Science.gov (United States)

    Zhan, Qin; Yuan, Yuan; Fan, Xiangtao; Huang, Jianyong; Xiong, Chunyang; Yuan, Fan

    2016-06-01

    Digital image correlation (DIC) is essentially implicated in a class of inverse problem. Here, a regularization scheme is developed for the subset-based DIC technique to effectively inhibit potential ill-posedness that likely arises in actual deformation calculations and hence enhance numerical stability, accuracy and precision of correlation measurement. With the aid of a parameterized two-dimensional Butterworth window, a regularized subpixel registration strategy is established, in which the amount of speckle information introduced to correlation calculations may be weighted through equivalent subset size constraint. The optimal regularization parameter associated with each individual sampling point is determined in a self-adaptive way by numerically investigating the curve of 2-norm condition number of coefficient matrix versus the corresponding equivalent subset size, based on which the regularized solution can eventually be obtained. Numerical results deriving from both synthetic speckle images and actual experimental images demonstrate the feasibility and effectiveness of the set of newly-proposed regularized DIC algorithms.

  16. Orbital plane constraint applicable for in-situ measurement of sub-millimeter-size debris

    Science.gov (United States)

    Furumoto, Masahiro; Fujita, Koki; Hanada, Toshiya; Matsumoto, Haruhisa; Kitazawa, Yukihito

    2017-03-01

    Space debris smaller than 1 mm in size still have enough energy to cause a fatal damage on a spacecraft, but such tiny debris cannot be followed or tracked from the ground. Therefore, IDEA the project for In-situ Debris Environmental Awareness, which aims to detect sub-millimeter-size debris using a group of micro satellites, has been initiated at Kyushu University. First, this paper reviews the previous study on the nature of orbits on which debris may be detected through in-situ measurements proposed in the IDEA project. Second, this paper derives a simple equation that constrains the orbital plane on which debris is detected through in-situ measurements. Third, this paper also investigates the nature and sensitivity of this simple constraint equation to clear how frequently impacts have to be confirmed to reduce the measurement error. Finally, this paper introduces a torus model to describe the collision flux observed from the previous study approximately. This collision flux approximation agrees rather well with the observed collision flux. It is concluded, therefore, that the simple constraint equation and collision flux approximation introduced in this paper can replace the analytical method adopted by the previous study to conduct a further investigation more effectively.

  17. Adaptive and nonadaptive genome size evolution in Karst endemic flora of China.

    Science.gov (United States)

    Kang, Ming; Tao, Junjie; Wang, Jing; Ren, Chen; Qi, Qingwen; Xiang, Qiu-Yun; Huang, Hongwen

    2014-06-01

    Genome size variation is of fundamental biological importance and has been a longstanding puzzle in evolutionary biology. Several hypotheses for genome size evolution including neutral, maladaptive, and adaptive models have been proposed, but the relative importance of these models remains controversial. Primulina is a genus that is highly diversified in the Karst region of southern China, where genome size variation and the underlying evolutionary mechanisms are poorly understood. We reconstructed the phylogeny of Primulina using DNA sequences for 104 species and determined the genome sizes of 101 species. We examined the phylogenetic signal in genome size variation, and tested the fit to different evolutionary models and for correlations with variation in latitude and specific leaf area (SLA). The results showed that genome size, SLA and latitudinal variation all displayed strong phylogenetic signals, but were best explained by different evolutionary models. Furthermore, significant positive relationships were detected between genome size and SLA and between genome size and latitude. Our study is the first to investigate genome size evolution on such a comprehensive scale and in the Karst region flora. We conclude that genome size in Primulina is phylogenetically conserved but its variation among species is a combined outcome of both neutral and adaptive evolution.

  18. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms.

    Science.gov (United States)

    Fleischmann, Andreas; Michael, Todd P; Rivadavia, Fernando; Sousa, Aretuza; Wang, Wenqin; Temsch, Eva M; Greilhuber, Johann; Müller, Kai F; Heubl, Günther

    2014-12-01

    Some species of Genlisea possess ultrasmall nuclear genomes, the smallest known among angiosperms, and some have been found to have chromosomes of diminutive size, which may explain why chromosome numbers and karyotypes are not known for the majority of species of the genus. However, other members of the genus do not possess ultrasmall genomes, nor do most taxa studied in related genera of the family or order. This study therefore examined the evolution of genome sizes and chromosome numbers in Genlisea in a phylogenetic context. The correlations of genome size with chromosome number and size, with the phylogeny of the group and with growth forms and habitats were also examined. Nuclear genome sizes were measured from cultivated plant material for a comprehensive sampling of taxa, including nearly half of all species of Genlisea and representing all major lineages. Flow cytometric measurements were conducted in parallel in two laboratories in order to compare the consistency of different methods and controls. Chromosome counts were performed for the majority of taxa, comparing different staining techniques for the ultrasmall chromosomes. Genome sizes of 15 taxa of Genlisea are presented and interpreted in a phylogenetic context. A high degree of congruence was found between genome size distribution and the major phylogenetic lineages. Ultrasmall genomes with 1C values of <100 Mbp were almost exclusively found in a derived lineage of South American species. The ancestral haploid chromosome number was inferred to be n = 8. Chromosome numbers in Genlisea ranged from 2n = 2x = 16 to 2n = 4x = 32. Ascendant dysploid series (2n = 36, 38) are documented for three derived taxa. The different ploidy levels corresponded to the two subgenera, but were not directly correlated to differences in genome size; the three different karyotype ranges mirrored the different sections of the genus. The smallest known plant genomes were not found in G. margaretae, as previously reported

  19. Constraints on the size of Asteroid (216) Kleopatra using stress analysis

    Science.gov (United States)

    Hirabayashi, M.; Scheeres, D. J.

    2013-12-01

    We investigate the stable size of Asteroid (216) Kleopatra by considering structural constraints on this body. Comprehensive radar observations (Ostro et al. 2000, Science) were used to estimate a shape model for this asteroid. Their estimation revealed that the shape looks like a dog-bone, the mean radius is 54.3 km (with uncertainty as large as 25%), and the surface seems similar to lunar surface regolith. However, 10 years later, Descamps et al. (2011, Icarus) performed near-infrared adaptive optics (AO) imaging with the W.M. Keck II telescope and found that although the shape may be consistent with their observation result, their size appeared to be larger than the Ostro size (by a factor of about 1.24). Our motivation in this study is to investigate structural stability constraints on the size of this asteroid. Across the stated range of uncertainty we find significant differences in the necessary angle of friction and cohesion for the body to avoid plastic deformation. We use the following physical parameters as fixed: a mass of 4.64e18 kg (Descamps et al. 2011, Icarus), a rotation period of 5.385 hr (Magnusson 1990, Icarus), and the Ostro et al. shape. We use the Drucker-Prager criterion to describe the rheology of the asteroid's material. Furthermore, we determine the friction angle from the fact that the surface of this asteroid is similar to lunar surface regolith, whose porosity ranges from 33% to 55%. According to Scott (1963), a soil with porosity of 44% (the mean value of the lunar surface porosity) has a friction angle of 32 degrees (which we use as our nominal value). Since the interior structure is unknown, we assume that the body is homogeneous. We first analyze the stable size by using the upper bound theorem from limit analysis on the assumption that this asteroid's materials are cohesionless. Based on this theorem, for any static surface traction and body force, the yield due to a smooth and convex yield envelope associated with the volume

  20. Reductive genome evolution at both ends of the bacterial population size spectrum.

    Science.gov (United States)

    Batut, Bérénice; Knibbe, Carole; Marais, Gabriel; Daubin, Vincent

    2014-12-01

    Bacterial genomes show substantial variations in size. The smallest bacterial genomes are those of endocellular symbionts of eukaryotic hosts, which have undergone massive genome reduction and show patterns that are consistent with the degenerative processes that are predicted to occur in species with small effective population sizes. However, similar genome reduction is found in some free-living marine cyanobacteria that are characterized by extremely large populations. In this Opinion article, we discuss the different hypotheses that have been proposed to account for this reductive genome evolution at both ends of the bacterial population size spectrum.

  1. Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach.

    Science.gov (United States)

    Balao, Francisco; Herrera, Javier; Talavera, Salvador

    2011-10-01

    • Chromosomal duplications and increases in DNA amount have the potential to alter quantitative plant traits like flower number, plant stature or stomata size. This has been documented often across species, but information on whether such effects also occur within species (i.e. at the microevolutionary or population scale) is scarce. • We studied trait covariation associated with polyploidy and genome size (both monoploid and total) in 22 populations of Dianthus broteri s.l., a perennial herb with several cytotypes (2x, 4x, 6x and 12x) that do not coexist spatially. Principal component scores of organ size/number variations were assessed as correlates of polyploidy, and phylogenetic relatedness among populations was controlled using phylogenetic generalized least squares. • Polyploidy covaried with organ dimensions, causing multivariate characters to increase, remain unchanged, or decrease with DNA amount. Variations in monoploid DNA amount had detectable consequences on some phenotypic traits. According to the analyses, some traits would experience phenotypic selection, while others would not. • We show that polyploidy contributes to decouple variation among traits in D. broteri, and hypothesize that polyploids may experience an evolutionary advantage in this plant lineage, for example, if it helps to overcome the constraints imposed by trait integration.

  2. Clique size and network characteristics in hyperlink cinema. Constraints of evolved psychology.

    Science.gov (United States)

    Krems, Jaimie Arona; Dunbar, R I M

    2013-12-01

    Hyperlink cinema is an emergent film genre that seeks to push the boundaries of the medium in order to mirror contemporary life in the globalized community. Films in the genre thus create an interacting network across space and time in such a way as to suggest that people's lives can intersect on scales that would not have been possible without modern technologies of travel and communication. This allows us to test the hypothesis that new kinds of media might permit us to break through the natural cognitive constraints that limit the number and quality of social relationships we can manage in the conventional face-to-face world. We used network analysis to test this hypothesis with data from 12 hyperlink films, using 10 motion pictures from a more conventional film genre as a control. We found few differences between hyperlink cinema films and the control genre, and few differences between hyperlink cinema films and either the real world or classical drama (e.g., Shakespeare's plays). Conversation group size seems to be especially resilient to alteration. It seems that, despite many efficiency advantages, modern media are unable to circumvent the constraints imposed by our evolved psychology.

  3. Constraints on the size of the extra dimension from KK gravitinos decay

    Energy Technology Data Exchange (ETDEWEB)

    Gherson, David [Institut de Physique Nucleaire de Lyon (IPNL), Universite Claude Bernard Lyon-I, Villeurbanne (France)

    2007-07-01

    We study the consequences of the gravitino decay into dark matter. We suppose that the lightest neutralino is the main component of dark matter. In our framework gravitino is heavy enough to decay before Big Bang Nucleosynthesis starts. We consider a model coming from a five dimensional supergravity compactified on S{sup 1}/Z{sub 2} with gravity in the bulk and matter localized on tension-less branes at the orbifold fixed points. We require that the dark matter, which is produced thermally and in the decay of Kaluza-Klein modes of gravitino, has an abundance compatible with observation. We deduce from our model that there are curves of constraints between the size of the extra-dimension and the reheating temperature of the universe after inflation. (author)

  4. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints

    DEFF Research Database (Denmark)

    Sanchez, Benjamin J.; Zhang, Xi-Cheng; Nilsson, Avlant

    2017-01-01

    Genome-scale metabolic models (GEMs) are widely used to calculate metabolic phenotypes. They rely on defining a set of constraints, the most common of which is that the production of metabolites and/or growth are limited by the carbon source uptake rate. However, enzyme abundances and kinetics......, which act as limitations on metabolic fluxes, are not taken into account. Here, we present GECKO, a method that enhances a GEM to account for enzymes as part of reactions, thereby ensuring that each metabolic flux does not exceed its maximum capacity, equal to the product of the enzyme's abundance...... with stress, or overexpressing a specific pathway. GECKO also allows to directly integrate quantitative proteomics data; by doing so, we significantly reduced flux variability of the model, in over 60% of metabolic reactions. Additionally, the model gives insight into the distribution of enzyme usage between...

  5. Genome size correlates with reproductive fitness in seed beetles.

    Science.gov (United States)

    Arnqvist, Göran; Sayadi, Ahmed; Immonen, Elina; Hotzy, Cosima; Rankin, Daniel; Tuda, Midori; Hjelmen, Carl E; Johnston, J Spencer

    2015-09-22

    The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the 'C-value paradox'. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in life-history traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4-5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution.

  6. Genome size correlates with reproductive fitness in seed beetles

    Science.gov (United States)

    Arnqvist, Göran; Sayadi, Ahmed; Immonen, Elina; Hotzy, Cosima; Rankin, Daniel; Tuda, Midori; Hjelmen, Carl E.; Johnston, J. Spencer

    2015-01-01

    The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the ‘C-value paradox’. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in life-history traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4–5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution. PMID:26354938

  7. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.

    Science.gov (United States)

    Yen, Jiun Y; Nazem-Bokaee, Hadi; Freedman, Benjamin G; Athamneh, Ahmad I M; Senger, Ryan S

    2013-05-01

    Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design "fine-tuned" metabolic engineering strategies in silico that can be implemented directly with available genomic tools.

  8. Genome size in arthropods; different roles of phylogeny, habitat and life history in insects and crustaceans.

    Science.gov (United States)

    Alfsnes, Kristian; Leinaas, Hans Petter; Hessen, Dag Olav

    2017-08-01

    Despite the major role of genome size for physiology, ecology, and evolution, there is still mixed evidence with regard to proximate and ultimate drivers. The main causes of large genome size are proliferation of noncoding elements and/or duplication events. The relative role and interplay between these proximate causes and the evolutionary patterns shaped by phylogeny, life history traits or environment are largely unknown for the arthropods. Genome size shows a tremendous variability in this group, and it has a major impact on a range of fitness-related parameters such as growth, metabolism, life history traits, and for many species also body size. In this study, we compared genome size in two major arthropod groups, insects and crustaceans, and related this to phylogenetic patterns and parameters affecting ambient temperature (latitude, depth, or altitude), insect developmental mode, as well as crustacean body size and habitat, for species where data were available. For the insects, the genome size is clearly phylogeny-dependent, reflecting primarily their life history and mode of development, while for crustaceans there was a weaker association between genome size and phylogeny, suggesting life cycle strategies and habitat as more important determinants. Maximum observed latitude and depth, and their combined effect, showed positive, and possibly phylogenetic independent, correlations with genome size for crustaceans. This study illustrate the striking difference in genome sizes both between and within these two major groups of arthropods, and that while living in the cold with low developmental rates may promote large genomes in marine crustaceans, there is a multitude of proximate and ultimate drivers of genome size.

  9. The mode and tempo of genome size evolution in the subgenus Sophophora

    Science.gov (United States)

    Johnston, J. Spencer

    2017-01-01

    Genome size varies widely across organisms, with no apparent tie to organismal complexity. While genome size is inherited, there is no established evolutionary model for this trait. Hypotheses have been postulated for the observed variation in genome sizes across species, most notably the effective population size hypothesis, the mutational equilibrium hypothesis, and the adaptive hypothesis. While much data has been collected on genome size, the above hypotheses have largely ignored impacts from phylogenetic relationships. In order to test these competing hypotheses, genome sizes of 87 Sophophora species were analyzed in a comparative phylogenetic approach using Pagel’s parameters of evolution, Blomberg’s K, Abouheif’s Cmean and Moran’s I. In addition to testing the mode and rate of genome size evolution in Sophophora species, the effect of number of taxa on detection of phylogenetic signal was analyzed for each of these comparative phylogenetic methods. Sophophora genome size was found to be dependent on the phylogeny, indicating that evolutionary time was important for predicting the variation among species. Genome size was found to evolve gradually on branches of the tree, with a rapid burst of change early in the phylogeny. These results suggest that Sophophora genome size has experienced gradual changes, which support the largely theoretical mutational equilibrium hypothesis. While some methods (Abouheif’s Cmean and Moran’s I) were found to be affected by increasing taxa numbers, more commonly used methods (λ and Blomberg’s K) were found to have increasing reliability with increasing taxa number, with significantly more support with fifteen or more taxa. Our results suggest that these comparative phylogenetic methods, with adequate taxon sampling, can be a powerful way to uncover the enigma that is genome size variation through incorporation of phylogenetic relationships. PMID:28267812

  10. Nitrogen limitation as a driver of genome size evolution in a group of karst plants

    Science.gov (United States)

    Kang, Ming; Wang, Jing; Huang, Hongwen

    2015-06-01

    Genome size is of fundamental biological importance with significance in predicting structural and functional attributes of organisms. Although abundant evidence has shown that the genome size can be largely explained by differential proliferation and removal of non-coding DNA of the genome, the evolutionary and ecological basis of genome size variation remains poorly understood. Nitrogen (N) and phosphorus (P) are essential elements of DNA and protein building blocks, yet often subject to environmental limitation in natural ecosystems. Using phylogenetic comparative methods, we test this hypothesis by determining whether leaf N and P availability affects genome sizes in 99 species of Primulina (Gesneriaceae), a group of soil specialists adapted to limestone karst environment in south China. We find that genome sizes in Primulina are strongly positively correlated with plant N content, but the correlation with plant P content is not significant when phylogeny history was taken into account. This study shows for the first time that N limitation might have been a plausible driver of genome size variation in a group of plants. We propose that competition for nitrogen nutrient between DNA synthesis and cellular functions is a possible mechanism for genome size evolution in Primulina under N-limitation.

  11. Genome size and metabolic intensity in tetrapods: a tale of two lines.

    Science.gov (United States)

    Vinogradov, Alexander E; Anatskaya, Olga V

    2006-01-07

    We show the negative link between genome size and metabolic intensity in tetrapods, using the heart index (relative heart mass) as a unified indicator of metabolic intensity in poikilothermal and homeothermal animals. We found two separate regression lines of heart index on genome size for reptiles-birds and amphibians-mammals (the slope of regression is steeper in reptiles-birds). We also show a negative correlation between GC content and nucleosome formation potential in vertebrate DNA, and, consistent with this relationship, a positive correlation between genome GC content and nuclear size (independent of genome size). It is known that there are two separate regression lines of genome GC content on genome size for reptiles-birds and amphibians-mammals: reptiles-birds have the relatively higher GC content (for their genome sizes) compared to amphibians-mammals. Our results suggest uniting all these data into one concept. The slope of negative regression between GC content and nucleosome formation potential is steeper in exons than in non-coding DNA (where nucleosome formation potential is generally higher), which indicates a special role of non-coding DNA for orderly chromatin organization. The chromatin condensation and nuclear size are supposed to be key parameters that accommodate the effects of both genome size and GC content and connect them with metabolic intensity. Our data suggest that the reptilian-birds clade evolved special relationships among these parameters, whereas mammals preserved the amphibian-like relationships. Surprisingly, mammals, although acquiring a more complex general organization, seem to retain certain genome-related properties that are similar to amphibians. At the same time, the slope of regression between nucleosome formation potential and GC content is steeper in poikilothermal than in homeothermal genomes, which suggests that mammals and birds acquired certain common features of genomic organization.

  12. Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae).

    Science.gov (United States)

    Krahulcová, Anna; Trávnícek, Pavel; Krahulec, František; Rejmánek, Marcel

    2017-04-01

    Aesculus L. (horse chestnut, buckeye) is a genus of 12-19 extant woody species native to the temperate Northern Hemisphere. This genus is known for unusually large seeds among angiosperms. While chromosome counts are available for many Aesculus species, only one has had its genome size measured. The aim of this study is to provide more genome size data and analyse the relationship between genome size and seed mass in this genus. Chromosome numbers in root tip cuttings were confirmed for four species and reported for the first time for three additional species. Flow cytometric measurements of 2C nuclear DNA values were conducted on eight species, and mean seed mass values were estimated for the same taxa. The same chromosome number, 2 n = 40, was determined in all investigated taxa. Original measurements of 2C values for seven Aesculus species (eight taxa), added to just one reliable datum for A. hippocastanum , confirmed the notion that the genome size in this genus with relatively large seeds is surprisingly low, ranging from 0·955 pg 2C -1 in A. parviflora to 1·275 pg 2C -1 in A. glabra var. glabra. The chromosome number of 2 n = 40 seems to be conclusively the universal 2 n number for non-hybrid species in this genus. Aesculus genome sizes are relatively small, not only within its own family, Sapindaceae, but also within woody angiosperms. The genome sizes seem to be distinct and non-overlapping among the four major Aesculus clades. These results provide an extra support for the most recent reconstruction of Aesculus phylogeny. The correlation between the 2C values and seed masses in examined Aesculus species is slightly negative and not significant. However, when the four major clades are treated separately, there is consistent positive association between larger genome size and larger seed mass within individual lineages.

  13. A novel statistical method to estimate the effective SNP size in vertebrate genomes and categorized genomic regions

    Directory of Open Access Journals (Sweden)

    Zhao Zhongming

    2006-12-01

    Full Text Available Abstract Background The local environment of single nucleotide polymorphisms (SNPs contains abundant genetic information for the study of mechanisms of mutation, genome evolution, and causes of diseases. Recent studies revealed that neighboring-nucleotide biases on SNPs were strong and the genome-wide bias patterns could be represented by a small subset of the total SNPs. It remains unsolved for the estimation of the effective SNP size, the number of SNPs that are sufficient to represent the bias patterns observed from the whole SNP data. Results To estimate the effective SNP size, we developed a novel statistical method, SNPKS, which considers both the statistical and biological significances. SNPKS consists of two major steps: to obtain an initial effective size by the Kolmogorov-Smirnov test (KS test and to find an intermediate effective size by interval evaluation. The SNPKS algorithm was implemented in computer programs and applied to the real SNP data. The effective SNP size was estimated to be 38,200, 39,300, 38,000, and 38,700 in the human, chimpanzee, dog, and mouse genomes, respectively, and 39,100, 39,600, 39,200, and 42,200 in human intergenic, genic, intronic, and CpG island regions, respectively. Conclusion SNPKS is the first statistical method to estimate the effective SNP size. It runs efficiently and greatly outperforms the algorithm implemented in SNPNB. The application of SNPKS to the real SNP data revealed the similar small effective SNP size (38,000 – 42,200 in the human, chimpanzee, dog, and mouse genomes as well as in human genomic regions. The findings suggest strong influence of genetic factors across vertebrate genomes.

  14. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes.

    Directory of Open Access Journals (Sweden)

    Yubo Hou

    Full Text Available The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log(10-transformed protein-coding gene number (Y' versus log(10-transformed genome size (X', genome size in kbp were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y' = ln(-46.200+22.678X', whereas non-eukaryotes a linear model, Y' = 0.045+0.977X', both with high significance (p0.91. Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%-1% compared to higher and relatively stable percentages in prokaryotes and viruses (97%-47%. The eukaryotic regression models project that the smallest dinoflagellate genome (3x10(6 kbp contains 38,188 protein-coding (40,086 total genes and the largest (245x10(6 kbp 87,688 protein-coding (92,013 total genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.

  15. Candidate states of Helicobacter pylori's genome-scale metabolic network upon application of "loop law" thermodynamic constraints.

    Science.gov (United States)

    Price, Nathan D; Thiele, Ines; Palsson, Bernhard Ø

    2006-06-01

    Constraint-based modeling has proven to be a useful tool in the analysis of biochemical networks. To date, most studies in this field have focused on the use of linear constraints, resulting from mass balance and capacity constraints, which lead to the definition of convex solution spaces. One additional constraint arising out of thermodynamics is known as the "loop law" for reaction fluxes, which states that the net flux around a closed biochemical loop must be zero because no net thermodynamic driving force exists. The imposition of the loop-law can lead to nonconvex solution spaces making the analysis of the consequences of its imposition challenging. A four-step approach is developed here to apply the loop-law to study metabolic network properties: 1), determine linear equality constraints that are necessary (but not necessarily sufficient) for thermodynamic feasibility; 2), tighten V(max) and V(min) constraints to enclose the remaining nonconvex space; 3), uniformly sample the convex space that encloses the nonconvex space using standard Monte Carlo techniques; and 4), eliminate from the resulting set all solutions that violate the loop-law, leaving a subset of steady-state solutions. This subset of solutions represents a uniform random sample of the space that is defined by the additional imposition of the loop-law. This approach is used to evaluate the effect of imposing the loop-law on predicted candidate states of the genome-scale metabolic network of Helicobacter pylori.

  16. Non-financial constraints to scaling-up small and medium-sized energy enterprises: Findings from field research in Ghana, Senegal, Tanzania and Zambia

    DEFF Research Database (Denmark)

    Haselip, James Arthur; Desgain, Denis DR; Mackenzie, Gordon A.

    2015-01-01

    constraint to establishing and expanding local small and medium-sized energy businesses, a range of significant non-financial constraints were also identified. This article provides a critical evaluation of these non-financial constraints as they were encountered in Ghana, Senegal, Tanzania and Zambia, based...

  17. Transcriptome and genome size analysis of the venus flytrap

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Vogt, Josef Korbinian; Bressendorff, Simon

    2015-01-01

    The insectivorous Venus flytrap (Dionaea muscipula) is renowned from Darwin's studies of plant carnivory and the origins of species. To provide tools to analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library synthesized from mRNA isolated from D...

  18. Inexpensive multiplexed library preparation for megabase-sized genomes.

    Directory of Open Access Journals (Sweden)

    Michael Baym

    Full Text Available Whole-genome sequencing has become an indispensible tool of modern biology. However, the cost of sample preparation relative to the cost of sequencing remains high, especially for small genomes where the former is dominant. Here we present a protocol for rapid and inexpensive preparation of hundreds of multiplexed genomic libraries for Illumina sequencing. By carrying out the Nextera tagmentation reaction in small volumes, replacing costly reagents with cheaper equivalents, and omitting unnecessary steps, we achieve a cost of library preparation of $8 per sample, approximately 6 times cheaper than the standard Nextera XT protocol. Furthermore, our procedure takes less than 5 hours for 96 samples. Several hundred samples can then be pooled on the same HiSeq lane via custom barcodes. Our method will be useful for re-sequencing of microbial or viral genomes, including those from evolution experiments, genetic screens, and environmental samples, as well as for other sequencing applications including large amplicon, open chromosome, artificial chromosomes, and RNA sequencing.

  19. Transposable element distribution, abundance and role in genome size variation in the genus Oryza.

    Science.gov (United States)

    Zuccolo, Andrea; Sebastian, Aswathy; Talag, Jayson; Yu, Yeisoo; Kim, HyeRan; Collura, Kristi; Kudrna, Dave; Wing, Rod A

    2007-08-29

    The genus Oryza is composed of 10 distinct genome types, 6 diploid and 4 polyploid, and includes the world's most important food crop - rice (Oryza sativa [AA]). Genome size variation in the Oryza is more than 3-fold and ranges from 357 Mbp in Oryza glaberrima [AA] to 1283 Mbp in the polyploid Oryza ridleyi [HHJJ]. Because repetitive elements are known to play a significant role in genome size variation, we constructed random sheared small insert genomic libraries from 12 representative Oryza species and conducted a comprehensive study of the repetitive element composition, distribution and phylogeny in this genus. Particular attention was paid to the role played by the most important classes of transposable elements (Long Terminal Repeats Retrotransposons, Long interspersed Nuclear Elements, helitrons, DNA transposable elements) in shaping these genomes and in their contributing to genome size variation. We identified the elements primarily responsible for the most strikingly genome size variation in Oryza. We demonstrated how Long Terminal Repeat retrotransposons belonging to the same families have proliferated to very different extents in various species. We also showed that the pool of Long Terminal Repeat Retrotransposons is substantially conserved and ubiquitous throughout the Oryza and so its origin is ancient and its existence predates the speciation events that originated the genus. Finally we described the peculiar behavior of repeats in the species Oryza coarctata [HHKK] whose placement in the Oryza genus is controversial. Long Terminal Repeat retrotransposons are the major component of the Oryza genomes analyzed and, along with polyploidization, are the most important contributors to the genome size variation across the Oryza genus. Two families of Ty3-gypsy elements (RIRE2 and Atlantys) account for a significant portion of the genome size variations present in the Oryza genus.

  20. Transposable element distribution, abundance and role in genome size variation in the genus Oryza

    Directory of Open Access Journals (Sweden)

    Collura Kristi

    2007-08-01

    Full Text Available Abstract Background The genus Oryza is composed of 10 distinct genome types, 6 diploid and 4 polyploid, and includes the world's most important food crop – rice (Oryza sativa [AA]. Genome size variation in the Oryza is more than 3-fold and ranges from 357 Mbp in Oryza glaberrima [AA] to 1283 Mbp in the polyploid Oryza ridleyi [HHJJ]. Because repetitive elements are known to play a significant role in genome size variation, we constructed random sheared small insert genomic libraries from 12 representative Oryza species and conducted a comprehensive study of the repetitive element composition, distribution and phylogeny in this genus. Particular attention was paid to the role played by the most important classes of transposable elements (Long Terminal Repeats Retrotransposons, Long interspersed Nuclear Elements, helitrons, DNA transposable elements in shaping these genomes and in their contributing to genome size variation. Results We identified the elements primarily responsible for the most strikingly genome size variation in Oryza. We demonstrated how Long Terminal Repeat retrotransposons belonging to the same families have proliferated to very different extents in various species. We also showed that the pool of Long Terminal Repeat Retrotransposons is substantially conserved and ubiquitous throughout the Oryza and so its origin is ancient and its existence predates the speciation events that originated the genus. Finally we described the peculiar behavior of repeats in the species Oryza coarctata [HHKK] whose placement in the Oryza genus is controversial. Conclusion Long Terminal Repeat retrotransposons are the major component of the Oryza genomes analyzed and, along with polyploidization, are the most important contributors to the genome size variation across the Oryza genus. Two families of Ty3-gypsy elements (RIRE2 and Atlantys account for a significant portion of the genome size variations present in the Oryza genus.

  1. Survey of genome size in 28 hydrothermal vent species covering 10 families.

    Science.gov (United States)

    Bonnivard, Eric; Catrice, Olivier; Ravaux, Juliette; Brown, Spencer C; Higuet, Dominique

    2009-06-01

    Knowledge of genome size is a useful and necessary prerequisite for the development of many genomic resources. To better understand the origins and effects of DNA gains and losses among species, it is important to collect data from a broad taxonomic base, but also from particular ecosystems. Oceanic thermal vents are an interesting model to investigate genome size in very unstable environments. Here we provide data estimated by flow cytometry for 28 vent-living species among the most representative from different hydrothermal vents. We also report the genome size of closely related coastal decapods. Haploid C-values were compared with those previously reported for species from corresponding orders or infraorders. This is the first broad survey of 2C values in vent organisms. Contrary to expectations, it shows that certain hydrothermal vent species have particularly large genomes. The vent squat lobster Munidopsis recta has the largest genome yet reported for any anomuran: 2C=31.1 pg=30.4x10(9) bp. In several groups, such as Brachyura, Phyllodocida, and Veneroida, vent species have genomes that clearly rank at the high end of published values for each group. We also describe the highest DNA content yet recorded for the Brachyura (coastal crabs Xantho pilipes and Necora puber). Finally, analysis of genome size variation across populations revealed unexpected intraspecific variation in the vent shrimp Mirocaris fortunata that could not be attributed simply to ploidy changes.

  2. Reptiles: a group of transition in the evolution of genome size and of the nucleotypic effect.

    Science.gov (United States)

    Olmo, E

    2003-01-01

    A comparison between genome size and some phenotypic parameters, such as developmental length and metabolic rate, showed in reptiles a nucleotypic correlation similar to the one observed in birds and mammals. Indeed, like homeotherms, reptiles exhibit a highly significant, inverse correlation of genome size with metabolic rate but unlike amphibians, no relationship with developmental length. Several lines of evidence suggest that these nucleotypic correlations are influenced by body temperature, which also affects the guanine + cytosine nuclear percentage, and that they play an important role in the adaptation of these amniotes. However, the reptilian suborders exhibit differences in the quantitative and compositional characters of the genome that do not completely correspond to differences in the phenotypic parameters commonly involved in the nucleotypic effect. Thus, additional factors could have influenced genome size in this class. These data could be explained with the model of Hartl and Petrov, who observed an inverse correlation between genome size, non-coding portion of the genome and rate of DNA loss and hypothesized a strong role for different spectra of spontaneous insertions and deletions (indels) in the variations of genome size. It is thus reasonable to surmise that variations in the reptilian genome were initially influenced by different indels spectra typical of the diverse lineages, possibly related to different chromosome compartmentalizations. The consequent size increases or decreases would have influenced various morphological and functional cell parameters, and through these some phenotypic characteristics of the whole organism, especially the metabolic rate, very important for environmental adaptation and thus subject to natural selection. Through this "nucleotypic" bond, natural selection would also have controlled genome size variations.

  3. Genome size and sequence composition of moso bamboo: A comparative study

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Moso bamboo (Phyllostachys pubescens) is one of the world's most important bamboo species. It has the largest area of all planted bamboo―over two-thirds of the total bamboo forest area―and the highest economic value in China. Moso bamboo is a tetraploid (4x=48) and a special member of the grasses family. Although several genomes have been sequenced or are being sequenced in the grasses family, we know little about the genome of the bambusoids (bamboos). In this study, the moso bamboo genome size was estimated to be about 2034 Mb by flow cytometry (FCM), using maize (cv. B73) and rice (cv. Nipponbare) as internal references. The rice genome has been sequenced and the maize genome is being sequenced. We found that the size of the moso bamboo genome was similar to that of maize but significantly larger than that of rice. To determine whether the bamboo genome had a high proportion of repeat elements, similar to that of the maize genome, approximately 1000 genome survey sequences (GSS) were generated. Sequence analysis showed that the proportion of repeat elements was 23.3% for the bamboo genome, which is significantly lower than that of the maize genome (65.7%). The bamboo repeat elements were mainly Gypsy/DIRS1 and Ty1/Copia LTR retrotransposons (14.7%), with a few DNA transposons. However, more genomic sequences are needed to confirm the above results due to several factors, such as the limitation of our GSS data. This study is the first to investigate sequence composition of the bamboo genome. Our results are valuable for future genome research of moso and other bamboos.

  4. Large gene overlaps in prokaryotic genomes: result of functional constraints or mispredictions?

    Directory of Open Access Journals (Sweden)

    Harrington Eoghan D

    2008-07-01

    Full Text Available Abstract Background Across the fully sequenced microbial genomes there are thousands of examples of overlapping genes. Many of these are only a few nucleotides long and are thought to function by permitting the coordinated regulation of gene expression. However, there should also be selective pressure against long overlaps, as the existence of overlapping reading frames increases the risk of deleterious mutations. Here we examine the longest overlaps and assess whether they are the product of special functional constraints or of erroneous annotation. Results We analysed the genes that overlap by 60 bps or more among 338 fully-sequenced prokaryotic genomes. The likely functional significance of an overlap was determined by comparing each of the genes to its respective orthologs. If a gene showed a significantly different length from its orthologs it was considered unlikely to be functional and therefore the result of an error either in sequencing or gene prediction. Focusing on 715 co-directional overlaps longer than 60 bps, we classified the erroneous ones into five categories: i 5'-end extension of the downstream gene due to either a mispredicted start codon or a frameshift at 5'-end of the gene (409 overlaps, ii fragmentation of a gene caused by a frameshift (163, iii 3'-end extension of the upstream gene due to either a frameshift at 3'-end of a gene or point mutation at the stop codon (68, iv Redundant gene predictions (4, v 5' & 3'-end extension which is a combination of i and iii (71. We also studied 75 divergent overlaps that could be classified as misannotations of group i. Nevertheless we found some convergent long overlaps (54 that might be true overlaps, although an important part of convergent overlaps could be classified as group iii (124. Conclusion Among the 968 overlaps larger than 60 bps which we analysed, we did not find a single real one among the co-directional and divergent orientations and concluded that there had been an

  5. Economy, Speed and Size Matter: Evolutionary Forces Driving Nuclear Genome Miniaturization and Expansion

    OpenAIRE

    CAVALIER-SMITH, THOMAS

    2005-01-01

    • Background Nuclear genome size varies 300 000-fold, whereas transcriptome size varies merely 17-fold. In the largest genomes nearly all DNA is non-genic secondary DNA, mostly intergenic but also within introns. There is now compelling evidence that secondary DNA is functional, i.e. positively selected by organismal selection, not the purely neutral or ‘selfish’ outcome of mutation pressure. The skeletal DNA theory argued that nuclear volumes are genetically determined primarily by nuclear D...

  6. Larger Daphnia at lower temperature: a role for cell size and genome configuration?

    Science.gov (United States)

    Jalal, Marwa; Wojewodzic, Marcin W; Laane, Carl Morten M; Hessen, Dag O

    2013-09-01

    Experiments with Daphnia magna and Daphnia pulex raised at 10 and 20 °C yielded larger adult size at the lower temperature. This must reflect increased cell size, increased cell numbers, or a combination of both. As it is difficult to achieve good estimates on cell size in crustaceans, we, therefore, measured nucleus and genome size using flow cytometry at 10 and 20 °C. DNA was stained with propidium iodide, ethidium bromide, and DAPI. Both nucleus and genome size estimates were elevated at 10 °C compared with 20 °C, suggesting that larger body size at low temperature could partly be accredited to an enlarged nucleus and thus cell size. Confocal microscopy observations confirmed the staining properties of fluorochromes. As differences in nucleotide numbers in response of growth temperature within a life span is unlikely, these results seem accredited to changed DNA-fluorochrome binding properties, presumably reflecting increased DNA condensation at low temperature. This implies that genome size comparisons may be impacted by ambient temperature in ectotherms. It also suggests that temperature-induced structural changes in the genome could affect cell size and for some species even body size.

  7. Interactions of photosynthesis with genome size and function.

    Science.gov (United States)

    Raven, John A; Beardall, John; Larkum, Anthony W D; Sánchez-Baracaldo, Patricia

    2013-07-19

    Photolithotrophs are divided between those that use water as their electron donor (Cyanobacteria and the photosynthetic eukaryotes) and those that use a different electron donor (the anoxygenic photolithotrophs, all of them Bacteria). Photolithotrophs with the most reduced genomes have more genes than do the corresponding chemoorganotrophs, and the fastest-growing photolithotrophs have significantly lower specific growth rates than the fastest-growing chemoorganotrophs. Slower growth results from diversion of resources into the photosynthetic apparatus, which accounts for about half of the cell protein. There are inherent dangers in (especially oxygenic) photosynthesis, including the formation of reactive oxygen species (ROS) and blue light sensitivity of the water spitting apparatus. The extent to which photolithotrophs incur greater DNA damage and repair, and faster protein turnover with increased rRNA requirement, needs further investigation. A related source of environmental damage is ultraviolet B (UVB) radiation (280-320 nm), whose flux at the Earth's surface decreased as oxygen (and ozone) increased in the atmosphere. This oxygenation led to the requirements of defence against ROS, and decreasing availability to organisms of combined (non-dinitrogen) nitrogen and ferrous iron, and (indirectly) phosphorus, in the oxygenated biosphere. Differential codon usage in the genome and, especially, the proteome can lead to economies in the use of potentially growth-limiting elements.

  8. Genome Size Is a Strong Predictor of Root Meristem Growth Rate

    Directory of Open Access Journals (Sweden)

    Adam Gruner

    2010-01-01

    Full Text Available Variation in genome size (GS has been linked to several facets of the plant phenotype. Recently it was shown that GS is significantly correlated with cell size and the duration of the cell cycle. Here we test the hypothesis that GS might also be a predictor of apical root meristem growth rate (RMGR. We studied eight species of eudicots with varying GS using time-lapse microscopic image analysis. A significant negative exponential relationship was observed between GS and RMGR. Our results show significantly decreased RMGR for large genome species. This relationship represents a significant consequence of GS expansion in plants and may partly explain why genome sizes tend to be small in eudicots. Interestingly, parasitic plants, which do not rely on root growth as much, often have large genomes.

  9. The Cambrian explosion triggered by critical turning point in genome size evolution.

    Science.gov (United States)

    Li, Dirson Jian; Zhang, Shengli

    2010-02-05

    The Cambrian explosion is a grand challenge to science today and involves multidisciplinary study. This event is generally believed as a result of genetic innovations, environmental factors and ecological interactions, even though there are many conflicts on nature and timing of metazoan origins. The crux of the matter is that an entire roadmap of the evolution is missing to discern the biological complexity transition and to evaluate the critical role of the Cambrian explosion in the overall evolutionary context. Here, we calculate the time of the Cambrian explosion by a "C-value clock"; our result quite fits the fossil records. We clarify that the intrinsic reason of genome evolution determined the Cambrian explosion. A general formula for evaluating genome size of different species has been found, by which the genome size evolution can be illustrated. The Cambrian explosion, as a major transition of biological complexity, essentially corresponds to a critical turning point in genome size evolution.

  10. Comparative Whole-Genome Mapping To Determine Staphylococcus aureus Genome Size, Virulence Motifs, and Clonality

    Science.gov (United States)

    Pantrang, Madhulatha; Stahl, Buffy; Briska, Adam M.; Stemper, Mary E.; Wagner, Trevor K.; Zentz, Emily B.; Callister, Steven M.; Lovrich, Steven D.; Henkhaus, John K.; Dykes, Colin W.

    2012-01-01

    Despite being a clonal pathogen, Staphylococcus aureus continues to acquire virulence and antibiotic-resistant genes located on mobile genetic elements such as genomic islands, prophages, pathogenicity islands, and the staphylococcal chromosomal cassette mec (SCCmec) by horizontal gene transfer from other staphylococci. The potential virulence of a S. aureus strain is often determined by comparing its pulsed-field gel electrophoresis (PFGE) or multilocus sequence typing profiles to that of known epidemic or virulent clones and by PCR of the toxin genes. Whole-genome mapping (formerly optical mapping), which is a high-resolution ordered restriction mapping of a bacterial genome, is a relatively new genomic tool that allows comparative analysis across entire bacterial genomes to identify regions of genomic similarities and dissimilarities, including small and large insertions and deletions. We explored whether whole-genome maps (WGMs) of methicillin-resistant S. aureus (MRSA) could be used to predict the presence of methicillin resistance, SCCmec type, and Panton-Valentine leukocidin (PVL)-producing genes on an S. aureus genome. We determined the WGMs of 47 diverse clinical isolates of S. aureus, including well-characterized reference MRSA strains, and annotated the signature restriction pattern in SCCmec types, arginine catabolic mobile element (ACME), and PVL-carrying prophage, PhiSa2 or PhiSa2-like regions on the genome. WGMs of these isolates accurately characterized them as MRSA or methicillin-sensitive S. aureus based on the presence or absence of the SCCmec motif, ACME and the unique signature pattern for the prophage insertion that harbored the PVL genes. Susceptibility to methicillin resistance and the presence of mecA, SCCmec types, and PVL genes were confirmed by PCR. A WGM clustering approach was further able to discriminate isolates within the same PFGE clonal group. These results showed that WGMs could be used not only to genotype S. aureus but also to

  11. Random distribution pattern and non-adaptivity of genome size in a highly variable population of Festuca pallens.

    Science.gov (United States)

    Smarda, Petr; Bures, Petr; Horová, Lucie

    2007-07-01

    The spatial and statistical distribution of genome sizes and the adaptivity of genome size to some types of habitat, vegetation or microclimatic conditions were investigated in a tetraploid population of Festuca pallens. The population was previously documented to vary highly in genome size and is assumed as a model for the study of the initial stages of genome size differentiation. Using DAPI flow cytometry, samples were measured repeatedly with diploid Festuca pallens as the internal standard. Altogether 172 plants from 57 plots (2.25 m(2)), distributed in contrasting habitats over the whole locality in South Moravia, Czech Republic, were sampled. The differences in DNA content were confirmed by the double peaks of simultaneously measured samples. At maximum, a 1.115-fold difference in genome size was observed. The statistical distribution of genome sizes was found to be continuous and best fits the extreme (Gumbel) distribution with rare occurrences of extremely large genomes (positive-skewed), as it is similar for the log-normal distribution of the whole Angiosperms. Even plants from the same plot frequently varied considerably in genome size and the spatial distribution of genome sizes was generally random and unautocorrelated (P > 0.05). The observed spatial pattern and the overall lack of correlations of genome size with recognized vegetation types or microclimatic conditions indicate the absence of ecological adaptivity of genome size in the studied population. These experimental data on intraspecific genome size variability in Festuca pallens argue for the absence of natural selection and the selective non-significance of genome size in the initial stages of genome size differentiation, and corroborate the current hypothetical model of genome size evolution in Angiosperms (Bennetzen et al., 2005, Annals of Botany 95: 127-132).

  12. The Influence of Genome and Cell Size on Brain Morphology in Amphibians.

    Science.gov (United States)

    Roth, Gerhard; Walkowiak, Wolfgang

    2015-08-10

    In amphibians, nerve cell size is highly correlated with genome size, and increases in genome and cell size cause a retardation of the rate of development of nervous (as well as nonnervous) tissue leading to secondary simplification. This yields an inverse relationship between genome and cell size on the one hand and morphological complexity of the tectum mesencephali as the main visual center, the size of the torus semicircularis as the main auditory center, the size of the amphibian papilla as an important peripheral auditory structure, and the size of the cerebellum as a major sensorimotor center. Nervous structures developing later (e.g., torus and cerebellum) are more affected by secondary simplification than those that develop earlier (e.g., the tectum). This effect is more prominent in salamanders and caecilians than in frogs owing to larger genome and cells sizes in the former two taxa. We hypothesize that because of intragenomic evolutionary processes, important differences in brain morphology can arise independently of specific environmental selection.

  13. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis.

    Science.gov (United States)

    Zedek, František; Smerda, Jakub; Smarda, Petr; Bureš, Petr

    2010-11-30

    Transposable elements (TEs) are considered to be an important source of genome size variation and genetic and phenotypic plasticity in eukaryotes. Most of our knowledge about TEs comes from large genomic projects and studies focused on model organisms. However, TE dynamics among related taxa from natural populations and the role of TEs at the species or supra-species level, where genome size and karyotype evolution are modulated in concert with polyploidy and chromosomal rearrangements, remain poorly understood. We focused on the holokinetic genus Eleocharis (Cyperaceae), which displays large variation in genome size and the occurrence of polyploidy and agmatoploidy/symploidy. We analyzed and quantified the long terminal repeat (LTR) retrotransposons Ty1-copia and Ty3-gypsy in relation to changes in both genome size and karyotype in Eleocharis. We also examined how this relationship is reflected in the phylogeny of Eleocharis. Using flow cytometry, we measured the genome sizes of members of the genus Eleocharis (Cyperaceae). We found positive correlation between the independent phylogenetic contrasts of genome size and chromosome number in Eleocharis. We analyzed PCR-amplified sequences of various reverse transcriptases of the LTR retrotransposons Ty1-copia and Ty3-gypsy (762 sequences in total). Using real-time PCR and dot blot approaches, we quantified the densities of Ty1-copia and Ty3-gypsy within the genomes of the analyzed species. We detected an increasing density of Ty1-copia elements in evolutionarily younger Eleocharis species and found a positive correlation between Ty1-copia densities and C/n-values (an alternative measure of monoploid genome size) in the genus phylogeny. In addition, our analysis of Ty1-copia sequences identified a novel retrotransposon family named Helos1, which is responsible for the increasing density of Ty1-copia. The transition:transversion ratio of Helos1 sequences suggests that Helos1 recently transposed in later

  14. Intron Derived Size Polymorphism in the Mitochondrial Genomes of Closely Related Chrysoporthe Species.

    Science.gov (United States)

    Kanzi, Aquillah Mumo; Wingfield, Brenda Diana; Steenkamp, Emma Theodora; Naidoo, Sanushka; van der Merwe, Nicolaas Albertus

    2016-01-01

    In this study, the complete mitochondrial (mt) genomes of Chrysoporthe austroafricana (190,834 bp), C. cubensis (89,084 bp) and C. deuterocubensis (124,412 bp) were determined. Additionally, the mitochondrial genome of another member of the Cryphonectriaceae, namely Cryphonectria parasitica (158,902 bp), was retrieved and annotated for comparative purposes. These genomes showed high levels of synteny, especially in regions including genes involved in oxidative phosphorylation and electron transfer, unique open reading frames (uORFs), ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), as well as intron positions. Comparative analyses revealed signatures of duplication events, intron number and length variation, and varying intronic ORFs which highlighted the genetic diversity of mt genomes among the Cryphonectriaceae. These mt genomes showed remarkable size polymorphism. The size polymorphism in the mt genomes of these closely related Chrysoporthe species was attributed to the varying number and length of introns, coding sequences and to a lesser extent, intergenic sequences. Compared to publicly available fungal mt genomes, the C. austroafricana mt genome is the second largest in the Ascomycetes thus far.

  15. Genome size of Alexandrium catenella and Gracilariopsis lemaneiformis estimated by flow cytometry

    Science.gov (United States)

    Du, Qingwei; Sui, Zhenghong; Chang, Lianpeng; Wei, Huihui; Liu, Yuan; Mi, Ping; Shang, Erlei; Zeeshan, Niaz; Que, Zhou

    2016-08-01

    Flow cytometry (FCM) technique has been widely applied to estimating the genome size of various higher plants. However, there is few report about its application in algae. In this study, an optimized procedure of FCM was exploited to estimate the genome size of two eukaryotic algae. For analyzing Alexandrium catenella, an important red tide species, the whole cell instead of isolated nucleus was studied, and chicken erythrocytes were used as an internal reference. The genome size of A. catenella was estimated to be 56.48 ± 4.14 Gb (1C), approximately nineteen times larger than that of human genome. For analyzing Gracilariopsis lemaneiformis, an important economical red alga, the purified nucleus was employed, and Arabidopsis thaliana and Chondrus crispus were used as internal references, respectively. The genome size of Gp. lemaneiformis was 97.35 ± 2.58 Mb (1C) and 112.73 ± 14.00 Mb (1C), respectively, depending on the different internal references. The results of this research will promote the related studies on the genomics and evolution of these two species.

  16. Viral genome size distribution does not correlate with the antiquity of the host lineages

    Directory of Open Access Journals (Sweden)

    José Alberto Campillo-Balderas

    2015-12-01

    Full Text Available It has been suggested that RNA viruses and other subcellular entities endowed with RNA genomes are relicts from an ancient RNA/protein World which is believed to have preceded extant DNA/RNA/protein-based cells. According to their proponents, this possibility is supported by the small-genome sizes of RNA viruses and their manifold replication strategies, which have been interpreted as the result of an evolutionary exploration of different alternative genome organizations and replication strategies during early evolutionary stages. At the other extreme are the giant DNA viruses, whose genome sizes can be as large as those of some prokaryotes, and which have been grouped by some authors into a fourth domain of life. As argued here, the comparative analysis of the chemical nature and sizes of the viral genomes reported in GenBank does not reveal any obvious correlation with the phylogenetic history of their hosts. Accordingly, it is somewhat difficult to reconcile the proposal of the putative pre-DNA antiquity of RNA viruses, with their extraordinary diversity in plant hosts and their apparent absence among the Archaea. Other issues related to the genome size of all known viruses and subviral agents and the relationship with their hosts are discussed.

  17. Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico

    Directory of Open Access Journals (Sweden)

    McAnulty Michael J

    2012-05-01

    Full Text Available Abstract Background Genome-scale metabolic networks and flux models are an effective platform for linking an organism genotype to its phenotype. However, few modeling approaches offer predictive capabilities to evaluate potential metabolic engineering strategies in silico. Results A new method called “flux balance analysis with flux ratios (FBrAtio” was developed in this research and applied to a new genome-scale model of Clostridium acetobutylicum ATCC 824 (iCAC490 that contains 707 metabolites and 794 reactions. FBrAtio was used to model wild-type metabolism and metabolically engineered strains of C. acetobutylicum where only flux ratio constraints and thermodynamic reversibility of reactions were required. The FBrAtio approach allowed solutions to be found through standard linear programming. Five flux ratio constraints were required to achieve a qualitative picture of wild-type metabolism for C. acetobutylicum for the production of: (i acetate, (ii lactate, (iii butyrate, (iv acetone, (v butanol, (vi ethanol, (vii CO2 and (viii H2. Results of this simulation study coincide with published experimental results and show the knockdown of the acetoacetyl-CoA transferase increases butanol to acetone selectivity, while the simultaneous over-expression of the aldehyde/alcohol dehydrogenase greatly increases ethanol production. Conclusions FBrAtio is a promising new method for constraining genome-scale models using internal flux ratios. The method was effective for modeling wild-type and engineered strains of C. acetobutylicum.

  18. Genome Size and GC Content Evolution of Festuca: Ancestral Expansion and Subsequent Reduction

    Science.gov (United States)

    Šmarda, Petr; Bureš, Petr; Horová, Lucie; Foggi, Bruno; Rossi, Graziano

    2008-01-01

    Background and Aims Plant evolution is well known to be frequently associated with remarkable changes in genome size and composition; however, the knowledge of long-term evolutionary dynamics of these processes still remains very limited. Here a study is made of the fine dynamics of quantitative genome evolution in Festuca (fescue), the largest genus in Poaceae (grasses). Methods Using flow cytometry (PI, DAPI), measurements were made of DNA content (2C-value), monoploid genome size (Cx-value), average chromosome size (C/n-value) and cytosine + guanine (GC) content of 101 Festuca taxa and 14 of their close relatives. The results were compared with the existing phylogeny based on ITS and trnL-F sequences. Key Results The divergence of the fescue lineage from related Poeae was predated by about a 2-fold monoploid genome and chromosome size enlargement, and apparent GC content enrichment. The backward reduction of these parameters, running parallel in both main evolutionary lineages of fine-leaved and broad-leaved fescues, appears to diverge among the existing species groups. The most dramatic reductions are associated with the most recently and rapidly evolving groups which, in combination with recent intraspecific genome size variability, indicate that the reduction process is probably ongoing and evolutionarily young. This dynamics may be a consequence of GC-rich retrotransposon proliferation and removal. Polyploids derived from parents with a large genome size and high GC content (mostly allopolyploids) had smaller Cx- and C/n-values and only slightly deviated from parental GC content, whereas polyploids derived from parents with small genome and low GC content (mostly autopolyploids) generally had a markedly increased GC content and slightly higher Cx- and C/n-values. Conclusions The present study indicates the high potential of general quantitative characters of the genome for understanding the long-term processes of genome evolution, testing evolutionary

  19. A master curve analysis of F82H using statistical and constraint loss size adjustments of small specimen data

    Science.gov (United States)

    Odette, G. R.; Yamamoto, T.; Kishimoto, H.; Sokolov, M.; Spätig, P.; Yang, W. J.; Rensman, J.-W.; Lucas, G. E.

    2004-08-01

    We assembled a fracture toughness database for the IEA heat of F82H based on a variety of specimen sizes with a nominal ASTM E1921 master curve (MC) reference temperature T0=-119±3 °C. However, the data are not well represented by a MC. T0 decreases systematically with a decreasing deformation limit Mlim starting at ≈200, which is much higher than the E1921 censoring limit of 30, indicating large constraint loss in small specimens. The small scale yielding T0 at high Mlim is ≈98±5 °C. While, the scatter was somewhat larger than predicted, after model-based adjustments for the effects of constraint loss, the data are in reasonably good agreement with a MC with T0=-98 °C. This supports to use of MC methods to characterize irradiation embrittlement, as long as both constraint loss and statistical size effects are properly accounted for. Finally, we note various issues, including sources of the possible excess scatter, which remain to be fully assessed.

  20. A master curve analysis of F82H using statistical and constraint loss size adjustments of small specimen data

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G.R. E-mail: odette@engineering.ucsb.edu; Yamamoto, T.; Kishimoto, H.; Sokolov, M.; Spaetig, P.; Yang, W.J.; Rensman, J.-W.; Lucas, G.E

    2004-08-01

    We assembled a fracture toughness database for the IEA heat of F82H based on a variety of specimen sizes with a nominal ASTM E1921 master curve (MC) reference temperature T{sub 0}=-119{+-}3 deg. C. However, the data are not well represented by a MC. T{sub 0} decreases systematically with a decreasing deformation limit M{sub lim} starting at {approx}200, which is much higher than the E1921 censoring limit of 30, indicating large constraint loss in small specimens. The small scale yielding T{sub 0} at high M{sub lim} is {approx}98{+-}5 deg. C. While, the scatter was somewhat larger than predicted, after model-based adjustments for the effects of constraint loss, the data are in reasonably good agreement with a MC with T{sub 0}=-98 deg. C. This supports to use of MC methods to characterize irradiation embrittlement, as long as both constraint loss and statistical size effects are properly accounted for. Finally, we note various issues, including sources of the possible excess scatter, which remain to be fully assessed.

  1. Efficiency of genomic DNA extraction dependent on the size of magnetic nanoclusters

    Science.gov (United States)

    Cho, Hyun Ah; Hyun Min, Ji; Hua Wu, Jun; Woo Jang, Jin; Lim, Chae-Seung; Keun Kim, Young

    2014-05-01

    We report the efficiency of genomic DNA extraction as a function of particle size and quantity. For DNA extraction, we synthesized magnetic nanoclusters of various sizes and coated the surface of these magnetic nanoclusters with meso-2,3-dimercaptosuccinic acid. We showed that the nanoclusters had a tight particle size distribution and high crystallinity. Furthermore, we observed that the three types of magnetic nanoclusters studied exhibited ferrimagnetic behavior and that larger nanoclusters showed larger saturation magnetization values. The resultant efficiency of DNA extraction is inversely proportional to particle size in the range of nanoclusters tested, due to the fact that the surface-to-volume ratio decreases as particle size increases.

  2. GENOME SIZE DETERMINATION AND RAPD ANALYSIS OF FOUR EDIBLE AROIDS OF NORTH EAST INDIA

    Directory of Open Access Journals (Sweden)

    Jyoti P. Saikia1*, Bolin K. Konwar 2 and Susmita Singh3

    2010-10-01

    Full Text Available Four edible aroid species were selected for the study. The genomic DNA of the plants was isolated and estimated. A part of the genomic DNA was used for analysis using six different primers from Operon Technologies, USA. The genome size determined for the aroids is in the order of Colocasia esculenta> Xanthosoma caracu> Xanthosoma sagittifolium > Amorphophallus paeonifolius. Amorphophallus species was found to be 50% similar to both Xanthosoma caracu and Colocasia esculenta. The analysis will provide a ground for exploring the vast diversified aroid population of the region.

  3. Genome-wide patterns of large-size presence/absence variants in sorghum

    Institute of Scientific and Technical Information of China (English)

    LiMin Zhang; Hong Luo; ZhiQuan Liu; Yi Zhao; JingChu Luo; DongYun Hao; HaiChun Jing

    2014-01-01

    The presence/absence variants (PAVs) are a major source of genome structural variation and have profound effects on phenotypic and genomic variation in animals and humans. However, little is understood about PAVs in plant genomes. Our previous resequencing effort on three sorghum (Sorghum bicolour L.) genomes, each 12? coverage, uncovered 5 364 PAVs. Here, we report a detailed characterization of 51 large-size (>30 kb) PAVs. These PAVs spanned a total size of 2.92 Mb of the sorghum genome containing 202 known and predicted genes, including 38 genes annotated to encode celldeath and stress response genes. The PAVs varied considerably for repeat sequences and mobile elements with DNA trans-posons as the major components. The frequency and distribution of these PAVs differed substantial y across 96 sorghum inbred lines, and the low-and high frequency PAVs differed in their gene categories. This report shed new light on the occurrence and diversity of PAVs in sorghum genomes. Our research exemplifies a new perspective to explore genome structural variation for genetic improvement in plant breeding.

  4. Chromosome Numbers and Genome Size Variation in Indian Species of Curcuma (Zingiberaceae)

    Science.gov (United States)

    Leong-Škorničková, Jana; Šída, Otakar; Jarolímová, Vlasta; Sabu, Mamyil; Fér, Tomáš; Trávníček, Pavel; Suda, Jan

    2007-01-01

    Background and Aims Genome size and chromosome numbers are important cytological characters that significantly influence various organismal traits. However, geographical representation of these data is seriously unbalanced, with tropical and subtropical regions being largely neglected. In the present study, an investigation was made of chromosomal and genome size variation in the majority of Curcuma species from the Indian subcontinent, and an assessment was made of the value of these data for taxonomic purposes. Methods Genome size of 161 homogeneously cultivated plant samples classified into 51 taxonomic entities was determined by propidium iodide flow cytometry. Chromosome numbers were counted in actively growing root tips using conventional rapid squash techniques. Key Results Six different chromosome counts (2n = 22, 42, 63, >70, 77 and 105) were found, the last two representing new generic records. The 2C-values varied from 1·66 pg in C. vamana to 4·76 pg in C. oligantha, representing a 2·87-fold range. Three groups of taxa with significantly different homoploid genome sizes (Cx-values) and distinct geographical distribution were identified. Five species exhibited intraspecific variation in nuclear DNA content, reaching up to 15·1 % in cultivated C. longa. Chromosome counts and genome sizes of three Curcuma-like species (Hitchenia caulina, Kaempferia scaposa and Paracautleya bhatii) corresponded well with typical hexaploid (2n = 6x = 42) Curcuma spp. Conclusions The basic chromosome number in the majority of Indian taxa (belonging to subgenus Curcuma) is x = 7; published counts correspond to 6x, 9x, 11x, 12x and 15x ploidy levels. Only a few species-specific C-values were found, but karyological and/or flow cytometric data may support taxonomic decisions in some species alliances with morphological similarities. Close evolutionary relationships among some cytotypes are suggested based on the similarity in homoploid genome sizes and geographical grouping

  5. Intra-specific variation in genome size in maize: cytological and phenotypic correlates

    Science.gov (United States)

    Realini, María Florencia; Poggio, Lidia; Cámara-Hernández, Julián; González, Graciela Esther

    2016-01-01

    Genome size variation accompanies the diversification and evolution of many plant species. Relationships between DNA amount and phenotypic and cytological characteristics form the basis of most hypotheses that ascribe a biological role to genome size. The goal of the present research was to investigate the intra-specific variation in the DNA content in maize populations from Northeastern Argentina and further explore the relationship between genome size and the phenotypic traits seed weight and length of the vegetative cycle. Moreover, cytological parameters such as the percentage of heterochromatin as well as the number, position and sequence composition of knobs were analysed and their relationships with 2C DNA values were explored. The populations analysed presented significant differences in 2C DNA amount, from 4.62 to 6.29 pg, representing 36.15 % of the inter-populational variation. Moreover, intra-populational genome size variation was found, varying from 1.08 to 1.63-fold. The variation in the percentage of knob heterochromatin as well as in the number, chromosome position and sequence composition of the knobs was detected among and within the populations. Although a positive relationship between genome size and the percentage of heterochromatin was observed, a significant correlation was not found. This confirms that other non-coding repetitive DNA sequences are contributing to the genome size variation. A positive relationship between DNA amount and the seed weight has been reported in a large number of species, this relationship was not found in the populations studied here. The length of the vegetative cycle showed a positive correlation with the percentage of heterochromatin. This result allowed attributing an adaptive effect to heterochromatin since the length of this cycle would be optimized via selection for an appropriate percentage of heterochromatin. PMID:26644343

  6. A Stronger LP Bound for Formula Size Lower Bounds via Clique Constraints

    CERN Document Server

    Ueno, Kenya

    2009-01-01

    We introduce a new technique proving formula size lower bounds based on the linear programming bound originally introduced by Karchmer, Kushilevitz and Nisan [11] and the theory of stable set polytope. We apply it to majority functions and prove their formula size lower bounds improved from the classical result of Khrapchenko [13]. Moreover, we introduce a notion of unbalanced recursive ternary majority functions motivated by a decomposition theory of monotone self-dual functions and give integrally matching upper and lower bounds of their formula size. We also show monotone formula size lower bounds of balanced recursive ternary majority functions improved from the quantum adversary bound of Laplante, Lee and Szegedy [15].

  7. Intraspecific variation in body size and the rate of reproduction in female insects - adaptive allometry or biophysical constraint?

    Science.gov (United States)

    Berger, David; Olofsson, Martin; Friberg, Magne; Karlsson, Bengt; Wiklund, Christer; Gotthard, Karl; Gilburn, Andre

    2012-11-01

    1. A high rate of reproduction may be costly if ecological factors limit immediate reproductive output as a fast metabolism compromises own future survival. Individuals with more reserves need more time and opportunity to realize their reproductive potential. Theory therefore predicts that the reproductive rate, defined as the investment in early reproduction in proportion to total potential, should decrease with body size within species. 2. However, metabolic constraints on body size- and temperature-dependent biological rates may impede biophysical adaptation. Furthermore, the sequential manner resources that are allocated to somatic vs. reproductive tissue during ontogeny may, when juveniles develop in unpredictable environments, further contribute to non-adaptive variation in adult reproductive rates. 3. With a model on female egg laying in insects, we demonstrate how variation in body reserves is predicted to affect reproductive rate under different ecological scenarios. Small females always have higher reproductive rates but shorter lifespans. However, incorporation of female host selectivity leads to more similar reproductive rates among female size classes, and oviposition behaviour is predicted to co-evolve with reproductive rate, resulting in small females being more selective in their choice and gaining relatively more from it. 4. We fed simulations with data on the butterfly Pararge aegeria to compare model predictions with reproductive rates of wild butterflies. However, simulated reproductive allometry was a poor predictor of that observed. Instead, reproductive rates were better explained as a product of metabolic constraints on rates of egg maturation, and an empirically derived positive allometry between reproductive potential and size. However, fitness is insensitive to moderate deviations in reproductive rate when oviposition behaviour is allowed to co-evolve in the simulations, suggesting that behavioural compensation may mitigate putative

  8. A Model of Genome Size Evolution for Prokaryotes in Stable and Fluctuating Environments.

    Science.gov (United States)

    Bentkowski, Piotr; Van Oosterhout, Cock; Mock, Thomas

    2015-08-04

    Temporal variability in ecosystems significantly impacts species diversity and ecosystem productivity and therefore the evolution of organisms. Different levels of environmental perturbations such as seasonal fluctuations, natural disasters, and global change have different impacts on organisms and therefore their ability to acclimatize and adapt. Thus, to understand how organisms evolve under different perturbations is a key for predicting how environmental change will impact species diversity and ecosystem productivity. Here, we developed a computer simulation utilizing the individual-based model approach to investigate genome size evolution of a haploid, clonal and free-living prokaryotic population across different levels of environmental perturbations. Our results show that a greater variability of the environment resulted in genomes with a larger number of genes. Environmental perturbations were more effectively buffered by populations of individuals with relatively large genomes. Unpredictable changes of the environment led to a series of population bottlenecks followed by adaptive radiations. Our model shows that the evolution of genome size is indirectly driven by the temporal variability of the environment. This complements the effects of natural selection directly acting on genome optimization. Furthermore, species that have evolved in relatively stable environments may face the greatest risk of extinction under global change as genome streamlining genetically constrains their ability to acclimatize to the new environmental conditions, unless mechanisms of genetic diversification such as horizontal gene transfer will enrich their gene pool and therefore their potential to adapt.

  9. Genome Size Is a Strong Predictor of Root Meristem Growth Rate

    OpenAIRE

    Adam Gruner; Nathan Hoverter; Tylia Smith; Charles A. Knight

    2010-01-01

    Variation in genome size (GS) has been linked to several facets of the plant phenotype. Recently it was shown that GS is significantly correlated with cell size and the duration of the cell cycle. Here we test the hypothesis that GS might also be a predictor of apical root meristem growth rate (RMGR). We studied eight species of eudicots with varying GS using time-lapse microscopic image analysis. A significant negative exponential relationship was observed between GS and RMGR. Our results sh...

  10. Exploring Diversification and Genome Size Evolution in Extant Gymnosperms through Phylogenetic Synthesis

    Directory of Open Access Journals (Sweden)

    J. Gordon Burleigh

    2012-01-01

    Full Text Available Gymnosperms, comprising cycads, Ginkgo, Gnetales, and conifers, represent one of the major groups of extant seed plants. Yet compared to angiosperms, little is known about the patterns of diversification and genome evolution in gymnosperms. We assembled a phylogenetic supermatrix containing over 4.5 million nucleotides from 739 gymnosperm taxa. Although 93.6% of the cells in the supermatrix are empty, the data reveal many strongly supported nodes that are generally consistent with previous phylogenetic analyses, including weak support for Gnetales sister to Pinaceae. A lineage through time plot suggests elevated rates of diversification within the last 100 million years, and there is evidence of shifts in diversification rates in several clades within cycads and conifers. A likelihood-based analysis of the evolution of genome size in 165 gymnosperms finds evidence for heterogeneous rates of genome size evolution due to an elevated rate in Pinus.

  11. Adaptations to "Thermal Time" Constraints in Papilio: Latitudinal and Local Size Clines Differ in Response to Regional Climate Change.

    Science.gov (United States)

    Scriber, J Mark; Elliot, Ben; Maher, Emily; McGuire, Molly; Niblack, Marjie

    2014-01-21

    Adaptations to "thermal time" (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval growth and shorter molting durations at lower temperatures. Here we report on forewing sizes through 30 years for both the northern univoltine P. canadensis (with obligate diapause) from the Great Lakes historical hybrid zone northward to central Alaska (65° N latitude), and the multivoltine, P. glaucus from this hybrid zone southward to central Florida (27° N latitude). Despite recent climate warming, no increases in mean forewing lengths of P. glaucus were observed at any major collection location (FL to MI) from the 1980s to 2013 across this long latitudinal transect (which reflects the "converse of Bergmann's size Rule", with smaller females at higher latitudes). Unlike lower latitudes, the Alaska, Ontonogon, and Chippewa/Mackinac locations (for P. canadensis) showed no significant increases in D-day accumulations, which could explain lack of size change in these northernmost locations. As a result of 3-4 decades of empirical data from major collection sites across these latitudinal clines of North America, a general "voltinism/size/D-day" model is presented, which more closely predicts female size based on D-day accumulations, than does latitude. However, local "climatic cold pockets" in northern Michigan and Wisconsin historically appeared to exert especially strong size constraints on female forewing lengths, but forewing lengths quickly increased with local summer warming during the recent decade, especially near the warming edges of the cold pockets. Results of fine-scale analyses of these "cold pockets" are in contrast to non-significant changes for other Papilio populations seen across the latitudinal transect for P. glaucus

  12. To break a coralline: mechanical constraints on the size and survival of a wave-swept seaweed.

    Science.gov (United States)

    Martone, Patrick T; Denny, Mark W

    2008-11-01

    Previous studies have hypothesized that wave-induced drag forces may constrain the size of intertidal organisms by dislodging or breaking organisms that exceed some critical dimension. In this study, we explored constraints on the size of the articulated coralline alga Calliarthron, which thrives in wave-exposed intertidal habitats. Its ability to survive depends critically upon its segmented morphology (calcified segments separated by flexible joints or ;genicula'), which allows otherwise rigid fronds to bend and thereby reduce drag. However, bending also amplifies stress within genicula near the base of fronds. We quantified breakage of genicula in bending by applying known forces to fronds until they broke. Using a mathematical model, we demonstrate the mitigating effect of neighboring fronds on breakage and show that fronds growing within dense populations are no more likely to break in bending than in tension, suggesting that genicular morphology approaches an engineering optimum, possibly reflecting adaptation to hydrodynamic stress. We measured drag in a re-circulating water flume (0.23-3.6 m s(-1)) and a gravity-accelerated water flume, which generates jets of water that mimic the impact of breaking waves (6-10 m s(-1)). We used frond Reynolds number to extrapolate drag coefficients in the field and to predict water velocities necessary to break fronds of given sizes. Laboratory data successfully predicted frond sizes found in the field, suggesting that, although Calliarthron is well adapted to resist breakage, wave forces may ultimately limit the size of intertidal fronds.

  13. Genome Size Diversity in Lilium (Liliaceae Is Correlated with Karyotype and Environmental Traits

    Directory of Open Access Journals (Sweden)

    Yun-peng Du

    2017-07-01

    Full Text Available Genome size (GS diversity is of fundamental biological importance. The occurrence of giant genomes in angiosperms is restricted to just a few lineages in the analyzed genome size of plant species so far. It is still an open question whether GS diversity is shaped by neutral or natural selection. The genus Lilium, with giant genomes, is phylogenetically and horticulturally important and is distributed throughout the northern hemisphere. GS diversity in Lilium and the underlying evolutionary mechanisms are poorly understood. We performed a comprehensive study involving phylogenetically independent analysis on 71 species to explore the diversity and evolution of GS and its correlation with karyological and environmental traits within Lilium (including Nomocharis. The strong phylogenetic signal detected for GS in the genus provides evidence consistent with that the repetitive DNA may be the primary contributors to the GS diversity, while the significant positive relationships detected between GS and the haploid chromosome length (HCL provide insights into patterns of genome evolution. The relationships between GS and karyotypes indicate that ancestral karyotypes of Lilium are likely to have exhibited small genomes, low diversity in centromeric index (CVCI values and relatively high relative variation in chromosome length (CVCL values. Significant relationships identified between GS and annual temperature and between GS and annual precipitation suggest that adaptation to habitat strongly influences GS diversity. We conclude that GS in Lilium is shaped by both neutral (genetic drift and adaptive evolution. These findings will have important consequences for understanding the evolution of giant plant genomes, and exploring the role of repetitive DNA fraction and chromosome changes in a plant group with large genomes and conservation of chromosome number.

  14. Genome-wide estimates of coancestry, inbreeding and effective population size in the Spanish Holstein population.

    Directory of Open Access Journals (Sweden)

    Silvia Teresa Rodríguez-Ramilo

    Full Text Available Estimates of effective population size in the Holstein cattle breed have usually been low despite the large number of animals that constitute this breed. Effective population size is inversely related to the rates at which coancestry and inbreeding increase and these rates have been high as a consequence of intense and accurate selection. Traditionally, coancestry and inbreeding coefficients have been calculated from pedigree data. However, the development of genome-wide single nucleotide polymorphisms has increased the interest of calculating these coefficients from molecular data in order to improve their accuracy. In this study, genomic estimates of coancestry, inbreeding and effective population size were obtained in the Spanish Holstein population and then compared with pedigree-based estimates. A total of 11,135 animals genotyped with the Illumina BovineSNP50 BeadChip were available for the study. After applying filtering criteria, the final genomic dataset included 36,693 autosomal SNPs and 10,569 animals. Pedigree data from those genotyped animals included 31,203 animals. These individuals represented only the last five generations in order to homogenise the amount of pedigree information across animals. Genomic estimates of coancestry and inbreeding were obtained from identity by descent segments (coancestry or runs of homozygosity (inbreeding. The results indicate that the percentage of variance of pedigree-based coancestry estimates explained by genomic coancestry estimates was higher than that for inbreeding. Estimates of effective population size obtained from genome-wide and pedigree information were consistent and ranged from about 66 to 79. These low values emphasize the need of controlling the rate of increase of coancestry and inbreeding in Holstein selection programmes.

  15. Genome-wide estimates of coancestry, inbreeding and effective population size in the Spanish Holstein population.

    Science.gov (United States)

    Rodríguez-Ramilo, Silvia Teresa; Fernández, Jesús; Toro, Miguel Angel; Hernández, Delfino; Villanueva, Beatriz

    2015-01-01

    Estimates of effective population size in the Holstein cattle breed have usually been low despite the large number of animals that constitute this breed. Effective population size is inversely related to the rates at which coancestry and inbreeding increase and these rates have been high as a consequence of intense and accurate selection. Traditionally, coancestry and inbreeding coefficients have been calculated from pedigree data. However, the development of genome-wide single nucleotide polymorphisms has increased the interest of calculating these coefficients from molecular data in order to improve their accuracy. In this study, genomic estimates of coancestry, inbreeding and effective population size were obtained in the Spanish Holstein population and then compared with pedigree-based estimates. A total of 11,135 animals genotyped with the Illumina BovineSNP50 BeadChip were available for the study. After applying filtering criteria, the final genomic dataset included 36,693 autosomal SNPs and 10,569 animals. Pedigree data from those genotyped animals included 31,203 animals. These individuals represented only the last five generations in order to homogenise the amount of pedigree information across animals. Genomic estimates of coancestry and inbreeding were obtained from identity by descent segments (coancestry) or runs of homozygosity (inbreeding). The results indicate that the percentage of variance of pedigree-based coancestry estimates explained by genomic coancestry estimates was higher than that for inbreeding. Estimates of effective population size obtained from genome-wide and pedigree information were consistent and ranged from about 66 to 79. These low values emphasize the need of controlling the rate of increase of coancestry and inbreeding in Holstein selection programmes.

  16. Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III-reducer Rhodoferax ferrireducens

    Directory of Open Access Journals (Sweden)

    Daugherty Sean

    2009-09-01

    Full Text Available Abstract Background Rhodoferax ferrireducens is a metabolically versatile, Fe(III-reducing, subsurface microorganism that is likely to play an important role in the carbon and metal cycles in the subsurface. It also has the unique ability to convert sugars to electricity, oxidizing the sugars to carbon dioxide with quantitative electron transfer to graphite electrodes in microbial fuel cells. In order to expand our limited knowledge about R. ferrireducens, the complete genome sequence of this organism was further annotated and then the physiology of R. ferrireducens was investigated with a constraint-based, genome-scale in silico metabolic model and laboratory studies. Results The iterative modeling and experimental approach unveiled exciting, previously unknown physiological features, including an expanded range of substrates that support growth, such as cellobiose and citrate, and provided additional insights into important features such as the stoichiometry of the electron transport chain and the ability to grow via fumarate dismutation. Further analysis explained why R. ferrireducens is unable to grow via photosynthesis or fermentation of sugars like other members of this genus and uncovered novel genes for benzoate metabolism. The genome also revealed that R. ferrireducens is well-adapted for growth in the subsurface because it appears to be capable of dealing with a number of environmental insults, including heavy metals, aromatic compounds, nutrient limitation and oxidative stress. Conclusion This study demonstrates that combining genome-scale modeling with the annotation of a new genome sequence can guide experimental studies and accelerate the understanding of the physiology of under-studied yet environmentally relevant microorganisms.

  17. Saturn's rings through a microscope - Particle size constraints from the Voyager PPS scan

    Science.gov (United States)

    Showalter, Mark R.; Nicholson, Philip D.

    1990-01-01

    The Voyager-2 photopolarimeter PPS experiment obtained the highest resolution of any ring observation of Saturn, profiling the variation of optical depth in radial steps of about 100 meters. A detailed treatment of the PPS statistics is presented here, and it is shown how these statistics can be related to the particle size distribution. An expression for the excess noise in the scan due to large particles is obtained, and the observed noise is used to constrain the upper end of the size distribution through the rings. It is shown that the Cassini Division and the C Ring have the smallest proportion of large particles, while the A ring has the largest proportion.

  18. Coconut genome size determined by flow cytometry: Tall versus Dwarf types.

    Science.gov (United States)

    Freitas Neto, M; Pereira, T N S; Geronimo, I G C; Azevedo, A O N; Ramos, S R R; Pereira, M G

    2016-02-11

    Coconuts (Cocos nucifera L.) are tropical palm trees that are classified into Tall and Dwarf types based on height, and both types are diploid (2n = 2x = 32 chromosomes). The reproduction mode is autogamous for Dwarf types and allogamous for Tall types. One hypothesis for the origin of the Dwarf coconut suggests that it is a Tall variant that resulted from either mutation or inbreeding, and differences in genome size between the two types would support this hypothesis. In this study, we estimated the genome sizes of 14 coconut accessions (eight Tall and six Dwarf types) using flow cytometry. Nuclei were extracted from leaf discs and stained with propidium iodide, and Pisum sativum (2C = 9.07 pg DNA) was used as an internal standard. Histograms with good resolution and low coefficients of variation (2.5 to 3.2%) were obtained. The 2C DNA content ranged from 5.72 to 5.48 pg for Tall accessions and from 5.58 to 5.52 pg for Dwarf accessions. The mean genome sizes for Tall and Dwarf specimens were 5.59 and 5.55 pg, respectively. Among all accessions, Rennel Island Tall had the highest mean DNA content (5.72 pg), whereas West African Tall had the lowest (5.48 pg). The mean coconut genome size (2C = 5.57 pg, corresponding to 2723.73 Mbp/haploid set) was classified as small. Only small differences in genome size existed among the coconut accessions, suggesting that the Dwarf type did not evolve from the Tall type.

  19. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution.

    Science.gov (United States)

    Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana

    2012-11-06

    Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foods impose a tradeoff between body size and number of brain neurons, which explains the small brain size of great apes compared with their large body size. This limitation was probably overcome in Homo erectus with the shift to a cooked diet. Absent the requirement to spend most available hours of the day feeding, the combination of newly freed time and a large number of brain neurons affordable on a cooked diet may thus have been a major positive driving force to the rapid increased in brain size in human evolution.

  20. Finding the Energy Efficient Curve: Gate Sizing for Minimum Power under Delay Constraints

    Directory of Open Access Journals (Sweden)

    Yoni Aizik

    2011-01-01

    Full Text Available A design scenario examined in this paper assumes that a circuit has been designed initially for high speed, and it is redesigned for low power by downsizing of the gates. In recent years, as power consumption has become a dominant issue, new optimizations of circuits are required for saving energy. This is done by trading off some speed in exchange for reduced power. For each feasible speed, an optimization problem is solved in this paper, finding new sizes for the gates such that the circuit satisfies the speed goal while dissipating minimal power. Energy/delay gain (EDG is defined as a metric to quantify the most efficient tradeoff. The EDG of the circuit is evaluated for a range of reduced circuit speeds, and the power-optimal gate sizes are compared with the initial sizes. Most of the energy savings occur at the final stages of the circuits, while the largest relative downsizing occurs in middle stages. Typical tapering factors for power efficient circuits are larger than those for speed-optimal circuits. Signal activity and signal probability affect the optimal gate sizes in the combined optimization of speed and power.

  1. Flight and size constraints: hovering performance of large hummingbirds under maximal loading.

    Science.gov (United States)

    Chai, P; Millard, D

    1997-11-01

    As the smallest birds, hummingbirds are the only birds capable of prolonged hovering. This suggests that hovering locomotion scales unfavourably with size. Is the hovering performance of larger hummingbird species more constrained by size than that of smaller ones? Maximal load-lifting capacities of the two largest species of hummingbirds found in the United States, the blue-throated (Lampornis clemenciae, 8.4 g) and magnificent (Eugenes fulgens, 7.4 g) hummingbird, as well as the two other local small species, the black-chinned (Archilochus alexandri, 3.0 g) and rufus (Selasphorus rufus, 3.3 g) hummingbird, were determined under conditions of short-burst performance. The power reserves of hummingbirds are substantial relative to normal hovering performance. The two large species lifted maximal loads close to twice their body mass for a very brief duration of over 0.4 s. The small species lifted maximal loads approximately equal to their own mass with a longer duration of over 0.6 s. For the two large species under maximal loading, estimates of burst muscle mass-specific mechanical power output assuming perfect elastic energy storage averaged 309 W kg-1, compared with 75 W kg-1 during free hovering without loading. For the two small species, these values were 228 W kg-1 and 88 W kg-1, respectively. The differences in aerodynamic force production and power output between the large and small size classes occur despite their similar wing stroke velocity. This indicates that, during burst performance in these hummingbirds, the larger ones had a higher load-lifting capacity and generated more muscle power. In spite of the twofold difference in body mass, both large and small hummingbirds have evolved to become potent aerial competitors in order to exploit their common food resource, nectar. Both size classes have evolved to cope with the multi-dimensional effects of size constraining their aerodynamics, muscle mechanics, metabolism and ecology.

  2. Size of the group IVA iron meteorite core: Constraints from the age and composition of Muonionalusta

    CERN Document Server

    Moskovitz, Nicholas A

    2011-01-01

    The group IVA fractionally crystallized iron meteorites display a diverse range of metallographic cooling rates. These have been attributed to their formation in a metallic core, approximately 150 km in radius, that cooled to crystallization in the absence of any appreciable insulating mantle. Here we build upon this formation model by incorporating several new constraints. These include (i) a recent U-Pb radiometric closure age of <2.5 Myr after solar system formation for the group IVA iron Muonionalusta, (ii) new measurements and modeling of highly siderophile element compositions for a suite of IVAs, and (iii) consideration of the thermal effects of heating by the decay of the short-lived radionuclide 60Fe. Our model for the thermal evolution of the IVA core suggests that it was approximately 50 - 110 km in radius after being collisionally exposed. This range is due to uncertainties in the initial abundance of live 60Fe incorporated into the IVA core. Our models define a relationship between cooling rat...

  3. An Empirical Bayes Mixture Model for Effect Size Distributions in Genome-Wide Association Studies

    DEFF Research Database (Denmark)

    Thompson, Wesley K.; Wang, Yunpeng; Schork, Andrew J.

    2015-01-01

    Characterizing the distribution of effects from genome-wide genotyping data is crucial for understanding important aspects of the genetic architecture of complex traits, such as number or proportion of non-null loci, average proportion of phenotypic variance explained per non-null effect, power...... for discovery, and polygenic risk prediction. To this end, previous work has used effect-size models based on various distributions, including the normal and normal mixture distributions, among others. In this paper we propose a scale mixture of two normals model for effect size distributions of genome...... of variance explained by genotyped SNPs, CD and SZ have a broadly dissimilar genetic architecture, due to differing mean effect size and proportion of non-null loci....

  4. Genome size, GC percentage and 5mC level in the Indonesian coelacanth Latimeria menadoensis.

    Science.gov (United States)

    Makapedua, Daisy Monica; Barucca, Marco; Forconi, Mariko; Antonucci, Niki; Bizzaro, Davide; Amici, Adolfo; Carradori, Maria Rita; Olmo, Ettore; Canapa, Adriana

    2011-09-01

    The living fossil Latimeria menadoensis is important to understand sarcopterygian evolution. To gain further insights into this fish species we studied its genome size, GC% and 5mC level. The genome size and the GC% of the Indonesian coelacanth seem to be very similar to those of the African coelacanth. Moreover the GC%, the CpG frequency and the 5mC level of L. menadoensis are more similar to those of fish and amphibians than to those of mammals, birds and reptiles and this is in line with the hypothesis that two different DNA methylation and CpG shortage equilibria arose during vertebrate evolution. Our results suggest that the genome of L. menadoensis has remained unchanged for several million years, maybe since the origin of the lineage which from lobe-finned fish led to tetrapods. These data fit a conservative evolutionary landscape and suggest that the genome of the extant crossopterygians may be a sort of evolutionarily frozen genome.

  5. Radiative transfer modeling constraints on the size of the spoke particles in Saturn's rings

    Science.gov (United States)

    Doyle, Laurance R.; Gruen, Eberhard

    1990-01-01

    The spoke particle sizes of Saturn's outer B ring constitute an important parameter for spoke formation and evolution theories, prompting the present effort to find constraining observations. The spokes' apparent optical depths are found to increase with wavelength. A relationship is derived for the contribution of the spokes' small particle optical depth, taking multiple-scatter and flatter spoke-region large-particle phase functions into account; the spokes' optical depths still generally appear to increase or remain constant with increasing wavelength.

  6. Estimating variable effective population sizes from multiple genomes: a sequentially markov conditional sampling distribution approach.

    Science.gov (United States)

    Sheehan, Sara; Harris, Kelley; Song, Yun S

    2013-07-01

    Throughout history, the population size of modern humans has varied considerably due to changes in environment, culture, and technology. More accurate estimates of population size changes, and when they occurred, should provide a clearer picture of human colonization history and help remove confounding effects from natural selection inference. Demography influences the pattern of genetic variation in a population, and thus genomic data of multiple individuals sampled from one or more present-day populations contain valuable information about the past demographic history. Recently, Li and Durbin developed a coalescent-based hidden Markov model, called the pairwise sequentially Markovian coalescent (PSMC), for a pair of chromosomes (or one diploid individual) to estimate past population sizes. This is an efficient, useful approach, but its accuracy in the very recent past is hampered by the fact that, because of the small sample size, only few coalescence events occur in that period. Multiple genomes from the same population contain more information about the recent past, but are also more computationally challenging to study jointly in a coalescent framework. Here, we present a new coalescent-based method that can efficiently infer population size changes from multiple genomes, providing access to a new store of information about the recent past. Our work generalizes the recently developed sequentially Markov conditional sampling distribution framework, which provides an accurate approximation of the probability of observing a newly sampled haplotype given a set of previously sampled haplotypes. Simulation results demonstrate that we can accurately reconstruct the true population histories, with a significant improvement over the PSMC in the recent past. We apply our method, called diCal, to the genomes of multiple human individuals of European and African ancestry to obtain a detailed population size change history during recent times.

  7. Constraints on coronal turbulence models from source sizes of noise storms at 327 MHz

    CERN Document Server

    Subramanian, Prasad

    2010-01-01

    We seek to reconcile observations of small source sizes in the solar corona at 327 MHz with predictions of scattering models that incorporate refractive index effects, inner scale effects and a spherically diverging wavefront. We use an empirical prescription for the turbulence amplitude $C_{N}^{2}(R)$ based on VLBI observations by Spangler and coworkers of compact radio sources against the solar wind for heliocentric distances $R \\approx$ 10--50 $R_{\\odot}$. We use the Coles & Harmon model for the inner scale $l_{i}(R)$, that is presumed to arise from cyclotron damping. In view of the prevalent uncertainty in the power law index that characterizes solar wind turbulence at various heliocentric distances, we retain this index as a free parameter. We find that the inclusion of spherical divergence effects suppresses the predicted source size substantially. We also find that inner scale effects significantly reduce the predicted source size. An important general finding for solar sources is that the calculat...

  8. Icelandic Birch Polyploids—The Case of a Perfect Fit in Genome Size

    Directory of Open Access Journals (Sweden)

    K. Anamthawat-Jónsson

    2010-01-01

    Full Text Available Two birch species coexist in Iceland, dwarf birch Betula nana and tree birch B. pubescens. Both species are variable morphologically, which has been shown to be due to introgressive hybridization via interspecific hybrids. The aim of this study was to examine if the introgression could be related to genome size. We characterized 42 plants from Bifröst woodland morphologically and cytogenetically. The population consisted of diploid B. nana (38%, tetraploid B. pubescens (55%, and triploid hybrids (7%. Genome size was measured from 12 plants, using Feulgen DNA image densitometry (FDM on spring leaf buds and flow cytometry (FCM with dormant winter twigs. The use of winter twigs for FCM is novel. The average 1C-values for diploid, triploid, and tetraploid plants were 448, 666, and 882 Mbp, respectively. Monoploid genome sizes were found to be statistically constant among ploidy levels. This stability is in contrast to the different taxonomic positions of the di- and tetraploids and also contrasts with the frequent occurrence of genome downsizing in polyploids.

  9. RNA structural constraints in the evolution of the influenza A virus genome NP segment

    NARCIS (Netherlands)

    A.P. Gultyaev (Alexander); A. Tsyganov-Bodounov (Anton); M.I. Spronken (Monique); S. Van Der Kooij (Sander); R.A.M. Fouchier (Ron); R.C.L. Olsthoorn (René)

    2014-01-01

    textabstractConserved RNA secondary structures were predicted in the nucleoprotein (NP) segment of the influenza A virus genome using comparative sequence and structure analysis. A number of structural elements exhibiting nucleotide covariations were identified over the whole segment length, includi

  10. Mitochondrial genome evolution in Alismatales: Size reduction and extensive loss of ribosomal protein genes

    DEFF Research Database (Denmark)

    Petersen, Gitte; Cuenca, Argelia; Zervas, Athanasios

    2017-01-01

    The order Alismatales is a hotspot for evolution of plant mitochondrial genomes characterized by remarkable differences in genome size, substitution rates, RNA editing, retrotranscription, gene loss and intron loss. Here we have sequenced the complete mitogenomes of Zostera marina and Stratiotes ...... mitogenome from a non-parasitic plant. Using a broad sample of the Alismatales, the evolutionary history of ribosomal protein gene loss is analyzed. In Zostera almost all ribosomal protein genes are lost from the mitogenome, but only some can be found in the nucleus....

  11. A New Swap-Based Frequency-Domain Packet Scheduling Algorithm in OFDMA System with Data Queue Size Constraints

    Directory of Open Access Journals (Sweden)

    Lin Shao

    2016-01-01

    Full Text Available This paper aims at the frequency-domain packet scheduling (FDPS problem in orthogonal frequency division multiple access (OFDMA system. Under users’ data queue size constraints, a new swap-based FDPS algorithm is proposed to achieve further improvement in system throughput. In this algorithm, the swap of physical resource blocks (PRBs between different users is introduced to give a comprehensive view of the overall scheduling process. Moreover, the proposed algorithm optimizes the choosing method of swap candidates and always tries to select the user who can maximize the throughput improvement. Simulation results demonstrate that this new algorithm can improve the system throughput significantly as well as reduce the resource waste effectively.

  12. Genome size as a key to evolutionary complex aquatic plants: polyploidy and hybridization in Callitriche (Plantaginaceae.

    Directory of Open Access Journals (Sweden)

    Jan Prančl

    Full Text Available Despite their complex evolutionary histories, aquatic plants are highly underrepresented in contemporary biosystematic studies. Of them, the genus Callitriche is particularly interesting because of such evolutionary features as wide variation in chromosome numbers and pollination systems. However, taxonomic difficulties have prevented broader investigation of this genus. In this study we applied flow cytometry to Callitriche for the first time in order to gain an insight into evolutionary processes and genome size differentiation in the genus. Flow cytometry complemented by confirmation of chromosome counts was applied to an extensive dataset of 1077 Callitriche individuals from 495 localities in 11 European countries and the USA. Genome size was determined for 12 taxa. The results suggest that many important processes have interacted in the evolution of the genus, including polyploidization and hybridization. Incongruence between genome size and ploidy level, intraspecific variation in genome size, formation of autotriploid and hybridization between species with different pollination systems were also detected. Hybridization takes place particularly in the diploid-tetraploid complex C. cophocarpa-C. platycarpa, for which the triploid hybrids were frequently recorded in the area of co-occurrence of its parents. A hitherto unknown hybrid (probably C. hamulata × C. cophocarpa with a unique chromosome number was discovered in the Czech Republic. However, hybridization occurs very rarely among most of the studied species. The main ecological preferences were also compared among the taxa collected. Although Callitriche taxa often grow in mixed populations, the ecological preferences of individual species are distinctly different in some cases. Anyway, flow cytometry is a very efficient method for taxonomic delimitation, determination and investigation of Callitriche species, and is even able to distinguish homoploid taxa and identify introduced

  13. Geological constraints of giant and medium-sized gas fields in Kuqa Depression

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There is a gas-rich and well-charged petroleum system in the Kuqa Depression where Triassic and Jurassic source rocks play important roles. Distributed in an area of more than 10000 km2 and with a thickness of up to 1000 m, they are composed of dark mudstones, carbonaceous mudstones and coal seams containing 6%, 40% and 90% of TOC, respectively, and are mainly the humic organic matter. As high-quality regional cap rocks, the Neogene and Eogene gypsum rocks and gypseous mudstones matched well with the underlying Neogene and Cretaceous-Eogene sandstones. They have formed the most favorable reservoir-seal assemblages in the Kuqa Depression. Also the Jurassic sandstones and mudstones formed another favorable reservoir-seal assemblage. The traps are shaped late in the fold-thrust belt, mainly fixed in the Tertiary-Quaternary, where ten structure styles have been distinguished. These traps spread as a zone in N-S, are scattered like a segmental line in W-E and show tier-styled vertically. The best traps are gypsum-salt covered fault-bend anticlines related to the passive roof duplex. This petroleum system is characterized by late accumulation. In the early Himalayan Movement, mainly gas condensate and oil accumulated and were distributed in the outer circular region of the kitchen; whereas in the middle and late Himalayan the gas accumulations mainly formed and were distributed in the inner circular region near the kitchen. The overpressure of gas pools is common and is formed by seal capacity of thick gypsum layers, extensive tectonic compression and large uplift. The well-preserved anticline traps underlying the high-quality regional cap rocks of the Tertiary gypsum rocks and gypseous mudstones are the main targets for the discovery of giant and medium-sized gas fields. Above conclusions are important for the petroleum geology theory and the exploration of the fold-thrust belt in foreland basins in central and western China.

  14. Genome size and phenotypic variation of Nymphaea (Nymphaeaceae species from Eastern Europe and temperate Asia

    Directory of Open Access Journals (Sweden)

    Magdalena Anna Dąbrowska

    2015-07-01

    Full Text Available Despite long-term research, the aquatic genus Nymphaea still possesses major taxonomic challenges. High phenotypic plasticity and possible interspecific hybridization often make it impossible to identify individual specimens. The main aim of this study was to assess phenotypic variation in Nymphaea taxa sampled over a wide area of Eastern Europe and temperate Asia. Samples were identified based on species-specific genome sizes and diagnostic morphological characters for each taxon were then selected. A total of 353 specimens from 32 populations in Poland, Russia and Ukraine were studied, with nine biometric traits being examined. Although some specimens morphologically matched N. ×borealis (a hybrid between N. alba and N. candida according to published determination keys, only one hybrid individual was revealed based on genome size data. Other specimens with intermediate morphology possessed genome size corresponding to N. alba, N. candida or N. tetragona. This indicates that natural hybridization between N. alba and N. candida is not as frequent as previously suggested. Our results also revealed a considerably higher variation in the studied morphological traits (especially the quantitative ones in N. alba and N. candida than reported in the literature. A determination key for the investigated Nymphaea species is provided, based on taxonomically-informative morphological characters identified in our study.

  15. Flow cytometric analysis using SYBR Green I for genome size estimation in coffee.

    Science.gov (United States)

    Ronildo Clarindo, Wellington; Roberto Carvalho, Carlos

    2011-02-01

    Plant genome size has been measured by flow cytometry using propidium iodide as a dye for nuclear DNA staining. However, some authors have reported the occurrence of genome size estimation errors, especially in plants rich in secondary metabolites, such as the coffee tree. In this context, we tested an alternative cytometric protocol using the SYBR Green I as a fluorochrome for stoichiometrically staining nuclear double-stranded DNA in Coffea canephora (2x) and Coffea arabica (4x). The results showed that the respective mean genome size measured from nuclei stained with SYBR Green I and propidium iodide was statistically identical. However, the G(0)/G(1) peaks of nuclei stained with SYBR Green I exhibited lower coefficient variations (1.57-2.85%) compared to those stained with propidium iodide (2.75-4.80%). Coefficient variation statistical data suggest that SYBR Green I is adequate for stoichiometric nuclei staining using this methodology. Our results provide evidence that SYBR Green I can be used in flow cytometry measurements of plants, with the advantages of minimizing errors in nuclear DNA content quantification, staining relatively quicker, with high affinity, and being less mutagenic than propidium iodide.

  16. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae).

    Science.gov (United States)

    Alverson, Andrew J; Wei, XiaoXin; Rice, Danny W; Stern, David B; Barry, Kerrie; Palmer, Jeffrey D

    2010-06-01

    The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.

  17. Estimation of the Whitefly Bemisia tabaci Genome Size Based on k-mer and Flow Cytometric Analyses

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    2015-07-01

    Full Text Available Whiteflies of the Bemisia tabaci (Hemiptera: Aleyrodidae cryptic species complex are among the most important agricultural insect pests in the world. These phloem-feeding insects can colonize over 1000 species of plants worldwide and inflict severe economic losses to crops, mainly through the transmission of pathogenic viruses. Surprisingly, there is very little genomic information about whiteflies. As a starting point to genome sequencing, we report a new estimation of the genome size of the B. tabaci B biotype or Middle East-Asia Minor 1 (MEAM1 population. Using an isogenic whitefly colony with over 6500 haploid male individuals for genomic DNA, three paired-end genomic libraries with insert sizes of ~300 bp, 500 bp and 1 Kb were constructed and sequenced on an Illumina HiSeq 2500 system. A total of ~50 billion base pairs of sequences were obtained from each library. K-mer analysis using these sequences revealed that the genome size of the whitefly was ~682.3 Mb. In addition, the flow cytometric analysis estimated the haploid genome size of the whitefly to be ~690 Mb. Considering the congruency between both estimation methods, we predict the haploid genome size of B. tabaci MEAM1 to be ~680–690 Mb. Our data provide a baseline for ongoing efforts to assemble and annotate the B. tabaci genome.

  18. Impacts of both reference population size and inclusion of a residual polygenic effect on the accuracy of genomic prediction

    Directory of Open Access Journals (Sweden)

    Rensing Stephan

    2011-05-01

    Full Text Available Abstract Background The purpose of this work was to study the impact of both the size of genomic reference populations and the inclusion of a residual polygenic effect on dairy cattle genetic evaluations enhanced with genomic information. Methods Direct genomic values were estimated for German Holstein cattle with a genomic BLUP model including a residual polygenic effect. A total of 17,429 genotyped Holstein bulls were evaluated using the phenotypes of 44 traits. The Interbull genomic validation test was implemented to investigate how the inclusion of a residual polygenic effect impacted genomic estimated breeding values. Results As the number of reference bulls increased, both the variance of the estimates of single nucleotide polymorphism effects and the reliability of the direct genomic values of selection candidates increased. Fitting a residual polygenic effect in the model resulted in less biased genome-enhanced breeding values and decreased the correlation between direct genomic values and estimated breeding values of sires in the reference population. Conclusions Genetic evaluation of dairy cattle enhanced with genomic information is highly effective in increasing reliability, as well as using large genomic reference populations. We found that fitting a residual polygenic effect reduced the bias in genome-enhanced breeding values, decreased the correlation between direct genomic values and sire's estimated breeding values and made genome-enhanced breeding values more consistent in mean and variance as is the case for pedigree-based estimated breeding values.

  19. Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies).

    Science.gov (United States)

    Pellicer, J; Kelly, L J; Magdalena, C; Leitch, I J

    2013-08-01

    Nymphaeales are the most species-rich lineage of the earliest diverging angiosperms known as the ANA grade (Amborellales, Nymphaeales, Austrobaileyales), and they have received considerable attention from morphological, physiological, and ecological perspectives. Although phylogenetic relationships between these three lineages of angiosperms are mainly well resolved, insights at the whole genome level are still limited because of a dearth of information. To address this, genome sizes and chromosome numbers in 34 taxa, comprising 28 species were estimated and analysed together with previously published data to provide an overview of genome size and chromosome diversity in Nymphaeales. Overall, genome sizes were shown to vary 10-fold and chromosome numbers and ploidy levels ranged from 2n = 2x = 18 to 2n = 16x = ∼224. Distinct patterns of genome diversity were apparent, reflecting the differential incidence of polyploidy, changes in repetitive DNA content, and chromosome rearrangements within and between genera. Using model-based approaches, ancestral genome size and basic chromosome numbers were reconstructed to provide insights into the dynamics of genome size and chromosome number evolution. Finally, by combining additional data from Amborellales and Austrobaileyales, a comprehensive overview of genome sizes and chromosome numbers in these early diverging angiosperms is presented.

  20. Acorn: A grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface

    Directory of Open Access Journals (Sweden)

    Bushell Michael E

    2011-05-01

    Full Text Available Abstract Background Constraint-based approaches facilitate the prediction of cellular metabolic capabilities, based, in turn on predictions of the repertoire of enzymes encoded in the genome. Recently, genome annotations have been used to reconstruct genome scale metabolic reaction networks for numerous species, including Homo sapiens, which allow simulations that provide valuable insights into topics, including predictions of gene essentiality of pathogens, interpretation of genetic polymorphism in metabolic disease syndromes and suggestions for novel approaches to microbial metabolic engineering. These constraint-based simulations are being integrated with the functional genomics portals, an activity that requires efficient implementation of the constraint-based simulations in the web-based environment. Results Here, we present Acorn, an open source (GNU GPL grid computing system for constraint-based simulations of genome scale metabolic reaction networks within an interactive web environment. The grid-based architecture allows efficient execution of computationally intensive, iterative protocols such as Flux Variability Analysis, which can be readily scaled up as the numbers of models (and users increase. The web interface uses AJAX, which facilitates efficient model browsing and other search functions, and intuitive implementation of appropriate simulation conditions. Research groups can install Acorn locally and create user accounts. Users can also import models in the familiar SBML format and link reaction formulas to major functional genomics portals of choice. Selected models and simulation results can be shared between different users and made publically available. Users can construct pathway map layouts and import them into the server using a desktop editor integrated within the system. Pathway maps are then used to visualise numerical results within the web environment. To illustrate these features we have deployed Acorn and created a

  1. Cytogenetics of Aspidogaster limacoides (Trematoda, Aspidogastrea): karyotype, spermatocyte division, and genome size.

    Science.gov (United States)

    Bombarová, Marta; Špakulová, Marta; Kello, Martin; Nguyen, Petr; Bazsalovicsová, Eva; Králová-Hromadová, Ivica

    2015-04-01

    A detailed cytogenetic analysis of the aspidogastrean fluke Aspidogaster limacoides revealed a karyotype consisting of six medium-sized chromosome pairs. The first and the last pairs were two-armed while four remaining were one-armed; 2n = 12, n = 1 m + 1 m - sm + 4a. Fluorescence in situ hybridization with 18S ribosomal DNA (rDNA) probe detected a single cluster of ribosomal genes (NOR) located in pericentromeric regions of the long arms of the third chromosome pair in a site of secondary constriction apparent in meiotic prophase, especially in diplotene. The silver nitrate staining showed only a single active NOR site on one of homologous chromosomes in the majority of spermatogonia and spermatocyte divisions. A course of meiosis corresponded to standard schemes. The nucleolus was apparent in early meiotic spermatocytes and disintegrated by the end of pachytene. For the first time in Aspidogastrea, the genome size was determined. The flow cytometry showed 1.21 pg DNA per haploid nucleus in A. limacoides which is in accordance with relatively low genome sizes of other flukes and tapeworms (Neodermata). A comparison of cytogenetic data available to date in the fluke sister groups Aspidogastrea and Digenea suggests that the lower chromosome number of Aspidogastrea might represent an ancestral condition and their split might have been accompanied by an increase in chromosome number via either chromosome fissions or paleopolyploidy.

  2. Population genomics of eusocial insects: the costs of a vertebrate-like effective population size.

    Science.gov (United States)

    Romiguier, J; Lourenco, J; Gayral, P; Faivre, N; Weinert, L A; Ravel, S; Ballenghien, M; Cahais, V; Bernard, A; Loire, E; Keller, L; Galtier, N

    2014-03-01

    The evolution of reproductive division of labour and social life in social insects has lead to the emergence of several life-history traits and adaptations typical of larger organisms: social insect colonies can reach masses of several kilograms, they start reproducing only when they are several years old, and can live for decades. These features and the monopolization of reproduction by only one or few individuals in a colony should affect molecular evolution by reducing the effective population size. We tested this prediction by analysing genome-wide patterns of coding sequence polymorphism and divergence in eusocial vs. noneusocial insects based on newly generated RNA-seq data. We report very low amounts of genetic polymorphism and an elevated ratio of nonsynonymous to synonymous changes – a marker of the effective population size – in four distinct species of eusocial insects, which were more similar to vertebrates than to solitary insects regarding molecular evolutionary processes. Moreover, the ratio of nonsynonymous to synonymous substitutions was positively correlated with the level of social complexity across ant species. These results are fully consistent with the hypothesis of a reduced effective population size and an increased genetic load in eusocial insects, indicating that the evolution of social life has important consequences at both the genomic and population levels. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  3. Temperature and developmental responses of body and cell size in Drosophila; effects of polyploidy and genome configuration.

    Science.gov (United States)

    Jalal, Marwa; Andersen, Tom; Hessen, Dag O

    2015-07-01

    Increased adult body size in Drosophila raised at lower temperatures could be attributed both to an increase in the cell volume and cell number. It is not clear, however, whether increased cell size is related to (or even caused by) increased nuclear volume and genome size (or configuration). Experiments with Drosophila melanogaster stocks (Oregon-R and w1118) raised at 16, 22, 24, and 28°C resulted in larger adult body and wing size with lower temperature, while eye size was less affected. The increase in wing size reflected an increase in cell size in both males and females of both stocks. The nucleus size, genome size, and DNA condensation of adult flies, embryos, and Schneider 2 cells (S2 cells, of larval origin) were estimated by flow cytometry. In both adult flies and S2 cells, both nucleus size and DNA condensation varied with temperature, while DNA content appears to be constant. From 12% to 18% of the somatic cells were tetraploid (4C) and 2-5% were octoploid (8C), and for the Oregon strain we observed an increase in the fraction of polyploid cells with decreasing temperature. The observed increase in body size (and wing size) at low temperatures could partly be linked with the cell size and DNA condensation, while corresponding changes in the haploid genome size were not observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Impact of instrumental constraints and imperfections on the dislocation structure in micron-sized Cu compression pillars

    Energy Technology Data Exchange (ETDEWEB)

    Kirchlechner, C., E-mail: christoph.kirchlechner@unileoben.ac.at [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (Austria); Department of Materials Physics, Montanuniversitaet Leoben (Austria); Keckes, J. [Department of Materials Physics, Montanuniversitaet Leoben (Austria); Motz, C.; Grosinger, W.; Kapp, M.W. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (Austria); Micha, J.S.; Ulrich, O. [CEA-Grenoble/Institut Nanosciences et Cryogenie (France); CRG-IF BM32 at ESRF, European Synchrotron Radiation Facility, Grenoble (France); Dehm, G. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (Austria); Department of Materials Physics, Montanuniversitaet Leoben (Austria)

    2011-08-15

    Highlights: {yields} In situ {mu}Laue compression tests on three 7 {mu}m sized Copper pillars were performed. {yields} The evolution of dislocation structures is interlinked with the mechanical response. {yields} Well aligned samples do not store GNDs to a strain of approximately 0.18. {yields} Poorly aligned samples immediately store GNDs and form dislocation boundaries. - Abstract: In situ micro-Laue diffraction was used to study the plasticity in three 7 {mu}m, initially identical, single-crystalline Cu pillars during compression. Movements of the Laue spot as well as Laue spot streaking were analyzed to obtain real-time insights into the storage of excess dislocations and the possible formation of dislocation cell structures. The results reveal that instrumental constraints lead to dislocation storage at the sample base and top, but will not affect the storage of excess dislocations in the sample center in case of an ideal alignment. In contrast, misaligned samples show early yielding due to the activation of an unpredicted slip system, storage of excess dislocations also in the sample center and, at a later stage, the formation of a complex dislocation substructure.

  5. Temporal Constraints on the Size of Gamma-ray Burst Progenitors and Implications for Gravitational Wave Follow-up

    Science.gov (United States)

    Golkhou, V. Zach; Butler, Nathaniel; Littlejohns, Owen

    2017-01-01

    Uncovering the intrinsic variability of Gamma-ray bursts (GRBs), the most energetic explosions since the Big Bang, constrains the size of the GRB emission region, and ejecta velocity, in turn providing hints on the nature of GRBs and their progenitors.We develop a novel method which ties together wavelet and structure-function analyses to measure, for the first time, the actual minimum variability timescale, Δtmin, of GRB light curves. Implementing our technique to the largest sample of GRBs collected by Swift and Fermi instruments, reveals that only less than 10% of GRBs exhibit evidence for variability on timescales below 2 ms. Investigation on various energy bands of Fermi/GBM (spanning 8 keV-1 MeV) shows that the tightest constraints on progenitor radii derive from timescales obtained from the hardest energy channel of light curves (299 -1000 keV). Our derivations for the minimum Lorentz factor, Γmin, and the minimum emission radius, R = 2 c Γmin2 Δtmin / (1+z), find Γ ≥ 400 which imply typical emission radii R ≈ 1×1014 cm for long-duration GRBs and R ≈ 3×1013 cm for short-duration GRBs (sGRBs). This information is served in an online, publicly-accessible table which is automatically updated upon a new GRB trigger event.Given the possible linkage between sGRBs and Compact Binary Coalescence events, the practical approach to finally detect the Electromagnetic counterparts of LIGO triggers is to focus our follow-up resources on sGRBs. Our sGRB selection methodology, a direct measure of the emission region size, along with the implemented vetting algorithm of extracted transient candidates found by an image subtraction code could optimize efficiently LIGO follow-up with the Ground-based Telescopes.

  6. Genome Sizes in Hepatica Mill: (Ranunculaceae Show a Loss of DNA, Not a Gain, in Polyploids

    Directory of Open Access Journals (Sweden)

    B. J. M. Zonneveld

    2010-01-01

    , and a possible pentaploid. The somatic nuclear DNA contents (2C-value, as measured by flow cytometry with propidium iodide, were shown to range from 33 to 80 pg. The Asiatic and American species, often considered subspecies of H. nobilis, could be clearly distinguished from European H. nobilis. DNA content confirmed the close relationships in the Asiatic species, and these are here considered as subspecies of H. asiatica. Parents for the allotetraploid species could be suggested based on their nuclear DNA content. Contrary to the increase in genome size suggested earlier for Hepatica, a significant (6%–14% loss of nuclear DNA in the natural allopolyploids was found.

  7. One size fits all? Direct evidence for the heterogeneity of genetic drift throughout the genome.

    Science.gov (United States)

    Jiménez-Mena, Belén; Tataru, Paula; Brøndum, Rasmus F; Sahana, Goutam; Guldbrandtsen, Bernt; Bataillon, Thomas

    2016-07-01

    Effective population size (Ne) is a central parameter in population and conservation genetics. It measures the magnitude of genetic drift, rates of accumulation of inbreeding in a population, and it conditions the efficacy of selection. It is often assumed that a single Ne can account for the evolution of genomes. However, recent work provides indirect evidence for heterogeneity in Ne throughout the genome. We study this by examining genome-wide diversity in the Danish Holstein cattle breed. Using the differences in allele frequencies over a single generation, we directly estimated Ne among autosomes and smaller windows within autosomes. We found statistically significant variation in Ne at both scales. However, no correlation was found between the detected regional variability in Ne, and proxies for the intensity of linked selection (local recombination rate, gene density), or the presence of either past strong selection or current artificial selection on traits of economic value. Our findings call for further caution regarding the wide applicability of the Ne concept for understanding quantitatively processes such as genetic drift and accumulation of consanguinity in both natural and managed populations.

  8. Optimizing k-mer size using a variant grid search to enhance de novo genome assembly

    Science.gov (United States)

    Cha, Soyeon; Bird, David McK

    2016-01-01

    Largely driven by huge reductions in per-base costs, sequencing nucleic acids has become a near-ubiquitous technique in laboratories performing biological and biomedical research. Most of the effort goes to re-sequencing, but assembly of de novogenerated, raw sequence reads into contigs that span as much of the genome as possible is central to many projects. Although truly complete coverage is not realistically attainable, maximizing the amount of sequence that can be correctly assembled into contigs contributes to coverage. Here we compare three commonly used assembly algorithms (ABySS, Velvet and SOAPdenovo2), and show that empirical optimization of k-mer values has a disproportionate influence on de novo assembly of a eukaryotic genome, the nematode parasite Meloidogynechitwoodi. Each assembler was challenged with about 40 million Iluumina II paired-end reads, and assemblies performed under a range of k-mer sizes. In each instance, the optimal k-mer was 127, although based on N50 values,ABySS was more efficient than the others. That the assembly was not spurious was established using the “Core Eukaryotic Gene Mapping Approach”, which indicated that 98.79% of the M. chitwoodi genome was accounted for by the assembly. Subsequent gene finding and annotation are consistent with this and suggest that k-mer optimization contributes to the robustness of assembly. PMID:28104957

  9. Genome-Wide Association Study on Male Genital Shape and Size in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Baku Takahara

    Full Text Available Male genital morphology of animals with internal fertilization and promiscuous mating systems have been one of the most diverse and rapidly evolving morphological traits. The male genital morphology in general is known to have low phenotypic and genetic variations, but the genetic basis of the male genital variation remains unclear. Drosophila melanogaster and its closely related species are morphologically very similar, but the shapes of the posterior lobe, a cuticular projection on the male genital arch are distinct from each other, representing a model system for studying the genetic basis of male genital morphology. In this study, we used highly inbred whole genome sequenced strains of D. melanogaster to perform genome wide association analysis on posterior lobe morphology. We quantified the outline shape of posterior lobes with Fourier coefficients obtained from elliptic Fourier analysis and performed principal component analysis, and posterior lobe size. The first and second principal components (PC1 and PC2 explained approximately 88% of the total variation of the posterior lobe shape. We then examined the association between the principal component scores and posterior lobe size and 1902142 single nucleotide polymorphisms (SNPs. As a result, we obtained 15, 14 and 15 SNPs for PC1, PC2 and posterior lobe size with P-values smaller than 10(-5. Based on the location of the SNPs, 13, 13 and six protein coding genes were identified as potential candidates for PC1, PC2 and posterior lobe size, respectively. In addition to the previous findings showing that the intraspecific posterior shape variation are regulated by multiple QTL with strong effects, the present study suggests that the intraspecific variation may be under polygenic regulation with a number of loci with small effects. Further studies are required for investigating whether these candidate genes are responsible for the intraspecific posterior lobe shape variation.

  10. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae).

    Science.gov (United States)

    Wang, Nian; McAllister, Hugh A; Bartlett, Paul R; Buggs, Richard J A

    2016-05-01

    Betula L. (birch) is a genus of approx. 60 species, subspecies or varieties with a wide distribution in the northern hemisphere, of ecological and economic importance. A new classification of Betula has recently been proposed based on morphological characters. This classification differs somewhat from previously published molecular phylogenies, which may be due to factors such as convergent evolution, hybridization, incomplete taxon sampling or misidentification of samples. While chromosome counts have been made for many species, few have had their genome size measured. The aim of this study is to produce a new phylogenetic and genome size analysis of the genus. Internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced for 76 Betula samples verified by taxonomic experts, representing approx. 60 taxa, of which approx. 24 taxa have not been included in previous phylogenetic analyses. A further 49 samples from other collections were also sequenced, and 108 ITS sequences were downloaded from GenBank. Phylogenetic trees were built for these sequences. The genome sizes of 103 accessions representing nearly all described species were estimated using flow cytometry. As expected for a gene tree of a genus where hybridization and allopolyploidy occur, the ITS tree shows clustering, but not resolved monophyly, for the morphological subgenera recently proposed. Most sections show some clustering, but species of the dwarf section Apterocaryon are unusually scattered. Betula corylifolia (subgenus Nipponobetula) unexpectedly clusters with species of subgenus Aspera Unexpected placements are also found for B. maximowicziana, B. bomiensis, B. nigra and B. grossa Biogeographical disjunctions were found within Betula between Europe and North America, and also disjunctions between North-east and South-west Asia. The 2C-values for Betula ranged from 0·88 to 5·33 pg, and polyploids are scattered widely throughout the ITS phylogeny. Species with large genomes

  11. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in Angiosperms

    Directory of Open Access Journals (Sweden)

    Conchita eAlonso

    2015-01-01

    Full Text Available DNA cytosine methylation is a widespread epigenetic mechanism in eukaryotes, and plant genomes commonly are densely methylated. Genomic methylation can be associated with functional consequences such as mutational events, genomic instability or altered gene expression, but little is known on interspecific variation in global cytosine methylation in plants. In this paper, we compare global cytosine methylation estimates obtained by HPLC and use a phylogenetically-informed analytical approach to test for significance of evolutionary signatures of this trait across 54 angiosperm species in 25 families. We evaluate whether interspecific variation in global cytosine methylation is statistically related to phylogenetic distance and also whether it is evolutionarily correlated with genome size (C-value. Global cytosine methylation varied widely between species, ranging between 5.3% (Arabidopsis and 39.2% (Narcissus. Differences between species were related to their evolutionary trajectories, as denoted by the strong phylogenetic signal underlying interspecific variation. Global cytosine methylation and genome size were evolutionarily correlated, as revealed by the significant relationship between the corresponding phylogenetically independent contrasts. On average, a ten-fold increase in genome size entailed an increase of about 10% in global cytosine methylation. Results show that global cytosine methylation is an evolving trait in angiosperms whose evolutionary trajectory is significantly linked to changes in genome size, and suggest that the evolutionary implications of epigenetic mechanisms are likely to vary between plant lineages.

  12. In situ observations of meteor smoke particles (MSP during the Geminids 2010: constraints on MSP size, work function and composition

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2012-12-01

    three lamp types. Taking into account these data along with simple model estimates as well as rigorous quantum chemical calculations, it is argued that constraints on MSP sizes, work function and composition can be inferred. Comparing the measured data to a simple model of the photoelectron currents, we tentatively conclude that we observed MSPs in the 0.5–3 nm size range with generally increasing particle size with decreasing altitude. Notably, this size information can be obtained because different MSP particle sizes are expected to result in different work functions which is both supported by simple classical arguments as well as quantum chemical calculations. Based on this, the MSP work function can be estimated to lie in the range from ~4–4.6 eV. Finally, electronic structure calculations indicate that the low work function of the MSP measured by ECOMA indicates that Fe and Mg hydroxide clusters, rather than metal silicates, are the major constituents of the smoke particles.

  13. Genome size variation in Corchorus olitorius (Malvaceae s.l.) and its correlation with elevation and phenotypic traits.

    Science.gov (United States)

    Benor, Solomon; Fuchs, Jörg; Blattner, Frank R

    2011-07-01

    In this study, we report genome size variations in Corchorus olitorius L. (Malvaceae s.l.), a crop species known for its morphological plasticity and broad geographical distribution, and Corchorus capsularis L., the second widely cultivated species in the genus. Flow cytometric analyses were conducted with several tissues and nuclei isolation buffers using 69 accessions of C. olitorius and 4 accessions of C. capsularis, representing different habitats and geographical origins. The mean 2C nuclear DNA content (± SD) of C. olitorius was estimated to be 0.918 ± 0.011 pg, with a minimum of 0.882 ± 0.004 pg, and a maximum of 0.942 ± 0.004 pg. All studied plant materials were found to be diploid with 2n = 14. The genome size is negatively correlated with days to flowering (r = -0.29, p genome size and growing elevation (r = 0.59, p genome sizes of C. olitorius and C. capsularis are much smaller, and therewith closer to that of rice. The relatively small genome sizes will be of general advantage for any efforts into genomics or sequencing approaches of these species.

  14. Fast and Near-Optimal Timing-Driven Cell Sizing under Cell Area and Leakage Power Constraints Using a Simplified Discrete Network Flow Algorithm

    Directory of Open Access Journals (Sweden)

    Huan Ren

    2013-01-01

    Full Text Available We propose a timing-driven discrete cell-sizing algorithm that can address total cell size and/or leakage power constraints. We model cell sizing as a “discretized” mincost network flow problem, wherein available sizes of each cell are modeled as nodes. Flow passing through a node indicates the choice of the corresponding cell size, and the total flow cost reflects the timing objective function value corresponding to these choices. Compared to other discrete optimization methods for cell sizing, our method can obtain near-optimal solutions in a time-efficient manner. We tested our algorithm on ISCAS’85 benchmarks, and compared our results to those produced by an optimal dynamic programming- (DP- based method. The results show that compared to the optimal method, the improvements to an initial sizing solution obtained by our method is only 1% (3% worse when using a 180 nm (90 nm library, while being 40–60 times faster. We also obtained results for ISPD’12 cell-sizing benchmarks, under leakage power constraint, and compared them to those of a state-of-the-art approximate DP method (optimal DP runs out of memory for the smallest of these circuits. Our results show that we are only 0.9% worse than the approximate DP method, while being more than twice as fast.

  15. Evolutionary and Taxonomic Implications of Variation in Nuclear Genome Size: Lesson from the Grass Genus Anthoxanthum (Poaceae).

    Science.gov (United States)

    Chumová, Zuzana; Krejčíková, Jana; Mandáková, Terezie; Suda, Jan; Trávníček, Pavel

    2015-01-01

    The genus Anthoxanthum (sweet vernal grass, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and its evolutionary relationships still poorly resolved. In order to get insight into the geographic distribution of ploidy levels and assess the taxonomic value of genome size data, we determined C- and Cx-values in 628 plants representing all currently recognized European species collected from 197 populations in 29 European countries. The flow cytometric estimates were supplemented by conventional chromosome counts. In addition to diploids, we found two low (rare 3x and common 4x) and one high (~16x-18x) polyploid levels. Mean holoploid genome sizes ranged from 5.52 pg in diploid A. alpinum to 44.75 pg in highly polyploid A. amarum, while the size of monoploid genomes ranged from 2.75 pg in tetraploid A. alpinum to 9.19 pg in diploid A. gracile. In contrast to Central and Northern Europe, which harboured only limited cytological variation, a much more complex pattern of genome sizes was revealed in the Mediterranean, particularly in Corsica. Eight taxonomic groups that partly corresponded to traditionally recognized species were delimited based on genome size values and phenotypic variation. Whereas our data supported the merger of A. aristatum and A. ovatum, eastern Mediterranean populations traditionally referred to as diploid A. odoratum were shown to be cytologically distinct, and may represent a new taxon. Autopolyploid origin was suggested for 4x A. alpinum. In contrast, 4x A. odoratum seems to be an allopolyploid, based on the amounts of nuclear DNA. Intraspecific variation in genome size was observed in all recognized species, the most striking example being the A. aristatum/ovatum complex. Altogether, our study showed that genome size can be a useful taxonomic marker in Anthoxathum to not only guide taxonomic decisions but also help resolve evolutionary relationships in this challenging grass genus.

  16. 'Genome order index' should not be used for defining compositional constraints in nucleotide sequences - a case study of the Z-curve

    Directory of Open Access Journals (Sweden)

    Josić Krešimir

    2010-02-01

    Full Text Available Abstract Background The Z-curve is a three dimensional representation of DNA sequences proposed over a decade ago and has been extensively applied to sequence segmentation, horizontal gene transfer detection, and sequence analysis. Based on the Z-curve, a "genome order index," was proposed, which is defined as S = a2+ c2+t2+g2, where a, c, t, and g are the nucleotide frequencies of A, C, T, and G, respectively. This index was found to be smaller than 1/3 for almost all tested genomes, which was taken as support for the existence of a constraint on genome composition. A geometric explanation for this constraint has been suggested. Each genome was represented by a point P whose distance from the four faces of a regular tetrahedron was given by the frequencies a, c, t, and g. They claimed that an inscribed sphere of radius r = 1/ contains almost all points corresponding to various genomes, implying that S r2. The distribution of the points P obtained by S was studied using the Z-curve. Results In this work, we studied the basic properties of the Z-curve using the "genome order index" as a case study. We show that (1 the calculation of the radius of the inscribed sphere of a regular tetrahedron is incorrect, (2 the S index is narrowly distributed, (3 based on the second parity rule, the S index can be derived directly from the Shannon entropy and is, therefore, redundant, and (4 the Z-curve suffers from over dimensionality, and the dimension stands for GC content alone suffices to represent any given genome. Conclusion The "genome order index" S does not represent a constraint on nucleotide composition. Moreover, S can be easily computed from the Gini-Simpson index and be directly derived from entropy and is redundant. Overall, the Z-curve and S are over-complicated measures to GC content and Shannon H index, respectively. Reviewers This article was reviewed by Claus Wilke, Joel Bader, Marek Kimmel and Uladzislau Hryshkevich (nominated by Itai Yanai.

  17. Genome-size Variation in Switchgrass (Panicum virgatum: Flow Cytometry and Cytology Reveal Rampant Aneuploidy

    Directory of Open Access Journals (Sweden)

    Denise E. Costich

    2010-11-01

    Full Text Available Switchgrass ( L., a native perennial dominant of the prairies of North America, has been targeted as a model herbaceous species for biofeedstock development. A flow-cytometric survey of a core set of 11 primarily upland polyploid switchgrass accessions indicated that there was considerable variation in genome size within each accession, particularly at the octoploid (2 = 8 = 72 chromosome ploidy level. Highly variable chromosome counts in mitotic cell preparations indicated that aneuploidy was more common in octoploids (86.3% than tetraploids (23.2%. Furthermore, the incidence of hyper- versus hypoaneuploidy is equivalent in tetraploids. This is clearly not the case in octoploids, where close to 90% of the aneuploid counts are lower than the euploid number. Cytogenetic investigation using fluorescent in situ hybridization (FISH revealed an unexpected degree of variation in chromosome structure underlying the apparent genomic instability of this species. These results indicate that rapid advances in the breeding of polyploid biofuel feedstocks, based on the molecular-genetic dissection of biomass characteristics and yield, will be predicated on the continual improvement of our understanding of the cytogenetics of these species.

  18. Adaptations to “Thermal Time” Constraints in Papilio: Latitudinal and Local Size Clines Differ in Response to Regional Climate Change

    OpenAIRE

    J Mark Scriber; Ben Elliot; Emily Maher; Molly McGuire; Marjie Niblack

    2014-01-01

    Adaptations to “thermal time” (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval growth and shorter molting durations at lower temperatures. Here we report on forewing sizes through 30 years for both the northern univoltine P. canadensis (with ...

  19. Quantitative testing of the methodology for genome size estimation in plants using flow cytometry: a case study of the Primulina genus

    OpenAIRE

    Wang, Jing; Liu, Juan; Kang, Ming

    2015-01-01

    Flow cytometry (FCM) is a commonly used method for estimating genome size in many organisms. The use of FCM in plants is influenced by endogenous fluorescence inhibitors and may cause an inaccurate estimation of genome size; thus, falsifying the relationship between genome size and phenotypic traits/ecological performance. Quantitative optimization of FCM methodology minimizes such errors, yet there are few studies detailing this methodology. We selected the genus Primulina, one of the most r...

  20. Quantitative testing of the methodology for genome size estimation in plants using flow cytometry: a case study of the Primulina genus

    OpenAIRE

    Jing eWang; Juan eLiu; Ming eKang

    2015-01-01

    Flow cytometry (FCM) is a commonly used method for estimating genome size in many organisms. The use of flow cytometry in plants is influenced by endogenous fluorescence inhibitors and may cause an inaccurate estimation of genome size; thus, falsifying the relationship between genome size and phenotypic traits/ecological performance. Quantitative optimization of FCM methodology minimizes such errors, yet there are few studies detailing this methodology. We selected the genus Primulina, one of...

  1. Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus

    Directory of Open Access Journals (Sweden)

    Mounsey Kate E

    2012-01-01

    Full Text Available Abstract Background The lack of genomic data available for mites limits our understanding of their biology. Evolving high-throughput sequencing technologies promise to deliver rapid advances in this area, however, estimates of genome size are initially required to ensure sufficient coverage. Methods Quantitative real-time PCR was used to estimate the genome sizes of the burrowing ectoparasitic mite Sarcoptes scabiei, the non-burrowing ectoparasitic mite Psoroptes ovis, and the free-living house dust mite Dermatophagoides pteronyssinus. Additionally, the chromosome number of S. scabiei was determined by chromosomal spreads of embryonic cells derived from single eggs. Results S. scabiei cells were shown to contain 17 or 18 small (S. scabiei and P. ovis were 96 (± 7 Mb and 86 (± 2 Mb respectively, among the smallest arthropod genomes reported to date. The D. pteronyssinus genome was estimated to be larger than its parasitic counterparts, at 151 Mb in female mites and 218 Mb in male mites. Conclusions This data provides a starting point for understanding the genetic organisation and evolution of these astigmatid mites, informing future sequencing projects. A comparitive genomic approach including these three closely related mites is likely to reveal key insights on mite biology, parasitic adaptations and immune evasion.

  2. Variation, evolution, and correlation analysis of C+G content and genome or chromosome size in different kingdoms and phyla.

    Science.gov (United States)

    Li, Xiu-Qing; Du, Donglei

    2014-01-01

    C+G content (GC content or G+C content) is known to be correlated with genome/chromosome size in bacteria but the relationship for other kingdoms remains unclear. This study analyzed genome size, chromosome size, and base composition in most of the available sequenced genomes in various kingdoms. Genome size tends to increase during evolution in plants and animals, and the same is likely true for bacteria. The genomic C+G contents were found to vary greatly in microorganisms but were quite similar within each animal or plant subkingdom. In animals and plants, the C+G contents are ranked as follows: monocot plants>mammals>non-mammalian animals>dicot plants. The variation in C+G content between chromosomes within species is greater in animals than in plants. The correlation between average chromosome C+G content and chromosome length was found to be positive in Proteobacteria, Actinobacteria (but not in other analyzed bacterial phyla), Ascomycota fungi, and likely also in some plants; negative in some animals, insignificant in two protist phyla, and likely very weak in Archaea. Clearly, correlations between C+G content and chromosome size can be positive, negative, or not significant depending on the kingdoms/groups or species. Different phyla or species exhibit different patterns of correlation between chromosome-size and C+G content. Most chromosomes within a species have a similar pattern of variation in C+G content but outliers are common. The data presented in this study suggest that the C+G content is under genetic control by both trans- and cis- factors and that the correlation between C+G content and chromosome length can be positive, negative, or not significant in different phyla.

  3. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability

    Directory of Open Access Journals (Sweden)

    Joardar Vinita

    2012-12-01

    Full Text Available Abstract Background The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. Results Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus, A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum. The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25–36 Kb among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus, contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. Conclusions The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent

  4. Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians.

    Science.gov (United States)

    Tenaillon, Maud I; Hufford, Matthew B; Gaut, Brandon S; Ross-Ibarra, Jeffrey

    2011-01-01

    The genome of maize (Zea mays ssp. mays) consists mostly of transposable elements (TEs) and varies in size among lines. This variation extends to other species in the genus Zea: although maize and Zea luxurians diverged only ∼140,000 years ago, their genomes differ in size by ∼50%. We used paired-end Illumina sequencing to evaluate the potential contribution of TEs to the genome size difference between these two species. We aligned the reads both to a filtered gene set and to an exemplar database of unique repeats representing 1,514 TE families; ∼85% of reads mapped against TE repeats in both species. The relative contribution of TE families to the B73 genome was highly correlated with previous estimates, suggesting that reliable estimates of TE content can be obtained from short high-throughput sequencing reads, even at low coverage. Because we used paired-end reads, we could assess whether a TE was near a gene by determining if one paired read mapped to a TE and the second read mapped to a gene. Using this method, Class 2 DNA elements were found significantly more often in genic regions than Class 1 RNA elements, but Class 1 elements were found more often near other TEs. Overall, we found that both Class 1 and 2 TE families account for ∼70% of the genome size difference between B73 and luxurians. Interestingly, the relative abundance of TE families was conserved between species (r = 0.97), suggesting genome-wide control of TE content rather than family-specific effects.

  5. Genome Sequence of Staphylococcus aureus PX03, an Acetoin-Producing Strain with a Small-Sized Genome.

    Science.gov (United States)

    Zhang, Ge; Wang, Qian; Su, Yulong; Li, Shugui; Liu, Haobao

    2017-09-14

    Staphylococcus aureus PX03 can produce acetoin efficiently. Here, we present a 2.38-Mb assembly of its genome sequence, which might provide further insights into the molecular mechanism of its acetoin biosynthesis to further improve its biotechnological applications. Copyright © 2017 Zhang et al.

  6. Genome size and base composition of five Pinus species from the Balkan region.

    Science.gov (United States)

    Bogunic, F; Muratovic, E; Brown, S C; Siljak-Yakovlev, S

    2003-08-01

    The 2C DNA content and base composition of five Pinus (2 n=24) species and two Pinus subspecies from the Balkan region have been estimated by flow cytometry. P. heldreichii (five populations) and P. peuce (one population) were assessed for the first time, as also were subspecies of P. nigra (three populations-two of subspecies nigra and one of subspecies dalmatica) along with P. sylvestris, and P. mugo from the same region. The 2C DNA values of these Pinus ranged from 42.5 pg to 54.9 pg (41.7-53.8 x 10(9)bp), and the base composition was quite stable (about 39.5% GC). Significant differences were observed between two subspecies of P. nigra and even between two populations of subsp. nigra. The two other species (P. sylvestris and P. mugo) had 2C values of 42.5 pg and 42.8 pg, respectively, while that of P. peuce was 54.9 pg. These genome sizes are in accordance with published values except for P. sylvestris, which was 20% below estimates made by other authors.

  7. Testing the link between genome size and growth rate in maize

    Directory of Open Access Journals (Sweden)

    Maud I. Tenaillon

    2016-09-01

    Full Text Available Little is known about the factors driving within species Genome Size (GS variation. GS may be shaped indirectly by natural selection on development and adaptative traits. Because GS variation is particularly pronounced in maize, we have sampled 83 maize inbred lines from three well described genetic groups adapted to contrasted climate conditions: inbreds of tropical origin, Flint inbreds grown in temperate climates, and Dent inbreds distributed in the Corn Belt. As a proxy for growth rate, we measured the Leaf Elongation Rate maximum during nighttime (LERmax as well as GS in all inbred lines. In addition we combined available and new nucleotide polymorphism data at 29,090 sites to characterize the genetic structure of our panel. We found significant variation for both LERmax and GS among groups defined by our genetic structuring. Tropicals displayed larger GS than Flints while Dents exhibited intermediate values. LERmax followed the opposite trend with greater growth rate in Flints than in Tropicals. In other words, LERmax and GS exhibited a significantly negative correlation (r = − 0.27. However, this correlation was driven by among-group variation rather than within-group variation—it was no longer significant after controlling for structure and kinship among inbreds. Our results indicate that selection on GS may have accompanied ancient maize diffusion from its center of origin, with large DNA content excluded from temperate areas. Whether GS has been targeted by more intense selection during modern breeding within groups remains an open question.

  8. Entire genome sequence analysis of genotype IX Newcastle disease viruses reveals their early-genotype phylogenetic position and recent-genotype genome size

    Directory of Open Access Journals (Sweden)

    Hu Shunling

    2011-03-01

    Full Text Available Abstract Background Six nucleotide (nt insertion in the 5'-noncoding region (NCR of the nucleoprotein (NP gene of Newcaslte disease virus (NDV is considered to be a genetic marker for recent genotypes of NDV, which emerged after 1960. However, F48-like NDVs from China, identified a 6-nt insert in the NP gene, have been previously classified into genotype III or genotype IX. Results In order to clarify their phylogenetic position and explore the origin of NDVs with the 6-nt insert and its significance in NDV evolution, we determined the entire genome sequences of five F48-like viruses isolated in China between 1946 and 2002 by RT-PCR amplification of overlapping fragments of full-length genome and rapid amplification of cDNA ends. All the five NDV isolates shared the same genome size of 15,192-nt with the recent genotype V-VIII viruses whereas they had the highest homology with early genotype III and IV isolates. Conclusions The unique characteristic of the genome size and phylogenetic position of F48-like viruses warrants placing them in a separate geno-group, genotype IX. Results in this study also suggest that genotype IX viruses most likely originate from a genotype III virus by insertion of a 6-nt motif in the 5'-NCR of the NP gene which had occurred as early as in 1940 s, and might be the common origin of genotype V-VIII viruses.

  9. Constraints on grain size and stable iron phases in the uppermost Inner Core from multiple scattering modeling of seismic velocity and attenuation

    CERN Document Server

    Calvet, Marie

    2008-01-01

    We propose to model the uppermost inner core as an aggregate of randomly oriented anisotropic ``patches''. A patch is defined as an assemblage of a possibly large number of crystals with identically oriented crystallographic axes. This simple model accounts for the observed velocity isotropy of short period body waves, and offers a reasonable physical interpretation for the scatterers detected at the top of the inner core. From rigorous multiple scattering modeling of seismic wave propagation through the aggregate, we obtain strong constraints on both the size and the elastic constants of iron patches. We perform a systematic search for iron models compatible with measured seismic velocities and attenuations. An iron model is characterized by its symmetry (cubic or hexagonal), elastic constants, and patch size. Independent of the crystal symmetry, we infer a most likely size of patch of the order of 400 m. Recent {\\it bcc} iron models from the literature are in very good agreement with the most probable elast...

  10. Inferring Population Size History from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian Computation Approach.

    Directory of Open Access Journals (Sweden)

    Simon Boitard

    2016-03-01

    Full Text Available Inferring the ancestral dynamics of effective population size is a long-standing question in population genetics, which can now be tackled much more accurately thanks to the massive genomic data available in many species. Several promising methods that take advantage of whole-genome sequences have been recently developed in this context. However, they can only be applied to rather small samples, which limits their ability to estimate recent population size history. Besides, they can be very sensitive to sequencing or phasing errors. Here we introduce a new approximate Bayesian computation approach named PopSizeABC that allows estimating the evolution of the effective population size through time, using a large sample of complete genomes. This sample is summarized using the folded allele frequency spectrum and the average zygotic linkage disequilibrium at different bins of physical distance, two classes of statistics that are widely used in population genetics and can be easily computed from unphased and unpolarized SNP data. Our approach provides accurate estimations of past population sizes, from the very first generations before present back to the expected time to the most recent common ancestor of the sample, as shown by simulations under a wide range of demographic scenarios. When applied to samples of 15 or 25 complete genomes in four cattle breeds (Angus, Fleckvieh, Holstein and Jersey, PopSizeABC revealed a series of population declines, related to historical events such as domestication or modern breed creation. We further highlight that our approach is robust to sequencing errors, provided summary statistics are computed from SNPs with common alleles.

  11. Estimation of (co)variances for genomic regions of flexible sizes

    DEFF Research Database (Denmark)

    Sørensen, Lars P; Janss, Luc; Madsen, Per;

    2012-01-01

    traits such as mammary disease traits in dairy cattle. METHODS: Data on progeny means of six traits related to mastitis resistance in dairy cattle (general mastitis resistance and five pathogen-specific mastitis resistance traits) were analyzed using a bivariate Bayesian SNP-based genomic model......)variances of mastitis resistance traits in dairy cattle using multivariate genomic models......., per chromosome, and in regions of 100 SNP on a chromosome. RESULTS: Genomic proportions of the total variance differed between traits. Genomic correlations were lower than pedigree-based genetic correlations and they were highest between general mastitis and pathogen-specific traits because...

  12. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes.

    Science.gov (United States)

    Angly, Florent E; Willner, Dana; Prieto-Davó, Alejandra; Edwards, Robert A; Schmieder, Robert; Vega-Thurber, Rebecca; Antonopoulos, Dionysios A; Barott, Katie; Cottrell, Matthew T; Desnues, Christelle; Dinsdale, Elizabeth A; Furlan, Mike; Haynes, Matthew; Henn, Matthew R; Hu, Yongfei; Kirchman, David L; McDole, Tracey; McPherson, John D; Meyer, Folker; Miller, R Michael; Mundt, Egbert; Naviaux, Robert K; Rodriguez-Mueller, Beltran; Stevens, Rick; Wegley, Linda; Zhang, Lixin; Zhu, Baoli; Rohwer, Forest

    2009-12-01

    Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions.

  13. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes.

    Directory of Open Access Journals (Sweden)

    Florent E Angly

    2009-12-01

    Full Text Available Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS, a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and

  14. The battle of the sexes over seed size: support for both kinship genomic imprinting and interlocus contest evolution.

    Science.gov (United States)

    Willi, Yvonne

    2013-06-01

    Outcrossing creates a venue for parental conflict. When one sex provides parental care to offspring fertilized by several partners, the nonproviding sex is under selection to maximally exploit the caring sex. The caring sex may counteradapt, and a coevolutionary arms race ensues. Genetic models of this conflict include the kinship theory of genomic imprinting (parent-of-origin-specific expression of maternal-care effectors) and interlocus conflict evolution (interaction between male selfish signals and female abatement). Predictions were tested by measuring the sizes of seeds produced by within-population crosses (diallel design) and between-population crosses in outcrossing and selfing populations of Arabidopsis lyrata. Within-population diallel crosses revealed substantial maternal variance in seed size in most populations. The comparison of between- and within-population crosses showed that seeds were larger when pollen came from another outcrossing population than when pollen came from a selfing or the same population, supporting interlocus contest evolution between male selfish genes and female recognition genes. Evidence for kinship genomic imprinting came from complementary trait means of seed size in reciprocal between-population crosses independent of whether populations were predominantly selfing or outcrossing. Hence, both kinship genomic imprinting and interlocus contest are supported in outcrossing Arabidopsis, whereas only kinship genomic imprinting is important in selfing populations.

  15. Adaptations to “Thermal Time” Constraints in Papilio: Latitudinal and Local Size Clines Differ in Response to Regional Climate Change

    Science.gov (United States)

    Scriber, J. Mark; Elliot, Ben; Maher, Emily; McGuire, Molly; Niblack, Marjie

    2014-01-01

    Adaptations to “thermal time” (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval growth and shorter molting durations at lower temperatures. Here we report on forewing sizes through 30 years for both the northern univoltine P. canadensis (with obligate diapause) from the Great Lakes historical hybrid zone northward to central Alaska (65° N latitude), and the multivoltine, P. glaucus from this hybrid zone southward to central Florida (27° N latitude). Despite recent climate warming, no increases in mean forewing lengths of P. glaucus were observed at any major collection location (FL to MI) from the 1980s to 2013 across this long latitudinal transect (which reflects the “converse of Bergmann’s size Rule”, with smaller females at higher latitudes). Unlike lower latitudes, the Alaska, Ontonogon, and Chippewa/Mackinac locations (for P. canadensis) showed no significant increases in D-day accumulations, which could explain lack of size change in these northernmost locations. As a result of 3–4 decades of empirical data from major collection sites across these latitudinal clines of North America, a general “voltinism/size/D-day” model is presented, which more closely predicts female size based on D-day accumulations, than does latitude. However, local “climatic cold pockets” in northern Michigan and Wisconsin historically appeared to exert especially strong size constraints on female forewing lengths, but forewing lengths quickly increased with local summer warming during the recent decade, especially near the warming edges of the cold pockets. Results of fine-scale analyses of these “cold pockets” are in contrast to non-significant changes for other Papilio populations seen across the latitudinal

  16. Lineage-specific variations of congruent evolution among DNA sequences from three genomes, and relaxed selective constraints on rbcL in Cryptomonas (Cryptophyceae

    Directory of Open Access Journals (Sweden)

    Tran Hoang-Dung

    2005-10-01

    Full Text Available Abstract Background Plastid-bearing cryptophytes like Cryptomonas contain four genomes in a cell, the nucleus, the nucleomorph, the plastid genome and the mitochondrial genome. Comparative phylogenetic analyses encompassing DNA sequences from three different genomes were performed on nineteen photosynthetic and four colorless Cryptomonas strains. Twenty-three rbcL genes and fourteen nuclear SSU rDNA sequences were newly sequenced to examine the impact of photosynthesis loss on codon usage in the rbcL genes, and to compare the rbcL gene phylogeny in terms of tree topology and evolutionary rates with phylogenies inferred from nuclear ribosomal DNA (concatenated SSU rDNA, ITS2 and partial LSU rDNA, and nucleomorph SSU rDNA. Results Largely congruent branching patterns and accelerated evolutionary rates were found in nucleomorph SSU rDNA and rbcL genes in a clade that consisted of photosynthetic and colorless species suggesting a coevolution of the two genomes. The extremely accelerated rates in the rbcL phylogeny correlated with a shift from selection to mutation drift in codon usage of two-fold degenerate NNY codons comprising the amino acids asparagine, aspartate, histidine, phenylalanine, and tyrosine. Cysteine was the sole exception. The shift in codon usage seemed to follow a gradient from early diverging photosynthetic to late diverging photosynthetic or heterotrophic taxa along the branches. In the early branching taxa, codon preferences were changed in one to two amino acids, whereas in the late diverging taxa, including the colorless strains, between four and five amino acids showed changes in codon usage. Conclusion Nucleomorph and plastid gene phylogenies indicate that loss of photosynthesis in the colorless Cryptomonas strains examined in this study possibly was the result of accelerated evolutionary rates that started already in photosynthetic ancestors. Shifts in codon usage are usually considered to be caused by changes in functional

  17. The likelihood of GODs' existence Improving the SN1987a constraint on the size of large compact dimensions

    CERN Document Server

    Hanhart, C; Phillips, D R; Reddy, S; Hanhart, Christoph; Pons, Jose A.; Phillips, Daniel R.; Reddy, Sanjay

    2001-01-01

    The existence of compact dimensions which are accessible only to gravity represents an intriguing possible solution to the hierarchy problem. At present the strongest constraint on the existence of such compact Gravity-Only Dimensions (GODs) comes from SN1987a. Here we report on the first self-consistent simulations of the early, neutrino-emitting phase of a proto-neutron star which include energy losses due to the coupling of the Kaluza-Klein modes of the graviton which arise in a world with GODs. We compare the neutrino signals from these simulations to that from SN1987a and use a rigorous probabilistic analysis to derive improved bounds for the radii of such GODs. We find that the possibility that there are two compact extra dimensions with radii larger than 0.66 $\\mu$m is excluded at the 95% confidence level---as is the possibility that there are three compact extra dimensions larger than 0.8 nm.

  18. Morphological and genome size variations within populations of Edraianthus graminifolius “Jugoslavicus” (Campanulaceae from the central Balkan peninsula

    Directory of Open Access Journals (Sweden)

    Rakić Tamara

    2014-01-01

    Full Text Available The E. graminifolius complex is widely distributed in the continental part of the central and western Balkan Peninsula and is characterized by pronounced morphological variability. Plants grow on different geological substrates, span a wide altitudinal range and inhabit heterogeneous microclimatic conditions. The aim of this study was to compare morpho-anatomical and genome size variations among 31 populations of E. graminifolius, and to correlate morphoanatomical characteristics of plants with the geomorphologic and bioclimatic characteristics of their habitats. For these purposes, multivariate statistical analyses were performed. Results showed that most of morphological variability could be explained as the adaptive responses of plants to diverse environmental conditions that accompany life at different altitudes. Populations from SE Serbia had larger genome size in respect to other investigated populations. Genome size was bigger in sympatric populations of Edraianthus then in allopatric ones. Apart from the general morphological variability, plants from the Ovčar-Kablar Gorge are particularly morphologically specific. [Projekat Ministarstva nauke Republike Srbije, br. 173030

  19. Plant regeneration through somatic embryogenesis and genome size analysis of Coriandrum sativum L.

    Science.gov (United States)

    Ali, Muzamil; Mujib, A; Tonk, Dipti; Zafar, Nadia

    2017-01-01

    In the present study, an improved plant regeneration protocol via primary and secondary somatic embryogenesis was established in two Co-1 and Rajendra Swathi (RS) varieties of Coriandrum sativum L. Callus was induced from root explants on 2, 4-D (0.5-2.0 mg/l) supplemented MS. The addition of BA (0.2 mg/l) improved callus induction and proliferation response significantly. The maximum callus induction frequency was on 1.0 mg/l 2, 4-D and 0.2 mg/l BA added MS medium (77.5 % in Co-1 and 72.3 % in RS). The callus transformed into embryogenic callus on 2, 4-D added MS with maximum embryogenic frequency was on 1.0 mg/l. The granular embryogenic callus differentiated into globular embryos on induction medium, which later progressed to heart-, torpedo- and cotyledonary embryos on medium amended with 0.5 mg/l NAA and 0.2 mg/l BA. On an average, 2-3 secondary somatic embryos (SEs) were developed on mature primary SEs, which increased the total embryo numbers in culture. Histology and scanning electron microscopy (SEM) studies are presented for the origin, development of primary and secondary embryos in coriander. Later, these induced embryos converted into plantlets on 1.0 mg/l BA and 0.2 mg/l NAA-amended medium. The regenerated plantlets were cultured on 0.5 mg/l IBA added ½ MS for promotion of roots. The well-rooted plantlets were acclimatized and transferred to soil. The genetic stability of embryo-regenerated plant was analyzed by flow cytometry with optimized Pongamia pinnata as standard. The 2C DNA content of RS coriander variety was estimated to 5.1 pg; the primary and secondary somatic embryo-derived plants had 5.26 and 5.44 pg 2C DNA content, respectively. The regenerated plants were genetically stable, genome size similar to seed-germinated coriander plants.

  20. Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers.

    Science.gov (United States)

    Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita

    2016-11-01

    Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G0/G1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain-nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members belonging to this highly complex polyploid family.

  1. Quantitative testing of the methodology for genome size estimation in plants using flow cytometry: a case study of the Primulina genus

    Directory of Open Access Journals (Sweden)

    Jing eWang

    2015-05-01

    Full Text Available Flow cytometry (FCM is a commonly used method for estimating genome size in many organisms. The use of flow cytometry in plants is influenced by endogenous fluorescence inhibitors and may cause an inaccurate estimation of genome size; thus, falsifying the relationship between genome size and phenotypic traits/ecological performance. Quantitative optimization of FCM methodology minimizes such errors, yet there are few studies detailing this methodology. We selected the genus Primulina, one of the most representative and diverse genera of the Old World Gesneriaceae, to evaluate the methodology effect on determining genome size. Our results showed that buffer choice significantly affected genome size estimation in six out of the eight species examined and altered the 2C-value (DNA content by as much as 21.4%. The staining duration and propidium iodide (PI concentration slightly affected the 2C-value. Our experiments showed better histogram quality when the samples were stained for 40 minutes at a PI concentration of 100 µg ml-1. The quality of the estimates was not improved by one-day incubation in the dark at 4 °C or by centrifugation. Thus, our study determined an optimum protocol for genome size measurement in Primulina: LB01 buffer supplemented with 100 µg ml-1 PI and stained for 40 minutes. This protocol also demonstrated a high universality in other Gesneriaceae genera. We report the genome size of nine Gesneriaceae species for the first time. The results showed substantial genome size variation both within and among the species, with the 2C-value ranging between 1.62 and 2.71 pg. Our study highlights the necessity of optimizing the FCM methodology prior to obtaining reliable genome size estimates in a given taxon.

  2. Quantitative testing of the methodology for genome size estimation in plants using flow cytometry: a case study of the Primulina genus.

    Science.gov (United States)

    Wang, Jing; Liu, Juan; Kang, Ming

    2015-01-01

    Flow cytometry (FCM) is a commonly used method for estimating genome size in many organisms. The use of FCM in plants is influenced by endogenous fluorescence inhibitors and may cause an inaccurate estimation of genome size; thus, falsifying the relationship between genome size and phenotypic traits/ecological performance. Quantitative optimization of FCM methodology minimizes such errors, yet there are few studies detailing this methodology. We selected the genus Primulina, one of the most representative and diverse genera of the Old World Gesneriaceae, to evaluate the methodology effect on determining genome size. Our results showed that buffer choice significantly affected genome size estimation in six out of the eight species examined and altered the 2C-value (DNA content) by as much as 21.4%. The staining duration and propidium iodide (PI) concentration slightly affected the 2C-value. Our experiments showed better histogram quality when the samples were stained for 40 min at a PI concentration of 100 μg ml(-1). The quality of the estimates was not improved by 1-day incubation in the dark at 4°C or by centrifugation. Thus, our study determined an optimum protocol for genome size measurement in Primulina: LB01 buffer supplemented with 100 μg ml(-1) PI and stained for 40 min. This protocol also demonstrated a high universality in other Gesneriaceae genera. We report the genome size of nine Gesneriaceae species for the first time. The results showed substantial genome size variation both within and among the species, with the 2C-value ranging between 1.62 and 2.71 pg. Our study highlights the necessity of optimizing the FCM methodology prior to obtaining reliable genome size estimates in a given taxon.

  3. Millihertz Quasi-periodic Oscillations in 4U 1636–536: Putting Possible Constraints on the Neutron Star Size

    Science.gov (United States)

    Stiele, H.; Yu, W.; Kong, A. K. H.

    2016-11-01

    Based on previous studies of quasi-periodic oscillations (QPOs) in neutron star (NS) low-mass X-ray binaries, mHz QPOs are believed to be related to “marginally stable” burning on the NS surface. Our study of phase-resolved energy spectra of these oscillations in 4U 1636–53 shows that the oscillations are not caused by variations in the blackbody temperature of the NS, but reveals a correlation between the change of the count rate during the mHz QPO pulse and the spatial extent of a region emitting blackbody emission. The maximum size of the emission area, {R}{BB}2={216.7}-86.4+93.2 km2, provides direct evidence that the oscillations originate from a variable surface area constrained on the NS and are therefore not related to instabilities in the accretion disk. The obtained lower limit on the size of the NS (11.0 km) rules out equations of state that prefer small NS radii. Observations of mHz QPOs in NS LMXBs with NICER and eXTP will reduce the statistical uncertainty in the lower limit on the NS radius, which together with better estimates of the hardening factor and distance, will allow for improved discrimination between different equations of state and compact star models. Furthermore, future missions will allow us to measure the peak blackbody emission area for a single mHz QPO pulse, which will push the lower limit to larger radii.

  4. MONTE GENEROSO ROCKFALL FIELD TEST (SWITZERLAND): Real size experiment to constraint 2D and 3D rockfall simulations

    Science.gov (United States)

    Humair, F.; Matasci, B.; Carrea, D.; Pedrazzini, A.; Loye, A.; Pedrozzi, G.; Nicolet, P.; Jaboyedoff, M.

    2012-04-01

    In numerical rockfall simulation, the runout of rockfall is highly dependent of the restitution coefficients which are one of the key parameters to estimate the energy and simulate the rebounds of the blocks during their travel. Restitution coefficients values derived from literature may however not be adapted to every rockfall area as they do not integrate some of the influencing parameters as, among others, block shape rock size, soil cover… The aim is to illustrate how real size rockfall experiment can improve the reliability of computational trajectory simulations of rockfall propagation by calibrating these latter with experiment extracted results. Experimental rockfall tests were performed in the slopes of Monte Generoso area (lat 720850/ long 84830) which is located in the canton of Ticino in south Switzerland above a highway. The field site is a forested area with a thin soil cover on a bedrock characterized by massive carbonates. The elevation ranges between 894m and 322m above see level with a slope of 35 to 40° in the upper part, 60 to 89° in the medium part and 28 to 38° in the lower part. 22 blocks with different size and shape were manually released down, imparting little or no initial velocity. The failing blocks were coloured to make the impacts easier to recognize. The paths of the failing blocks are recorded using two high speed cameras and the impacts of the blocks were sampled using dGNSS. The rockfall trajectories were analysed based on the movies. As the movies have to be referenced in x and y direction, the distance between two known point in the terrain as well as the position of the cameras were measured prior to the blocks throws. Measurements of bounce height, angular and translational velocity (as well as energy) and restitution coefficients (normal kn and tangential kt) were attempt to be deduced from the movies. First, a-priori simulations are compared with the real size experiment throw. Then a-fortiori simulations taking into

  5. rRNA operons and genome size of 'Candidatus Liberibacter americanus', a bacterium associated with citrus huanglongbing in Brazil.

    Science.gov (United States)

    Wulff, N A; Eveillard, S; Foissac, X; Ayres, A J; Bové, J-M

    2009-08-01

    Huanglongbing is one of the most severe diseases of citrus worldwide and is associated with 'Candidatus (Ca.) Liberibacter africanus' in Africa, 'Ca. Liberibacter asiaticus' in Asia and the Americas (Brazil, USA and Cuba) and 'Ca. Liberibacter americanus' (Lam) in Brazil. In the absence of axenic cultures, genetic information on liberibacters is scarce. The sequences of the entire 23S rRNA and 5S rRNA genes from Lam have now been obtained, using a consensus primer designed on known tRNAMet sequences of rhizobia. The size of the Lam genome was determined by PFGE, using Lam-infected periwinkle plants for bacterial enrichment, and was found to be close to 1.31 Mbp. In order to determine the number of ribosomal operons on the Lam genome, probes designed to detect the 16S rRNA gene and the 3' end of the 23S rRNA gene were developed and used for Southern hybridization with I-CeuI-treated genomic DNA. Our results suggest that there are three ribosomal operons in a circular genome. Lam is the first liberibacter species for which such data are available.

  6. Notes on genome size in the hybrid Ranunculus x luizetii (Ranunculaceae and its parents by flow cytometry

    Directory of Open Access Journals (Sweden)

    Fernández Prieto, J. A.

    2011-12-01

    Full Text Available Notes on genome size in the hybrid Ranunculus x luizetii (Ranunculaceae and its parents by flow cytometry.- Flow cytometry was used to estimate the nuclear DNA content in the natural hybrid Ranunculus x luizetii and its parents. Our results indicate that the genome size of the hybrid R. x luizetii is closer to R. pyrenaeus than to R. parnassiifolius, providing an evidence of genome downsizing.Notas sobre el tamaño del genoma en el híbrido Ranunculus x luizetii (Ranunculaceae y sus progenitores mediante citometría de flujo.- Se ha empleado la citometría de flujo para estimar el contenido de ADN nuclear en el híbrido Ranunculus x luizetii y sus progenitores. Nuestros resultados indican que el tamaño del genoma del híbrido R. x luizetii se acerca más a R. pyrenaeus que a R. parnassiifolius, con una evidencia de reducción del genoma.

  7. GIS-based approach for optimal siting and sizing of renewables considering techno-environmental constraints and the stochastic nature of meteorological inputs

    Science.gov (United States)

    Daskalou, Olympia; Karanastasi, Maria; Markonis, Yannis; Dimitriadis, Panayiotis; Koukouvinos, Antonis; Efstratiadis, Andreas; Koutsoyiannis, Demetris

    2016-04-01

    Following the legislative EU targets and taking advantage of its high renewable energy potential, Greece can obtain significant benefits from developing its water, solar and wind energy resources. In this context we present a GIS-based methodology for the optimal sizing and siting of solar and wind energy systems at the regional scale, which is tested in the Prefecture of Thessaly. First, we assess the wind and solar potential, taking into account the stochastic nature of the associated meteorological processes (i.e. wind speed and solar radiation, respectively), which is essential component for both planning (i.e., type selection and sizing of photovoltaic panels and wind turbines) and management purposes (i.e., real-time operation of the system). For the optimal siting, we assess the efficiency and economic performance of the energy system, also accounting for a number of constraints, associated with topographic limitations (e.g., terrain slope, proximity to road and electricity grid network, etc.), the environmental legislation and other land use constraints. Based on this analysis, we investigate favorable alternatives using technical, environmental as well as financial criteria. The final outcome is GIS maps that depict the available energy potential and the optimal layout for photovoltaic panels and wind turbines over the study area. We also consider a hypothetical scenario of future development of the study area, in which we assume the combined operation of the above renewables with major hydroelectric dams and pumped-storage facilities, thus providing a unique hybrid renewable system, extended at the regional scale.

  8. A genomics approach to understanding the role of auxin in apple (Malus x domestica fruit size control

    Directory of Open Access Journals (Sweden)

    Devoghalaere Fanny

    2012-01-01

    Full Text Available Abstract Background Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. Results High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106. This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. Conclusions The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3 removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point.

  9. Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans

    Directory of Open Access Journals (Sweden)

    Julien Chaillot

    2017-02-01

    Full Text Available One of the most critical but still poorly understood aspects of eukaryotic cell proliferation is the basis for commitment to cell division in late G1 phase, called Start in yeast and the Restriction Point in metazoans. In all species, a critical cell size threshold coordinates cell growth with cell division and thereby establishes a homeostatic cell size. While a comprehensive survey of cell size genetic determinism has been performed in the saprophytic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, very little is known in pathogenic fungi. As a number of critical Start regulators are haploinsufficient for cell size, we applied a quantitative analysis of the size phenome, using elutriation-barcode sequencing methodology, to 5639 barcoded heterozygous deletion strains of the opportunistic yeast Candida albicans. Our screen identified conserved known regulators and biological processes required to maintain size homeostasis in the opportunistic yeast C. albicans. We also identified novel C. albicans-specific size genes and provided a conceptual framework for future mechanistic studies. Interestingly, some of the size genes identified were required for fungal pathogenicity suggesting that cell size homeostasis may be elemental to C. albicans fitness or virulence inside the host.

  10. Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans

    Science.gov (United States)

    Chaillot, Julien; Cook, Michael A.; Corbeil, Jacques; Sellam, Adnane

    2016-01-01

    One of the most critical but still poorly understood aspects of eukaryotic cell proliferation is the basis for commitment to cell division in late G1 phase, called Start in yeast and the Restriction Point in metazoans. In all species, a critical cell size threshold coordinates cell growth with cell division and thereby establishes a homeostatic cell size. While a comprehensive survey of cell size genetic determinism has been performed in the saprophytic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, very little is known in pathogenic fungi. As a number of critical Start regulators are haploinsufficient for cell size, we applied a quantitative analysis of the size phenome, using elutriation-barcode sequencing methodology, to 5639 barcoded heterozygous deletion strains of the opportunistic yeast Candida albicans. Our screen identified conserved known regulators and biological processes required to maintain size homeostasis in the opportunistic yeast C. albicans. We also identified novel C. albicans-specific size genes and provided a conceptual framework for future mechanistic studies. Interestingly, some of the size genes identified were required for fungal pathogenicity suggesting that cell size homeostasis may be elemental to C. albicans fitness or virulence inside the host. PMID:28040776

  11. Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis.

    Directory of Open Access Journals (Sweden)

    Daniel I Chasman

    2009-11-01

    Full Text Available While conventional LDL-C, HDL-C, and triglyceride measurements reflect aggregate properties of plasma lipoprotein fractions, NMR-based measurements more accurately reflect lipoprotein particle concentrations according to class (LDL, HDL, and VLDL and particle size (small, medium, and large. The concentrations of these lipoprotein sub-fractions may be related to risk of cardiovascular disease and related metabolic disorders. We performed a genome-wide association study of 17 lipoprotein measures determined by NMR together with LDL-C, HDL-C, triglycerides, ApoA1, and ApoB in 17,296 women from the Women's Genome Health Study (WGHS. Among 36 loci with genome-wide significance (P<5x10(-8 in primary and secondary analysis, ten (PCCB/STAG1 (3q22.3, GMPR/MYLIP (6p22.3, BTNL2 (6p21.32, KLF14 (7q32.2, 8p23.1, JMJD1C (10q21.3, SBF2 (11p15.4, 12q23.2, CCDC92/DNAH10/ZNF664 (12q24.31.B, and WIPI1 (17q24.2 have not been reported in prior genome-wide association studies for plasma lipid concentration. Associations with mean lipoprotein particle size but not cholesterol content were found for LDL at four loci (7q11.23, LPL (8p21.3, 12q24.31.B, and LIPG (18q21.1 and for HDL at one locus (GCKR (2p23.3. In addition, genetic determinants of total IDL and total VLDL concentration were found at many loci, most strongly at LIPC (15q22.1 and APOC-APOE complex (19q13.32, respectively. Associations at seven more loci previously known for effects on conventional plasma lipid measures reveal additional genetic influences on lipoprotein profiles and bring the total number of loci to 43. Thus, genome-wide associations identified novel loci involved with lipoprotein metabolism-including loci that affect the NMR-based measures of concentration or size of LDL, HDL, and VLDL particles-all characteristics of lipoprotein profiles that may impact disease risk but are not available by conventional assay.

  12. Genome-wide scan for quantitative trait loci influencing LDL size and plasma triglyceride in familial hypertriglyceridemia.

    Science.gov (United States)

    Austin, Melissa A; Edwards, Karen L; Monks, Stephanie A; Koprowicz, Kent M; Brunzell, John D; Motulsky, Arno G; Mahaney, Michael C; Hixson, James E

    2003-11-01

    Small, dense LDLs and hypertriglyceridemia, two highly correlated and genetically influenced risk factors, are known to predict for risk of coronary heart disease. The objective of this study was to perform a whole-genome scan for linkage to LDL size and triglyceride (TG) levels in 26 kindreds with familial hypertriglyceridemia (FHTG). LDL size was estimated using gradient gel electrophoresis, and genotyping was performed for 355 autosomal markers with an average heterozygosity of 76% and an average spacing of 10.2 centimorgans (cMs). Using variance components linkage analysis, one possible linkage was found for LDL size [logarithm of odds (LOD) = 2.1] on chromosome 6, peak at 140 cM distal to marker F13A1 (closest marker D6S2436). With adjustment for TG and/or HDL cholesterol, the LOD scores were reduced, but remained in exactly the same location. For TG, LOD scores of 2.56 and 2.44 were observed at two locations on chromosome 15, with peaks at 29 and 61 cM distal to marker D15S822 (closest markers D15S643 and D15S211, respectively). These peaks were retained with adjustment for LDL size and/or HDL cholesterol. These findings, if confirmed, suggest that LDL particle size and plasma TG levels could be caused by two different genetic loci in FHTG.

  13. Balanced gene losses, duplications and intensive rearrangements led to an unusual regularly sized genome in Arbutus unedo chloroplasts.

    Directory of Open Access Journals (Sweden)

    Fernando Martínez-Alberola

    Full Text Available Completely sequenced plastomes provide a valuable source of information about the duplication, loss, and transfer events of chloroplast genes and phylogenetic data for resolving relationships among major groups of plants. Moreover, they can also be useful for exploiting chloroplast genetic engineering technology. Ericales account for approximately six per cent of eudicot diversity with 11,545 species from which only three complete plastome sequences are currently available. With the aim of increasing the number of ericalean complete plastome sequences, and to open new perspectives in understanding Mediterranean plant adaptations, a genomic study on the basis of the complete chloroplast genome sequencing of Arbutus unedo and an updated phylogenomic analysis of Asteridae was implemented. The chloroplast genome of A. unedo shows extensive rearrangements but a medium size (150,897 nt in comparison to most of angiosperms. A number of remarkable distinct features characterize the plastome of A. unedo: five-fold dismissing of the SSC region in relation to most angiosperms; complete loss or pseudogenization of a number of essential genes; duplication of the ndhH-D operon and its location within the two IRs; presence of large tandem repeats located near highly re-arranged regions and pseudogenes. All these features outline the primary evolutionary split between Ericaceae and other ericalean families. The newly sequenced plastome of A. unedo with the available asterid sequences allowed the resolution of some uncertainties in previous phylogenies of Asteridae.

  14. On Testing Constraint Programs

    CERN Document Server

    Lazaar, Nadjib; Yahia, Lebbah

    2010-01-01

    The success of several constraint-based modeling languages such as OPL, ZINC, or COMET, appeals for better software engineering practices, particularly in the testing phase. This paper introduces a testing framework enabling automated test case generation for constraint programming. We propose a general framework of constraint program development which supposes that a first declarative and simple constraint model is available from the problem specifications analysis. Then, this model is refined using classical techniques such as constraint reformulation, surrogate and global constraint addition, or symmetry-breaking to form an improved constraint model that must be thoroughly tested before being used to address real-sized problems. We think that most of the faults are introduced in this refinement step and propose a process which takes the first declarative model as an oracle for detecting non-conformities. We derive practical test purposes from this process to generate automatically test data that exhibit no...

  15. Geographical distribution of cytotypes in the Chrysanthemum indicum complex as evidenced by ploidy level and genome-size variation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Qian WAN; Richard J.ABBOTT; Guang-Yuan RAO

    2013-01-01

    A detailed knowledge of the geographical distribution ofcytotypes within and between species comprising a polyploid complex is critical to our understanding of the history and evolution of such complexes.In the present study we examined the geographical distributions ofcytotypes within six tentatively delimited species comprising the Chrysanthemum indicum complex in China.We determined the ploidy of 188 individuals sampled from 47 populations,based on DNA content using flow cytometry.In addition,chromosome counts were made on samples of each taxon.We confirmed that all samples of C.rhombifolium and C.lavandulifolium were diploid (2n =18),those of C.hypargyrum and C.potentilloides were tetraploid (2n--36),and those of C.vestitum were hexaploid (2n =54).In contrast,we confirmed that C.indicum contained both diploid and tetraploid cytotypes.We found that in addition to marked differences in genome size between ploidy levels,there was a variation in genome size between species of the same ploidy level.Although the diploid,tetraploid,and hexaploid taxa of the complex,as well as the diploid form of C.indicum,occurred only in central and northem China,the tetraploid form of C.indicum was widespread both north and south of the Yangtze River.We suggest that the tetraploid form of C.indicum may have expanded its range southward during recent Quatemary glacial periods when forests retreated in south China as conditions became drier.

  16. Genome wide analysis of drug-induced torsades de pointes: lack of common variants with large effect sizes.

    Directory of Open Access Journals (Sweden)

    Elijah R Behr

    Full Text Available Marked prolongation of the QT interval on the electrocardiogram associated with the polymorphic ventricular tachycardia Torsades de Pointes is a serious adverse event during treatment with antiarrhythmic drugs and other culprit medications, and is a common cause for drug relabeling and withdrawal. Although clinical risk factors have been identified, the syndrome remains unpredictable in an individual patient. Here we used genome-wide association analysis to search for common predisposing genetic variants. Cases of drug-induced Torsades de Pointes (diTdP, treatment tolerant controls, and general population controls were ascertained across multiple sites using common definitions, and genotyped on the Illumina 610k or 1M-Duo BeadChips. Principal Components Analysis was used to select 216 Northwestern European diTdP cases and 771 ancestry-matched controls, including treatment-tolerant and general population subjects. With these sample sizes, there is 80% power to detect a variant at genome-wide significance with minor allele frequency of 10% and conferring an odds ratio of ≥2.7. Tests of association were carried out for each single nucleotide polymorphism (SNP by logistic regression adjusting for gender and population structure. No SNP reached genome wide-significance; the variant with the lowest P value was rs2276314, a non-synonymous coding variant in C18orf21 (p  =  3×10(-7, odds ratio = 2, 95% confidence intervals: 1.5-2.6. The haplotype formed by rs2276314 and a second SNP, rs767531, was significantly more frequent in controls than cases (p  =  3×10(-9. Expanding the number of controls and a gene-based analysis did not yield significant associations. This study argues that common genomic variants do not contribute importantly to risk for drug-induced Torsades de Pointes across multiple drugs.

  17. Genome Wide Analysis of Drug-Induced Torsades de Pointes: Lack of Common Variants with Large Effect Sizes

    Science.gov (United States)

    Behr, Elijah R.; Ritchie, Marylyn D.; Tanaka, Toshihiro; Kääb, Stefan; Crawford, Dana C.; Nicoletti, Paola; Floratos, Aris; Sinner, Moritz F.; Kannankeril, Prince J.; Wilde, Arthur A. M.; Bezzina, Connie R.; Schulze-Bahr, Eric; Zumhagen, Sven; Guicheney, Pascale; Bishopric, Nanette H.; Marshall, Vanessa; Shakir, Saad; Dalageorgou, Chrysoula; Bevan, Steve; Jamshidi, Yalda; Bastiaenen, Rachel; Myerburg, Robert J.; Schott, Jean-Jacques; Camm, A. John; Steinbeck, Gerhard; Norris, Kris; Altman, Russ B.; Tatonetti, Nicholas P.; Jeffery, Steve; Kubo, Michiaki; Nakamura, Yusuke; Shen, Yufeng; George, Alfred L.; Roden, Dan M.

    2013-01-01

    Marked prolongation of the QT interval on the electrocardiogram associated with the polymorphic ventricular tachycardia Torsades de Pointes is a serious adverse event during treatment with antiarrhythmic drugs and other culprit medications, and is a common cause for drug relabeling and withdrawal. Although clinical risk factors have been identified, the syndrome remains unpredictable in an individual patient. Here we used genome-wide association analysis to search for common predisposing genetic variants. Cases of drug-induced Torsades de Pointes (diTdP), treatment tolerant controls, and general population controls were ascertained across multiple sites using common definitions, and genotyped on the Illumina 610k or 1M-Duo BeadChips. Principal Components Analysis was used to select 216 Northwestern European diTdP cases and 771 ancestry-matched controls, including treatment-tolerant and general population subjects. With these sample sizes, there is 80% power to detect a variant at genome-wide significance with minor allele frequency of 10% and conferring an odds ratio of ≥2.7. Tests of association were carried out for each single nucleotide polymorphism (SNP) by logistic regression adjusting for gender and population structure. No SNP reached genome wide-significance; the variant with the lowest P value was rs2276314, a non-synonymous coding variant in C18orf21 (p  =  3×10−7, odds ratio = 2, 95% confidence intervals: 1.5–2.6). The haplotype formed by rs2276314 and a second SNP, rs767531, was significantly more frequent in controls than cases (p  =  3×10−9). Expanding the number of controls and a gene-based analysis did not yield significant associations. This study argues that common genomic variants do not contribute importantly to risk for drug-induced Torsades de Pointes across multiple drugs. PMID:24223155

  18. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    NARCIS (Netherlands)

    Winkler, T.; Justice, A.E.; Graff, M.; Barata, L.; Feitosa, M.F.; Groot, de C.P.G.M.

    2015-01-01

    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially

  19. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    NARCIS (Netherlands)

    T.W. Winkler (Thomas W.); A.E. Justice (Anne); M.J. Graff (Maud J.L.); Barata, L. (Llilda); M.F. Feitosa (Mary Furlan); Chu, S. (Su); J. Czajkowski (Jacek); T. Esko (Tõnu); M. Fall (Magnus); T.O. Kilpeläinen (Tuomas); Y. Lu (Yingchang); R. Mägi (Reedik); E. Mihailov (Evelin); T.H. Pers (Tune); Rüeger, S. (Sina); A. Teumer (Alexander); G.B. Ehret (Georg); T. Ferreira (Teresa); N.L. Heard-Costa (Nancy); J. Karjalainen (Juha); V. Lagou (Vasiliki); A. Mahajan (Anubha); Neinast, M.D. (Michael D.); I. Prokopenko (Inga); J. Simino (Jeannette); T.M. Teslovich (Tanya M.); R. Jansen; H.J. Westra (Harm-Jan); C.C. White (Charles); D. Absher (Devin); T.S. Ahluwalia (Tarunveer Singh); S. Ahmad (Shafqat); E. Albrecht (Eva); A.C. Alves (Alexessander Couto); Bragg-Gresham, J.L. (Jennifer L.); A.J. de Craen (Anton); J.C. Bis (Joshua); A. Bonnefond (Amélie); G. Boucher (Gabrielle); G. Cadby (Gemma); Y.-C. Cheng (Yu-Ching); Chiang, C.W. (Charleston W K); G. Delgado; A. Demirkan (Ayşe); N. Dueker (Nicole); N. Eklund (Niina); G. Eiriksdottir (Gudny); J. Eriksson (Joel); B. Feenstra (Bjarke); K. Fischer (Krista); F. Frau (Francesca); T.E. Galesloot (Tessel); F. Geller (Frank); A. Goel (Anuj); M. Gorski (Mathias); T.B. Grammer (Tanja); S. Gustafsson (Stefan); Haitjema, S. (Saskia); J.J. Hottenga (Jouke Jan); J.E. Huffman (Jennifer); A.U. Jackson (Anne); K.B. Jacobs (Kevin); A. Johansson (Åsa); M. Kaakinen (Marika); M.E. Kleber (Marcus); J. Lahti (Jari); I.M. Leach (Irene Mateo); Lehne, B. (Benjamin); Liu, Y. (Youfang); K.S. Lo; M. Lorentzon (Mattias); J. Luan (Jian'An); P.A. Madden (Pamela); M. Mangino (Massimo); B. McKnight (Barbara); Medina-Gomez, C. (Carolina); K.L. Monda (Keri); M.E. Montasser (May E.); G. Müller (Gabriele); M. Müller-Nurasyid (Martina); I.M. Nolte (Ilja); Panoutsopoulou, K. (Kalliope); L. Pascoe (Laura); L. Paternoster (Lavinia); N.W. Rayner (Nigel William); F. Renström (Frida); Rizzi, F. (Federica); L.M. Rose (Lynda); Ryan, K.A. (Kathy A.); P. Salo (Perttu); S. Sanna (Serena); H. Scharnagl (Hubert); Shi, J. (Jianxin); A.V. Smith (Albert Vernon); L. Southam (Lorraine); A. Stancáková (Alena); V. Steinthorsdottir (Valgerdur); R.J. Strawbridge (Rona); Sung, Y.J. (Yun Ju); I. Tachmazidou (Ioanna); T. Tanaka (Toshiko); G. Thorleifsson (Gudmar); S. Trompet (Stella); N. Pervjakova (Natalia); J.P. Tyrer (Jonathan); L. Vandenput (Liesbeth); S.W. Van Der Laan (Sander W.); N. van der Velde (Nathalie); J. van Setten (Jessica); J.V. van Vliet-Ostaptchouk (Jana); N. Verweij (Niek); E. Vlachopoulou (Efthymia); L. Waite (Lindsay); S.R. Wang (Sophie); Z. Wang (Zhaoming); S.H. Wild (Sarah); C. Willenborg (Christina); J.F. Wilson (James); A. Wong (Andrew); Yang, J. (Jian); L. Yengo (Loic); L.M. Yerges-Armstrong (Laura); Yu, L. (Lei); W. Zhang (Weihua); Zhao, J.H. (Jing Hua); E.A. Andersson (Ehm Astrid); S.J.L. Bakker (Stephan); D. Baldassarre (Damiano); Banasik, K. (Karina); Barcella, M. (Matteo); Barlassina, C. (Cristina); C. Bellis (Claire); P. Benaglio (Paola); J. Blangero (John); M. Blüher (Matthias); Bonnet, F. (Fabrice); L.L. Bonnycastle (Lori); H.A. Boyd (Heather); M. Bruinenberg (M.); Buchman, A.S. (Aron S.); H. Campbell (Harry); Y.D. Chen (Y.); P.S. Chines (Peter); S. Claudi-Boehm (Simone); J.W. Cole (John W.); F.S. Collins (Francis); E.J.C. de Geus (Eco); L.C.P.G.M. de Groot (Lisette); M. Dimitriou (Maria); J. Duan (Jubao); S. Enroth (Stefan); E. Eury (Elodie); A.-E. Farmaki (Aliki-Eleni); N.G. Forouhi (Nita); N. Friedrich (Nele); P.V. Gejman (Pablo); B. Gigante (Bruna); N. Glorioso (Nicola); A. Go (Attie); R.F. Gottesman (Rebecca); J. Gräßler (Jürgen); H. Grallert (Harald); N. Grarup (Niels); Gu, Y.-M. (Yu-Mei); L. Broer (Linda); A.C. Ham (Annelies); T. Hansen (T.); T.B. Harris (Tamara); C.A. Hartman (Catharina A.); Hassinen, M. (Maija); N. Hastie (Nick); A.T. Hattersley (Andrew); A.C. Heath (Andrew); A.K. Henders (Anjali); D.G. Hernandez (Dena); H.L. Hillege (Hans); O.L. Holmen (Oddgeir); G.K. Hovingh (Kees); J. Hui (Jennie); Husemoen, L.L. (Lise L.); Hutri-Kähönen, N. (Nina); P.G. Hysi (Pirro); T. Illig (Thomas); P.L. de Jager (Philip); S. Jalilzadeh (Shapour); T. Jorgensen (Torben); J.W. Jukema (Jan Wouter); Juonala, M. (Markus); S. Kanoni (Stavroula); M. Karaleftheri (Maria); K.T. Khaw; L. Kinnunen (Leena); T. Kittner (Thomas); W. Koenig (Wolfgang); I. Kolcic (Ivana); P. Kovacs (Peter); Krarup, N.T. (Nikolaj T.); W. Kratzer (Wolfgang); Krüger, J. (Janine); Kuh, D. (Diana); M. Kumari (Meena); T. Kyriakou (Theodosios); C. Langenberg (Claudia); L. Lannfelt (Lars); C. Lanzani (Chiara); V. Lotay (Vaneet); L.J. Launer (Lenore); K. Leander (Karin); J. Lindström (Jaana); A. Linneberg (Allan); Liu, Y.-P. (Yan-Ping); S. Lobbens (Stéphane); R.N. Luben (Robert); V. Lyssenko (Valeriya); S. Männistö (Satu); P.K. Magnusson (Patrik); W.L. McArdle (Wendy); C. Menni (Cristina); S. Merger (Sigrun); L. Milani (Lili); Montgomery, G.W. (Grant W.); A.P. Morris (Andrew); N. Narisu (Narisu); M. Nelis (Mari); K.K. Ong (Ken); A. Palotie (Aarno); L. Perusse (Louis); I. Pichler (Irene); M.G. Pilia (Maria Grazia); A. Pouta (Anneli); Rheinberger, M. (Myriam); Ribel-Madsen, R. (Rasmus); Richards, M. (Marcus); K.M. Rice (Kenneth); T.K. Rice (Treva K.); C. Rivolta (Carlo); V. Salomaa (Veikko); A.R. Sanders (Alan); M.A. Sarzynski (Mark A.); S. Scholtens (Salome); R.A. Scott (Robert); W.R. Scott (William R.); S. Sebert (Sylvain); S. Sengupta (Sebanti); B. Sennblad (Bengt); T. Seufferlein (Thomas); A. Silveira (Angela); P.E. Slagboom (Eline); J.H. Smit (Jan); T. Sparsø (Thomas); K. Stirrups (Kathy); R.P. Stolk (Ronald); H.M. Stringham (Heather); Swertz, M.A. (Morris A.); A.J. Swift (Amy); A.C. Syvänen; S.-T. Tan (Sian-Tsung); B. Thorand (Barbara); A. Tönjes (Anke); Tremblay, A. (Angelo); E. Tsafantakis (Emmanouil); P.J. van der Most (Peter); U. Völker (Uwe); M.-C. Vohl (Marie-Claude); J.M. Vonk (Judith); M. Waldenberger (Melanie); Walker, R.W. (Ryan W.); R. Wennauer (Roman); E. Widen; G.A.H.M. Willemsen (Gonneke); T. Wilsgaard (Tom); A.F. Wright (Alan); M.C. Zillikens (Carola); S. Van Dijk (Suzanne); N.M. van Schoor (Natasja); F.W. Asselbergs (Folkert); P.I.W. de Bakker (Paul); J.S. Beckmann (Jacques); J.P. Beilby (John); D.A. Bennett (David A.); R.N. Bergman (Richard); S.M. Bergmann (Sven); C.A. Böger (Carsten); B.O. Boehm (Bernhard); E.A. Boerwinkle (Eric); D.I. Boomsma (Dorret); S.R. Bornstein (Stefan); E.P. Bottinger (Erwin); C. Bouchard (Claude); J.C. Chambers (John); S.J. Chanock (Stephen); D.I. Chasman (Daniel); F. Cucca (Francesco); D. Cusi (Daniele); G.V. Dedoussis (George); J. Erdmann (Jeanette); K. Hagen (Knut); D. Evans; U. de Faire (Ulf); M. Farrall (Martin); L. Ferrucci (Luigi); I. Ford (Ian); L. Franke (Lude); P.W. Franks (Paul); P. Froguel (Philippe); R.T. Gansevoort (Ron); C. Gieger (Christian); H. Grönberg (Henrik); V. Gudnason (Vilmundur); U. Gyllensten (Ulf); P. Hall (Per); A. Hamsten (Anders); P. van der Harst (Pim); C. Hayward (Caroline); M. Heliovaara (Markku); C. Hengstenberg (Christian); A.A. Hicks (Andrew); A. Hingorani (Aroon); A. Hofman (Albert); Hu, F. (Frank); H.V. Huikuri (Heikki); K. Hveem (Kristian); A. James (Alan); Jordan, J.M. (Joanne M.); A. Jula (Antti); M. Kähönen (Mika); E. Kajantie (Eero); S. Kathiresan (Sekar); L.A.L.M. Kiemeney (Bart); M. Kivimaki (Mika); P. Knekt; H. Koistinen (Heikki); J.S. Kooner (Jaspal S.); S. Koskinen (Seppo); J. Kuusisto (Johanna); W. Maerz (Winfried); N.G. Martin (Nicholas); M. Laakso (Markku); T.A. Lakka (Timo); T. Lehtimäki (Terho); G. Lettre (Guillaume); D.F. Levinson (Douglas); W.H.L. Kao (Wen); M.L. Lokki; Mäntyselkä, P. (Pekka); M. Melbye (Mads); A. Metspalu (Andres); B.D. Mitchell (Braxton); F.L. Moll (Frans); J.C. Murray (Jeffrey); A.W. Musk (Arthur); M.S. Nieminen (Markku); I. Njølstad (Inger); C. Ohlsson (Claes); A.J. Oldehinkel (Albertine); B.A. Oostra (Ben); C. Palmer (Cameron); J.S. Pankow (James); G. Pasterkamp (Gerard); N.L. Pedersen (Nancy); O. Pedersen (Oluf); B.W.J.H. Penninx (Brenda); M. Perola (Markus); A. Peters (Annette); O. Polasek (Ozren); P.P. Pramstaller (Peter Paul); Psaty, B.M. (Bruce M.); Qi, L. (Lu); T. Quertermous (Thomas); Raitakari, O.T. (Olli T.); T. Rankinen (Tuomo); R. Rauramaa (Rainer); P.M. Ridker (Paul); J.D. Rioux (John); F. Rivadeneira Ramirez (Fernando); J.I. Rotter (Jerome I.); I. Rudan (Igor); H.M. den Ruijter (Hester ); J. Saltevo (Juha); N. Sattar (Naveed); Schunkert, H. (Heribert); P.E.H. Schwarz (Peter); A.R. Shuldiner (Alan); J. Sinisalo (Juha); H. Snieder (Harold); T.I.A. Sørensen (Thorkild); T.D. Spector (Timothy); Staessen, J.A. (Jan A.); Stefania, B. (Bandinelli); U. Thorsteinsdottir (Unnur); M. Stumvoll (Michael); J.-C. Tardif (Jean-Claude); E. Tremoli (Elena); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); M. Uusitupa (Matti); A.L.M. Verbeek; S.H.H.M. Vermeulen (Sita); J. Viikari (Jorma); Vitart, V. (Veronique); H. Völzke (Henry); P. Vollenweider (Peter); G. Waeber (Gérard); M. Walker (Mark); H. Wallaschofski (Henri); N.J. Wareham (Nick); H. Watkins (Hugh); E. Zeggini (Eleftheria); A. Chakravarti (Aravinda); Clegg, D.J. (Deborah J.); L.A. Cupples (Adrienne); P. Gordon-Larsen (Penny); C.E. Jaquish (Cashell); D.C. Rao (Dabeeru C.); Abecasis, G.R. (Goncalo R.); T.L. Assimes (Themistocles); I. Barroso (Inês); S.I. Berndt (Sonja); M. Boehnke (Michael); P. Deloukas (Panagiotis); C.S. Fox (Caroline); L. Groop (Leif); D. Hunter (David); E. Ingelsson (Erik); R.C. Kaplan (Robert); McCarthy, M.I. (Mark I.); K.L. Mohlke (Karen); J.R. O´Connell; Schlessinger, D. (David); D.P. Strachan (David); J-A. Zwart (John-Anker); C.M. van Duijn (Cock); J.N. Hirschhorn (Joel); C.M. Lindgren (Cecilia M.); I.M. Heid (Iris); K.E. North (Kari); I.B. Borecki (Ingrid); Z. Kutalik (Zoltán); R.J.F. Loos (Ruth)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ

  20. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study

    NARCIS (Netherlands)

    Winkler, Thomas W.; Justice, Anne E.; Graff, Mariaelisa; Barata, Llilda; Feitosa, Mary F.; Chu, Su; Czajkowski, Jacek; Esko, Tonu; Fall, Tove; Kilpelainen, Tuomas O.; Lu, Yingchang; Magi, Reedik; Mihailov, Evelin; Pers, Tune H.; Rueeger, Sina; Teumer, Alexander; Ehret, Georg B.; Ferreira, Teresa; Heard-Costa, Nancy L.; Karjalainen, Juha; Lagou, Vasiliki; Mahajan, Anubha; Neinast, Michael D.; Prokopenko, Inga; Simino, Jeannette; Teslovich, Tanya M.; Jansen, Rick; Westra, Harm-Jan; White, Charles C.; Absher, Devin; Ahluwalia, Tarunveer S.; Ahmad, Shafqat; Albrecht, Eva; Alves, Alexessander Couto; Bragg-Gresham, Jennifer L.; de Craen, Anton J. M.; Bis, Joshua C.; Bonnefond, Amelie; Boucher, Gabrielle; Cadby, Gemma; Cheng, Yu-Ching; Chiang, Charleston W. K.; Delgado, Graciela; Demirkan, Ayse; Dueker, Nicole; Eklund, Niina; Eiriksdottir, Gudny; Eriksson, Joel; Feenstra, Bjarke; Fischer, Krista; Frau, Francesca; Galesloot, Tessel E.; Geller, Frank; Goel, Anuj; Gorski, Mathias; Grammer, Tanja B.; Gustafsson, Stefan; Haitjema, Saskia; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jackson, Anne U.; Jacobs, Kevin B.; Johansson, Asa; Kaakinen, Marika; Kleber, Marcus E.; Lahti, Jari; Leach, Irene Mateo; Lehne, Benjamin; Liu, Youfang; Lo, Ken Sin; Lorentzon, Mattias; Luan, Jian'an; Madden, Pamela A. F.; Mangino, Massimo; McKnight, Barbara; Medina-Gomez, Carolina; Monda, Keri L.; Montasser, May E.; Mueller, Gabriele; Mueller-Nurasyid, Martina; Nolte, Ilja M.; Panoutsopoulou, Kalliope; Pascoe, Laura; Paternoster, Lavinia; Rayner, Nigel W.; Renstrom, Frida; Rizzi, Federica; Rose, Lynda M.; Ryan, Kathy A.; Salo, Perttu; Sanna, Serena; Scharnagl, Hubert; Shi, Jianxin; Smith, Albert Vernon; Southam, Lorraine; Stancakova, Alena; Steinthorsdottir, Valgerdur; Strawbridge, Rona J.; Sung, Yun Ju; Tachmazidou, Ioanna; Tanaka, Toshiko; Thorleifsson, Gudmar; Trompet, Stella; Pervjakova, Natalia; Tyrer, Jonathan P.; Vandenput, Liesbeth; van der Laan, Sander W.; van der Velde, Nathalie; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V.; Verweij, Niek; Vlachopoulou, Efthymia; Waite, Lindsay L.; Wang, Sophie R.; Wang, Zhaoming; Wild, Sarah H.; Willenborg, Christina; Wilson, James F.; Wong, Andrew; Yang, Jian; Yengo, Loic; Yerges-Armstrong, Laura M.; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Andersson, Ehm A.; Bakker, Stephan J. L.; Baldassarre, Damiano; Banasik, Karina; Barcella, Matteo; Barlassina, Cristina; Bellis, Claire; Benaglio, Paola; Blangero, John; Blueher, Matthias; Bonnet, Fabrice; Bonnycastle, Lori L.; Boyd, Heather A.; Bruinenberg, Marcel; Buchman, Aron S.; Campbell, Harry; Chen, Yii-Der Ida; Chines, Peter S.; Claudi-Boehm, Simone; Cole, John; Collins, Francis S.; de Geus, Eco J. C.; de Groot, Lisette C. P. G. M.; Dimitriou, Maria; Duan, Jubao; Enroth, Stefan; Eury, Elodie; Farmaki, Aliki-Eleni; Forouhi, Nita G.; Friedrich, Nele; Gejman, Pablo V.; Gigante, Bruna; Glorioso, Nicola; Go, Alan S.; Gottesman, Omri; Graessler, Juergen; Grallert, Harald; Grarup, Niels; Gu, Yu-Mei; Broer, Linda; Ham, Annelies C.; Hansen, Torben; Harris, Tamara B.; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew T.; Heath, Andrew C.; Henders, Anjali K.; Hernandez, Dena; Hillege, Hans; Holmen, Oddgeir; Hovingh, Kees G.; Hui, Jennie; Husemoen, Lise L.; Hutri-Kahonen, Nina; Hysi, Pirro G.; Illig, Thomas; De Jager, Philip L.; Jalilzadeh, Shapour; Jorgensen, Torben; Jukema, J. Wouter; Juonala, Markus; Kanoni, Stavroula; Karaleftheri, Maria; Khaw, Kay Tee; Kinnunen, Leena; Kittner, Steven J.; Koenig, Wolfgang; Kolcic, Ivana; Kovacs, Peter; Krarup, Nikolaj T.; Kratzer, Wolfgang; Krueger, Janine; Kuh, Diana; Kumari, Meena; Kyriakou, Theodosios; Langenberg, Claudia; Lannfelt, Lars; Lanzani, Chiara; Lotay, Vaneet; Launer, Lenore J.; Leander, Karin; Lindstrom, Jaana; Linneberg, Allan; Liu, Yan-Ping; Lobbens, Stephane; Luben, Robert; Lyssenko, Valeriya; Mannisto, Satu; Magnusson, Patrik K.; McArdle, Wendy L.; Menni, Cristina; Merger, Sigrun; Milani, Lili; Montgomery, Grant W.; Morris, Andrew P.; Narisu, Narisu; Nelis, Mari; Ong, Ken K.; Palotie, Aarno; Perusse, Louis; Pichler, Irene; Pilia, Maria G.; Pouta, Anneli; Rheinberger, Myriam; Ribel-Madsen, Rasmus; Richards, Marcus; Rice, Kenneth M.; Rice, Treva K.; Rivolta, Carlo; Salomaa, Veikko; Sanders, Alan R.; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Scott, William R.; Sebert, Sylvain; Sengupta, Sebanti; Sennblad, Bengt; Seufferlein, Thomas; Silveira, Angela; Slagboom, P. Eline; Smit, Jan H.; Sparso, Thomas H.; Stirrups, Kathleen; Stolk, Ronald P.; Stringham, Heather M.; Swertz, Morris A.; Swift, Amy J.; Syvanen, Ann-Christine; Tan, Sian-Tsung; Thorand, Barbara; Toenjes, Anke; Tremblay, Angelo; Tsafantakis, Emmanouil; van der Most, Peter J.; Voelker, Uwe; Vohl, Marie-Claude; Vonk, Judith M.; Waldenberger, Melanie; Walker, Ryan W.; Wennauer, Roman; Widen, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Wright, Alan F.; Zillikens, M. Carola; van Dijk, Suzanne C.; van Schoor, Natasja M.; Asselbergs, Folkert W.; de Bakker, Paul I. W.; Beckmann, Jacques S.; Beilby, John; Bennett, David A.; Bergman, Richard N.; Bergmann, Sven; Boeger, Carsten A.; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Bornstein, Stefan R.; Bottinger, Erwin P.; Bouchard, Claude; Chambers, John C.; Chanock, Stephen J.; Chasman, Daniel I.; Cucca, Francesco; Cusi, Daniele; Dedoussis, George; Erdmann, Jeanette; Eriksson, Johan G.; Evans, Denis A.; de Faire, Ulf; Farrall, Martin; Ferrucci, Luigi; Ford, Ian; Franke, Lude; Franks, Paul W.; Froguel, Philippe; Gansevoort, Ron T.; Gieger, Christian; Gronberg, Henrik; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Per; Hamsten, Anders; van der Harst, Pim; Hayward, Caroline; Heliovaara, Markku; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hu, Frank; Huikuri, Heikki V.; Hveem, Kristian; James, Alan L.; Jordan, Joanne M.; Jula, Antti; Kaehoenen, Mika; Kajantie, Eero; Kathiresan, Sekar; Kiemeney, Lambertus A. L. M.; Kivimaki, Mika; Knekt, Paul B.; Koistinen, Heikki A.; Kooner, Jaspal S.; Koskinen, Seppo; Kuusisto, Johanna; Maerz, Winfried; Martin, Nicholas G.; Laakso, Markku; Lakka, Timo A.; Lehtimaki, Terho; Lettre, Guillaume; Levinson, Douglas F.; Lind, Lars; Lokki, Marja-Liisa; Mantyselka, Pekka; Melbye, Mads; Metspalu, Andres; Mitchell, Braxton D.; Moll, Frans L.; Murray, Jeffrey C.; Musk, Arthur W.; Nieminen, Markku S.; Njolstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Oostra, Ben A.; Palmer, Lyle J.; Pankow, James S.; Pasterkamp, Gerard; Pedersen, Nancy L.; Pedersen, Oluf; Penninx, Brenda W.; Perola, Markus; Peters, Annette; Polasek, Ozren; Pramstaller, Peter P.; Psaty, Bruce M.; Qi, Lu; Quertermous, Thomas; Raitakari, Olli T.; Rankinen, Tuomo; Rauramaa, Rainer; Ridker, Paul M.; Rioux, John D.; Rivadeneira, Fernando; Rotter, Jerome I.; Rudan, Igor; den Ruijter, Hester M.; Saltevo, Juha; Sattar, Naveed; Schunkert, Heribert; Schwarz, Peter E. H.; Shuldiner, Alan R.; Sinisalo, Juha; Snieder, Harold; Sorensen, Thorkild I. A.; Spector, Tim D.; Staessen, Jan A.; Stefania, Bandinelli; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tardif, Jean-Claude; Tremoli, Elena; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Uusitupa, Matti; Verbeek, Andre L. M.; Vermeulen, Sita H.; Viikari, Jorma S.; Vitart, Veronique; Voelzke, Henry; Vollenweider, Peter; Waeber, Gerard; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Zeggini, Eleftheria; Chakravarti, Aravinda; Clegg, Deborah J.; Cupples, L. Adrienne; Gordon-Larsen, Penny; Jaquish, Cashell E.; Rao, D. C.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Ines; Berndt, Sonja I.; Boehnke, Michael; Deloukas, Panos; Fox, Caroline S.; Groop, Leif C.; Hunter, David J.; Ingelsson, Erik; Kaplan, Robert C.; McCarthy, Mark I.; Mohlke, Karen L.; O'Connell, Jeffrey R.; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Heid, Iris M.; North, Kari E.; Borecki, Ingrid B.; Kutalik, Zoltan; Loos, Ruth J. F.

    2015-01-01

    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially

  1. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study

    NARCIS (Netherlands)

    Winkler, Thomas W; Justice, Anne E; Graff, Mariaelisa; Barata, Llilda; Feitosa, Mary F; Chu, Su; Czajkowski, Jacek; Esko, Tõnu; Fall, Tove; Kilpeläinen, Tuomas O; Lu, Yingchang; Mägi, Reedik; Mihailov, Evelin; Pers, Tune H; Rüeger, Sina; Teumer, Alexander; Ehret, Georg B; Ferreira, Teresa; Heard-Costa, Nancy L; Karjalainen, Juha; Lagou, Vasiliki; Mahajan, Anubha; Neinast, Michael D; Prokopenko, Inga; Simino, Jeannette; Teslovich, Tanya M; Jansen, Rick; Westra, Harm-Jan; White, Charles C; Absher, Devin; Ahluwalia, Tarunveer S; Ahmad, Shafqat; Albrecht, Eva; Alves, Alexessander Couto; Bragg-Gresham, Jennifer L; de Craen, Anton J M; Bis, Joshua C; Bonnefond, Amélie; Boucher, Gabrielle; Cadby, Gemma; Cheng, Yu-Ching; Chiang, Charleston W K; Delgado, Graciela; Demirkan, Ayse; Dueker, Nicole; Eklund, Niina; Eiriksdottir, Gudny; Eriksson, Joel; Feenstra, Bjarke; Fischer, Krista; Frau, Francesca; Galesloot, Tessel E; Geller, Frank; Goel, Anuj; Gorski, Mathias; Grammer, Tanja B; Gustafsson, Stefan; Haitjema, Saskia; Hottenga, Jouke-Jan; Huffman, Jennifer E; Jackson, Anne U; Jacobs, Kevin B; Johansson, Åsa; Kaakinen, Marika; Kleber, Marcus E; Lahti, Jari; Leach, Irene Mateo; Lehne, Benjamin; Liu, Youfang; Lo, Ken Sin; Lorentzon, Mattias; Luan, Jian'an; Madden, Pamela A F; Mangino, Massimo; McKnight, Barbara; Medina-Gomez, Carolina; Monda, Keri L; Montasser, May E; Müller, Gabriele; Müller-Nurasyid, Martina; Nolte, Ilja M; Panoutsopoulou, Kalliope; Pascoe, Laura; Paternoster, Lavinia; Rayner, Nigel W; Renström, Frida; Rizzi, Federica; Rose, Lynda M; Ryan, Kathy A; Salo, Perttu; Sanna, Serena; Scharnagl, Hubert; Shi, Jianxin; Smith, Albert Vernon; Southam, Lorraine; Stančáková, Alena; Steinthorsdottir, Valgerdur; Strawbridge, Rona J; Sung, Yun Ju; Tachmazidou, Ioanna; Tanaka, Toshiko; Thorleifsson, Gudmar; Trompet, Stella; Pervjakova, Natalia; Tyrer, Jonathan P; Vandenput, Liesbeth; van der Laan, Sander W; van der Velde, Nathalie; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V; Verweij, Niek; Vlachopoulou, Efthymia; Waite, Lindsay L; Wang, Sophie R; Wang, Zhaoming; Wild, Sarah H; Willenborg, Christina; Wilson, James F; Wong, Andrew; Yang, Jian; Yengo, Loïc; Yerges-Armstrong, Laura M; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Andersson, Ehm A; Bakker, Stephan J L; Baldassarre, Damiano; Banasik, Karina; Barcella, Matteo; Barlassina, Cristina; Bellis, Claire; Benaglio, Paola; Blangero, John; Blüher, Matthias; Bonnet, Fabrice; Bonnycastle, Lori L; Boyd, Heather A; Bruinenberg, Marcel; Buchman, Aron S; Campbell, Harry; Chen, Yii-Der Ida; Chines, Peter S; Claudi-Boehm, Simone; Cole, John; Collins, Francis S; de Geus, Eco J C; de Groot, Lisette C P G M; Dimitriou, Maria; Duan, Jubao; Enroth, Stefan; Eury, Elodie; Farmaki, Aliki-Eleni; Forouhi, Nita G; Friedrich, Nele; Gejman, Pablo V; Gigante, Bruna; Glorioso, Nicola; Go, Alan S; Gottesman, Omri; Gräßler, Jürgen; Grallert, Harald; Grarup, Niels; Gu, Yu-Mei; Broer, Linda; Ham, Annelies C; Hansen, Torben; Harris, Tamara B; Hartman, Catharina A; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew T; Heath, Andrew C; Henders, Anjali K; Hernandez, Dena; Hillege, Hans; Holmen, Oddgeir; Hovingh, Kees G; Hui, Jennie; Husemoen, Lise L; Hutri-Kähönen, Nina; Hysi, Pirro G; Illig, Thomas; De Jager, Philip L; Jalilzadeh, Shapour; Jørgensen, Torben; Jukema, J Wouter; Juonala, Markus; Kanoni, Stavroula; Karaleftheri, Maria; Khaw, Kay Tee; Kinnunen, Leena; Kittner, Steven J; Koenig, Wolfgang; Kolcic, Ivana; Kovacs, Peter; Krarup, Nikolaj T; Kratzer, Wolfgang; Krüger, Janine; Kuh, Diana; Kumari, Meena; Kyriakou, Theodosios; Langenberg, Claudia; Lannfelt, Lars; Lanzani, Chiara; Lotay, Vaneet; Launer, Lenore J; Leander, Karin; Lindström, Jaana; Linneberg, Allan; Liu, Yan-Ping; Lobbens, Stéphane; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Magnusson, Patrik K; McArdle, Wendy L; Menni, Cristina; Merger, Sigrun; Milani, Lili; Montgomery, Grant W; Morris, Andrew P; Narisu, Narisu; Nelis, Mari; Ong, Ken K; Palotie, Aarno; Pérusse, Louis; Pichler, Irene; Pilia, Maria G; Pouta, Anneli; Rheinberger, Myriam; Ribel-Madsen, Rasmus; Richards, Marcus; Rice, Kenneth M; Rice, Treva K; Rivolta, Carlo; Salomaa, Veikko; Sanders, Alan R; Sarzynski, Mark A; Scholtens, Salome; Scott, Robert A; Scott, William R; Sebert, Sylvain; Sengupta, Sebanti; Sennblad, Bengt; Seufferlein, Thomas; Silveira, Angela; Slagboom, P Eline; Smit, Jan H; Sparsø, Thomas H; Stirrups, Kathleen; Stolk, Ronald P; Stringham, Heather M; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tan, Sian-Tsung; Thorand, Barbara; Tönjes, Anke; Tremblay, Angelo; Tsafantakis, Emmanouil; van der Most, Peter J; Völker, Uwe; Vohl, Marie-Claude; Vonk, Judith M; Waldenberger, Melanie; Walker, Ryan W; Wennauer, Roman; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Wright, Alan F; Zillikens, M Carola; van Dijk, Suzanne C; van Schoor, Natasja M; Asselbergs, Folkert W; de Bakker, Paul I W; Beckmann, Jacques S; Beilby, John; Bennett, David A; Bergman, Richard N; Bergmann, Sven; Böger, Carsten A; Boehm, Bernhard O; Boerwinkle, Eric; Boomsma, Dorret I; Bornstein, Stefan R; Bottinger, Erwin P; Bouchard, Claude; Chambers, John C; Chanock, Stephen J; Chasman, Daniel I; Cucca, Francesco; Cusi, Daniele; Dedoussis, George; Erdmann, Jeanette; Eriksson, Johan G; Evans, Denis A; de Faire, Ulf; Farrall, Martin; Ferrucci, Luigi; Ford, Ian; Franke, Lude; Franks, Paul W; Froguel, Philippe; Gansevoort, Ron T; Gieger, Christian; Grönberg, Henrik; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Per; Hamsten, Anders; van der Harst, Pim; Hayward, Caroline; Heliövaara, Markku; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hu, Frank; Huikuri, Heikki V; Hveem, Kristian; James, Alan L; Jordan, Joanne M; Jula, Antti; Kähönen, Mika; Kajantie, Eero; Kathiresan, Sekar; Kiemeney, Lambertus A L M; Kivimaki, Mika; Knekt, Paul B; Koistinen, Heikki A; Kooner, Jaspal S; Koskinen, Seppo; Kuusisto, Johanna; Maerz, Winfried; Martin, Nicholas G; Laakso, Markku; Lakka, Timo A; Lehtimäki, Terho; Lettre, Guillaume; Levinson, Douglas F; Lind, Lars; Lokki, Marja-Liisa; Mäntyselkä, Pekka; Melbye, Mads; Metspalu, Andres; Mitchell, Braxton D; Moll, Frans L; Murray, Jeffrey C; Musk, Arthur W; Nieminen, Markku S; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Oostra, Ben A; Palmer, Lyle J; Pankow, James S; Pasterkamp, Gerard; Pedersen, Nancy L; Pedersen, Oluf; Penninx, Brenda W; Perola, Markus; Peters, Annette; Polašek, Ozren; Pramstaller, Peter P; Psaty, Bruce M; Qi, Lu; Quertermous, Thomas; Raitakari, Olli T; Rankinen, Tuomo; Rauramaa, Rainer; Ridker, Paul M; Rioux, John D; Rivadeneira, Fernando; Rotter, Jerome I; Rudan, Igor; den Ruijter, Hester M; Saltevo, Juha; Sattar, Naveed; Schunkert, Heribert; Schwarz, Peter E H; Shuldiner, Alan R; Sinisalo, Juha; Snieder, Harold; Sørensen, Thorkild I A; Spector, Tim D; Staessen, Jan A; Stefania, Bandinelli; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tardif, Jean-Claude; Tremoli, Elena; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; Verbeek, André L M; Vermeulen, Sita H; Viikari, Jorma S; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Waeber, Gérard; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Zeggini, Eleftheria; Chakravarti, Aravinda; Clegg, Deborah J; Cupples, L Adrienne; Gordon-Larsen, Penny; Jaquish, Cashell E; Rao, D C; Abecasis, Goncalo R; Assimes, Themistocles L; Barroso, Inês; Berndt, Sonja I; Boehnke, Michael; Deloukas, Panos; Fox, Caroline S; Groop, Leif C; Hunter, David J; Ingelsson, Erik; Kaplan, Robert C; McCarthy, Mark I; Mohlke, Karen L; O'Connell, Jeffrey R; Schlessinger, David; Strachan, David P; Stefansson, Kari; van Duijn, Cornelia M; Hirschhorn, Joel N; Lindgren, Cecilia M; Heid, Iris M; North, Kari E; Borecki, Ingrid B; Kutalik, Zoltán; Loos, Ruth J F

    2015-01-01

    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially betw

  2. A full 1---40 micron spectral energy distribution for the Becklin-Neugebauer object: Placing constraints on disk size for a runaway massive young stellar object

    Science.gov (United States)

    Shuping, Ralph; Keller, Luke D.; Adams, Joseph D.; Petkova, Maya; Wood, Kenneth; Herter, Terry; Sloan, Greg; Jaffe, Daniel Thomas; Greene, Thomas P.; Ennico, Kimberly

    2017-01-01

    The Becklin-Neugebauer (BN) Object—one of the brightest infrared obejcts in the sky—is a highly luminous young stellar object (YSO) deeply embedded in Orion Molecular Cloud 1 (OMC-1), which sits behind the Orion Nebula (M42). The BN object is likely a 8—15 M⊙ star and has no obvious optical counterpart due to high visual extinction on the line of sight. Furthermore, recent radio studies show that BN is moving towards the northwest at approximately 26 km/s with respect to the Orion Nebula Cluster (ONC), which may indicate that BN was dynamically ejected from either the Trapezium or from within OMC-1 itself. Near-IR polarimetry suggests that BN is surrounded by a large (R=800 AU) disk, which is surprising since a close encounter leading to an ejection would likely disrupt and/or truncate a disk of this size. In this poster presentation, we present new SOFIA-FORCAST grism spectroscopy of BN from 10—40 μm. In conjunction with previous SOFIA-FORCAST photometry and data form the literature, we present the full 1—40 μm SED of BN which we compare to theoretical models using the HOCHUNK-3D radiative equilibrium code. We report constraints on disk parameters and discuss implications for dynamical ejection scenarios.

  3. Molecular subdivision of the marine diatom Thalassiosira rotula in relation to geographic distribution, genome size, and physiology

    Directory of Open Access Journals (Sweden)

    Whittaker Kerry A

    2012-10-01

    Full Text Available Abstract Background Marine phytoplankton drift passively with currents, have high dispersal potentials and can be comprised of morphologically cryptic species. To examine molecular subdivision in the marine diatom Thalassiosira rotula, variations in rDNA sequence, genome size, and growth rate were examined among isolates collected from the Atlantic and Pacific Ocean basins. Analyses of rDNA included T. gravida because morphological studies have argued that T. rotula and T. gravida are conspecific. Results Culture collection isolates of T. gravida and T. rotula diverged by 7.0 ± 0.3% at the ITS1 and by 0.8 ± 0.03% at the 28S. Within T. rotula, field and culture collection isolates were subdivided into three lineages that diverged by 0.6 ± 0.3% at the ITS1 and 0% at the 28S. The predicted ITS1 secondary structure revealed no compensatory base pair changes among lineages. Differences in genome size were observed among isolates, but were not correlated with ITS1 lineages. Maximum acclimated growth rates of isolates revealed genotype by environment effects, but these were also not correlated with ITS1 lineages. In contrast, intra-individual variation in the multi-copy ITS1 revealed no evidence of recombination amongst lineages, and molecular clock estimates indicated that lineages diverged 0.68 Mya. The three lineages exhibited different geographic distributions and, with one exception, each field sample was dominated by a single lineage. Conclusions The degree of inter- and intra-specific divergence between T. gravida and T. rotula suggests they should continue to be treated as separate species. The phylogenetic distinction of the three closely-related T. rotula lineages was unclear. On the one hand, the lineages showed no physiological differences, no consistent genome size differences and no significant changes in the ITS1 secondary structure, suggesting there are no barriers to interbreeding among lineages. In contrast, analysis of intra

  4. Flow cytometric determination of genome size in European sunbleak Leucaspius delineatus (Heckel, 1843).

    Science.gov (United States)

    Filipiak, Marta; Tylko, Grzegorz; Kilarski, Wincenty

    2012-04-01

    The aim of this study was to compare DNA content in hepatocyte and erythrocyte nuclei of the European sunbleak, Leucaspius delineatus, in relation to nuclear and cell size by means of flow cytometry and fluorescence microscopy. The DNA standards, chicken and rainbow trout erythrocytes, were prepared in parallel with both cell types, with initial separation of liver cells in pepsin solution followed by cell filtering. Standards and investigated cells were stained with a mixture of propidium iodide, citric acid, and Nonidet P40 in the presence of RNAse, and fluorescence of at least 50,000 nuclei was analyzed by flow cytometry. Average cell size was determined by flow cytometry, using fresh cell suspension in relation to latex beads of known diameter. The size of nuclei was examined on the basis of digital micrographs obtained by fluorescence microscopy after nuclei staining with DAPI. The sunbleak's erythrocyte nuclei contain 2.25 ± 0.06 pg of DNA, whereas the hepatocyte nuclei contain 2.46 ± 0.06 pg of DNA. This difference in DNA content was determined spectroscopically using isolated DNA from the two cell types. The modal diameters of the erythrocytes and hepatocytes were estimated to be 5.1 ± 0.2 and 22.3 ± 5.0 μm, respectively, and the corresponding modal dimensions of their nuclei (measured as surface area) were 15.2 and 21.4 μm(2), respectively. The nucleoplasmic index, as calculated from diameters estimated from surface area of nuclear profiles, was 2.51 for the erythrocytes compared with 0.08 for hepatocytes.

  5. Silage Collected from Dairy Farms Harbors an Abundance of Listeriaphages with Considerable Host Range and Genome Size Diversity

    Science.gov (United States)

    Vongkamjan, Kitiya; Switt, Andrea Moreno; den Bakker, Henk C.; Fortes, Esther D.

    2012-01-01

    Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools. PMID:23042180

  6. Constraint Differentiation

    DEFF Research Database (Denmark)

    Mödersheim, Sebastian Alexander; Basin, David; Viganò, Luca

    2010-01-01

    , under the assumption that the original constraint-based approach has these properties. Practically, as a concrete case study, we have integrated this technique into OFMC, a state-of-the-art model-checker for security protocol analysis, and demonstrated its effectiveness by extensive experimentation. Our......We introduce constraint differentiation, a powerful technique for reducing search when model-checking security protocols using constraint-based methods. Constraint differentiation works by eliminating certain kinds of redundancies that arise in the search space when using constraints to represent...

  7. A novel mitochondrial genome architecture in thrips (Insecta: Thysanoptera): extreme size asymmetry among chromosomes and possible recent control region duplication

    Science.gov (United States)

    Multi-partite mitochondrial genomes are very rare in animals but have been found previously in two insect orders with highly rearranged genomes, the Phthiraptera (parasitic lice), and the Psocoptera (booklice/barklice). We provide the first report of a multi-partite mitochondrial genome architecture...

  8. A draft de novo genome assembly for the northern bobwhite (Colinus virginianus reveals evidence for a rapid decline in effective population size beginning in the Late Pleistocene.

    Directory of Open Access Journals (Sweden)

    Yvette A Halley

    Full Text Available Wild populations of northern bobwhites (Colinus virginianus; hereafter bobwhite have declined across nearly all of their U.S. range, and despite their importance as an experimental wildlife model for ecotoxicology studies, no bobwhite draft genome assembly currently exists. Herein, we present a bobwhite draft de novo genome assembly with annotation, comparative analyses including genome-wide analyses of divergence with the chicken (Gallus gallus and zebra finch (Taeniopygia guttata genomes, and coalescent modeling to reconstruct the demographic history of the bobwhite for comparison to other birds currently in decline (i.e., scarlet macaw; Ara macao. More than 90% of the assembled bobwhite genome was captured within 14,000 unique genes and proteins. Bobwhite analyses of divergence with the chicken and zebra finch genomes revealed many extremely conserved gene sequences, and evidence for lineage-specific divergence of noncoding regions. Coalescent models for reconstructing the demographic history of the bobwhite and the scarlet macaw provided evidence for population bottlenecks which were temporally coincident with human colonization of the New World, the late Pleistocene collapse of the megafauna, and the last glacial maximum. Demographic trends predicted for the bobwhite and the scarlet macaw also were concordant with how opposing natural selection strategies (i.e., skewness in the r-/K-selection continuum would be expected to shape genome diversity and the effective population sizes in these species, which is directly relevant to future conservation efforts.

  9. A draft de novo genome assembly for the northern bobwhite (Colinus virginianus) reveals evidence for a rapid decline in effective population size beginning in the Late Pleistocene.

    Science.gov (United States)

    Halley, Yvette A; Dowd, Scot E; Decker, Jared E; Seabury, Paul M; Bhattarai, Eric; Johnson, Charles D; Rollins, Dale; Tizard, Ian R; Brightsmith, Donald J; Peterson, Markus J; Taylor, Jeremy F; Seabury, Christopher M

    2014-01-01

    Wild populations of northern bobwhites (Colinus virginianus; hereafter bobwhite) have declined across nearly all of their U.S. range, and despite their importance as an experimental wildlife model for ecotoxicology studies, no bobwhite draft genome assembly currently exists. Herein, we present a bobwhite draft de novo genome assembly with annotation, comparative analyses including genome-wide analyses of divergence with the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes, and coalescent modeling to reconstruct the demographic history of the bobwhite for comparison to other birds currently in decline (i.e., scarlet macaw; Ara macao). More than 90% of the assembled bobwhite genome was captured within 14,000 unique genes and proteins. Bobwhite analyses of divergence with the chicken and zebra finch genomes revealed many extremely conserved gene sequences, and evidence for lineage-specific divergence of noncoding regions. Coalescent models for reconstructing the demographic history of the bobwhite and the scarlet macaw provided evidence for population bottlenecks which were temporally coincident with human colonization of the New World, the late Pleistocene collapse of the megafauna, and the last glacial maximum. Demographic trends predicted for the bobwhite and the scarlet macaw also were concordant with how opposing natural selection strategies (i.e., skewness in the r-/K-selection continuum) would be expected to shape genome diversity and the effective population sizes in these species, which is directly relevant to future conservation efforts.

  10. A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits.

    Science.gov (United States)

    Bainard, Jillian D; Bainard, Luke D; Henry, Thomas A; Fazekas, Aron J; Newmaster, Steven G

    2012-12-01

    Genome size (C-value) and endopolyploidy (endoreduplication index, EI) are known to correlate with various morphological and ecological traits, in addition to phylogenetic placement. A phylogenetically controlled multivariate analysis was used to explore the relationships between DNA content and phenotype in angiosperms. Seeds from 41 angiosperm species (17 families) were grown in a common glasshouse experiment. Genome size (2C-value and 1Cx-value) and EI (in four tissues: leaf, stem, root, petal) were determined using flow cytometry. The phylogenetic signal was calculated for each measure of DNA content, and phylogenetic canonical correlation analysis (PCCA) explored how the variation in genome size and EI was correlated with 18 morphological and ecological traits. Phylogenetic signal (λ) was strongest for EI in all tissues, and λ was stronger for the 2C-value than the 1Cx-value. PCCA revealed that EI was correlated with pollen length, stem height, seed mass, dispersal mechanism, arbuscular mycorrhizal association, life history and flowering time, and EI and genome size were both correlated with stem height and life history. PCCA provided an effective way to explore multiple factors of DNA content variation and phenotypic traits in a phylogenetic context. Traits that were correlated significantly with DNA content were linked to plant competitive ability. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  11. Identification of PLCL1 gene for hip bone size variation in females in a genome-wide association study.

    Directory of Open Access Journals (Sweden)

    Yao-Zhong Liu

    Full Text Available Osteoporosis, the most prevalent metabolic bone disease among older people, increases risk for low trauma hip fractures (HF that are associated with high morbidity and mortality. Hip bone size (BS has been identified as one of the key measurable risk factors for HF. Although hip BS is highly genetically determined, genetic factors underlying the trait are still poorly defined. Here, we performed the first genome-wide association study (GWAS of hip BS interrogating approximately 380,000 SNPs on the Affymetrix platform in 1,000 homogeneous unrelated Caucasian subjects, including 501 females and 499 males. We identified a gene, PLCL1 (phospholipase c-like 1, that had four SNPs associated with hip BS at, or approaching, a genome-wide significance level in our female subjects; the most significant SNP, rs7595412, achieved a p value of 3.72x10(-7. The gene's importance to hip BS was replicated using the Illumina genotyping platform in an independent UK cohort containing 1,216 Caucasian females. Two SNPs of the PLCL1 gene, rs892515 and rs9789480, surrounded by the four SNPs identified in our GWAS, achieved p values of 8.62x10(-3 and 2.44x10(-3, respectively, for association with hip BS. Imputation analyses on our GWAS and the UK samples further confirmed the replication signals; eight SNPs of the gene achieved combined imputed p values<10(-5 in the two samples. The PLCL1 gene's relevance to HF was also observed in a Chinese sample containing 403 females, including 266 with HF and 177 control subjects. A SNP of the PLCL1 gene, rs3771362 that is only approximately 0.6 kb apart from the most significant SNP detected in our GWAS (rs7595412, achieved a p value of 7.66x10(-3 (odds ratio = 0.26 for association with HF. Additional biological support for the role of PLCL1 in BS comes from previous demonstrations that the PLCL1 protein inhibits IP3 (inositol 1,4,5-trisphosphate-mediated calcium signaling, an important pathway regulating mechanical sensing of

  12. [Genomic noncoding sequences and the size of eukaryotic cell nucleus as important factors of gene protection from chemical mutagens].

    Science.gov (United States)

    Minkevich, I G; Patrushev, L I

    2007-01-01

    An improved quantitative model describing a protective function of eukaryotic genomic noncoding sequences was developed. In this new model, two factors affecting gene protection from chemical mutagens are considered: (1) the ratio of the total lengths of coding and noncoding genomic sequences and (2) the volume of the cell nucleus. An increase in the noncoding DNA in the genome reduces the number of mutagen-damaged nucleotides in the coding region, whereas an increase in the volume of the nucleus decreases the flow of mutagens per unit of nuclear volume that attacks its surface.

  13. Event-by-Event Analysis of Proton-Induced Nuclear Multifragmentation Determination of Phase Transition Universality-Class in System with Extreme Finite-Size Constraints

    CERN Document Server

    Berkenbusch, M K; Dillman, K; Pratt, S; Beaulieu, L; Kwiatkowski, K K; Lefort, T; Hsi, W C; Viola, V E; Yennello, S J; Korteling, R G; Breuer, H

    2002-01-01

    A percolation model of nuclear fragmentation is used to interpret 10.2 GeV/c p+197Au multi-fragmentation data. Emphasis is put on finding signatures of a continuous nuclear matter phase transition in finite nuclear systems. Based on model calculations, corrections accounting for physical constraints of the fragment detection and sequential decay processes are derived. Strong circumstantial evidence for a continuous phase transition is found, and the values of two critical exponents, sigma = 0.5+-0.1 and tau = 2.35+-0.05, are extracted from the data. A critical temperature of T_c = 8.3+-0.2 MeV is found.

  14. Density dependence of avian clutch size in resident and migrant species: is there a constraint on the predictability of competitor density?

    NARCIS (Netherlands)

    Both, C.

    2000-01-01

    The presence of density dependence of clutch size is tested in 57 long-term population studies of 10 passerine bird species. In about half of the studies of tit species Parus spp. density dependence of clutch size was found, while none was found in studies of two flycatcher species Ficedula spp. One

  15. Genome size, chromosome number, and rDNA organisation in Algerian populations of Artemisia herba-alba (Asteraceae, a basic plant for animal feeding facing overgrazing erosion

    Directory of Open Access Journals (Sweden)

    Youcef Bougoutaia

    2016-11-01

    Full Text Available Artemisia herba-alba is a largely-distributed and often landscape-dominating taxon in arid areas of the Mediterranean and Irano-Turanian regions. In Algeria, in 2010 its communities covered 10% of the steppe territory, but its populations have been subjected to overgrazing. A karyological study based on 22 populations together with a cytogenetic characterisation of this species has been performed for the first time in Algerian materials, through genome size and chromosome number determination. Fluorescence in situ hybridisation (FISH was also used to assess the rDNA loci number and distribution in the two ploidy levels detected. The studied accessions are diploid (2n = 2x = 18 chromosomes, 6 populations or tetraploid (2n = 4x = 36 chromosomes, 15 populations. One population, occupying a more or less central geographic position among the studied area, presented both cytotypes. Genome size reflects well the two ploidy levels, with no evidence of downsizing with polyploidy. The karyotypes are rather symmetric (2A Stebbins’ class. FISH analyses detected four signals (2 loci in diploid and eight signals (4 loci in tetraploid cytotypes for both ribosomal DNA genes, which present an L-type (linked organisation, i.e. with loci from both rDNA genes colocalised. The presence of two ploidy levels suggest a genomic dynamism and even a possible differentiation underlying the morphological uniformity and despite the dramatic decrease experienced by this plant in Algeria in terms of surface coverage.

  16. Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae)

    Science.gov (United States)

    da Silva, Rangeline Azevedo; Souza, Gustavo; Lemos, Lívia Santos Lima; Lopes, Uilson Vanderlei; Patrocínio, Nara Geórgia Ribeiro Braz; Alves, Rafael Moysés; Marcellino, Lucília Helena; Clement, Didier; Micheli, Fabienne

    2017-01-01

    The genus Theobroma comprises several trees species native to the Amazon. Theobroma cacao L. plays a key economic role mainly in the chocolate industry. Both cultivated and wild forms are described within the genus. Variations in genome size and chromosome number have been used for prediction purposes including the frequency of interspecific hybridization or inference about evolutionary relationships. In this study, the nuclear DNA content, karyotype and genetic diversity using functional microsatellites (EST-SSR) of seven Theobroma species were characterized. The nuclear content of DNA for all analyzed Theobroma species was 1C = ~ 0.46 pg. These species presented 2n = 20 with small chromosomes and only one pair of terminal heterochromatic bands positively stained (CMA+/DAPI− bands). The small size of Theobroma ssp. genomes was equivalent to other Byttnerioideae species, suggesting that the basal lineage of Malvaceae have smaller genomes and that there was an expansion of 2C values in the more specialized family clades. A set of 20 EST-SSR primers were characterized for related species of Theobroma, in which 12 loci were polymorphic. The polymorphism information content (PIC) ranged from 0.23 to 0.65, indicating a high level of information per locus. Combined results of flow cytometry, cytogenetic data and EST-SSRs markers will contribute to better describe the species and infer about the evolutionary relationships among Theobroma species. In addition, the importance of a core collection for conservation purposes is highlighted. PMID:28187131

  17. Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae).

    Science.gov (United States)

    da Silva, Rangeline Azevedo; Souza, Gustavo; Lemos, Lívia Santos Lima; Lopes, Uilson Vanderlei; Patrocínio, Nara Geórgia Ribeiro Braz; Alves, Rafael Moysés; Marcellino, Lucília Helena; Clement, Didier; Micheli, Fabienne; Gramacho, Karina Peres

    2017-01-01

    The genus Theobroma comprises several trees species native to the Amazon. Theobroma cacao L. plays a key economic role mainly in the chocolate industry. Both cultivated and wild forms are described within the genus. Variations in genome size and chromosome number have been used for prediction purposes including the frequency of interspecific hybridization or inference about evolutionary relationships. In this study, the nuclear DNA content, karyotype and genetic diversity using functional microsatellites (EST-SSR) of seven Theobroma species were characterized. The nuclear content of DNA for all analyzed Theobroma species was 1C = ~ 0.46 pg. These species presented 2n = 20 with small chromosomes and only one pair of terminal heterochromatic bands positively stained (CMA+/DAPI- bands). The small size of Theobroma ssp. genomes was equivalent to other Byttnerioideae species, suggesting that the basal lineage of Malvaceae have smaller genomes and that there was an expansion of 2C values in the more specialized family clades. A set of 20 EST-SSR primers were characterized for related species of Theobroma, in which 12 loci were polymorphic. The polymorphism information content (PIC) ranged from 0.23 to 0.65, indicating a high level of information per locus. Combined results of flow cytometry, cytogenetic data and EST-SSRs markers will contribute to better describe the species and infer about the evolutionary relationships among Theobroma species. In addition, the importance of a core collection for conservation purposes is highlighted.

  18. Comparative Analysis of Growth, Genome Size, Chromosome Numbers and Phylogeny of Arabidopsis thaliana and Three Cooccurring Species of the Brassicaceae from Uzbekistan

    Directory of Open Access Journals (Sweden)

    Matthias H. Hoffmann

    2010-01-01

    Full Text Available Contrary to literature data Arabidopsis thaliana was rarely observed in Middle Asia during a collection trip in 2001. Instead, three other Brassicaceae species were frequently found at places where A. thaliana was expected. To reveal reasons for this frequency pattern, we studied chromosome numbers, genome sizes, phylogenetic relationships, developmental rates, and reproductive success of A. thaliana, Olimarabidopsis pumila, Arabis montbretiana, and Arabis auriculata from Uzbekistan in two temperature treatments. There are little but partially significant differences between phenotypes. All studied species have very small genomes. The 1Cx-values of different genotypes within the sampled species are correlated with altitude. Developmental rates are also correlated with 1Cx-values. In our growth experiments, Arabidopsis had high seed sterility at higher temperature, which might be one reason for the rarity of A. thaliana in Middle Asia.

  19. The DNA methylation level against the background of the genome size and t-heterochromatin content in some species of the genus Secale L

    Science.gov (United States)

    Kalinka, Anna; Poter, Paulina

    2017-01-01

    Methylation of cytosine in DNA is one of the most important epigenetic modifications in eukaryotes and plays a crucial role in the regulation of gene activity and the maintenance of genomic integrity. DNA methylation and other epigenetic mechanisms affect the development, differentiation or the response of plants to biotic and abiotic stress. This study compared the level of methylation of cytosines on a global (ELISA) and genomic scale (MSAP) between the species of the genus Secale. We analyzed whether the interspecific variation of cytosine methylation was associated with the size of the genome (C-value) and the content of telomeric heterochromatin. MSAP analysis showed that S. sylvestre was the most distinct species among the studied rye taxa; however, the results clearly indicated that these differences were not statistically significant. The total methylation level of the studied loci was very similar in all taxa and ranged from 60% in S. strictum ssp. africanum to 66% in S. cereale ssp. segetale, which confirmed the lack of significant differences in the sequence methylation pattern between the pairs of rye taxa. The level of global cytosine methylation in the DNA was not significantly associated with the content of t-heterochromatin and did not overlap with the existing taxonomic rye relationships. The highest content of 5-methylcytosine was found in S. cereale ssp. segetale (83%), while very low in S. strictum ssp. strictum (53%), which was significantly different from the methylation state of all taxa, except for S. sylvestre. The other studied taxa of rye had a similar level of methylated cytosine ranging from 66.42% (S. vavilovii) to 74.41% in (S. cereale ssp. afghanicum). The results obtained in this study are evidence that the percentage of methylated cytosine cannot be inferred solely based on the genome size or t-heterochromatin. This is a significantly more complex issue. PMID:28149679

  20. The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs

    Science.gov (United States)

    2011-01-01

    Background The piRNA pathway has been shown in model organisms to be involved in silencing of transposons thereby providing genome stability. In D. melanogaster the majority of piRNAs map to these sequences. The medically important mosquito species Aedes aegypti has a large genome size, a high transposon load which includes Miniature Inverted repeat Transposable Elements (MITES) and an expansion of the piRNA biogenesis genes. Studies of transgenic lines of Ae. aegypti have indicated that introduced transposons are poorly remobilized and we sought to explore the basis of this. We wished to analyze the piRNA profile of Ae. aegypti and thereby determine if it is responsible for transposon silencing in this mosquito. Results Estimated piRNA sequence diversity was comparable between Ae. aegypti and D. melanogaster, but surprisingly only 19% of mosquito piRNAs mapped to transposons compared to 51% for D. melanogaster. Ae. aegypti piRNA clusters made up a larger percentage of the total genome than those of D. melanogaster but did not contain significantly higher percentages of transposon derived sequences than other regions of the genome. Ae. aegypti contains a number of protein coding genes that may be sources of piRNA biogenesis with two, traffic jam and maelstrom, implicated in this process in model organisms. Several genes of viral origin were also targeted by piRNAs. Examination of six mosquito libraries that had previously been transformed with transposon derived sequence revealed that new piRNA sequences had been generated to the transformed sequences, suggesting that they may have stimulated a transposon inactivation mechanism. Conclusions Ae. aegypti has a large piRNA complement that maps to transposons but primarily gene sequences, including many viral-derived sequences. This, together the more uniform distribution of piRNA clusters throughout its genome, suggest that some aspects of the piRNA system differ between Ae. aegypti and D. melanogaster. PMID:22171608

  1. The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs

    Directory of Open Access Journals (Sweden)

    Arensburger Peter

    2011-12-01

    Full Text Available Abstract Background The piRNA pathway has been shown in model organisms to be involved in silencing of transposons thereby providing genome stability. In D. melanogaster the majority of piRNAs map to these sequences. The medically important mosquito species Aedes aegypti has a large genome size, a high transposon load which includes Miniature Inverted repeat Transposable Elements (MITES and an expansion of the piRNA biogenesis genes. Studies of transgenic lines of Ae. aegypti have indicated that introduced transposons are poorly remobilized and we sought to explore the basis of this. We wished to analyze the piRNA profile of Ae. aegypti and thereby determine if it is responsible for transposon silencing in this mosquito. Results Estimated piRNA sequence diversity was comparable between Ae. aegypti and D. melanogaster, but surprisingly only 19% of mosquito piRNAs mapped to transposons compared to 51% for D. melanogaster. Ae. aegypti piRNA clusters made up a larger percentage of the total genome than those of D. melanogaster but did not contain significantly higher percentages of transposon derived sequences than other regions of the genome. Ae. aegypti contains a number of protein coding genes that may be sources of piRNA biogenesis with two, traffic jam and maelstrom, implicated in this process in model organisms. Several genes of viral origin were also targeted by piRNAs. Examination of six mosquito libraries that had previously been transformed with transposon derived sequence revealed that new piRNA sequences had been generated to the transformed sequences, suggesting that they may have stimulated a transposon inactivation mechanism. Conclusions Ae. aegypti has a large piRNA complement that maps to transposons but primarily gene sequences, including many viral-derived sequences. This, together the more uniform distribution of piRNA clusters throughout its genome, suggest that some aspects of the piRNA system differ between Ae. aegypti and D

  2. Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop.

    Science.gov (United States)

    Stetter, Markus G; Schmid, Karl J

    2017-04-01

    The genus Amaranthus consists of 50-70 species and harbors several cultivated and weedy species of great economic importance. A small number of suitable traits, phenotypic plasticity, gene flow and hybridization made it difficult to establish the taxonomy and phylogeny of the whole genus despite various studies using molecular markers. We inferred the phylogeny of the Amaranthus genus using genotyping by sequencing (GBS) of 94 genebank accessions representing 35 Amaranthus species and measured their genome sizes. SNPs were called by de novo and reference-based methods, for which we used the distant sugarbeet Beta vulgaris and the closely related Amaranthus hypochondriacus as references. SNP counts and proportions of missing data differed between methods, but the resulting phylogenetic trees were highly similar. A distance-based neighbor joining tree of individual accessions and a species tree calculated with the multispecies coalescent supported a previous taxonomic classification into three subgenera although the subgenus A. Acnida consists of two highly differentiated clades. The analysis of the Hybridus complex within the A. Amaranthus subgenus revealed insights on the history of cultivated grain amaranths. The complex includes the three cultivated grain amaranths and their wild relatives and was well separated from other species in the subgenus. Wild and cultivated amaranth accessions did not differentiate according to the species assignment but clustered by their geographic origin from South and Central America. Different geographically separated populations of Amaranthus hybridus appear to be the common ancestors of the three cultivated grain species and A. quitensis might be additionally be involved in the evolution of South American grain amaranth (A. caudatus). We also measured genome sizes of the species and observed little variation with the exception of two lineages that showed evidence for a recent polyploidization. With the exception of two lineages

  3. Size and deformation limits to maintain constraint in K{sub Ic} and J{sub c} testing of bend specimens

    Energy Technology Data Exchange (ETDEWEB)

    Koppenhoefer, K.C.; Dodds, R.H. Jr. [Illinois Univ., Urbana, IL (United States). Dept. of Civil Engineering

    1995-10-01

    The ASTM Standard Test Method for Plane-Strain Fracture Toughness of metallic Materials (E399-90) restricts test specimen dimensions to insure the measurement of highly constrained fracture toughness values (K{sub Ic}). These requirements insure small-scale yielding (SSY) conditions at fracture, and thereby the validity of linear elastic fracture mechanics. Recently, Dodds and Anderson have proposed a less restrictive size requirement for cleavage fracture toughness measured in terms of the J-integral (J{sub c}), as given by a, b, B {ge} 200 J{sub c}/{sigma}{sub 0}. The size requirement proposed by Dodds and Anderson increases the applicability of fracture toughness experiments by expanding the range of conditions over which fracture toughness data meeting SSY conditions can be reliably measured. This investigation compares the proposed size requirement with that of ASTM Standard Test Method E399 and, by comparison with published experimental data for various alloys, provides validation of the new requirements.

  4. The Systems Biology Markup Language (SBML) Level 3 Package: Flux Balance Constraints.

    Science.gov (United States)

    Olivier, Brett G; Bergmann, Frank T

    2015-09-04

    Constraint-based modeling is a well established modelling methodology used to analyze and study biological networks on both a medium and genome scale. Due to their large size, genome scale models are typically analysed using constraint-based optimization techniques. One widely used method is Flux Balance Analysis (FBA) which, for example, requires a modelling description to include: the definition of a stoichiometric matrix, an objective function and bounds on the values that fluxes can obtain at steady state. The Flux Balance Constraints (FBC) Package extends SBML Level 3 and provides a standardized format for the encoding, exchange and annotation of constraint-based models. It includes support for modelling concepts such as objective functions, flux bounds and model component annotation that facilitates reaction balancing. The FBC package establishes a base level for the unambiguous exchange of genome-scale, constraint-based models, that can be built upon by the community to meet future needs (e. g. by extending it to cover dynamic FBC models).

  5. Comparison of genome size and synthesis of structural proteins of Hirame Rhabdovirus, infectious hematopoietic necrosis virus, and viral hemorrhagic Septicemia virus

    Science.gov (United States)

    Nishizawa, Toyohiko; Yoshimizu, Mamoru; Winton, James R.; Kimura, Takahisa

    1991-01-01

    Genomic RNA was extracted from purified virions of hirame rhabdovirus (HRV), infectious hematopoietic necrosis virus (IHNV), and viral hemorrhagic septicemia virus (VHSV). The full-length RNA was analyzed using formaldehyde agarose gel electrophoresis followed by ethidium bromide staining. Compared with an internal RNA size standard, all three viral genomic RNAs appeared to have identical relative mobilities and were estimated to be approximately 10.7 kilobases in length or about 3.7 megadaltons in molecular mass. Structural protein synthesis of HRV, IHNV, and VHSV was studied using cell cultures treated with actinomycin D. At 2 h intervals, proteins were labeled with 35S-methionine, extracted, and analyzed by SDS-polyacrylamide gel electrophoresis and autoradiography. The five structural proteins of each of the three viruses appeared in the following order : nucleoprotein (N), matrix protein 1 (M1), matrix protein 2 (M2), glycoprotein (G), and polymerase (L) reflecting both the approximate relative abundance of each protein within infected cells and the gene order within the viral genome.

  6. Optimizing Training Population Size and Genotyping Strategy for Genomic Prediction Using Association Study Results and Pedigree Information. A Case of Study in Advanced Wheat Breeding Lines

    Science.gov (United States)

    Jahoor, Ahmed; Orabi, Jihad; Andersen, Jeppe R.; Janss, Luc L.; Jensen, Just

    2017-01-01

    Wheat breeding programs generate a large amount of variation which cannot be completely explored because of limited phenotyping throughput. Genomic prediction (GP) has been proposed as a new tool which provides breeding values estimations without the need of phenotyping all the material produced but only a subset of it named training population (TP). However, genotyping of all the accessions under analysis is needed and, therefore, optimizing TP dimension and genotyping strategy is pivotal to implement GP in commercial breeding schemes. Here, we explored the optimum TP size and we integrated pedigree records and genome wide association studies (GWAS) results to optimize the genotyping strategy. A total of 988 advanced wheat breeding lines were genotyped with the Illumina 15K SNPs wheat chip and phenotyped across several years and locations for yield, lodging, and starch content. Cross-validation using the largest possible TP size and all the SNPs available after editing (~11k), yielded predictive abilities (rGP) ranging between 0.5–0.6. In order to explore the Training population size, rGP were computed using progressively smaller TP. These exercises showed that TP of around 700 lines were enough to yield the highest observed rGP. Moreover, rGP were calculated by randomly reducing the SNPs number. This showed that around 1K markers were enough to reach the highest observed rGP. GWAS was used to identify markers associated with the traits analyzed. A GWAS-based selection of SNPs resulted in increased rGP when compared with random selection and few hundreds SNPs were sufficient to obtain the highest observed rGP. For each of these scenarios, advantages of adding the pedigree information were shown. Our results indicate that moderate TP sizes were enough to yield high rGP and that pedigree information and GWAS results can be used to greatly optimize the genotyping strategy. PMID:28081208

  7. Relative size of the eye and orbit: an evolutionary and craniofacial constraint model for examining the etiology and disparate incidence of juvenile-onset myopia in humans.

    Science.gov (United States)

    Masters, Michael P

    2012-05-01

    The principal aim of this research is to provide a new model for investigating myopia in humans, and contribute to an understanding of the degree to which modern variation and evolutionary change in orbital and overall craniofacial morphology may help explain the common eye form association with this condition. Recent research into long and short-term evolution of the human orbit reveals a number of changes in this feature, and particularly since the Upper Paleolithic. These include a reduction in orbital depth, a decrease in anterior projection of the upper and lower orbital margins, and most notably, a reduction in orbital volume since the Holocene in East Asia. Reduced orbital volume in this geographic region could exacerbate an existing trend in recent hominin evolution toward larger eyes in smaller orbits, and may help explain the unusually high frequency of myopia in East Asian populations. The objective of the current study is to test a null hypothesis of no relationship between a ratio of orbit to eye volume and spherical equivalent refractive error (SER) in a sample of Chinese adults, and examine how relative size of the eye within the orbit relates to SER between the sexes and across the sample population. Analysis of the orbit, eye, and SER reveals a strong relationship between relative size of the eye within the orbit and the severity of myopic refractive error. An orbit/eye ratio of 3 for females and 3.5 for males (or an eye that occupies approximately 34% and 29% of the orbit, respectively), designates a clear threshold at which myopia develops, and becomes progressively worse as the eye continues to occupy a greater proportion of the orbital cavity. These results indicate that relative size of the eye within the orbit is an important factor in the development of myopia, and suggests that individuals with large eyes in small orbits lack space for adequate development of ocular tissues, leading to compression and distortion of the lithesome globe

  8. Genome-Wide Scan Reveals LEMD3 and WIF1 on SSC5 as the Candidates for Porcine Ear Size

    Science.gov (United States)

    Luo, Weizhen; Liu, Xin; Yan, Hua; Zhao, Kebin; Shi, Huibi; Zhang, Yuebo; Wang, Ligang; Wang, Lixian

    2014-01-01

    The quantitative trait loci (QTL) for porcine ear size was previously reported to mainly focus on SSC5 and SSC7. Recently, a missense mutation, G32E, in PPARD in the QTL interval on SSC7 was identified as the causative mutation for ear size. However, on account of the large interval of QTL, the responsible gene on SSC5 has not been identified. In this study, an intercross population was constructed from the large-eared Minzhu, an indigenous Chinese pig breed, and the Western commercial Large White pig to examine the genetic basis of ear size diversity. A GWAS was performed to detect SNPs significantly associated with ear size. Thirty-five significant SNPs defined a 10.78-Mb (30.14–40.92 Mb) region on SSC5. Further, combining linkage disequilibrium and haplotype sharing analysis, a reduced region of 3.07-Mb was obtained. Finally, by using a selective sweep analysis, a critical region of about 450-kb interval containing two annotated genes LEMD3 and WIF1 was refined in this work. Functional analysis indicated that both represent biological candidates for porcine ear size, with potential application in breeding programs. The two genes could also be used as novel references for further study of the mechanism underlying human microtia. PMID:25006967

  9. Genome-wide scan reveals LEMD3 and WIF1 on SSC5 as the candidates for porcine ear size.

    Science.gov (United States)

    Zhang, Longchao; Liang, Jing; Luo, Weizhen; Liu, Xin; Yan, Hua; Zhao, Kebin; Shi, Huibi; Zhang, Yuebo; Wang, Ligang; Wang, Lixian

    2014-01-01

    The quantitative trait loci (QTL) for porcine ear size was previously reported to mainly focus on SSC5 and SSC7. Recently, a missense mutation, G32E, in PPARD in the QTL interval on SSC7 was identified as the causative mutation for ear size. However, on account of the large interval of QTL, the responsible gene on SSC5 has not been identified. In this study, an intercross population was constructed from the large-eared Minzhu, an indigenous Chinese pig breed, and the Western commercial Large White pig to examine the genetic basis of ear size diversity. A GWAS was performed to detect SNPs significantly associated with ear size. Thirty-five significant SNPs defined a 10.78-Mb (30.14-40.92 Mb) region on SSC5. Further, combining linkage disequilibrium and haplotype sharing analysis, a reduced region of 3.07-Mb was obtained. Finally, by using a selective sweep analysis, a critical region of about 450-kb interval containing two annotated genes LEMD3 and WIF1 was refined in this work. Functional analysis indicated that both represent biological candidates for porcine ear size, with potential application in breeding programs. The two genes could also be used as novel references for further study of the mechanism underlying human microtia.

  10. Comparative population genomics of the Borrelia burgdorferi species complex reveals high degree of genetic isolation among species and underscores benefits and constraints to studying intra-specific epidemiological processes.

    Directory of Open Access Journals (Sweden)

    Maude Jacquot

    Full Text Available Lyme borreliosis, one of the most frequently contracted zoonotic diseases in the Northern Hemisphere, is caused by bacteria belonging to different genetic groups within the Borrelia burgdorferi species complex, which are transmitted by ticks among various wildlife reservoirs, such as small mammals and birds. These features make the Borrelia burgdorferi species complex an attractive biological model that can be used to study the diversification and the epidemiology of endemic bacterial pathogens. We investigated the potential of population genomic approaches to study these processes. Sixty-three strains belonging to three species within the Borrelia burgdorferi complex were isolated from questing ticks in Alsace (France, a region where Lyme disease is highly endemic. We first aimed to characterize the degree of genetic isolation among the species sampled. Phylogenetic and coalescent-based analyses revealed clear delineations: there was a ∼50 fold difference between intra-specific and inter-specific recombination rates. We then investigated whether the population genomic data contained information of epidemiological relevance. In phylogenies inferred using most of the genome, conspecific strains did not cluster in clades. These results raise questions about the relevance of different strategies when investigating pathogen epidemiology. For instance, here, both classical analytic approaches and phylodynamic simulations suggested that population sizes and migration rates were higher in B. garinii populations, which are normally associated with birds, than in B. burgdorferi s.s. populations. The phylogenetic analyses of the infection-related ospC gene and its flanking region provided additional support for this finding. Traces of recombination among the B. burgdorferi s.s. lineages and lineages associated with small mammals were found, suggesting that they shared the same hosts. Altogether, these results provide baseline evidence that can be used

  11. Effects of ERBB2 amplicon size and genomic alterations of chromosomes 1, 3, and 10 on patient response to trastuzumab in metastatic breast cancer.

    Science.gov (United States)

    Morrison, Larry E; Jewell, Susan S; Usha, Lydia; Blondin, Beth A; Rao, Ruta D; Tabesh, Bita; Kemper, Matthew; Batus, Marta; Coon, John S

    2007-04-01

    Trastuzumab is widely used for advanced breast cancer patients with ERBB2-amplified tumors. Nevertheless, over half of these patients do not have an objective response. One reason may be altered expression of genes that might compensate for ERBB2 inhibition. We previously mapped the gene-rich region of chromosome 17 telomeric to ERBB2, and reported considerable variability in the telomeric extent of the ERBB2 amplicon. Here we examined whether the variable amplicon size may be associated with patient response to trastuzumab. In addition, we looked at associations between response and several signaling pathway-related genes unrelated to the ERBB2 amplicon, including AKT3, PTEN, PIK3CA, and PTGS2. In 35 patients with ERBB2-amplified metastatic breast cancer, with 40% overall response to trastuzumab, fluorescence in situ hybridization identified the telomeric extent of the ERBB2 amplicon and the status of the several pathway-related genes. Objective response strongly correlated with the telomeric amplicon size, with 62% of patients with shorter amplicons responding, compared with only 7% of patients with longer amplicons (P = 0.0015). Abnormal copy number of PTGS2 was marginally associated with objective response (P = 0.066), while abnormal copy numbers of two reference loci, 1q25 and the chromosome 10 centromere, were significantly associated with response. Pairwise combinations of copy number status of these loci and ERBB2 amplicon size provided stronger associations and identified a group of patients without responders. These results suggest that patient selection for trastuzumab may be improved by considering ERBB2 amplicon size and genomic status of the 1q25, PTGS2, and centromere 10 loci.

  12. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    Science.gov (United States)

    Feitosa, Mary F.; Chu, Su; Czajkowski, Jacek; Esko, Tõnu; Fall, Tove; Kilpeläinen, Tuomas O.; Lu, Yingchang; Mägi, Reedik; Mihailov, Evelin; Pers, Tune H.; Rüeger, Sina; Teumer, Alexander; Ehret, Georg B.; Ferreira, Teresa; Heard-Costa, Nancy L.; Karjalainen, Juha; Lagou, Vasiliki; Mahajan, Anubha; Neinast, Michael D.; Prokopenko, Inga; Simino, Jeannette; Teslovich, Tanya M.; Jansen, Rick; Westra, Harm-Jan; White, Charles C.; Absher, Devin; Ahluwalia, Tarunveer S.; Ahmad, Shafqat; Albrecht, Eva; Alves, Alexessander Couto; Bragg-Gresham, Jennifer L.; de Craen, Anton J. M.; Bis, Joshua C.; Bonnefond, Amélie; Boucher, Gabrielle; Cadby, Gemma; Cheng, Yu-Ching; Chiang, Charleston W. K.; Delgado, Graciela; Demirkan, Ayse; Dueker, Nicole; Eklund, Niina; Eiriksdottir, Gudny; Eriksson, Joel; Feenstra, Bjarke; Fischer, Krista; Frau, Francesca; Galesloot, Tessel E.; Geller, Frank; Goel, Anuj; Gorski, Mathias; Grammer, Tanja B.; Gustafsson, Stefan; Haitjema, Saskia; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jackson, Anne U.; Jacobs, Kevin B.; Johansson, Åsa; Kaakinen, Marika; Kleber, Marcus E.; Lahti, Jari; Leach, Irene Mateo; Lehne, Benjamin; Liu, Youfang; Lo, Ken Sin; Lorentzon, Mattias; Luan, Jian'an; Madden, Pamela A. F.; Mangino, Massimo; McKnight, Barbara; Medina-Gomez, Carolina; Monda, Keri L.; Montasser, May E.; Müller, Gabriele; Müller-Nurasyid, Martina; Nolte, Ilja M.; Panoutsopoulou, Kalliope; Pascoe, Laura; Paternoster, Lavinia; Rayner, Nigel W.; Renström, Frida; Rizzi, Federica; Rose, Lynda M.; Ryan, Kathy A.; Salo, Perttu; Sanna, Serena; Scharnagl, Hubert; Shi, Jianxin; Smith, Albert Vernon; Southam, Lorraine; Stančáková, Alena; Steinthorsdottir, Valgerdur; Strawbridge, Rona J.; Sung, Yun Ju; Tachmazidou, Ioanna; Tanaka, Toshiko; Thorleifsson, Gudmar; Trompet, Stella; Pervjakova, Natalia; Tyrer, Jonathan P.; Vandenput, Liesbeth; van der Laan, Sander W; van der Velde, Nathalie; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V.; Verweij, Niek; Vlachopoulou, Efthymia; Waite, Lindsay L.; Wang, Sophie R.; Wang, Zhaoming; Wild, Sarah H.; Willenborg, Christina; Wilson, James F.; Wong, Andrew; Yang, Jian; Yengo, Loïc; Yerges-Armstrong, Laura M.; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Andersson, Ehm A.; Bakker, Stephan J. L.; Baldassarre, Damiano; Banasik, Karina; Barcella, Matteo; Barlassina, Cristina; Bellis, Claire; Benaglio, Paola; Blangero, John; Blüher, Matthias; Bonnet, Fabrice; Bonnycastle, Lori L.; Boyd, Heather A.; Bruinenberg, Marcel; Buchman, Aron S; Campbell, Harry; Chen, Yii-Der Ida; Chines, Peter S.; Claudi-Boehm, Simone; Cole, John; Collins, Francis S.; de Geus, Eco J. C.; de Groot, Lisette C. P. G. M.; Dimitriou, Maria; Duan, Jubao; Enroth, Stefan; Eury, Elodie; Farmaki, Aliki-Eleni; Forouhi, Nita G.; Friedrich, Nele; Gejman, Pablo V.; Gigante, Bruna; Glorioso, Nicola; Go, Alan S.; Gottesman, Omri; Gräßler, Jürgen; Grallert, Harald; Grarup, Niels; Gu, Yu-Mei; Broer, Linda; Ham, Annelies C.; Hansen, Torben; Harris, Tamara B.; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew T.; Heath, Andrew C.; Henders, Anjali K.; Hernandez, Dena; Hillege, Hans; Holmen, Oddgeir; Hovingh, Kees G; Hui, Jennie; Husemoen, Lise L.; Hutri-Kähönen, Nina; Hysi, Pirro G.; Illig, Thomas; De Jager, Philip L.; Jalilzadeh, Shapour; Jørgensen, Torben; Jukema, J. Wouter; Juonala, Markus; Kanoni, Stavroula; Karaleftheri, Maria; Khaw, Kay Tee; Kinnunen, Leena; Kittner, Steven J.; Koenig, Wolfgang; Kolcic, Ivana; Kovacs, Peter; Krarup, Nikolaj T.; Kratzer, Wolfgang; Krüger, Janine; Kuh, Diana; Kumari, Meena; Kyriakou, Theodosios; Langenberg, Claudia; Lannfelt, Lars; Lanzani, Chiara; Lotay, Vaneet; Launer, Lenore J.; Leander, Karin; Lindström, Jaana; Linneberg, Allan; Liu, Yan-Ping; Lobbens, Stéphane; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Magnusson, Patrik K.; McArdle, Wendy L.; Menni, Cristina; Merger, Sigrun; Milani, Lili; Montgomery, Grant W.; Morris, Andrew P.; Narisu, Narisu; Nelis, Mari; Ong, Ken K.; Palotie, Aarno; Pérusse, Louis; Pichler, Irene; Pilia, Maria G.; Pouta, Anneli; Rheinberger, Myriam; Ribel-Madsen, Rasmus; Richards, Marcus; Rice, Kenneth M.; Rice, Treva K.; Rivolta, Carlo; Salomaa, Veikko; Sanders, Alan R.; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Scott, William R.; Sebert, Sylvain; Sengupta, Sebanti; Sennblad, Bengt; Seufferlein, Thomas; Silveira, Angela; Slagboom, P. Eline; Smit, Jan H.; Sparsø, Thomas H.; Stirrups, Kathleen; Stolk, Ronald P.; Stringham, Heather M.; Swertz, Morris A; Swift, Amy J.; Syvänen, Ann-Christine; Tan, Sian-Tsung; Thorand, Barbara; Tönjes, Anke; Tremblay, Angelo; Tsafantakis, Emmanouil; van der Most, Peter J.; Völker, Uwe; Vohl, Marie-Claude; Vonk, Judith M.; Waldenberger, Melanie; Walker, Ryan W.; Wennauer, Roman; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Wright, Alan F.; Zillikens, M. Carola; van Dijk, Suzanne C.; van Schoor, Natasja M.; Asselbergs, Folkert W.; de Bakker, Paul I. W.; Beckmann, Jacques S.; Beilby, John; Bennett, David A.; Bergman, Richard N.; Bergmann, Sven; Böger, Carsten A.; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Bornstein, Stefan R.; Bottinger, Erwin P.; Bouchard, Claude; Chambers, John C.; Chanock, Stephen J.; Chasman, Daniel I.; Cucca, Francesco; Cusi, Daniele; Dedoussis, George; Erdmann, Jeanette; Eriksson, Johan G.; Evans, Denis A.; de Faire, Ulf; Farrall, Martin; Ferrucci, Luigi; Ford, Ian; Franke, Lude; Franks, Paul W.; Froguel, Philippe; Gansevoort, Ron T.; Gieger, Christian; Grönberg, Henrik; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Per; Hamsten, Anders; van der Harst, Pim; Hayward, Caroline; Heliövaara, Markku; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hu, Frank; Huikuri, Heikki V.; Hveem, Kristian; James, Alan L.; Jordan, Joanne M.; Jula, Antti; Kähönen, Mika; Kajantie, Eero; Kathiresan, Sekar; Kiemeney, Lambertus A. L. M.; Kivimaki, Mika; Knekt, Paul B.; Koistinen, Heikki A.; Kooner, Jaspal S.; Koskinen, Seppo; Kuusisto, Johanna; Maerz, Winfried; Martin, Nicholas G; Laakso, Markku; Lakka, Timo A.; Lehtimäki, Terho; Lettre, Guillaume; Levinson, Douglas F.; Lind, Lars; Lokki, Marja-Liisa; Mäntyselkä, Pekka; Melbye, Mads; Metspalu, Andres; Mitchell, Braxton D.; Moll, Frans L.; Murray, Jeffrey C.; Musk, Arthur W.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Oostra, Ben A.; Palmer, Lyle J; Pankow, James S.; Pasterkamp, Gerard; Pedersen, Nancy L.; Pedersen, Oluf; Penninx, Brenda W.; Perola, Markus; Peters, Annette; Polašek, Ozren; Pramstaller, Peter P.; Psaty, Bruce M.; Qi, Lu; Quertermous, Thomas; Raitakari, Olli T.; Rankinen, Tuomo; Rauramaa, Rainer; Ridker, Paul M.; Rioux, John D.; Rivadeneira, Fernando; Rotter, Jerome I.; Rudan, Igor; den Ruijter, Hester M.; Saltevo, Juha; Sattar, Naveed; Schunkert, Heribert; Schwarz, Peter E. H.; Shuldiner, Alan R.; Sinisalo, Juha; Snieder, Harold; Sørensen, Thorkild I. A.; Spector, Tim D.; Staessen, Jan A.; Stefania, Bandinelli; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tardif, Jean-Claude; Tremoli, Elena; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; Verbeek, André L. M.; Vermeulen, Sita H.; Viikari, Jorma S.; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Waeber, Gérard; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Zeggini, Eleftheria; Chakravarti, Aravinda; Clegg, Deborah J.; Cupples, L. Adrienne; Gordon-Larsen, Penny; Jaquish, Cashell E.; Rao, D. C.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Berndt, Sonja I.; Boehnke, Michael; Deloukas, Panos; Fox, Caroline S.; Groop, Leif C.; Hunter, David J.; Ingelsson, Erik; Kaplan, Robert C.; McCarthy, Mark I.; Mohlke, Karen L.; O'Connell, Jeffrey R.; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Heid, Iris M.; North, Kari E.; Borecki, Ingrid B.; Kutalik, Zoltán; Loos, Ruth J. F.

    2015-01-01

    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape. PMID:26426971

  13. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study.

    Directory of Open Access Journals (Sweden)

    Thomas W Winkler

    2015-10-01

    Full Text Available Genome-wide association studies (GWAS have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI, a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE, sex-specific effects (G x SEX or age-specific effects that differed between men and women (G x AGE x SEX. For BMI, we identified 15 loci (11 previously established for main effects, four novel that showed significant (FDR<5% age-specific effects, of which 11 had larger effects in younger (<50y than in older adults (≥50y. No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.

  14. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  15. Unraveling the karyotype structure of the spurges Euphorbia hirta Linnaeus, 1753 and E. hyssopifolia Linnaeus, 1753 (Euphorbiaceae) using genome size estimation and heterochromatin differentiation

    Science.gov (United States)

    Santana, Karla C. B.; Pinangé, Diego S. B.; Vasconcelos, Santelmo; Oliveira, Ana R.; Brasileiro-Vidal, Ana C.; Alves, Marccus V.; Benko-Iseppon, Ana M.

    2016-01-01

    Abstract Euphorbia Linnaeus, 1753 (Euphorbiaceae) is one of the most diverse and complex genera among the angiosperms, showing a huge diversity in morphologic traits and ecologic patterns. In order to improve the knowledge of the karyotype organization of Euphorbia hirta (2n = 18) and Euphorbia hyssopifolia (2n = 12), cytogenetic studies were performed by means of conventional staining with Giemsa, genome size estimations with flow cytometry, heterochromatin differentiation with chromomycin A3 (CMA) and 4’,6-diamidino-2-phenylindole (DAPI) and Giemsa C-banding, fluorescent in situ hybridization (FISH) with 45S and 5S rDNA probes, and impregnation with silver nitrate (AgNO3). Our results revealed small metacentric chromosomes, CMA+/DAPI0 heterochromatin in the pericentromeric regions of all chromosomes and CMA+/DAPI− in the distal part of chromosome arms carriers of nucleolar organizing regions (NORs). The DNA content measurements revealed small genomes for both species: Euphorbia hirta with 2C = 0.77 pg and Euphorbia hyssopifolia with 2C = 1.41 pg. After FISH procedures, Euphorbia hirta, and Euphorbia hyssopifolia presented three and four pairs of terminal 45S rDNA sites, respectively, colocalizing with CMA+ heterochromatic blocks, besides only one interstitial pair of 5S rDNA signals. Additionally, the maximum number of active NORs agreed with the total number of observed 45S rDNA sites. This work represents the first analysis using FISH in the subfamily Euphorbioideae, revealing a significant number of chromosomal markers, which may be very helpful to understand evolutionary patterns among Euphorbia species. PMID:28123686

  16. Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size.

    Directory of Open Access Journals (Sweden)

    Nicole Soranzo

    2009-04-01

    Full Text Available Recent genome-wide (GW scans have identified several independent loci affecting human stature, but their contribution through the different skeletal components of height is still poorly understood. We carried out a genome-wide scan in 12,611 participants, followed by replication in an additional 7,187 individuals, and identified 17 genomic regions with GW-significant association with height. Of these, two are entirely novel (rs11809207 in CATSPER4, combined P-value = 6.1x10(-8 and rs910316 in TMED10, P-value = 1.4x10(-7 and two had previously been described with weak statistical support (rs10472828 in NPR3, P-value = 3x10(-7 and rs849141 in JAZF1, P-value = 3.2x10(-11. One locus (rs1182188 at GNA12 identifies the first height eQTL. We also assessed the contribution of height loci to the upper- (trunk and lower-body (hip axis and femur skeletal components of height. We find evidence for several loci associated with trunk length (including rs6570507 in GPR126, P-value = 4x10(-5 and rs6817306 in LCORL, P-value = 4x10(-4, hip axis length (including rs6830062 at LCORL, P-value = 4.8x10(-4 and rs4911494 at UQCC, P-value = 1.9x10(-4, and femur length (including rs710841 at PRKG2, P-value = 2.4x10(-5 and rs10946808 at HIST1H1D, P-value = 6.4x10(-6. Finally, we used conditional analyses to explore a possible differential contribution of the height loci to these different skeletal size measurements. In addition to validating four novel loci controlling adult stature, our study represents the first effort to assess the contribution of genetic loci to three skeletal components of height. Further statistical tests in larger numbers of individuals will be required to verify if the height loci affect height preferentially through these subcomponents of height.

  17. 考虑潮流倒送约束的分布式光伏电站选址定容规划%Siting and Sizing of Distributed Photovoltaic Power Station Considering Reverse Power Flow Constraints

    Institute of Scientific and Technical Information of China (English)

    章力; 高元海; 熊宁; 王淳; 杨聪; 舒娇

    2014-01-01

    提出一种考虑潮流倒送约束的配电网分布式光伏电站选址定容规划方法。该方法利用序贯蒙特卡洛模拟法处理光伏出力及负荷的时序性和随机性,以配电网对主网电能的需求最小为优化目标,以安装断路器的支路潮流不倒送和节点电压不越限为约束,在提高分布式光伏接入容量、减少碳排放量的同时,避免了常规选址定容模型引起的安装断路器支路潮流倒送频率高、危及现有配电网安全运行的不足。最后,采用性能良好的生物地理学优化算法对所建模型进行求解,在 IEEE 33节点系统上验证了所提方法的有效性。%A siting and sizing method for the distributed photovoltaic power station in distribution network considering reverse power flow constraints is proposed.This method employs sequential Monte-Carlo simulation to deal with time-sequence and randomness characteristics of load and photovoltaic power output.The minimum electric energy demand from the main grid is taken as the optimization objective.The constraints are freedom from reverse power flow in distribution line equipped with circuit breaker with no bus voltage exceeding limit.While increasing the penetration of distributed photovoltaic generation and decreasing carbon emission,the proposed model makes it possible to avoid high frequency occurrences of the reverse power flow on the branch equipped with circuit breaker in the most commonly used model that endangers safe operation of the existing distribution network.Finally,the biogeography-based optimization algorithm with good performance is employed to solve the new optimization model.An IEEE 33-bus system has verified the effectiveness of the proposed method.

  18. Evolutionary constraints or opportunities?

    Science.gov (United States)

    Sharov, Alexei A.

    2014-01-01

    Natural selection is traditionally viewed as a leading factor of evolution, whereas variation is assumed to be random and non-directional. Any order in variation is attributed to epigenetic or developmental constraints that can hinder the action of natural selection. In contrast I consider the positive role of epigenetic mechanisms in evolution because they provide organisms with opportunities for rapid adaptive change. Because the term “constraint” has negative connotations, I use the term “regulated variation” to emphasize the adaptive nature of phenotypic variation, which helps populations and species to survive and evolve in changing environments. The capacity to produce regulated variation is a phenotypic property, which is not described in the genome. Instead, the genome acts as a switchboard, where mostly random mutations switch “on” or “off” preexisting functional capacities of organism components. Thus, there are two channels of heredity: informational (genomic) and structure-functional (phenotypic). Functional capacities of organisms most likely emerged in a chain of modifications and combinations of more simple ancestral functions. The role of DNA has been to keep records of these changes (without describing the result) so that they can be reproduced in the following generations. Evolutionary opportunities include adjustments of individual functions, multitasking, connection between various components of an organism, and interaction between organisms. The adaptive nature of regulated variation can be explained by the differential success of lineages in macro-evolution. Lineages with more advantageous patterns of regulated variation are likely to produce more species and secure more resources (i.e., long-term lineage selection). PMID:24769155

  19. Preparing and Digesting Megabase-size Nuclear DNA of Glycine soja Genome%野生大豆核基因组Mb级DNA的制备与酶切

    Institute of Scientific and Technical Information of China (English)

    李晓玲; 李克秀; 赵洪锟; 董英山

    2011-01-01

    Nuclear DNA was extracted from etiolated seedlings of Glycine soja. Generally, the nuclei were embeded in lowmelting-point agarose pulgs, digested with proteinase K and depurated with pulsed field gel electrophoresis to yield about two Megabase-size DNA. The concentration of DNA solution could be up to 10 ng · μL-1 after partial digestion by Hind Ⅲ, elution by pulsed field gel electrophoresis, concentration and dialysis. The result of examination by ligation and eletroporation showed that the DNA obtained by the method was suitable for consequent construction of genomic library of Glycine soja.%以野生大豆黄化幼苗为材料提取其细胞核DNA,经LMP包埋并用蛋白酶K裂解其中的核蛋白后,采用脉冲电泳回收2 Mb左右细胞核DNA.用HindⅢ对回收细胞核DNA进行部分酶切并用脉冲电泳回收酶切后的DNA片段,经电洗脱、浓缩和透析后DNA溶液浓度可达10 ng·μL.连接转化检测结果表明:该DNA可用于后续野生大豆基因组可转化人工染色体(TAC)文库的构建和基因组分析.

  20. Between Two Fern Genomes

    OpenAIRE

    Sessa, Emily B.; Banks, Jo; Michael S Barker; Der, Joshua P; Duffy, Aaron M; Graham, Sean W.; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D; Kathleen M. Pryer; Rothfels, Carl J.; Roux, Stanley J.; Salmi, Mari L; Sigel, Erin M.

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense divers...

  1. Stochastic Constraint Programming

    OpenAIRE

    Walsh, Toby

    2009-01-01

    To model combinatorial decision problems involving uncertainty and probability, we introduce stochastic constraint programming. Stochastic constraint programs contain both decision variables (which we can set) and stochastic variables (which follow a probability distribution). They combine together the best features of traditional constraint satisfaction, stochastic integer programming, and stochastic satisfiability. We give a semantics for stochastic constraint programs, and propose a number...

  2. Herbarium genomics

    DEFF Research Database (Denmark)

    Bakker, Freek T.; Lei, Di; Yu, Jiaying

    2016-01-01

    Herbarium genomics is proving promising as next-generation sequencing approaches are well suited to deal with the usually fragmented nature of archival DNA. We show that routine assembly of partial plastome sequences from herbarium specimens is feasible, from total DNA extracts and with specimens...... up to 146 years old. We use genome skimming and an automated assembly pipeline, Iterative Organelle Genome Assembly, that assembles paired-end reads into a series of candidate assemblies, the best one of which is selected based on likelihood estimation. We used 93 specimens from 12 different...... correlation between plastome coverage and nuclear genome size (C value) in our samples, but the range of C values included is limited. Finally, we conclude that routine plastome sequencing from herbarium specimens is feasible and cost-effective (compared with Sanger sequencing or plastome...

  3. Developmental constraints on behavioural flexibility.

    Science.gov (United States)

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.

  4. Whole-Genome Sequence Assembly for Mammalian Genomes: Arachne 2

    OpenAIRE

    Jaffe, David B.; Butler, Jonathan; Gnerre, Sante; Mauceli, Evan; Lindblad-Toh, Kerstin; Jill P. Mesirov; Michael C Zody; Lander, Eric S.

    2003-01-01

    We previously described the whole-genome assembly program Arachne, presenting assemblies of simulated data for small to mid-sized genomes. Here we describe algorithmic adaptations to the program, allowing for assembly of mammalian-size genomes, and also improving the assembly of smaller genomes. Three principal changes were simultaneously made and applied to the assembly of the mouse genome, during a six-month period of development: (1) Supercontigs (scaffolds) were iteratively broken and rej...

  5. The Soft Cumulative Constraint

    CERN Document Server

    Petit, Thierry

    2009-01-01

    This research report presents an extension of Cumulative of Choco constraint solver, which is useful to encode over-constrained cumulative problems. This new global constraint uses sweep and task interval violation-based algorithms.

  6. Deepening Contractions and Collateral Constraints

    DEFF Research Database (Denmark)

    Jensen, Henrik; Ravn, Søren Hove; Santoro, Emiliano

    on the differential impact that occasionally non-binding constraints exert on the shape of expansions and contractions, we are also able to reconcile a more negatively skewed business cycle with a moderation in its volatility. Finally, our model can account for an intrinsic feature of economic downturns preceded...... by private credit build-ups: Financially driven expansions lead to deeper contractions, as compared to equally-sized non-financial expansions....

  7. Pseudoscorpion mitochondria show rearranged genes and genome-wide reductions of RNA gene sizes and inferred structures, yet typical nucleotide composition bias

    Directory of Open Access Journals (Sweden)

    Ovchinnikov Sergey

    2012-03-01

    Full Text Available Abstract Background Pseudoscorpions are chelicerates and have historically been viewed as being most closely related to solifuges, harvestmen, and scorpions. No mitochondrial genomes of pseudoscorpions have been published, but the mitochondrial genomes of some lineages of Chelicerata possess unusual features, including short rRNA genes and tRNA genes that lack sequence to encode arms of the canonical cloverleaf-shaped tRNA. Additionally, some chelicerates possess an atypical guanine-thymine nucleotide bias on the major coding strand of their mitochondrial genomes. Results We sequenced the mitochondrial genomes of two divergent taxa from the chelicerate order Pseudoscorpiones. We find that these genomes possess unusually short tRNA genes that do not encode cloverleaf-shaped tRNA structures. Indeed, in one genome, all 22 tRNA genes lack sequence to encode canonical cloverleaf structures. We also find that the large ribosomal RNA genes are substantially shorter than those of most arthropods. We inferred secondary structures of the LSU rRNAs from both pseudoscorpions, and find that they have lost multiple helices. Based on comparisons with the crystal structure of the bacterial ribosome, two of these helices were likely contact points with tRNA T-arms or D-arms as they pass through the ribosome during protein synthesis. The mitochondrial gene arrangements of both pseudoscorpions differ from the ancestral chelicerate gene arrangement. One genome is rearranged with respect to the location of protein-coding genes, the small rRNA gene, and at least 8 tRNA genes. The other genome contains 6 tRNA genes in novel locations. Most chelicerates with rearranged mitochondrial genes show a genome-wide reversal of the CA nucleotide bias typical for arthropods on their major coding strand, and instead possess a GT bias. Yet despite their extensive rearrangement, these pseudoscorpion mitochondrial genomes possess a CA bias on the major coding strand. Phylogenetic

  8. Spliceosomal intron size expansion in domesticated grapevine (Vitis vinifera

    Directory of Open Access Journals (Sweden)

    Goertzen Leslie R

    2011-03-01

    Full Text Available Abstract Background Spliceosomal introns are important components of eukaryotic genes as their structure, sizes and contents reflect the architecture of gene and genomes. Intron size, determined by both neutral evolution, repetitive elements activities and potential functional constraints, varies significantly in eukaryotes, suggesting unique dynamics and evolution in different lineages of eukaryotic organisms. However, the evolution of intron size, is rarely studied. To investigate intron size dynamics in flowering plants, in particular domesticated grapevines, a survey of intron size and content in wine grape (Vitis vinifera Pinot Noir genes was conducted by assembling and mapping the transcriptome of V. vinifera genes from ESTs to characterize and analyze spliceosomal introns. Results Uncommonly large size of spliceosomal intron was observed in V. vinifera genome, otherwise inconsistent with overall genome size dynamics when comparing Arabidopsis, Populus and Vitis. In domesticated grapevine, intron size is generally not related to gene function. The composition of enlarged introns in grapevines indicated extensive transposable element (TE activity within intronic regions. TEs comprise about 80% of the expanded intron space and in particular, recent LTR retrotransposon insertions are enriched in these intronic regions, suggesting an intron size expansion in the lineage leading to domesticated grapevine, instead of size contractions in Arabidopsis and Populus. Comparative analysis of selected intronic regions in V. vinifera cultivars and wild grapevine species revealed that accelerated TE activity was associated with grapevine domestication, and in some cases with the development of specific cultivars. Conclusions In this study, we showed intron size expansion driven by TE activities in domesticated grapevines, likely a result of long-term vegetative propagation and intensive human care, which simultaneously promote TE proliferation and

  9. Composing constraint solvers

    NARCIS (Netherlands)

    Zoeteweij, P.

    2005-01-01

    Composing constraint solvers based on tree search and constraint propagation through generic iteration leads to efficient and flexible constraint solvers. This was demonstrated using OpenSolver, an abstract branch-and-propagate tree search engine that supports a wide range of relevant solver configu

  10. Insular organization of gene space in grass genomes.

    Science.gov (United States)

    Gottlieb, Andrea; Müller, Hans-Georg; Massa, Alicia N; Wanjugi, Humphrey; Deal, Karin R; You, Frank M; Xu, Xiangyang; Gu, Yong Q; Luo, Ming-Cheng; Anderson, Olin D; Chan, Agnes P; Rabinowicz, Pablo; Devos, Katrien M; Dvorak, Jan

    2013-01-01

    Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands "gene insulae" to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.

  11. Insular organization of gene space in grass genomes.

    Directory of Open Access Journals (Sweden)

    Andrea Gottlieb

    Full Text Available Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands "gene insulae" to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.

  12. Constraint Cooling of Hot Rolled Coil

    Institute of Scientific and Technical Information of China (English)

    WANG Li-juan; ZHANG Chun-li

    2004-01-01

    The layer thermal conductivity during constraint cooling of hot rolled coil was described by using equivalent thermal conductivity model and finite element method. Two radial stress concentration zones in constraint cooled coil were shown by numerical analysis, and the tension stress was assumed to be the main factor to induce stress corrosion. The experimental results show that the longer the water cooling time is, the smaller the grain size and the more uniform the grains are.

  13. Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure

    Directory of Open Access Journals (Sweden)

    Muehlbauer Gary J

    2010-12-01

    Full Text Available Abstract Background Considerations in applying association mapping (AM to plant breeding are population structure and size: not accounting for structure and/or using small populations can lead to elevated false-positive rates. The principal determinants of population structure in cultivated barley are growth habit and inflorescence type. Both are under complex genetic control: growth habit is controlled by the epistatic interactions of several genes. For inflorescence type, multiple loss-of-function alleles in one gene lead to the same phenotype. We used these two traits as models for assessing the effectiveness of AM. This research was initiated using the CAP Core germplasm array (n = 102 assembled at the start of the Barley Coordinated Agricultural Project (CAP. This array was genotyped with 4,608 SNPs and we re-sequenced genes involved in morphology, growth and development. Larger arrays of breeding germplasm were subsequently genotyped and phenotyped under the auspices of the CAP project. This provided sets of 247 accessions phenotyped for growth habit and 2,473 accessions phenotyped for inflorescence type. Each of the larger populations was genotyped with 3,072 SNPs derived from the original set of 4,608. Results Significant associations with SNPs located in the vicinity of the loci involved in growth habit and inflorescence type were found in the CAP Core. Differentiation of true and spurious associations was not possible without a priori knowledge of the candidate genes, based on re-sequencing. The re-sequencing data were used to define allele types of the determinant genes based on functional polymorphisms. In a second round of association mapping, these synthetic markers based on allele types gave the most significant associations. When the synthetic markers were used as anchor points for analysis of interactions, we detected other known-function genes and candidate loci involved in the control of growth habit and inflorescence type. We

  14. Comparative genomics of Lactobacillus and other LAB

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M.; Lukjancenko, Oksana

    2014-01-01

    The genomes of 66 LABs, belonging to five different genera, were compared for genome size and gene content. The analyzed genomes included 37 Lactobacillus genomes of 17 species, six Lactococcus lactis genomes, four Leuconostoc genomes of three species, six Streptococcus genomes of two species......, twelve Enterococcus genomes of four species and a single Weissella genome. Genomes of pathogenic strains or species were not included. Since the gene density in these genomes is relatively constant, genome size is a measure of gene content. The genomes of Enterococcus were significantly larger than...... that of the others, with the two Streptococcus species having the shortest genomes. The widest distribution in genome content was observed for Lactobacillus. The number of tRNA and rRNA gene copies varied considerably, with exceptional high numbers observed for Lb. delbrueckii, while these numbers were relatively...

  15. Constraints meet concurrency

    CERN Document Server

    Mauro, Jacopo

    2014-01-01

    This book describes the benefits that emerge when the fields of constraint programming and concurrency meet. On the one hand, constraints can be used in concurrency theory to increase the conciseness and the expressive power of concurrent languages from a pragmatic point of view. On the other hand, problems modeled by using constraints can be solved faster and more efficiently using a concurrent system. Both directions are explored providing two separate lines of development. Firstly the expressive power of a concurrent language is studied, namely Constraint Handling Rules, that supports constraints as a primitive construct. The features of this language which make it Turing powerful are shown. Then a framework is proposed to solve constraint problems that is intended to be deployed on a concurrent system. For the development of this framework the concurrent language Jolie following the Service Oriented paradigm is used. Based on this experience, an extension to Service Oriented Languages is also proposed in ...

  16. Personal and population genomics of human regulatory variation.

    Science.gov (United States)

    Vernot, Benjamin; Stergachis, Andrew B; Maurano, Matthew T; Vierstra, Jeff; Neph, Shane; Thurman, Robert E; Stamatoyannopoulos, John A; Akey, Joshua M

    2012-09-01

    The characteristics and evolutionary forces acting on regulatory variation in humans remains elusive because of the difficulty in defining functionally important noncoding DNA. Here, we combine genome-scale maps of regulatory DNA marked by DNase I hypersensitive sites (DHSs) from 138 cell and tissue types with whole-genome sequences of 53 geographically diverse individuals in order to better delimit the patterns of regulatory variation in humans. We estimate that individuals likely harbor many more functionally important variants in regulatory DNA compared with protein-coding regions, although they are likely to have, on average, smaller effect sizes. Moreover, we demonstrate that there is significant heterogeneity in the level of functional constraint in regulatory DNA among different cell types. We also find marked variability in functional constraint among transcription factor motifs in regulatory DNA, with sequence motifs for major developmental regulators, such as HOX proteins, exhibiting levels of constraint comparable to protein-coding regions. Finally, we perform a genome-wide scan of recent positive selection and identify hundreds of novel substrates of adaptive regulatory evolution that are enriched for biologically interesting pathways such as melanogenesis and adipocytokine signaling. These data and results provide new insights into patterns of regulatory variation in individuals and populations and demonstrate that a large proportion of functionally important variation lies beyond the exome.

  17. On Minimal Constraint Networks

    CERN Document Server

    Gottlob, Georg

    2011-01-01

    In a minimal binary constraint network, every tuple of a constraint relation can be extended to a solution. It was conjectured that computing a solution to such a network is NP complete. We prove this conjecture true and show that the problem remains NP hard even in case the total domain of all values that may appear in the constraint relations is bounded by a constant.

  18. Temporal Concurrent Constraint Programming

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Valencia Posso, Frank Dan

    2002-01-01

    The ntcc calculus is a model of non-deterministic temporal concurrent constraint programming. In this paper we study behavioral notions for this calculus. In the underlying computational model, concurrent constraint processes are executed in discrete time intervals. The behavioral notions studied...... reflect the reactive interactions between concurrent constraint processes and their environment, as well as internal interactions between individual processes. Relationships between the suggested notions are studied, and they are all proved to be decidable for a substantial fragment of the calculus...

  19. Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing.

    Science.gov (United States)

    Keinath, Melissa C; Timoshevskiy, Vladimir A; Timoshevskaya, Nataliya Y; Tsonis, Panagiotis A; Voss, S Randal; Smith, Jeramiah J

    2015-11-10

    Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes.

  20. Theory of Constraints (TOC)

    DEFF Research Database (Denmark)

    Michelsen, Aage U.

    2004-01-01

    Tankegangen bag Theory of Constraints samt planlægningsprincippet Drum-Buffer-Rope. Endvidere skitse af The Thinking Process.......Tankegangen bag Theory of Constraints samt planlægningsprincippet Drum-Buffer-Rope. Endvidere skitse af The Thinking Process....

  1. Credit Constraints in Education

    Science.gov (United States)

    Lochner, Lance; Monge-Naranjo, Alexander

    2012-01-01

    We review studies of the impact of credit constraints on the accumulation of human capital. Evidence suggests that credit constraints have recently become important for schooling and other aspects of households' behavior. We highlight the importance of early childhood investments, as their response largely determines the impact of credit…

  2. Theory of Constraints (TOC)

    DEFF Research Database (Denmark)

    Michelsen, Aage U.

    2004-01-01

    Tankegangen bag Theory of Constraints samt planlægningsprincippet Drum-Buffer-Rope. Endvidere skitse af The Thinking Process.......Tankegangen bag Theory of Constraints samt planlægningsprincippet Drum-Buffer-Rope. Endvidere skitse af The Thinking Process....

  3. Temporal Concurrent Constraint Programming

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Palamidessi, Catuscia; Valencia, Frank Dan

    2002-01-01

    The ntcc calculus is a model of non-deterministic temporal concurrent constraint programming. In this paper we study behavioral notions for this calculus. In the underlying computational model, concurrent constraint processes are executed in discrete time intervals. The behavioral notions studied...

  4. Evaluating Distributed Timing Constraints

    DEFF Research Database (Denmark)

    Kristensen, C.H.; Drejer, N.

    1994-01-01

    In this paper we describe a solution to the problem of implementing time-optimal evaluation of timing constraints in distributed real-time systems.......In this paper we describe a solution to the problem of implementing time-optimal evaluation of timing constraints in distributed real-time systems....

  5. Decentralized Constraint Satisfaction

    CERN Document Server

    Duffy, K R; Leith, D J

    2011-01-01

    Constraint satisfaction problems (CSPs) lie at the heart of many modern industrial and commercial tasks. An important new collection of CSPs has recently been emerging that differ from classical problems in that they impose constraints on the class of algorithms that can be used to solve them. In computer network applications, these constraints arise as the variables within the CSP are located at physically distinct devices that cannot communicate. At each instant, every variable only knows if all its constraints are met or at least one is not. Consequently, the CSP's solution must be found using a decentralized approach. Existing algorithms for solving CSPs are either centralized or distributed, both of which violate these algorithmic constraints. In this article we present the first algorithm for solving CSPs that fulfills these new requirements. It is fully decentralized, making no use of a centralized controller or message-passing between variables. We prove that this algorithm converges with probability ...

  6. Constraints in Quantum Geometrodynamics

    CERN Document Server

    Gentle, A P; Kheyfets, A I; Miller, W A; Gentle, Adrian P.; George, Nathan D.; Kheyfets, Arkady; Miller, Warner A.

    2003-01-01

    We compare different treatments of the constraints in canonical quantum gravity. The standard approach on the superspace of 3-geometries treats the constraints as the sole carriers of the dynamic content of the theory, thus rendering the traditional dynamic equations obsolete. Quantization of the constraints in both the Dirac and ADM square root Hamiltonian approach lead to the well known problems of the description of time evolution. These problems of time are both of interpretational and technical nature. In contrast, the so-called geometrodynamic quantization procedure on the superspace of the true dynamic variables separates the issue of quantization from enforcing the constraints. The resulting theory takes into account the states that are off shell with respect to the constraints, and thus avoids the problems of time. Here, we develop, for the first time, the geometrodynamic quantization formalism in a general setting and show that it retains all essential features previously illustrated in the context ...

  7. Constraint-based reachability

    Directory of Open Access Journals (Sweden)

    Arnaud Gotlieb

    2013-02-01

    Full Text Available Iterative imperative programs can be considered as infinite-state systems computing over possibly unbounded domains. Studying reachability in these systems is challenging as it requires to deal with an infinite number of states with standard backward or forward exploration strategies. An approach that we call Constraint-based reachability, is proposed to address reachability problems by exploring program states using a constraint model of the whole program. The keypoint of the approach is to interpret imperative constructions such as conditionals, loops, array and memory manipulations with the fundamental notion of constraint over a computational domain. By combining constraint filtering and abstraction techniques, Constraint-based reachability is able to solve reachability problems which are usually outside the scope of backward or forward exploration strategies. This paper proposes an interpretation of classical filtering consistencies used in Constraint Programming as abstract domain computations, and shows how this approach can be used to produce a constraint solver that efficiently generates solutions for reachability problems that are unsolvable by other approaches.

  8. Communication with Disturbance Constraints

    CERN Document Server

    Bandemer, Bernd

    2011-01-01

    The problem of communication with disturbance constraints is introduced. The rate-disturbance region is established for the single constraint case. The optimal encoding scheme turns out to be the same as the Han-Kobayashi scheme for the two user-pair interference channel. For communication with two disturbance constraints, a coding scheme and a corresponding inner bound for the deterministic case are presented. The results suggest a natural way to obtain a new inner bound on the capacity region of the interference channel with more than two user pairs.

  9. Design Constraints on a Synthetic Metabolism

    Science.gov (United States)

    Bilgin, Tugce; Wagner, Andreas

    2012-01-01

    A metabolism is a complex network of chemical reactions that converts sources of energy and chemical elements into biomass and other molecules. To design a metabolism from scratch and to implement it in a synthetic genome is almost within technological reach. Ideally, a synthetic metabolism should be able to synthesize a desired spectrum of molecules at a high rate, from multiple different nutrients, while using few chemical reactions, and producing little or no waste. Not all of these properties are achievable simultaneously. We here use a recently developed technique to create random metabolic networks with pre-specified properties to quantify trade-offs between these and other properties. We find that for every additional molecule to be synthesized a network needs on average three additional reactions. For every additional carbon source to be utilized, it needs on average two additional reactions. Networks able to synthesize 20 biomass molecules from each of 20 alternative sole carbon sources need to have at least 260 reactions. This number increases to 518 reactions for networks that can synthesize more than 60 molecules from each of 80 carbon sources. The maximally achievable rate of biosynthesis decreases by approximately 5 percent for every additional molecule to be synthesized. Biochemically related molecules can be synthesized at higher rates, because their synthesis produces less waste. Overall, the variables we study can explain 87 percent of variation in network size and 84 percent of the variation in synthesis rate. The constraints we identify prescribe broad boundary conditions that can help to guide synthetic metabolism design. PMID:22768162

  10. Genome Size and Variation Analysis of Mango (Mangifera indica L.) Germplasms in Yunnan by Flow Cytometry%云南芒果种质基因组大小测定与变异分析

    Institute of Scientific and Technical Information of China (English)

    柳觐; 李开雄; 孔广红; 倪书邦

    2015-01-01

    为了解云南芒果(Mangifera indica L.)种质资源的基因组的变异情况,采用流式细胞术对35份云南芒果种质资源的基因组大小进行了测定和变异分析。结果表明,云南芒果种质资源的基因组大小存在一定差异,基因组的平均C值是0.445110 pg,0.4353177×109 bp,最小的是采自景洪的半栽培种YSM-44(0.434567 pg,0.4250060×109 bp),最大的是采自红河的野生种YSM-25(0.458679 pg,0.4485881×109 bp)。基因组C值变异程度最大的是野生种(CV=1.65%),其次为半野生种(CV=1.26%)、半栽培种(CV=1.21%)和栽培种(CV=0.11%)。与芒果具有相近基因组大小的多为苔藓植物,与“C值悖论”观点相一致。因此,应用流式细胞术能准确、快捷地测定芒果基因组大小,而且云南野生、半野生及半栽培芒果种质资源遗传变异类型丰富,有较大的挖掘利用潜力。%In order to understand the variation of mango (Mangifera indica L.) germplasms in Yunnan, the genome size of 35 germplasms was determined by lfow cytometry and their variation was analyzed. The results showed that the mean genome size among the 35 germplasms was 0.445110 pg and 0.4353177×109 bp, which the minimum one (0.434567 pg, 0.4250060×109 bp) was YSM-44 from Jinghong, and the maximum one (0.458679 pg, 0.44485881×109 bp) was YSM-25 from Honghe. The genome size variation of wild germplasms was the largest (CV=1.65%), followed by semi-wild germplasms (CV=1.26%), semi-cultivated germplasms (CV=1.21%) and cultivated germplasms (CV=0.11%). The bryophytes had similar genome size to mango, which is consistent with the“C-value paradox”theory. Therefore, lfow cytometry method could accurately and fastly measure genome size of mango, and the genetic variation in wild, semi-wild and semi-cultivated germplasms was rich, these could be used for mango breeding.

  11. Optimization under Nonlinear Constraints

    OpenAIRE

    1982-01-01

    In this paper a timesaving method is proposed for maximizing likelihood functions when the parameter space is subject to nonlinear constraints, expressible as second order polynomials. The suggested approach is especially attractive when dealing with systems with many parameters.

  12. Embedded System Synthesis under Memory Constraints

    DEFF Research Database (Denmark)

    Madsen, Jan; Bjørn-Jørgensen, Peter

    1999-01-01

    This paper presents a genetic algorithm to solve the system synthesis problem of mapping a time constrained single-rate system specification onto a given heterogeneous architecture which may contain irregular interconnection structures. The synthesis is performed under memory constraints, that is......, the algorithm takes into account the memory size of processors and the size of interface buffers of communication links, and in particular the complicated interplay of these. The presented algorithm is implemented as part of the LY-COS cosynthesis system....

  13. Sequence and expression analyses of KIX domain proteins suggest their importance in seed development and determination of seed size in rice, and genome stability in Arabidopsis.

    Science.gov (United States)

    Thakur, Jitendra Kumar; Agarwal, Pinky; Parida, Swarup; Bajaj, Deepak; Pasrija, Richa

    2013-08-01

    The KIX domain, which mediates protein-protein interactions, was first discovered as a motif in the large multidomain transcriptional activator histone acetyltransferase p300/CBP. Later, the domain was also found in Mediator subunit MED15, where it interacts with many transcription factors. In both proteins, the KIX domain is a target of activation domains of diverse transcription activators. It was found to be an essential component of several specific gene-activation pathways in fungi and metazoans. Not much is known about KIX domain proteins in plants. This study aims to characterize all the KIX domain proteins encoded by the genomes of Arabidopsis and rice. All identified KIX domain proteins are presented, together with their chromosomal locations, phylogenetic analysis, expression and SNP analyses. KIX domains were found not only in p300/CBP- and MED15-like plant proteins, but also in F-box proteins in rice and DNA helicase in Arabidopsis, suggesting roles of KIX domains in ubiquitin-mediated proteasomal degradation and genome stability. Expression analysis revealed overlapping expression of OsKIX_3, OsKIX_5 and OsKIX_7 in different stages of rice seeds development. Moreover, an association analysis of 136 in silico mined SNP loci in 23 different rice genotypes with grain-length information identified three non-synonymous SNP loci in these three rice genes showing strong association with long- and short-grain differentiation. Interestingly, these SNPs were located within KIX domain encoding sequences. Overall, this study lays a foundation for functional analysis of KIX domain proteins in plants.

  14. Reconstructing the Phylogenetic History of Long-Term Effective Population Size and Life-History Traits Using Patterns of Amino Acid Replacement in Mitochondrial Genomes of Mammals and Birds

    Science.gov (United States)

    Nabholz, Benoit; Lartillot, Nicolas

    2013-01-01

    The nearly neutral theory, which proposes that most mutations are deleterious or close to neutral, predicts that the ratio of nonsynonymous over synonymous substitution rates (dN/dS), and potentially also the ratio of radical over conservative amino acid replacement rates (Kr/Kc), are negatively correlated with effective population size. Previous empirical tests, using life-history traits (LHT) such as body-size or generation-time as proxies for population size, have been consistent with these predictions. This suggests that large-scale phylogenetic reconstructions of dN/dS or Kr/Kc might reveal interesting macroevolutionary patterns in the variation in effective population size among lineages. In this work, we further develop an integrative probabilistic framework for phylogenetic covariance analysis introduced previously, so as to estimate the correlation patterns between dN/dS, Kr/Kc, and three LHT, in mitochondrial genomes of birds and mammals. Kr/Kc displays stronger and more stable correlations with LHT than does dN/dS, which we interpret as a greater robustness of Kr/Kc, compared with dN/dS, the latter being confounded by the high saturation of the synonymous substitution rate in mitochondrial genomes. The correlation of Kr/Kc with LHT was robust when controlling for the potentially confounding effects of nucleotide compositional variation between taxa. The positive correlation of the mitochondrial Kr/Kc with LHT is compatible with previous reports, and with a nearly neutral interpretation, although alternative explanations are also possible. The Kr/Kc model was finally used for reconstructing life-history evolution in birds and mammals. This analysis suggests a fairly large-bodied ancestor in both groups. In birds, life-history evolution seems to have occurred mainly through size reduction in Neoavian birds, whereas in placental mammals, body mass evolution shows disparate trends across subclades. Altogether, our work represents a further step toward a more

  15. Genetic code evolution reveals the neutral emergence of mutational robustness, and information as an evolutionary constraint.

    Science.gov (United States)

    Massey, Steven E

    2015-04-24

    The standard genetic code (SGC) is central to molecular biology and its origin and evolution is a fundamental problem in evolutionary biology, the elucidation of which promises to reveal much about the origins of life. In addition, we propose that study of its origin can also reveal some fundamental and generalizable insights into mechanisms of molecular evolution, utilizing concepts from complexity theory. The first is that beneficial traits may arise by non-adaptive processes, via a process of "neutral emergence". The structure of the SGC is optimized for the property of error minimization, which reduces the deleterious impact of point mutations. Via simulation, it can be shown that genetic codes with error minimization superior to the SGC can emerge in a neutral fashion simply by a process of genetic code expansion via tRNA and aminoacyl-tRNA synthetase duplication, whereby similar amino acids are added to codons related to that of the parent amino acid. This process of neutral emergence has implications beyond that of the genetic code, as it suggests that not all beneficial traits have arisen by the direct action of natural selection; we term these "pseudaptations", and discuss a range of potential examples. Secondly, consideration of genetic code deviations (codon reassignments) reveals that these are mostly associated with a reduction in proteome size. This code malleability implies the existence of a proteomic constraint on the genetic code, proportional to the size of the proteome (P), and that its reduction in size leads to an "unfreezing" of the codon - amino acid mapping that defines the genetic code, consistent with Crick's Frozen Accident theory. The concept of a proteomic constraint may be extended to propose a general informational constraint on genetic fidelity, which may be used to explain variously, differences in mutation rates in genomes with differing proteome sizes, differences in DNA repair capacity and genome GC content between organisms, a

  16. Genetic Code Evolution Reveals the Neutral Emergence of Mutational Robustness, and Information as an Evolutionary Constraint

    Directory of Open Access Journals (Sweden)

    Steven E. Massey

    2015-04-01

    Full Text Available The standard genetic code (SGC is central to molecular biology and its origin and evolution is a fundamental problem in evolutionary biology, the elucidation of which promises to reveal much about the origins of life. In addition, we propose that study of its origin can also reveal some fundamental and generalizable insights into mechanisms of molecular evolution, utilizing concepts from complexity theory. The first is that beneficial traits may arise by non-adaptive processes, via a process of “neutral emergence”. The structure of the SGC is optimized for the property of error minimization, which reduces the deleterious impact of point mutations. Via simulation, it can be shown that genetic codes with error minimization superior to the SGC can emerge in a neutral fashion simply by a process of genetic code expansion via tRNA and aminoacyl-tRNA synthetase duplication, whereby similar amino acids are added to codons related to that of the parent amino acid. This process of neutral emergence has implications beyond that of the genetic code, as it suggests that not all beneficial traits have arisen by the direct action of natural selection; we term these “pseudaptations”, and discuss a range of potential examples. Secondly, consideration of genetic code deviations (codon reassignments reveals that these are mostly associated with a reduction in proteome size. This code malleability implies the existence of a proteomic constraint on the genetic code, proportional to the size of the proteome (P, and that its reduction in size leads to an “unfreezing” of the codon – amino acid mapping that defines the genetic code, consistent with Crick’s Frozen Accident theory. The concept of a proteomic constraint may be extended to propose a general informational constraint on genetic fidelity, which may be used to explain variously, differences in mutation rates in genomes with differing proteome sizes, differences in DNA repair capacity and genome

  17. 光斑尺寸对光轴检测的约束分析及验证试验%Spot size on the optical axis detection of constraint analysis and verification tests

    Institute of Scientific and Technical Information of China (English)

    母一宁; 王贺; 李平; 姜会林

    2015-01-01

    Axis detection resolution was divided into two sections, the first being the inherent optical resolution of the case and the second the case subdivided accuracy, however, atmospheric channel secondary modulation can directly introduced into detection error, and moreover, influence detection precision. In order to reduce sensitive degree of axis detection system for atmospheric interference, firstly, CCD system and 4QD system as two typical axis detection models were analyzed; the relationship among resolution and inherent optical resolution and subdivided accuracy and beam length was deduced. Afterwards, based on the example of 4QD axis detection system, through the analysis of restricted constraint condition of four- quadrant electro- optical inspection model in atmospheric channel,SNR of distortions and axis offset are two main technical parameters to affect electro- optical inspection system. Finally, the point, subdivided accuracy of axis detection was sensitive to atmospheric interference and inherent optical resolution was little influenced by atmospheric interference. Therefore, changing beam length can improve sensitive degree of axis detection system for atmospheric interference.%入射激光光轴检测分辨率主要由固有分辨率和细分精度两部分组成,但大气信道二次调制会直接引入误差进而影响光轴检测的检测精度。为了降低光轴检测系统对大气信道环境的敏感程度,首先CCD光轴检测系统和四象限(4QD)光轴检测系统作为两种典型的光轴检测系统其检测模型被分析,并推导在大气环境中其分辨率、固有分辨率、细分精度与光斑尺寸之间的关系。接着以4QD检测模型为例,指出信标光的信噪比和光轴偏移量是影响光轴检测系统的重要技术参数。最后通过一个野外光轴对准试验验证了光轴细分精度对大气干扰敏感,而固有分辨率受大气影响不大,可以改变光斑尺寸来改善光轴检

  18. The photogrammetric inner constraints

    Science.gov (United States)

    Dermanis, Athanasios

    A derivation of the complete inner constraints, which are required for obtaining "free network" solutions in close-range photogrammetry, is presented. The inner constraints are derived analytically for the bundle method, by exploiting the fact that the rows of their coefficient matrix from a basis for the null subspace of the design matrix used in the linearized observation equations. The derivation is independent of any particular choice of rotational parameters and examples are given for three types of rotation angles used in photogrammetry, as well as for the Rodriguez elements. A convenient algorithm based on the use of the S-transformation is presented, for the computation of free solutions with either inner or partial inner constraints. This approach is finally compared with alternative approaches to free network solutions.

  19. Constraint algebra in bigravity

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V. O., E-mail: Vladimir.Soloviev@ihep.ru [National Research Center Kurchatov Institute, Institute for High Energy Physics (Russian Federation)

    2015-07-15

    The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.

  20. Psychological constraints on egalitarianism

    DEFF Research Database (Denmark)

    Kasperbauer, Tyler Joshua

    2015-01-01

    Debates over egalitarianism for the most part are not concerned with constraints on achieving an egalitarian society, beyond discussions of the deficiencies of egalitarian theory itself. This paper looks beyond objections to egalitarianism as such and investigates the relevant psychological...... processes motivating people to resist various aspects of egalitarianism. I argue for two theses, one normative and one descriptive. The normative thesis holds that egalitarians must take psychological constraints into account when constructing egalitarian ideals. I draw from non-ideal theories in political...... philosophy, which aim to construct moral goals with current social and political constraints in mind, to argue that human psychology must be part of a non-ideal theory of egalitarianism. The descriptive thesis holds that the most fundamental psychological challenge to egalitarian ideals comes from what...

  1. Estimation of genome size of eighteen Chinese old garden roses by flow cytometry%应用流式细胞术测定18个中国古老月季基因组大小

    Institute of Scientific and Technical Information of China (English)

    武荣花; 葛蓓蓓; 王茂良; 周燕; 冯慧

    2016-01-01

    Using Petroselinum crispum as the calibration standard, we used two different test processes to estimate the genome size of Chinese old garden rose. Using chromosome counting method, we also determined the ploidy level of three Chinese old garden rose cultivars, which are still in debate or have not been reported, to offer necessary support for estimating the genome size. Main results are as follows. 1 ) The Chinese old garden rose cultivar ‘Pingdong Yueji ’ is diploid ( 2 n=2 x=14 ) , while ‘Jünang ’ and ‘Mudan Yueji ’ are tetraploid ( 2 n =4 x =28 ) . 2 ) Significant differences were observed in six cultivars, but no significant differences in other twelve cultivars in both two test processes, in which the method II was more accurate and stable to estimate the genome size. Method I was easier in operating and more suitable for detecting ploidy level. 3 ) The genome size of 18 Chinese old garden rose cultivars (including diploid, triploid and tetraploid cultivars) ranged from 0. 62 pg to 0. 71 pg. The 2C DNA amounts of diploid cultivars ranged between 1. 34--1. 43 pg, and C-value varied from 0. 67 pg to 1. 43 pg. The 2C DNA amounts of triploid cultivars ranged between 1. 96--2. 05 pg, and C-value between 0. 65--0. 68 pg. The 2C DNA amounts of tetraploid varieties varied from 2. 49 to 2. 63 pg, and C-value from 0. 62 to 0. 66 pg. Diploid cultivars possess the largest genome, followed by the triploid ones, and tetraploid ones the least. We selected the optimum pretreatment method for estimating the genome sizes of 18 Chinese old garden rose cultivars using flow cytometry. Our results offer theory for revealing the relationship between the origin and evolution of Chinese old garden rose, and lay a foundation for their genomic sequencing.%以18个中国古老月季为试材,以欧芹作为标准植物,采用2种不同的样本处理方法对其基因组大小进行测定,同时利用染色体计数法补充3个存在争议或尚未见报道的中国

  2. Bioinformatics decoding the genome

    CERN Document Server

    CERN. Geneva; Deutsch, Sam; Michielin, Olivier; Thomas, Arthur; Descombes, Patrick

    2006-01-01

    Extracting the fundamental genomic sequence from the DNA From Genome to Sequence : Biology in the early 21st century has been radically transformed by the availability of the full genome sequences of an ever increasing number of life forms, from bacteria to major crop plants and to humans. The lecture will concentrate on the computational challenges associated with the production, storage and analysis of genome sequence data, with an emphasis on mammalian genomes. The quality and usability of genome sequences is increasingly conditioned by the careful integration of strategies for data collection and computational analysis, from the construction of maps and libraries to the assembly of raw data into sequence contigs and chromosome-sized scaffolds. Once the sequence is assembled, a major challenge is the mapping of biologically relevant information onto this sequence: promoters, introns and exons of protein-encoding genes, regulatory elements, functional RNAs, pseudogenes, transposons, etc. The methodological ...

  3. Constraints as evolutionary systems

    CERN Document Server

    Rácz, István

    2016-01-01

    The constraint equations for smooth $[n+1]$-dimensional (with $n\\geq 3$) Riemannian or Lorentzian spaces satisfying the Einstein field equations are considered. It is shown, regardless of the signature of the primary space, that the constraints can be put into the form of an evolutionary system comprised either by a first order symmetric hyperbolic system and a parabolic equation or, alternatively, by a strongly hyperbolic system and a subsidiary algebraic relation. In both cases the (local) existence and uniqueness of solutions are also discussed.

  4. Remarkable selective constraints on exonic dinucleotide repeats.

    Science.gov (United States)

    Haasl, Ryan J; Payseur, Bret A

    2014-09-01

    Long dinucleotide repeats found in exons present a substantial mutational hazard: mutations at these loci occur often and generate frameshifts. Here, we provide clear and compelling evidence that exonic dinucleotides experience strong selective constraint. In humans, only 18 exonic dinucleotides have repeat lengths greater than six, which contrasts sharply with the genome-wide distribution of dinucleotides. We genotyped each of these dinucleotides in 200 humans from eight 1000 Genomes Project populations and found a near-absence of polymorphism. More remarkably, divergence data demonstrate that repeat lengths have been conserved across the primate phylogeny in spite of what is likely considerable mutational pressure. Coalescent simulations show that even a very low mutation rate at these loci fails to explain the anomalous patterns of polymorphism and divergence. Our data support two related selective constraints on the evolution of exonic dinucleotides: a short-term intolerance for any change to repeat length and a long-term prevention of increases to repeat length. In general, our results implicate purifying selection as the force that eliminates new, deleterious mutants at exonic dinucleotides. We briefly discuss the evolution of the longest exonic dinucleotide in the human genome--a 10 x CA repeat in fibroblast growth factor receptor-like 1 (FGFRL1)--that should possess a considerably greater mutation rate than any other exonic dinucleotide and therefore generate a large number of deleterious variants. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  5. Constraint-based scheduling applying constraint programming to scheduling problems

    CERN Document Server

    Baptiste, Philippe; Nuijten, Wim

    2001-01-01

    Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsibl...

  6. Genome evolution of Oryza

    Directory of Open Access Journals (Sweden)

    Tieyan Liu

    2014-01-01

    Full Text Available The genus Oryza is composed of approximately 24 species. Wild species of Oryza contain a largely untapped resource of agronomically important genes. As an increasing number of genomes of wild rice species have been or will be sequenced, Oryza is becoming a model system for plant comparative, functional and evolutionary genomics studies. Comparative analyses of large genomic regions and whole-genome sequences have revealed molecular mechanisms involved in genome size variation, gene movement, genome evolution of polyploids, transition of euchromatin to heterochromatin and centromere evolution in the genus Oryza. Transposon activity and removal of transposable elements by unequal recombination or illegitimate recombination are two important factors contributing to expansion or contraction of Oryza genomes. Double-strand break repair mediated gene movement, especially non-homologous end joining, is an important source of non-colinear genes. Transition of euchromatin to heterochromatin is accompanied by transposable element amplification, segmental and tandem duplication of genic segments, and acquisition of heterochromatic genes from other genomic locations. Comparative analyses of multiple genomes dramatically improve the precision and sensitivity of evolutionary inference than single-genome analyses can provide. Further investigations on the impact of structural variation, lineage-specific genes and evolution of agriculturally important genes on phenotype diversity and adaptation in the genus Oryza should facilitate molecular breeding and genetic improvement of rice.

  7. Constraint Optimization Literature Review

    Science.gov (United States)

    2015-11-01

    COPs. 15. SUBJECT TERMS high-performance computing, mobile ad hoc network, optimization, constraint, satisfaction 16. SECURITY CLASSIFICATION OF: 17...France): INRA Editions; 1996. p. 111–150. Black PE. Branch-and-bound. US national institute of standards and technology dictionary of algorithms

  8. Translational Genomics of Onion: Challenges of an Enormous Nuclear Genome

    Science.gov (United States)

    The use of high throughput DNA sequencing to address important production constraints has been termed “translational genomics”. Classical breeding of onion (Allium cepa) is expensive and slow due to a long generation time and the high costs of crossing with insects. Translational genomics should r...

  9. A constraint algorithm for singular Lagrangians subjected to nonholonomic constraints

    Energy Technology Data Exchange (ETDEWEB)

    de Leon, M. [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); de Diego, D.M. [Departamento de Economia Aplicada Cuantitativa, Facultad de Ciencias Economicas y Empresariales, UNED, 28040 Madrid (Spain)

    1997-06-01

    We construct a constraint algorithm for singular Lagrangian systems subjected to nonholonomic constraints which generalizes that of Dirac for constrained Hamiltonian systems. {copyright} {ital 1997 American Institute of Physics.}

  10. Between two fern genomes.

    Science.gov (United States)

    Sessa, Emily B; Banks, Jo Ann; Barker, Michael S; Der, Joshua P; Duffy, Aaron M; Graham, Sean W; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D Blaine; Pryer, Kathleen M; Rothfels, Carl J; Roux, Stanley J; Salmi, Mari L; Sigel, Erin M; Soltis, Douglas E; Soltis, Pamela S; Stevenson, Dennis W; Wolf, Paul G

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.

  11. Dynamical Constraints on Exoplanets

    CERN Document Server

    Horner, Jonti; Tinney, Chris; Hinse, Tobias C; Marshall, Jonathan P

    2013-01-01

    Dynamical studies of new exoplanet systems are a critical component of the discovery and characterisation process. Such studies can provide firmer constraints on the parameters of the newly discovered planets, and may even reveal that the proposed planets do not stand up to dynamical scrutiny. Here, we demonstrate how dynamical studies can assist the characterisation of such systems through two examples: QS Virginis and HD 73526.

  12. (non) Emergent Constraints

    Science.gov (United States)

    Jackson, C. S.; Hattab, M. W.; Huerta, G.

    2014-12-01

    Emergent constraints are observable quantities that provide some physical basis for testing or predicting how a climate model will respond to greenhouse gas forcing. Very few such constraints have been identified for the multi-model CMIP archive. Here we explore the question of whether constraints that apply to a single model, a perturbed parameter ensemble (PPE) of the Community Atmosphere Model (CAM3.1), can be applied to predicting the climate sensitivities of models within the CMIP archive. In particular we construct our predictive patterns from multivariate EOFs of the CAM3.1 ensemble control climate. Multiple regressive statistical models were created that do an excellent job of predicting CAM3.1 sensitivity to greenhouse gas forcing. However, these same patterns fail spectacularly to predict sensitivities of models within the CMIP archive. We attribute this failure to several factors. First, and perhaps the most important, is that the structures affecting climate sensitivity in CAM3.1 have a unique signature in the space of our multivariate EOF patterns that are unlike any other climate model. That is to say, we should not expect CAM3.1 to represent the way another models within CMIP archive respond to greenhouse gas forcing. The second, perhaps related, reason is that the CAM3.1 PPE does a poor job of spanning the range of climates and responses found within the CMIP archive. We shall discuss the implications of these results for the prospect of finding emergent constraints within the CMIP archive. We will also discuss what this may mean for establishing uncertainties in climate projections.

  13. The NCL natural constraint language

    CERN Document Server

    Zhou, Jianyang

    2012-01-01

    This book presents the Natural Constraint Language (NCL) language, a description language in conventional mathematical logic for modeling and solving constraint satisfaction problems. It uses illustrations and tutorials to detail NCL and its applications.

  14. Constraint on parity-violating muonic forces

    OpenAIRE

    Barger, Vernon; Chiang, Cheng-Wei; Keung, Wai-yee; Marfatia, Danny

    2011-01-01

    Using the nonobservance of missing mass events in the leptonic kaon decay $K \\to \\mu X$, we place a strong constraint on exotic parity-violating gauge interactions of the right-handed muon. By way of illustration, we apply it to an explanation of the proton size anomaly that invokes such a new force; scenarios in which the gauge boson decays invisibly or is long-lived are constrained.

  15. Constraints on Relaxion Windows

    CERN Document Server

    Choi, Kiwoon

    2016-01-01

    We examine low energy phenomenology of the relaxion solution to the weak scale hierarchy problem. Assuming that the Hubble friction is responsible for the dissipation of relaxion energy, we identify the cosmological relaxion window which corresponds to the parameter region compatible with a given value of the acceptable number of inflationary $e$-foldings. We then discuss a variety of observational constraints on the relaxion window, while focusing on the case that the barrier potential to stabilize the relaxion is induced by new physics, rather than by low energy QCD dynamics. We find that majority of the parameter space with a relaxion mass $m_\\phi\\gtrsim 100$ eV or a relaxion decay constant $f\\lesssim 10^7$ GeV is excluded by existing constraints. There is an interesting small parameter region with $m_\\phi\\sim \\,0.2-1$ GeV and $f\\sim\\, {\\rm few}-10$ TeV, which is allowed by existing constraints, but can be probed soon by future beam dump experiment such as the SHiP experiment, or by improved EDM experiment...

  16. Correlations of plant seed dispersal pattern with genome size and 1000-seed mass%植物种子传播途径与基因组值和千粒重的相关性

    Institute of Scientific and Technical Information of China (English)

    白成科; 曹博; 李桂双

    2013-01-01

    Seed dispersal is essential to the reproduction, distribution, and evolution of plants. To study the correlations of plant seed dispersal pattern with genome size and 1000-seed mass is of significance for revealing the invasion of plant seeds and the mechanisms of genome evolution. In this paper, statistics and correlation analysis were conducted on 235 plant species with complete genome information (chromosomes number, ploidy, and C-value) , 1000-seed mass, and seed dispersal patterns, based on the previous estimation of some plant species C-values and the searching of plant C-value database and seed information database. The ANOVA analysis indicated that for the plants whose seeds were dispersed by water, bird, and wind, the C-values (Cwater = 1.3 pg, Cbird = 1.6 pg, and Cwingd=2.0 pg) and genome sizes (1Cxwater = 1. 1 pg, lCxbird = 1.3 pg, and 1Cxwind = 1.6 pg) were significantly lower than those whose seeds were dispersed by animal-eating (1Canimal=4.9 pg, and lCxanimal=4.7 pg) (P 0. 05). The 1000-seed mass of the 235 species varied greatly. The 1000-seed mass of the plants with seed dispersal by wind and animal-carrying (7. 2 g and 13. 5 g, respectively) were obviously lower than that with seed dispersal by water and animal-eating (85. 8 g and 92. 5 g, respectively) , but the 1000-seed mass of the plants with unassisted dispersal had no significant differences with that of other dispersal patterns. The further correlation analysis showed that there existed positive correlations between the genome size and 1000-seed mass of the plants whose seeds were dispersed by animal-eating and water (γ = 0. 33) , in which, the correlation for the plants whose seeds were dispersed by animal-eating was significant (γ = 0. 67 x + 3. 23, R2 =0.11, P = 0. 04). These findings would provide references to reveal the mechanisms of plant seed dispersal, distribution, and genome evolution.%种子传播对植物的繁殖、分布和进化至关重要,研究植物基因组、种子

  17. Parallel Handling of Integrity Constraints

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Flokstra, Jan; Apers, Peter M.G.

    1990-01-01

    Integrity constraints form an important part of a data model. Therefore, a complete integrity constraint handling subsystem is considered an important part of any modern DBMS. In implementing an integrity constraint handling subsystem, there are two major problem areas: providing enough functionalit

  18. Financing constraints and corporate investment: an empirical analysis of china's manufacturing firms

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    With the measurement of dividend payout ratio, logistic regression index value and the firm size financing constraints, this paper investigated the investment behavior of China's manufacturing firms over the period from 1998 to 2003, and the relationship between financing constraints and corporate investment using the OLS regression method. The empirical evidence shows that there are certain extent financing constraints in China's manufacturing firms, but the results are different with different variables to measure the financing constraints.

  19. Long-read sequencing improves assembly of Trichinella genomes 10-fold, revealing substantial synteny between lineages diverged over seven million years

    Science.gov (United States)

    Genome evolution influences a parasite’s’s pathogenicity, host-pathogen interactions, environmental constraints, and invasion biology, while genome assemblies form the basis of comparative sequence analyses. Given that closely related organisms typically maintain appreciable synteny, the genome asse...

  20. Hybrid incompatibility despite pleiotropic constraint in a sequence-based bioenergetic model of transcription factor binding.

    Science.gov (United States)

    Tulchinsky, Alexander Y; Johnson, Norman A; Porter, Adam H

    2014-12-01

    Hybrid incompatibility can result from gene misregulation produced by divergence in trans-acting regulatory factors and their cis-regulatory targets. However, change in trans-acting factors may be constrained by pleiotropy, which would in turn limit the evolution of incompatibility. We employed a mechanistically explicit bioenergetic model of gene expression wherein parameter combinations (number of transcription factor molecules, energetic properties of binding to the regulatory site, and genomic background size) determine the shape of the genotype-phenotype (G-P) map, and interacting allelic variants of mutable cis and trans sites determine the phenotype along that map. Misregulation occurs when the phenotype differs from its optimal value. We simulated a pleiotropic regulatory pathway involving a positively selected and a conserved trait regulated by a shared transcription factor (TF), with two populations evolving in parallel. Pleiotropic constraints shifted evolution in the positively selected trait to its cis-regulatory locus. We nevertheless found that the TF genotypes often evolved, accompanied by compensatory evolution in the conserved trait, and both traits contributed to hybrid misregulation. Compensatory evolution resulted in "developmental system drift," whereby the regulatory basis of the conserved phenotype changed although the phenotype itself did not. Pleiotropic constraints became stronger and in some cases prohibitive when the bioenergetic properties of the molecular interaction produced a G-P map that was too steep. Likewise, compensatory evolution slowed and hybrid misregulation was not evident when the G-P map was too shallow. A broad pleiotropic "sweet spot" nevertheless existed where evolutionary constraints were moderate to weak, permitting substantial hybrid misregulation in both traits. None of these pleiotropic constraints manifested when the TF contained nonrecombining domains independently regulating the respective traits. Copyright

  1. Microbial Genomics Research in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-ping

    2004-01-01

    @@ Microorganisms, including phage/virus, were initial targets and tools for developing DNA sequencing technology. Microbial genomic study was started as a model system for the Human Genome Project (HGP) and it did successfully supported the HGP, particularly with respect to BAC contig construction and large-scale shotgun sequencing and assembly. Microbial genomics study has become the fastest developed genomics discipline along with HGP, taking the advantage of the organisms' highly diversified physiology, extremely long history of evolution, close relationship with human/environment,as well as relatively small genome sizes and simple systems for functional analysis.

  2. Microbial Genomics Research in China

    Institute of Scientific and Technical Information of China (English)

    ZHAOGuo-ping

    2004-01-01

    Microorganisms, including phage/virus, were initial targets and tools for developing DNA sequencing technology. Microbial genomic study was started as a model system for the Human Genome Project (HGP) and it did successfully supported the HGP, particularly with respect to BAC contig construction and large-scale shotgun sequencing and assembly. Microbial genomics study has become the fastest developed genomics discipline along with HGP, taking the advantage of the organisms' highly diversified physiology, extremely long history of evolution, close relationship with human/environment,as well as relatively small genome sizes and simple systems for functional analysis.

  3. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Angelina [University of Arizona; Park, Sang-Hycuk [University of Arizona; Kyndt, John [Bellevue University; Fitzsimmons, Kevin [University of Arizona; Brown, Judith K [University of Arizona

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis. The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.

  4. Asteroseismic constraints for Gaia

    CERN Document Server

    Creevey, O L

    2012-01-01

    Distances from the Gaia mission will no doubt improve our understanding of stellar physics by providing an excellent constraint on the luminosity of the star. However, it is also clear that high precision stellar properties from, for example, asteroseismology, will also provide a needed input constraint in order to calibrate the methods that Gaia will use, e.g. stellar models or GSP_phot. For solar-like stars (F, G, K IV/V), asteroseismic data delivers at the least two very important quantities: (1) the average large frequency separation and (2) the frequency corresponding to the maximum of the modulated-amplitude spectrum nu_max. Both of these quantities are related directly to stellar parameters (radius and mass) and in particular their combination (gravity and density). We show how the precision in , nu_max, and atmospheric parameters T_eff and [Fe/H] affect the determination of gravity (log g) for a sample of well-known stars. We find that log g can be determined within less than 0.02 dex accuracy for ou...

  5. Design with Nonlinear Constraints

    KAUST Repository

    Tang, Chengcheng

    2015-12-10

    Most modern industrial and architectural designs need to satisfy the requirements of their targeted performance and respect the limitations of available fabrication technologies. At the same time, they should reflect the artistic considerations and personal taste of the designers, which cannot be simply formulated as optimization goals with single best solutions. This thesis aims at a general, flexible yet e cient computational framework for interactive creation, exploration and discovery of serviceable, constructible, and stylish designs. By formulating nonlinear engineering considerations as linear or quadratic expressions by introducing auxiliary variables, the constrained space could be e ciently accessed by the proposed algorithm Guided Projection, with the guidance of aesthetic formulations. The approach is introduced through applications in different scenarios, its effectiveness is demonstrated by examples that were difficult or even impossible to be computationally designed before. The first application is the design of meshes under both geometric and static constraints, including self-supporting polyhedral meshes that are not height fields. Then, with a formulation bridging mesh based and spline based representations, the application is extended to developable surfaces including origami with curved creases. Finally, general approaches to extend hard constraints and soft energies are discussed, followed by a concluding remark outlooking possible future studies.

  6. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, ...

  7. The Capital Constraint and Capital Management of Small and Medium-sized Banks under the New Capital Regulation Standards%新资本监管标准下我国中小银行的资本约束与资本管理

    Institute of Scientific and Technical Information of China (English)

    粟勤; 王雨

    2013-01-01

      2013年1月1日起开始实施的《商业银行资本管理办法(试行)》在Basel III的基础上提高了商业银行的资本监管标准。尽管我国大部分中小银行的资本充足率达标,但在外部融资渠道狭窄、内部资产规模扩张冲动,以及治理结构和管理水平相对落后的情况下,仍然面临潜在的资本约束。除了不断开拓资本来源以外,通过深挖内部潜力、提高资本管理效率,成为中小银行应对新资本监管标准的有效途径。%"Commercial bank capital management approach (Trial)"began to implement to improve commercial bank capital regulation standards based on Basel III in January 1, 2013. Although most of China's small and medium-sized banks meet the requirement of capital adequacy, they have still faced with the potential capital constraints in the context of narrow external financing, impulsive internal assets expansion and relatively poor management of corporate governance structure. In addition to continue to explore the source of capital, increasing the internal potential and improving the efficiency of capital management is an effective way for small and medium-sized banks to deal with the new regulatory capital standards.

  8. Size effects on cavitation instabilities

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2006-01-01

    In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur. If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavi...... as the void grows to a size well above the characteristic material length....

  9. Oligomeric viral proteins: small in size, large in presence

    Science.gov (United States)

    Jayaraman, Bhargavi; Smith, Amber M.; Fernandes, Jason D.; Frankel, Alan D.

    2016-01-01

    Viruses are obligate parasites that rely heavily on host cellular processes for replication. The small number of proteins typically encoded by a virus is faced with selection pressures that lead to the evolution of distinctive structural properties, allowing each protein to maintain its function under constraints such as small genome size, high mutation rate, and rapidly changing fitness conditions. One common strategy for this evolution is to utilize small building blocks to generate protein oligomers that assemble in multiple ways, thereby diversifying protein function and regulation. In this review, we discuss specific cases that illustrate how oligomerization is used to generate a single defined functional state, to modulate activity via different oligomeric states, or to generate multiple functional forms via different oligomeric states. PMID:27685368

  10. Rewriting Constraint Models with Metamodels

    CERN Document Server

    Chenouard, Raphael; Soto, Ricardo

    2010-01-01

    An important challenge in constraint programming is to rewrite constraint models into executable programs calculat- ing the solutions. This phase of constraint processing may require translations between constraint programming lan- guages, transformations of constraint representations, model optimizations, and tuning of solving strategies. In this paper, we introduce a pivot metamodel describing the common fea- tures of constraint models including different kinds of con- straints, statements like conditionals and loops, and other first-class elements like object classes and predicates. This metamodel is general enough to cope with the constructions of many languages, from object-oriented modeling languages to logic languages, but it is independent from them. The rewriting operations manipulate metamodel instances apart from languages. As a consequence, the rewriting operations apply whatever languages are selected and they are able to manage model semantic information. A bridge is created between the metamode...

  11. Constraint Propagation as Information Maximization

    CERN Document Server

    Abdallah, A Nait

    2012-01-01

    Dana Scott used the partial order among partial functions for his mathematical model of recursively defined functions. He interpreted the partial order as one of information content. In this paper we elaborate on Scott's suggestion of regarding computation as a process of information maximization by applying it to the solution of constraint satisfaction problems. Here the method of constraint propagation can be interpreted as decreasing uncertainty about the solution -- that is, as gain in information about the solution. As illustrative example we choose numerical constraint satisfaction problems to be solved by interval constraints. To facilitate this approach to constraint solving we formulate constraint satisfaction problems as formulas in predicate logic. This necessitates extending the usual semantics for predicate logic so that meaning is assigned not only to sentences but also to formulas with free variables.

  12. Efficient Searching with Linear Constraints

    DEFF Research Database (Denmark)

    Agarwal, Pankaj K.; Arge, Lars Allan; Erickson, Jeff

    2000-01-01

    We show how to preprocess a set S of points in d into an external memory data structure that efficiently supports linear-constraint queries. Each query is in the form of a linear constraint xd a0+∑d−1i=1 aixi; the data structure must report all the points of S that satisfy the constraint. This pr......We show how to preprocess a set S of points in d into an external memory data structure that efficiently supports linear-constraint queries. Each query is in the form of a linear constraint xd a0+∑d−1i=1 aixi; the data structure must report all the points of S that satisfy the constraint...

  13. Are finance constraints hindering the growth of SMEs in Europe?

    OpenAIRE

    2003-01-01

    This paper examines whether small and medium-sized enterprises (SMEs) in Europe suffer from a structural financing problem that hinders their growth. To this end, we estimate growth-cashflow sensitivities for firms in different size classes. Our results show that the sensitivity of company growth to cashflow rises as company size falls, which suggests that SMEs indeed encountered finance constraints that prevented them from fully exploiting their growth potential during the sample period 1996...

  14. Bioenergetic Constraints on the Evolution of Complex Life

    Science.gov (United States)

    Lane, Nick

    2014-01-01

    All morphologically complex life on Earth, beyond the level of cyanobacteria, is eukaryotic. All eukaryotes share a common ancestor that was already a complex cell. Despite their biochemical virtuosity, prokaryotes show little tendency to evolve eukaryotic traits or large genomes. Here I argue that prokaryotes are constrained by their membrane bioenergetics, for fundamental reasons relating to the origin of life. Eukaryotes arose in a rare endosymbiosis between two prokaryotes, which broke the energetic constraints on prokaryotes and gave rise to mitochondria. Loss of almost all mitochondrial genes produced an extreme genomic asymmetry, in which tiny mitochondrial genomes support, energetically, a massive nuclear genome, giving eukaryotes three to five orders of magnitude more energy per gene than prokaryotes. The requirement for endosymbiosis radically altered selection on eukaryotes, potentially explaining the evolution of unique traits, including the nucleus, sex, two sexes, speciation, and aging. PMID:24789818

  15. Constraints On Cosmic Dynamics

    CERN Document Server

    Mbonye, M R

    2003-01-01

    Observationally, the universe appears virtually critical. Yet, there is no simple explanation for this state. In this article we advance and explore the premise that the dynamics of the universe always seeks equilibrium conditions. Vacuum-induced cosmic accelerations lead to creation of matter-energy modes at the expense of vacuum energy. Because they gravitate, such modes constitute inertia against cosmic acceleration. On the other extreme, the would-be ultimate phase of local gravitational collapse is checked by a phase transition in the collapsing matter fields leading to a de Sitter-like fluid deep inside the black hole horizon, and at the expense of the collapsing matter fields. As a result, the universe succumbs to neither vacuum-induced run-away accelerations nor to gravitationally induced spacetime curvature singularities. Cosmic dynamics is self-regulating. We discuss the physical basis for these constraints and the implications, pointing out how the framework relates and helps resolve standing puzzl...

  16. Constraints on Spontaneous Entrainment

    Directory of Open Access Journals (Sweden)

    Richardson Michael J.

    2011-12-01

    Full Text Available Past research has revealed that a person's rhythmic limb movements become spontaneously entrained to an environmental rhythm if a. visual information about the environmental rhythm is available and b. its frequency of the environmental rhythm is near that of the person's movements. Further, this research has demonstrated that if the eyes track the environmental stimulus, the spontaneous entrainment to the environmental rhythm is strengthened. Experiments were performed to investigate two hypotheses that could explain this eye-tracking enhancement of spontaneous entrainment. One hypothesis is that eye tracking allows for the pick up of important coordinative information at the turn-around points of a movement trajectory. Another hypothesis is that the limb movements entrain to the moving eyes through a neuromotor synergy linking the eyes and limb. Results of these experiments will help delineate the informational and dynamical constraints that can impact the acquisition of skilled actions.

  17. Volcanological constraints of Archaean tectonics

    Science.gov (United States)

    Thurston, P. C.; Ayres, L. D.

    1986-01-01

    Volcanological and trace element geochemical data can be integrated to place some constraints upon the size, character and evolutionary history of Archean volcanic plumbing, and hence indirectly, Archean tectonics. The earliest volcanism in any greenhouse belt is almost universally tholeitic basalt. Archean mafic magma chambers were usually the site of low pressure fractionation of olivine, plagioclase and later Cpx + or - an oxide phase during evolution of tholeitic liquids. Several models suggest basalt becoming more contaminated by sial with time. Data in the Uchi Subprovince shows early felsic volcanics to have fractionated REE patterns followed by flat REE pattern rhyolites. This is interpreted as initial felsic liquids produced by melting of a garnetiferous mafic source followed by large scale melting of LIL-rich sial. Rare andesites in the Uchi Subprovince are produced by basalt fractionation, direct mantle melts and mixing of basaltic and tonalitic liquids. Composite dikes in the Abitibi Subprovince have a basaltic edge with a chill margin, a rhyolitic interior with no basalt-rhyolite chill margin and partially melted sialic inclusions. Ignimbrites in the Uchi and Abitibi Subprovinces have mafic pumice toward the top. Integration of these data suggest initial mantle-derived basaltic liquids pond in a sialic crust, fractionate and melt sial. The inirial melts low in heavy REE are melts of mafic material, subsequently melting of adjacent sial produces a chamber with a felsic upper part underlain by mafic magma.

  18. Constraint-Based Categorial Grammar

    CERN Document Server

    Bouma, G; Bouma, Gosse; Noord, Gertjan van

    1994-01-01

    We propose a generalization of Categorial Grammar in which lexical categories are defined by means of recursive constraints. In particular, the introduction of relational constraints allows one to capture the effects of (recursive) lexical rules in a computationally attractive manner. We illustrate the linguistic merits of the new approach by showing how it accounts for the syntax of Dutch cross-serial dependencies and the position and scope of adjuncts in such constructions. Delayed evaluation is used to process grammars containing recursive constraints.

  19. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  20. Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes.

    Science.gov (United States)

    Maier, Uwe-G; Zauner, Stefan; Woehle, Christian; Bolte, Kathrin; Hempel, Franziska; Allen, John F; Martin, William F

    2013-01-01

    Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force.

  1. Seismological Constraints on Geodynamics

    Science.gov (United States)

    Lomnitz, C.

    2004-12-01

    Earth is an open thermodynamic system radiating heat energy into space. A transition from geostatic earth models such as PREM to geodynamical models is needed. We discuss possible thermodynamic constraints on the variables that govern the distribution of forces and flows in the deep Earth. In this paper we assume that the temperature distribution is time-invariant, so that all flows vanish at steady state except for the heat flow Jq per unit area (Kuiken, 1994). Superscript 0 will refer to the steady state while x denotes the excited state of the system. We may write σ 0=(J{q}0ṡX{q}0)/T where Xq is the conjugate force corresponding to Jq, and σ is the rate of entropy production per unit volume. Consider now what happens after the occurrence of an earthquake at time t=0 and location (0,0,0). The earthquake introduces a stress drop Δ P(x,y,z) at all points of the system. Response flows are directed along the gradients toward the epicentral area, and the entropy production will increase with time as (Prigogine, 1947) σ x(t)=σ 0+α {1}/(t+β )+α {2}/(t+β )2+etc A seismological constraint on the parameters may be obtained from Omori's empirical relation N(t)=p/(t+q) where N(t) is the number of aftershocks at time t following the main shock. It may be assumed that p/q\\sim\\alpha_{1}/\\beta times a constant. Another useful constraint is the Mexican-hat geometry of the seismic transient as obtained e.g. from InSAR radar interferometry. For strike-slip events such as Landers the distribution of \\DeltaP is quadrantal, and an oval-shaped seismicity gap develops about the epicenter. A weak outer triggering maxiμm is found at a distance of about 17 fault lengths. Such patterns may be extracted from earthquake catalogs by statistical analysis (Lomnitz, 1996). Finally, the energy of the perturbation must be at least equal to the recovery energy. The total energy expended in an aftershock sequence can be found approximately by integrating the local contribution over

  2. Leaner and meaner genomes in Escherichia coli

    DEFF Research Database (Denmark)

    Ussery, David

    2006-01-01

    A 'better' Escherichia coli K-12 genome has recently been engineered in which about 15% of the genome has been removed by planned deletions. Comparison with related bacterial genomes that have undergone a natural reduction in size suggests that there is plenty of scope for yet more deletions....

  3. Generalized Belief Propagation for the Noiseless Capacity and Information Rates of Run-Length Limited Constraints

    CERN Document Server

    Sabato, Giovanni

    2011-01-01

    The performance of the generalized belief propagation algorithm for computing the noiseless capacity and mutual information rates of finite-size two-dimensional and three-dimensional run-length limited constraints is investigated. For each constraint, a method is proposed to choose the basic regions and to construct the region graph. Simulation results for the capacity of different constraints as a function of the size of the channel and mutual information rates of different constraints as a function of signal-to-noise ratio are reported. Convergence to the Shannon capacity is also discussed.

  4. Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    Sakuma, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas...

  5. Nonholonomic constraints with fractional derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992 (Russian Federation); Zaslavsky, George M [Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, NY 10012 (United States)

    2006-08-04

    We consider the fractional generalization of nonholonomic constraints defined by equations with fractional derivatives and provide some examples. The corresponding equations of motion are derived using variational principle. We prove that fractional constraints can be used to describe the evolution of dynamical systems in which some coordinates and velocities are related to velocities through a power-law memory function.

  6. An Introduction to 'Creativity Constraints'

    DEFF Research Database (Denmark)

    Onarheim, Balder; Biskjær, Michael Mose

    2013-01-01

    Constraints play a vital role as both restrainers and enablers in innovation processes by governing what the creative agent/s can and cannot do, and what the output can and cannot be. Notions of constraints are common in creativity research, but current contributions are highly dispersed due to n...

  7. Market segmentation using perceived constraints

    Science.gov (United States)

    Jinhee Jun; Gerard Kyle; Andrew Mowen

    2008-01-01

    We examined the practical utility of segmenting potential visitors to Cleveland Metroparks using their constraint profiles. Our analysis identified three segments based on their scores on the dimensions of constraints: Other priorities--visitors who scored the highest on 'other priorities' dimension; Highly Constrained--visitors who scored relatively high on...

  8. On Constraints in Assembly Planning

    Energy Technology Data Exchange (ETDEWEB)

    Calton, T.L.; Jones, R.E.; Wilson, R.H.

    1998-12-17

    Constraints on assembly plans vary depending on product, assembly facility, assembly volume, and many other factors. Assembly costs and other measures to optimize vary just as widely. To be effective, computer-aided assembly planning systems must allow users to express the plan selection criteria that appIy to their products and production environments. We begin this article by surveying the types of user criteria, both constraints and quality measures, that have been accepted by assembly planning systems to date. The survey is organized along several dimensions, including strategic vs. tactical criteria; manufacturing requirements VS. requirements of the automated planning process itself and the information needed to assess compliance with each criterion. The latter strongly influences the efficiency of planning. We then focus on constraints. We describe a framework to support a wide variety of user constraints for intuitive and efficient assembly planning. Our framework expresses all constraints on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. Constraints are implemented as simple procedures that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner's algorithms. Fast replanning enables an interactive plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to a number of complex assemblies, including one with 472 parts.

  9. Constraint Programming for Context Comprehension

    DEFF Research Database (Denmark)

    Christiansen, Henning

    2014-01-01

    of knowledge. The language of Constraint Handling Rules, CHR, is suggested for defining constraint solvers that reflect “world knowledge” for the given domain, and driver algorithms may be ex- pressed in Prolog or additional rules of CHR. It is argued that this way of doing context comprehension is an instance...

  10. Subcellular Size

    Science.gov (United States)

    Marshall, Wallace F.

    2015-01-01

    All of the same conceptual questions about size in organisms apply equally at the level of single cells. What determines the size, not only of the whole cell, but of all of its parts? What ensures that subcellular components are properly proportioned relative to the whole cell? How does alteration in organelle size affect biochemical function? Answering such fundamental questions requires us to understand how the size of individual organelles and other cellular structures is determined. Knowledge of organelle biogenesis and dynamics has advanced rapidly in recent years. Does this knowledge give us enough information to formulate reasonable models for organelle size control, or are we still missing something? PMID:25957302

  11. Ecological and environmental constraints

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    stream_size 10 stream_content_type text/plain stream_name ICG_Occasional_Paper_Ser_2000_1_25.pdf.txt stream_source_info ICG_Occasional_Paper_Ser_2000_1_25.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO...

  12. A Markovian analysis of bacterial genome sequence constraints

    Directory of Open Access Journals (Sweden)

    Aaron D. Skewes

    2013-08-01

    Full Text Available The arrangement of nucleotides within a bacterial chromosome is influenced by numerous factors. The degeneracy of the third codon within each reading frame allows some flexibility of nucleotide selection; however, the third nucleotide in the triplet of each codon is at least partly determined by the preceding two. This is most evident in organisms with a strong G + C bias, as the degenerate codon must contribute disproportionately to maintaining that bias. Therefore, a correlation exists between the first two nucleotides and the third in all open reading frames. If the arrangement of nucleotides in a bacterial chromosome is represented as a Markov process, we would expect that the correlation would be completely captured by a second-order Markov model and an increase in the order of the model (e.g., third-, fourth-…order would not capture any additional uncertainty in the process. In this manuscript, we present the results of a comprehensive study of the Markov property that exists in the DNA sequences of 906 bacterial chromosomes. All of the 906 bacterial chromosomes studied exhibit a statistically significant Markov property that extends beyond second-order, and therefore cannot be fully explained by codon usage. An unrooted tree containing all 906 bacterial chromosomes based on their transition probability matrices of third-order shares ∼25% similarity to a tree based on sequence homologies of 16S rRNA sequences. This congruence to the 16S rRNA tree is greater than for trees based on lower-order models (e.g., second-order, and higher-order models result in diminishing improvements in congruence. A nucleotide correlation most likely exists within every bacterial chromosome that extends past three nucleotides. This correlation places significant limits on the number of nucleotide sequences that can represent probable bacterial chromosomes. Transition matrix usage is largely conserved by taxa, indicating that this property is likely inherited, however some important exceptions exist that may indicate the convergent evolution of some bacteria.

  13. Análisis del tamaño del genoma y cariotipo de Agave aktites Gentry (Agavaceae de Sonora, México Genome size and karyotype analysis of Agave aktites Gentry (Agavaceae from Sonora, Mexico

    Directory of Open Access Journals (Sweden)

    Guadalupe Palomino

    2010-12-01

    Full Text Available Se determinó el tamaño del genoma y la estructura del cariotipo de 2 poblaciones silvestres de Agave aktites Gentry de Las Bocas y San Carlos, Sonora, México. El contenido de ADN nuclear en tejido foliar se determinó por citometría de flujo y los cromosomas se observaron en metafase mitótica de meristemos radiculares. Las plantas en ambas poblaciones son diploides (2n= 2x= 60. El contenido promedio 2C de ADN nuclear fue de 8.404 pg; 1Cx= 4 120 millones de pares de nucleótidos. El cariotipo bimodal fue similar en las 2 poblaciones y consistió de 10 cromosomas grandes y 50 pequeños y correspondió a 46m+6st+8t: también mostró un par de cromosomas telocéntricos grandes con constricción secundaria. El cociente de los brazos cromosómicos fue diferente en los pares 7, 8, 14 y 16 del grupo de cromosomas pequeños que presentan diferencias morfológicas entre las 2 poblaciones. Estos rearreglos cromosómicos podrían deberse a intercambios cromosómicos heterocigóticos espontáneos y son evidencia de que los genomas de distintas poblaciones de A. aktites se encuentran en un activo proceso de diferenciación que podría llevar a la especiación. Los análisis son básicos para conocer la diversidad genética intraespecífica de A. aktites y para establecer estrategias de conservación in situ y ex situ para esta especie.Genome size and karyotype structure of 2 wild populations of Agave aktites Gentry from Las Bocas and San Carlos, Sonora, Mexico were determined. Nuclear DNA content of leaf tissue was measured through flow cytometry, and chromosomes were observed in mitotic metaphase of root tips. All individual plants studied in both populations are diploids (2n= 2x= 60. The mean 2C nuclear DNA content was 8.404 pg; 1Cx= 4 120 million of base pairs. All plants of the 2 populations of A. aktites show a bimodal karyotype consisting of 10 large + 50 small chromosomes and corresponded to 46m+6st+8t; they also have a pair of large telocentric

  14. Recombination drives vertebrate genome contraction.

    Directory of Open Access Journals (Sweden)

    Kiwoong Nam

    Full Text Available Selective and/or neutral processes may govern variation in DNA content and, ultimately, genome size. The observation in several organisms of a negative correlation between recombination rate and intron size could be compatible with a neutral model in which recombination is mutagenic for length changes. We used whole-genome data on small insertions and deletions within transposable elements from chicken and zebra finch to demonstrate clear links between recombination rate and a number of attributes of reduced DNA content. Recombination rate was negatively correlated with the length of introns, transposable elements, and intergenic spacer and with the rate of short insertions. Importantly, it was positively correlated with gene density, the rate of short deletions, the deletion bias, and the net change in sequence length. All these observations point at a pattern of more condensed genome structure in regions of high recombination. Based on the observed rates of small insertions and deletions and assuming that these rates are representative for the whole genome, we estimate that the genome of the most recent common ancestor of birds and lizards has lost nearly 20% of its DNA content up until the present. Expansion of transposable elements can counteract the effect of deletions in an equilibrium mutation model; however, since the activity of transposable elements has been low in the avian lineage, the deletion bias is likely to have had a significant effect on genome size evolution in dinosaurs and birds, contributing to the maintenance of a small genome. We also demonstrate that most of the observed correlations between recombination rate and genome contraction parameters are seen in the human genome, including for segregating indel polymorphisms. Our data are compatible with a neutral model in which recombination drives vertebrate genome size evolution and gives no direct support for a role of natural selection in this process.

  15. Genomic Aspects of Research Involving Polyploid Plants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  16. Conditioned genome reconstruction: how to avoid choosing the conditioning genome.

    Science.gov (United States)

    Spencer, Matthew; Bryant, David; Susko, Edward

    2007-02-01

    Genome phylogenies can be inferred from data on the presence and absence of genes across taxa. Logdet distances may be a good method, because they allow expected genome size to vary across the tree. Recently, Lake and Rivera proposed conditioned genome reconstruction (calculation of logdet distances using only those genes present in a conditioning genome) to deal with unobservable genes that are absent from every taxon of interest. We prove that their method can consistently estimate the topology for almost any choice of conditioning genome. Nevertheless, the choice of conditioning genome is important for small samples. For real bacterial genome data, different choices of conditioning genome can result in strong bootstrap support for different tree topologies. To overcome this problem, we developed supertree methods that combine information from all choices of conditioning genome. One of these methods, based on the BIONJ algorithm, performs well on simulated data and may have applications to other supertree problems. However, an analysis of 40 bacterial genomes using this method supports an incorrect clade of parasites. This is a common feature of model-based gene content methods and is due to parallel gene loss.

  17. Natural Constraints to Species Diversification.

    Science.gov (United States)

    Lewitus, Eric; Morlon, Hélène

    2016-08-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of

  18. CONSTRAINT PROGRAMMING AND UNIVERSITY TIMETABLING

    Directory of Open Access Journals (Sweden)

    G.W. Groves

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The technology of Constraint Programming is rapidly becoming a popular alternative for solving large-scale industry problems. This paper provides an introduction to Constraint Programming and to Constraint Logic Programming (CLP, an enabler of constraint programming. The use of Constraint Logic Programming is demonstrated by describing a system developed for scheduling university timetables. Timetabling problems have a high degree of algorithmic complexity (they are usually NP-Complete, and share features with scheduling problems encountered in industry. The system allows the declaration of both hard requirements, which must always be satisfied, and soft constraints which need not be satisfied, though this would be an advantage.

    AFRIKAANSE OPSOMMING: Hierdie artikel beskryf ’n familie van probleem-oplossingstegnieke bekend as “Constraint Programming”, wat al hoe meer gebruik word om groot-skaalse industriële probleme op te los. Die nut van hierdie tegnieke word gedemonstreer deur die beskrywing van ’n skeduleringsisteem om die roosters vir ’n universiteit te genereer. Roosterskeduleringsprobleme is in praktiese gevalle NP-volledig en deel baie eienskappe met industriële skeduleringsprobleme. Die sisteem wat hier beskryf word maak gebruik van beide harde beperkings (wat altyd bevredig moet word en sagte beperkings (bevrediging hiervan is wel voordelig maar dit is opsioneel.

  19. GENOMIC FEATURES OF COTESIA PLUTELLAE POLYDNAVIRUS

    Institute of Scientific and Technical Information of China (English)

    LIUCai-ling; ZHUXiang-xiong; FuWen-jun; ZHAOMu-jun

    2003-01-01

    Polydnavirus was purified from the calyx fluid of Cotesia plutellae ovary. The genomic features of C. plutellae polydnavirus (CpPDV) were investigated. The viral genome consists of at least 12 different segments and the aggregate genome size is a lower estimate of 80kbp. By partial digestion of CpPDV DNA with BamHI and subsequent ligation with BamHI-cut plasmid Bluescript, a representative library of CpPDV genome was obtained.

  20. Genomic distribution and estimation of nucleotide diversity in natural populations: perspectives from the collared flycatcher (Ficedula albicollis) genome.

    Science.gov (United States)

    Dutoit, Ludovic; Burri, Reto; Nater, Alexander; Mugal, Carina F; Ellegren, Hans

    2017-07-01

    Properly estimating genetic diversity in populations of nonmodel species requires a basic understanding of how diversity is distributed across the genome and among individuals. To this end, we analysed whole-genome resequencing data from 20 collared flycatchers (genome size ≈1.1 Gb; 10.13 million single nucleotide polymorphisms detected). Genomewide nucleotide diversity was almost identical among individuals (mean = 0.00394, range = 0.00384-0.00401), but diversity levels varied extensively across the genome (95% confidence interval for 200-kb windows = 0.0013-0.0053). Diversity was related to selective constraint such that in comparison with intergenic DNA, diversity at fourfold degenerate sites was reduced to 85%, 3' UTRs to 82%, 5' UTRs to 70% and nondegenerate sites to 12%. There was a strong positive correlation between diversity and chromosome size, probably driven by a higher density of targets for selection on smaller chromosomes increasing the diversity-reducing effect of linked selection. Simulations exploring the ability of sequence data from a small number of genetic markers to capture the observed diversity clearly demonstrated that diversity estimation from finite sampling of such data is bound to be associated with large confidence intervals. Nevertheless, we show that precision in diversity estimation in large outbred population benefits from increasing the number of loci rather than the number of individuals. Simulations mimicking RAD sequencing showed that this approach gives accurate estimates of genomewide diversity. Based on the patterns of observed diversity and the performed simulations, we provide broad recommendations for how genetic diversity should be estimated in natural populations. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  1. Effective Constraints for Quantum Systems

    CERN Document Server

    Bojowald, Martin; Skirzewski, Aureliano; Tsobanjan, Artur

    2008-01-01

    An effective formalism for quantum constrained systems is presented which allows manageable derivations of solutions and observables, including a treatment of physical reality conditions without requiring full knowledge of the physical inner product. Instead of a state equation from a constraint operator, an infinite system of constraint functions on the quantum phase space of expectation values and moments of states is used. The examples of linear constraints as well as the free non-relativistic particle in parameterized form illustrate how standard problems of constrained systems can be dealt with in this framework.

  2. Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation.

    Science.gov (United States)

    Smart, Katherine A

    2007-11-01

    The genome structure, ancestry and instability of the brewing yeast strains have received considerable attention. The hybrid nature of brewing lager yeast strains provides adaptive potential but yields genome instability which can adversely affect fermentation performance. The requirement to differentiate between production strains and assess master cultures for genomic instability has led to significant adoption of specialized molecular tool kits by the industry. Furthermore, the development of genome-wide transcriptional and protein expression technologies has generated significant interest from brewers. The opportunity presented to explore, and the concurrent requirement to understand both, the constraints and potential of their strains to generate existing and new products during fermentation is discussed.

  3. Constraints, Trade-offs and the Currency of Fitness.

    Science.gov (United States)

    Acerenza, Luis

    2016-03-01

    Understanding evolutionary trajectories remains a difficult task. This is because natural evolutionary processes are simultaneously affected by various types of constraints acting at the different levels of biological organization. Of particular importance are constraints where correlated changes occur in opposite directions, called trade-offs. Here we review and classify the main evolutionary constraints and trade-offs, operating at all levels of trait hierarchy. Special attention is given to life history trade-offs and the conflict between the survival and reproduction components of fitness. Cellular mechanisms underlying fitness trade-offs are described. At the metabolic level, a linear trade-off between growth and flux variability was found, employing bacterial genome-scale metabolic reconstructions. Its analysis indicates that flux variability can be considered as the currency of fitness. This currency is used for fitness transfer between fitness components during adaptations. Finally, a discussion is made regarding the constraints which limit the increase in the amount of fitness currency during evolution, suggesting that occupancy constraints are probably the main restrictions.

  4. Geographic constraints on social network groups.

    Directory of Open Access Journals (Sweden)

    Jukka-Pekka Onnela

    Full Text Available Social groups are fundamental building blocks of human societies. While our social interactions have always been constrained by geography, it has been impossible, due to practical difficulties, to evaluate the nature of this restriction on social group structure. We construct a social network of individuals whose most frequent geographical locations are also known. We also classify the individuals into groups according to a community detection algorithm. We study the variation of geographical span for social groups of varying sizes, and explore the relationship between topological positions and geographic positions of their members. We find that small social groups are geographically very tight, but become much more clumped when the group size exceeds about 30 members. Also, we find no correlation between the topological positions and geographic positions of individuals within network communities. These results suggest that spreading processes face distinct structural and spatial constraints.

  5. Polyploidy and genome evolution in plants.

    Science.gov (United States)

    Soltis, Pamela S; Marchant, D Blaine; Van de Peer, Yves; Soltis, Douglas E

    2015-12-01

    Plant genomes vary in size and complexity, fueled in part by processes of whole-genome duplication (WGD; polyploidy) and subsequent genome evolution. Despite repeated episodes of WGD throughout the evolutionary history of angiosperms in particular, the genomes are not uniformly large, and even plants with very small genomes carry the signatures of ancient duplication events. The processes governing the evolution of plant genomes following these ancient events are largely unknown. Here, we consider mechanisms of diploidization, evidence of genome reorganization in recently formed polyploid species, and macroevolutionary patterns of WGD in plant genomes and propose that the ongoing genomic changes observed in recent polyploids may illustrate the diploidization processes that result in ancient signatures of WGD over geological timescales. Copyright © 2015. Published by Elsevier Ltd.

  6. Geologic constraints on Rhea's bombardment mass

    Science.gov (United States)

    Leight, Clarissa; Rivera-Valentin, Edgard G.

    2016-10-01

    The mid-sized moons (MSMs) of Saturn display a peculiar set of properties that indicate the system may have been altered early in its history. The MSMs have a large spread in silicate content and diverse inferred thermal and physical histories that, unlike the Galilean satellites, do not demonstrate a trend with semi-major axis or size, which would indicate orbital evolution was a significant driver of their thermal histories. Rather, these features may indicate a significant role for impact-induced thermal and physical evolution. Geophysical properties along with measured crater counts can be used to constrain the bombardment history of the MSMs. Here we apply a fully three-dimensional Monte Carlo cratering model along with Rhea's measured cratering to provide constraints on the cumulative bombardment mass (Mb) experienced by the moon. The classic Nice model estimates Rhea's cumulative bombardment mass (MNice) to be 8.4x10^19 kg; our preliminary results suggest Rhea experienced a bombardment of 0.05 MNice < Mb < 0.06 MNice. Results agree well with similar constraints from Iapetus and provide further support to the Nice II model, which suggests a reduced bombardment for the outer solar system due to the planetesimals having higher kinetic energies. The inferred Mb and typical impact characteristics suggests Rhea may avoid runaway differentiation.

  7. Weighted constraints in generative linguistics.

    Science.gov (United States)

    Pater, Joe

    2009-08-01

    Harmonic Grammar (HG) and Optimality Theory (OT) are closely related formal frameworks for the study of language. In both, the structure of a given language is determined by the relative strengths of a set of constraints. They differ in how these strengths are represented: as numerical weights (HG) or as ranks (OT). Weighted constraints have advantages for the construction of accounts of language learning and other cognitive processes, partly because they allow for the adaptation of connectionist and statistical models. HG has been little studied in generative linguistics, however, largely due to influential claims that weighted constraints make incorrect predictions about the typology of natural languages, predictions that are not shared by the more popular OT. This paper makes the case that HG is in fact a promising framework for typological research, and reviews and extends the existing arguments for weighted over ranked constraints.

  8. Topology Optimization with Stress Constraints

    NARCIS (Netherlands)

    Verbart, A.

    2015-01-01

    This thesis contains contributions to the development of topology optimization techniques capable of handling stress constraints. The research that led to these contributions was motivated by the need for topology optimization techniques more suitable for industrial applications. Currently, topolo

  9. Model-Driven Constraint Programming

    CERN Document Server

    Chenouard, Raphael; Soto, Ricardo; 10.1145/1389449.1389479

    2010-01-01

    Constraint programming can definitely be seen as a model-driven paradigm. The users write programs for modeling problems. These programs are mapped to executable models to calculate the solutions. This paper focuses on efficient model management (definition and transformation). From this point of view, we propose to revisit the design of constraint-programming systems. A model-driven architecture is introduced to map solving-independent constraint models to solving-dependent decision models. Several important questions are examined, such as the need for a visual highlevel modeling language, and the quality of metamodeling techniques to implement the transformations. A main result is the s-COMMA platform that efficiently implements the chain from modeling to solving constraint problems

  10. An Introduction to 'Creativity Constraints'

    DEFF Research Database (Denmark)

    Onarheim, Balder; Biskjaer, Michael Mose

    Constraints play a vital role as both restrainers and enablers in innovation processes by governing what the creative agent/s can and cannot do, and what the output can and cannot be. Notions of constraints are common in creativity research, but current contributions are highly dispersed due...... to no overall conceptual framing or shared terminology. This lack of unity hinders overt opportunities for cross-disciplinary interchange. We argue that an improved understanding of constraints in creativity holds a promising potential for advancements in creativity research across domains and disciplines. Here......, we give an overview of the growing, but incohesive body of research into creativity and constraints, which leads us to introduce ‘creativity constraints’ as a unifying concept to help bridge these disjoint contributions to facilitate cross- disciplinary interchange. Finally, we suggest key topics...

  11. Decentralized systems with design constraints

    CERN Document Server

    Mahmoud, Magdi S

    2014-01-01

    This volume provides a rigorous examination of the analysis, stability and control of large-scale systems, and addresses the difficulties that arise because of dimensionality, information structure constraints, parametric uncertainty and time-delays.

  12. YakYak: Parsing with Logical Side Constraints

    DEFF Research Database (Denmark)

    Hansen, Niels Damgaard; Klarlund, Nils; Schwartzbach, Michael Ignatieff

    2000-01-01

    Programming language syntax is often described by means of a context-free grammar, which is restricted by constraints programmed into the action code associated with productions. Without such code, the grammar would explode in size if it were to describe the same language. We present the tool Yak...

  13. Large-Scale Constraint-Based Pattern Mining

    Science.gov (United States)

    Zhu, Feida

    2009-01-01

    We studied the problem of constraint-based pattern mining for three different data formats, item-set, sequence and graph, and focused on mining patterns of large sizes. Colossal patterns in each data formats are studied to discover pruning properties that are useful for direct mining of these patterns. For item-set data, we observed robustness of…

  14. Constraints on the Genetic and Antigenic Variability of Measles Virus.

    Science.gov (United States)

    Beaty, Shannon M; Lee, Benhur

    2016-04-21

    Antigenic drift and genetic variation are significantly constrained in measles virus (MeV). Genetic stability of MeV is exceptionally high, both in the lab and in the field, and few regions of the genome allow for rapid genetic change. The regions of the genome that are more tolerant of mutations (i.e., the untranslated regions and certain domains within the N, C, V, P, and M proteins) indicate genetic plasticity or structural flexibility in the encoded proteins. Our analysis reveals that strong constraints in the envelope proteins (F and H) allow for a single serotype despite known antigenic differences among its 24 genotypes. This review describes some of the many variables that limit the evolutionary rate of MeV. The high genomic stability of MeV appears to be a shared property of the Paramyxovirinae, suggesting a common mechanism that biologically restricts the rate of mutation.

  15. Constraint Programming for Context Comprehension

    DEFF Research Database (Denmark)

    Christiansen, Henning

    2014-01-01

    A close similarity is demonstrated between context comprehension, such as discourse analysis, and constraint programming. The constraint store takes the role of a growing knowledge base learned throughout the discourse, and a suitable con- straint solver does the job of incorporating new pieces o...... of abductive reasoning. The approach fits with possible worlds semantics that allows both standard first-order and non-monotonic semantics....

  16. Formal Verification under Unknown Constraints

    Institute of Scientific and Technical Information of China (English)

    LI Guang-hui; LI Xiao-wei

    2005-01-01

    We present a formal method of verifying designs with unknown constraints (e. g. , black boxes) using Boolean satisfiability (SAT). This method is based on a new encoding scheme of unknown constraints, and solves the corresponding conjunctive normal form (CNF) formulas. Furthermore, this method can avoid the potential memory explosion, which the binary decision diagram (BDD) based techniques maybe suffer from, thus it has the capacity of verifying large designs. Experimental results demonstrate the efficiency and feasibility of the proposed method.

  17. Accelerated evolution of constraint elements for hematophagic adaptation in mosquitoes.

    Science.gov (United States)

    Wang, Ming-Shan; Adeola, Adeniyi C; Li, Yan; Zhang, Ya-Ping; Wu, Dong-Dong

    2015-11-18

    Comparative genomics is a powerful approach that comprehensively interprets the genome. Herein, we performed whole genome comparative analysis of 16 Diptera genomes, including four mosquitoes and 12 Drosophilae. We found more than 540 000 constraint elements (CEs) in the Diptera genome, with the majority found in the intergenic, coding and intronic regions. Accelerated elements (AEs) identified in mosquitoes were mostly in the protein-coding regions (>93%), which differs from vertebrates in genomic distribution. Some genes functionally enriched in blood digestion, body temperature regulation and insecticide resistance showed rapid evolution not only in the lineage of the recent common ancestor of mosquitoes (RCAM), but also in some mosquito lineages. This may be associated with lineage-specific traits and/or adaptations in comparison with other insects. Our findings revealed that although universally fast evolution acted on biological systems in RCAM, such as hematophagy, same adaptations also appear to have occurred through distinct degrees of evolution in different mosquito species, enabling them to be successful blood feeders in different environments.

  18. Draft genome sequence of an aflatoxigenic Aspergillus species, A. bombycis

    Science.gov (United States)

    The genome of the A. bombycis Type strain was sequenced using a Personal Genome Machine, followed by annotation of its predicted genes. The genome size for A. bombycis was found to be approximately 37 Mb and contained 12,266 genes. This announcement introduces a sequenced genome for an aflatoxigenic...

  19. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    Science.gov (United States)

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  20. Portion size

    Science.gov (United States)

    ... Romaine lettuce) One medium baked potato is a computer mouse To control your portion sizes when you ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  1. An Integrative Breakage Model of genome architecture, reshuffling and evolution: The Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity.

    Science.gov (United States)

    Farré, Marta; Robinson, Terence J; Ruiz-Herrera, Aurora

    2015-05-01

    Our understanding of genomic reorganization, the mechanics of genomic transmission to offspring during germ line formation, and how these structural changes contribute to the speciation process, and genetic disease is far from complete. Earlier attempts to understand the mechanism(s) and constraints that govern genome remodeling suffered from being too narrowly focused, and failed to provide a unified and encompassing view of how genomes are organized and regulated inside cells. Here, we propose a new multidisciplinary Integrative Breakage Model for the study of genome evolution. The analysis of the high-level structural organization of genomes (nucleome), together with the functional constrains that accompany genome reshuffling, provide insights into the origin and plasticity of genome organization that may assist with the detection and isolation of therapeutic targets for the treatment of complex human disorders. © 2015 WILEY Periodicals, Inc.

  2. Brain evolution and development: adaptation, allometry and constraint

    Science.gov (United States)

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  3. Genome-wide association and genomic selection in animal breeding.

    Science.gov (United States)

    Hayes, Ben; Goddard, Mike

    2010-11-01

    Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

  4. Constraint-based animation: temporal constraints in the Animus systems

    Energy Technology Data Exchange (ETDEWEB)

    Duisberg, R.A.

    1986-01-01

    Algorithm animation has a growing role in computer-aided algorithm design documentation and debugging, since interactive graphics is a richer channel than text for communication. Most animation is currently done laboriously by hand, and it often has the character of canned demonstrations with restricted user interaction. Animus is a system that allows easy construction of an animation with minimal concern for lower-level graphics programming. Constraints are used to describe the appearance and structure of a picture as well as how those pictures evolve in time. The implementation and support of temporal constraints is a substantive extension to previous constraint languages which had only allowed specification of static state. Use of the Animus system is demonstrated in the creation of animations of dynamic mechanical and electrical-circuit simulations, sorting algorithms, problems in operating systems, and geometric curve-drawing algorithms.

  5. Genomic Partnering - Fifth Annual CHI Meeting: emerging and early-stage companies. Genome Tri-Conference. 23-24 February 2002, Santa Clara, CA, USA.

    Science.gov (United States)

    Sehgal, Anil

    2002-04-01

    The 2002 Genome Tri-Conference was a medium-sized meeting, with an approximate attendance of 400 to 500 delegates. This event held three conferences back to back, addressing three different aspects of current developments in the area of genomics, ie, genomic partnering, human genome discovery and gene functional analysis. Several new aspects of genomics, such as clinical genomics and chemical genomics, were discussed.

  6. Antarctic Genomics

    Directory of Open Access Journals (Sweden)

    Alex D. Rogers

    2006-03-01

    Full Text Available With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies.

  7. Correction: The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study (vol 11, e1005378, 2015)

    NARCIS (Netherlands)

    Winkler, Thomas W.; Justice, Anne E.; Graff, Mariaelisa; Barata, Llilda; Feitosa, Mary F.; Chu, Su; Czajkowski, Jacek; Esko, Tonu; Fall, Tove; Kilpelainen, Tuomas O.; Lu, Yingchang; Magi, Reedik; Mihailov, Evelin; Pers, Tune H.; Rueger, Sina; Teumer, Alexander; Ehret, Georg B.; Ferreira, Teresa; Heard-Costa, Nancy L.; Karjalainen, Juha; Lagou, Vasiliki; Mahajan, Anubha; Neinast, Michael D.; Prokopenko, Inga; Simino, Jeannette; Teslovich, Tanya M.; Jansen, Rick; Westra, Harm-Jan; White, Charles C.; Absher, Devin; Ahluwalia, Tarunveer S.; Ahmad, Shafqat; Albrecht, Eva; Alves, Alexessander Couto; Bragg-Gresham, Jennifer L.; de Craen, Anton J. M.; Bis, Joshua C.; Bonnefond, Amelie; Boucher, Gabrielle; Cadby, Gemma; Cheng, Yu-Ching; Chiang, Charleston W. K.; Delgado, Graciela; Demirkan, Ayse; Dueker, Nicole; Eklund, Niina; Eiriksdottir, Gudny; Eriksson, Joel; Feenstra, Bjarke; Fischer, Krista; Frau, Francesca; Galesloot, Tessel E.; Geller, Frank; Goel, Anuj; Gorski, Mathias; Grammer, Tanja B.; Gustafsson, Stefan; Haitjema, Saskia; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jackson, Anne U.; Jacobs, Kevin B.; Johansson, Asa; Kaakinen, Marika; Kleber, Marcus E.; Lahti, Jari; Leach, Irene Mateo; Lehne, Benjamin; Liu, Youfang; Lo, Ken Sin; Lorentzon, Mattias; Luan, Jian'an; Madden, Pamela A. F.; Mangino, Massimo; McKnight, Barbara; Medina-Gomez, Carolina; Monda, Keri L.; Montasser, May E.; Muller, Gabriele; Muller-Nurasyid, Martina; Nolte, Ilja M.; Panoutsopoulou, Kalliope; Pascoe, Laura; Paternoster, Lavinia; Rayner, Nigel W.; Renstrom, Frida; Rizzi, Federica; Rose, Lynda M.; Ryan, Kathy A.; Salo, Perttu; Sanna, Serena; Scharnagl, Hubert; Shi, Jianxin; Smith, Albert Vernon; Southam, Lorraine; Stancakova, Alena; Steinthorsdottir, Valgerdur; Strawbridge, Rona J.; Sung, Yun Ju; Tachmazidou, Ioanna; Tanaka, Toshiko; Thorleifsson, Gudmar; Trompet, Stella; Pervjakova, Natalia; Tyrer, Jonathan P.; Vandenput, Liesbeth; van der Laan, Sander W.; van der Velde, Nathalie; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V.; Verweij, Niek; Vlachopoulou, Efthymia; Waite, Lindsay L.; Wang, Sophie R.; Wang, Zhaoming; Wild, Sarah H.; Willenborg, Christina; Wilson, James F.; Wong, Andrew; Yang, Jian; Yengo, Loic; Yerges-Armstrong, Laura M.; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Andersson, Ehm A.; Bakker, Stephan J. L.; Baldassarre, Damiano; Banasik, Karina; Barcella, Matteo; Barlassina, Cristina; Bellis, Claire; Benaglio, Paola; Blangero, John; Bluher, Matthias; Bonnet, Fabrice; Bonnycastle, Lori L.; Boyd, Heather A.; Bruinenberg, Marcel; Buchman, Aron S.; Campbell, Harry; Chen, Yii-Der Ida; Chines, Peter S.; Claudi-Boehm, Simone; Cole, John; Collins, Francis S.; de Geus, Eco J. C.; de Groot, Lisette C. P. G. M.; Dimitriou, Maria; Duan, Jubao; Enroth, Stefan; Eury, Elodie; Farmaki, Aliki-Eleni; Forouhi, Nita G.; Friedrich, Nele; Gejman, Pablo V.; Gigante, Bruna; Glorioso, Nicola; Go, Alan S.; Gottesman, Omri; Grassler, Jurgen; Grallert, Harald; Grarup, Niels; Gu, Yu-Mei; Broer, Linda; Ham, Annelies C.; Hansen, Torben; Harris, Tamara B.; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew T.; Heath, Andrew C.; Henders, Anjali K.; Hernandez, Dena; Hillege, Hans; Holmen, Oddgeir; Hovingh, Kees G.; Hui, Jennie; Husemoen, Lise L.; Hutri-Kahonen, Nina; Hysi, Pirro G.; Illig, Thomas; De Jager, Philip L.; Jalilzadeh, Shapour; Jorgensen, Torben; Jukema, J. Wouter; Juonala, Markus; Kanoni, Stavroula; Karaleftheri, Maria; Khaw, Kay Tee; Kinnunen, Leena; Kittner, Steven J.; Koenig, Wolfgang; Kolcic, Ivana; Kovacs, Peter; Krarup, Nikolaj T.; Kratzer, Wolfgang; Kruger, Janine; Kuh, Diana; Kumari, Meena; Kyriakou, Theodosios; Langenberg, Claudia; Lannfelt, Lars; Lanzani, Chiara; Lotay, Vaneet; Launer, Lenore J.; Leander, Karin; Lindstrom, Jaana; Linneberg, Allan; Liu, Yan-Ping; Lobbens, Stephane; Luben, Robert; Lyssenko, Valeriya; Mannisto, Satu; Magnusson, Patrik K.; McArdle, Wendy L.; Menni, Cristina; Merger, Sigrun; Milani, Lili; Montgomery, Grant W.; Morris, Andrew P.; Narisu, Narisu; Nelis, Mari; Ong, Ken K.; Palotie, Aarno; Perusse, Louis; Pichler, Irene; Pilia, Maria G.; Pouta, Anneli; Rheinberger, Myriam; Ribel-Madsen, Rasmus; Richards, Marcus; Rice, Kenneth M.; Rice, Treva K.; Rivolta, Carlo; Salomaa, Veikko; Sanders, Alan R.; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Scott, William R.; Sebert, Sylvain; Sengupta, Sebanti; Sennblad, Bengt; Seufferlein, Thomas; Silveira, Angela; Slagboom, P. Eline; Smit, Jan H.; Sparso, Thomas H.; Stirrups, Kathleen; Stolk, Ronald P.; Stringham, Heather M.; Swertz, Morris A.; Swift, Amy J.; Syvanen, Ann-Christine; Tan, Sian-Tsung; Thorand, Barbara; Tonjes, Anke; Tremblay, Angelo; Tsafantakis, Emmanouil; van der Most, Peter J.; Volker, Uwe; Vohl, Marie-Claude; Vonk, Judith M.; Waldenberger, Melanie; Walker, Ryan W.; Wennauer, Roman; Widen, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Wright, Alan F.; Zillikens, M. Carola; van Dijk, Suzanne C.; van Schoor, Natasja M.; Asselbergs, Folkert W.; de Bakker, Paul I. W.; Beckmann, Jacques S.; Beilby, John; Bennett, David A.; Bergman, Richard N.; Bergmann, Sven; Boger, Carsten A.; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Bornstein, Stefan R.; Bottinger, Erwin P.; Bouchard, Claude; Chambers, John C.; Chanock, Stephen J.; Chasman, Daniel I.; Cucca, Francesco; Cusi, Daniele; Dedoussis, George; Erdmann, Jeanette; Eriksson, Johan G.; Evans, Denis A.; de Faire, Ulf; Farrall, Martin; Ferrucci, Luigi; Ford, Ian; Franke, Lude; Franks, Paul W.; Froguel, Philippe; Gansevoort, Ron T.; Gieger, Christian; Gronberg, Henrik; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Per; Hamsten, Anders; van der Harst, Pim; Hayward, Caroline; Heliovaara, Markku; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hu, Frank; Huikuri, Heikki V.; Hveem, Kristian; James, Alan L.; Jordan, Joanne M.; Jula, Antti; Kahonen, Mika; Kajantie, Eero; Kathiresan, Sekar; Kiemeney, Lambertus A. L. M.; Kivimaki, Mika; Knekt, Paul B.; Koistinen, Heikki A.; Kooner, Jaspal S.; Koskinen, Seppo; Kuusisto, Johanna; Maerz, Winfried; Martin, Nicholas G.; Laakso, Markku; Lakka, Timo A.; Lehtimaki, Terho; Lettre, Guillaume; Levinson, Douglas F.; Lind, Lars; Lokki, Marja-Liisa; Mantyselka, Pekka; Melbye, Mads; Metspalu, Andres; Mitchell, Braxton D.; Moll, Frans L.; Murray, Jeffrey C.; Musk, Arthur W.; Nieminen, Markku S.; Njolstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Oostra, Ben A.; Palmer, Lyle J.; Pankow, James S.; Pasterkamp, Gerard; Pedersen, Nancy L.; Pedersen, Oluf; Penninx, Brenda; Perola, Markus; Peters, Annette; Polasek, Ozren; Pramstaller, Peter P.; Psaty, Bruce M.; Qi, Lu; Quertermous, Thomas; Raitakari, Olli T.; Rankinen, Tuomo; Rauramaa, Rainer; Ridker, Paul M.; Rioux, John D.; Rivadeneira, Fernando; Rotter, Jerome I.; Rudan, Igor; den Ruijter, Hester M.; Saltevo, Juha; Sattar, Naveed; Schunkert, Heribert; Schwarz, Peter E. H.; Shuldiner, Alan R.; Sinisalo, Juha; Snieder, Harold; Sorensen, Thorkild I. A.; Spector, Tim D.; Staessen, Jan A.; Stefania, Bandinelli; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tardif, Jean-Claude; Tremoli, Elena; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Uusitupa, Matti; Verbeek, Andre L. M.; Vermeulen, Sita H.; Viikari, Jorma S.; Vitart, Veronique; Volzke, Henry; Vollenweider, Peter; Waeber, Gerard; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Zeggini, Eleftheria; Chakravarti, Aravinda; Clegg, Deborah J.; Cupples, L. Adrienne; Gordon-Larsen, Penny; Jaquish, Cashell E.; Rao, D. C.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Ines; Berndt, Sonja I.; Boehnke, Michael; Deloukas, Panos; Fox, Caroline S.; Groop, Leif C.; Hunter, David J.; Ingelsson, Erik; Kaplan, Robert C.; McCarthy, Mark I.; Mohlke, Karen L.; O'Connell, Jeffrey R.; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Heid, Iris M.; North, Kari E.; Borecki, Ingrid B.; Kutalik, Zoltan; Loos, Ruth J. F.

    The arcOGEN Consortium should be listed as an author of this article. They contributed to the genome-wide association study results presented in this work. They should be listed in the author byline at position 292 and affiliated with The Arthritis Research UK Osteoarthritis Genetics Consortium.

  8. Correction: The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study (vol 11, e1005378, 2015)

    NARCIS (Netherlands)

    Winkler, Thomas W.; Justice, Anne E.; Graff, Mariaelisa; Barata, Llilda; Feitosa, Mary F.; Chu, Su; Czajkowski, Jacek; Esko, Tonu; Fall, Tove; Kilpelainen, Tuomas O.; Lu, Yingchang; Magi, Reedik; Mihailov, Evelin; Pers, Tune H.; Rueger, Sina; Teumer, Alexander; Ehret, Georg B.; Ferreira, Teresa; Heard-Costa, Nancy L.; Karjalainen, Juha; Lagou, Vasiliki; Mahajan, Anubha; Neinast, Michael D.; Prokopenko, Inga; Simino, Jeannette; Teslovich, Tanya M.; Jansen, Rick; Westra, Harm-Jan; White, Charles C.; Absher, Devin; Ahluwalia, Tarunveer S.; Ahmad, Shafqat; Albrecht, Eva; Alves, Alexessander Couto; Bragg-Gresham, Jennifer L.; de Craen, Anton J. M.; Bis, Joshua C.; Bonnefond, Amelie; Boucher, Gabrielle; Cadby, Gemma; Cheng, Yu-Ching; Chiang, Charleston W. K.; Delgado, Graciela; Demirkan, Ayse; Dueker, Nicole; Eklund, Niina; Eiriksdottir, Gudny; Eriksson, Joel; Feenstra, Bjarke; Fischer, Krista; Frau, Francesca; Galesloot, Tessel E.; Geller, Frank; Goel, Anuj; Gorski, Mathias; Grammer, Tanja B.; Gustafsson, Stefan; Haitjema, Saskia; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jackson, Anne U.; Jacobs, Kevin B.; Johansson, Asa; Kaakinen, Marika; Kleber, Marcus E.; Lahti, Jari; Leach, Irene Mateo; Lehne, Benjamin; Liu, Youfang; Lo, Ken Sin; Lorentzon, Mattias; Luan, Jian'an; Madden, Pamela A. F.; Mangino, Massimo; McKnight, Barbara; Medina-Gomez, Carolina; Monda, Keri L.; Montasser, May E.; Muller, Gabriele; Muller-Nurasyid, Martina; Nolte, Ilja M.; Panoutsopoulou, Kalliope; Pascoe, Laura; Paternoster, Lavinia; Rayner, Nigel W.; Renstrom, Frida; Rizzi, Federica; Rose, Lynda M.; Ryan, Kathy A.; Salo, Perttu; Sanna, Serena; Scharnagl, Hubert; Shi, Jianxin; Smith, Albert Vernon; Southam, Lorraine; Stancakova, Alena; Steinthorsdottir, Valgerdur; Strawbridge, Rona J.; Sung, Yun Ju; Tachmazidou, Ioanna; Tanaka, Toshiko; Thorleifsson, Gudmar; Trompet, Stella; Pervjakova, Natalia; Tyrer, Jonathan P.; Vandenput, Liesbeth; van der Laan, Sander W.; van der Velde, Nathalie; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V.; Verweij, Niek; Vlachopoulou, Efthymia; Waite, Lindsay L.; Wang, Sophie R.; Wang, Zhaoming; Wild, Sarah H.; Willenborg, Christina; Wilson, James F.; Wong, Andrew; Yang, Jian; Yengo, Loic; Yerges-Armstrong, Laura M.; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Andersson, Ehm A.; Bakker, Stephan J. L.; Baldassarre, Damiano; Banasik, Karina; Barcella, Matteo; Barlassina, Cristina; Bellis, Claire; Benaglio, Paola; Blangero, John; Bluher, Matthias; Bonnet, Fabrice; Bonnycastle, Lori L.; Boyd, Heather A.; Bruinenberg, Marcel; Buchman, Aron S.; Campbell, Harry; Chen, Yii-Der Ida; Chines, Peter S.; Claudi-Boehm, Simone; Cole, John; Collins, Francis S.; de Geus, Eco J. C.; de Groot, Lisette C. P. G. M.; Dimitriou, Maria; Duan, Jubao; Enroth, Stefan; Eury, Elodie; Farmaki, Aliki-Eleni; Forouhi, Nita G.; Friedrich, Nele; Gejman, Pablo V.; Gigante, Bruna; Glorioso, Nicola; Go, Alan S.; Gottesman, Omri; Grassler, Jurgen; Grallert, Harald; Grarup, Niels; Gu, Yu-Mei; Broer, Linda; Ham, Annelies C.; Hansen, Torben; Harris, Tamara B.; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew T.; Heath, Andrew C.; Henders, Anjali K.; Hernandez, Dena; Hillege, Hans; Holmen, Oddgeir; Hovingh, Kees G.; Hui, Jennie; Husemoen, Lise L.; Hutri-Kahonen, Nina; Hysi, Pirro G.; Illig, Thomas; De Jager, Philip L.; Jalilzadeh, Shapour; Jorgensen, Torben; Jukema, J. Wouter; Juonala, Markus; Kanoni, Stavroula; Karaleftheri, Maria; Khaw, Kay Tee; Kinnunen, Leena; Kittner, Steven J.; Koenig, Wolfgang; Kolcic, Ivana; Kovacs, Peter; Krarup, Nikolaj T.; Kratzer, Wolfgang; Kruger, Janine; Kuh, Diana; Kumari, Meena; Kyriakou, Theodosios; Langenberg, Claudia; Lannfelt, Lars; Lanzani, Chiara; Lotay, Vaneet; Launer, Lenore J.; Leander, Karin; Lindstrom, Jaana; Linneberg, Allan; Liu, Yan-Ping; Lobbens, Stephane; Luben, Robert; Lyssenko, Valeriya; Mannisto, Satu; Magnusson, Patrik K.; McArdle, Wendy L.; Menni, Cristina; Merger, Sigrun; Milani, Lili; Montgomery, Grant W.; Morris, Andrew P.; Narisu, Narisu; Nelis, Mari; Ong, Ken K.; Palotie, Aarno; Perusse, Louis; Pichler, Irene; Pilia, Maria G.; Pouta, Anneli; Rheinberger, Myriam; Ribel-Madsen, Rasmus; Richards, Marcus; Rice, Kenneth M.; Rice, Treva K.; Rivolta, Carlo; Salomaa, Veikko; Sanders, Alan R.; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Scott, William R.; Sebert, Sylvain; Sengupta, Sebanti; Sennblad, Bengt; Seufferlein, Thomas; Silveira, Angela; Slagboom, P. Eline; Smit, Jan H.; Sparso, Thomas H.; Stirrups, Kathleen; Stolk, Ronald P.; Stringham, Heather M.; Swertz, Morris A.; Swift, Amy J.; Syvanen, Ann-Christine; Tan, Sian-Tsung; Thorand, Barbara; Tonjes, Anke; Tremblay, Angelo; Tsafantakis, Emmanouil; van der Most, Peter J.; Volker, Uwe; Vohl, Marie-Claude; Vonk, Judith M.; Waldenberger, Melanie; Walker, Ryan W.; Wennauer, Roman; Widen, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Wright, Alan F.; Zillikens, M. Carola; van Dijk, Suzanne C.; van Schoor, Natasja M.; Asselbergs, Folkert W.; de Bakker, Paul I. W.; Beckmann, Jacques S.; Beilby, John; Bennett, David A.; Bergman, Richard N.; Bergmann, Sven; Boger, Carsten A.; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Bornstein, Stefan R.; Bottinger, Erwin P.; Bouchard, Claude; Chambers, John C.; Chanock, Stephen J.; Chasman, Daniel I.; Cucca, Francesco; Cusi, Daniele; Dedoussis, George; Erdmann, Jeanette; Eriksson, Johan G.; Evans, Denis A.; de Faire, Ulf; Farrall, Martin; Ferrucci, Luigi; Ford, Ian; Franke, Lude; Franks, Paul W.; Froguel, Philippe; Gansevoort, Ron T.; Gieger, Christian; Gronberg, Henrik; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Per; Hamsten, Anders; van der Harst, Pim; Hayward, Caroline; Heliovaara, Markku; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hu, Frank; Huikuri, Heikki V.; Hveem, Kristian; James, Alan L.; Jordan, Joanne M.; Jula, Antti; Kahonen, Mika; Kajantie, Eero; Kathiresan, Sekar; Kiemeney, Lambertus A. L. M.; Kivimaki, Mika; Knekt, Paul B.; Koistinen, Heikki A.; Kooner, Jaspal S.; Koskinen, Seppo; Kuusisto, Johanna; Maerz, Winfried; Martin, Nicholas G.; Laakso, Markku; Lakka, Timo A.; Lehtimaki, Terho; Lettre, Guillaume; Levinson, Douglas F.; Lind, Lars; Lokki, Marja-Liisa; Mantyselka, Pekka; Melbye, Mads; Metspalu, Andres; Mitchell, Braxton D.; Moll, Frans L.; Murray, Jeffrey C.; Musk, Arthur W.; Nieminen, Markku S.; Njolstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Oostra, Ben A.; Palmer, Lyle J.; Pankow, James S.; Pasterkamp, Gerard; Pedersen, Nancy L.; Pedersen, Oluf; Penninx, Brenda; Perola, Markus; Peters, Annette; Polasek, Ozren; Pramstaller, Peter P.; Psaty, Bruce M.; Qi, Lu; Quertermous, Thomas; Raitakari, Olli T.; Rankinen, Tuomo; Rauramaa, Rainer; Ridker, Paul M.; Rioux, John D.; Rivadeneira, Fernando; Rotter, Jerome I.; Rudan, Igor; den Ruijter, Hester M.; Saltevo, Juha; Sattar, Naveed; Schunkert, Heribert; Schwarz, Peter E. H.; Shuldiner, Alan R.; Sinisalo, Juha; Snieder, Harold; Sorensen, Thorkild I. A.; Spector, Tim D.; Staessen, Jan A.; Stefania, Bandinelli; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tardif, Jean-Claude; Tremoli, Elena; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Uusitupa, Matti; Verbeek, Andre L. M.; Vermeulen, Sita H.; Viikari, Jorma S.; Vitart, Veronique; Volzke, Henry; Vollenweider, Peter; Waeber, Gerard; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Zeggini, Eleftheria; Chakravarti, Aravinda; Clegg, Deborah J.; Cupples, L. Adrienne; Gordon-Larsen, Penny; Jaquish, Cashell E.; Rao, D. C.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Ines; Berndt, Sonja I.; Boehnke, Michael; Deloukas, Panos; Fox, Caroline S.; Groop, Leif C.; Hunter, David J.; Ingelsson, Erik; Kaplan, Robert C.; McCarthy, Mark I.; Mohlke, Karen L.; O'Connell, Jeffrey R.; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Heid, Iris M.; North, Kari E.; Borecki, Ingrid B.; Kutalik, Zoltan; Loos, Ruth J. F.

    2016-01-01

    The arcOGEN Consortium should be listed as an author of this article. They contributed to the genome-wide association study results presented in this work. They should be listed in the author byline at position 292 and affiliated with The Arthritis Research UK Osteoarthritis Genetics Consortium. The

  9. A Prochlorococcus proving ground for constraint-based metabolic modeling and multi-`omics data integration

    Science.gov (United States)

    Casey, J.; Ji, B.; Shaoie, S.; Mardinoglu, A.; Sarathi Sen, P.; Jahn, O.; Reda, K.; Leigh, J.; Follows, M. J.; Nielsen, J.; Karl, D. M.

    2016-02-01

    Representatives of the oligotrophic marine cyanobacterium Prochlorococcus marinus are the smallest free-living photosynthetic organisms, both in terms of physical size and genome size, yet are the most abundant photoautotrophic microbes in the oceans and profoundly influence global biogeochemical cycles. Physiological and regulatory control of nutrient and light stress has been observed in MED4 in culture and in its closely related `ecotype' eMED4 in the field, however its metabolism has not been investigated in detail. We present a genome-scale metabolic network reconstruction of the high-light adapted axenic strain MED4ax ("iJCMED4") for the quantitative analysis of a range of its metabolic phenotypes. The resulting structure is a proving ground for the incorporation of enzyme kinetics, biochemical and elemental compositional data, transcriptomic, proteomic, metabolomic, and fluxomic datasets which can be implemented within a constraint-based metabolic modeling environment. The iJCMED4 stoichiometric model consists of 523 metabolic genes encoding 787 reactions with 673 unique metabolites distributed in 5 sub-cellular compartments and is mass, charge, and thermodynamically balanced. Several variants of flux balance analysis were used to simulate growth and metabolic fluxes over the diel cycle, under various stress conditions (e.g., nitrogen, phosphorus, light), and within the framework of a global biogeochemical model (DARWIN). Model simulations accurately predicted growth rates in culture under a variety of defined medium compositions and there was close agreement of photosynthetic performance, biomass and energy yields and efficiencies, and transporter fluxes for iJCMED4 and culture experiments. In addition to a nearly optimal photosynthetic quotient and central carbon metabolism efficiency, MED4 has made dramatic alterations to redox and phosphorus metabolism across biosynthetic and intermediate pathways. We propose that reductions in phosphate reaction

  10. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    Science.gov (United States)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-03-01

    modeling system is designed in such a way that constraint-based models targeting different microorganisms or competing organism communities can be easily plugged into the system. Constraint-based modeling is very costly given the size of a genome-scale reaction network. To save computation time, a binary tree is traversed to examine the concentration and solution pool generated during the simulation in order to decide whether the constraint-based model should be called. We also show preliminary results from the integrated model including a comparison of the direct and indirect coupling approaches and evaluated the ability of the approach to simulate field experiment.

  11. Rewriting the blueprint of life by synthetic genomics and genome engineering

    OpenAIRE

    Annaluru, Narayana; Ramalingam, Sivaprakash; Chandrasegaran, Srinivasan

    2015-01-01

    Advances in DNA synthesis and assembly methods over the past decade have made it possible to construct genome-size fragments from oligonucleotides. Early work focused on synthesis of small viral genomes, followed by hierarchical synthesis of wild-type bacterial genomes and subsequently on transplantation of synthesized bacterial genomes into closely related recipient strains. More recently, a synthetic designer version of yeast Saccharomyces cerevisiae chromosome III has been generated, with ...

  12. Constraint programming and decision making

    CERN Document Server

    Kreinovich, Vladik

    2014-01-01

    In many application areas, it is necessary to make effective decisions under constraints. Several area-specific techniques are known for such decision problems; however, because these techniques are area-specific, it is not easy to apply each technique to other applications areas. Cross-fertilization between different application areas is one of the main objectives of the annual International Workshops on Constraint Programming and Decision Making. Those workshops, held in the US (El Paso, Texas), in Europe (Lyon, France), and in Asia (Novosibirsk, Russia), from 2008 to 2012, have attracted researchers and practitioners from all over the world. This volume presents extended versions of selected papers from those workshops. These papers deal with all stages of decision making under constraints: (1) formulating the problem of multi-criteria decision making in precise terms, (2) determining when the corresponding decision problem is algorithmically solvable; (3) finding the corresponding algorithms, and making...

  13. Whole-Genome Analysis of Candidate genes Associated with Seed Size and Weight in Sorghum bicolor Reveals Signatures of Artificial Selection and Insights into Parallel Domestication in Cereal Crops.

    Science.gov (United States)

    Tao, Yongfu; Mace, Emma S; Tai, Shuaishuai; Cruickshank, Alan; Campbell, Bradley C; Zhao, Xianrong; Van Oosterom, Erik J; Godwin, Ian D; Botella, Jose R; Jordan, David R

    2017-01-01

    Seed size and seed weight are major quality attributes and important determinants of yield that have been strongly selected for during crop domestication. Limited information is available about the genetic control and genes associated with seed size and weight in sorghum. This study identified sorghum orthologs of genes with proven effects on seed size and weight in other plant species and searched for evidence of selection during domestication by utilizing resequencing data from a diversity panel. In total, 114 seed size candidate genes were identified in sorghum, 63 of which exhibited signals of purifying selection during domestication. A significant number of these genes also had domestication signatures in maize and rice, consistent with the parallel domestication of seed size in cereals. Seed size candidate genes that exhibited differentially high expression levels in seed were also found more likely to be under selection during domestication, supporting the hypothesis that modification to seed size during domestication preferentially targeted genes for intrinsic seed size rather than genes associated with physiological factors involved in the carbohydrate supply and transport. Our results provide improved understanding of the complex genetic control of seed size and weight and the impact of domestication on these genes.

  14. Probability landscapes for integrative genomics

    Directory of Open Access Journals (Sweden)

    Benecke Arndt

    2008-05-01

    Full Text Available Abstract Background The comprehension of the gene regulatory code in eukaryotes is one of the major challenges of systems biology, and is a requirement for the development of novel therapeutic strategies for multifactorial diseases. Its bi-fold degeneration precludes brute force and statistical approaches based on the genomic sequence alone. Rather, recursive integration of systematic, whole-genome experimental data with advanced statistical regulatory sequence predictions needs to be developed. Such experimental approaches as well as the prediction tools are only starting to become available and increasing numbers of genome sequences and empirical sequence annotations are under continual discovery-driven change. Furthermore, given the complexity of the question, a decade(s long multi-laboratory effort needs to be envisioned. These constraints need to be considered in the creation of a framework that can pave a road to successful comprehension of the gene regulatory code. Results We introduce here a concept for such a framework, based entirely on systematic annotation in terms of probability profiles of genomic sequence using any type of relevant experimental and theoretical information and subsequent cross-correlation analysis in hypothesis-driven model building and testing. Conclusion Probability landscapes, which include as reference set the probabilistic representation of the genomic sequence, can be used efficiently to discover and analyze correlations amongst initially heterogeneous and un-relatable descriptions and genome-wide measurements. Furthermore, this structure is usable as a support for automatically generating and testing hypotheses for alternative gene regulatory grammars and the evaluation of those through statistical analysis of the high-dimensional correlations between genomic sequence, sequence annotations, and experimental data. Finally, this structure provides a concrete and tangible basis for attempting to formulate a

  15. Exploring Size.

    Science.gov (United States)

    Brand, Judith, Ed.

    1995-01-01

    "Exploring" is a magazine of science, art, and human perception that communicates ideas museum exhibits cannot demonstrate easily by using experiments and activities for the classroom. This issue concentrates on size, examining it from a variety of viewpoints. The focus allows students to investigate and discuss interconnections among…

  16. Size matter!

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg; Jespersen, Andreas Maaløe; Skov, Laurits Rhoden

    2015-01-01

    Objectives We examined how a reduction in plate size would affect the amount of food waste from leftovers in a field experiment at a standing lunch for 220 CEOs. Methods A standing lunch for 220 CEOs in the Danish Opera House was arranged to feature two identical buffets with plates of two differ...

  17. Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud.

    Directory of Open Access Journals (Sweden)

    Enis Afgan

    Full Text Available Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise.We designed and implemented the Genomics Virtual Laboratory (GVL as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic.This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints

  18. Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud.

    Science.gov (United States)

    Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew

    2015-01-01

    Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the

  19. Optimal inventory policy within hospital space constraints.

    Science.gov (United States)

    Little, James; Coughlan, Brian

    2008-06-01

    The materials management group at any hospital is responsible for ensuring that their inventory policies provide a good service in delivering products. The group also needs to be aware of their own costs for distribution, in terms of the frequency of delivery. With future changes to the hospital's infrastructure, function and size, the group require that these policies are reviewed and prepared for the changes taking place. For this, inventory policy models need to be built and used to anticipate the effect of these changes. Due to the importance of many products, high service levels are essential, yet there are often space and delivery constraints, limiting the amount of stock which can be held and delivered at each location. We present in this paper a new constraint-based model for determining optimal stock levels for all products at a storage location, with restrictions on space, delivery and criticality of items taken into account. We validate this model on sterile and bulk items in a real-life setting of an intensive care unit within Cork University Hospital, Ireland.

  20. LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders.

    Science.gov (United States)

    Sun, Cheng; Shepard, Donald B; Chong, Rebecca A; López Arriaza, José; Hall, Kathryn; Castoe, Todd A; Feschotte, Cédric; Pollock, David D; Mueller, Rachel Lockridge

    2012-01-01

    Among vertebrates, most of the largest genomes are found within the salamanders, a clade of amphibians that includes 613 species. Salamander genome sizes range from ~14 to ~120 Gb. Because genome size is correlated with nucleus and cell sizes, as well as other traits, morphological evolution in salamanders has been profoundly affected by genomic gigantism. However, the molecular mechanisms driving genomic expansion in this clade remain largely unknown. Here, we present the first comparative analysis of transposable element (TE) content in salamanders. Using high-throughput sequencing, we generated genomic shotgun data for six species from the Plethodontidae, the largest family of salamanders. We then developed a pipeline to mine TE sequences from shotgun data in taxa with limited genomic resources, such as salamanders. Our summaries of overall TE abundance and diversity for each species demonstrate that TEs make up a substantial portion of salamander genomes, and that all of the major known types of TEs are represented in salamanders. The most abundant TE superfamilies found in the genomes of our six focal species are similar, despite substantial variation in genome size. However, our results demonstrate a major difference between salamanders and other vertebrates: salamander genomes contain much larger amounts of long terminal repeat (LTR) retrotransposons, primarily Ty3/gypsy elements. Thus, the extreme increase in genome size that occurred in salamanders was likely accompanied by a shift in TE landscape. These results suggest that increased proliferation of LTR retrotransposons was a major molecular mechanism contributing to genomic expansion in salamanders.

  1. Automatic Constraint Detection for 2D Layout Regularization

    KAUST Repository

    Jiang, Haiyong

    2015-09-18

    In this paper, we address the problem of constraint detection for layout regularization. As layout we consider a set of two-dimensional elements where each element is represented by its bounding box. Layout regularization is important for digitizing plans or images, such as floor plans and facade images, and for the improvement of user created contents, such as architectural drawings and slide layouts. To regularize a layout, we aim to improve the input by detecting and subsequently enforcing alignment, size, and distance constraints between layout elements. Similar to previous work, we formulate the layout regularization as a quadratic programming problem. In addition, we propose a novel optimization algorithm to automatically detect constraints. In our results, we evaluate the proposed framework on a variety of input layouts from different applications, which demonstrates our method has superior performance to the state of the art.

  2. Automatic Constraint Detection for 2D Layout Regularization.

    Science.gov (United States)

    Jiang, Haiyong; Nan, Liangliang; Yan, Dong-Ming; Dong, Weiming; Zhang, Xiaopeng; Wonka, Peter

    2016-08-01

    In this paper, we address the problem of constraint detection for layout regularization. The layout we consider is a set of two-dimensional elements where each element is represented by its bounding box. Layout regularization is important in digitizing plans or images, such as floor plans and facade images, and in the improvement of user-created contents, such as architectural drawings and slide layouts. To regularize a layout, we aim to improve the input by detecting and subsequently enforcing alignment, size, and distance constraints between layout elements. Similar to previous work, we formulate layout regularization as a quadratic programming problem. In addition, we propose a novel optimization algorithm that automatically detects constraints. We evaluate the proposed framework using a variety of input layouts from different applications. Our results demonstrate that our method has superior performance to the state of the art.

  3. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  4. An Exploration into Fern Genome Space.

    Science.gov (United States)

    Wolf, Paul G; Sessa, Emily B; Marchant, Daniel Blaine; Li, Fay-Wei; Rothfels, Carl J; Sigel, Erin M; Gitzendanner, Matthew A; Visger, Clayton J; Banks, Jo Ann; Soltis, Douglas E; Soltis, Pamela S; Pryer, Kathleen M; Der, Joshua P

    2015-08-26

    Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants.

  5. Infrared Constraints on AGN Tori Models

    CERN Document Server

    Hatziminaoglou, E; Pérez-Fournon, I; Franceschini, A; Hernan-Caballero, A; Afonso-Luis, A; Lonsdale, C; Fang, F; Oliver, S; Rowan-Robinson, M; Shupe, D; Smith, H; Surace, J; Gonzales-Solares, E

    2006-01-01

    This work focuses on the properties of dusty tori in active galactic nuclei (AGN) derived from the comparison of SDSS type 1 quasars with mid-Infrared (MIR) counterparts and a new, detailed torus model. The infrared data were taken by the Spitzer Wide-area InfraRed Extragalactic (SWIRE) Survey. Basic model parameters are constraint, such as the density law of the graphite and silicate grains, the torus size and its opening angle. A whole variety of optical depths is supported. The favoured models are those with decreasing density with distance from the centre, while there is no clear tendency as to the covering factor, ie small, medium and large covering factors are almost equally distributed. Based on the models that better describe the observed SEDs, properties such as the accretion luminosity, the mass of dust, the inner to outer radius ratio and the hydrogen column density are computed.

  6. Intertemporal consumption and credit constraints

    DEFF Research Database (Denmark)

    Leth-Petersen, Søren

    2010-01-01

    There is continuing controversy over the importance of credit constraints. This paper investigates whether total household expenditure and debt is affected by an exogenous increase in access to credit provided by a credit market reform that enabled Danish house owners to use housing equity as col...

  7. Perceptual Constraints in Phonotactic Learning

    Science.gov (United States)

    Endress, Ansgar D.; Mehler, Jacques

    2010-01-01

    Structural regularities in language have often been attributed to symbolic or statistical general purpose computations, whereas perceptual factors influencing such generalizations have received less interest. Here, we use phonotactic-like constraints as a case study to ask whether the structural properties of specific perceptual and memory…

  8. Sterile neutrino constraints from cosmology

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.

    2012-01-01

    The presence of light particles beyond the standard model's three neutrino species can profoundly impact the physics of decoupling and primordial nucleosynthesis. I review the observational signatures of extra light species, present constraints from recent data, and discuss the implications...... of possible sterile neutrinos with O(eV)-masses for cosmology....

  9. Sterile neutrino constraints from cosmology

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.;

    2012-01-01

    The presence of light particles beyond the standard model's three neutrino species can profoundly impact the physics of decoupling and primordial nucleosynthesis. I review the observational signatures of extra light species, present constraints from recent data, and discuss the implications of po...

  10. Constraint-based facial animation

    NARCIS (Netherlands)

    Z.M. Ruttkay

    1999-01-01

    textabstractConstraints have been traditionally used for computer animation applications to define side conditions for generating synthesized motion according to a standard, usually physically realistic, set of motion equations. The case of facial animation is very different, as no set of motion equ

  11. Constraint-induced movement therapy

    DEFF Research Database (Denmark)

    Castellini, Greta; Gianola, Silvia; Banzi, Rita;

    2014-01-01

    on randomized controlled trials (RCTs) included in a Cochrane systematic review on the effectiveness of constraint-induced movement therapy (CIMT) for stroke patients. METHODS: We extracted data on the functional independence measure (FIM) and the action research arm test (ARAT) from RCTs that compared CIMT...

  12. Constraint Programming versus Mathematical Programming

    DEFF Research Database (Denmark)

    Hansen, Jesper

    2003-01-01

    Constraint Logic Programming (CLP) is a relatively new technique from the 80's with origins in Computer Science and Artificial Intelligence. Lately, much research have been focused on ways of using CLP within the paradigm of Operations Research (OR) and vice versa. The purpose of this paper...

  13. Observational constraints on cluster evolution

    NARCIS (Netherlands)

    Larsen, S.S.|info:eu-repo/dai/nl/304833347

    2008-01-01

    Current observational constraints on the dynamical evolution of star clusters are reviewed. Theory and observations now agree nicely on the mass dependency and time scales for disruption of young star clusters in galactic disks, but many problems still await resolution. The origin of the mass

  14. Constraint-based facial animation

    NARCIS (Netherlands)

    Z.M. Ruttkay

    1999-01-01

    textabstractConstraints have been traditionally used for computer animation applications to define side conditions for generating synthesized motion according to a standard, usually physically realistic, set of motion equations. The case of facial animation is very different, as no set of motion

  15. Size matters

    Energy Technology Data Exchange (ETDEWEB)

    Forst, Michael

    2012-11-01

    The shakeout in the solar cell and module industry is in full swing. While the number of companies and production locations shutting down in the Western world is increasing, the capacity expansion in the Far East seems to be unbroken. Size in combination with a good sales network has become the key to success for surviving in the current storm. The trade war with China already looming on the horizon is adding to the uncertainties. (orig.)

  16. ASSESSMENT OF PRODUCTION CONSTRAINTS AND FARMERS’ PREFERENCES FOR SWEETPOTATO GENOTYPES

    Directory of Open Access Journals (Sweden)

    Benjamin M. Kivuva

    2014-04-01

    Full Text Available Sweetpotato is one of the most important staple food crops with significant role for food security and also a potential commercial crop in many sub Saharan African countries. In Kenya, its production is hindered by numerous biotic, abiotic and social factors. A baseline survey study was conducted in central, eastern and western Kenya between September and December 2012, to determine the farmers’ preferences of sweetpotato varieties, production constraints and farmers’ coping strategies. A structured questionnaire was randomly administered to 345 farmers in five counties. Data on households demographics, sweetpotato varieties grown, sources of seed, cultural practices, and production constraints were collected and analysed using statistical package for social scientists (SPSS. Results indicated that 60% of the farmers interviewed were women and family sizes varied between 3-5 persons in 55% of the households. Farm sizes ranged 0.41-0.8 ha with 90% of sweetpotato being grown on 0.24 ha or less. The main food crops grown on the surveyed farms included maize, beans, sweetpotato, cassava, sorghum, and pigeon peas, while the main cash crops were; kale, banana, sugarcane, bean, maize, sweetpotato and groundnut. The average sweetpotato yield on the farms surveyed ranged from 5.5-7.4 t ha-1. The preferred sweetpotato varieties were Vitaa, Kembu 10, and Kabonde because they were orange fleshed with high beta carotene. Production constraints in the three regions were basically similar, with 35% of the farmers identifying weevils as the major pest, and sweetpotato virus disease (SPVD as the major disease. Drought was identified by 28% of the farmers as a major production constraint. Farmers indicated the use of clean seed, high yielding varieties, high planting density, and manure application as some of the strategies they used to cope with the production constraints. To improve sweetpotato production in Kenya, these production constraints need to be

  17. Dust production in debris discs: constraints on the smallest grains

    CERN Document Server

    Thebault, Philippe

    2016-01-01

    The surface energy constraint puts a limit on the smallest fragment $s_{surf}$ that can be produced after a collision. Based on analytical considerations, this mechanism has been recently identified as been potentially able to prevent the production of small dust grains in debris discs and cut off their size distribution at sizes larger than the blow-out size. We numerically investigate the importance of this effect to find under which conditions it can leave a signature in the small-size end of a disc's particle size distribution (PSD). An important part of this work is to map out, in a disc at steady-state, what is the most likely collisional origin for micron-sized grains, in terms of the sizes of their collisional progenitors. We implement, for the first time, the surface energy constraint into a collisional evolution code. We consider a debris disc extending from 50 to 100AU and 2 different stellar types. We also consider two levels of stirring in the disc: dynamically "hot" (e=0.075) and "cold" (e=0.01)...

  18. Complete genome sequence of an attenuated Sparfloxacin-resistant Streptococcus agalactiae strain 138spar

    Science.gov (United States)

    The complete genome of a sparfloxacin-resistant Streptococcus agalactiae vaccine strain 138spar is 1,838,126 bp in size. The genome has 1892 coding sequences and 82 RNAs. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipeline. The publishing of this genome will allo...

  19. Tidal constraints on the interior of Venus

    Science.gov (United States)

    Dumoulin, Caroline; Tobie, Gabriel; Verhoeven, Olivier; Rosenblatt, Pascal; Rambaux, Nicolas

    2016-10-01

    As a prospective study for a future exploration of Venus, we propose to systematically investigate the signature of the internal structure in the gravity field and the rotation state of Venus, through the determination of the moment of inertia and the tidal Love number.We test various mantle compositions, core size and density as well as temperature profiles representative of different scenarios for formation and evolution of Venus. The mantle density ρ and seismic vP and vS wavespeeds are computed in a consistent manner from given temperature and composition using the Perple X program. This method computes phase equilibria and uses the thermodynamics of mantle minerals developped by Stixrude and Lithgow-Bertelloni (2011).The viscoelastic deformation of the planet interior under the action of periodic tidal forces are computed following the method of Tobie et al. (2005).For a variety of interior models of Venus, the Love number, k2, and the moment of inertia factor are computed following the method described above. The objective is to determine the sensitivity of these synthetic results to the internal structure. These synthetic data are then used to infer the measurement accuracies required on the time-varying gravitational field and the rotation state (precession rate, nutation and length of day variations) to provide useful constraints on the internal structure.We show that a better determination of k2, together with an estimation of the moment of inertia, the radial displacement, and of the time lag, if possible, will refine our knowledge on the present-day interior of Venus (size of the core, mantle temperature, composition and viscosity). Inferring these quantities from a future ex- ploration mission will provide essential constraints on the formation and evolution scenarios of Venus.

  20. Genome databases

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  1. Correlation of microsynteny conservation and disease gene distribution in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Li Xiting

    2009-11-01

    Full Text Available Abstract Background With the completion of the whole genome sequence for many organisms, investigations into genomic structure have revealed that gene distribution is variable, and that genes with similar function or expression are located within clusters. This clustering suggests that there are evolutionary constraints that determine genome architecture. However, as most of the evidence for constraints on genome evolution comes from studies on yeast, it is unclear how much of this prior work can be extrapolated to mammalian genomes. Therefore, in this work we wished to examine the constraints on regions of the mammalian genome containing conserved gene clusters. Results We first identified regions of the mouse genome with microsynteny conservation by comparing gene arrangement in the mouse genome to the human, rat, and dog genomes. We then asked if any particular gene types were found preferentially in conserved regions. We found a significant correlation between conserved microsynteny and the density of mouse orthologs of human disease genes, suggesting that disease genes are clustered in genomic regions of increased microsynteny conservation. Conclusion The correlation between microsynteny conservation and disease gene locations indicates that regions of the mouse genome with microsynteny conservation may contain undiscovered human disease genes. This study not only demonstrates that gene function constrains mammalian genome organization, but also identifies regions of the mouse genome that can be experimentally examined to produce mouse models of human disease.

  2. Diversity of 23S rRNA genes within individual prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Anna Pei

    Full Text Available BACKGROUND: The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. METHODOLOGY/PRINCIPAL FINDINGS: Using the 23S rRNA gene as an example, we analyzed the diversity among individual rRNA genes within a genome. Of 184 prokaryotic species containing multiple 23S rRNA genes, diversity was observed in 113 (61.4% genomes (mean 0.40%, range 0.01%-4.04%. Significant (1.17%-4.04% intragenomic variation was found in 8 species. In 5 of the 8 species, the diversity in the primary structure had only minimal effect on the secondary structure (stem versus loop transition. In the remaining 3 species, the diversity significantly altered local secondary structure, but the alteration appears minimized through complex rearrangement. Intervening sequences (IVS, ranging between 9 and 1471 nt in size, were found in 7 species. IVS in Deinococcus radiodurans and Nostoc sp. encode transposases. T. tengcongensis was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes. CONCLUSIONS/SIGNIFICANCE: These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy.

  3. INTERNAL FINANCIAL CONSTRAINTS, EXTERNAL FINANCIAL CONSTRAINTS AND INVESTMENT CHOICE: EVIDENCE FROM PAKISTANI FIRMS

    Directory of Open Access Journals (Sweden)

    Dr. Muhammad AZAM

    2011-10-01

    Full Text Available The purpose of this study is to analyze the impact of internal and external financial constraints on investmentchoice. The data have been taken from 9 major sectors (52 listed firms in the Karachi Stock Exchange namely; Pharmaceutical & Bio Technology, Textile, Sugar, Tobacco, Chemicals, Oil and Gas, Fixed line Telecommunication, Industrial metal and Mining, and Cement sectors for the time period 2004 to 2010 on annual basis. Multiple regression analysis has been done to examine the relationship among firm’s size, dividend payout ratio, firm’s age, and investment. The empirical findings show that there is positive relationship between the firms’ size and investment while a negative relationship exists between firms’ age and investment. It also reports that there is negative relationship between dividend payout ratio and the investment. This shows that if a firm grows old or high dividend payout ratio then it will tend to spend less for expansion as compared to the young firms.

  4. Genome evolution in Reptilia, the sister group of mammals.

    Science.gov (United States)

    Janes, Daniel E; Organ, Christopher L; Fujita, Matthew K; Shedlock, Andrew M; Edwards, Scott V

    2010-01-01

    The genomes of birds and nonavian reptiles (Reptilia) are critical for understanding genome evolution in mammals and amniotes generally. Despite decades of study at the chromosomal and single-gene levels, and the evidence for great diversity in genome size, karyotype, and sex chromosome diversity, reptile genomes are virtually unknown in the comparative genomics era. The recent sequencing of the chicken and zebra finch genomes, in conjunction with genome scans and the online publication of the Anolis lizard genome, has begun to clarify the events leading from an ancestral amniote genome--predicted to be large and to possess a diverse repeat landscape on par with mammals and a birdlike sex chromosome system--to the small and highly streamlined genomes of birds. Reptilia exhibit a wide range of evolutionary rates of different subgenomes and, from isochores to mitochondrial DNA, provide a critical contrast to the genomic paradigms established in mammals.

  5. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew D.; Kupczok, Anne

    2017-01-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...... evolutionary biology of non-model organisms to species of commercial relevance for fishing, aquaculture and biomedicine. Instead of providing an exhaustive list of available genomic data, we rather set to present contextualized examples that best represent the current status of the field of marine genomics....

  6. Cephalopod genomics

    DEFF Research Database (Denmark)

    Albertin, Caroline B.; Bonnaud, Laure; Brown, C. Titus

    2012-01-01

    The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, ``Paths to Cephalopod Genomics-Strategies, Choices, Organization,'' held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria......, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers...... active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described...

  7. Listeria Genomics

    Science.gov (United States)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  8. Creativity from Constraints in Engineering Design

    DEFF Research Database (Denmark)

    Onarheim, Balder

    2012-01-01

    This paper investigates the role of constraints in limiting and enhancing creativity in engineering design. Based on a review of literature relating constraints to creativity, the paper presents a longitudinal participatory study from Coloplast A/S, a major international producer of disposable......, removal, introducing and revising. Constraints introduced late in a project contributed to the generation of new solutions to old problems, and existing solutions were creatively adopted to satisfy new constraints. This paper recommends creative constraint-handling strategies, as well as identifying...... potential directions for future research on the relationship between creativity and constraints...

  9. Size matters : Pitch dimensions constrain interactive team behaviour in soccer

    NARCIS (Netherlands)

    Frencken, Wouter; Van der Plaats, Jorrit; Visscher, Chris; Lemmink, Koen

    2013-01-01

    Pitch size varies in official soccer matches and differently sized pitches are adopted for tactical purposes in small-sided training games. Since interactive team behaviour emerges under constraints, the authors evaluate the effect of pitch size (task) manipulations on interactive team behaviour in

  10. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  11. Constraints on the evolution of asexual reproduction.

    Science.gov (United States)

    Engelstädter, Jan

    2008-11-01

    Sexual reproduction is almost ubiquitous among multicellular organisms even though it entails severe fitness costs. To resolve this apparent paradox, an extensive body of research has been devoted to identifying the selective advantages of recombination that counteract these costs. Yet, how easy is it to make the transition to asexual reproduction once sexual reproduction has been established for a long time? The present review approaches this question by considering factors that impede the evolution of parthenogenesis in animals. Most importantly, eggs need a diploid chromosome set in most species in order to develop normally. Next, eggs may need to be activated by sperm, and sperm may also contribute centrioles and other paternal factors to the zygote. Depending on how diploidy is achieved mechanistically, further problems may arise in offspring that stem from 'inbreeding depression' or inappropriate sex determination systems. Finally, genomic imprinting is another well-known barrier to the evolution of asexuality in mammals. Studies on species with occasional, deficient parthenogenesis indicate that the relative importance of these constraints may vary widely. The intimate evolutionary relations between haplodiploidy and parthenogenesis as well as implications for the clade selection hypothesis of the maintenance of sexual reproduction are also discussed.

  12. Exact and Approximate Sizes of Convex Datacubes

    Science.gov (United States)

    Nedjar, Sébastien

    In various approaches, data cubes are pre-computed in order to efficiently answer Olap queries. The notion of data cube has been explored in various ways: iceberg cubes, range cubes, differential cubes or emerging cubes. Previously, we have introduced the concept of convex cube which generalizes all the quoted variants of cubes. More precisely, the convex cube captures all the tuples satisfying a monotone and/or antimonotone constraint combination. This paper is dedicated to a study of the convex cube size. Actually, knowing the size of such a cube even before computing it has various advantages. First of all, free space can be saved for its storage and the data warehouse administration can be improved. However the main interest of this size knowledge is to choose at best the constraints to apply in order to get a workable result. For an aided calibrating of constraints, we propose a sound characterization, based on inclusion-exclusion principle, of the exact size of convex cube as long as an upper bound which can be very quickly yielded. Moreover we adapt the nearly optimal algorithm HyperLogLog in order to provide a very good approximation of the exact size of convex cubes. Our analytical results are confirmed by experiments: the approximated size of convex cubes is really close to their exact size and can be computed quasi immediately.

  13. Value of a newly sequenced bacterial genome

    Institute of Scientific and Technical Information of China (English)

    Eudes; GV; Barbosa; Flavia; F; Aburjaile; Rommel; TJ; Ramos; Adriana; R; Carneiro; Yves; Le; Loir; Jan; Baumbach; Anderson; Miyoshi; Artur; Silva; Vasco; Azevedo

    2014-01-01

    Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft(partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.

  14. Constraint corrected fracture mechanics in structural integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Laukkanen, A.; Wallin, K. [VTT Industrial Systems, Espoo (Finland)

    2004-07-01

    Specimen size, crack depth and loading conditions may affect the materials fracture toughness. In order to safeguard against these geometry effects, fracture toughness testing standards prescribe the use of highly constrained deep cracked bend specimens having a sufficient size to guarantee conservative fracture toughness values. One of the more advanced testing standards, for brittle fracture, is the Master Curve standard ASTM E1921, which is based on technology developed at VTT Industrial Systems. When applied to a structure with low constraint geometry, the standard fracture toughness estimates may lead to strongly over-conservative estimate of structural performance. In some cases this may lead to unnecessary repairs or even to an early 'retirement' of the structure. In the case of brittle fracture, essentially three different methods to quantify constraint have been proposed, J-small scale yielding correction (SSYC), Q-parameter and the T{sub stress}. (orig.)

  15. Complete chloroplast genome of Sedum sarmentosum and chloroplast genome evolution in Saxifragales.

    Directory of Open Access Journals (Sweden)

    Wenpan Dong

    Full Text Available Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC region, 16.670 bp of a small single-copy (SSC region, and a pair of 25,783 bp sequences of inverted repeats (IRs.The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles.

  16. Self-Imposed Creativity Constraints

    DEFF Research Database (Denmark)

    Biskjaer, Michael Mose

    2013-01-01

    . As the majority of work in creativity research originates from psychology, the dissertation shows how the humanities – given their salient critical-analytical reflection and high concept awareness – can contribute new types of studies to creativity research, which, despite its blossoming as a field, is becoming...... increasingly fragmented and in need of new ‘big’ unifying questions. Hence the designation of the dissertation’s research approach. The four papers serve a dual purpose. They are contributions in their own right, and they provide partial answers to the overall research question. In this respect, the concept...... of the current dispersed studies on constraints in creativity, spanning psychology, engineering, philosophy, design, and aesthetics. (2) Definitions, concepts, and models of self-imposed creativity constraints for analytical application within and across creative domains, including the 6i model for demonstrating...

  17. Observational Constraints on Exponential Gravity

    CERN Document Server

    Yang, Louis; Luo, Ling-Wei; Geng, Chao-Qiang

    2010-01-01

    We study the observational constraints on the exponential gravity model of f(R)=-beta*Rs(1-e^(-R/Rs)). We use the latest observational data including Supernova Cosmology Project (SCP) Union2 compilation, Two-Degree Field Galaxy Redshift Survey (2dFGRS), Sloan Digital Sky Survey Data Release 7 (SDSS DR7) and Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP7) in our analysis. From these observations, we obtain a lower bound on the model parameter beta at 1.27 (95% CL) but no appreciable upper bound. The constraint on the present matter density parameter is 0.245< Omega_m^0<0.311 (95% CL). We also find out the best-fit value of model parameters on several cases.

  18. A Compendium of Chameleon Constraints

    CERN Document Server

    Burrage, Clare

    2016-01-01

    The chameleon model is a scalar field theory with a screening mechanism that explains how a cosmologically relevant light scalar can avoid the constraints of intra-solar-system searches for fifth-forces. The chameleon is a popular dark energy candidate and also arises in $f(R)$ theories of gravity. Whilst the chameleon is designed to avoid historical searches for fifth-forces it is not unobservable and much effort has gone into identifying the best observables and experiments to detect it. These results are not always presented for the same models or in the same language, a particular problem when comparing astrophysical and laboratory searches making it difficult to understand what regions of parameter space remain. Here we present combined constraints on the chameleon model from astrophysical and laboratory searches for the first time and identify the remaining windows of parameter space. We discuss the implications for cosmological chameleon searches and future small-scale probes.

  19. Integral Constraints and MHD Stability

    Science.gov (United States)

    Jensen, T. H.

    2003-10-01

    Determining st