WorldWideScience

Sample records for genome sequencing complete

  1. Complete sequence of the mitochondrial genome of ...

    Indian Academy of Sciences (India)

    Supplementary data: Complete sequence of the mitochondrial genome of Odontamblyopus rubicundus (Perciformes: Gobiidae): genome characterization and phylogenetic analysis. Tianxing Liu, Xiaoxiao Jin, Rixin Wang and Tianjun Xu. J. Genet. 92, 423–432. Figure 1. Gene map of O. rubicundus mitochondrial genome.

  2. Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis

    DEFF Research Database (Denmark)

    Travis, Anthony J.; Kelly, Denise; Flint, Harry J

    2015-01-01

    We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183(T) (= DSM 16839(T) = NCIMB 14029(T)), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host...

  3. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    Energy Technology Data Exchange (ETDEWEB)

    Clum, Alicia; Nolan, Matt; Lang, Elke; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Goker, Markus; Spring, Stefan; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family Acidimicrobiaceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order Acidomicrobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Complete genome sequence of Cellulomonas flavigena type strain (134T)

    Science.gov (United States)

    Abt, Birte; Foster, Brian; Lapidus, Alla; Clum, Alicia; Sun, Hui; Pukall, Rüdiger; Lucas, Susan; Glavina Del Rio, Tijana; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Goodwin, Lynne; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Rohde, Manfred; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2010-01-01

    Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304688

  5. Complete genome sequence of Cellulomonas flavigena type strain (134T)

    Energy Technology Data Exchange (ETDEWEB)

    Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Foster, Brian [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Clum, Alicia [U.S. Department of Energy, Joint Genome Institute; Sun, Hui [U.S. Department of Energy, Joint Genome Institute; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  6. Complete genome sequence of pronghorn virus, a pestivirus

    Science.gov (United States)

    The complete genome sequence of Pronghorn virus, a member of the Pestivirus genus of the Flaviviridae, was determined. The virus, originally isolated from a pronghorn antelope, had a genome of 12,287 nucleotides with a single open reading frame of 11,694 bases encoding 3898 amino acids....

  7. The complete chloroplast genome sequence of Zanthoxylum piperitum.

    Science.gov (United States)

    Lee, Jonghoon; Lee, Hyeon Ju; Kim, Kyunghee; Lee, Sang-Choon; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    The complete chloroplast genome sequence of Zanthoxylum piperitum, a plant species with useful aromatic oils in family Rutaceae, was generated in this study by de novo assembly with whole-genome sequence data. The chloroplast genome was 158 154 bp in length with a typical quadripartite structure containing a pair of inverted repeats of 27 644 bp, separated by large single copy and small single copy of 85 340 bp and 17 526 bp, respectively. The chloroplast genome harbored 112 genes consisting of 78 protein-coding genes 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis of the complete chloroplast genome sequences with those of known relatives revealed that Z. piperitum is most closely related to the Citrus species.

  8. Complete genome sequence of Shewanella putrefaciens. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Heidelberg, John F.

    2001-04-01

    Seventy percent of the costs for genome sequencing Shewanella putrefaciens (oneidensis) were requested. These funds were expected to allow completion of the low-pass (5-fold) random sequencing and complete closure and annotation of the 200 kbp plasmid. Because of cost reduction that occurred during the period of this grant, these goals have been far exceeded. Currently, the S. putrefaciens genome is very nearly completely closed, even though the genome was significantly larger than expected and extremely repetitive. The entire genome sequence has been made BLAST searchable on the TIGR web page, and an extensive effort has been made to make data and analyses available to all researchers working on S. putrefaciens (oneidensis).

  9. Complete genome sequence of a novel pestivirus from sheep.

    Science.gov (United States)

    Becher, Paul; Schmeiser, Stefanie; Oguzoglu, Tuba Cigdem; Postel, Alexander

    2012-10-01

    We report here the complete genome sequence of pestivirus strain Aydin/04-TR, which is the prototype of a group of similar viruses currently present in sheep and goats in Turkey. Sequence data from this virus showed that it clusters separately from the established and previously proposed tentative pestivirus species.

  10. Complete Genome Sequence of a Novel Pestivirus from Sheep

    OpenAIRE

    Becher, Paul; Schmeiser, Stefanie; Oguzoglu, Tuba Cigdem; Postel, Alexander

    2012-01-01

    We report here the complete genome sequence of pestivirus strain Aydin/04-TR, which is the prototype of a group of similar viruses currently present in sheep and goats in Turkey. Sequence data from this virus showed that it clusters separately from the established and previously proposed tentative pestivirus species.

  11. The complete chloroplast genome sequence of Abies nephrolepis (Pinaceae: Abietoideae

    Directory of Open Access Journals (Sweden)

    Dong-Keun Yi

    2016-06-01

    Full Text Available The plant chloroplast (cp genome has maintained a relatively conserved structure and gene content throughout evolution. Cp genome sequences have been used widely for resolving evolutionary and phylogenetic issues at various taxonomic levels of plants. Here, we report the complete cp genome of Abies nephrolepis. The A. nephrolepis cp genome is 121,336 base pairs (bp in length including a pair of short inverted repeat regions (IRa and IRb of 139 bp each separated by a small single copy (SSC region of 54,323 bp (SSC and a large single copy region of 66,735 bp (LSC. It contains 114 genes, 68 of which are protein coding genes, 35 tRNA and four rRNA genes, six open reading frames, and one pseudogene. Seventeen repeat units and 64 simple sequence repeats (SSR have been detected in A. nephrolepis cp genome. Large IR sequences locate in 42-kb inversion points (1186 bp. The A. nephrolepis cp genome is identical to Abies koreana’s which is closely related to taxa. Pairwise comparison between two cp genomes revealed 140 polymorphic sites in each. Complete cp genome sequence of A. nephrolepis has a significant potential to provide information on the evolutionary pattern of Abietoideae and valuable data for development of DNA markers for easy identification and classification.

  12. Complete genome sequence of Kribbella flavida type strain (IFO 14399).

    Science.gov (United States)

    Pukall, Rüdiger; Lapidus, Alla; Glavina Del Rio, Tijana; Copeland, Alex; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Labutti, Kurt; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pitluck, Sam; Bruce, David; Goodwin, Lynne; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Brettin, Thomas

    2010-03-30

    The genus Kribbella consists of 15 species, with Kribbella flavida (Park et al. 1999) as the type species. The name Kribbella was formed from the acronym of the Korea Research Institute of Bioscience and Biotechnology, KRIBB. Strains of the various Kribbella species were originally isolated from soil, potato, alum slate mine, patinas of catacombs or from horse racecourses. Here we describe the features of K. flavida together with the complete genome sequence and annotation. In addition to the 5.3 Mbp genome of Nocardioides sp. JS614, this is only the second completed genome sequence of the family Nocardioidaceae. The 7,579,488 bp long genome with its 7,086 protein-coding and 60 RNA genes and is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  13. The complete mitochondrial genome sequence of Emperor Penguins (Aptenodytes forsteri).

    Science.gov (United States)

    Xu, Qiwu; Xia, Yan; Dang, Xiao; Chen, Xiaoli

    2016-09-01

    The emperor penguin (Aptenodytes forsteri) is the largest living species of penguin. Herein, we first reported the complete mitochondrial genome of emperor penguin. The mitochondrial genome is a circular molecule of 17 301 bp in length, consisting of 13 protein-coding genes, 22 tRNA genes, two rRNA, and one control region. To verify the accuracy and the utility of new determined mitogenome sequences, we constructed the species phylogenetic tree of emperor penguin together with 10 other closely species. This is the second complete mitochondrial genome of penguin, and this is going to be an important data to study mitochondrial evolution of birds.

  14. Complete Genome Sequence of Escherichia coli Strain WG5

    DEFF Research Database (Denmark)

    Imamovic, Lejla; Misiakou, Maria-Anna; van der Helm, Eric

    2018-01-01

    Escherichia coli strain WG5 is a widely used host for phage detection, including somatic coliphages employed as standard ISO method 10705-1 (2000). Here, we present the complete genome sequence of a commercial E. coli WG5 strain.......Escherichia coli strain WG5 is a widely used host for phage detection, including somatic coliphages employed as standard ISO method 10705-1 (2000). Here, we present the complete genome sequence of a commercial E. coli WG5 strain....

  15. Complete genome sequence of Arcobacter nitrofigilis type strain (CIT)

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2010-01-01

    Arcobacter nitrofigilis (McClung et al. 1983) Vandamme et al. 1991 is the type species of the genus Arcobacter in the epsilonproteobacterial family Campylobacteraceae. The species was first described in 1983 as Campylobacter nitrofigilis [1] after its detection as a free-living, nitrogen-fixing Campylobacter species associated with Spartina alterniflora Loisel. roots [2]. It is of phylogenetic interest because of its lifestyle as a symbiotic organism in a marine environment in contrast to many other Arcobacter species which are associated with warm-blooded animals and tend to be pathogenic. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a type stain of the genus Arcobacter. The 3,192,235 bp genome with its 3,154 protein-coding and 70 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. The complete mitochondrial genome sequence of the Daweishan Mini chicken.

    Science.gov (United States)

    Yan, Ming-Li; Ding, Su-Ping; Ye, Shao-Hui; Wang, Chun-Guang; He, Bao-Li; Yuan, Zhi-Dong; Liu, Li-Li

    2016-01-01

    Daweishan Mini chicken is a valuable chicken breed in China. In this study, the complete mitochondrial genome sequence of Daweishan Mini chicken using PCR amplification, sequencing and assembling has been obtained for the first time. The total length of the mitochondrial genome was 16,785 bp, with the base composition of 30.26% A, 23.73% T, 32.51% C, 13.51% G. It contained 37 genes (2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes) and a major non-coding control region (D-loop region). The protein start codons are ATG, except for COX1 that begins with GTG. The complete mitochondrial genome sequence of Daweishan Mini chicken provides an important data set for further investigation on the phylogenetic relationships within Gallus gallus.

  17. Complete genome sequence of the myxobacterium Sorangium cellulosum

    DEFF Research Database (Denmark)

    Schneiker, S; Perlova, O; Kaiser, O

    2007-01-01

    The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum Soce56, which produces several natural products and has...

  18. Complete Genome Sequence of Prevotella intermedia Strain 17-2

    OpenAIRE

    Nambu, Takayuki; Yamane, Kazuyoshi; Maruyama, Hugo; Mashimo, Chiho; Yamanaka, Takeshi

    2015-01-01

    Prevotella intermedia, a Gram-negative black-pigmented anaerobic rod, is frequently isolated from not only periodontal pockets but also purulent infections. We report here the complete genome sequence of P.?intermedia strain 17-2, which is a non-exopolysaccharide-producing variant obtained from exopolysaccharide (EPS)-producing P.?intermedia strain 17 stock culture.

  19. Complete Genomic Sequence of Rabies Virus from an Ethiopian Wolf

    Science.gov (United States)

    Wise, Emma L.; Ellis, Richard J.; McElhinney, Lorraine M.; Banyard, Ashley C.; Johnson, Nicholas; Deressa, Asefa; Regassa, Fekede; de Lamballerie, Xavier; Fooks, Anthony R.; Sillero-Zubiri, Claudio

    2015-01-01

    Ethiopian wolves are the rarest canid in the world, with only 500 found in the Ethiopian highlands. Rabies poses the most immediate threat to their survival, causing epizootic cycles of mass mortality. The complete genome sequence of a rabies virus (RABV) derived from an Ethiopian wolf during the most recent epizootic is reported here. PMID:25814597

  20. The complete chloroplast genome sequence of Curcuma flaviflora (Curcuma).

    Science.gov (United States)

    Zhang, Yan; Deng, Jiabin; Li, Yangyi; Gao, Gang; Ding, Chunbang; Zhang, Li; Zhou, Yonghong; Yang, Ruiwu

    2016-09-01

    The complete chloroplast (cp) genome of Curcuma flaviflora, a medicinal plant in Southeast Asia, was sequenced. The genome size was 160 478 bp in length, with 36.3% GC content. A pair of inverted repeats (IRs) of 26 946 bp were separated by a large single copy (LSC) of 88 008 bp and a small single copy (SSC) of 18 578 bp, respectively. The cp genome contained 132 annotated genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. And 19 of these genes were duplicated in inverted repeat regions.

  1. Complete genome sequence of Truepera radiovictrix type strain (RQ-24).

    Science.gov (United States)

    Ivanova, Natalia; Rohde, Christine; Munk, Christine; Nolan, Matt; Lucas, Susan; Del Rio, Tijana Glavina; Tice, Hope; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxane; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Brambilla, Evelyne; Rohde, Manfred; Göker, Markus; Tindall, Brian J; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla

    2011-02-22

    Truepera radiovictrix Albuquerque et al. 2005 is the type species of the genus Truepera within the phylum "Deinococcus/Thermus". T. radiovictrix is of special interest not only because of its isolated phylogenetic location in the order Deinococcales, but also because of its ability to grow under multiple extreme conditions in alkaline, moderately saline, and high temperature habitats. Of particular interest is the fact that, T. radiovictrix is also remarkably resistant to ionizing radiation, a feature it shares with members of the genus Deinococcus. This is the first completed genome sequence of a member of the family Trueperaceae and the fourth type strain genome sequence from a member of the order Deinococcales. The 3,260,398 bp long genome with its 2,994 protein-coding and 52 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  2. Complete genome sequence of Tsukamurella paurometabola type strain (no. 33).

    Science.gov (United States)

    Munk, A Christine; Lapidus, Alla; Lucas, Susan; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Del Rio, Tijana Glavina; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Huntemann, Marcel; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Tapia, Roxanne; Han, Cliff; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Brettin, Thomas; Yasawong, Montri; Brambilla, Evelyne-Marie; Rohde, Manfred; Sikorski, Johannes; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2011-07-01

    Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The species is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung infection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806 bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  3. Complete genome sequence of Oceanithermus profundus type strain (506T)

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Zhang, Xiaojing [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Ruhl, Alina [U.S. Department of Energy, Joint Genome Institute; Mwirichia, Romano [University of Munster, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Wirth, Reinhard [Universitat Regensburg, Regensburg, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Land, Miriam L [ORNL

    2011-01-01

    Oceanithermus profundus Miroshnichenko et al. 2003 is the type species of the genus Oceanithermus, which belongs to the family Thermaceae. The genus currently comprises two species whose members are thermophilic and are able to reduce sulfur compounds and nitrite. The organism is adapted to the salinity of sea water, is able to utilize a broad range of carbohydrates, some proteinaceous substrates, organic acids and alcohols. This is the first completed genome sequence of a member of the genus Oceanithermus and the fourth sequence from the family Thermaceae. The 2,439,291 bp long genome with its 2,391 protein-coding and 54 RNA genes consists of one chromosome and a 135,351 bp long plasmid, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Complete genome sequence of 'Thermobaculum terrenum' type strain (YNP1).

    Science.gov (United States)

    Kiss, Hajnalka; Cleland, David; Lapidus, Alla; Lucas, Susan; Del Rio, Tijana Glavina; Nolan, Matt; Tice, Hope; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Lu, Megan; Brettin, Thomas; Detter, John C; Göker, Markus; Tindall, Brian J; Beck, Brian; McDermott, Timothy R; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Cheng, Jan-Fang

    2010-10-27

    'Thermobaculum terrenum' Botero et al. 2004 is the sole species within the proposed genus 'Thermobaculum'. Strain YNP1(T) is the only cultivated member of an acid tolerant, extremely thermophilic species belonging to a phylogenetically isolated environmental clone group within the phylum Chloroflexi. At present, the name 'Thermobaculum terrenum' is not yet validly published as it contravenes Rule 30 (3a) of the Bacteriological Code. The bacterium was isolated from a slightly acidic extreme thermal soil in Yellowstone National Park, Wyoming (USA). Depending on its final taxonomic allocation, this is likely to be the third completed genome sequence of a member of the class Thermomicrobia and the seventh type strain genome from the phylum Chloroflexi. The 3,101,581 bp long genome with its 2,872 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. From Sequence to Morphology - Long-Range Correlations in Complete Sequenced Genomes

    NARCIS (Netherlands)

    T.A. Knoch (Tobias)

    2004-01-01

    textabstractThe largely unresolved sequential organization, i.e. the relations within DNA sequences, and its connection to the three-dimensional organization of genomes was investigated by correlation analyses of completely sequenced chromosomes from Viroids, Archaea, Bacteria, Arabidopsis

  6. Complete genome sequence of Actinosynnema mirum type strain (101T)

    Energy Technology Data Exchange (ETDEWEB)

    Land, Miriam; Lapidus, Alla; Mayilraj, Shanmugam; Chen, Feng; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Chertkov, Olga; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Rohde, Manfred; Goker, Markus; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia; Brettin, Thomas; Detter, John C.; Han, Cliff; Chain, Patrick; Tindall, Brian; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Actinosynnema mirum Hasegawa et al. 1978 is the type species of the genus, and is of phylogenetic interest because of its central phylogenetic location in the Actino-synnemataceae, a rapidly growing family within the actinobacterial suborder Pseudo-nocardineae. A. mirum is characterized by its motile spores borne on synnemata and as a producer of nocardicin antibiotics. It is capable of growing aerobically and under a moderate CO2 atmosphere. The strain is a Gram-positive, aerial and substrate mycelium producing bacterium, originally isolated from a grass blade collected from the Raritan River, New Jersey. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Actinosynnemataceae, and only the second sequence from the actinobacterial suborder Pseudonocardineae. The 8,248,144 bp long single replicon genome with its 7100 protein-coding and 77 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. The complete chloroplast genome sequence of Hibiscus syriacus.

    Science.gov (United States)

    Kwon, Hae-Yun; Kim, Joon-Hyeok; Kim, Sea-Hyun; Park, Ji-Min; Lee, Hyoshin

    2016-09-01

    The complete chloroplast genome sequence of Hibiscus syriacus L. is presented in this study. The genome is composed of 161 019 bp in length, with a typical circular structure containing a pair of inverted repeats of 25 745 bp of length separated by a large single-copy region and a small single-copy region of 89 698 bp and 19 831 bp of length, respectively. The overall GC content is 36.8%. One hundred and fourteen genes were annotated, including 81 protein-coding genes, 4 ribosomal RNA genes and 29 transfer RNA genes.

  8. Complete Genome Sequence of Prevotella intermedia Strain 17-2.

    Science.gov (United States)

    Nambu, Takayuki; Yamane, Kazuyoshi; Maruyama, Hugo; Mashimo, Chiho; Yamanaka, Takeshi

    2015-08-20

    Prevotella intermedia, a Gram-negative black-pigmented anaerobic rod, is frequently isolated from not only periodontal pockets but also purulent infections. We report here the complete genome sequence of P. intermedia strain 17-2, which is a non-exopolysaccharide-producing variant obtained from exopolysaccharide (EPS)-producing P. intermedia strain 17 stock culture. Copyright © 2015 Nambu et al.

  9. The complete chloroplast genome sequence of Chrysanthemum indicum.

    Science.gov (United States)

    Xia, Ye; Hu, Zhigang; Li, Xiwen; Wang, Ping; Zhang, Xiuqiao; Li, Qing; Lu, Chaolong

    2016-11-01

    Chrysanthemum indicum, an important medicinal plant of Asteraceae, had a long history in use for medicine in China. In this study, the complete chloroplast genome of C. indicum was sequenced by a 454 sequencing platform, and the structure of the obtained chloroplast genome was also analyzed. The complete chloroplast genome of C. indicum was 150 972 bp in length and had a pair of inverted repeats (IR, 24 956 bp) separated by a large (LSC, 82 741 bp) and small single copy (SSC, 18 319 bp) regions. Its total GC content was 37.48%. There were 126 chloroplast genes including 83 protein-coding genes, 35 tRNAs and eight rRNAs were successfully annotated. Sixteen genes contained one or two introns. Phylogenetic analyses declared that the chloroplast genome could distinguish C. indicum from its closely related species and might become a potential super barcode for the identification of these species.

  10. Complete genome sequence of Kytococcus sedentarius type strain (541).

    Science.gov (United States)

    Sims, David; Brettin, Thomas; Detter, John C; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D'haeseleer, Patrik; Chain, Patrick; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Schneider, Susanne; Göker, Markus; Pukall, Rüdiger; Kyrpides, Nikos C; Klenk, Hans-Peter

    2009-07-20

    Kytococcus sedentarius (ZoBell and Upham 1944) Stackebrandt et al. 1995 is the type strain of the species, and is of phylogenetic interest because of its location in the Dermacoccaceae, a poorly studied family within the actinobacterial suborder Micrococcineae. Kytococcus sedentarius is known for the production of oligoketide antibiotics as well as for its role as an opportunistic pathogen causing valve endocarditis, hemorrhagic pneumonia, and pitted keratolysis. It is strictly aerobic and can only grow when several amino acids are provided in the medium. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from a marine environment. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Dermacoccaceae and the 2,785,024 bp long single replicon genome with its 2639 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  11. Complete genome sequence of Kytococcus sedentarius type strain (541T)

    Science.gov (United States)

    Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D'haeseleer, Patrik; Chain, Patrick; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Schneider, Susanne; Göker, Markus; Pukall, Rüdiger; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-01-01

    Kytococcus sedentarius (ZoBell and Upham 1944) Stackebrandt et al. 1995 is the type strain of the species, and is of phylogenetic interest because of its location in the Dermacoccaceae, a poorly studied family within the actinobacterial suborder Micrococcineae. Kytococcus sedentarius is known for the production of oligoketide antibiotics as well as for its role as an opportunistic pathogen causing valve endocarditis, hemorrhagic pneumonia, and pitted keratolysis. It is strictly aerobic and can only grow when several amino acids are provided in the medium. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from a marine environment. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Dermacoccaceae and the 2,785,024 bp long single replicon genome with its 2639 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304632

  12. Complete genome sequence of Desulfomicrobium baculatum type strain (XT)

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Alex; Spring, Stefan; Goker, Markus; Schneider, Susanne; Lapidus, Alla; Glavina Del Rio, Tijana; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C; Meincke, Linda; Sims, David; Brettin, Thomas; Detter, John C; Han, Cliff; Chain, Patrick; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C; Lucas, Susan

    2009-05-20

    Desulfomicrobium baculatum is the type species of the genus Desulfomicrobium, which is the type genus of the family Desulfomicrobiaceae. It is of phylogenetic interest because of the isolated location of the family Desulfomicrobiaceae within the order Desulfovibrionales. D. baculatum strain XT is a Gram-negative, motile, sulfate-reducing bacterium isolated from water-saturated manganese carbonate ore. It is strictly anaerobic and does not require NaCl for growth, although NaCl concentrations up to 6percent (w/v) are tolerated. The metabolism is respiratory or fermentative. In the presence of sulfate, pyruvate and lactate are incompletely oxidized to acetate and CO2. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the deltaproteobacterial family Desulfomicrobiaceae, and this 3,942,657 bp long single replicon genome with its 3494 protein-coding and 72 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  13. The complete chloroplast genome sequence of Euonymus japonicus (Celastraceae).

    Science.gov (United States)

    Choi, Kyoung Su; Park, SeonJoo

    2016-09-01

    The complete chloroplast (cp) genome sequence of the Euonymus japonicus, the first sequenced of the genus Euonymus, was reported in this study. The total length was 157 637 bp, containing a pair of 26 678 bp inverted repeat region (IR), which were separated by small single copy (SSC) region and large single copy (LSC) region of 18 340 bp and 85 941 bp, respectively. This genome contains 107 unique genes, including 74 coding genes, four rRNA genes, and 29 tRNA genes. Seventeen genes contain intron of E. japonicus, of which three genes (clpP, ycf3, and rps12) include two introns. The maximum likelihood (ML) phylogenetic analysis revealed that E. japonicus was closely related to Manihot and Populus.

  14. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    Energy Technology Data Exchange (ETDEWEB)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.; Kuehl, Jennifer V.; Boore, Jeffrey L.; dePamphilis, Claude W.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.

  15. Complete genome sequence of Paenibacillus sp. strain JDR-2

    Science.gov (United States)

    Chow, Virginia; Nong, Guang; St. John, Franz J.; Rice, John D.; Dickstein, Ellen; Chertkov, Olga; Bruce, David; Detter, Chris; Brettin, Thomas; Han, James; Woyke, Tanja; Pitluck, Sam; Nolan, Matt; Pati, Amrita; Martin, Joel; Copeland, Alex; Land, Miriam L.; Goodwin, Lynne; Jones, Jeffrey B.; Ingram, Lonnie O.; Shanmugam, Keelnathan T.; Preston, James F.

    2012-01-01

    Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of β-1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources. PMID:22675593

  16. Complete genome sequence of Paenibacillus sp. strain JDR-2

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Virginia [University of Florida; Nong, Guang [University of Florida; St. John, Franz J. [US Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA; Dickstein, Ellen [University of Florida; Chertkov, Olga [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Brettin, Thomas S [ORNL; Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Martin, Joel [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Jones, Jeffrey B. [University of Florida; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida; Preston, James F. [University of Florida

    2012-01-01

    Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of -1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.

  17. Complete genome sequence of Paenibacillus sp. strain JDR-2.

    Science.gov (United States)

    Chow, Virginia; Nong, Guang; St John, Franz J; Rice, John D; Dickstein, Ellen; Chertkov, Olga; Bruce, David; Detter, Chris; Brettin, Thomas; Han, James; Woyke, Tanja; Pitluck, Sam; Nolan, Matt; Pati, Amrita; Martin, Joel; Copeland, Alex; Land, Miriam L; Goodwin, Lynne; Jones, Jeffrey B; Ingram, Lonnie O; Shanmugam, Keelnathan T; Preston, James F

    2012-03-19

    Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of β-1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.

  18. Complete nucleotide sequences of avian metapneumovirus subtype B genome.

    Science.gov (United States)

    Sugiyama, Miki; Ito, Hiroshi; Hata, Yusuke; Ono, Eriko; Ito, Toshihiro

    2010-12-01

    Complete nucleotide sequences were determined for subtype B avian metapneumovirus (aMPV), the attenuated vaccine strain VCO3/50 and its parental pathogenic strain VCO3/60616. The genomes of both strains comprised 13,508 nucleotides (nt), with a 42-nt leader at the 3'-end and a 46-nt trailer at the 5'-end. The genome contains eight genes in the order 3'-N-P-M-F-M2-SH-G-L-5', which is the same order shown in the other metapneumoviruses. The genes are flanked on either side by conserved transcriptional start and stop signals and have intergenic sequences varying in length from 1 to 88 nt. Comparison of nt and predicted amino acid (aa) sequences of VCO3/60616 with those of other metapneumoviruses revealed higher homology with aMPV subtype A virus than with other metapneumoviruses. A total of 18 nt and 10 deduced aa differences were seen between the strains, and one or a combination of several differences could be associated with attenuation of VCO3/50.

  19. Complete genome sequence of “Enterobacter lignolyticus” SCF1

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, Kristen M.; D' Haeseleer, Patrik; Chivian, Dylan; Fortney, Julian L.; Khudyakov, Jane I.; Simmons, Blake A.; Woo, Hannah; Arkin, Adam P.; Davenport, Karen W.; Goodwin, Lynne A.; Chen, Amy; Ivanova, Natalia; Kyrpides, Nikos C.; Mavromatis, Konstantinos; Woyke, Tanja; Hazen, Terry C.

    2011-09-23

    In an effort to discover anaerobic bacteria capable of lignin degradation, we isolated 'Ente-robacter lignolyticus' SCF1 on minimal media with alkali lignin as the sole source of carbon. This organism was isolated anaerobically from tropical forest soils collected from the Short Cloud Forest site in the El Yunque National Forest in Puerto Rico, USA, part of the Luquillo Long-Term Ecological Research Station. At this site, the soils experience strong fluctuations in redox potential and are net methane producers. Because of its ability to grow on lignin anae-robically, we sequenced the genome. The genome of 'E. lignolyticus' SCF1 is 4.81 Mbp with no detected plasmids, and includes a relatively small arsenal of lignocellulolytic carbohy-drate active enzymes. Lignin degradation was observed in culture, and the genome revealed two putative laccases, a putative peroxidase, and a complete 4-hydroxyphenylacetate degra-dation pathway encoded in a single gene cluster.

  20. Complete Genome Sequence of Mycobacterium phlei Type Strain RIVM601174

    KAUST Repository

    Abdallah, A. M.

    2012-05-24

    Mycobacterium phlei is a rapidly growing nontuberculous Mycobacterium species that is typically nonpathogenic, with few reported cases of human disease. Here we report the whole genome sequence of M. phlei type strain RIVM601174.

  1. Complete Genome Sequence of Peste des Petits Ruminants Virus from Georgia, 2016

    OpenAIRE

    Rajko-Nenow, Paulina Z.; Cunliffe, Tabitha G.; Flannery, John T.; Ropiak, Honorata M.; Avaliani, Lasha; Donduashvili, Marina; Baron, Michael D.; Batten, Carrie A.

    2017-01-01

    ABSTRACT We report here the complete genome sequence of a peste des petits ruminants virus (PPRV) from the first outbreak of the disease in Georgia in January 2016. Genome sequencing was performed using Illumina next-generation sequencing technology in conjunction with Sanger sequencing. This PPRV/Georgia/Tbilisi/2016 genome sequence clustered within lineage IV PPRV viruses.

  2. Complete Genome Sequence of Pediococcus pentosaceus Strain SL4

    DEFF Research Database (Denmark)

    Dantoft, Shruti Harnal; Bielak, Eliza Maria; Seo, Jae-Gu

    2013-01-01

    Pediococcus pentosaceus SL4 was isolated from a Korean fermented vegetable product, kimchi. We report here the whole-genome sequence (WGS) of P. pentosaceus SL4. The genome consists of a 1.79-Mb circular chromosome (G+C content of 37.3%) and seven distinct plasmids ranging in size from 4 kb to 50...

  3. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    Directory of Open Access Journals (Sweden)

    Martijn Staats

    Full Text Available Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes, but at least generating vital comparative genomic data for testing (phylogenetic, demographic and genetic hypotheses, that become increasingly more

  4. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    Science.gov (United States)

    Staats, Martijn; Erkens, Roy H J; van de Vossenberg, Bart; Wieringa, Jan J; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E; Bakker, Freek T

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal

  5. Complete genome sequence of Serratia plymuthica strain AS12

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Saraswoti [Uppsala University, Uppsala, Sweden; Finlay, Roger D. [Uppsala University, Uppsala, Sweden; Alstrom, Sadhna [Uppsala University, Uppsala, Sweden; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Hogberg, Nils [Uppsala University, Uppsala, Sweden

    2012-01-01

    A plant associated member of the family Enterobacteriaceae, Serratia plymuthica strain AS12 was isolated from rapeseed roots. It is of scientific interest due to its plant growth promoting and plant pathogen inhibiting ability. The genome of S. plymuthica AS12 comprises a 5,443,009 bp long circular chromosome, which consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced within the 2010 DOE-JGI Community Sequencing Program (CSP2010) as part of the project entitled 'Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens'.

  6. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp in size; it contains a large single-copy (LSC, 76,598 bp and a small single-copy region (SSC, 42,977 bp, separated by two inverted repeats (IRa and IRb: 5,404 bp. The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome.

  7. Complete genome sequence of a street rabies virus from Mexico.

    Science.gov (United States)

    Zhang, Guoqing; Fu, Zhen F

    2012-10-01

    A canine rabies virus (RABV) has been used as a street rabies virus in laboratory investigations. Its entire genome was sequenced and found to be closely related to that of canine RABV circulating in Mexico. Sequence comparison indicates that the virus is closely related to those in the "cosmopolitan" group, with high homology (89 to 93%) to clade I of rabies viruses. The virus is now termed dog rabies virus-Mexico (DRV-Mexico).

  8. Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing.

    Science.gov (United States)

    Vrancken, Bram; Trovão, Nídia Sequeira; Baele, Guy; van Wijngaerden, Eric; Vandamme, Anne-Mieke; van Laethem, Kristel; Lemey, Philippe

    2016-01-07

    Genetic analyses play a central role in infectious disease research. Massively parallelized "mechanical cloning" and sequencing technologies were quickly adopted by HIV researchers in order to broaden the understanding of the clinical importance of minor drug-resistant variants. These efforts have, however, remained largely limited to small genomic regions. The growing need to monitor multiple genome regions for drug resistance testing, as well as the obvious benefit for studying evolutionary and epidemic processes makes complete genome sequencing an important goal in viral research. In addition, a major drawback for NGS applications to RNA viruses is the need for large quantities of input DNA. Here, we use a generic overlapping amplicon-based near full-genome amplification protocol to compare low-input enzymatic fragmentation (Nextera™) with conventional mechanical shearing for Roche 454 sequencing. We find that the fragmentation method has only a modest impact on the characterization of the population composition and that for reliable results, the variation introduced at all steps of the procedure--from nucleic acid extraction to sequencing--should be taken into account, a finding that is also relevant for NGS technologies that are now more commonly used. Furthermore, by applying our protocol to deep sequence a number of pre-therapy plasma and PBMC samples, we illustrate the potential benefits of a near complete genome sequencing approach in routine genotyping.

  9. A Pan-HIV Strategy for Complete Genome Sequencing

    Science.gov (United States)

    Yamaguchi, Julie; Alessandri-Gradt, Elodie; Tell, Robert W.; Brennan, Catherine A.

    2015-01-01

    Molecular surveillance is essential to monitor HIV diversity and track emerging strains. We have developed a universal library preparation method (HIV-SMART [i.e., switching mechanism at 5′ end of RNA transcript]) for next-generation sequencing that harnesses the specificity of HIV-directed priming to enable full genome characterization of all HIV-1 groups (M, N, O, and P) and HIV-2. Broad application of the HIV-SMART approach was demonstrated using a panel of diverse cell-cultured virus isolates. HIV-1 non-subtype B-infected clinical specimens from Cameroon were then used to optimize the protocol to sequence directly from plasma. When multiplexing 8 or more libraries per MiSeq run, full genome coverage at a median ∼2,000× depth was routinely obtained for either sample type. The method reproducibly generated the same consensus sequence, consistently identified viral sequence heterogeneity present in specimens, and at viral loads of ≤4.5 log copies/ml yielded sufficient coverage to permit strain classification. HIV-SMART provides an unparalleled opportunity to identify diverse HIV strains in patient specimens and to determine phylogenetic classification based on the entire viral genome. Easily adapted to sequence any RNA virus, this technology illustrates the utility of next-generation sequencing (NGS) for viral characterization and surveillance. PMID:26699702

  10. Complete Genome Sequence of Mycobacterium vaccae Type Strain ATCC 25954

    KAUST Repository

    Ho, Y. S.

    2012-10-26

    Mycobacterium vaccae is a rapidly growing, nontuberculous Mycobacterium species that is generally not considered a human pathogen and is of major pharmaceutical interest as an immunotherapeutic agent. We report here the annotated genome sequence of the M. vaccae type strain, ATCC 25954.

  11. Complete Genome Sequence of Beijerinckia indica subsp. indica▿

    Science.gov (United States)

    Tamas, Ivica; Dedysh, Svetlana N.; Liesack, Werner; Stott, Matthew B.; Alam, Maqsudul; Murrell, J. Colin; Dunfield, Peter F.

    2010-01-01

    Beijerinckia indica subsp. indica is an aerobic, acidophilic, exopolysaccharide-producing, N2-fixing soil bacterium. It is a generalist chemoorganotroph that is phylogenetically closely related to facultative and obligate methanotrophs of the genera Methylocella and Methylocapsa. Here we report the full genome sequence of this bacterium. PMID:20601475

  12. Complete genome sequence of Beijerinckia indica subsp. indica.

    Science.gov (United States)

    Tamas, Ivica; Dedysh, Svetlana N; Liesack, Werner; Stott, Matthew B; Alam, Maqsudul; Murrell, J Colin; Dunfield, Peter F

    2010-09-01

    Beijerinckia indica subsp. indica is an aerobic, acidophilic, exopolysaccharide-producing, N(2)-fixing soil bacterium. It is a generalist chemoorganotroph that is phylogenetically closely related to facultative and obligate methanotrophs of the genera Methylocella and Methylocapsa. Here we report the full genome sequence of this bacterium.

  13. Complete Genome Sequence of Enterococcus faecium Commensal Isolate E1002

    NARCIS (Netherlands)

    Tytgat, Hanne L P; Douillard, François P; Laine, Pia K; Paulin, Lars; Willems, Rob J L; de Vos, Willem M

    2016-01-01

    The emergence of vancomycin-resistant enterococci (VRE) has been associated with an increase in multidrug-resistant nosocomial infections. Here, we report the 2.614-Mb genome sequence of the Enterococcus faecium commensal isolate E1002, which will be instrumental in further understanding the

  14. The complete mitochondrial genome sequence of Tylototriton taliangensis (Amphibia: Caudata).

    Science.gov (United States)

    Jiang, Ye; Li, Ziyuan; Liu, Jiabin; Li, Yan; Ni, Qingyong; Yao, Yongfang; Xu, Huailiang; Li, Ying; Zhang, Mingwang

    2016-07-01

    Tylototriton taliangensis was listed as a Near Threatened amphibian in IUCN red list. In this study, we sequenced the complete mitochondrial (mt) genome of this species (GenBank: KP979646) and found it contains 16,265 base pairs, which encode 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA) and 1 control region (CR). We also found that almost all PCGs and tRNA genes are located on the H-strand, except for ND6 subunit gene and eight tRNA genes, which were distributed on the L-strand. The PCGs used "ATG" and "GTG" as the start codon, while used four types of stop codons. Almost all tRNA genes were folded into typical cloverleaf secondary structures. The L-strand replication origin (OL) and a non-coding region were also found. The new mitogenomic phylogenetic tree confirms the reciprocally monophyly of the genus Tylototriton, Echinotriton and Pleurodeles with high bootstrap value. The present study will provide information for future studies on the conservation genetics and phylogeny of this species and its relatives.

  15. Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing

    Directory of Open Access Journals (Sweden)

    Bram Vrancken

    2016-01-01

    Full Text Available Genetic analyses play a central role in infectious disease research. Massively parallelized “mechanical cloning” and sequencing technologies were quickly adopted by HIV researchers in order to broaden the understanding of the clinical importance of minor drug-resistant variants. These efforts have, however, remained largely limited to small genomic regions. The growing need to monitor multiple genome regions for drug resistance testing, as well as the obvious benefit for studying evolutionary and epidemic processes makes complete genome sequencing an important goal in viral research. In addition, a major drawback for NGS applications to RNA viruses is the need for large quantities of input DNA. Here, we use a generic overlapping amplicon-based near full-genome amplification protocol to compare low-input enzymatic fragmentation (Nextera™ with conventional mechanical shearing for Roche 454 sequencing. We find that the fragmentation method has only a modest impact on the characterization of the population composition and that for reliable results, the variation introduced at all steps of the procedure—from nucleic acid extraction to sequencing—should be taken into account, a finding that is also relevant for NGS technologies that are now more commonly used. Furthermore, by applying our protocol to deep sequence a number of pre-therapy plasma and PBMC samples, we illustrate the potential benefits of a near complete genome sequencing approach in routine genotyping.

  16. The complete chloroplast genome sequence of Dioscorea zingiberensis (Dioscoreceae).

    Science.gov (United States)

    Zhou, Wen; Chen, Chen; Hua, Wen-Ping; Wang, Zhe-Zhi

    2016-07-01

    Dioscorea zingiberensis (Dioscoreceae) is an important medicinal plant endemic to China. Here, its chloroplast genome sequence is reconstructed from the whole-genome Illumina sequencing data. The circular genome is 153,970 bp in length, and comprises a pair of inverted repeat (IR) regions of 25,491 bp each, a large single-copy (LSC) region of 83,950 bp and a small single-copy (SSC) region of 19,038 bp. The chloroplast genome contains 132 genes, including 86 protein-coding genes (79 PCG species), 8 ribosomal RNA genes (four rRNA species) and 38 transfer RNA genes (30 tRNA species). Out of these genes, 10 harbor a single intron, and 7 contain a couple of introns. The overall A + T content of the whole genome is 62.8%, while the corresponding values of the LSC, SSC and IR regions are 64.9%, 68.8% and 57.0%, respectively.

  17. Complete genome sequence of Treponema succinifaciens type strain (6091T)

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cliff [Los Alamos National Laboratory (LANL); Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Treponema succinifaciens Cwyk and Canale-Parola 1981 is of interest because this strictly anaerobic, apathogenic member of the genus Treponema oxidizes carbohydrates and couples the Embden-Meyerhof pathway via activity of a pyruvate-formate lyase to the production of acetyl-coenzyme A and formate. This feature separates this species from most other anaerob- ic spirochetes. The genome of T. succinifaciens 6091T is only the second completed and pub- lished type strain genome from the genus Treponema in the family Spirochaetaceae. The 2,897,425 bp long genome with one plasmid harbors 2,723 protein-coding and 63 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. Complete Genome Sequence of Mycobacterium xenopi Type Strain RIVM700367

    KAUST Repository

    Abdallah, A. M.

    2012-05-24

    Mycobacterium xenopi is a slow-growing, thermophilic, water-related Mycobacterium species. Like other nontuberculous mycobacteria, M. xenopi more commonly infects humans with altered immune function, such as chronic obstructive pulmonary disease patients. It is considered clinically relevant in a significant proportion of the patients from whom it is isolated. We report here the whole genome sequence of M. xenopi type strain RIVM700367.

  19. Complete genome sequence of an attenuated Sparfloxacin-resistant Streptococcus agalactiae strain 138spar

    Science.gov (United States)

    The complete genome of a sparfloxacin-resistant Streptococcus agalactiae vaccine strain 138spar is 1,838,126 bp in size. The genome has 1892 coding sequences and 82 RNAs. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipeline. The publishing of this genome will allo...

  20. Complete genome sequence analysis of chicken astrovirus isolate from India.

    Science.gov (United States)

    Patel, Amrutlal K; Pandit, Ramesh J; Thakkar, Jalpa R; Hinsu, Ankit T; Pandey, Vinod C; Pal, Joy K; Prajapati, Kantilal S; Jakhesara, Subhash J; Joshi, Chaitanya G

    2017-03-01

    Chicken astroviruses have been known to cause severe disease in chickens leading to increased mortality and "white chicks" condition. Here we aim to characterize the causative agent of visceral gout suspected for astrovirus infection in broiler breeder chickens. Total RNA isolated from allantoic fluid of SPF embryo passaged with infected chicken sample was sequenced by whole genome shotgun sequencing using ion-torrent PGM platform. The sequence was analysed for the presence of coding and non-coding features, its similarity with reported isolates and epitope analysis of capsid structural protein. The consensus length of 7513 bp genome sequence of Indian isolate of chicken astrovirus was obtained after assembly of 14,121 high quality reads. The genome was comprised of 13 bp 5'-UTR, three open reading frames (ORFs) including ORF1a encoding serine protease, ORF1b encoding RNA dependent RNA polymerase (RdRp) and ORF2 encoding capsid protein, and 298 bp of 3'-UTR which harboured two corona virus stem loop II like "s2m" motifs and a poly A stretch of 19 nucleotides. The genetic analysis of CAstV/INDIA/ANAND/2016 suggested highest sequence similarity of 86.94% with the chicken astrovirus isolate CAstV/GA2011 followed by 84.76% with CAstV/4175 and 74.48%% with CAstV/Poland/G059/2014 isolates. The capsid structural protein of CAstV/INDIA/ANAND/2016 showed 84.67% similarity with chicken astrovirus isolate CAstV/GA2011, 81.06% with CAstV/4175 and 41.18% with CAstV/Poland/G059/2014 isolates. However, the capsid protein sequence showed high degree of sequence identity at nucleotide level (98.64-99.32%) and at amino acids level (97.74-98.69%) with reported sequences of Indian isolates suggesting their common origin and limited sequence divergence. The epitope analysis by SVMTriP identified two unique epitopes in our isolate, seven shared epitopes among Indian isolates and two shared epitopes among all isolates except Poland isolate which carried all distinct epitopes.

  1. Complete Genome Sequences of Chrysanthemum Stunt Viroid from a Single Chrysanthemum Cultivar

    OpenAIRE

    Choi, Hoseong; Jo, Yeonhwa; Yoon, Ju-Yeon; Choi, Seung-Kook; Cho, Won Kyong

    2015-01-01

    The chrysanthemum stunt viroid (CSVd), a member of the genus Pospiviroid with a single circular RNA genome, infects many chrysanthemum species. Here, we report 25 complete genome sequences of CSVd in a single chrysanthemum cultivar, revealing 20 variants.

  2. Complete genome sequence of a giant Vibrio phage ValKK3 infecting Vibrio alginolyticus

    OpenAIRE

    Lal, Tamrin M.; Sano, Motohiko; Hatai, Kishio; Ransangan, Julian

    2016-01-01

    This paper describes the complete sequence of a giant lytic marine myophage, Vibrio phage ValKK3 that is specific to Vibrio alginolyticus ATCC® 17749™. Vibrio phage ValKK3 was subjected to whole genome sequencing on MiSeq sequencing platform and annotated using Blast2Go. The complete sequence of ValKK3 genome was deposited in DBBJ/EMBL/GenBank under accession number KP671755.

  3. Complete genome sequence of a giant Vibrio phage ValKK3 infecting Vibrio alginolyticus

    Directory of Open Access Journals (Sweden)

    Tamrin M. Lal

    2016-06-01

    Full Text Available This paper describes the complete sequence of a giant lytic marine myophage, Vibrio phage ValKK3 that is specific to Vibrio alginolyticus ATCC® 17749™. Vibrio phage ValKK3 was subjected to whole genome sequencing on MiSeq sequencing platform and annotated using Blast2Go. The complete sequence of ValKK3 genome was deposited in DBBJ/EMBL/GenBank under accession number KP671755.

  4. Complete genome sequence of Mesorhizobium opportunistum type strain WSM2075

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, Wayne [Murdoch University, Perth, Australia; Nandesena, Kemanthi [Murdoch University, Perth, Australia; YatesIII, John R. [Scripps Research Institute, The, La Jolla, CA; Tiwari, Ravi [Murdoch University, Perth, Australia; O' Hara, Graham [Murdoch University, Perth, Australia; Ninawi, Mohamed [Murdoch University, Perth, Australia; Chertkov, Olga [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Meenakshi, Uma [Murdoch University, Perth, Australia; Howieson, John [Murdoch University, Perth, Australia

    2013-01-01

    Mesorhizobium opportunistum strain WSM2075T was isolated inWestern Australia in 2000 from root nodules of the pasture legume Biserrula pelecinus that had beeninoculated with M. ciceri bv. biserrulae WSM1271. WSM2075T is an aerobic, motile, Gram negative, non-spore-forming rod that has gained the ability to nodulate B. pelecinus but is completely ineffective in N2 fixation with this host. This report reveals thegenome of M. opportunistum strain WSM2075T contains a chromosome ofsize 6,884,444 bp which encodes 6,685 protein-coding genes and 62 RNA-onlyencoding genes. This genome does not contain any plasmids but has a 455.7 kbgenomic island from Mesorhizobium ciceri bv. biserrulae WSM1271 that has been integrated into a phenylalanine-tRNA gene.

  5. Complete Genome Sequence of Thermus aquaticus Y51MC23.

    Directory of Open Access Journals (Sweden)

    Phillip J Brumm

    Full Text Available Thermus aquaticus Y51MC23 was isolated from a boiling spring in the Lower Geyser Basin of Yellowstone National Park. Remarkably, this T. aquaticus strain is able to grow anaerobically and produces multiple morphological forms. Y51MC23 is a Gram-negative, rod-shaped organism that grows well between 50°C and 80°C with maximum growth rate at 65°C to 70°C. Growth studies suggest that Y51MC23 primarily scavenges protein from the environment, supported by the high number of secreted and intracellular proteases and peptidases as well as transporter systems for amino acids and peptides. The genome was assembled de novo using a 350 bp fragment library (paired end sequencing and an 8 kb long span mate pair library. A closed and finished genome was obtained consisting of a single chromosome of 2.15 Mb and four plasmids of 11, 14, 70, and 79 kb. Unlike other Thermus species, functions usually found on megaplasmids were identified on the chromosome. The Y51MC23 genome contains two full and two partial prophage as well as numerous CRISPR loci. The high identity and synteny between Y51MC23 prophage 2 and that of Thermus sp. 2.9 is interesting, given the 8,800 km separation of the two hot springs from which they were isolated. The anaerobic lifestyle of Y51MC23 is complex, with multiple morphologies present in cultures. The use of fluorescence microscopy reveals new details about these unusual morphological features, including the presence of multiple types of large and small spheres, often forming a confluent layer of spheres. Many of the spheres appear to be formed not from cell envelope or outer membrane components as previously believed, but from a remodeled peptidoglycan cell wall. These complex morphological forms may serve multiple functions in the survival of the organism, including food and nucleic acid storage as well as colony attachment and organization.

  6. Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis

    DEFF Research Database (Denmark)

    Nosek, J.; Novotna, M.; Hlavatovicova, Z.

    2004-01-01

    The complete sequence of the mitochondrial DNA of the opportunistic yeast pathogen Candida parapsilosis was determined. The mitochondrial genome is represented by linear DNA molecules terminating with tandem repeats of a 738-bp unit. The number of repeats varies, thus generating a population...... mitochondrial genome of its close relative C. albicans. The complete sequence has implications for both mitochondrial DNA replication and the evolution of linear DNA genomes....

  7. Complete chloroplast genome sequence of Elodea canadensis and comparative analyses with other monocot plastid genomes.

    Science.gov (United States)

    Huotari, Tea; Korpelainen, Helena

    2012-10-15

    Elodea canadensis is an aquatic angiosperm native to North America. It has attracted great attention due to its invasive nature when transported to new areas in its non-native range. We have determined the complete nucleotide sequence of the chloroplast (cp) genome of Elodea. Taxonomically Elodea is a basal monocot, and only few monocot cp genomes representing early lineages of monocots have been sequenced so far. The genome is a circular double-stranded DNA molecule 156,700 bp in length, and has a typical structure with large (LSC 86,194 bp) and small (SSC 17,810 bp) single-copy regions separated by a pair of inverted repeats (IRs 26,348 bp each). The Elodea cp genome contains 113 unique genes and 16 duplicated genes in the IR regions. A comparative analysis showed that the gene order and organization of the Elodea cp genome is almost identical to that of Amborella trichopoda, a basal angiosperm. The structure of IRs in Elodea is unique among monocot species with the whole cp genome sequenced. In Elodea and another monocot Lemna minor the borders between IRs and LSC are located upstream of rps 19 gene and downstream of trnH-GUG gene, while in most monocots, IR has extended to include both trnH and rps 19 genes. A phylogenetic analysis conducted using Bayesian method, based on the DNA sequences of 81 chloroplast genes from 17 monocot taxa provided support for the placement of Elodea together with Lemna as a basal monocot and the next diverging lineage of monocots after Acorales. In comparison with other monocots, the Elodea cp genome has gone through only few rearrangements or gene losses. IR of Elodea has a unique structure among the monocot species studied so far as its structure is similar to that of a basal angiosperm Amborella. This result together with phylogenetic analyses supports the placement of Elodea as a basal monocot to the next diverging lineage of monocots after Acorales. So far, only few cp genomes representing early lineages of monocots have been

  8. The complete mitochondrial genome sequence of Neovison vison (Carnivora: Mustelidae).

    Science.gov (United States)

    Sun, Wei-Li; Wang, Shao-Jing; Wang, Zhuo; Liu, Han-Lu; Zhong, Wei; Yang, Ya-Han; Li, Guang-Yu

    2016-05-01

    The phylogenetic and taxonomic position of the American mink Neovison vison have long been unclear. In this paper, the complete mitogenome of N. vison was sequenced and characterized. The total length was 16,594 bp and typically consists of 37 genes, including 13 protein-coding genes, 2 rRNAs, 22 tRNA, a large control region (CR) and a light-strand replication origin (OL). Gene contents, locations, and arrangements were identical to those of typical vertebrate. The overall base composition is 33.6%, 25.4%, 27.8% and 13.3% for A, C, T and G, respectively, with a moderate bias on AT content (61.4%). This result is expected to provide useful molecular data and contribute to further taxonomic and phylogenetic studies of Mustelidae and Carnivora.

  9. The complete mitochondrial genome sequence of Symphysodon discus Heckel (1840).

    Science.gov (United States)

    Yu, Yongliang; Chen, Zaizhong; Li, Zhongpu; Wang, Lei; Luo, Xiaoxi; Gao, Jianzhong

    2016-07-01

    The complete mitochondrial genome of Symphysodon discus Heckel was 16 544 bp in length, consisting of 22 tRNA genes, 13 protein-coding genes, 2 ribosomal rRNA genes, and a control region or displacement loop (D-loop). With the exception of 8 tRNAs and ND6 genes, the others were encoded on H-strand. The base composition on H-strand was 30.04% C, 28.39% A, 26.49% T and 15.07% G, exhibiting an A + T rich pattern. The codon usage was consistent with the other vertebrate mitochondrial pattern, i.e. start codon is ATG or GTG and stop codons are TAA, TAG or T- -. Stop codon TAG was only found in the ND6. There were 8 regions of gene overlapped with the length of 26 bp in total and 12 intergenic spacer regions (99 bp in total).

  10. Complete genome sequence of the hippuricase-positive Campylobacter avium type strain LMG 24591

    Science.gov (United States)

    Campylobacter avium is a hippurate-positive, thermotolerant campylobacter that has been isolated from poultry. Here we present the genome sequences of two C. avium strains isolated from broiler chickens: strains LMG 24591T (complete genome) and LMG 24592 (draft genome). The C. avium type strain geno...

  11. Complete Genomic Sequence of Maize Rough Dwarf Virus, a Fijivirus Transmitted by the Small Brown Planthopper

    OpenAIRE

    Lv, Mingfang; Xie, Li; Yang, Jian; Chen, Jianping; Zhang, Heng-Mu

    2016-01-01

    The nucleotide sequences of the 10 genomic segments of an Italian isolate of maize rough dwarf virus (MRDV) were determined. This first complete genomic sequence of MRDV will help understand the phylogenetic relationships among group 2 fijiviruses and especially the closely related rice black-streaked dwarf virus, which is also found to naturally infect maize.

  12. Complete Genome Sequences of Edwardsiella tarda-Lytic Bacteriophages KF-1 and IW-1.

    Science.gov (United States)

    Yasuike, Motoshige; Sugaya, Emi; Nakamura, Yoji; Shigenobu, Yuya; Kawato, Yasuhiko; Kai, Wataru; Fujiwara, Atushi; Sano, Motohiko; Kobayashi, Takanori; Nakai, Toshihiro

    2013-01-01

    We report the complete genome sequences of two Edwardsiella tarda-lytic bacteriophages isolated from flounder kidney (KF-1) and seawater (IW-1). These newly sequenced phage genomes provide a novel resource for future studies on phage-host interaction mechanisms and various applications of the phages for control of edwardsiellosis in aquaculture.

  13. Unique Sequence Features of the Human Adenovirus 31 Complete Genomic Sequence are Conserved in Clinical Isolates

    OpenAIRE

    Hofmayer, Soeren; Darr, Sebastian; Rehren, Fabienne; Heim, Albert; Madisch, Ijad

    2009-01-01

    Abstract Background Human adenoviruses (HAdV) are causing a broad spectrum of diseases. One of the most severe forms of adenovirus infection is a disseminated disease resulting in significant morbidity and mortality. Several reports in recent years have identified HAdV-31 from species A (HAdV-A31) as a cause of disseminated disease in children following haematopoetic stem cell transplantation (hSCT) and liver transplantation. We sequenced and analyzed the complete genome of the HAdV-A31 proto...

  14. Complete genome sequence of Pectobacterium carotovorum subsp. carotovorum bacteriophage My1.

    Science.gov (United States)

    Lee, Dong Hwan; Lee, Ju-Hoon; Shin, Hakdong; Ji, Samnyu; Roh, Eunjung; Jung, Kyusuk; Ryu, Sangryeol; Choi, Jaehyuk; Heu, Sunggi

    2012-10-01

    Pectobacterium carotovorum subsp. carotovorum, a member of the Enterobacteriaceae family, is an important plant-pathogenic bacterium causing significant economic losses worldwide. P. carotovorum subsp. carotovorum bacteriophage My1 was isolated from a soil sample. Its genome was completely sequenced and analyzed for the development of an effective biological control agent. Sequence and morphological analyses revealed that phage My1 is a T5-like bacteriophage and belongs to the family Siphoviridae. To date, there is no report of a Pectobacterium-targeting siphovirus genome sequence. Here, we announce the complete genome sequence of phage My1 and report the results of our analysis.

  15. The complete mitochondrial genome sequence of Colossoma macropomum (Characiformes: Serrasalmidae).

    Science.gov (United States)

    Wu, Yu-Peng; Xie, Jing-Fang; He, Qiu-Sheng; Xie, Jian-Lin

    2016-11-01

    Colossoma macropomum (Cuvier, 1816) is the largest characin of South America. This species and its congeners mainly feed on zooplankton, insects, snails and decaying plants. In this paper, we sequenced and annotated the complete mitogenome of C. macropomum. The total length is 16,703 bp, and it typically consist of 37 genes, including 13 protein-coding genes, two rRNAs, 22 tRNA, a light-strand replication origin (O L ) and a large control region (D-loop). The overall base composition is 29.9%, 24.6%, 29.5% and 15.9% for A, T, C and G, respectively, with a slight bias on AT content (54.6%). All protein-coding genes share the start codon ATG, except for COI, which begins with GTG. Most of them have TAA or TAG as the stop codon, except COII, ND4 use AGA and COI, Cytb use an incomplete stop codon T. This information could provide useful molecular data and contribute to further phylogenetic studies of Characiformes and Serrasalmidae.

  16. Unique sequence features of the Human Adenovirus 31 complete genomic sequence are conserved in clinical isolates

    Directory of Open Access Journals (Sweden)

    Darr Sebastian

    2009-11-01

    Full Text Available Abstract Background Human adenoviruses (HAdV are causing a broad spectrum of diseases. One of the most severe forms of adenovirus infection is a disseminated disease resulting in significant morbidity and mortality. Several reports in recent years have identified HAdV-31 from species A (HAdV-A31 as a cause of disseminated disease in children following haematopoetic stem cell transplantation (hSCT and liver transplantation. We sequenced and analyzed the complete genome of the HAdV-A31 prototype strain to uncover unique sequence motifs associated with its high virulence. Moreover, we sequenced coding regions known to be essential for tropism and virulence (early transcription units E1A, E3, E4, the fiber knob and the penton base of HAdV-A31 clinical isolates from patients with disseminated disease. Results The genome size of HAdV-A31 is 33763 base pairs (bp in length with a GC content of 46.36%. Nucleotide alignment to the closely related HAdV-A12 revealed an overall homology of 84.2%. The genome organization into early, intermediate and late regions is similar to HAdV-A12. Sequence analysis of the prototype strain showed unique sequence features such as an immunoglobulin-like domain in the species A specific gene product E3 CR1 beta and a potentially integrin binding RGD motif in the C-terminal region of the protein IX. These features were conserved in all analyzed clinical isolates. Overall, amino acid sequences of clinical isolates were highly conserved compared to the prototype (99.2 to 100%, but a synonymous/non synonymous ratio (S/N of 2.36 in E3 CR1 beta suggested positive selection. Conclusion Unique sequence features of HAdV-A31 may enhance its ability to escape the host's immune surveillance and may facilitate a promiscuous tropism for various tissues. Moderate evolution of clinical isolates did not indicate the emergence of new HAdV-A31 subtypes in the recent years.

  17. Unique sequence features of the Human adenovirus 31 complete genomic sequence are conserved in clinical isolates.

    Science.gov (United States)

    Hofmayer, Soeren; Madisch, Ijad; Darr, Sebastian; Rehren, Fabienne; Heim, Albert

    2009-11-25

    Human adenoviruses (HAdV) are causing a broad spectrum of diseases. One of the most severe forms of adenovirus infection is a disseminated disease resulting in significant morbidity and mortality. Several reports in recent years have identified HAdV-31 from species A (HAdV-A31) as a cause of disseminated disease in children following haematopoetic stem cell transplantation (hSCT) and liver transplantation. We sequenced and analyzed the complete genome of the HAdV-A31 prototype strain to uncover unique sequence motifs associated with its high virulence. Moreover, we sequenced coding regions known to be essential for tropism and virulence (early transcription units E1A, E3, E4, the fiber knob and the penton base) of HAdV-A31 clinical isolates from patients with disseminated disease. The genome size of HAdV-A31 is 33763 base pairs (bp) in length with a GC content of 46.36%. Nucleotide alignment to the closely related HAdV-A12 revealed an overall homology of 84.2%. The genome organization into early, intermediate and late regions is similar to HAdV-A12. Sequence analysis of the prototype strain showed unique sequence features such as an immunoglobulin-like domain in the species A specific gene product E3 CR1 beta and a potentially integrin binding RGD motif in the C-terminal region of the protein IX. These features were conserved in all analyzed clinical isolates. Overall, amino acid sequences of clinical isolates were highly conserved compared to the prototype (99.2 to 100%), but a synonymous/non synonymous ratio (S/N) of 2.36 in E3 CR1 beta suggested positive selection. Unique sequence features of HAdV-A31 may enhance its ability to escape the host's immune surveillance and may facilitate a promiscuous tropism for various tissues. Moderate evolution of clinical isolates did not indicate the emergence of new HAdV-A31 subtypes in the recent years.

  18. Complete Genome Sequence of Streptococcus pyogenes Strain JMUB1235 Isolated from an Acute Phlegmonous Gastritis Patient

    OpenAIRE

    Watanabe, Shinya; Sasahara, Teppei; Arai, Naoshi; Sasaki, Kazumasa; Aiba, Yoshifumi; Sato?o, Yusuke; Cui, Longzhu

    2016-01-01

    Acute phlegmonous gastritis is an uncommon endogenous bacterial gastritis presenting with a high mortality rate. Here, we report the complete genome sequence of an emm89 Streptococcus pyogenes strain, JMUB1235, which is the causative agent of acute phlegmonous gastritis.

  19. Complete genome sequence of Leptospira alstonii serovar room 22, strain GWTS#1

    Science.gov (United States)

    We report the complete genome sequence of Leptospira alstonii serovar room 22 strain GWTS#1. This is the first isolate of L. alstonii to be cultured from a mammal, in Western Europe, and represents a new serovar of pathogenic leptospires....

  20. First Complete Genome Sequence of a Watermelon Mosaic Virus Isolated from Watermelon in the United States

    OpenAIRE

    Rajbanshi, Naveen; Ali, Akhtar

    2016-01-01

    Watermelon mosaic virus was first reported in 1965 from the Rio Grande Valley, TX. We report here the first complete genome sequence of a watermelon mosaic virus isolate from watermelon collected from the Rio Grande Valley of Texas.

  1. Complete genome sequence of Calditerrivibrio nitroreducens type strain (Yu37-1T)

    Energy Technology Data Exchange (ETDEWEB)

    Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Hammon, Nancy [Joint Genome Institute, Walnut Creek, California; Deshpande, Shweta [Joint Genome Institute, Walnut Creek, California; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Pagani, Ioanna [Joint Genome Institute, Walnut Creek, California; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Ngatchou, Olivier Duplex [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Land, Miriam L [ORNL

    2011-01-01

    Calditerrivibrio nitroreducens Iino et al. 2008 is the type species of the genus Calditerrivibrio. The species is of interest because of its important role in the nitrate cycle as nitrate reducer and for its isolated phylogenetic position in the Tree of Life. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the third complete genome sequence of a member of the family Deferribacteraceae. The 2,216,552 bp long genome with its 2,128 protein-coding and 50 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  2. Complete genome sequence of Sanguibacter keddieii type strain (ST-74T)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Natalia; Sikorski, Johannes; Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Pati, Amrita; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D' haeseleer, Patrik; Chain, Patrick; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Goker, Markus; Pukall, Rudiger; Klenk, Hans-Peter; Kyrpides, Nikos

    2009-05-20

    Sanguibacter keddieii is the type species of the genus Sanguibacter, the only described genus within the family of Sanguibacteraceae. Phylogenetically, this family is located in the neighbourhood of the genus Oerskovia and the family Cellulomonadaceae within the actinobacterial suborder Micrococcineae. The strain described in this report was isolated from blood of apparently healthy cows. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the family Sanguibacteraceae, and the 4,253,413 bp long single replicon genome with its 3735 protein-coding and 70 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  3. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius).

    LENUS (Irish Health Repository)

    Edwards, Ceiridwen J

    2010-01-01

    BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius) has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs) from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+\\/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer). In total, 289.9 megabases (22.48%) of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously identified

  4. Complete Genome Sequence of the Porcine Isolate Enterococcus faecalis D32

    DEFF Research Database (Denmark)

    Zischka, Melanie; Kuenne, Carsten; Blom, Jochen

    2012-01-01

    The complete and annotated genome sequence of Enterococcus faecalis D32, a commensal strain isolated from a Danish pig, suggests putative adaptation to the porcine host and absence of distinct virulence-associated traits.......The complete and annotated genome sequence of Enterococcus faecalis D32, a commensal strain isolated from a Danish pig, suggests putative adaptation to the porcine host and absence of distinct virulence-associated traits....

  5. Complete genome sequence of Nocardia brasiliensis HUJEG-1.

    Science.gov (United States)

    Vera-Cabrera, Lucio; Ortiz-Lopez, Rocio; Elizondo-Gonzalez, Ramiro; Perez-Maya, Antonio Ali; Ocampo-Candiani, Jorge

    2012-05-01

    In Mexico, actinomycetoma is mainly caused by Nocardia brasiliensis, which is a soil inhabitant actinobacterium. Here, we report for the first time the draft genome of a strain isolated from a human case that has largely been found in in vitro and experimental models of actinomycetoma, N. brasiliensis HUJEG-1.

  6. Global Genomic Diversity of Human Papillomavirus 11 Based on 433 Isolates and 78 Complete Genome Sequences

    Science.gov (United States)

    Jelen, Mateja M.; Chen, Zigui; Kocjan, Boštjan J.; Hošnjak, Lea; Burt, Felicity J.; Chan, Paul K. S.; Chouhy, Diego; Combrinck, Catharina E.; Estrade, Christine; Fiander, Alison; Garland, Suzanne M.; Giri, Adriana A.; González, Joaquín Víctor; Gröning, Arndt; Hibbitts, Sam; Luk, Tommy N. M.; Marinic, Karina; Matsukura, Toshihiko; Neumann, Anna; Oštrbenk, Anja; Picconi, Maria Alejandra; Sagadin, Martin; Sahli, Roland; Seedat, Riaz Y.; Seme, Katja; Severini, Alberto; Sinchi, Jessica L.; Smahelova, Jana; Tabrizi, Sepehr N.; Tachezy, Ruth; Tohme Faybush, Sarah; Uloza, Virgilijus; Uloziene, Ingrida; Wong, Yong Wee; Židovec Lepej, Snježana; Burk, Robert D.

    2016-01-01

    ABSTRACT Human papillomavirus 11 (HPV11) is an etiological agent of anogenital warts and laryngeal papillomas and is included in the 4-valent and 9-valent prophylactic HPV vaccines. We established the largest collection of globally circulating HPV11 isolates to date and examined the genomic diversity of 433 isolates and 78 complete genomes (CGs) from six continents. The genomic variation within the 2,800-bp E5a-E5b-L1-upstream regulatory region was initially studied in 181/207 (87.4%) HPV11 isolates collected for this study. Of these, the CGs of 30 HPV11 variants containing unique single nucleotide polymorphisms (SNPs), indels (insertions or deletions), or amino acid changes were fully sequenced. A maximum likelihood tree based on the global alignment of 78 HPV11 CGs (30 CGs from our study and 48 CGs from GenBank) revealed two HPV11 lineages (lineages A and B) and four sublineages (sublineages A1, A2, A3, and A4). HPV11 (sub)lineage-specific SNPs within the CG were identified, as well as the 208-bp representative region for CG-based phylogenetic clustering within the partial E2 open reading frame and noncoding region 2. Globally, sublineage A2 was the most prevalent, followed by sublineages A1, A3, and A4 and lineage B. IMPORTANCE This collaborative international study defined the global heterogeneity of HPV11 and established the largest collection of globally circulating HPV11 genomic variants to date. Thirty novel complete HPV11 genomes were determined and submitted to the available sequence repositories. Global phylogenetic analysis revealed two HPV11 variant lineages and four sublineages. The HPV11 (sub)lineage-specific SNPs and the representative region identified within the partial genomic region E2/noncoding region 2 (NCR2) will enable the simpler identification and comparison of HPV11 variants worldwide. This study provides an important knowledge base for HPV11 for future studies in HPV epidemiology, evolution, pathogenicity, prevention, and molecular assay

  7. Complete genome sequence of Propionibacterium freudenreichii DSM 20271T

    OpenAIRE

    Koskinen, Patrik; Deptula, Paulina; Smolander, Olli-Pekka; Tamene, Fitsum; Kammonen, Juhana; Savijoki, Kirsi; Paulin, Lars; Piironen, Vieno; Auvinen, Petri; Varmanen, Pekka

    2015-01-01

    Abstract Propionibacterium freudenreichii subsp. freudenreichii DSM 20271T is the type strain of species Propionibacterium freudenreichii that has a long history of safe use in the production dairy products and B12 vitamin. P. freudenreichii is the type species of the genus Propionibacterium which contains Gram-positive, non-motile and non-sporeforming bacteria with a high G + C content. We describe the genome of P. freudenreichii subsp. freudenrei...

  8. Complete genome sequence of a novel hypovirus infecting Phomopsis longicolla

    Czech Academy of Sciences Publication Activity Database

    Koloniuk, Igor; El-Habbak, M.H.; Petrzik, Karel; Ghabrial, S.A.

    2014-01-01

    Roč. 159, č. 7 (2014), s. 1861-1863 ISSN 0304-8608 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Fungus * Phomopsis longicolla * Nucleotide sequence Subject RIV: EE - Microbiology, Virology Impact factor: 2.390, year: 2014

  9. Complete genome sequence of Propionibacterium freudenreichii DSM 20271(T).

    Science.gov (United States)

    Koskinen, Patrik; Deptula, Paulina; Smolander, Olli-Pekka; Tamene, Fitsum; Kammonen, Juhana; Savijoki, Kirsi; Paulin, Lars; Piironen, Vieno; Auvinen, Petri; Varmanen, Pekka

    2015-01-01

    Propionibacterium freudenreichii subsp. freudenreichii DSM 20271(T) is the type strain of species Propionibacterium freudenreichii that has a long history of safe use in the production dairy products and B12 vitamin. P. freudenreichii is the type species of the genus Propionibacterium which contains Gram-positive, non-motile and non-sporeforming bacteria with a high G + C content. We describe the genome of P. freudenreichii subsp. freudenreichii DSM 20271(T) consisting of a 2,649,166 bp chromosome containing 2320 protein-coding genes and 50 RNA-only encoding genes.

  10. The complete chloroplast genome sequences of five Epimedium species: lights into phylogenetic and taxonomic analyses

    Directory of Open Access Journals (Sweden)

    Yanjun eZhang

    2016-03-01

    Full Text Available Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR region and the single-copy (SC boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants.

  11. Complete Genome Sequence of an Avian Metapneumovirus Subtype A Strain Isolated from Chicken (Gallus gallus) in Brazil

    OpenAIRE

    Rizotto, La?s S.; Scagion, Guilherme P.; Cardoso, Tereza C.; Sim?o, Raphael M.; Caserta, Leonardo C.; Benassi, Julia C.; Keid, Lara B.; Oliveira, Tr?cia M. F. de S.; Soares, Rodrigo M.; Arns, Clarice W.; Van Borm, Steven; Ferreira, Helena L.

    2017-01-01

    ABSTRACT We report here the complete genome sequence of an avian metapneumovirus (aMPV) isolated from a tracheal tissue sample of a commercial layer flock. The complete genome sequence of aMPV-A/chicken/Brazil-SP/669/2003 was obtained using MiSeq (Illumina, Inc.) sequencing. Phylogenetic analysis of the complete genome classified the isolate as avian metapneumovirus subtype A.

  12. Complete genome sequence of the mitochondrial DNA of the river lamprey, Lethenteron japonicum.

    Science.gov (United States)

    Kawai, Yuri L; Yura, Kei; Shindo, Miyuki; Kusakabe, Rie; Hayashi, Keiko; Hata, Kenichiro; Nakabayashi, Kazuhiko; Okamura, Kohji

    2015-01-01

    Lampreys are eel-like jawless fishes evolutionarily positioned between invertebrates and vertebrates, and have been used as model organisms to explore vertebrate evolution. In this study we determined the complete genome sequence of the mitochondrial DNA of the Japanese river lamprey, Lethenteron japonicum, using next-generation sequencers. The sequence was 16,272 bp in length. The gene content and order were identical to those of the sea lamprey, Petromyzon marinus, which has been the reference among lamprey species. However, the sequence similarity was less than 90%, suggesting the need for the whole-genome sequencing of L. japonicum.

  13. Complete Genome Sequences ofVibrio cholerae-Specific Bacteriophages 24 and X29.

    Science.gov (United States)

    Bhandare, Sudhakar G; Warry, Andrew; Emes, Richard D; Hooton, Steven P T; Barrow, Paul A; Atterbury, Robert J

    2017-11-16

    The complete genomes of two Vibrio cholerae bacteriophages of potential interest for cholera bacteriophage (phage) therapy were sequenced and annotated. The genome size of phage 24 is 44,395 bp encoding 71 putative proteins, and that of phage X29 is 41,569 bp encoding 68 putative proteins. Copyright © 2017 Bhandare et al.

  14. Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216T

    DEFF Research Database (Denmark)

    Bosma, Elleke Fenna; Koehorst, Jasper J.; van Hijum, Sacha A. F. T.

    2016-01-01

    determined the complete genomic sequence of the B. smithii type strain DSM 4216T, which consists of a 3,368,778 bp chromosome (GenBank accession number CP012024.1) and a 12,514 bp plasmid (GenBank accession number CP012025.1), together encoding 3880 genes. Genome annotation via RAST was complemented...

  15. Complete genome sequence of Paris mosaic necrosis virus, a distinct member of the genus Potyvirus

    Science.gov (United States)

    The complete genomic sequence of a novel potyvirus was determined from Paris polyphylla var. yunnanensis. Its genomic RNA consists of 9,660 nucleotides (nt) excluding the 3’-terminal poly (A) tail, containing a single open reading frame (ORF) encoding a large polyprotein. The virus shares 52.1-69.7%...

  16. Complete Genome Sequence of the Fruiting MyxobacteriumMelittangium boletusDSM 14713.

    Science.gov (United States)

    Treuner-Lange, Anke; Bruckskotten, Marc; Rupp, Oliver; Goesmann, Alexander; Søgaard-Andersen, Lotte

    2017-11-09

    The formation of spore-filled fruiting bodies in response to starvation represents a hallmark of many members of the order Myxococcales Here, we present the complete 9.9-Mb genome of the fruiting type strain Melittangium boletus DSM 14713, the first member of this genus to have its genome sequenced. Copyright © 2017 Treuner-Lange et al.

  17. Complete Genome Sequence of Bacillus velezensis L-1, Which Has Antagonistic Activity against Pear Diseases

    OpenAIRE

    Sun, Pingping; Cui, Jianchao; Jia, Xiaohui; Wang, Wenhui

    2017-01-01

    ABSTRACT Bacillus velezensis L-1 is an effective biocontrol agent against pear diseases. Here, we report the complete genome sequence of B. velezensis L-1 in which clusters related to the biosynthesis of secondary metabolites were predicted. This genome provides insights into the possible biocontrol mechanisms and furthers application of this specific bacterium.

  18. Complete Genome Sequence of Bacillus velezensis L-1, Which Has Antagonistic Activity against Pear Diseases.

    Science.gov (United States)

    Sun, Pingping; Cui, Jianchao; Jia, Xiaohui; Wang, Wenhui

    2017-11-30

    Bacillus velezensis L-1 is an effective biocontrol agent against pear diseases. Here, we report the complete genome sequence of B. velezensis L-1 in which clusters related to the biosynthesis of secondary metabolites were predicted. This genome provides insights into the possible biocontrol mechanisms and furthers application of this specific bacterium. Copyright © 2017 Sun et al.

  19. Complete genome sequence of a natural compounds producer, Streptomyces violaceus S21

    Directory of Open Access Journals (Sweden)

    Jiafang Fu

    2017-06-01

    Full Text Available The complete genome sequence of Streptomyces violaceus strain S21, a valuable natural compounds producer isolated from the forest soil, is firstly presented here. The genome comprised 7.91M bp, with a G+C content of 72.65%. A range of genes involved in pathways of secondary product biosynthesis were predicted. The genome sequence is available at DDBJ/EMBL/Genbank under the accession number CP020570. This genome is annotated with 6856 predicted genes identifying the natural product biosynthetic gene clusters in S. violaceus.

  20. Complete genome sequence of Leptotrichia buccalis type strain (C-1013-bT)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Natalia; Gronow, Sabine; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Saunders, Liz; Bruce, David; Goodwin, Lynne; Brettin, Thomas; Detter, John C.; Han, Cliff; Pitluck, Sam; Mikhailova, Natalia; Pati, Amrita; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Rohde, Christine; Goker, Markus; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Leptotrichia buccalis (Robin 1853) Trevisan 1879 is the type species of the genus, and is of phylogenetic interest because of its isolated location in the sparsely populated and neither taxonomically nor genomically adequately accessed family 'Leptotrichiaceae' within the phylum 'Fusobacteria'. Species of Leptotrichia are large fusiform non-motile, non-sporulating rods, which often populate the human oral flora. L. buccalis is anaerobic to aerotolerant, and saccharolytic. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the order 'Fusobacteriales' and no more than the second sequence from the phylum 'Fusobacteria'. The 2,465,610 bp long single replicon genome with its 2306 protein-coding and 61 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  1. Complete sequence and characterization of mitochondrial DNA genome of Channa asiatica (Perciformes: Channidae).

    Science.gov (United States)

    Meng, Yan; Zhang, Yan

    2016-01-01

    The complete nucleotide sequence of Channa asiatica mitochondrial (mtDNA) genome was determined in this study. The genome sequence (GenBank accession number KJ930190) was 16,550 base pairs in length, and the gene content and organization on the mitochondrial genome were similar to the other Channa fishes. The overall base composition of C. asiatica mitogenome is 29.4% A, 26.3% T, 15.3% G, 29.0% C, with a high A + T content of 55.7%. The mitochondrial sequence could provide useful genetic information for studying the molecular identification, population genetics, phylogenetic analysis and conservation genetics.

  2. Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes

    Science.gov (United States)

    2012-01-01

    Background Enterococci are among the leading causes of hospital-acquired infections in the United States and Europe, with Enterococcus faecalis and Enterococcus faecium being the two most common species isolated from enterococcal infections. In the last decade, the proportion of enterococcal infections caused by E. faecium has steadily increased compared to other Enterococcus species. Although the underlying mechanism for the gradual replacement of E. faecalis by E. faecium in the hospital environment is not yet understood, many studies using genotyping and phylogenetic analysis have shown the emergence of a globally dispersed polyclonal subcluster of E. faecium strains in clinical environments. Systematic study of the molecular epidemiology and pathogenesis of E. faecium has been hindered by the lack of closed, complete E. faecium genomes that can be used as references. Results In this study, we report the complete genome sequence of the E. faecium strain TX16, also known as DO, which belongs to multilocus sequence type (ST) 18, and was the first E. faecium strain ever sequenced. Whole genome comparison of the TX16 genome with 21 E. faecium draft genomes confirmed that most clinical, outbreak, and hospital-associated (HA) strains (including STs 16, 17, 18, and 78), in addition to strains of non-hospital origin, group in the same clade (referred to as the HA clade) and are evolutionally considerably more closely related to each other by phylogenetic and gene content similarity analyses than to isolates in the community-associated (CA) clade with approximately a 3–4% average nucleotide sequence difference between the two clades at the core genome level. Our study also revealed that many genomic loci in the TX16 genome are unique to the HA clade. 380 ORFs in TX16 are HA-clade specific and antibiotic resistance genes are enriched in HA-clade strains. Mobile elements such as IS16 and transposons were also found almost exclusively in HA strains, as previously reported

  3. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium

    OpenAIRE

    Eisen, Jonathan A.; Nelson, Karen E.; Paulsen, Ian T.; Heidelberg, John F.; Wu, Martin; Dodson, Robert J.; Deboy, Robert; Gwinn, Michelle L.; Nelson, William C.; Haft, Daniel H.; Hickey, Erin K.; Peterson, Jeremy D.; Durkin, A. Scott; Kolonay, James L.; Yang, Fan

    2002-01-01

    The complete genome of the green-sulfur eubacterium Chlorobium tepidum TLS was determined to be a single circular chromosome of 2,154,946 bp. This represents the first genome sequence from the phylum Chlorobia, whose members perform anoxygenic photosynthesis by the reductive tricarboxylic acid cycle. Genome comparisons have identified genes in C. tepidum that are highly conserved among photosynthetic species. Many of these have no assigned function and may play novel role...

  4. Complete chloroplast genome sequences of important oilseed crop Sesamum indicum L.

    Science.gov (United States)

    Yi, Dong-Keun; Kim, Ki-Joong

    2012-01-01

    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques.

  5. Complete Genome Sequence of Rat Cytomegalovirus Strain ALL-03 (Malaysian Strain)

    Science.gov (United States)

    Abdullah, Ashwaq Ahmed; Camalxaman, Siti Nazrina; Quah, Yi Wan; Abba, Yusuf; Hani, Homayoun; Loh, Hwei San; Kamal, Farina Mustaffa; Zeenathul, Nazariah Allaudin; Aini, Ideris; Omar, A. R.; Noordin, Mohamed Mustapha; Mohd Azmi, Mohd Lila

    2015-01-01

    The complete genome sequence of the ALL-03 strain of rat cytomegalovirus (RCMV) has been determined. The RCMV genome has a length of 197,958 bp and is arranged as a single unique sequence flanked by 504-bp terminal direct repeats. This strain is closely related to the English strain of RCMV in terms of genetic arrangement but differs slightly in size. PMID:26044413

  6. Complete Genome Sequence of Phytopathogenic Pectobacterium carotovorum subsp. carotovorum Bacteriophage PP1

    OpenAIRE

    Lee, Ju-Hoon; Shin, Hakdong; Ji, Samnyu; Malhotra, Shweta; Kumar, Mukesh; Ryu, Sangryeol; Heu, Sunggi

    2012-01-01

    Pectobacterium carotovorum subsp. carotovorum is a phytopathogen causing soft rot disease on diverse plant species. To control this plant pathogen, P. carotovorum subsp. carotovorum-targeting bacteriophage PP1 was isolated and its genome was completely sequenced to develop a novel biocontrol agent. Interestingly, the 44,400-bp genome sequence does not encode any gene involved in the formation of lysogen, suggesting that this phage may be very useful as a biocontrol agent because it does not m...

  7. Complete genome sequence of the naphthalene-degrading Pseudomonas putida strain ND6.

    Science.gov (United States)

    Li, Shanshan; Zhao, Huabing; Li, Yaxiao; Niu, Shumin; Cai, Baoli

    2012-09-01

    Pseudomonas putida strain ND6 is an efficient naphthalene-degrading bacterium. The complete genome of strain ND6 was sequenced and annotated. The genes encoding the enzymes involved in catechol degradation by the ortho-cleavage pathway were found in the chromosomal sequence, which indicated that strain ND6 is able to metabolize naphthalene by the catechol meta- and ortho-cleavage pathways.

  8. Isolation and complete genome sequencing of Mimivirus bombay, a Giant Virus in sewage of Mumbai, India

    Directory of Open Access Journals (Sweden)

    Anirvan Chatterjee

    2016-09-01

    Full Text Available We report the isolation and complete genome sequencing of a new Mimiviridae family member, infecting Acanthamoeba castellanii, from sewage in Mumbai, India. The isolated virus has a particle size of about 435 nm and a 1,182,200-bp genome. A phylogeny based on the DNA polymerase sequence placed the isolate as a new member of the Mimiviridae family lineage A and was named as Mimivirus bombay. Extensive presence of Mimiviridae family members in different environmental niches, with remarkably similar genome size and genetic makeup, point towards an evolutionary advantage that needs to be further investigated. The complete genome sequence of Mimivirus bombay was deposited at GenBank/EMBL/DDBJ under the accession number KU761889.

  9. The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses.

    Science.gov (United States)

    Saina, Josphat K; Gichira, Andrew W; Li, Zhi-Zhong; Hu, Guang-Wan; Wang, Qing-Feng; Liao, Kuo

    2018-02-01

    The plant chloroplast (cp) genome is a highly conserved structure which is beneficial for evolution and systematic research. Currently, numerous complete cp genome sequences have been reported due to high throughput sequencing technology. However, there is no complete chloroplast genome of genus Dodonaea that has been reported before. To better understand the molecular basis of Dodonaea viscosa chloroplast, we used Illumina sequencing technology to sequence its complete genome. The whole length of the cp genome is 159,375 base pairs (bp), with a pair of inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) 87,204 bp, and small single copy (SSC) 17,972 bp. The annotation analysis revealed a total of 115 unique genes of which 81 were protein coding, 30 tRNA, and four ribosomal RNA genes. Comparative genome analysis with other closely related Sapindaceae members showed conserved gene order in the inverted and single copy regions. Phylogenetic analysis clustered D. viscosa with other species of Sapindaceae with strong bootstrap support. Finally, a total of 249 SSRs were detected. Moreover, a comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates in D. viscosa showed very low values. The availability of cp genome reported here provides a valuable genetic resource for comprehensive further studies in genetic variation, taxonomy and phylogenetic evolution of Sapindaceae family. In addition, SSR markers detected will be used in further phylogeographic and population structure studies of the species in this genus.

  10. Complete Genome Sequence and Comparative Genomics of a Novel Myxobacterium Myxococcus hansupus.

    Directory of Open Access Journals (Sweden)

    Gaurav Sharma

    Full Text Available Myxobacteria, a group of Gram-negative aerobes, belong to the class δ-proteobacteria and order Myxococcales. Unlike anaerobic δ-proteobacteria, they exhibit several unusual physiogenomic properties like gliding motility, desiccation-resistant myxospores and large genomes with high coding density. Here we report a 9.5 Mbp complete genome of Myxococcus hansupus that encodes 7,753 proteins. Phylogenomic and genome-genome distance based analysis suggest that Myxococcus hansupus is a novel member of the genus Myxococcus. Comparative genome analysis with other members of the genus Myxococcus was performed to explore their genome diversity. The variation in number of unique proteins observed across different species is suggestive of diversity at the genus level while the overrepresentation of several Pfam families indicates the extent and mode of genome expansion as compared to non-Myxococcales δ-proteobacteria.

  11. The complete sequence of the mitochondrial genome of the African Penguin (Spheniscus demersus).

    Science.gov (United States)

    Labuschagne, Christiaan; Kotzé, Antoinette; Grobler, J Paul; Dalton, Desiré L

    2014-01-15

    The complete mitochondrial genome of the African Penguin (Spheniscus demersus) was sequenced. The molecule was sequenced via next generation sequencing and primer walking. The size of the genome is 17,346 bp in length. Comparison with the mitochondrial DNA of two other penguin genomes that have so far been reported was conducted namely; Little blue penguin (Eudyptula minor) and the Rockhopper penguin (Eudyptes chrysocome). This analysis made it possible to identify common penguin mitochondrial DNA characteristics. The S. demersus mtDNA genome is very similar, both in composition and length to both the E. chrysocome and E. minor genomes. The gene content of the African penguin mitochondrial genome is typical of vertebrates and all three penguin species have the standard gene order originally identified in the chicken. The control region for S. demersus is located between tRNA-Glu and tRNA-Phe and all three species of penguins contain two sets of similar repeats with varying copy numbers towards the 3' end of the control region, accounting for the size variance. This is the first report of the complete nucleotide sequence for the mitochondrial genome of the African penguin, S. demersus. These results can be subsequently used to provide information for penguin phylogenetic studies and insights into the evolution of genomes. © 2013 Elsevier B.V. All rights reserved.

  12. Complete genome sequence of Kribbella flavida type strain (IFO 14399T)

    Science.gov (United States)

    Pukall, Rüdiger; Lapidus, Alla; Glavina Del Rio, Tijana; Copeland, Alex; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; LaButti, Kurt; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pitluck, Sam; Bruce, David; Goodwin, Lynne; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Brettin, Thomas

    2010-01-01

    The genus Kribbella consists of 15 species, with Kribbella flavida (Park et al. 1999) as the type species. The name Kribbella was formed from the acronym of the Korea Research Institute of Bioscience and Biotechnology, KRIBB. Strains of the various Kribbella species were originally isolated from soil, potato, alum slate mine, patinas of catacombs or from horse racecourses. Here we describe the features of K. flavida together with the complete genome sequence and annotation. In addition to the 5.3 Mbp genome of Nocardioides sp. JS614, this is only the second completed genome sequence of the family Nocardioidaceae. The 7,579,488 bp long genome with its 7,086 protein-coding and 60 RNA genes and is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304701

  13. Complete genome sequence of Kribbella flavida type strain (IFO 14399T)

    Energy Technology Data Exchange (ETDEWEB)

    Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; LaButti, Kurt [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    The genus Kribbella consists of 15 species, with Kribbella flavida (Park et al. 1999) as the type species. The name Kribbella was formed from the acronym of the Korea Research Institute of Bioscience and Biotechnology, KRIBB. Strains of the various Kribbella species were originally isolated from soil, potato, alum slate mine, patinas of catacombs or from horse racecourses. Here we describe the features of K. flavida together with the complete genome sequence and annotation. In addition to the 5.3 Mbp genome of Nocardioides sp. JS614, this is only the second completed genome sequence of the family Nocardioidaceae. The 7,579,488 bp long genome with its 7,086 protein-coding and 60 RNA genes and is part of the Genomic Encyc-lopedia of Bacteria and Archaea project.

  14. Complete genome sequence of Coraliomargarita akajimensis type strain (04OKA010-24T)

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Abt, Birte; Brambilla, Evelyne; Lapidus, Alla; Copeland, Alex; Desphande, Shweta; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Detter, John C.; Woyke, Tanja; Goodwin, Lynne; Pitluck, Sam; Held, Brittany; Brettin, Thomas; Tapia, Roxanne; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Liolios, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Rohde, Manfred; G& #246; ker, Markus; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C.

    2010-06-25

    Coraliomargarita akajimensis Yoon et al. 2007 the type species of the genus Coraliomargarita. C. akajimensis is an obligately aerobic, Gram-negative, non-spore-forming, non-motile, spherical bacterium which was isolated from seawater surrounding the hard coral Galaxea fascicularis. C. akajimensis organism is of special interest because of its phylogenetic position in a genomically purely studied area in the bacterial diversity. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Puniceicoccaceae. The 3,750,771 bp long genome with its 3,137 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  15. Complete genome sequence of Catenulispora acidiphila type strain (ID 139908T)

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Alex; Lapidus, Alla; Rio, Tijana GlavinaDel; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Mikhailova, Natalia; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chertkov, Olga; Brettin, Thomas; Detter, John C.; Han, Cliff; Ali, Zahid; Tindall, Brian J.; Goker, Markus; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Catenulispora acidiphila Busti et al. 2006 is the type species of the genus Catenulispora, and is of interest because of the rather isolated phylogenetic location of the genomically little studied suborder Catenulisporineae within the order Actinomycetales. C. acidiphilia is known for its acidophilic, aerobic lifestyle, but can also grow scantly under anaerobic conditions. Under regular conditions C. acidiphilia grows in long filaments of relatively short aerial hyphae with marked septation. It is a free living, non motile, Gram-positive bacterium isolated from a forest soil sample taken from a wooded area in Gerenzano, Italy. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the actinobacterial family Catenulisporaceae, and the 10,467,782 bp long single replicon genome with its 9056 protein-coding and 69 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. Complete Genome Sequence of the Soybean Symbiont Bradyrhizobium japonicum Strain USDA6T

    Directory of Open Access Journals (Sweden)

    Nobukazu Uchiike

    2011-10-01

    Full Text Available The complete nucleotide sequence of the genome of the soybean symbiont Bradyrhizobium japonicum strain USDA6T was determined. The genome of USDA6T is a single circular chromosome of 9,207,384 bp. The genome size is similar to that of the genome of another soybean symbiont, B. japonicum USDA110 (9,105,828 bp. Comparison of the whole-genome sequences of USDA6T and USDA110 showed colinearity of major regions in the two genomes, although a large inversion exists between them. A significantly high level of sequence conservation was detected in three regions on each genome. The gene constitution and nucleotide sequence features in these three regions indicate that they may have been derived from a symbiosis island. An ancestral, large symbiosis island, approximately 860 kb in total size, appears to have been split into these three regions by unknown large-scale genome rearrangements. The two integration events responsible for this appear to have taken place independently, but through comparable mechanisms, in both genomes.

  17. Complete genome sequence of Streptomyces formicae KY5, the formicamycin producer.

    Science.gov (United States)

    Holmes, Neil A; Devine, Rebecca; Qin, Zhiwei; Seipke, Ryan F; Wilkinson, Barrie; Hutchings, Matthew I

    2018-01-10

    Here we report the complete genome of the new species Streptomyces formicae KY5 isolated from Tetraponera fungus growing ants. S. formicae was sequenced using the PacBio and 454 platforms to generate a single linear chromosome with terminal inverted repeats. Illumina MiSeq sequencing was used to correct base changes resulting from the high error rate associated with PacBio. The genome is 9.6 Mbps, has a GC content of 71.38% and contains 8162 protein coding sequences. Predictive analysis shows this strain encodes at least 45 gene clusters for the biosynthesis of secondary metabolites, including a type 2 polyketide synthase encoding cluster for the antibacterial formicamycins. Streptomyces formicae KY5 is a new, taxonomically distinct Streptomyces species and this complete genome sequence provides an important marker in the genus of Streptomyces. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Complete genome sequence of a dahlia common mosaic virus isolate from New Zealand.

    Science.gov (United States)

    Hadfield, James; Linderme, Daphné; Shepherd, Dionne N; Bezuidenhout, Marion; Lefeuvre, Pierre; Martin, Darren P; Varsani, Arvind

    2011-12-01

    Dahlia mosaic disease of the ornamental flowering plant Dahlia is caused by two caulimoviruses, dahlia mosaic virus (DMV) and dahlia common mosaic virus (DCMV). We used a rolling-circle amplification method to amplify, clone and determine for the first time the full genome sequence of a DCMV isolate from New Zealand (DCMV-NZ). Within the 7949-bp circular double-stranded retro-transcribing DCMV-NZ DNA, we identified six putative open reading frames, typical of all genomes in the family Caulimoviridae. The availability of the complete DCMV sequence provides a reference genome against which all others can be compared.

  19. Complete genome sequence of the plant-associated Serratia plymuthica strain AS13

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Saraswoti [Uppsala University, Uppsala, Sweden; Finlay, Roger D. [Uppsala University, Uppsala, Sweden; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Alstrom, Sadhna [Uppsala University, Uppsala, Sweden; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Han, James [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Held, Brittany [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J C [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Hogberg, Nils [Uppsala University, Uppsala, Sweden

    2012-01-01

    Serratia plymuthica AS13 is a plant-associated Gammaproteobacteria, isolated from rapeseed roots. It is of special interest because of its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The complete genome of S. plymuthica AS13 consists of a 5,442,549 bp circular chromosome. The chromosome contains 4,951 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced as part of the project enti- tled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens within the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  20. Human papillomavirus 1a complete DNA sequence: a novel type of genome organization among papovaviridae.

    OpenAIRE

    Danos, O; Katinka, M; Yaniv, M

    1982-01-01

    The complete nucleotide sequence of human papillomavirus type 1a (7811 nucleotides) has been established. The overall organization of the viral genome is different from that of other related papovaviruses (SV40, BKV, polyoma). Firstly, genetic information seems to be coded by one strand. Secondly, no significant homology is found with SV40 or polyoma coding sequence for either DNA or deducted protein sequences. The relatedness of human and bovine papillomaviruses is revealed by a conserved co...

  1. Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans

    DEFF Research Database (Denmark)

    Song, Yajun; Tong, Zongzhong; Wang, Jin

    2004-01-01

    Genomics provides an unprecedented opportunity to probe in minute detail into the genomes of the world's most deadly pathogenic bacteria- Yersinia pestis. Here we report the complete genome sequence of Y. pestis strain 91001, a human-avirulent strain isolated from the rodent Brandt's vole...... comparison, we conclude that strain 91001 and other strains isolated from M. brandti might have evolved from ancestral Y. pestis in a different lineage. The large genome fragment deletions in the 91001 chromosome and some pseudogenes may contribute to its unique nonpathogenicity to humans and host...

  2. The complete mitochondrial genome sequence of Oceanic whitetip shark, Carcharhinus longimanus (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Li, Weiwen; Dai, Xiaojie; Xu, Qianghua; Wu, Feng; Gao, Chunxia; Zhang, Yanbo

    2016-05-01

    The complete mitochondrial DNA sequence of Carcharhinus longimanus was determined and analyzed. The complete mtDNA genome sequence of C. longimanus was 16,706 bp in length. It contained 22 tRNA genes, 2 rRNA genes, 13 protein-coding genes and 2 non-conding regions: control region (D-loop) and origin of light-strand replication (OL). The complete mitogenome sequence information of C. longimanus can provide a useful data for further studies on molecular systematics, stock evaluation, taxonomic status and conservation genetics.

  3. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius.

    Directory of Open Access Journals (Sweden)

    Ceiridwen J Edwards

    Full Text Available BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer. In total, 289.9 megabases (22.48% of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously

  4. The complete genome sequence and analysis of the human pathogen Campylobacter lari

    DEFF Research Database (Denmark)

    Miller, WG; Wang, G; Binnewies, Tim Terence

    2008-01-01

    Campylobacter lari is a member of the epsilon subdivision of the Proteobacteria and is part of the thermotolerant Campylobacter group, a clade that includes the human pathogen C. jejuni. Here we present the complete genome sequence of the human clinical isolate, C. lari RM2100. The genome of strain...... RM2100 is approximately 1.53 Mb and includes the 46 kb megaplasmid pCL2100. Also present within the strain RM2100 genome is a 36 kb putative prophage, termed CLIE1, which is similar to CJIE4, a putative prophage present within the C. jejuni RM1221 genome. Nearly all (90%) of the gene content...... in strain RM2100 is similar to genes present in the genomes of other characterized thermotolerant campylobacters. However, several genes involved in amino acid biosynthesis and energy metabolism, identified previously in other Campylobacter genomes, are absent from the C. lari RM2100 genome. Therefore, C...

  5. Complete genome sequence of a giant Vibrio bacteriophage VH7D.

    Science.gov (United States)

    Luo, Zhu-Hua; Yu, Yan-Ping; Jost, Günter; Xu, Wei; Huang, Xiang-Ling

    2015-12-01

    A Vibrio sp. lytic phage VH7D was isolated from seawater of an abalone farm in Xiamen, China. The phage was capable of lysing Vibrio rotiferianus DSM 17186(T) and Vibrio harveyi DSM 19623(T). The complete genome of this phage consists of 246,964 nucleotides with a GC content of 41.31%, which characterized it as a giant vibriophage. Here we report the complete genome sequence and major findings from the genomic annotation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The first complete chloroplast genome sequence of a lycophyte,Huperzia lucidula (Lycopodiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Paul G.; Karol, Kenneth G.; Mandoli, Dina F.; Kuehl,Jennifer V.; Arumuganathan, K.; Ellis, Mark W.; Mishler, Brent D.; Kelch,Dean G.; Olmstead, Richard G.; Boore, Jeffrey L.

    2005-02-01

    We used a unique combination of techniques to sequence the first complete chloroplast genome of a lycophyte, Huperzia lucidula. This plant belongs to a significant clade hypothesized to represent the sister group to all other vascular plants. We used fluorescence-activated cell sorting (FACS) to isolate the organelles, rolling circle amplification (RCA) to amplify the genome, and shotgun sequencing to 8x depth coverage to obtain the complete chloroplast genome sequence. The genome is 154,373bp, containing inverted repeats of 15,314 bp each, a large single-copy region of 104,088 bp, and a small single-copy region of 19,671 bp. Gene order is more similar to those of mosses, liverworts, and hornworts than to gene order for other vascular plants. For example, the Huperziachloroplast genome possesses the bryophyte gene order for a previously characterized 30 kb inversion, thus supporting the hypothesis that lycophytes are sister to all other extant vascular plants. The lycophytechloroplast genome data also enable a better reconstruction of the basaltracheophyte genome, which is useful for inferring relationships among bryophyte lineages. Several unique characters are observed in Huperzia, such as movement of the gene ndhF from the small single copy region into the inverted repeat. We present several analyses of evolutionary relationships among land plants by using nucleotide data, amino acid sequences, and by comparing gene arrangements from chloroplast genomes. The results, while still tentative pending the large number of chloroplast genomes from other key lineages that are soon to be sequenced, are intriguing in themselves, and contribute to a growing comparative database of genomic and morphological data across the green plants.

  7. Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids

    Science.gov (United States)

    Xu, Qin; Xiong, Guanjun; Li, Pengbo; He, Fei; Huang, Yi; Wang, Kunbo; Li, Zhaohu; Hua, Jinping

    2012-01-01

    Background Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. Methodology/Principal Findings The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.43–0.68 million years ago (MYA). Conclusion Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 1–3-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A-genome species in

  8. Complete mitochondrial genome sequence of Marmota himalayana (Rodentia: Sciuridae) and phylogenetic analysis within Rodentia.

    Science.gov (United States)

    Chao, Q J; Li, Y D; Geng, X X; Zhang, L; Dai, X; Zhang, X; Li, J; Zhang, H J

    2014-04-14

    This is the first report of a complete mitochondrial genome sequence from Himalayan marmot (Marmota himalayana, class Marmota). We determined the M. himalayana mitochondrial (mt) genome sequence by using long-PCR methods and a primer-walking sequencing strategy with genus-specific primers. The complete mt genome of M. himalayana was 16,443 bp in length and comprised 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a typical control region (CR). Gene order and orientation were identical to those in mt genomes of most vertebrates. The heavy strand showed an overall A+T content of 63.49%. AT and GC skews for the mt genome of the M. himalayana were 0.012 and -0.300, respectively, indicating a nucleotide bias against T and G. The control region was 997 bp in size and displayed some unusual features, including absence of repeated motifs and two conserved sequence blocks (CSB2 and CSB3), which is consistent with observations from two other rodent species, Sciurus vulgaris and Myoxus glis. Phylogenetic analysis of complete mt DNA sequences without the control region including 30 taxa of Rodentia was performed with Maximum-Likelihood (ML) and Bayesian Inference (BI) methods and provided strong support for Sciurognathi polyphyly and Hystricognathi monophyly. This analysis also provided evidence that M. himalayana mt DNA was closely related to that from Sciurus vulgaris (Sciuridae) and was similar to mt DNA from Myoxus glis.

  9. Complete genome sequence of a commensal bacterium, Hafnia alvei CBA7124, isolated from human feces.

    Science.gov (United States)

    Song, Hye Seon; Kim, Joon Yong; Kim, Yeon Bee; Jeong, Myeong Seon; Kang, Jisu; Rhee, Jin-Kyu; Kwon, Joseph; Kim, Ju Suk; Choi, Jong-Soon; Choi, Hak-Jong; Nam, Young-Do; Roh, Seong Woon

    2017-01-01

    Members of the genus Hafnia have been isolated from the feces of mammals, birds, reptiles, and fish, as well as from soil, water, sewage, and foods. Hafnia alvei is an opportunistic pathogen that has been implicated in intestinal and extraintestinal infections in humans. However, its pathogenicity is still unclear. In this study, we isolated H. alvei from human feces and performed sequencing as well as comparative genomic analysis to better understand its pathogenicity. The genome of H. alvei CBA7124 comprised a single circular chromosome with 4,585,298 bp and a GC content of 48.8%. The genome contained 25 rRNA genes (9 5S rRNA genes, 8 16S rRNA genes, and 8 23S rRNA genes), 88 tRNA genes, and 4043 protein-coding genes. Using comparative genomic analysis, the genome of this strain was found to have 72 strain-specific singletons. The genome also contained genes for antibiotic and antimicrobial resistance, as well as toxin-antitoxin systems. We revealed the complete genome sequence of the opportunistic gut pathogen, H. alvei CBA7124. We also performed comparative genomic analysis of the sequences in the genome of H. alvei CBA7124, and found that it contained strain-specific singletons, antibiotic resistance genes, and toxin-antitoxin systems. These results could improve our understanding of the pathogenicity and the mechanism behind the antibiotic resistance of H. alvei strains.

  10. Complete genome sequence of Mahella australiensis type strain (50-1 BONT)

    Energy Technology Data Exchange (ETDEWEB)

    Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Ngatchou, Olivier Duplex [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Mahella australiensis Bonilla Salinas et al. 2004 is the type species of the genus Mahella, which belongs to the family Thermoanaerobacteraceae. The species is of interest because it differs from other known anaerobic spore-forming bacteria in its G+C content, and in certain phenotypic traits, such as carbon source utilization and relationship to temperature. Moreo- ver, it has been discussed that this species might be an indigenous member of petroleum and oil reservoirs. This is the first completed genome sequence of a member of the genus Mahella and the ninth completed type strain genome sequence from the family Thermoanaerobacte- raceae. The 3,135,972 bp long genome with its 2,974 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  11. Complete genome sequence of Saccharomonospora viridis type strain (P101T)

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Amrita; Sikorski, Johannes; Nolan, Matt; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Lucas, Susan; Chen, Feng; Tice, Hope; Pitluck, Sam; Cheng, Jan-Fang; Chertkov, Olga; Brettin, Thomas; Han, Cliff; Detter, John C.; Kuske, Cheryl; Bruce, David; Goodwin, Lynne; Chain, Patrick; D' haeseleer, Patrik; Chen, Amy; Palaniappan, Krishna; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Rohde, Manfred; Tindall, Brian J.; Goker, Markus; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides1, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Saccharomonospora viridis (Schuurmans et al. 1956) Nonomurea and Ohara 1971 is the type species of the genus Saccharomonospora which belongs to the family Pseudonocardiaceae. S. viridis is of interest because it is a Gram-negative organism classified amongst the usually Gram-positive actinomycetes. Members of the species are frequently found in hot compost and hay, and its spores can cause farmer?s lung disease, bagassosis, and humidifier fever. Strains of the species S. viridis have been found to metabolize the xenobiotic pentachlorophenol (PCP). The strain described in this study has been isolated from peat-bog in Ireland. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the family Pseudonocardiaceae, and the 4,308,349 bp long single replicon genome with its 3906 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  12. Complete genome sequence of Pedobacter heparinus type strain (HIM 762-3T)

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cliff; Spring, Stefan; Lapidus, Alla; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Saunders, Elizabeth; Chertkov, Olga; Brettin, Thomas; Goker, Markus; Rohde, Manfred; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Detter, John C.

    2009-05-20

    Pedobacter heparinus (Payza and Korn 1956) Steyn et al. 1998 comb. nov. is the type species of the rapidly growing genus Pedobacter within the family Sphingobacteriaceae of the phylum 'Bacteroidetes'. P. heparinus is of interest, because it was the first isolated strain shown to grow with heparin as sole carbon and nitrogen source and because it produces several enzymes involved in the degradation of mucopolysaccharides. All available data about this species are based on a sole strain that was isolated from dry soil. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first report on a complete genome sequence of a member of the genus Pedobacter, and the 5,167,383 bp long single replicon genome with its 4287 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  13. Next-generation sequencing yields the complete mitochondrial genome of the mummichog, Fundulus heteroclitus.

    Science.gov (United States)

    Zhu, Ting; Feng, Shaoshu; Liu, Xin; Li, Qingwei

    2017-01-01

    Fundulus heteroclitus (Actinopteri, Cyprinodontiformes, Fundulidae), with a remarkable tolerance to osmotic stress and water temperatures, are regarded as a significant evolution model. Herein, we report the assembled complete sequence of the mummichog mitochondrial genome based on the next-generation sequencing data. The mitogenome is determined to be 16 528 bp in length and shows an organization typical of vertebrate mitochondrial genomes, including 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and 1 control region (D-loop). Overall GC content of the genome is 39.72%. Using Oryzias latipes as the outgroup, the phylogenetic analysis of 16 complete mitochondrial genomes from Cyprinodontiformes showed that F. heteroclitus together with other three Fundulus species form a cluster with strong bootstrap supports. The genus Fundulus is closely related to the genus Xenotoca.

  14. Complete genome sequence of Brachybacterium faecium type strain (Schefferle 6-10T)

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla; Pukall, Rudiger; LaButti, Kurt; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Rohde, Manfred; Goker, Markus; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D' haeseleer, Patrik; Chain, Patrick; Bristow, Jim; Eisen, Johnathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Brachybacterium faecium Collins et al. 1988 is the type species of the genus, and is of phylogenetic interest because of its location in the Dermabacteraceae, a rather isolated family within the actinobacterial suborder Micrococcineae. B. faecium is known for its rod-coccus growth cycle and the ability to degrade uric acid. It grows aerobically or weakly anaerobically. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from poultry deep litter. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the actinobacterial family Dermabacteraceae, and the 3,614,992 bp long single replicon genome with its 3129 protein-coding and 69 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  15. Complete genome sequence of Beutenbergia cavernae type strain (HKI 0122T)

    Energy Technology Data Exchange (ETDEWEB)

    Land, Miriam; Pukall, Rudiger; Abt, Birte; Goker, Markus; Rohde, Manfred; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Saunders, Elizabeth; Brettin, Thomas; Detter, John C.; Han, Cliff; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Beutenbergia cavernae (Groth et al. 1999) is the type species of the genus and is of phylogenetic interest because of its isolated location in the actinobacterial suborder Micrococcineae. B. cavernae HKI 0122T is a Gram-positive, non-motile, non-spore-forming bacterium isolated from a cave in Guangxi (China). B. cavernae grows best under aerobic conditions and shows a rod-coccus growth cycle. Its cell wall peptidoglycan contains the diagnostic L-lysine - L-glutamate interpeptide bridge. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence from the poorly populated micrococcineal family Beutenbergiaceae, and this 4,669,183 bp long single replicon genome with its 4225 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. Complete genome sequence of Halorhabdus utahensis type strain (AX-2T)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Pomrenke, Helge [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2009-01-01

    Halorhabdus utahensis Wain et al. 2000 is the type species of the genus, which is of phylogenetic interest because of its location on one of the deepest branches within the very extensive euryarchaeal family Halobacteriaceae. H. utahensis is a free-living, motile, rod shaped to pleomorphic, Gram-negative archaeon, which was originally isolated from a sediment sample collected from the southern arm of Great Salt Lake, Utah, USA. When grown on appropriate media, H. utahensis can form polyhydroxybutyrate (PHB). Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the a member of halobacterial genus Halorhabdus, and the 3,116,795 bp long single replicon genome with its 3027 protein-coding and 48 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  17. Complete genome sequence of Cryptobacterium curtum type strain (12-3T)

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Pukall, Rudiger; Rohde, Christine; Sims, David; Brettin, Thomas; Kuske, Cheryl; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, Natalia; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; D' haeseleer, Patrik; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Rohde, Manfred; Klenk, Hans-Peter; Kyrpides, Nikos C.

    2009-05-20

    Cryptobacterium curtum Nakazawa et al. 1999 is the type species of the genus, and is of phylogenetic interest because of its very distant and isolated position within the family Coriobacteriaceae. C. curtum is an asaccharolytic, opportunistic pathogen with a typical occurrence in the oral cavity, involved in dental and oral infections like periodontitis, inflammations and abscesses. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the actinobacterial family Coriobacteriaceae, and this 1,617,804 bp long single replicon genome with its 1364 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. Complete genome sequence of Dyadobacter fermentans type strain (NS114T)

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Elke; Lapidus, Alla; Chertkov, Olga; Brettin, Thomas; Detter, John C.; Han, Cliff; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Chain, Patrick; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Goker, Markus; Rohde, Manfred; Kyrpides, Nikos C; Klenk, Hans-Peter

    2009-05-20

    Dyadobacter fermentans (Chelius MK and Triplett EW, 2000) is the type species of the genus Dyadobacter. It is of phylogenetic interest because of its location in the Cytophagaceae, a very diverse family within the order 'Sphingobacteriales'. D. fermentans has a mainly respiratory metabolism, stains Gram-negative, is non-motile and oxidase and catalase positive. It is characterized by the production of cell filaments in ageing cultures, a flexirubin-like pigment and its ability to ferment glucose, which is almost unique in the aerobically living members of this taxonomically difficult family. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the 'sphingobacterial' genus Dyadobacter, and this 6,967,790 bp long single replicon genome with its 5804 protein-coding and 50 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  19. Complete genomic sequence of the Vibrio alginolyticus lytic bacteriophage PVA1.

    Science.gov (United States)

    Zhang, Jiancheng; Cao, Zhenhui; Xu, Yongping; Li, Xiaoyu; Li, Huaqiang; Wu, Feifei; Wang, Lili; Cao, Fang; Li, Zhen; Li, Shuying; Jin, Liji

    2014-12-01

    A novel Vibrio alginolyticus lytic bacteriophage was isolated from sewage samples obtained from a local aquatic market. Morphological analysis revealed that the phage, designated as PVA1, belonged to the family Podoviridae. The complete genomic sequence of phage PVA1 contained 41,529 bp with a G + C content of 43.7 % and 75 putative open reading frames. The genome was grouped into four modules, including phage structure, DNA packaging, DNA replication and regulation, and some additional functions. Further genomic comparison of the phage PVA1 with other known phages showed no significant similarities. Genes related to virulence and lysogeny were not detected in the phage genome. Our results suggest that phage PVA1 may be classified as a new Vibrio phage. We believe that these phage genomic sequence data will provide useful basic information for further molecular research on this Vibrio phage and its host as well for determining its infection/interaction mechanisms.

  20. Complete genome sequence of phytopathogenic Pectobacterium carotovorum subsp. carotovorum bacteriophage PP1.

    Science.gov (United States)

    Lee, Ju-Hoon; Shin, Hakdong; Ji, Samnyu; Malhotra, Shweta; Kumar, Mukesh; Ryu, Sangryeol; Heu, Sunggi

    2012-08-01

    Pectobacterium carotovorum subsp. carotovorum is a phytopathogen causing soft rot disease on diverse plant species. To control this plant pathogen, P. carotovorum subsp. carotovorum-targeting bacteriophage PP1 was isolated and its genome was completely sequenced to develop a novel biocontrol agent. Interestingly, the 44,400-bp genome sequence does not encode any gene involved in the formation of lysogen, suggesting that this phage may be very useful as a biocontrol agent because it does not make lysogen after host infection. This is the first report on the complete genome sequence of the P. carotovorum subsp. carotovorum-targeting bacteriophage, and it will enhance our understanding of the interaction between phytopathogens and their targeting bacteriophages.

  1. Complete Genome Sequence of the Endophytic Biocontrol Strain Bacillus velezensis CC09.

    Science.gov (United States)

    Cai, Xunchao; Kang, Xingxing; Xi, Huan; Liu, Changhong; Xue, Yarong

    2016-09-29

    Bacillus velezensis is a heterotypic synonym of B. methylotrophicus, B. amyloliquefaciens subsp. plantarum, and Bacillus oryzicola, and has been used to control plant fungal diseases. In order to fully understand the genetic basis of antimicrobial capacities, we did a complete genome sequencing of the endophytic B. velezensis strain CC09. Genes tightly associated with biocontrol ability, including nonribosomal peptide synthetases, polyketide synthetases, iron acquisition, colonization, and volatile organic compound synthesis were identified in the genome. Copyright © 2016 Cai et al.

  2. Complete Chloroplast Genome Sequence of Aquilaria sinensis (Lour.) Gilg and Evolution Analysis within the Malvales Order.

    Science.gov (United States)

    Wang, Ying; Zhan, Di-Feng; Jia, Xian; Mei, Wen-Li; Dai, Hao-Fu; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Aquilaria sinensis (Lour.) Gilg is an important medicinal woody plant producing agarwood, which is widely used in traditional Chinese medicine. High-throughput sequencing of chloroplast (cp) genomes enhanced the understanding about evolutionary relationships within plant families. In this study, we determined the complete cp genome sequences for A. sinensis. The size of the A. sinensis cp genome was 159,565 bp. This genome included a large single-copy region of 87,482 bp, a small single-copy region of 19,857 bp, and a pair of inverted repeats (IRa and IRb) of 26,113 bp each. The GC content of the genome was 37.11%. The A. sinensis cp genome encoded 113 functional genes, including 82 protein-coding genes, 27 tRNA genes, and 4 rRNA genes. Seven genes were duplicated in the protein-coding genes, whereas 11 genes were duplicated in the RNA genes. A total of 45 polymorphic simple-sequence repeat loci and 60 pairs of large repeats were identified. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited high A/T content. Moreover, 33 pairs of large repeat sequences were located in the protein-coding genes, whereas 27 pairs were located in the intergenic regions. Aquilaria sinensis cp genome bias ended with A/T on the basis of codon usage. The distribution of codon usage in A. sinensis cp genome was most similar to that in the Gonystylus bancanus cp genome. Comparative results of 82 protein-coding genes from 29 species of cp genomes demonstrated that A. sinensis was a sister species to G. bancanus within the Malvales order. Aquilaria sinensis cp genome presented the highest sequence similarity of >90% with the G. bancanus cp genome by using CGView Comparison Tool. This finding strongly supports the placement of A. sinensis as a sister to G. bancanus within the Malvales order. The complete A. sinensis cp genome information will be highly beneficial for further studies on this traditional medicinal

  3. Complete Chloroplast Genome Sequence of Aquilaria sinensis (Lour. Gilg and the Evolution Analysis within the Malvalesorder

    Directory of Open Access Journals (Sweden)

    Ying eWang

    2016-03-01

    Full Text Available Aquilaria sinensis (Lour. Gilg is an important medicinal woody plant producing agarwood, which is widely used in traditional Chinese medicine. High-throughput sequencing of chloroplast (cp genomes enhanced the understanding about evolutionary relationships within plant families. In this study, we determined the complete cp genome sequences for A. sinensis. The size of the A.sinensis cp genome was 159,565 bp. This genome included a large single-copy region of 87,482 bp, a small single-copy region of 19,857 bp, and a pair of inverted repeats (IRa and IRb of 26,113 bp each. The GC content of the genome was 37.11%. The A.sinensis cp genome encoded 113 functional genes, including 82 protein-coding genes, 27 tRNA genes, and 4 rRNA genes. Seven genes were duplicated in the protein-coding genes, whereas 11 genes were duplicated in the RNA genes. A total of 45 polymorphic simple-sequence repeat loci and 60 pairs of large repeats were identified. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited high A/T content. Moreover, 33 pairs of large repeat sequences were located in the protein-coding genes, whereas 27 pairs were located in the intergenic regions. Aquilaria sinensis cp genome bias ended with A/T on the basis of codon usage. The distribution of codon usage in A.sinensis cp genome was most similar to that in the Gonystylus bancanus cp genome. Comparative results of 82 protein-coding genes from 29 species of cp genomes demonstrated that A.sinensis was a sister species to G. bancanus within the Malvales order. Aquilaria sinensis cp genome presented the highest sequence similarity of >90% with the G. bancanus cp genome by using CGView Comparison Tool. This finding strongly supports the placement of A.sinensis as a sister to G. bancanus within the Malvales order. The complete A.sinensis cp genome information will be highly beneficial for further studies on this traditional

  4. Complete genome sequence of Borrelia afzelii K78 and comparative genome analysis.

    Directory of Open Access Journals (Sweden)

    Wolfgang Schüler

    Full Text Available The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the genetic diversity of B. afzelii, the most common species in Europe, responsible for the large variety of clinical manifestations of Lyme borreliosis, we have determined the full genome sequence of the B. afzelii strain K78, a clinical isolate from Austria. The K78 genome contains a linear chromosome (905,949 bp and 13 plasmids (8 linear and 5 circular together presenting 1,309 open reading frames of which 496 are located on plasmids. With the exception of lp28-8, all linear replicons in their full length including their telomeres have been sequenced. The comparison with the genomes of the four other B. afzelii strains, ACA-1, PKo, HLJ01 and Tom3107, as well as the one of B. burgdorferi strain B31, confirmed a high degree of conservation within the linear chromosome of B. afzelii, whereas plasmid encoded genes showed a much larger diversity. Since some plasmids present in B. burgdorferi are missing in the B. afzelii genomes, the corresponding virulence factors of B. burgdorferi are found in B. afzelii on other unrelated plasmids. In addition, we have identified a species specific region in the circular plasmid, cp26, which could be used for species determination. Different non-coding RNAs have been located on the B. afzelii K78 genome, which have not previously been annotated in any of the published Borrelia genomes.

  5. Complete Genome Sequence of Borrelia afzelii K78 and Comparative Genome Analysis

    Science.gov (United States)

    Schüler, Wolfgang; Bunikis, Ignas; Weber-Lehman, Jacqueline; Comstedt, Pär; Kutschan-Bunikis, Sabrina; Stanek, Gerold; Huber, Jutta; Meinke, Andreas; Bergström, Sven; Lundberg, Urban

    2015-01-01

    The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the genetic diversity of B. afzelii, the most common species in Europe, responsible for the large variety of clinical manifestations of Lyme borreliosis, we have determined the full genome sequence of the B. afzelii strain K78, a clinical isolate from Austria. The K78 genome contains a linear chromosome (905,949 bp) and 13 plasmids (8 linear and 5 circular) together presenting 1,309 open reading frames of which 496 are located on plasmids. With the exception of lp28-8, all linear replicons in their full length including their telomeres have been sequenced. The comparison with the genomes of the four other B. afzelii strains, ACA-1, PKo, HLJ01 and Tom3107, as well as the one of B. burgdorferi strain B31, confirmed a high degree of conservation within the linear chromosome of B. afzelii, whereas plasmid encoded genes showed a much larger diversity. Since some plasmids present in B. burgdorferi are missing in the B. afzelii genomes, the corresponding virulence factors of B. burgdorferi are found in B. afzelii on other unrelated plasmids. In addition, we have identified a species specific region in the circular plasmid, cp26, which could be used for species determination. Different non-coding RNAs have been located on the B. afzelii K78 genome, which have not previously been annotated in any of the published Borrelia genomes. PMID:25798594

  6. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    Directory of Open Access Journals (Sweden)

    Jin Duan

    Full Text Available The plant growth-promoting bacterium (PGPB Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.

  7. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    Science.gov (United States)

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  8. Complete Genome Sequence of Zucchini Yellow Mosaic Virus Strain Kurdistan, Iran.

    Science.gov (United States)

    Maghamnia, Hamid Reza; Hajizadeh, Mohammad; Azizi, Abdolbaset

    2018-03-01

    The complete genome sequence of Zucchini yellow mosaic virus strain Kurdistan (ZYMV-Kurdistan) infecting squash from Iran was determined from 13 overlapping fragments. Excluding the poly (A) tail, ZYMV-Kurdistan genome consisted of 9593 nucleotides (nt), with 138 and 211 nt at the 5' and 3' non-translated regions, respectively. It contained two open-reading frames (ORFs), the large ORF encoding a polyprotein of 3080 amino acids (aa) and the small overlapping ORF encoding a P3N-PIPO protein of 74 aa. This isolate had six unique aa differences compared to other ZYMV isolates and shared 79.6-98.8% identities with other ZYMV genome sequences at the nt level and 90.1-99% identities at the aa level. A phylogenetic tree of ZYMV complete genomic sequences showed that Iranian and Central European isolates are closely related and form a phylogenetically homogenous group. All values in the ratio of substitution rates at non-synonymous and synonymous sites ( d N / d S ) were below 1, suggestive of strong negative selection forces during ZYMV protein history. This is the first report of complete genome sequence information of the most prevalent virus in the west of Iran. This study helps our understanding of the genetic diversity of ZYMV isolates infecting cucurbit plants in Iran, virus evolution and epidemiology and can assist in designing better diagnostic tools.

  9. The complete chloroplast genome sequence of Podocarpus lambertii: genome structure, evolutionary aspects, gene content and SSR detection.

    Directory of Open Access Journals (Sweden)

    Leila do Nascimento Vieira

    Full Text Available BACKGROUND: Podocarpus lambertii (Podocarpaceae is a native conifer from the Brazilian Atlantic Forest Biome, which is considered one of the 25 biodiversity hotspots in the world. The advancement of next-generation sequencing technologies has enabled the rapid acquisition of whole chloroplast (cp genome sequences at low cost. Several studies have proven the potential of cp genomes as tools to understand enigmatic and basal phylogenetic relationships at different taxonomic levels, as well as further probe the structural and functional evolution of plants. In this work, we present the complete cp genome sequence of P. lambertii. METHODOLOGY/PRINCIPAL FINDINGS: The P. lambertii cp genome is 133,734 bp in length, and similar to other sequenced cupressophytes, it lacks one of the large inverted repeat regions (IR. It contains 118 unique genes and one duplicated tRNA (trnN-GUU, which occurs as an inverted repeat sequence. The rps16 gene was not found, which was previously reported for the plastid genome of another Podocarpaceae (Nageia nagi and Araucariaceae (Agathis dammara. Structurally, P. lambertii shows 4 inversions of a large DNA fragment ∼20,000 bp compared to the Podocarpus totara cp genome. These unexpected characteristics may be attributed to geographical distance and different adaptive needs. The P. lambertii cp genome presents a total of 28 tandem repeats and 156 SSRs, with homo- and dipolymers being the most common and tri-, tetra-, penta-, and hexapolymers occurring with less frequency. CONCLUSION: The complete cp genome sequence of P. lambertii revealed significant structural changes, even in species from the same genus. These results reinforce the apparently loss of rps16 gene in Podocarpaceae cp genome. In addition, several SSRs in the P. lambertii cp genome are likely intraspecific polymorphism sites, which may allow highly sensitive phylogeographic and population structure studies, as well as phylogenetic studies of species of

  10. Complete genome sequences of Escherichia coli strains 1303 and ECC-1470 isolated from bovine mastitis

    NARCIS (Netherlands)

    Leimbach, Andreas; Poehlein, Anja; Witten, Anika; Scheutz, Flemming; Schukken, Ynte; Daniel, Rolf; Dobrindt, Ulrich

    2016-01-01

    Escherichia coli is the leading causative agent of acute bovine mastitis. Here, we report the complete genome sequence of E. coli O70:H32 strain 1303, isolated from an acute case of bovine mastitis, and E. coli Ont:Hnt strain ECC-1470, isolated from a persistent infection.

  11. Complete Genome Sequences of Escherichia coli Strains 1303 and ECC-1470 Isolated from Bovine Mastitis

    Science.gov (United States)

    Leimbach, Andreas; Poehlein, Anja; Witten, Anika; Scheutz, Flemming; Schukken, Ynte; Daniel, Rolf

    2015-01-01

    Escherichia coli is the leading causative agent of acute bovine mastitis. Here, we report the complete genome sequence of E. coli O70:H32 strain 1303, isolated from an acute case of bovine mastitis, and E. coli Ont:Hnt strain ECC-1470, isolated from a persistent infection. PMID:25814601

  12. Complete Genome Sequence of Pediococcus pentosaceus Strain wikim 20, Isolated from Korean Kimchi

    Science.gov (United States)

    Lee, Se Hee; Jung, Min Young; Park, Boyeon; Sung-Oh, Sohn; Park, Hae Woong; Choi, Hak-Jong

    2016-01-01

    Pediococcus pentosaceus strain wikim 20 is a lactic acid bacterium that was isolated from kimchi, a representative traditional Korean fermented food. Here, we announce the complete genome sequence of P. pentosaceus strain wikim 20 consisting of a 1,830,629-bp chromosome and provide a description of its annotation. PMID:27834699

  13. Complete Genome Sequences of Two Escherichia coli O145:H28 Outbreak Strains of Food Origin

    OpenAIRE

    Cooper, Kerry K.; Mandrell, Robert E.; Louie, Jacqueline W.; Korlach, Jonas; Clark, Tyson A.; Parker, Craig T.; Huynh, Steven; Chain, Patrick S. G.; Ahmed, Sanaa; Carter, Michelle Qiu

    2014-01-01

    Escherichia coli O145:H28 strain RM12581 was isolated from bagged romaine lettuce during a 2010 U.S. lettuce-associated outbreak. E. coli O145:H28 strain RM12761 was isolated from ice cream during a 2007 ice cream-associated outbreak in Belgium. Here we report the complete genome sequences and annotation of both strains.

  14. Complete genome sequence of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk.

    Science.gov (United States)

    Jiménez, Esther; Langa, Susana; Martín, Virginia; Arroyo, Rebeca; Martín, Rocío; Fernández, Leónides; Rodríguez, Juan M

    2010-09-01

    Lactobacillus fermentum is a heterofermentative lactic acid bacterium and is frequently isolated from mucosal surfaces of healthy humans. Lactobacillus fermentum CECT 5716 is a well-characterized probiotic strain isolated from human milk and, at present, is used in commercial infant formulas. Here, we report the complete and annotated genome sequence of this strain.

  15. Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis

    DEFF Research Database (Denmark)

    Nosek, J.; Novotna, M.; Hlavatovicova, Z.

    2004-01-01

    The complete sequence of the mitochondrial DNA of the opportunistic yeast pathogen Candida parapsilosis was determined. The mitochondrial genome is represented by linear DNA molecules terminating with tandem repeats of a 738-bp unit. The number of repeats varies, thus generating a population...

  16. Complete genome sequence of currant latent virus (genus Cheravirus, family Secoviridae)

    Czech Academy of Sciences Publication Activity Database

    Petrzik, Karel; Koloniuk, Igor; Přibylová, Jaroslava; Špak, Josef

    2016-01-01

    Roč. 161, č. 2 (2016), s. 491-493 ISSN 0304-8608 Institutional support: RVO:60077344 Keywords : Stranded-RNA * complete genome sequence * Currant latent virus Subject RIV: EE - Microbiology, Virology Impact factor: 2.058, year: 2016

  17. Complete Genome Sequence of the Halophilic Methylotrophic Methanogen Archaeon Methanohalophilus portucalensis Strain FDF-1T

    KAUST Repository

    L’Haridon, Stéphane

    2018-01-17

    We report here the complete genome sequence (2.08 Mb) of Methanohalophilus portucalensis strain FDF-1T, a halophilic methylotrophic methanogen isolated from the sediment of a saltern in Figeria da Foz, Portugal. The average nucleotide identity and DNA-DNA hybridization analyses show that Methanohalophilus mahii, M. halophilus, and M. portucalensis are three different species within the Methanosarcinaceae family.

  18. Complete Genomic Sequence and an Infectious BAC Clone of Feline Herpesvirus-1 (FHV-1)

    Science.gov (United States)

    Feline herpesvirus type 1 (FHV-1) is classified under the genus Varicellovirus within the Alphaherpesvirinae subfamily, and is a major cause of upper respiratory infection in cats. In this report, we present the first complete genomic sequence of FHV-1, as well as a bacterial artificial chromosome (...

  19. Complete nucleotide sequence and genome organization of a novel allexivirus from alfalfa (Medicago sativa)

    Science.gov (United States)

    A new species of the family Alphaflexiviridae provisionally named Alfalfa virus S (AVS) was diagnosed in alfalfa samples originating from Sudan. A complete nucleotide sequence of the viral genome consisting of 8,349 nucleotides excluding the 3’ poly(A) tail was determined by Illumina NGS technology ...

  20. Complete Genome Sequence for Lactobacillus helveticus CNRZ 32, an Industrial Cheese Starter and Cheese Flavor Adjunct

    OpenAIRE

    Broadbent, Jeff R.; Hughes, Joanne E.; Welker, Dennis L.; Tompkins, Thomas A.; Steele, James L.

    2013-01-01

    Lactobacillus helveticus is a lactic acid bacterium widely used in the manufacture of cheese and for production of bioactive peptides from milk proteins. We present the complete genome sequence for L.?helveticus CNRZ 32, a strain particularly recognized for its ability to reduce bitterness and accelerate flavor development in cheese.

  1. Complete Genome Sequence of Bacillus amyloliquefaciens Strain BH072, Isolated from Honey

    NARCIS (Netherlands)

    Zhao, Xin; de Jong, Anne; Zhou, Zhijiang; Kuipers, Oscar P

    2015-01-01

    The genome of Bacillus amyloliquefaciens strain BH072, isolated from a honey sample and showing strong antimicrobial activity against plant pathogens, is 4.07 Mb and harbors 3,785 coding sequences (CDS). Several gene clusters for nonribosomal synthesis of antimicrobial peptides and a complete gene

  2. Complete Genome Sequence of Biocontroller Bacillus velezensis Strain JTYP2, Isolated from Leaves of Echeveria laui.

    Science.gov (United States)

    Wang, Beibei; Liu, Hu; Ma, Hailin; Wang, Chengqiang; Liu, Kai; Li, Yuhuan; Hou, Qihui; Ge, Ruofei; Zhang, Tongrui; Liu, Fangchun; Ma, Jinjin; Wang, Yun; Wang, Haide; Xu, Baochao; Yao, Gan; Xu, Wenfeng; Fan, Lingchao; Ding, Yanqin; Du, Binghai

    2017-06-15

    Bacillus velezensis JTYP2 was isolated from the leaves of Echeveria laui in Qingzhou, China, and may control some of the fungal pathogens of the plant. Here, we present the complete genome sequence of B. velezensis JTYP2. Several gene clusters related to its biosynthesis of antimicrobial compounds were predicted. Copyright © 2017 Wang et al.

  3. Complete Genome Sequences of Sweet potato feathery mottle virus and Sweet potato virus G from Brazil

    OpenAIRE

    Souza, Caroline A.; Rossato, Maurício; Melo, Fernando L.; Pereira-Carvalho, Rita C.

    2018-01-01

    ABSTRACT In Brazil, Potyvirus species in sweet potatoes have been detected mostly by serology. Here, we report the complete genome sequences of two Potyvirus species, Sweet potato feathery mottle virus strain (SPFMV-UNB-01) and Sweet potato virus G strain (SPVG-UNB-01).

  4. Complete sequencing of five araliaceae chloroplast genomes and the phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Rong Li

    Full Text Available BACKGROUND: The ginseng family (Araliaceae includes a number of economically important plant species. Previously phylogenetic studies circumscribed three major clades within the core ginseng plant family, yet the internal relationships of each major group have been poorly resolved perhaps due to rapid radiation of these lineages. Recent studies have shown that phyogenomics based on chloroplast genomes provides a viable way to resolve complex relationships. METHODOLOGY/PRINCIPAL FINDINGS: We report the complete nucleotide sequences of five Araliaceae chloroplast genomes using next-generation sequencing technology. The five chloroplast genomes are 156,333-156,459 bp in length including a pair of inverted repeats (25,551-26,108 bp separated by the large single-copy (86,028-86,566 bp and small single-copy (18,021-19,117 bp regions. Each chloroplast genome contains the same 114 unique genes consisting of 30 transfer RNA genes, four ribosomal RNA genes, and 80 protein coding genes. Gene size, content, and order, AT content, and IR/SC boundary structure are similar among all Araliaceae chloroplast genomes. A total of 140 repeats were identified in the five chloroplast genomes with palindromic repeat as the most common type. Phylogenomic analyses using parsimony, likelihood, and Bayesian inference based on the complete chloroplast genomes strongly supported the monophyly of the Asian Palmate group and the Aralia-Panax group. Furthermore, the relationships among the sampled taxa within the Asian Palmate group were well resolved. Twenty-six DNA markers with the percentage of variable sites higher than 5% were identified, which may be useful for phylogenetic studies of Araliaceae. CONCLUSION: The chloroplast genomes of Araliaceae are highly conserved in all aspects of genome features. The large-scale phylogenomic data based on the complete chloroplast DNA sequences is shown to be effective for the phylogenetic reconstruction of Araliaceae.

  5. Complete Genome Sequence of the Type Strain Cupriavidus necator N-1 ▿ †

    Science.gov (United States)

    Poehlein, Anja; Kusian, Bernhard; Friedrich, Bärbel; Daniel, Rolf; Bowien, Botho

    2011-01-01

    Here we announce the complete genome sequence of the copper-resistant bacterium Cupriavidus necator N-1, the type strain of the genus Cupriavidus. The genome consists of two chromosomes and two circular plasmids. Based on genome comparison, the chromosomes of C. necator N-1 share a high degree of similarity with the two chromosomal replicons of the bioplastic-producing hydrogen bacterium Ralstonia eutropha H16. The two strains differ in their plasmids and the presence of hydrogenase genes, which are absent in strain N-1. PMID:21742890

  6. Complete genome sequence of jacquemontia yellow vein virus, a novel begomovirus infecting Jacquemontia tamnifolia in Venezuela.

    Science.gov (United States)

    Fiallo-Olivé, Elvira; Chirinos, Dorys T; Geraud-Pouey, Francis; Navas-Castillo, Jesús

    2017-08-01

    Wild plants of the family Convolvulaceae are hosts for a few New World begomoviruses (genus Begomovirus, family Geminiviridae). In this work, we report the complete genome sequence of a new begomovirus infecting the wild convolvulaceous plant Jacquemontia tamnifolia in Venezuela. The cloned bipartite genome showed the organization of typical New World begomoviruses and was found to be phylogenetically related to those of begomoviruses from Venezuela and other Caribbean countries. Several recombination events have been shown to have occurred involving genome fragment exchange with related begomoviruses infecting crops such as tomato and cucurbits and wild plants, including Jacquemontia sp. We propose the name jacquemontia yellow vein virus (JacYVV) for this new begomovirus.

  7. The complete mitochondrial genome sequence of the Tibetan red fox (Vulpes vulpes montana).

    Science.gov (United States)

    Zhang, Jin; Zhang, Honghai; Zhao, Chao; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2015-01-01

    In this study, the complete mitochondrial genome of the Tibetan red fox (Vulpes Vulpes montana) was sequenced for the first time using blood samples obtained from a wild female red fox captured from Lhasa in Tibet, China. Qinghai--Tibet Plateau is the highest plateau in the world with an average elevation above 3500 m. Sequence analysis showed it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region (CR). The variable tandem repeats in CR is the main reason of the length variability of mitochondrial genome among canide animals.

  8. Complete genome sequence of Truepera radiovictrix type strain (RQ-24T)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Rohde, Christine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Munk, Christine [Joint Genome Institute, Walnut Creek, California; Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Glavina Del Rio, Tijana [Joint Genome Institute, Walnut Creek, California; Tice, Hope [Joint Genome Institute, Walnut Creek, California; Deshpande, Shweta [Joint Genome Institute, Walnut Creek, California; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California

    2011-01-01

    Truepera radiovictrix Albuquerque et al. 2005 is the type species of the genus Truepera within the phylum Deinococcus/Thermus. T. radiovictrix is of special interest not only because of its isolated phylogenetic location in the order Deinococcales, but also because of its ability to grow under multiple extreme conditions in alkaline, moderately saline, and high temperature habitats. Of particular interest is the fact that, T. radiovictrix is also remarkably resistant to ionizing radiation, a feature it shares with members of the genus Deinococcus. This is the first completed genome sequence of a member of the family Trueperaceae and the fourth type strain genome sequence from a member of the order Deinococcales. The 3,260,398 bp long genome with its 2,994 protein-coding and 52 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  9. The complete genome sequence of Haloferax volcanii DS2, a model archaeon.

    Directory of Open Access Journals (Sweden)

    Amber L Hartman

    2010-03-01

    Full Text Available Haloferax volcanii is an easily culturable moderate halophile that grows on simple defined media, is readily transformable, and has a relatively stable genome. This, in combination with its biochemical and genetic tractability, has made Hfx. volcanii a key model organism, not only for the study of halophilicity, but also for archaeal biology in general.We report here the sequencing and analysis of the genome of Hfx. volcanii DS2, the type strain of this species. The genome contains a main 2.848 Mb chromosome, three smaller chromosomes pHV1, 3, 4 (85, 438, 636 kb, respectively and the pHV2 plasmid (6.4 kb.The completed genome sequence, presented here, provides an invaluable tool for further in vivo and in vitro studies of Hfx. volcanii.

  10. The complete chloroplast genome sequence of wild cucumber (Cucumis sativus var. Hardwickii).

    Science.gov (United States)

    Gao, Ju; Liu, Bang; Jiang, Honghai

    2016-11-01

    The complete chloroplast genome sequence of wild cucumber (Cucumis sativus var. hardwickii) was generated by de novo assembly with low-coverage whole-genome sequence data. The 155 277 bp genome containing a pair of inverted repeats (IRs) of 25 198 bp separated by a large single-copy region of 86 618 bp and a small single-copy region of 18 263 bp. The chloroplast genome contains 130 known genes, including 89 protein-coding genes, eight rRNA genes (four kinds), and 37 tRNA genes (30 kinds). Eighteen genes are duplicated in the inverted repeat regions, 16 genes contain one intron, two genes, and one ycf contain two introns. Phylogenomic analysis showed that C. sativus var. Hardwickii is closely related to C. sativus and C. hystrix.

  11. Complete genome sequence of Tsukamurella paurometabola type strain (no. 33T)

    Science.gov (United States)

    Munk, A. Christine; Lapidus, Alla; Lucas, Susan; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Del Rio, Tijana Glavina; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Huntemann, Marcel; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Tapia, Roxanne; Han, Cliff; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Brettin, Thomas; Yasawong, Montri; Brambilla, Evelyne-Marie; Rohde, Manfred; Sikorski, Johannes; Göker, Markus; Detter, John C.; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2011-01-01

    Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The species is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung infection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806 bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21886861

  12. The complete chloroplast genome sequence of Asian Palmyra palm (Borassus flabellifer).

    Science.gov (United States)

    Sakulsathaporn, Arpakorn; Wonnapinij, Passorn; Vuttipongchaikij, Supachai; Apisitwanich, Somsak

    2017-12-16

    Borassus flabellifer or Asian Palmyra palm is widely distributed in South and Southeast Asia and is horticultural and economic importance for its fruit and palm sugar production. However, its population is in rapid decline, and only a few genetic data are available. We sequenced the complete chloroplast (cp) genome of B. flabellifer to provide its genetic data for further utilization. The cp genome was obtained by Illumina sequencing and manual gap fillings providing 160,021 bp in length containing a pair of inverted repeats (IRs) with 27,256 bp. These IRs divide the genome into a large single copy region 87,444 bp and a small single copy region 18,065 bp. In total, 113 unique genes, 134 SSRs and 47 large repeats were identified. This is the first complete cp genome reported in the genus Borassus. A comparative analysis among members of the Borasseae tribe revealed that the B. flabellifer cp genome is, so far, the largest and the cp genomes of this tribe have a similar structure, gene number and gene arrangement. A phylogenetic tree reconstructed based on 74 protein-coding genes from 70 monocots demonstrates short branch lengths indicating slow evolutionary rates of cp genomes in family Arecaceae.

  13. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081.

    Directory of Open Access Journals (Sweden)

    Nicholas R Thomson

    2006-12-01

    Full Text Available The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common

  14. Complete Genome Sequence of an Avian Metapneumovirus Subtype A Strain Isolated from Chicken (Gallus gallus) in Brazil.

    Science.gov (United States)

    Rizotto, Laís S; Scagion, Guilherme P; Cardoso, Tereza C; Simão, Raphael M; Caserta, Leonardo C; Benassi, Julia C; Keid, Lara B; Oliveira, Trícia M F de S; Soares, Rodrigo M; Arns, Clarice W; Van Borm, Steven; Ferreira, Helena L

    2017-07-20

    We report here the complete genome sequence of an avian metapneumovirus (aMPV) isolated from a tracheal tissue sample of a commercial layer flock. The complete genome sequence of aMPV-A/chicken/Brazil-SP/669/2003 was obtained using MiSeq (Illumina, Inc.) sequencing. Phylogenetic analysis of the complete genome classified the isolate as avian metapneumovirus subtype A. Copyright © 2017 Rizotto et al.

  15. Complete genome sequence of Isosphaera pallida type strain (IS1BT)

    Energy Technology Data Exchange (ETDEWEB)

    Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Cleland, David M [ORNL; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Hammon, Nancy [Joint Genome Institute, Walnut Creek, California; Deshpande, Shweta [Joint Genome Institute, Walnut Creek, California; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Pagani, Ioanna [Joint Genome Institute, Walnut Creek, California; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Beck, Brian [ATCC - American Type Culture Collection; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2011-01-01

    Isosphaera pallida (ex Woronichin 1927) Giovannoni et al. 1995 is the type species of the genus Isosphaera. The species is of interest because it was the first heterotrophic bacterium known to be phototactic, and it occupies an isolated phylogenetic position within the Planctomycetaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the genus Isosphaera and the third of a member of the family Planctomycetaceae. The 5,472,964 bp long chromosome and the 56,340 bp long plasmid with a total of 3,763 protein-coding and 60 RNA genes are part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. Complete genome sequence of Marivirga tractuosa type strain (H-43T)

    Energy Technology Data Exchange (ETDEWEB)

    Pagani, Ioanna [Joint Genome Institute, Walnut Creek, California; Chertkov, Olga [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Glavina Del Rio, Tijana [Joint Genome Institute, Walnut Creek, California; Tice, Hope [Joint Genome Institute, Walnut Creek, California; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Held, Brittany [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Ngatchou, Olivier Duplex [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California

    2011-01-01

    Marivirga tractuosa (Lewin 1969) Nedashkovskaya et al. 2010 is the type species of the genus Marivirga, which belongs to the family Flammeovirgaceae. Members of this genus are of interest because of their gliding motility. The species is of interest because representative strains show resistance to several antibiotics, including gentamicin, kanamycin, neomycin, polymixin and streptomycin. This is the first complete genome sequence of a member of the family Flammeovirgaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,511,574 bp long chromosome and the 4,916 bp plasmid with their 3,808 protein-coding and 49 RNA genes are a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  17. Sequencing and analysis of the complete mitochondrial genome in Anopheles sinensis (Diptera: Culicidae).

    Science.gov (United States)

    Chen, Kai; Wang, Yan; Li, Xiang-Yu; Peng, Heng; Ma, Ya-Jun

    2017-10-02

    Anopheles sinensis (Diptera: Culicidae) is a primary vector of Plasmodium vivax and Brugia malayi in most regions of China. In addition, its phylogenetic relationship with the cryptic species of the Hyrcanus Group is complex and remains unresolved. Mitochondrial genome sequences are widely used as molecular markers for phylogenetic studies of mosquito species complexes, of which mitochondrial genome data of An. sinensis is not available. An. sinensis samples was collected from Shandong, China, and identified by molecular marker. Genomic DNA was extracted, followed by the Illumina sequencing. Two complete mitochondrial genomes were assembled and annotated using the mitochondrial genome of An. gambiae as reference. The mitochondrial genomes sequences of the 28 known Anopheles species were aligned and reconstructed phylogenetic tree by Maximum Likelihood (ML) method. The length of complete mitochondrial genomes of An. sinensis was 15,076 bp and 15,138 bp, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and an AT-rich control region. As in other insects, most mitochondrial genes are encoded on the J strand, except for ND5, ND4, ND4L, ND1, two rRNA and eight tRNA genes, which are encoded on the N strand. The bootstrap value was set as 1000 in ML analyses. The topologies restored phylogenetic affinity within subfamily Anophelinae. The ML tree showed four major clades, corresponding to the subgenera Cellia, Anopheles, Nyssorhynchus and Kerteszia of the genus Anopheles. The complete mitochondrial genomes of An. sinensis were obtained. The number, order and transcription direction of An. sinensis mitochondrial genes were the same as in other species of family Culicidae.

  18. Complete genome sequence of Francisella tularensis subspecies holarctica FTNF002-00.

    Directory of Open Access Journals (Sweden)

    Ravi D Barabote

    Full Text Available Francisella tularensis subspecies holarctica FTNF002-00 strain was originally obtained from the first known clinical case of bacteremic F. tularensis pneumonia in Southern Europe isolated from an immunocompetent individual. The FTNF002-00 complete genome contains the RD(23 deletion and represents a type strain for a clonal population from the first epidemic tularemia outbreak in Spain between 1997-1998. Here, we present the complete sequence analysis of the FTNF002-00 genome. The complete genome sequence of FTNF002-00 revealed several large as well as small genomic differences with respect to two other published complete genome sequences of F. tularensis subsp. holarctica strains, LVS and OSU18. The FTNF002-00 genome shares >99.9% sequence similarity with LVS and OSU18, and is also approximately 5 MB smaller by comparison. The overall organization of the FTNF002-00 genome is remarkably identical to those of LVS and OSU18, except for a single 3.9 kb inversion in FTNF002-00. Twelve regions of difference ranging from 0.1-1.5 kb and forty-two small insertions and deletions were identified in a comparative analysis of FTNF002-00, LVS, and OSU18 genomes. Two small deletions appear to inactivate two genes in FTNF002-00 causing them to become pseudogenes; the intact genes encode a protein of unknown function and a drug:H(+ antiporter. In addition, we identified ninety-nine proteins in FTNF002-00 containing amino acid mutations compared to LVS and OSU18. Several non-conserved amino acid replacements were identified, one of which occurs in the virulence-associated intracellular growth locus subunit D protein. Many of these changes in FTNF002-00 are likely the consequence of direct selection that increases the fitness of this subsp. holarctica clone within its endemic population. Our complete genome sequence analyses lay the foundation for experimental testing of these possibilities.

  19. The Complete Chloroplast Genome Sequences of the Medicinal Plant Pogostemon cablin

    Directory of Open Access Journals (Sweden)

    Yang He

    2016-06-01

    Full Text Available Pogostemon cablin, the natural source of patchouli alcohol, is an important herb in the Lamiaceae family. Here, we present the entire chloroplast genome of P. cablin. This genome, with 38.24% GC content, is 152,460 bp in length. The genome presents a typical quadripartite structure with two inverted repeats (each 25,417 bp in length, separated by one small and one large single-copy region (17,652 and 83,974 bp in length, respectively. The chloroplast genome encodes 127 genes, of which 107 genes are single-copy, including 79 protein-coding genes, four rRNA genes, and 24 tRNA genes. The genome structure, GC content, and codon usage of this chloroplast genome are similar to those of other species in the family, except that it encodes less protein-coding genes and tRNA genes. Phylogenetic analysis reveals that P. cablin diverged from the Scutellarioideae clade about 29.45 million years ago (Mya. Furthermore, most of the simple sequence repeats (SSRs are short polyadenine or polythymine repeats that contribute to high AT content in the chloroplast genome. Complete sequences and annotation of P. cablin chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species.

  20. The complete chloroplast genome sequence of Cynanchum auriculatum Royle ex Wight (Apocynaceae).

    Science.gov (United States)

    Jang, Woojong; Kim, Kyu-Yeob; Kim, Kyunghee; Lee, Sang-Choon; Park, Hyun-Seung; Lee, Junki; Seong, Rack Seon; Shim, Young Hun; Sung, Sang Hyun; Yang, Tae-Jin

    2016-11-01

    Cynanchum auriculatum is a climbing vine belonging to the Apocynaceae family and shows very similar morphology to Cynanchum wilfordii, a medicinal plant. The complete chloroplast genome of C. auriculatum was generated by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of C. auriculatum was 160 840 bp in length and consisted of four distinct regions, such as large single copy region (91 973 bp), small single copy region (19 667 bp), and a pair of inverted repeat regions (24 600 bp). The overall GC contents of the chloroplast genome were 37.8%. A total of 114 genes were predicted and included 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that C. auriculatum is most closely related to Cynanchum wilfordii, a medicinal plant.

  1. The complete chloroplast genome sequence of an important medicinal plant Cynanchum wilfordii (Maxim.) Hemsl. (Apocynaceae).

    Science.gov (United States)

    Park, Hyun-Seung; Kim, Kyu-Yeob; Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Seong, Rack Seon; Shim, Young Hun; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    Cynanchum wilfordii (Maxim.) Hemsl. is a traditional medicinal herb belonging to the Asclepiadoideae subfamily, whose dried roots have been used as traditional medicine in Asia. The complete chloroplast genome of C. wilfordii was generated by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of C. wilfordii was 161 241 bp long, composed of large single copy region (91 995 bp), small single copy region (19 930 bp) and a pair of inverted repeat regions (24 658 bp). The overall GC contents of the chloroplast genome was 37.8%. A total of 114 genes were annotated, which included 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that C. wilfordii is most closely related to Asclepias nivea (Caribbean milkweed) and Asclepias syriaca (common milkweed) within the Asclepiadoideae subfamily.

  2. The complete chloroplast genome sequence of date palm (Phoenix dactylifera L..

    Directory of Open Access Journals (Sweden)

    Meng Yang

    Full Text Available BACKGROUND: Date palm (Phoenix dactylifera L., a member of Arecaceae family, is one of the three major economically important woody palms--the two other palms being oil palm and coconut tree--and its fruit is a staple food among Middle East and North African nations, as well as many other tropical and subtropical regions. Here we report a complete sequence of the data palm chloroplast (cp genome based on pyrosequencing. METHODOLOGY/PRINCIPAL FINDINGS: After extracting 369,022 cp sequencing reads from our whole-genome-shotgun data, we put together an assembly and validated it with intensive PCR-based verification, coupled with PCR product sequencing. The date palm cp genome is 158,462 bp in length and has a typical quadripartite structure of the large (LSC, 86,198 bp and small single-copy (SSC, 17,712 bp regions separated by a pair of inverted repeats (IRs, 27,276 bp. Similar to what has been found among most angiosperms, the date palm cp genome harbors 112 unique genes and 19 duplicated fragments in the IR regions. The junctions between LSC/IRs and SSC/IRs show different features of sequence expansion in evolution. We identified 78 SNPs as major intravarietal polymorphisms within the population of a specific cp genome, most of which were located in genes with vital functions. Based on RNA-sequencing data, we also found 18 polycistronic transcription units and three highly expression-biased genes--atpF, trnA-UGC, and rrn23. CONCLUSIONS: Unlike most monocots, date palm has a typical cp genome similar to that of tobacco--with little rearrangement and gene loss or gain. High-throughput sequencing technology facilitates the identification of intravarietal variations in cp genomes among different cultivars. Moreover, transcriptomic analysis of cp genes provides clues for uncovering regulatory mechanisms of transcription and translation in chloroplasts.

  3. The complete nucleotide sequence, genome organization, and origin of human adenovirus type 11

    International Nuclear Information System (INIS)

    Stone, Daniel; Furthmann, Anne; Sandig, Volker; Lieber, Andre

    2003-01-01

    The complete DNA sequence and transcription map of human adenovirus type 11 are reported here. This is the first published sequence for a subgenera B human adenovirus and demonstrates a genome organization highly similar to those of other human adenoviruses. All of the genes from the early, intermediate, and late regions are present in the expected locations of the genome for a human adenovirus. The genome size is 34,794 bp in length and has a GC content of 48.9%. Sequence alignment with genomes of groups A (Ad12), C (Ad5), D (Ad17), E (Simian adenovirus 25), and F (Ad40) revealed homologies of 64, 54, 68, 75, and 52%, respectively. Detailed genomic analysis demonstrated that Ads 11 and 35 are highly conserved in all areas except the hexon hypervariable regions and fiber. Similarly, comparison of Ad11 with subgroup E SAV25 revealed poor homology between fibers but high homology in proteins encoded by all other areas of the genome. We propose an evolutionary model in which functional viruses can be reconstituted following fiber substitution from one serotype to another. According to this model either the Ad11 genome is a derivative of Ad35, from which the fiber was substituted with Ad7, or the Ad35 genome is the product of a fiber substitution from Ad21 into the Ad11 genome. This model also provides a possible explanation for the origin of group E Ads, which are evolutionarily derived from a group C fiber substitution into a group B genome

  4. Complete genome sequence of Hydrogenobacter thermophilus type strain (TK-6T)

    Energy Technology Data Exchange (ETDEWEB)

    Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Han, James [Joint Genome Institute; Tice, Hope [Joint Genome Institute, Walnut Creek, California; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Ngatchou, Olivier Duplex [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Ubler, Susanne [Universitat Regensburg, Regensburg, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Wirth, Reinhard [Universitat Regensburg, Regensburg, Germany; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California

    2011-01-01

    Hydrogenobacter thermophilus Kawasumi et al. 1984 is the type species of the genus Hydrogenobacter. H. thermophilus was the first obligate autotrophic organism reported among aerobic hydrogen-oxidizing bacteria. Strain TK-6T is of interest because of the unusually efficient hydrogen-oxidizing ability of this strain, which results in a faster generation time compared to other autotrophs. It is also able to grow anaerobically using nitrate as an electron acceptor when molecular hydrogen is used as the energy source, and able to aerobically fix CO2 via the reductive tricarboxylic acid cycle. This is the fifth completed genome sequence in the family Aquificaceae, and the second genome sequence determined from a strain derived from the original isolate. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,742,932 bp long genome with its 1,899 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. Complete sequence of the mitochondrial genome of Taenia saginata: comparison with T. solium and T. asiatica.

    Science.gov (United States)

    Jeon, Hyeong-Kyu; Kim, Kyu-Heon; Eom, Keeseon S

    2007-09-01

    The complete sequence of the Taenia saginata mitochondrial genome was determined, and its organization and structure were compared to other human-tropic Taenia tapeworms for which complete mitochondrial sequence data were available. The mitochondrial genome was 13,670 bp long, contained 12 protein-coding genes, two ribosomal RNAs (rRNAs, a small and a large subunit), and 22 transfer RNAs (tRNAs). It did not encode the atp8 gene. Overlapping regions were found between nad4L and nad4, nad1 and trnN, and cox1 and trnT. The ATG initiation codon was used for 10 protein-coding genes, and the GTG initiation codon was used for the remaining 2 genes (nad4 and atp6). The size of the protein-coding genes of the three human Taenia tapeworms did not vary, except for Taenia solium nad1 (891 aa) and nad4 (1212 aa) and Taenia asiatica cox2 (576 aa). The tRNA genes were 57-75 bp long, and the predicted secondary structures of 18 of these genes had typical clover-leaf shapes with paired dihydrouridine (DHU) arms. The genes in all human Taenia tapeworms for the two mitochondrial rRNA subunits rrnL and rrnS are separated by trnC. The putative T. saginata rrnL and rrnS are 972 and 732 bp long, respectively. The non-coding regions of the mt genome of T. saginata consisted of 2 regions: a short non-coding region (SNR, 66 nucleotides) and a long non-coding region (LNR, 159 nucleotides). The overall sequence difference in the full mitochondrial genome between T. saginata and T. asiatica was 4.6%, while T. solium differed by 11%. In conclusion, the complete sequence of the T. saginata mitochondrial genome will serve as a resource for comparative mitochondrial genomics and systematic studies of the parasitic cestodes.

  6. Complete Sequence and Analysis of Coconut Palm (Cocos nucifera) Mitochondrial Genome.

    Science.gov (United States)

    Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Zhao, Yuhui; Zeng, Jingyao; Alamer, Ali; Alanazi, Ibrahim O; Alawad, Abdullah O; Al-Sadi, Abdullah M; Hu, Songnian; Yu, Jun

    2016-01-01

    Coconut (Cocos nucifera L.), a member of the palm family (Arecaceae), is one of the most economically important crops in tropics, serving as an important source of food, drink, fuel, medicine, and construction material. Here we report an assembly of the coconut (C. nucifera, Oman local Tall cultivar) mitochondrial (mt) genome based on next-generation sequencing data. This genome, 678,653bp in length and 45.5% in GC content, encodes 72 proteins, 9 pseudogenes, 23 tRNAs, and 3 ribosomal RNAs. Within the assembly, we find that the chloroplast (cp) derived regions account for 5.07% of the total assembly length, including 13 proteins, 2 pseudogenes, and 11 tRNAs. The mt genome has a relatively large fraction of repeat content (17.26%), including both forward (tandem) and inverted (palindromic) repeats. Sequence variation analysis shows that the Ti/Tv ratio of the mt genome is lower as compared to that of the nuclear genome and neutral expectation. By combining public RNA-Seq data for coconut, we identify 734 RNA editing sites supported by at least two datasets. In summary, our data provides the second complete mt genome sequence in the family Arecaceae, essential for further investigations on mitochondrial biology of seed plants.

  7. Complete genome sequence of the cellulose-producing strain Komagataeibacter nataicola RZS01.

    Science.gov (United States)

    Zhang, Heng; Xu, Xuran; Chen, Xiao; Yuan, Fanshu; Sun, Bianjing; Xu, Yunhua; Yang, Jiazhi; Sun, Dongping

    2017-06-30

    Komagataeibacter nataicola is an acetic acid bacterium (AAB) that can produce abundant bacterial cellulose and tolerate high concentrations of acetic acid. To globally understand its fermentation characteristics, we present a high-quality complete genome sequence of K. nataicola RZS01. The genome consists of a 3,485,191-bp chromosome and 6 plasmids, which encode 3,514 proteins and bear three cellulose synthase operons. Phylogenetic analysis at the genome level provides convincing evidence of the evolutionary position of K. nataicola with respect to related taxa. Genomic comparisons with other AAB revealed that RZS01 shares 36.1%~75.1% of sequence similarity with other AAB. The sequence data was also used for metabolic analysis of biotechnological substrates. Analysis of the resistance to acetic acid at the genomic level indicated a synergistic mechanism responsible for acetic acid tolerance. The genomic data provide a viable platform that can be used to understand and manipulate the phenotype of K. nataicola RZS01 to further improve bacterial cellulose production.

  8. Complete chloroplast genome sequences of Lilium: insights into evolutionary dynamics and phylogenetic analyses.

    Science.gov (United States)

    Du, Yun-Peng; Bi, Yu; Yang, Feng-Ping; Zhang, Ming-Fang; Chen, Xu-Qing; Xue, Jing; Zhang, Xiu-Hai

    2017-07-18

    Lilium is a large genus that includes approximately 110 species distributed throughout cold and temperate regions of the Northern Hemisphere. The species-level phylogeny of Lilium remains unclear; previous studies have found universal markers but insufficient phylogenetic signals. In this study, we present the use of complete chloroplast genomes to explore the phylogeny of this genus. We sequenced nine Lilium chloroplast genomes and retrieved seven published chloroplast genomes for comparative and phylogenetic analyses. The genomes ranged from 151,655 bp to 153,235 bp in length and had a typical quadripartite structure with a conserved genome arrangement and moderate divergence. A comparison of sixteen Lilium chloroplast genomes revealed ten mutation hotspots. Single nucleotide polymorphisms (SNPs) for any two Lilium chloroplast genomes ranged from 8 to 1,178 and provided robust data for phylogeny. Except for some of the shortest internodes, phylogenetic relationships of the Lilium species inferred from the chloroplast genome obtained high support, indicating that chloroplast genome data will be useful to help resolve the deeper branches of phylogeny.

  9. Complete genome sequence and bioinformatics analyses of Bacillus thuringiensis strain BM-BT15426.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Peters, Brian M; Li, Bing; Chen, Dingqiang; Xu, Zhenbo; Shirtliff, Mark E

    2017-07-01

    This study aimed to investigate the genetic characteristics of Bacillus thuringiensis strain BM-BT15426. B. thuringiensis strain was identified by sequencing the PCR product (amplifying 16S rRNA gene) using ABI Prism 377 DNA Sequencer. The genome was sequenced using PacBio RS II sequencers and assembled de novo using HGAP. Also, further genome annotation was performed. The genome of B. thuringiensis strain BM-BT15426 has a length of 5,246,329 bp and contains 5409 predicted genes with an average G + C content of 35.40%. Three genes were involved in the "Infectious diseases: Amoebiasis" pathway. A total of 21 virulence factors and 9 antibiotic resistant genes were identified. The major pathogenic factors of B. thuringiensis strain BM-BT15426 were identified through complete genome sequencing and bioinformatics analyses which contributes to further study on pathogenic mechanism and phenotype of B. thuringiensis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Complete genome sequence of Tsukamurella paurometabola type strain (no. 33T)

    Energy Technology Data Exchange (ETDEWEB)

    Munk, Christine [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brettin, Thomas S [ORNL; Yasawong, Montri [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2011-01-01

    Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The spe- cies is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung in- fection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806 bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Ge- nomic Encyclopedia of Bacteria and Archaea project.

  11. Complete genome sequence of the drought resistance-promoting endophyte Klebsiella sp. LTGPAF-6F.

    Science.gov (United States)

    Zhang, Lei; Zhong, Jun; Liu, Hao; Xin, Kaiyun; Chen, Chaoqiong; Li, Qiqi; Wei, Yahong; Wang, Yao; Chen, Fei; Shen, Xihui

    2017-03-20

    Bacterial endophytes with capacity to promote plant growth and improve plant tolerance against biotic and abiotic stresses have importance in agricultural practice and phytoremediation. A plant growth-promoting endophyte named Klebsiella sp. LTGPAF-6F, which was isolated from the roots of the desert plant Alhagi sparsifolia in north-west China, exhibits the ability to enhance the growth of wheat under drought stress. The complete genome sequence of this strain consists of one circular chromosome and two circular plasmids. From the genome, we identified genes related to the plant growth promotion and stress tolerance, such as nitrogen fixation, production of indole-3-acetic acid, acetoin, 2,3-butanediol, spermidine and trehalose. This genome sequence provides a basis for understanding the beneficial interactions between LTGPAF-6F and host plants, and will facilitate its applications as biotechnological agents in agriculture. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Complete genome sequence of a putative new secovirus infecting yam (Dioscorea) plants.

    Science.gov (United States)

    Hayashi, Evelyn Anly Ishikawa; Blawid, Rosana; de Melo, Fernando Lucas; Andrade, Miguel Souza; Pio-Ribeiro, Gilvan; de Andrade, Genira Pereira; Nagata, Tatsuya

    2017-01-01

    The complete genome sequence of a new virus infecting yam plants exhibiting mosaic symptom in Brazil was determined. The genome of this virus is composed of two molecules of positive-sense RNAs of 5979 and 3809 nucleotides in length, excluding the poly(A) tails. One large open reading frame (ORF) in each genomic segment (RNA1-ORF1 and RNA2-ORF2) was predicted. The highest amino acid sequence similarity in the Pro-Pol core region of RNA1 and the CP region of RNA2 was observed with chocolate lily virus A (a putative member of the family Secoviridae), with 54.6 and 27.7 % identity, respectively. This virus is thus likely to be a new member of the family Secoviridae, and we propose the tentative name "dioscorea mosaic-associated virus" (DMaV) for this virus.

  13. The complete chloroplast genome sequence of Lilium hansonii Leichtlin ex D.D.T.Moore.

    Science.gov (United States)

    Kim, Kyunghee; Hwang, Yoon-Jung; Lee, Sang-Choon; Yang, Tae-Jin; Lim, Ki-Byung

    2016-09-01

    Lilium hansonii is a lily species native to Korea and an important wild species for lily breeding. The chloroplast genome of L. hansonii was completed by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of L. hansonii was 152 655 bp long and consisted of large single copy region (82 051 bp), small single copy region (17 620 bp) and a pair of inverted repeat regions (26 492 bp). A total of 115 genes were annotated, which included 81 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that L. hansonii is most closely related to L. superbum (Turk's-cap lily) and L. longiflorum (Easter lily).

  14. Characterization of the complete mitochondrial genomes from Polycladida (Platyhelminthes) using next-generation sequencing.

    Science.gov (United States)

    Aguado, M Teresa; Grande, Cristina; Gerth, Michael; Bleidorn, Christoph; Noreña, Carolina

    2016-01-10

    The complete mitochondrial genomes of three polycladids, the acotylean Hoploplana elisabelloi and the cotyleans Enchiridium sp. and Prosthiostomum siphunculus have been assembled with high coverage from Illumina sequencing data. The mt genomes contain 36 genes including 12 of the 13 protein-coding genes characteristic for metazoan mitochondrial genomes, two ribosomal RNA genes, and 22 transfer RNA genes. Gene annotation, gene order, genetic code, start and stop codons and codon bias have been identified. In comparison with the well investigated parasitic Neodermata, our analysis reveals a great diversity of gene orders within Polycladida and Platyhelminthes in general. By analyzing representative genomes of the main groups of Platyhelminthes we explored the phylogenetic relationships of this group. The phylogenetic analyses strongly supported the monophyly of Polycladida, and based on a small taxon sampling suggest the monophyly of Acotylea and Cotylea. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The complete mitochondrial genome sequence and gene organization of the rainbow runner (Elagatis bipinnulata) (Perciformes: Carangidae).

    Science.gov (United States)

    Ma, Chunyan; Ma, Hongyu; Zhang, Heng; Feng, Chunlei; Wei, Hongqing; Wang, Wei; Chen, Wei; Zhang, Fengying; Ma, Lingbo

    2017-01-01

    The complete mitochondrial genome information can play an important role in species identification, phylogeny, evolution research, genetic differentiation, and diversity. Here we determined the complete mitochondrial genome sequence of Elagatis bipinnulata (Perciformes: Carangidae). This circular genome was 16 542 bp in length, and included all 37 typical mitochondrial genes, containing 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a putative control region. The gene order of E. bipinnulata was identical to that observed in most other vertebrates. Of 37 genes, 28 were encoded by heavy strand, while the other ones were encoded by light strand. According to the phylogenetic analysis based on 13 concatenated protein-coding genes, E. bipinnulata was genetically closer to the species of genus Seriola compared with any other species within Perciformes. This work can provide helpful data for further studies on population genetic diversity and molecular evolution.

  16. Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera).

    Science.gov (United States)

    Huang, Ya-Yi; Matzke, Antonius J M; Matzke, Marjori

    2013-01-01

    Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available.

  17. Complete sequence and comparative analysis of the chloroplast genome of Plinia trunciflora

    Directory of Open Access Journals (Sweden)

    Maria Eguiluz

    2017-11-01

    Full Text Available Abstract Plinia trunciflora is a Brazilian native fruit tree from the Myrtaceae family, also known as jaboticaba. This species has great potential by its fruit production. Due to the high content of essential oils in their leaves and of anthocyanins in the fruits, there is also an increasing interest by the pharmaceutical industry. Nevertheless, there are few studies focusing on its molecular biology and genetic characterization. We herein report the complete chloroplast (cp genome of P. trunciflora using high-throughput sequencing and compare it to other previously sequenced Myrtaceae genomes. The cp genome of P. trunciflora is 159,512 bp in size, comprising inverted repeats of 26,414 bp and single-copy regions of 88,097 bp (LSC and 18,587 bp (SSC. The genome contains 111 single-copy genes (77 protein-coding, 30 tRNA and four rRNA genes. Phylogenetic analysis using 57 cp protein-coding genes demonstrated that P. trunciflora, Eugenia uniflora and Acca sellowiana form a cluster with closer relationship to Syzygium cumini than with Eucalyptus. The complete cp sequence reported here can be used in evolutionary and population genetics studies, contributing to resolve the complex taxonomy of this species and fill the gap in genetic characterization.

  18. Complete sequence and comparative analysis of the chloroplast genome of Plinia trunciflora

    Science.gov (United States)

    Eguiluz, Maria; Yuyama, Priscila Mary; Guzman, Frank; Rodrigues, Nureyev Ferreira; Margis, Rogerio

    2017-01-01

    Abstract Plinia trunciflora is a Brazilian native fruit tree from the Myrtaceae family, also known as jaboticaba. This species has great potential by its fruit production. Due to the high content of essential oils in their leaves and of anthocyanins in the fruits, there is also an increasing interest by the pharmaceutical industry. Nevertheless, there are few studies focusing on its molecular biology and genetic characterization. We herein report the complete chloroplast (cp) genome of P. trunciflora using high-throughput sequencing and compare it to other previously sequenced Myrtaceae genomes. The cp genome of P. trunciflora is 159,512 bp in size, comprising inverted repeats of 26,414 bp and single-copy regions of 88,097 bp (LSC) and 18,587 bp (SSC). The genome contains 111 single-copy genes (77 protein-coding, 30 tRNA and four rRNA genes). Phylogenetic analysis using 57 cp protein-coding genes demonstrated that P. trunciflora, Eugenia uniflora and Acca sellowiana form a cluster with closer relationship to Syzygium cumini than with Eucalyptus. The complete cp sequence reported here can be used in evolutionary and population genetics studies, contributing to resolve the complex taxonomy of this species and fill the gap in genetic characterization. PMID:29111566

  19. Complete genome sequence and intracellular protein localization of Datura yellow vein nucleorhabdovirus.

    Science.gov (United States)

    Dietzgen, Ralf G; Innes, David J; Bejerman, Nicolas

    2015-07-02

    A limited number of plant rhabdovirus genomes have been fully sequenced, making taxonomic classification, evolutionary analysis and molecular characterization of this virus group difficult. We have for the first time determined the complete genome sequence of 13,188 nucleotides of Datura yellow vein nucleorhabdovirus (DYVV). DYVV genome organization resembles that of its closest relative, Sonchus yellow net virus (SYNV), with six ORFs in antigenomic orientation, separated by highly conserved intergenic regions and flanked by complementary 3' leader and 5' trailer sequences. As is typical for nucleorhabdoviruses, all viral proteins, except the glycoprotein, which is targeted to the endoplasmic reticulum, are localized to the nucleus. Nucleocapsid (N) protein, matrix (M) protein and polymerase, as components of nuclear viroplasms during replication, have predicted strong canonical nuclear localization signals, and N and M proteins exclusively localize to the nucleus when transiently expressed as GFP fusions. As in all nucleorhabdoviruses studied so far, N and phosphoprotein P interact when co-expressed, significantly increasing P nuclear localization in the presence of N protein. This research adds to the list of complete genomes of plant-infecting rhabdoviruses, provides molecular tools for further characterization and supports classification of DYVV as a nucleorhabdovirus closely related to but with some distinct differences from SYNV. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The complete mitochondrial genome of Porites harrisoni (Cnidaria: Scleractinia) obtained using next-generation sequencing

    KAUST Repository

    Terraneo, Tullia Isotta

    2018-02-24

    In this study, we sequenced the complete mitochondrial genome of Porites harrisoni using ezRAD and Illumina technology. Genome length consisted of 18,630 bp, with a base composition of 25.92% A, 13.28% T, 23.06% G, and 37.73% C. Consistent with other hard corals, P. harrisoni mitogenome was arranged in 13 protein-coding genes, 2 rRNA, and 2 tRNA genes. nad5 and cox1 contained embedded Group I Introns of 11,133 bp and 965 bp, respectively.

  1. Complete genome sequence of Pseudomonas azotoformans S4, a potential biocontrol bacterium

    Science.gov (United States)

    Fang, Yang; Wu, Lijuan; Chen, Guoqing; Feng, Guozhong

    2016-01-01

    Pseudomonas azotoformans is a Gram-negative bacterium and infects cereal grains, especially rice. P. azotoformans S4 from soil sample derived from Lijiang, Yunnan Province, China, appeared to be strong inhibitory activity against Fusarium fujikurio, a serious rice fungal pathogen. Here, we present the complete genome of P. azotoformans S4, which consists of 6,859,618 bp with a circle chromosome, 5991 coding DNA sequences, 70 tRNA and 19 rRNA. The genomic analysis revealed that 9 candidate gene clusters are involved in the biosynthesis of secondary metabolites. PMID:27080451

  2. Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845T)

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Gronow, Sabine; Saunders, Elizabeth; Land, Miriam; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice1, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Pati, Amrita; Ivanova, Natalia; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Brettin, Thomas; Detter, John C.; Han, Cliff; Bristow, James; Goker, Markus; Rohde, Manfred; Eisen, Jonathan A.; Markowitz, Victor; Kyrpides, Nikos C.; Klenk, Hans-Peter; Hugenholtz, Philip

    2009-05-20

    Capnocytophaga ochracea (Prevot et al. 1956) Leadbetter et al. 1982 is the type species of the genus Capnocytophaga. It is of interest because of its location in the Flavobacteriaceae, a genomically yet uncharted family within the order Flavobacteriales. The species grows as fusiform to rod shaped cells which tend to form clumps and are able to move by gliding. C. ochracea is known as a capnophilic organism with the ability to grow under anaerobic as well as under aerobic conditions (oxygen concentration larger than 15percent), here only in the presence of 5percent CO2. Strain VPI 2845T, the type strain of the species, is portrayed in this report as a gliding, Gram-negative bacterium, originally isolated from a human oral cavity. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence from the flavobacterial genus Capnocytophaga, and the 2,612,925 bp long single replicon genome with its 2193 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  3. Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845T)

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Bristow, James [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute

    2009-01-01

    Capnocytophaga ochracea (Pr vot et al. 1956) Leadbetter et al. 1982 is the type species of the genus Capnocytophaga. It is of interest because of its location in the Flavobacteriaceae, a genomically not yet charted family within the order Flavobacteriales. The species grows as fusiform to rod shaped cells which tend to form clumps and are able to move by gliding. C. ochracea is known as a capnophilic (CO2-requiring) organism with the ability to grow under anaerobic as well as aerobic conditions (oxygen concentration larger than 15%), here only in the presence of 5% CO2. Strain VPI 2845T, the type strain of the species, is portrayed in this report as a gliding, Gram-negative bacterium, originally isolated from a human oral cavity. Here we describe the features of this organism, together with the complete genome se-quence, and annotation. This is the first completed genome sequence from the flavobacterial genus Capnocytophaga, and the 2,612,925 bp long single replicon genome with its 2193 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. The complete chloroplast genome sequence of Cucumis sativus var. Hardwickii, the wild progenitor of cultivated cucumber.

    Science.gov (United States)

    Liu, Bang; Zhang, Dan; Gao, Li-Zhi

    2016-11-01

    The complete chloroplast genome sequence of wild cucumber (Cucumis sativus var. hardwickii) was determined and characterized in this study. The genome is of 155 277 bp in length, containing a pair of inverted repeats regions (IRs) of 25 198 bp, which are separated by a large single-copy region of 86 618 bp and a small single-copy region of 18 263 bp. The wild cucumber chloroplast genome has 130 known genes, including 85 protein-coding genes, 8 ribosomal RNA genes, and 37 tRNA genes. Among these genes, 19 comprise one or two introns. There are 11 tRNA genes present in the IR of the chloroplast genome. Phylogenomic analysis showed that C. sativus var. hardwickii forms a cluster with other Cucumis species with strong bootstrap supports and is closely related to C. sativus var. sativus. This newly sequenced chloroplast genome sequence may provide useful genetic information to explore wild cucumber germplasms for cucumber breeding programs.

  5. Assignment of isochores for all completely sequenced vertebrate genomes using a consensus

    OpenAIRE

    Schmidt, Thorsten; Frishman, Dmitrij

    2008-01-01

    We show that although the currently available isochore mapping methods agree on the isochore classification of about two-thirds of the human DNA, they produce significantly different results with regard to the location of isochore boundaries and isochore length distribution. We present a new consensus isochore assignment method based on majority voting and provide IsoBase, a comprehensive on-line database of isochore maps for all completely sequenced vertebrate genomes.

  6. Assignment of isochores for all completely sequenced vertebrate genomes using a consensus.

    Science.gov (United States)

    Schmidt, Thorsten; Frishman, Dmitrij

    2008-01-01

    We show that although the currently available isochore mapping methods agree on the isochore classification of about two-thirds of the human DNA, they produce significantly different results with regard to the location of isochore boundaries and isochore length distribution. We present a new consensus isochore assignment method based on majority voting and provide IsoBase, a comprehensive on-line database of isochore maps for all completely sequenced vertebrate genomes.

  7. Complete genome sequence of Bacillus subtilis BSD-2, a microbial germicide isolated from cultivated cotton.

    Science.gov (United States)

    Liu, Hongwei; Yin, Shuli; An, Likang; Zhang, Genwei; Cheng, Huicai; Xi, Yanhua; Cui, Guanhui; Zhang, Feiyan; Zhang, Liping

    2016-07-20

    Bacillus subtilis BSD-2, isolated from cotton (Gossypium spp.), had strong antagonistic activity to Verticillium dahlia Kleb and Botrytis cinerea. We sequenced and annotated the BSD-2 complete genome to help us the better use of this strain, which has surfactin, bacilysin, bacillibactin, subtilosin A, Tas A and a potential class IV lanthipeptide biosynthetic pathways. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Complete Genome Sequence of the Endophytic Biocontrol Strain Bacillus velezensis CC09

    OpenAIRE

    Cai, Xunchao; Kang, Xingxing; Xi, Huan; Liu, Changhong; Xue, Yarong

    2016-01-01

    Bacillus velezensis is a heterotypic synonym of B. methylotrophicus, B. amyloliquefaciens subsp. plantarum, and Bacillus oryzicola, and has been used to control plant fungal diseases. In order to fully understand the genetic basis of antimicrobial capacities, we did a complete genome sequencing of the endophytic B.?velezensis strain CC09. Genes tightly associated with biocontrol ability, including nonribosomal peptide synthetases, polyketide synthetases, iron acquisition, colonization, and vo...

  9. Complete Genome Sequence of a Newcastle Disease Virus Isolated from Wild Peacock (Pavo cristatus) in India.

    Science.gov (United States)

    Khulape, Sagar A; Gaikwad, Satish S; Chellappa, Madhan Mohan; Mishra, Bishnu Prasad; Dey, Sohini

    2014-06-05

    We report here the complete genome sequence of a Newcastle disease virus (NDV) isolated from a wild peacock. Phylogenetic analysis showed that it belongs to genotype II, class II of NDV strains. This study helps to understand the ecology of NDV strains circulating in a wild avian host of this geographical region during the outbreak of 2012 in northwest India. Copyright © 2014 Khulape et al.

  10. Completed sequence and corrected annotation of the genome of maize Iranian mosaic virus.

    Science.gov (United States)

    Ghorbani, Abozar; Izadpanah, Keramatollah; Dietzgen, Ralf G

    2018-03-01

    Maize Iranian mosaic virus (MIMV) is a negative-sense single-stranded RNA virus that is classified in the genus Nucleorhabdovirus, family Rhabdoviridae. The MIMV genome contains six open reading frames (ORFs) that encode in 3΄ to 5΄ order the nucleocapsid protein (N), phosphoprotein (P), putative movement protein (P3), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). In this study, we determined the first complete genome sequence of MIMV using Illumina RNA-Seq and 3'/5' RACE. MIMV genome ('Fars' isolate) is 12,426 nucleotides in length. Unexpectedly, the predicted N gene ORF of this isolate and of four other Iranian isolates is 143 nucleotides shorter than that of the MIMV coding-complete reference isolate 'Shiraz 1' (Genbank NC_011542), possibly due to a minor error in the previous sequence. Genetic variability among the N, P, P3 and G ORFs of Iranian MIMV isolates was limited, but highest in the G gene ORF. Phylogenetic analysis of complete nucleorhabdovirus genomes demonstrated a close evolutionary relationship between MIMV, maize mosaic virus and taro vein chlorosis virus.

  11. Complete mitochondrial genome sequencing reveals novel haplotypes in a Polynesian population.

    Directory of Open Access Journals (Sweden)

    Miles Benton

    Full Text Available The high risk of metabolic disease traits in Polynesians may be partly explained by elevated prevalence of genetic variants involved in energy metabolism. The genetics of Polynesian populations has been shaped by island hoping migration events which have possibly favoured thrifty genes. The aim of this study was to sequence the mitochondrial genome in a group of Maoris in an effort to characterise genome variation in this Polynesian population for use in future disease association studies. We sequenced the complete mitochondrial genomes of 20 non-admixed Maori subjects using Affymetrix technology. DNA diversity analyses showed the Maori group exhibited reduced mitochondrial genome diversity compared to other worldwide populations, which is consistent with historical bottleneck and founder effects. Global phylogenetic analysis positioned these Maori subjects specifically within mitochondrial haplogroup--B4a1a1. Interestingly, we identified several novel variants that collectively form new and unique Maori motifs--B4a1a1c, B4a1a1a3 and B4a1a1a5. Compared to ancestral populations we observed an increased frequency of non-synonymous coding variants of several mitochondrial genes in the Maori group, which may be a result of positive selection and/or genetic drift effects. In conclusion, this study reports the first complete mitochondrial genome sequence data for a Maori population. Overall, these new data reveal novel mitochondrial genome signatures in this Polynesian population and enhance the phylogenetic picture of maternal ancestry in Oceania. The increased frequency of several mitochondrial coding variants makes them good candidates for future studies aimed at assessment of metabolic disease risk in Polynesian populations.

  12. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species

    Science.gov (United States)

    Rey, Michael W; Ramaiya, Preethi; Nelson, Beth A; Brody-Karpin, Shari D; Zaretsky, Elizabeth J; Tang, Maria; de Leon, Alfredo Lopez; Xiang, Henry; Gusti, Veronica; Clausen, Ib Groth; Olsen, Peter B; Rasmussen, Michael D; Andersen, Jens T; Jørgensen, Per L; Larsen, Thomas S; Sorokin, Alexei; Bolotin, Alexander; Lapidus, Alla; Galleron, Nathalie; Ehrlich, S Dusko; Berka, Randy M

    2004-01-01

    Background Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature. Results We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs. Conclusions Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae. PMID:15461803

  13. Complete Genome Sequence of Sporisorium scitamineum and Biotrophic Interaction Transcriptome with Sugarcane.

    Directory of Open Access Journals (Sweden)

    Lucas M Taniguti

    Full Text Available Sporisorium scitamineum is a biotrophic fungus responsible for the sugarcane smut, a worldwide spread disease. This study provides the complete sequence of individual chromosomes of S. scitamineum from telomere to telomere achieved by a combination of PacBio long reads and Illumina short reads sequence data, as well as a draft sequence of a second fungal strain. Comparative analysis to previous available sequences of another strain detected few polymorphisms among the three genomes. The novel complete sequence described herein allowed us to identify and annotate extended subtelomeric regions, repetitive elements and the mitochondrial DNA sequence. The genome comprises 19,979,571 bases, 6,677 genes encoding proteins, 111 tRNAs and 3 assembled copies of rDNA, out of our estimated number of copies as 130. Chromosomal reorganizations were detected when comparing to sequences of S. reilianum, the closest smut relative, potentially influenced by repeats of transposable elements. Repetitive elements may have also directed the linkage of the two mating-type loci. The fungal transcriptome profiling from in vitro and from interaction with sugarcane at two time points (early infection and whip emergence revealed that 13.5% of the genes were differentially expressed in planta and particular to each developmental stage. Among them are plant cell wall degrading enzymes, proteases, lipases, chitin modification and lignin degradation enzymes, sugar transporters and transcriptional factors. The fungus also modulates transcription of genes related to surviving against reactive oxygen species and other toxic metabolites produced by the plant. Previously described effectors in smut/plant interactions were detected but some new candidates are proposed. Ten genomic islands harboring some of the candidate genes unique to S. scitamineum were expressed only in planta. RNAseq data was also used to reassure gene predictions.

  14. Complete Genome Sequence of a Double-Stranded RNA Virus from Avocado

    Science.gov (United States)

    Villanueva, Francisco; Sabanadzovic, Sead; Valverde, Rodrigo A.

    2012-01-01

    A number of avocado (Persea americana) cultivars are known to contain high-molecular-weight double-stranded RNA (dsRNA) molecules for which a viral nature has been suggested, although sequence data are not available. Here we report the cloning and complete sequencing of a 13.5-kbp dsRNA virus isolated from avocado and show that it corresponds to the genome of a new species of the genus Endornavirus (family Endornaviridae), tentatively named Persea americana endornavirus (PaEV). PMID:22205720

  15. The First Complete Mitochondrial Genome Sequences for Stomatopod Crustaceans: Implications for Phylogeny

    Energy Technology Data Exchange (ETDEWEB)

    Swinstrom, Kirsten; Caldwell, Roy; Fourcade, H. Matthew; Boore, Jeffrey L.

    2005-09-07

    We report the first complete mitochondrial genome sequences of stomatopods and compare their features to each other and to those of other crustaceans. Phylogenetic analyses of the concatenated mitochondrial protein-coding sequences were used to explore relationships within the Stomatopoda, within the malacostracan crustaceans, and among crustaceans and insects. Although these analyses support the monophyly of both Malacostraca and, within it, Stomatopoda, it also confirms the view of a paraphyletic Crustacea, with Malacostraca being more closely related to insects than to the branchiopod crustaceans.

  16. Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae).

    Science.gov (United States)

    Dubey, Bhawna; Meganathan, P R; Haque, Ikramul

    2012-07-01

    This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.

  17. Molecular Characterization of Five Potyviruses Infecting Korean Sweet Potatoes Based on Analyses of Complete Genome Sequences

    Directory of Open Access Journals (Sweden)

    Hae-Ryun Kwak

    2015-12-01

    Full Text Available Sweet potatoes (Ipomea batatas L. are grown extensively, in tropical and temperate regions, and are important food crops worldwide. In Korea, potyviruses, including Sweet potato feathery mottle virus (SPFMV, Sweet potato virus C (SPVC, Sweet potato virus G (SPVG, Sweet potato virus 2 (SPV2, and Sweet potato latent virus (SPLV, have been detected in sweet potato fields at a high (~95% incidence. In the present work, complete genome sequences of 18 isolates, representing the five potyviruses mentioned above, were compared with previously reported genome sequences. The complete genomes consisted of 10,081 to 10,830 nucleotides, excluding the poly-A tails. Their genomic organizations were typical of the Potyvirus genus, including one target open reading frame coding for a putative polyprotein. Based on phylogenetic analyses and sequence comparisons, the Korean SPFMV isolates belonged to the strains RC and O with >98% nucleotide sequence identity. Korean SPVC isolates had 99% identity to the Japanese isolate SPVC-Bungo and 70% identity to the SPFMV isolates. The Korean SPVG isolates showed 99% identity to the three previously reported SPVG isolates. Korean SPV2 isolates had 97% identity to the SPV2 GWB-2 isolate from the USA. Korean SPLV isolates had a relatively low (88% nucleotide sequence identity with the Taiwanese SPLV-TW isolates, and they were phylogenetically distantly related to SPFMV isolates. Recombination analysis revealed that possible recombination events occurred in the P1, HC-Pro and NIa-NIb regions of SPFMV and SPLV isolates and these regions were identified as hotspots for recombination in the sweet potato potyviruses.

  18. The complete chloroplast genome sequence of Epipremnum aureum and its comparative analysis among eight Araceae species

    Science.gov (United States)

    Han, Limin; Chen, Chen; Wang, Zhezhi

    2018-01-01

    Epipremnum aureum is an important foliage plant in the Araceae family. In this study, we have sequenced the complete chloroplast genome of E. aureum by using Illumina Hiseq sequencing platforms. This genome is a double-stranded circular DNA sequence of 164,831 bp that contains 35.8% GC. The two inverted repeats (IRa and IRb; 26,606 bp) are spaced by a small single-copy region (22,868 bp) and a large single-copy region (88,751 bp). The chloroplast genome has 131 (113 unique) functional genes, including 86 (79 unique) protein-coding genes, 37 (30 unique) tRNA genes, and eight (four unique) rRNA genes. Tandem repeats comprise the majority of the 43 long repetitive sequences. In addition, 111 simple sequence repeats are present, with mononucleotides being the most common type and di- and tetranucleotides being infrequent events. Positive selection pressure on rps12 in the E. aureum chloroplast has been demonstrated via synonymous and nonsynonymous substitution rates and selection pressure sites analyses. Ycf15 and infA are pseudogenes in this species. We constructed a Maximum Likelihood phylogenetic tree based on the complete chloroplast genomes of 38 species from 13 families. Those results strongly indicated that E. aureum is positioned as the sister of Colocasia esculenta within the Araceae family. This work may provide information for further study of the molecular phylogenetic relationships within Araceae, as well as molecular markers and breeding novel varieties by chloroplast genetic-transformation of E. aureum in particular. PMID:29529038

  19. The complete chloroplast genome sequence of Epipremnum aureum and its comparative analysis among eight Araceae species.

    Science.gov (United States)

    Tian, Na; Han, Limin; Chen, Chen; Wang, Zhezhi

    2018-01-01

    Epipremnum aureum is an important foliage plant in the Araceae family. In this study, we have sequenced the complete chloroplast genome of E. aureum by using Illumina Hiseq sequencing platforms. This genome is a double-stranded circular DNA sequence of 164,831 bp that contains 35.8% GC. The two inverted repeats (IRa and IRb; 26,606 bp) are spaced by a small single-copy region (22,868 bp) and a large single-copy region (88,751 bp). The chloroplast genome has 131 (113 unique) functional genes, including 86 (79 unique) protein-coding genes, 37 (30 unique) tRNA genes, and eight (four unique) rRNA genes. Tandem repeats comprise the majority of the 43 long repetitive sequences. In addition, 111 simple sequence repeats are present, with mononucleotides being the most common type and di- and tetranucleotides being infrequent events. Positive selection pressure on rps12 in the E. aureum chloroplast has been demonstrated via synonymous and nonsynonymous substitution rates and selection pressure sites analyses. Ycf15 and infA are pseudogenes in this species. We constructed a Maximum Likelihood phylogenetic tree based on the complete chloroplast genomes of 38 species from 13 families. Those results strongly indicated that E. aureum is positioned as the sister of Colocasia esculenta within the Araceae family. This work may provide information for further study of the molecular phylogenetic relationships within Araceae, as well as molecular markers and breeding novel varieties by chloroplast genetic-transformation of E. aureum in particular.

  20. The Complete Chloroplast Genome Sequences of the Medicinal Plant Forsythia suspensa (Oleaceae

    Directory of Open Access Journals (Sweden)

    Wenbin Wang

    2017-10-01

    Full Text Available Forsythia suspensa is an important medicinal plant and traditionally applied for the treatment of inflammation, pyrexia, gonorrhea, diabetes, and so on. However, there is limited sequence and genomic information available for F. suspensa. Here, we produced the complete chloroplast genomes of F. suspensa using Illumina sequencing technology. F. suspensa is the first sequenced member within the genus Forsythia (Oleaceae. The gene order and organization of the chloroplast genome of F. suspensa are similar to other Oleaceae chloroplast genomes. The F. suspensa chloroplast genome is 156,404 bp in length, exhibits a conserved quadripartite structure with a large single-copy (LSC; 87,159 bp region, and a small single-copy (SSC; 17,811 bp region interspersed between inverted repeat (IRa/b; 25,717 bp regions. A total of 114 unique genes were annotated, including 80 protein-coding genes, 30 tRNA, and four rRNA. The low GC content (37.8% and codon usage bias for A- or T-ending codons may largely affect gene codon usage. Sequence analysis identified a total of 26 forward repeats, 23 palindrome repeats with lengths >30 bp (identity > 90%, and 54 simple sequence repeats (SSRs with an average rate of 0.35 SSRs/kb. We predicted 52 RNA editing sites in the chloroplast of F. suspensa, all for C-to-U transitions. IR expansion or contraction and the divergent regions were analyzed among several species including the reported F. suspensa in this study. Phylogenetic analysis based on whole-plastome revealed that F. suspensa, as a member of the Oleaceae family, diverged relatively early from Lamiales. This study will contribute to strengthening medicinal resource conservation, molecular phylogenetic, and genetic engineering research investigations of this species.

  1. Prediction of transcriptional regulatory sites in the complete genome sequence of Escherichia coli K-12.

    Science.gov (United States)

    Thieffry, D; Salgado, H; Huerta, A M; Collado-Vides, J

    1998-06-01

    As one of the best-characterized free-living organisms, Escherichia coli and its recently completed genomic sequence offer a special opportunity to exploit systematically the variety of regulatory data available in the literature in order to make a comprehensive set of regulatory predictions in the whole genome. The complete genome sequence of E.coli was analyzed for the binding of transcriptional regulators upstream of coding sequences. The biological information contained in RegulonDB (Huerta, A.M. et al., Nucleic Acids Res.,26,55-60, 1998) for 56 different transcriptional proteins was the support to implement a stringent strategy combining string search and weight matrices. We estimate that our search included representatives of 15-25% of the total number of regulatory binding proteins in E.coli. This search was performed on the set of 4288 putative regulatory regions, each 450 bp long. Within the regions with predicted sites, 89% are regulated by one protein and 81% involve only one site. These numbers are reasonably consistent with the distribution of experimental regulatory sites. Regulatory sites are found in 603 regions corresponding to 16% of operon regions and 10% of intra-operonic regions. Additional evidence gives stronger support to some of these predictions, including the position of the site, biological consistency with the function of the downstream gene, as well as genetic evidence for the regulatory interaction. The predictions described here were incorporated into the map presented in the paper describing the complete E.coli genome (Blattner,F.R. et al., Science, 277, 1453-1461, 1997). The complete set of predictions in GenBank format is available at the url: http://www. cifn.unam.mx/Computational_Biology/E.coli-predictions ecoli-reg@cifn.unam.mx, collado@cifn.unam.mx

  2. Complete genome sequence of Kytococcus sedentarius type strain (strain 541T)

    Energy Technology Data Exchange (ETDEWEB)

    Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D' haeseleer, Patrick; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Schneider, Susanne; Goker, Markus; Pukall, Rudiger; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Kytococcus sedentarius (ZoBell and Upham 1944) Stackebrandt et al. 1995 is the type strain of the species, and is of phylogenetic interest because of its location in the Dermacoccaceae, a poorly studied family within the actinobacterial suborder Micrococcineae. K. sedentarius is known for the production of oligoketide antibiotics as well as for its role as an opportunistic pathogen causing valve endocarditis, hemorrhagic pneumonia, and pitted keratolysis. It is strictly aerobic and can only grow when several amino acids are provided in the medium. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from a marine environment. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Dermacoccaceae and the 2,785,024 bp long single replicon genome with its 2639 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  3. Complete genome sequence of Denitrovibrio acetiphilus type strain (N2460T)

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Hajnalka; Lang, Elke; Lapidus, Alla; Copeland, Alex; Nolan, Matt; Glavina Del Rio, Tijana; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Detter, John C.; Brettin, Thomas; Spring, Stefan; Rohde, Manfred; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2010-06-25

    Denitrovibrio acetiphilus Myhr and Torsvik 2000 is the type species of the genus Denitrovibrio in the bacterial family Deferribacteraceae. It is of phylogenetic interest because there are only six genera described in the family Deferribacteraceae. D. acetiphilus was isolated as a representative of a population reducing nitrate to ammonia in a laboratory column simulating the conditions in off-shore oil recovery fields. When nitrate was added to this column undesirable hydrogen sulfide production was stopped because the sulfate reducing populations were superseded by these nitrate reducing bacteria. Here we describe the features of this marine, mesophilic, obligately anaerobic organism respiring by nitrate reduction, together with the complete genome sequence, and annotation. This is the second complete genome sequence of the order Deferribacterales and the class Deferribacteres, which is the sole class in the phylum Deferribacteres. The 3,222,077 bp genome with its 3,034 protein-coding and 51 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2017-03-01

    Full Text Available Willow is a widely used dioecious woody plant of Salicaceae family in China. Due to their high biomass yields, willows are promising sources for bioenergy crops. In this study, we assembled the complete mitochondrial (mt genome sequence of S. suchowensis with the length of 644,437 bp using Roche-454 GS FLX Titanium sequencing technologies. Base composition of the S. suchowensis mt genome is A (27.43%, T (27.59%, C (22.34%, and G (22.64%, which shows a prevalent GC content with that of other angiosperms. This long circular mt genome encodes 58 unique genes (32 protein-coding genes, 23 tRNA genes and 3 rRNA genes, and 9 of the 32 protein-coding genes contain 17 introns. Through the phylogenetic analysis of 35 species based on 23 protein-coding genes, it is supported that Salix as a sister to Populus. With the detailed phylogenetic information and the identification of phylogenetic position, some ribosomal protein genes and succinate dehydrogenase genes are found usually lost during evolution. As a native shrub willow species, this worthwhile research of S. suchowensis mt genome will provide more desirable information for better understanding the genomic breeding and missing pieces of sex determination evolution in the future.

  5. The Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC19707

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, M G; Arp, D J; Chain, P S; El-Sheikh, A F; Hauser, L J; Hommes, N G; Larimer, F W; Malfatti, S A; Norton, J M; Poret-Peterson, A T; Vergez, L M; Ward, B B

    2006-08-03

    The Gammaproteobacterium, Nitrosococcus oceani (ATCC 19707), is a Gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; 50.4% G+C) and a plasmid (40,420 bp) that contain 3052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. In contrast to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance and the ability to assimilate carbon via gluconeogenesis. One set of genes for type I RuBisCO was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H{sup +}-dependent F{sub 0}F{sub 1}-type, one Na{sup +}-dependent V-type).

  6. Complete genome sequence of Bacillus sp. 275, producing extracellular cellulolytic, xylanolytic and ligninolytic enzymes.

    Science.gov (United States)

    Gong, Gyeongtaek; Kim, Seil; Lee, Sun-Mi; Woo, Han Min; Park, Tai Hyun; Um, Youngsoon

    2017-07-20

    Technologies for degradation of three major components of lignocellulose (e.g. cellulose, hemicellulose and lignin) are needed to efficiently utilize lignocellulose. Here, we report Bacillus sp. 275 isolated from a mudflat exhibiting various lignocellulolytic activities including cellulase, xylanase, laccase and peroxidase in the cell culture supernatant. The complete genome of Bacillus sp. 275 strain contains 3832 protein cording sequences and an average G+C content of 46.32% on one chromosome (4045,581bp) and one plasmid (6389bp). The genes encoding enzymes related to the degradation of cellulose, xylan and lignin were detected in the Bacillus sp. 275 genome. In addition, the genes encoding glucosidases that hydrolyze starch, mannan, galactoside and arabinan were also found in the genome, implying that Bacillus sp. 275 has potentially a wide range of uses in the degradation of polysaccharide in lignocellulosic biomasses. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The complete chloroplast genome sequence of the wild cucumber Cucumis hystrix Chakr. (Cucumis, cucurbitaceae).

    Science.gov (United States)

    Wu, Zhiming; Jia, Li; Shen, Jia; Jiang, Biao; Qian, Chuntao; Lou, Qunfeng; Li, Ji; Chen, Jinfeng

    2016-01-01

    The complete nucleotide sequence of the wild cucumber (C. hystrix Chakr.) chloroplast genome has been determined in this study. The genome was composed of 155,031 bp containing a pair of inverted repeats (IRs) of 25,150 bp, which was separated by a large single-copy region of 86,564 bp and a small single-copy region of 18,166 bp. The chloroplast genome contained 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species) and 37 tRNA genes (30 tRNA species), with 18 of them located in the IR region. In these genes, 16 contained 1 intron, and 2 genes and one ycf contained 2 introns.

  8. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium

    Science.gov (United States)

    Eisen, Jonathan A.; Nelson, Karen E.; Paulsen, Ian T.; Heidelberg, John F.; Wu, Martin; Dodson, Robert J.; Deboy, Robert; Gwinn, Michelle L.; Nelson, William C.; Haft, Daniel H.; Hickey, Erin K.; Peterson, Jeremy D.; Durkin, A. Scott; Kolonay, James L.; Yang, Fan; Holt, Ingeborg; Umayam, Lowell A.; Mason, Tanya; Brenner, Michael; Shea, Terrance P.; Parksey, Debbie; Nierman, William C.; Feldblyum, Tamara V.; Hansen, Cheryl L.; Craven, M. Brook; Radune, Diana; Vamathevan, Jessica; Khouri, Hoda; White, Owen; Gruber, Tanja M.; Ketchum, Karen A.; Venter, J. Craig; Tettelin, Hervé; Bryant, Donald A.; Fraser, Claire M.

    2002-01-01

    The complete genome of the green-sulfur eubacterium Chlorobium tepidum TLS was determined to be a single circular chromosome of 2,154,946 bp. This represents the first genome sequence from the phylum Chlorobia, whose members perform anoxygenic photosynthesis by the reductive tricarboxylic acid cycle. Genome comparisons have identified genes in C. tepidum that are highly conserved among photosynthetic species. Many of these have no assigned function and may play novel roles in photosynthesis or photobiology. Phylogenomic analysis reveals likely duplications of genes involved in biosynthetic pathways for photosynthesis and the metabolism of sulfur and nitrogen as well as strong similarities between metabolic processes in C. tepidum and many Archaeal species. PMID:12093901

  9. Complete genome sequence of Tolumonas auensis type strain (TA 4T)

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Olga; Copeland, Alex; Lucas1, Susa; Lapidus, Alla; Berry, KerrieW.; Detter, JohnC.; Glavina Del Rio, Tijana; Hammon, Nancy; Dalin, Eileen; Tice, Hope; Pitluck, Sam; Richardson, Paul; Bruce, David; Goodwin, Lynne; Han, Cliff; Tapia, Roxanne; Saunders, Elizabeth; Schmutz, Jeremy; Brettin, Thomas; Larimer, Frank; Land, Miriam; Hauser, Loren; Spring, Stefan; Rohde, Manfred; Kyrpides, NikosC.; Ivanova, Natalia; G& #246; ker, Markus; Beller, HarryR.; Klenk, Hans-Peter; Woyke, Tanja

    2011-10-04

    Tolumonas auensis (Fischer-Romero et al. 1996) is currently the only validly named species of the genus Tolumonas in the family Aeromonadaceae. The strain is of interest because of its ability to produce toluene from phenylalanine and other phenyl precursors, as well as phenol from tyrosine. This is of interest because toluene is normally considered to be a tracer of anthropogenic pollution in lakes, but T. auensis represents a biogenic source of toluene. Other than Aeromonas hydrophila subsp. hydrophila, T. auensis strain TA 4T is the only other member in the family Aeromonadaceae with a completely sequenced type-strain genome. The 3,471,292-bp chromosome with a total of 3,288 protein-coding and 116 RNA genes was sequenced as part of the DOE Joint Genome Institute Program JBEI 2008.

  10. Complete genome sequence of Tolumonas auensis type strain (TA 4T)

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Olga [Los Alamos National Laboratory (LANL); Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Berry, Alison M [California Institute of Technology, University of California, Davis; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Schmutz, Jeremy [Stanford University; Brettin, Thomas S [ORNL; Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Beller, Harry R. [Lawrence Berkeley National Laboratory (LBNL); Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Tolumonas auensis Fischer-Romero et al. 1996 is currently the only validly named species of the genus Tolumonas in the family Aeromonadaceae. The strain is of interest because of its ability to produce toluene from phenylalanine and other phenyl precursors, as well as phenol from tyrosine. This is of interest because toluene is normally considered to be a tracer of anthropogenic pollution in lakes, but T. auensis represents a biogenic source of toluene. Oth- er than Aeromonas hydrophila subsp. hydrophila, T. auensis strain TA 4T is the only other member in the family Aeromonadaceae with a completely sequenced type-strain genome. The 3,471,292 bp chromosome with a total of 3,288 protein-coding and 116 RNA genes was sequenced as part of the DOE Joint Genome Institute Program JBEI 2008.

  11. Complete genome sequence of Olsenella uli type strain (VPI D76D-27CT)

    Energy Technology Data Exchange (ETDEWEB)

    Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Held, Brittany [Los Alamos National Laboratory (LANL); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Yasawong, Montri [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    Olsenella uli (Olsen et al. 1991) Dewhirst et al. 2001 is the type species of the genus Olsenella, which belongs to the actinobacterial family Coriobacteriaceae. The species is of interest because it is frequently isolated from dental plaque in periodontitis patients and can cause primary endodontic infection. The species is a Gram-positive, non-motile and non-sporulating bacterium. The strain described in this study has been isolated from human gingival crevices in 1982. This is the first completed sequence of the genus Olsenella and the fifth sequence from the family Coriobacteriaceae. The 2,051,896 bp long genome with its 1,795 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  12. Complete genome sequence of Thermus brockianus GE-1 reveals key enzymes of xylan/xylose metabolism.

    Science.gov (United States)

    Schäfers, Christian; Blank, Saskia; Wiebusch, Sigrid; Elleuche, Skander; Antranikian, Garabed

    2017-01-01

    Thermus brockianus strain GE-1 is a thermophilic, Gram-negative, rod-shaped and non-motile bacterium that was isolated from the Geysir geothermal area, Iceland. Like other thermophiles, Thermus species are often used as model organisms to understand the mechanism of action of extremozymes, especially focusing on their heat-activity and thermostability. Genome-specific features of T. brockianus GE-1 and their properties further help to explain processes of the adaption of extremophiles at elevated temperatures. Here we analyze the first whole genome sequence of T. brockianus strain GE-1. Insights of the genome sequence and the methodologies that were applied during de novo assembly and annotation are given in detail. The finished genome shows a phred quality value of QV50. The complete genome size is 2.38 Mb, comprising the chromosome (2,035,182 bp), the megaplasmid pTB1 (342,792 bp) and the smaller plasmid pTB2 (10,299 bp). Gene prediction revealed 2,511 genes in total, including 2,458 protein-encoding genes, 53 RNA and 66 pseudo genes. A unique genomic region on megaplasmid pTB1 was identified encoding key enzymes for xylan depolymerization and xylose metabolism. This is in agreement with the growth experiments in which xylan is utilized as sole source of carbon. Accordingly, we identified sequences encoding the xylanase Xyn10, an endoglucanase, the membrane ABC sugar transporter XylH, the xylose-binding protein XylF, the xylose isomerase XylA catalyzing the first step of xylose metabolism and the xylulokinase XylB, responsible for the second step of xylose metabolism. Our data indicate that an ancestor of T. brockianus obtained the ability to use xylose as alternative carbon source by horizontal gene transfer.

  13. Complete genome sequence of Bacillus velezensis G341, a strain with a broad inhibitory spectrum against plant pathogens.

    Science.gov (United States)

    Lee, Hyun-Hee; Park, Jungwook; Lim, Jae Yun; Kim, Hun; Choi, Gyung Ja; Kim, Jin-Cheol; Seo, Young-Su

    2015-10-10

    Bacillus velezensis G341 can suppress plant pathogens by producing antagonistic active compounds including bacillomycin D, fengycin, and (oxy) difficidin. The complete genome sequence of this bacterium was characterized by one circular chromosome of 4,009,746bp with 3953 open reading frames. The genome contained 36 pseudogenes, 30 rRNA operons, and 95 tRNAs. This complete genome sequence provides an additional resource for the development of antimicrobial compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Complete mitochondrial genome sequence of the polychaete annelidPlatynereis dumerilii

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2004-08-15

    Complete mitochondrial genome sequences are now available for 126 metazoans (see Boore 1999; Mitochondrial Genomics link at http://www.jgi.doe.gov), but the taxonomic representation is highly biased. For example, 80 are from a single phylum, Chordata, and show little variation for many molecular features. Arthropoda is represented by 16 taxa, Mollusca by eight, and Echinodermata by five, with only 17 others from the remaining {approx}30 metazoan phyla. With few exceptions (see Wolstenholme 1992 and Boore 1999) these are circular DNA molecules, about 16 kb in size, and encode the same set of 37 genes. A variety of non-standard names are sometimes used for animal mitochondrial genes; see Boore (1999) for gene nomenclature and a table of synonyms. Mitochondrial genome comparisons serve as a model of genome evolution. In this system, much smaller and simpler than that of the nucleus, are all of the same factors of genome evolution, where one may find tractable the changes in tRNA structure, base composition, genetic code, gene arrangement, etc. Further, patterns of mitochondrial gene rearrangements are an exceptionally reliable indicator of phylogenetic relationships (Smith et al.1993; Boore et al. 1995; Boore, Lavrov, and Brown 1998; Boore and Brown 1998, 2000; Dowton 1999; Stechmann and Schlegel 1999; Kurabayashi and Ueshima 2000). To these ends, we are sampling further the variation among major animal groups in features of their mitochondrial genomes.

  15. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis.

    Directory of Open Access Journals (Sweden)

    Li-Hui Zuo

    Full Text Available Elm (Ulmus has a long history of use as a high-quality heavy hardwood famous for its resistance to drought, cold, and salt. It grows in temperate, warm temperate, and subtropical regions. This is the first report of Ulmaceae chloroplast genomes by de novo sequencing. The Ulmus chloroplast genomes exhibited a typical quadripartite structure with two single-copy regions (long single copy [LSC] and short single copy [SSC] sections separated by a pair of inverted repeats (IRs. The lengths of the chloroplast genomes from five Ulmus ranged from 158,953 to 159,453 bp, with the largest observed in Ulmus davidiana and the smallest in Ulmus laciniata. The genomes contained 137-145 protein-coding genes, of which Ulmus davidiana var. japonica and U. davidiana had the most and U. pumila had the fewest. The five Ulmus species exhibited different evolutionary routes, as some genes had been lost. In total, 18 genes contained introns, 13 of which (trnL-TAA+, trnL-TAA-, rpoC1-, rpl2-, ndhA-, ycf1, rps12-, rps12+, trnA-TGC+, trnA-TGC-, trnV-TAC-, trnI-GAT+, and trnI-GAT were shared among all five species. The intron of ycf1 was the longest (5,675bp while that of trnF-AAA was the smallest (53bp. All Ulmus species except U. davidiana exhibited the same degree of amplification in the IR region. To determine the phylogenetic positions of the Ulmus species, we performed phylogenetic analyses using common protein-coding genes in chloroplast sequences of 42 other species published in NCBI. The cluster results showed the closest plants to Ulmaceae were Moraceae and Cannabaceae, followed by Rosaceae. Ulmaceae and Moraceae both belonged to Urticales, and the chloroplast genome clustering results were consistent with their traditional taxonomy. The results strongly supported the position of Ulmaceae as a member of the order Urticales. In addition, we found a potential error in the traditional taxonomies of U. davidiana and U. davidiana var. japonica, which should be

  16. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis.

    Science.gov (United States)

    Zuo, Li-Hui; Shang, Ai-Qin; Zhang, Shuang; Yu, Xiao-Yue; Ren, Ya-Chao; Yang, Min-Sheng; Wang, Jin-Mao

    2017-01-01

    Elm (Ulmus) has a long history of use as a high-quality heavy hardwood famous for its resistance to drought, cold, and salt. It grows in temperate, warm temperate, and subtropical regions. This is the first report of Ulmaceae chloroplast genomes by de novo sequencing. The Ulmus chloroplast genomes exhibited a typical quadripartite structure with two single-copy regions (long single copy [LSC] and short single copy [SSC] sections) separated by a pair of inverted repeats (IRs). The lengths of the chloroplast genomes from five Ulmus ranged from 158,953 to 159,453 bp, with the largest observed in Ulmus davidiana and the smallest in Ulmus laciniata. The genomes contained 137-145 protein-coding genes, of which Ulmus davidiana var. japonica and U. davidiana had the most and U. pumila had the fewest. The five Ulmus species exhibited different evolutionary routes, as some genes had been lost. In total, 18 genes contained introns, 13 of which (trnL-TAA+, trnL-TAA-, rpoC1-, rpl2-, ndhA-, ycf1, rps12-, rps12+, trnA-TGC+, trnA-TGC-, trnV-TAC-, trnI-GAT+, and trnI-GAT) were shared among all five species. The intron of ycf1 was the longest (5,675bp) while that of trnF-AAA was the smallest (53bp). All Ulmus species except U. davidiana exhibited the same degree of amplification in the IR region. To determine the phylogenetic positions of the Ulmus species, we performed phylogenetic analyses using common protein-coding genes in chloroplast sequences of 42 other species published in NCBI. The cluster results showed the closest plants to Ulmaceae were Moraceae and Cannabaceae, followed by Rosaceae. Ulmaceae and Moraceae both belonged to Urticales, and the chloroplast genome clustering results were consistent with their traditional taxonomy. The results strongly supported the position of Ulmaceae as a member of the order Urticales. In addition, we found a potential error in the traditional taxonomies of U. davidiana and U. davidiana var. japonica, which should be confirmed with a

  17. Phylogenetic Resolution inJuglansBased on Complete Chloroplast Genomes and Nuclear DNA Sequences.

    Science.gov (United States)

    Dong, Wenpan; Xu, Chao; Li, Wenqing; Xie, Xiaoman; Lu, Yizeng; Liu, Yanlei; Jin, Xiaobai; Suo, Zhili

    2017-01-01

    Walnuts ( Juglans of the Juglandaceae) are well-known economically important resource plants for the edible nuts, high-quality wood, and medicinal use, with a distribution from tropical to temperate zones and from Asia to Europe and Americas. There are about 21 species in Juglans . Classification of Juglans at section level is problematic, because the phylogenetic position of Juglans cinerea is disputable. Lacking morphological and DNA markers severely inhibited the development of related researches. In this study, the complete chloroplast genomes and two nuclear DNA regions (the internal transcribed spacer and ubiquitin ligase gene) of 10 representative taxa of Juglans were used for comparative genomic analyses in order to deepen the understanding on the application value of genetic information for inferring the phylogenetic relationship of the genus. The Juglans chloroplast genomes possessed the typical quadripartite structure of angiosperms, consisting of a pair of inverted repeat regions separated by a large single-copy region and a small single-copy region. All the 10 chloroplast genomes possessed 112 unique genes arranged in the same order, including 78 protein-coding, 30 tRNA, and 4 rRNA genes. A combined sequence data set from two nuclear DNA regions revealed that Juglans plants could be classified into three branches: (1) section Juglans , (2) section Cardiocaryon including J. cinerea which is closer to J. mandshurica , and (3) section Rhysocaryon . However, three branches with a different phylogenetic topology were recognized in Juglans using the complete chloroplast genome sequences: (1) section Juglans , (2) section Cardiocaryon , and (3) section Rhysocaryon plus J. cinerea . The molecular taxonomy of Juglans is almost compatible to the morphological taxonomy except J. cinerea (section Trachycaryon ). Based on the complete chloroplast genome sequence data, the divergence time between section Juglans and section Cardiocaryon was 44.77 Mya, while section

  18. Phylogenetic Resolution in Juglans Based on Complete Chloroplast Genomes and Nuclear DNA Sequences

    Directory of Open Access Journals (Sweden)

    Wenpan Dong

    2017-06-01

    Full Text Available Walnuts (Juglans of the Juglandaceae are well-known economically important resource plants for the edible nuts, high-quality wood, and medicinal use, with a distribution from tropical to temperate zones and from Asia to Europe and Americas. There are about 21 species in Juglans. Classification of Juglans at section level is problematic, because the phylogenetic position of Juglans cinerea is disputable. Lacking morphological and DNA markers severely inhibited the development of related researches. In this study, the complete chloroplast genomes and two nuclear DNA regions (the internal transcribed spacer and ubiquitin ligase gene of 10 representative taxa of Juglans were used for comparative genomic analyses in order to deepen the understanding on the application value of genetic information for inferring the phylogenetic relationship of the genus. The Juglans chloroplast genomes possessed the typical quadripartite structure of angiosperms, consisting of a pair of inverted repeat regions separated by a large single-copy region and a small single-copy region. All the 10 chloroplast genomes possessed 112 unique genes arranged in the same order, including 78 protein-coding, 30 tRNA, and 4 rRNA genes. A combined sequence data set from two nuclear DNA regions revealed that Juglans plants could be classified into three branches: (1 section Juglans, (2 section Cardiocaryon including J. cinerea which is closer to J. mandshurica, and (3 section Rhysocaryon. However, three branches with a different phylogenetic topology were recognized in Juglans using the complete chloroplast genome sequences: (1 section Juglans, (2 section Cardiocaryon, and (3 section Rhysocaryon plus J. cinerea. The molecular taxonomy of Juglans is almost compatible to the morphological taxonomy except J. cinerea (section Trachycaryon. Based on the complete chloroplast genome sequence data, the divergence time between section Juglans and section Cardiocaryon was 44.77 Mya, while

  19. Complete Sequence and Analysis of the Mitochondrial Genome of Hemiselmis andersenii CCMP644 (Cryptophyceae

    Directory of Open Access Journals (Sweden)

    Bowman Sharen

    2008-05-01

    Full Text Available Abstract Background Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote endosymbiosis. Cryptophytes are unusual in that they possess four genomes–a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. Results The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a ~20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22–336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu gene and possesses a trnS-derived 'trnK(uuu', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher

  20. Sequencing and characterization of the complete mitochondrial genome from the pancreatic fluke Eurytrema pancreaticum (Trematoda: Dicrocoeliidae).

    Science.gov (United States)

    Chang, Qiao-Cheng; Liu, Guo-Hua; Gao, Jun-Feng; Zheng, Xu; Zhang, Yan; Duan, Hong; Yue, Dong-Mei; Fu, Xue; Su, Xin; Gao, Yuan; Wang, Chun-Ren

    2016-01-15

    The trematode Eurytrema pancreaticum is a parasite of ruminant pancreatic and bile ducts, and also occasionally infects humans, causing eurytremiasis. In spite of it being a common fluke of cattle and sheep in endemic regions, little is known about the genomic resources of the parasite. We sequenced the complete mitochondrial (mt) genome of E. pancreaticum. It is 15,031 bp in size, and encodes 36 genes: 12 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. The E. pancreaticum mt gene order is the same as that of Dicrocoelium chinensis and Dicrocoelium dendriticum, and all genes are transcribed in the same direction. Phylogenetic analysis based on the concatenated amino acid sequences of 12 protein-coding genes by Bayesian inference shows that E. pancreaticum is closely related to D. chinensis and other members of the family Dicrocoeliidae with strong posterior probability support. The E. pancreaticum mt genome should prove to be a useful resource for comparative mt genomic studies of digenetic trematodes, and will provide a rich source of DNA markers for studies into the systematics, epidemiology, and population genetics of this parasite and other digenean trematodes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2004-09-01

    Full Text Available Abstract Background Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. Results This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Conclusions Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases.

  2. Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura.

    Science.gov (United States)

    Boore, Jeffrey L

    2004-09-15

    Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases.

  3. Complete genome sequence of the gliding freshwater bacterium Fluviicola taffensis type strain (RW262T)

    Energy Technology Data Exchange (ETDEWEB)

    Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Mwirichia, Romano [Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Fluviicola taffensis O'Sullivan et al. 2005 belongs to the monotypic genus Fluviicola within the family Cryomorphaceae. The species is of interest because of its isolated phylogenetic location in the genome-sequenced fraction of the tree of life. Strain RW262 T forms a monophyletic lineage with uncultivated bacteria represented in freshwater 16S rRNA gene libraries. A similar phylogenetic differentiation occurs between freshwater and marine bacteria in the family Flavobacteriaceae, a sister family to Cryomorphaceae. Most remarkable is the inability of this freshwater bacterium to grow in the presence of Na + ions. All other genera in the family Cryomorphaceae are from marine habitats and have an absolute requirement for Na + ions or natural sea water. F. taffensis is the first member of the family Cryomorphaceae with a completely sequenced and publicly available genome. The 4,633,577 bp long genome with its 4,082 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. Complete genome sequence of Syntrophobotulus glycolicus type strain (FlGlyRT)

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cliff [Los Alamos National Laboratory (LANL); Mwirichia, Romano [Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya; Chertkov, Olga [Los Alamos National Laboratory (LANL); Held, Brittany [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Syntrophobotulus glycolicus Friedrich et al. 1996 is currently the only member of the genus Syntrophobotulus within the family Peptococcaceae. The species is of interest because of its isolated phylogenetic location in the genome-sequenced fraction of tree of life. When grown in pure culture with glyoxylate as carbon source the organism utilizes glyoxylate through fermentative oxidation, whereas, when grown in syntrophic co-culture with homoacetogenic or methanogenic bacteria, it is able to oxidize glycolate to carbon dioxide and hydrogen. No other organic or inorganic carbon source is utilized by S. glycolicus. The subdivision of the family Peptococcaceae into genera does not reflect the natural relationships, particularly re- garding the genera most closely related to Syntrophobotulus. Both Desulfotomaculum and Pelotomaculum are paraphyletic assemblages, and the taxonomic classification is in signifi- cant conflict with the 16S rRNA data. S. glycolicus is already the ninth member of the family Peptococcaceae with a completely sequenced and publicly available genome. The 3,406,739 bp long genome with its 3,370 protein-coding and 69 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. Complete genome sequence of a variant of maize-associated totivirus from Ecuador.

    Science.gov (United States)

    Alvarez-Quinto, Robert A; Espinoza-Lozano, Rodrigo F; Mora-Pinargote, Carlos A; Quito-Avila, Diego F

    2017-04-01

    The complete genomic sequence of a variant of the recently reported maize-associated totivirus (MATV) from China was obtained from commercial maize in Ecuador. The genome of MATV-Ec (Ecuador) (4,998 bp) is considerably longer than that of MATV-Ch (China) (3,956 bp), the main difference due to a ≈ 1-kb-long capsid-protein-encoding fragment that is completely absent from the Chinese genome. Sequence alignments between MATV-Ec and MATV-Ch showed an overall identity of 82% at the nucleotide level, whereas at the amino acid level, the viruses exhibited 95% and 94% identity for the putative capsid protein and the RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis of the viral RdRp domain indicated that MATV-Ec and MATV-Ch share a common ancestor with other plant-associated totiviruses, with Panax notoginseng virus A as the closest relative. MATV-Ec was detected in 46% (n = 80) of maize plants tested in this study, but not in endophytic fungi isolated from plants positive for the virus.

  6. Sequencing and analysis of the complete mitochondrial genome of Hyla ussuriensis (Anura: Hylidae).

    Science.gov (United States)

    Sun, Qinglin; Xie, Yuhui; Zhao, Wenge; Liu, Peng

    2017-05-01

    In this study, the complete mitogenome sequence of Hyla ussuriensis (Anura: Hylidae) is first determined using long PCR. It is a circular molecule of 18 023 bp in length (GenBank accession no. KT964710). Similar to the typical mtDNA of amphibians, the complete mtDNA sequence of Hyla ussuriensis contained two rRNA genes (12S rRNA and 16S rRNA), 22 tRNA genes, 13 protein-coding genes (PCGs), and a control region (D-loop). The nucleotide composition was 29.9% A, 25.4% C, 14.5% G, and 30.2% T. Mitochondrial genomes analyses based on NJ method yield phylogenetic trees, indicating 13 reported Anura frogs belonging to five families (Hylidae, Bufonidae, Microhylidae, Ranidae, and Rhacophoridae). These molecular data presented here provide a useful tool for systematic analyses of genus Hyla and family Hylidae.

  7. Complete genome sequence of the probiotic Lactobacillus casei strain BL23.

    NARCIS (Netherlands)

    Maze, A.; Boel, G.; Zuniga, M.; Bourand, A.; Loux, V.; Yebra, M.J.; Monedero, V.; Correia, K.; Jacques, N.; Beaufils, S.; Poncet, S.; Joyet, P.; Milohanic, E.; Casaregola, S.; Auffray, Y.; Perez-Martinez, G.; Gibrat, J.F.; Zagorec, M.; Francke, C.; Hartke, A.; Deutscher, J.

    2010-01-01

    The entire genome of Lactobacillus casei BL23, a strain with probiotic properties, has been sequenced. The genomes of BL23 and the industrially used probiotic strain Shirota YIT 9029 (Yakult) seem to be very similar.

  8. Complete sequence and structure of the mitochondrial genome of the human tapeworm, Taenia asiatica (Platyhelminthes; Cestoda).

    Science.gov (United States)

    Jeon, H K; Lee, K H; Kim, K H; Hwang, U W; Eom, K S

    2005-06-01

    The complete Taenia asiatica mitochondrial genome was amplified by long extension polymerase chain reaction (long PCR) to yield overlapping fragments that were then completely sequenced. The whole mitochondrial genome was 13 703 bp long and contained 12 protein-encoding, 2 ribosomal RNA (small and large subunits), 22 transfer RNA genes and a short non-coding region. Thus, its gene contents are like those typically found in metazoan animal mitochondrial genomes (apart from the absence of atp8). All the genes were transcribed from the same strand. The 3' end 34 bp region of nad4L overlapped with the 5' end portion of nad4. The tRNA genes were 61-69 bp long, and the secondary structures of 18 tRNAs had typical clover-leaf shapes with paired DHU arms. However, trnC, trnS1, trnS2 and trnR had unpaired DHU arms that were 7-12 bp in length. The tRNAs that transferred serine lacked a DHU arm, as is also observed in a number of parasitic platyhelminths and metazoans. However, the trematode trnRs have paired DHU arms. The T. asiatica mtDNA non-coding region was like that in other cestodes since it was composed of a short non-coding region of 72 nucleotides and a long non-coding region of 176 nucleotides separated by a trnL1/, trnS2/, trnL2/, trnR/, nad5 gene cluster. The sequences of the cox1 genes between T. asiatica and T. saginata differ by 4.6%, while the T. asiatica cob gene differs by 4.1% and 12.9% from the cob genes of T. saginata and T. solium, respectively. In conclusion, the T. asiatica mitocondrial genome should provide a resource for comparative mitochondrial genomics and systematic studies of parasitic cestodes.

  9. Uncovering Cryptic Diversity in Two Amoebozoan Species Using Complete Mitochondrial Genome Sequences.

    Science.gov (United States)

    Fučíková, Karolina; Lahr, Daniel J G

    2016-01-01

    The Amoebozoa are a major eukaryotic lineage that encompasses a wide range of amoeboid organisms. The group is understudied from a systematic perspective: molecular tools have only been applied in the last 15 yr. Hence, there is an undersampling of both genes and taxa in the group especially compared to plants, animals, and fungi. Here, we present the complete mitochondrial genomes of two ubiquitous and abundant morpho-species (Acanthamoeba castellanii and Vermamoeba vermiformis). Both have mitochondrial genomes of close relatives previously available, enabling insights into recent divergences at a genomic scale, while simultaneously offering comparisons with divergence estimates obtained from traditionally used single genes, SSU rDNA and cox1. The newly sequenced mt genomes are significantly divergent from their previously sequenced conspecifics (A. castellannii 16.4% divergence at nucleotide level and 10.4% amino acid; V. vermiformis 21.6% and 13.1%, respectively), while divergence at the small subunit ribosomal DNA is below 1% within both species. Morphological analyses determined that these lineages are indistinguishable from their previously sequenced counterparts. Phylogenetic reconstructions using 26 mt genes also indicate a level of divergence that is comparable to divergence among species, while reconstructions using the small subunit ribosomal DNA (SSU rDNA) do not. In addition, we demonstrate that between closely related taxa, there are high levels of synteny, which can be explored for primer design to obtain larger fragments than the traditional barcoding genes. We conclude that, although most systematic work has relied on SSU, this gene alone can severely underestimate diversity. Thus, we suggest that the mt genome emerges as an alternative for unraveling the lower level phylogenetic relationships of Amoebozoa. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  10. Complete Genome Sequence of aPapaya ringspot virusIsolate from South Korea That InfectsCucurbita pepo.

    Science.gov (United States)

    Baek, Dasom; Igori, Davaajargal; Lim, Seungmo; Hwang, Un Sun; Choi, Eung Kyoo; Moon, Jae Sun

    2017-11-30

    The complete genome sequence of a Papaya ringspot virus (PRSV) isolate from South Korea (SK) infecting squash ( Cucurbita pepo ) was obtained using paired-end RNA sequencing. A BLASTn search of the PRSV SK isolate full-genome sequence showed nucleotide sequence identity ranging from 81% to 83% with previously reported PRSV isolates (GenBank accession numbers KX655874 and EF017707). Copyright © 2017 Baek et al.

  11. Complete Genome Sequence of Human Enterovirus Strain 71 (EV71/Taipei/3118/2011), Isolated from a Patient in Taiwan.

    Science.gov (United States)

    Lin, Chia-Pei; Liu, Jiung-Liang; Chen, Lung-Yuan; Liu, Yi-Chao; Wang, Hsiu-Chi; Lin, Shih-Jie; Chen, Pin-Chun; Wang, Kun-Teng; Huang, Chih-Hung; Yang, Yi-Chan; Cheng, Hwei-Fang; Shih, Daniel Yang-Chih; Wang, Der-Yuan

    2015-01-08

    This full-length genome sequence of human enterovirus strain 71 (EV71/Taipei/3118/2011) was isolated from a clinical patient in Taiwan in 2011. According to the phylogenetic analysis, the complete genome sequence in this study is part of the subgenotype C4. Copyright © 2015 Lin et al.

  12. Complete Genome Sequence of Neisseria meningitidis Serogroup A Strain NMA510612, Isolated from a Patient with Bacterial Meningitis in China

    OpenAIRE

    Zhang, Yan; Yang, Jian; Xu, Li; Zhu, Yafang; Liu, Bo; Shao, Zhujun; Zhang, Xiaobing; Jin, Qi

    2014-01-01

    Serogroup A meningococcal strains have been involved in several pandemics and a series of epidemics worldwide in the past. Determination of the genome sequence of the prevalent genotype strain will help us understand the genetic background of the evolutionary and epidemiological properties of these bacteria. We sequenced the complete genome of Neisseria meningitidis NMA510612, a clinical isolate from a patient with meningococcal meningitis.

  13. Complete genomic sequences of two salmonella enterica subsp. enterica serogroup C2 (O:6,8) strains from central California

    Science.gov (United States)

    Salmonella enteric subsp. enterica strains RM11060, serotype 6,8:d:-, and RM11065, serotype 6,8:-:e,n,z15, were isolated from environmental sampling in Central California in 2009. We report the complete genome sequences and annotation of these two strains. These genomic sequences are distinct and wi...

  14. Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans

    DEFF Research Database (Denmark)

    Song, Yajun; Tong, Zongzhong; Wang, Jin

    2004-01-01

    Genomics provides an unprecedented opportunity to probe in minute detail into the genomes of the world's most deadly pathogenic bacteria- Yersinia pestis. Here we report the complete genome sequence of Y. pestis strain 91001, a human-avirulent strain isolated from the rodent Brandt's vole...... comparison, we conclude that strain 91001 and other strains isolated from M. brandti might have evolved from ancestral Y. pestis in a different lineage. The large genome fragment deletions in the 91001 chromosome and some pseudogenes may contribute to its unique nonpathogenicity to humans and host......-Microtus brandti. The genome of strain 91001 consists of one chromosome and four plasmids (pPCP1, pCD1, pMT1 and pCRY). The 9609-bp pPCP1 plasmid of strain 91001 is almost identical to the counterparts from reference strains (CO92 and KIM). There are 98 genes in the 70,159-bp range of plasmid pCD1. The 106,642-bp...

  15. Complete Chloroplast Genome Sequences and Comparative Analysis of Chenopodium quinoa and C. album

    Science.gov (United States)

    Hong, Su-Young; Cheon, Kyeong-Sik; Yoo, Ki-Oug; Lee, Hyun-Oh; Cho, Kwang-Soo; Suh, Jong-Taek; Kim, Su-Jeong; Nam, Jeong-Hwan; Sohn, Hwang-Bae; Kim, Yul-Ho

    2017-01-01

    The Chenopodium genus comprises ~150 species, including Chenopodium quinoa and Chenopodium album, two important crops with high nutritional value. To elucidate the phylogenetic relationship between the two species, the complete chloroplast (cp) genomes of these species were obtained by next generation sequencing. We performed comparative analysis of the sequences and, using InDel markers, inferred phylogeny and genetic diversity of the Chenopodium genus. The cp genome is 152,099 bp (C. quinoa) and 152,167 bp (C. album) long. In total, 119 genes (78 protein-coding, 37 tRNA, and 4 rRNA) were identified. We found 14 (C. quinoa) and 15 (C. album) tandem repeats (TRs); 14 TRs were present in both species and C. album and C. quinoa each had one species-specific TR. The trnI-GAU intron sequences contained one (C. quinoa) or two (C. album) copies of TRs (66 bp); the InDel marker was designed based on the copy number variation in TRs. Using the InDel markers, we detected this variation in the TR copy number in four species, Chenopodium hybridum, Chenopodium pumilio, Chenopodium ficifolium, and Chenopodium koraiense, but not in Chenopodium glaucum. A comparison of coding and non-coding regions between C. quinoa and C. album revealed divergent sites. Nucleotide diversity >0.025 was found in 17 regions—14 were located in the large single copy region (LSC), one in the inverted repeats, and two in the small single copy region (SSC). A phylogenetic analysis based on 59 protein-coding genes from 25 taxa resolved Chenopodioideae monophyletic and sister to Betoideae. The complete plastid genome sequences and molecular markers based on divergence hotspot regions in the two Chenopodium taxa will help to resolve the phylogenetic relationships of Chenopodium. PMID:29056940

  16. Complete Chloroplast Genome Sequences and Comparative Analysis of Chenopodium quinoa and C. album.

    Science.gov (United States)

    Hong, Su-Young; Cheon, Kyeong-Sik; Yoo, Ki-Oug; Lee, Hyun-Oh; Cho, Kwang-Soo; Suh, Jong-Taek; Kim, Su-Jeong; Nam, Jeong-Hwan; Sohn, Hwang-Bae; Kim, Yul-Ho

    2017-01-01

    The Chenopodium genus comprises ~150 species, including Chenopodium quinoa and Chenopodium album , two important crops with high nutritional value. To elucidate the phylogenetic relationship between the two species, the complete chloroplast (cp) genomes of these species were obtained by next generation sequencing. We performed comparative analysis of the sequences and, using InDel markers, inferred phylogeny and genetic diversity of the Chenopodium genus. The cp genome is 152,099 bp ( C. quinoa ) and 152,167 bp ( C. album ) long. In total, 119 genes (78 protein-coding, 37 tRNA, and 4 rRNA) were identified. We found 14 ( C. quinoa ) and 15 ( C. album ) tandem repeats (TRs); 14 TRs were present in both species and C. album and C. quinoa each had one species-specific TR. The trnI-GAU intron sequences contained one ( C. quinoa ) or two ( C. album ) copies of TRs (66 bp); the InDel marker was designed based on the copy number variation in TRs. Using the InDel markers, we detected this variation in the TR copy number in four species, Chenopodium hybridum, Chenopodium pumilio, Chenopodium ficifolium , and Chenopodium koraiense , but not in Chenopodium glaucum . A comparison of coding and non-coding regions between C. quinoa and C. album revealed divergent sites. Nucleotide diversity >0.025 was found in 17 regions-14 were located in the large single copy region (LSC), one in the inverted repeats, and two in the small single copy region (SSC). A phylogenetic analysis based on 59 protein-coding genes from 25 taxa resolved Chenopodioideae monophyletic and sister to Betoideae. The complete plastid genome sequences and molecular markers based on divergence hotspot regions in the two Chenopodium taxa will help to resolve the phylogenetic relationships of Chenopodium .

  17. The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2008-05-01

    Full Text Available Abstract Background Welwitschia mirabilis is the only extant member of the family Welwitschiaceae, one of three lineages of gnetophytes, an enigmatic group of gymnosperms variously allied with flowering plants or conifers. Limited sequence data and rapid divergence rates have precluded consensus on the evolutionary placement of gnetophytes based on molecular characters. Here we report on the first complete gnetophyte chloroplast genome sequence, from Welwitschia mirabilis, as well as analyses on divergence rates of protein-coding genes, comparisons of gene content and order, and phylogenetic implications. Results The chloroplast genome of Welwitschia mirabilis [GenBank: EU342371] is comprised of 119,726 base pairs and exhibits large and small single copy regions and two copies of the large inverted repeat (IR. Only 101 unique gene species are encoded. The Welwitschia plastome is the most compact photosynthetic land plant plastome sequenced to date; 66% of the sequence codes for product. The genome also exhibits a slightly expanded IR, a minimum of 9 inversions that modify gene order, and 19 genes that are lost or present as pseudogenes. Phylogenetic analyses, including one representative of each extant seed plant lineage and based on 57 concatenated protein-coding sequences, place Welwitschia at the base of all seed plants (distance, maximum parsimony or as the sister to Pinus (the only conifer representative in a monophyletic gymnosperm clade (maximum likelihood, bayesian. Relative rate tests on these gene sequences show the Welwitschia sequences to be evolving at faster rates than other seed plants. For these genes individually, a comparison of average pairwise distances indicates that relative divergence in Welwitschia ranges from amounts about equal to other seed plants to amounts almost three times greater than the average for non-gnetophyte seed plants. Conclusion Although the basic organization of the Welwitschia plastome is typical, its

  18. Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a

    Directory of Open Access Journals (Sweden)

    Xue Ying

    2006-07-01

    Full Text Available Abstract Background Shigella bacteria cause dysentery, which remains a significant threat to public health. Shigella flexneri is the most common species in both developing and developed countries. Five Shigella genomes have been sequenced, revealing dynamic and diverse features. To investigate the intra-species diversity of S. flexneri genomes further, we have sequenced the complete genome of S. flexneri 5b strain 8401 (abbreviated Sf8401 and compared it with S. flexneri 2a (Sf301. Results The Sf8401 chromosome is 4.5-Mb in size, a little smaller than that of Sf301, mainly because the former lacks the SHI-1 pathogenicity island (PAI. Compared with Sf301, there are 6 inversions and one translocation in Sf8401, which are probably mediated by insertion sequences (IS. There are clear differences in the known PAIs between these two genomes. The bacteriophage SfV segment remaining in SHI-O of Sf8401 is clearly larger than the remnants of bacteriophage SfII in Sf301. SHI-1 is absent from Sf8401 but a specific related protein is found next to the pheV locus. SHI-2 is involved in one intra-replichore inversion near the origin of replication, which may change the expression of iut/iuc genes. Moreover, genes related to the glycine-betaine biosynthesis pathway are present only in Sf8401 among the known Shigella genomes. Conclusion Our data show that the two S. flexneri genomes are very similar, which suggests a high level of structural and functional conservation between the two serotypes. The differences reflect different selection pressures during evolution. The ancestor of S. flexneri probably acquired SHI-1 and SHI-2 before SHI-O was integrated and the serotypes diverged. SHI-1 was subsequently deleted from the S. flexneri 5b genome by recombination, but stabilized in the S. flexneri 2a genome. These events may have contributed to the differences in pathogenicity and epidemicity between the two serotypes of S. flexneri.

  19. The complete genome sequence of Bacillus thuringiensis serovar Hailuosis YWC2-8.

    Science.gov (United States)

    Zhu, Jun; Zhang, Qinbin; Cao, Ye; Li, Qiao; Zhu, Zizhong; Wang, Linxia; Li, Ping

    2016-02-10

    Bacillus thuringiensis, a typical aerobic, Gram-positive, spore-forming bacterium, is an important microbial insecticide widely used in the control of agricultural pests. B. thuringiensis serovar Hailuosis YWC2-8 with high insecticidal activity against Diptera and Lepidoptera insects has three insecticidal crystal protein genes, such as cry4Cb2, cry30Ea2, and cry56Aa1. In this study, the complete genome sequence of B. thuringiensis YWC2-8 was analyzed, which contains one circular gapless chromosome and six circular plasmids. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Sequencing and characterization of the complete mitochondrial genome of Japanese Swellshark (Cephalloscyllium umbratile)

    OpenAIRE

    Zhu, Ke-Cheng; Liang, Yin-Yin; Wu, Na; Guo, Hua-Yang; Zhang, Nan; Jiang, Shi-Gui; Zhang, Dian-Chang

    2017-01-01

    To further comprehend the genome features of Cephalloscyllium umbratile (Carcharhiniformes), an endangered species, the complete mitochondrial DNA (mtDNA) was firstly sequenced and annotated. The full-length mtDNA of C. umbratile was 16,697 bp and contained ribosomal RNA (rRNA) genes, 13 protein-coding genes (PCGs), 23 transfer RNA (tRNA) genes, and a major non-coding control region. Each PCG was initiated by an authoritative ATN codon, except for COX1 initiated by a GTG codon. Seven of 13 PC...

  1. Complete genome sequence of Fer-de-Lance Virus reveals a novel gene in reptilian Paramyxoviruses

    Science.gov (United States)

    Kurath, G.; Batts, W.N.; Ahne, W.; Winton, J.R.

    2004-01-01

    The complete RNA genome sequence of the archetype reptilian paramyxovirus, Fer-de-Lance virus (FDLV), has been determined. The genome is 15,378 nucleotides in length and consists of seven nonoverlapping genes in the order 3??? N-U-P-M-F-HN-L 5???, coding for the nucleocapsid, unknown, phospho-, matrix, fusion, hemagglutinin-neuraminidase, and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and tri-nucleotide intergenic regions similar to those of other Paramyxoviridae. The FDLV P gene expression strategy is like that of rubulaviruses, which express the accessory V protein from the primary transcript and edit a portion of the mRNA to encode P and I proteins. There is also an overlapping open reading frame potentially encoding a small basic protein in the P gene. The gene designated U (unknown), encodes a deduced protein of 19.4 kDa that has no counterpart in other paramyxoviruses and has no similarity with sequences in the National Center for Biotechnology Information database. Active transcription of the U gene in infected cells was demonstrated by Northern blot analysis, and bicistronic N-U mRNA was also evident. The genomes of two other snake paramyxovirus genotypes were also found to have U genes, with 11 to 16% nucleotide divergence from the FDLV U gene. Pairwise comparisons of amino acid identities and phylogenetic analyses of all deduced FDLV protein sequences with homologous sequences from other Paramyxoviridae indicate that FDLV represents a new genus within the subfamily Paramyxovirinae. We suggest the name Ferlavirus for the new genus, with FDLV as the type species.

  2. Complete genome sequence of a new bipartite begomovirus infecting fluted pumpkin (Telfairia occidentalis) plants in Cameroon.

    Science.gov (United States)

    Leke, Walter N; Khatabi, Behnam; Fondong, Vincent N; Brown, Judith K

    2016-08-01

    The complete genome sequence was determined and characterized for a previously unreported bipartite begomovirus from fluted pumpkin (Telfairia occidentalis, family Cucurbitaceae) plants displaying mosaic symptoms in Cameroon. The DNA-A and DNA-B components were ~2.7 kb and ~2.6 kb in size, and the arrangement of viral coding regions on the genomic components was like those characteristic of other known bipartite begomoviruses originating in the Old World. While the DNA-A component was more closely related to that of chayote yellow mosaic virus (ChaYMV), at 78 %, the DNA-B component was more closely related to that of soybean chlorotic blotch virus (SbCBV), at 64 %. This newly discovered bipartite Old World virus is herein named telfairia mosaic virus (TelMV).

  3. The Complete Genome Sequence of the Fish Pathogen Tenacibaculum maritimum Provides Insights into Virulence Mechanisms

    Directory of Open Access Journals (Sweden)

    David Pérez-Pascual

    2017-08-01

    Full Text Available Tenacibaculum maritimum is a devastating bacterial pathogen of wild and farmed marine fish with a broad host range and a worldwide distribution. We report here the complete genome sequence of the T. maritimum type strain NCIMB 2154T. The genome consists of a 3,435,971-base pair circular chromosome with 2,866 predicted protein-coding genes. Genes encoding the biosynthesis of exopolysaccharides, the type IX secretion system, iron uptake systems, adhesins, hemolysins, proteases, and glycoside hydrolases were identified. They are likely involved in the virulence process including immune escape, invasion, colonization, destruction of host tissues, and nutrient scavenging. Among the predicted virulence factors, type IX secretion-mediated and cell-surface exposed proteins were identified including an atypical sialidase, a sphingomyelinase and a chondroitin AC lyase which activities were demonstrated in vitro.

  4. Isolation, identification, and complete genome sequence of a bovine adenovirus type 3 from cattle in China

    Directory of Open Access Journals (Sweden)

    Zhu Yuan-Mao

    2011-12-01

    Full Text Available Abstract Background Bovine adenovirus type 3 (BAV-3 belongs to the Mastadenovirus genus of the family Adenoviridae and is involved in respiratory and enteric infections of calves. The isolation of BAV-3 has not been reported prior to this study in China. In 2009, there were many cases in cattle showing similar clinical signs to BAV-3 infection and a virus strain, showing cytopathic effect in Madin-Darby bovine kidney cells, was isolated from a bovine nasal swab collected from feedlot cattle in Heilongjiang Province, China. The isolate was confirmed as a bovine adenovirus type 3 by PCR and immunofluorescence assay, and named as HLJ0955. So far only the complete genome sequence of prototype of BAV-3 WBR-1 strain has been reported. In order to further characterize the Chinese isolate HLJ0955, the complete genome sequence of HLJ0955 was determined. Results The size of the genome of the Chinese isolate HLJ0955 is 34,132 nucleotides in length with a G+C content of 53.6%. The coding sequences for gene regions of HLJ0955 isolate were similar to the prototype of BAV-3 WBR-1 strain, with 80.0-98.6% nucleotide and 87.5-98.8% amino acid identities. The genome of HLJ0955 strain contains 16 regions and four deletions in inverted terminal repeats, E1B region and E4 region, respectively. The complete genome and DNA binding protein gene based phylogenetic analysis with other adenoviruses were performed and the results showed that HLJ0955 isolate belonged to BAV-3 and clustered within the Mastadenovirus genus of the family Adenoviridae. Conclusions This is the first study to report the isolation and molecular characterization of BAV-3 from cattle in China. The phylogenetic analysis performed in this study supported the use of the DNA binding protein gene of adenovirus as an appropriate subgenomic target for the classification of different genuses of the family Adenoviridae on the molecular basis. Meanwhile, a large-scale pathogen and serological epidemiological

  5. Isolation, identification, and complete genome sequence of a bovine adenovirus type 3 from cattle in China

    Science.gov (United States)

    2011-01-01

    Background Bovine adenovirus type 3 (BAV-3) belongs to the Mastadenovirus genus of the family Adenoviridae and is involved in respiratory and enteric infections of calves. The isolation of BAV-3 has not been reported prior to this study in China. In 2009, there were many cases in cattle showing similar clinical signs to BAV-3 infection and a virus strain, showing cytopathic effect in Madin-Darby bovine kidney cells, was isolated from a bovine nasal swab collected from feedlot cattle in Heilongjiang Province, China. The isolate was confirmed as a bovine adenovirus type 3 by PCR and immunofluorescence assay, and named as HLJ0955. So far only the complete genome sequence of prototype of BAV-3 WBR-1 strain has been reported. In order to further characterize the Chinese isolate HLJ0955, the complete genome sequence of HLJ0955 was determined. Results The size of the genome of the Chinese isolate HLJ0955 is 34,132 nucleotides in length with a G+C content of 53.6%. The coding sequences for gene regions of HLJ0955 isolate were similar to the prototype of BAV-3 WBR-1 strain, with 80.0-98.6% nucleotide and 87.5-98.8% amino acid identities. The genome of HLJ0955 strain contains 16 regions and four deletions in inverted terminal repeats, E1B region and E4 region, respectively. The complete genome and DNA binding protein gene based phylogenetic analysis with other adenoviruses were performed and the results showed that HLJ0955 isolate belonged to BAV-3 and clustered within the Mastadenovirus genus of the family Adenoviridae. Conclusions This is the first study to report the isolation and molecular characterization of BAV-3 from cattle in China. The phylogenetic analysis performed in this study supported the use of the DNA binding protein gene of adenovirus as an appropriate subgenomic target for the classification of different genuses of the family Adenoviridae on the molecular basis. Meanwhile, a large-scale pathogen and serological epidemiological investigations for BVA-3

  6. The complete genome sequence and analysis of the epsilonproteobacterium Arcobacter butzleri.

    Directory of Open Access Journals (Sweden)

    William G Miller

    Full Text Available BACKGROUND: Arcobacter butzleri is a member of the epsilon subdivision of the Proteobacteria and a close taxonomic relative of established pathogens, such as Campylobacter jejuni and Helicobacter pylori. Here we present the complete genome sequence of the human clinical isolate, A. butzleri strain RM4018. METHODOLOGY/PRINCIPAL FINDINGS: Arcobacter butzleri is a member of the Campylobacteraceae, but the majority of its proteome is most similar to those of Sulfuromonas denitrificans and Wolinella succinogenes, both members of the Helicobacteraceae, and those of the deep-sea vent Epsilonproteobacteria Sulfurovum and Nitratiruptor. In addition, many of the genes and pathways described here, e.g. those involved in signal transduction and sulfur metabolism, have been identified previously within the epsilon subdivision only in S. denitrificans, W. succinogenes, Sulfurovum, and/or Nitratiruptor, or are unique to the subdivision. In addition, the analyses indicated also that a substantial proportion of the A. butzleri genome is devoted to growth and survival under diverse environmental conditions, with a large number of respiration-associated proteins, signal transduction and chemotaxis proteins and proteins involved in DNA repair and adaptation. To investigate the genomic diversity of A. butzleri strains, we constructed an A. butzleri DNA microarray comprising 2238 genes from strain RM4018. Comparative genomic indexing analysis of 12 additional A. butzleri strains identified both the core genes of A. butzleri and intraspecies hypervariable regions, where <70% of the genes were present in at least two strains. CONCLUSION/SIGNIFICANCE: The presence of pathways and loci associated often with non-host-associated organisms, as well as genes associated with virulence, suggests that A. butzleri is a free-living, water-borne organism that might be classified rightfully as an emerging pathogen. The genome sequence and analyses presented in this study are an

  7. A complete mitochondrial genome sequence of Asian black bear Sichuan subspecies (Ursus thibetanus mupinensis)

    Science.gov (United States)

    Hou, Wan-ru; Chen, Yu; Wu, Xia; Hu, Jin-chu; Peng, Zheng-song; Yang, Jung; Tang, Zong-xiang; Zhou, Cai-Quan; Li, Yu-ming; Yang, Shi-kui; Du, Yu-jie; Kong, Ling-lu; Ren, Zheng-long; Zhang, Huai-yu; Shuai, Su-rong

    2007-01-01

    We obtained the complete mitochondrial genome of U.thibetanus mupinensis by DNA sequencing based on the PCR fragments of 18 primers we designed. The results indicate that the mtDNA is 16 868 bp in size, encodes 13 protein genes, 22 tRNA genes, and 2 rRNA genes, with an overall H-strand base composition of 31.2% A, 25.4% C, 15.5% G and 27.9% T. The sequence of the control region (CR) located between tRNA-Pro and tRNA-Phe is 1422 bp in size, consists of 8.43% of the whole genome, GC content is 51.9% and has a 6bp tandem repeat and two 10bp tandem repeats identified by using the Tandem Repeats Finder. U. thibetanus mupinensis mitochondrial genome shares high similarity with those of three other Ursidae: U. americanus (91.46%), U. arctos (89.25%) and U. maritimus (87.66%). PMID:17205108

  8. Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7.

    Directory of Open Access Journals (Sweden)

    Paul H Roy

    2010-01-01

    Full Text Available Pseudomonas aeruginosa PA7 is a non-respiratory human isolate from Argentina that is multiresistant to antibiotics. We first sequenced gyrA, gyrB, parC, parE, ampC, ampR, and several housekeeping genes and found that PA7 is a taxonomic outlier. We report here the complete sequence of the 6,588,339 bp genome, which has only about 95% overall identity to other strains. PA7 has multiple novel genomic islands and a total of 51 occupied regions of genomic plasticity. These islands include antibiotic resistance genes, parts of transposons, prophages, and a pKLC102-related island. Several PA7 genes not present in PAO1 or PA14 are putative orthologues of other Pseudomonas spp. and Ralstonia spp. genes. PA7 appears to be closely related to the known taxonomic outlier DSM1128 (ATCC9027. PA7 lacks several virulence factors, notably the entire TTSS region corresponding to PA1690-PA1725 of PAO1. It has neither exoS nor exoU and lacks toxA, exoT, and exoY. PA7 is serotype O12 and pyoverdin type II. Preliminary proteomic studies indicate numerous differences with PAO1, some of which are probably a consequence of a frameshift mutation in the mvfR quorum sensing regulatory gene.

  9. Complete genome sequence of Bacillus oceanisediminis 2691, a reservoir of heavy-metal resistance genes.

    Science.gov (United States)

    Jung, Jaejoon; Jeong, Haeyoung; Kim, Hyun Ju; Lee, Dong-Woo; Lee, Sang Jun

    2016-12-01

    Ocean sediments are commonly subject to the pollution of various heavy metals. Intracellular heavy metal concentrations in marine microorganisms should be kept within allowable concentrations. Here, we report redundant heavy metal resistance related genes encoding heavy metal-sensing transcriptional regulators (i.e. cadC), heavy metal efflux pumps, and detoxifying enzymes in the complete genome sequence of Bacillus oceanisediminis 2691. By comparing CadC sequences of strain 2691 with those from other bacterial genomes, we demonstrated that each cadC gene located in the chromosome or plasmid of 2691 cells are similar to those of various near or distant microbes, which might shed light on evolutionary trajectories of redundant heavy metal resistance genes. In application aspects, these diverse heavy metal sensing genes can be harnessed as synthetic biological parts, modules, and devices for the development of heavy metal-specific biosensors. Heavy metal bioremediation technologies or platform cells can be also developed based on the marine genomic information of heavy metal resistance and/or detoxification genes in a bacterial isolate from ocean sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Complete Genome Sequence of the Multiresistant Taxonomic Outlier Pseudomonas aeruginosa PA7

    Science.gov (United States)

    Roy, Paul H.; Tetu, Sasha G.; Larouche, André; Elbourne, Liam; Tremblay, Simon; Ren, Qinghu; Dodson, Robert; Harkins, Derek; Shay, Ryan; Watkins, Kisha; Mahamoud, Yasmin; Paulsen, Ian T.

    2010-01-01

    Pseudomonas aeruginosa PA7 is a non-respiratory human isolate from Argentina that is multiresistant to antibiotics. We first sequenced gyrA, gyrB, parC, parE, ampC, ampR, and several housekeeping genes and found that PA7 is a taxonomic outlier. We report here the complete sequence of the 6,588,339 bp genome, which has only about 95% overall identity to other strains. PA7 has multiple novel genomic islands and a total of 51 occupied regions of genomic plasticity. These islands include antibiotic resistance genes, parts of transposons, prophages, and a pKLC102-related island. Several PA7 genes not present in PAO1 or PA14 are putative orthologues of other Pseudomonas spp. and Ralstonia spp. genes. PA7 appears to be closely related to the known taxonomic outlier DSM1128 (ATCC9027). PA7 lacks several virulence factors, notably the entire TTSS region corresponding to PA1690-PA1725 of PAO1. It has neither exoS nor exoU and lacks toxA, exoT, and exoY. PA7 is serotype O12 and pyoverdin type II. Preliminary proteomic studies indicate numerous differences with PAO1, some of which are probably a consequence of a frameshift mutation in the mvfR quorum sensing regulatory gene. PMID:20107499

  11. First complete genome sequence of canine bocavirus 2 in mainland China

    Directory of Open Access Journals (Sweden)

    S.-L. Zhai

    2017-07-01

    Full Text Available We obtained the first full-length genome sequence of canine bocavirus 2 (CBoV2 from the faeces of a healthy dog in Guangzhou city, Guangdong province, mainland China. The genome of GZHD15 consisted of 5059 nucleotides. Sequence analysis suggested that GZHD15 was close to a previously circulated Hong Kong isolate.

  12. Complete Genome Sequence of Photobacterium sp. Strain J15, Isolated from Seawater of Southwestern Johor, Malaysia.

    Science.gov (United States)

    Roslan, Noordiyanah Nadhirah; Sabri, Suriana; Oslan, Siti Nurbaya; Baharum, Syarul Nataqain; Leow, Thean Chor

    2016-07-28

    Here, we report the genome sequences of Photobacterium sp. strain J15, isolated from seawater in Johor, Malaysia, with the ability to produce lipase and asparaginase. The PacBio genome sequence analysis of Photobacterium sp. strain J15 generated revealed its potential in producing enzymes with different catalytic functions. Copyright © 2016 Roslan et al.

  13. Complete genome sequence of a highly divergent astrovirus isolated from a child with acute diarrhea

    Directory of Open Access Journals (Sweden)

    Wang David

    2008-10-01

    Full Text Available Abstract Background Astroviruses infect a variety of mammals and birds and are causative agents of diarrhea in humans and other animal hosts. We have previously described the identification of several sequence fragments with limited sequence identity to known astroviruses in a stool specimen obtained from a child with acute diarrhea, suggesting that a novel virus was present. Results In this study, the complete genome of this novel virus isolate was sequenced and analyzed. The overall genome organization of this virus paralleled that of known astroviruses, with 3 open reading frames identified. Phylogenetic analysis of the ORFs indicated that this virus is highly divergent from all previously described animal and human astroviruses. Molecular features that are highly conserved in human serotypes 1–8, such as a 3'NTR stem-loop structure and conserved nucleotide motifs present in the 5'NTR and ORF1b/2 junction, were either absent or only partially conserved in this novel virus. Conclusion Based on the analyses described herein, we propose that this newly discovered virus represents a novel species in the family Astroviridae. It has tentatively been named Astrovirus MLB1.

  14. Complete Genome Sequence of a Burkholderia pseudomallei Strain Isolated from a Pet Green Iguana in Prague, Czech Republic

    Science.gov (United States)

    Thomas, Prasad; El-Adawy, Hosny; Mertens, Katja; Melzer, Falk; Hnizdo, Jan; Stamm, Ivonne

    2017-01-01

    ABSTRACT Burkholderia pseudomallei was isolated from pus from an abscess of a pet iguana living in a private household in Prague, Czech Republic. This paper presents the complete genome sequence of B. pseudomallei strain VB976100. PMID:28280033

  15. Complete genome sequence of Lactobacillus paracasei CAUH35, a new strain isolated from traditional fermented dairy product koumiss in China.

    Science.gov (United States)

    Wang, Guohong; Xiong, Yao; Xu, Qi; Yin, Jia; Hao, Yanling

    2015-11-20

    Lactobacillus paracasei CAUH35 was isolated from homemade koumiss, a traditional fermented dairy product with beneficial effects on human health. The genome consists of a circular 2,770,411 bp chromosome and four plasmids. Genome analysis revealed the presence of gene clusters involved in the production of exopolysaccharides and bacteriocin. The complete genome sequence of L. paracasei CAUH35 will provide genetic basis for further comparative and functional genomic analyses. Copyright © 2015. Published by Elsevier B.V.

  16. The complete sequence of the mitochondrial genome of Nautilus macromphalus (Mollusca: Cephalopoda

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2006-07-01

    Full Text Available Abstract Background Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although complete mitochondrial genome sequences have been reported for more than 600 animals, the taxonomic sampling is highly biased toward vertebrates and arthropods, leaving much of the diversity yet uncharacterized. Results The mitochondrial genome of the bellybutton nautilus, Nautilus macromphalus, a cephalopod mollusk, is 16,258 nts in length and 59.5% A+T, both values that are typical of animal mitochondrial genomes. It contains the 37 genes that are almost universally found in animal mtDNAs, with 15 on one DNA strand and 22 on the other. The arrangement of these genes can be derived from that of the distantly related Katharina tunicata (Mollusca: Polyplacophora by a switch in position of two large blocks of genes and transpositions of four tRNA genes. There is strong skew in the distribution of nucleotides between the two strands, and analysis of this yields insight into modes of transcription and replication. There is an unusual number of non-coding regions and their function, if any, is not known; however, several of these demark abrupt shifts in nucleotide skew, and there are several identical sequence elements at these junctions, suggesting that they may play roles in transcription and/or replication. One of the non-coding regions contains multiple repeats of a tRNA-like sequence. Some of the tRNA genes appear to overlap on the same strand, but this could be resolved if the polycistron were cleaved at the beginning of the downstream gene, followed by polyadenylation of the product of the upstream gene to form a fully paired structure. Conclusion Nautilus macromphalus mtDNA contains an expected gene content that has experienced few rearrangements since the evolutionary split between cephalopods and polyplacophorans. It contains an

  17. The complete chloroplast genome sequence of Helwingia himalaica (Helwingiaceae, Aquifoliales) and a chloroplast phylogenomic analysis of the Campanulidae

    OpenAIRE

    Yao, Xin; Liu, Ying-Ying; Tan, Yun-Hong; Song, Yu; Corlett, Richard T.

    2016-01-01

    Complete chloroplast genome sequences have been very useful for understanding phylogenetic relationships in angiosperms at the family level and above, but there are currently large gaps in coverage. We report the chloroplast genome for Helwingia himalaica, the first in the distinctive family Helwingiaceae and only the second genus to be sequenced in the order Aquifoliales. We then combine this with 36 published sequences in the large (c. 35,000 species) subclass Campanulidae in order to inves...

  18. The complete mitochondrial genome sequence of the indigenous I pig ( in Vietnam

    Directory of Open Access Journals (Sweden)

    Hieu Duc Nguyen

    2017-07-01

    Full Text Available Objective The I pig is a long nurtured longstanding breed in Vietnam, and contains excellent indigenous genetic resources. However, after 1970s, I pig breeds have become a small population because of decreasing farming areas and increasing pressure from foreign breeds with a high growth rate. Thus, there is now the risk of the disappearance of the I pigs breed. The aim of this study was to focus on classifying and identifying the I pig genetic origin and supplying molecular makers for conservation activities. Methods This study sequenced the complete mitochondrial genome and used the sequencing result to analyze the phylogenetic relationship of I pig with Asian and European domestic pigs and wild boars. The full sequence was annotated and predicted the secondary tRNA. Results The total length of I pig mitochondrial genome (accession number KX094894 was 16,731 base pairs, comprised two rRNA (12S and 16S, 22 tRNA and 13 mRNA genes. The annotation structures were not different from other pig breeds. Some component indexes as AT content, GC, and AT skew were counted, in which AT content (60.09% was smaller than other pigs. We built the phylogenetic trees from full sequence and D loop sequence using Bayesian method. The result showed that I pig, Banna mini, wild boar (WB Vietnam and WB Hainan or WB Korea, WB Japan were a cluster. They were a group within the Asian clade distinct from Chinese pigs and other Asian breeds in both phylogenetic trees (0.0004 and 0.0057, respectively. Conclusion These results were similar to previous phylogenic study in Vietnamese pig and showed the genetic distinctness of I pig with other Asian domestic pigs.

  19. The complete mitochondrial genome sequence of Sphyraena jello (Perciformes: Sphyraenidae) and its phylogenetic position.

    Science.gov (United States)

    Lv, Hao; Cheng, Qiqun; Pang, Jiaohui; Zhang, Heng

    2016-11-01

    In this study, we obtained the complete mitochondrial genome sequence of Sphyraena jello and analyzed its phylogenetic position. The complete mitogenome of S. jello is 16 699 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a control region. Among the 37 genes, 28 were encoded on heavy strand, while 9 were encoded on light strand. The overall base composition was 28.97% for A, 16.14% for G, 29.64% for C, and 25.25% for T, with a higher A + T content (54.22%). The phylogenetic analysis based on 13 concatenated protein-coding genes suggested that S. jello is a sister species to Sphyraena barracuda in the family Sphyraenidae. This result should be useful for understanding the genetic structure, molecular evolution, and phylogeny of S. jello and related species.

  20. Complete genome sequencing and evolutionary analysis of Indian isolates of Dengue virus type 2

    Energy Technology Data Exchange (ETDEWEB)

    Dash, Paban Kumar, E-mail: pabandash@rediffmail.com; Sharma, Shashi; Soni, Manisha; Agarwal, Ankita; Parida, Manmohan; Rao, P.V.Lakshmana

    2013-07-05

    Highlights: •Complete genome of Indian DENV-2 was deciphered for the first time in this study. •The recent Indian DENV-2 revealed presence of many unique amino acid residues. •Genotype shift (American to Cosmopolitan) characterizes evolution of DENV-2 in India. •Circulation of a unique clade of DENV-2 in South Asia was identified. -- Abstract: Dengue is the most important arboviral infection of global public health significance. It is now endemic in most parts of the South East Asia including India. Though Dengue virus type 2 (DENV-2) is predominantly associated with major outbreaks in India, complete genome information of Indian DENV-2 is not available. In this study, the full-length genome of five DENV-2 isolates (four from 2001 to 2011 and one from 1960), from different parts of India was determined. The complete genome of the Indian DENV-2 was found to be 10,670 bases long with an open reading frame coding for 3391 amino acids. The recent Indian DENV-2 (2001–2011) revealed a nucleotide sequence identity of around 90% and 97% with an older Indian DENV-2 (1960) and closely related Sri Lankan and Chinese DENV-2 respectively. Presence of unique amino acid residues and non-conservative substitutions in critical amino acid residues of major structural and non-structural proteins was observed in recent Indian DENV-2. Selection pressure analysis revealed positive selection in few amino acid sites of the genes encoding for structural and non-structural proteins. The molecular phylogenetic analysis based on comparison of both complete coding region and envelope protein gene with globally diverse DENV-2 viruses classified the recent Indian isolates into a unique South Asian clade within Cosmopolitan genotype. A shift of genotype from American to Cosmopolitan in 1970s characterized the evolution of DENV-2 in India. Present study is the first report on complete genome characterization of emerging DENV-2 isolates from India and highlights the circulation of a

  1. Complete genome sequencing and evolutionary analysis of Indian isolates of Dengue virus type 2

    International Nuclear Information System (INIS)

    Dash, Paban Kumar; Sharma, Shashi; Soni, Manisha; Agarwal, Ankita; Parida, Manmohan; Rao, P.V.Lakshmana

    2013-01-01

    Highlights: •Complete genome of Indian DENV-2 was deciphered for the first time in this study. •The recent Indian DENV-2 revealed presence of many unique amino acid residues. •Genotype shift (American to Cosmopolitan) characterizes evolution of DENV-2 in India. •Circulation of a unique clade of DENV-2 in South Asia was identified. -- Abstract: Dengue is the most important arboviral infection of global public health significance. It is now endemic in most parts of the South East Asia including India. Though Dengue virus type 2 (DENV-2) is predominantly associated with major outbreaks in India, complete genome information of Indian DENV-2 is not available. In this study, the full-length genome of five DENV-2 isolates (four from 2001 to 2011 and one from 1960), from different parts of India was determined. The complete genome of the Indian DENV-2 was found to be 10,670 bases long with an open reading frame coding for 3391 amino acids. The recent Indian DENV-2 (2001–2011) revealed a nucleotide sequence identity of around 90% and 97% with an older Indian DENV-2 (1960) and closely related Sri Lankan and Chinese DENV-2 respectively. Presence of unique amino acid residues and non-conservative substitutions in critical amino acid residues of major structural and non-structural proteins was observed in recent Indian DENV-2. Selection pressure analysis revealed positive selection in few amino acid sites of the genes encoding for structural and non-structural proteins. The molecular phylogenetic analysis based on comparison of both complete coding region and envelope protein gene with globally diverse DENV-2 viruses classified the recent Indian isolates into a unique South Asian clade within Cosmopolitan genotype. A shift of genotype from American to Cosmopolitan in 1970s characterized the evolution of DENV-2 in India. Present study is the first report on complete genome characterization of emerging DENV-2 isolates from India and highlights the circulation of a

  2. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    Full Text Available Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs, carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.

  3. Complete mitochondrial genome sequences for Crown-of-thorns starfish Acanthaster planci and Acanthaster brevispinus

    Directory of Open Access Journals (Sweden)

    Saba Masaki

    2006-01-01

    Full Text Available Abstract Background The crown-of-thorns starfish, Acanthaster planci (L., has been blamed for coral mortality in a large number of coral reef systems situated in the Indo-Pacific region. Because of its high fecundity and the long duration of the pelagic larval stage, the mechanism of outbreaks may be related to its meta-population dynamics, which should be examined by larval sampling and population genetic analysis. However, A. planci larvae have undistinguished morphological features compared with other asteroid larvae, hence it has been difficult to discriminate A. planci larvae in plankton samples without species-specific markers. Also, no tools are available to reveal the dispersal pathway of A. planci larvae. Therefore the development of highly polymorphic genetic markers has the potential to overcome these difficulties. To obtain genomic information for these purposes, the complete nucleotide sequences of the mitochondrial genome of A. planci and its putative sibling species, A. brevispinus were determined and their characteristics discussed. Results The complete mtDNA of A. planci and A. brevispinus are 16,234 bp and 16,254 bp in size, respectively. These values fall within the length variation range reported for other metazoan mitochondrial genomes. They contain 13 proteins, 2 rRNA, and 22 tRNA genes and the putative control region in the same order as the asteroid, Asterina pectinifera. The A + T contents of A. planci and A. brevispinus on their L strands that encode the majority of protein-coding genes are 56.3% and 56.4% respectively and are lower than that of A. pectinifera (61.2%. The percent similarity of nucleotide sequences between A. planci and A. brevispinus is found to be highest in the CO2 and CO3 regions (both 90.6% and lowest in ND2 gene (84.2% among the 13 protein-coding genes. In the deduced putative amino acid sequences, CO1 is highly conserved (99.2%, and ATP8 apparently evolves faster any of the other protein

  4. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences

    Energy Technology Data Exchange (ETDEWEB)

    Macey, J. Robert; Papenfuss, Theodore J.; Kuehl, Jennifer V.; Fourcade, H. Matthew; Boore, Jeffrey L.

    2004-05-19

    Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5,797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in B. biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with cob, trnT, trnP, as they are in birds.

  5. The complete DNA sequence of the mitochondrial genome of the dermatophyte fungus Epidermophyton floccosum.

    Science.gov (United States)

    Tambor, José Humberto M; Guedes, Raquel F; Nobrega, Marina P; Nobrega, Francisco G

    2006-05-01

    We report here the complete nucleotide sequence of the 30.9-kb mitochondrial genome of the dermatophyte fungus Epidermophyton floccosum. All genes are encoded on the same DNA strand and include seven subunits of the reduced nicotinamide adenine dinucleotide ubiquinone oxireductase (nad1, nad2, nad3, nad4, nad4L, nad5, and nad6), three subunits of cytochrome oxidase (cox1, cox2, and cox3), apocytochrome b (cob), three subunits of ATP synthase (atp6, atp8, and atp9), the small and large ribosomal RNAs (rns and rnl), and 25 tRNAs. A ribosomal protein gene (rps5) is present as an intronic ORF in the large ribosomal subunit. The genes coding for cob and cox1 carry one intron and nad5 carries two introns with ORFs. The mtDNA of E. floccosum has the same gene order as Trichophyton rubrum mtDNA, with the exception of some tRNA genes. Maximum likelihood phylogenetic analysis confirms T. rubrum as a close relative of E. floccosum. This is the first complete mitochondrial sequence of a species of the order Onygenales. This sequence is available under GenBank accession number AY916130.

  6. The Complete Sequence of the Mitochondrial Genome of the Chamberednautilus (Mollusca: Cephalopoda)

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2005-12-01

    Background: Mitochondria contain small genomes that arephysically separate from those of nuclei. Their comparison serves as amodel system for understanding the processes of genome evolution.Although complete mitochondrial genome sequences have been reported formore than 600 animals, the taxonomic sampling is highly biased towardvertebrates and arthropods, leaving much of the diversity yetuncharacterized. Results: The mitochondrial genome of a cephalopodmollusk, the Chambered Nautilus, is 16,258 nts in length and 59.5 percentA+T, both values that are typical of animal mitochondrial genomes. Itcontains the 37 genes that are typical for animal mtDNAs, with 15 on oneDNA strand and 22 on the other. The arrangement of these genes can bederived from that of the distantly related Katharina tunicata (Mollusca:Polyplacophora) by a switch in position of two large blocks of genes andtranspositions of four tRNA genes. There is strong skew in thedistribution of nucleotides between the two strands. There are an unusualnumber of non-coding regions and their function, if any, is not known;however, several of these demark abrupt shifts in nucleotide skew,suggesting that they may play roles in transcription and/or replication.One of the non-coding regions contains multiple repeats of a tRNA-likesequence. Some of the tRNA genes appear to overlap on the same strand,but this could be resolved if the polycistron were cleaved at thebeginning of the downstream gene, followed by polyadenylation of theproduct of the upstream gene to form a fully paired structure.Conclusions: Nautilus sp. mtDNA contains an expected gene content thathas experienced few rearrangements since the evolutionary split betweencephalopods and polyplacophorans. It contains an unusual number ofnon-coding regions, especially considering that these otherwise often aregenerated by the same processes that produce gene rearrangements. Thisappears to be yet another case where polyadenylation of mitochondrialtRNAs restores

  7. The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader.

    Directory of Open Access Journals (Sweden)

    Athanasios Lykidis

    Full Text Available BACKGROUND: Cupriavidus necator JMP134 is a Gram-negative beta-proteobacterium able to grow on a variety of aromatic and chloroaromatic compounds as its sole carbon and energy source. METHODOLOGY/PRINCIPAL FINDINGS: Its genome consists of four replicons (two chromosomes and two plasmids containing a total of 6631 protein coding genes. Comparative analysis identified 1910 core genes common to the four genomes compared (C. necator JMP134, C. necator H16, C. metallidurans CH34, R. solanacearum GMI1000. Although secondary chromosomes found in the Cupriavidus, Ralstonia, and Burkholderia lineages are all derived from plasmids, analyses of the plasmid partition proteins located on those chromosomes indicate that different plasmids gave rise to the secondary chromosomes in each lineage. The C. necator JMP134 genome contains 300 genes putatively involved in the catabolism of aromatic compounds and encodes most of the central ring-cleavage pathways. This strain also shows additional metabolic capabilities towards alicyclic compounds and the potential for catabolism of almost all proteinogenic amino acids. This remarkable catabolic potential seems to be sustained by a high degree of genetic redundancy, most probably enabling this catabolically versatile bacterium with different levels of metabolic responses and alternative regulation necessary to cope with a challenging environment. From the comparison of Cupriavidus genomes, it is possible to state that a broad metabolic capability is a general trait for Cupriavidus genus, however certain specialization towards a nutritional niche (xenobiotics degradation, chemolithoautotrophy or symbiotic nitrogen fixation seems to be shaped mostly by the acquisition of "specialized" plasmids. CONCLUSIONS/SIGNIFICANCE: The availability of the complete genome sequence for C. necator JMP134 provides the groundwork for further elucidation of the mechanisms and regulation of chloroaromatic compound biodegradation.

  8. The Complete Mitochondrial Genome Sequence of Bactericera cockerelli and Comparison with Three Other Psylloidea Species.

    Directory of Open Access Journals (Sweden)

    Fengnian Wu

    Full Text Available Potato psyllid (Bactericera cockerelli is an important pest of potato, tomato and pepper. Not only could a toxin secreted by nymphs results in serious phytotoxemia in some host plants, but also over the past few years B. cockerelli was shown to transmit "Candidatus Liberibacter solanacearum", the putative bacterial pathogen of potato zebra chip (ZC disease, to potato and tomato. ZC has caused devastating losses to potato production in the western U.S., Mexico, and elsewhere. New knowledge of the genetic diversity of the B. cockerelli is needed to develop improved strategies to manage pest populations. Mitochondrial genome (mitogenome sequencing provides important knowledge about insect evolution and diversity in and among populations. This report provides the first complete B. cockerelli mitogenome sequence as determined by next generation sequencing technology (Illumina MiSeq. The circular B. cockerelli mitogenome had a size of 15,220 bp with 13 protein-coding gene (PCGs, 2 ribosomal RNA genes (rRNAs, 22 transfer RNA genes (tRNAs, and a non-coding region of 975 bp. The overall gene order of the B. cockerelli mitogenome is identical to three other published Psylloidea mitogenomes: one species from the Triozidae, Paratrioza sinica; and two species from the Psyllidae, Cacopsylla coccinea and Pachypsylla venusta. This suggests all of these species share a common ancestral mitogenome. However, sequence analyses revealed differences between and among the insect families, in particular a unique region that can be folded into three stem-loop secondary structures present only within the B. cockerelli mitogenome. A phylogenetic tree based on the 13 PCGs matched an existing taxonomy scheme that was based on morphological characteristics. The available complete mitogenome sequence makes it accessible to all genes for future population diversity evaluation of B. cockerelli.

  9. Streptococcus iniae SF1: complete genome sequence, proteomic profile, and immunoprotective antigens.

    Directory of Open Access Journals (Sweden)

    Bao-cun Zhang

    Full Text Available Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS, 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control.

  10. Complete Genome Sequence and Immunoproteomic Analyses of the Bacterial Fish Pathogen Streptococcus parauberis▿†

    Science.gov (United States)

    Nho, Seong Won; Hikima, Jun-ichi; Cha, In Seok; Park, Seong Bin; Jang, Ho Bin; del Castillo, Carmelo S.; Kondo, Hidehiro; Hirono, Ikuo; Aoki, Takashi; Jung, Tae Sung

    2011-01-01

    Although Streptococcus parauberis is known as a bacterial pathogen associated with bovine udder mastitis, it has recently become one of the major causative agents of olive flounder (Paralichthys olivaceus) streptococcosis in northeast Asia, causing massive mortality resulting in severe economic losses. S. parauberis contains two serotypes, and it is likely that capsular polysaccharide antigens serve to differentiate the serotypes. In the present study, the complete genome sequence of S. parauberis (serotype I) was determined using the GS-FLX system to investigate its phylogeny, virulence factors, and antigenic proteins. S. parauberis possesses a single chromosome of 2,143,887 bp containing 1,868 predicted coding sequences (CDSs), with an average GC content of 35.6%. Whole-genome dot plot analysis and phylogenetic analysis of a 60-kDa chaperonin-encoding gene and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-encoding gene showed that the strain was evolutionarily closely related to Streptococcus uberis. S. parauberis antigenic proteins were analyzed using an immunoproteomic technique. Twenty-one antigenic protein spots were identified in S. parauberis, by reaction with an antiserum obtained from S. parauberis-challenged olive flounder. This work provides the foundation needed to understand more clearly the relationship between pathogen and host and develops new approaches toward prophylactic and therapeutic strategies to deal with streptococcosis in fish. The work also provides a better understanding of the physiology and evolution of a significant representative of the Streptococcaceae. PMID:21531805

  11. Streptococcus iniae SF1: Complete Genome Sequence, Proteomic Profile, and Immunoprotective Antigens

    Science.gov (United States)

    Zhang, Bao-cun; Zhang, Jian; Sun, Li

    2014-01-01

    Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control. PMID:24621602

  12. Assembly of the Complete Sitka Spruce Chloroplast Genome Using 10X Genomics' GemCode Sequencing Data.

    Directory of Open Access Journals (Sweden)

    Lauren Coombe

    Full Text Available The linked read sequencing library preparation platform by 10X Genomics produces barcoded sequencing libraries, which are subsequently sequenced using the Illumina short read sequencing technology. In this new approach, long fragments of DNA are partitioned into separate micro-reactions, where the same index sequence is incorporated into each of the sequencing fragment inserts derived from a given long fragment. In this study, we exploited this property by using reads from index sequences associated with a large number of reads, to assemble the chloroplast genome of the Sitka spruce tree (Picea sitchensis. Here we report on the first Sitka spruce chloroplast genome assembled exclusively from P. sitchensis genomic libraries prepared using the 10X Genomics protocol. We show that the resulting 124,049 base pair long genome shares high sequence similarity with the related white spruce and Norway spruce chloroplast genomes, but diverges substantially from a previously published P. sitchensis- P. thunbergii chimeric genome. The use of reads from high-frequency indices enabled separation of the nuclear genome reads from that of the chloroplast, which resulted in the simplification of the de Bruijn graphs used at the various stages of assembly.

  13. Genome sequencing and analysis of the first complete genome of Lactobacillus kunkeei strain MP2, an Apis mellifera gut isolate

    Directory of Open Access Journals (Sweden)

    Freddy Asenjo

    2016-04-01

    Full Text Available Background. The honey bee (Apis mellifera is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2 from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and

  14. Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69.

    Science.gov (United States)

    Iguchi, Atsushi; Thomson, Nicholas R; Ogura, Yoshitoshi; Saunders, David; Ooka, Tadasuke; Henderson, Ian R; Harris, David; Asadulghani, M; Kurokawa, Ken; Dean, Paul; Kenny, Brendan; Quail, Michael A; Thurston, Scott; Dougan, Gordon; Hayashi, Tetsuya; Parkhill, Julian; Frankel, Gad

    2009-01-01

    Enteropathogenic Escherichia coli (EPEC) was the first pathovar of E. coli to be implicated in human disease; however, no EPEC strain has been fully sequenced until now. Strain E2348/69 (serotype O127:H6 belonging to E. coli phylogroup B2) has been used worldwide as a prototype strain to study EPEC biology, genetics, and virulence. Studies of E2348/69 led to the discovery of the locus of enterocyte effacement-encoded type III secretion system (T3SS) and its cognate effectors, which play a vital role in attaching and effacing lesion formation on gut epithelial cells. In this study, we determined the complete genomic sequence of E2348/69 and performed genomic comparisons with other important E. coli strains. We identified 424 E2348/69-specific genes, most of which are carried on mobile genetic elements, and a number of genetic traits specifically conserved in phylogroup B2 strains irrespective of their pathotypes, including the absence of the ETT2-related T3SS, which is present in E. coli strains belonging to all other phylogroups. The genome analysis revealed the entire gene repertoire related to E2348/69 virulence. Interestingly, E2348/69 contains only 21 intact T3SS effector genes, all of which are carried on prophages and integrative elements, compared to over 50 effector genes in enterohemorrhagic E. coli O157. As E2348/69 is the most-studied pathogenic E. coli strain, this study provides a genomic context for the vast amount of existing experimental data. The unexpected simplicity of the E2348/69 T3SS provides the first opportunity to fully dissect the entire virulence strategy of attaching and effacing pathogens in the genomic context.

  15. Analysis of the complete genome sequence of Nocardia seriolae UTF1, the causative agent of fish nocardiosis: The first reference genome sequence of the fish pathogenic Nocardia species.

    Science.gov (United States)

    Yasuike, Motoshige; Nishiki, Issei; Iwasaki, Yuki; Nakamura, Yoji; Fujiwara, Atushi; Shimahara, Yoshiko; Kamaishi, Takashi; Yoshida, Terutoyo; Nagai, Satoshi; Kobayashi, Takanori; Katoh, Masaya

    2017-01-01

    Nocardiosis caused by Nocardia seriolae is one of the major threats in the aquaculture of Seriola species (yellowtail; S. quinqueradiata, amberjack; S. dumerili and kingfish; S. lalandi) in Japan. Here, we report the complete nucleotide genome sequence of N. seriolae UTF1, isolated from a cultured yellowtail. The genome is a circular chromosome of 8,121,733 bp with a G+C content of 68.1% that encodes 7,697 predicted proteins. In the N. seriolae UTF1 predicted genes, we found orthologs of virulence factors of pathogenic mycobacteria and human clinical Nocardia isolates involved in host cell invasion, modulation of phagocyte function and survival inside the macrophages. The virulence factor candidates provide an essential basis for understanding their pathogenic mechanisms at the molecular level by the fish nocardiosis research community in future studies. We also found many potential antibiotic resistance genes on the N. seriolae UTF1 chromosome. Comparative analysis with the four existing complete genomes, N. farcinica IFM 10152, N. brasiliensis HUJEG-1 and N. cyriacigeorgica GUH-2 and N. nova SH22a, revealed that 2,745 orthologous genes were present in all five Nocardia genomes (core genes) and 1,982 genes were unique to N. seriolae UTF1. In particular, the N. seriolae UTF1 genome contains a greater number of mobile elements and genes of unknown function that comprise the differences in structure and gene content from the other Nocardia genomes. In addition, a lot of the N. seriolae UTF1-specific genes were assigned to the ABC transport system. Because of limited resources in ocean environments, these N. seriolae UTF1 specific ABC transporters might facilitate adaptation strategies essential for marine environment survival. Thus, the availability of the complete N. seriolae UTF1 genome sequence will provide a valuable resource for comparative genomic studies of N. seriolae isolates, as well as provide new insights into the ecological and functional diversity of

  16. Complete Genome Sequence of Staphylococcus succinus 14BME20 Isolated from a Traditional Korean Fermented Soybean Food

    OpenAIRE

    Jeong, Do-Won; Lee, Jong-Hoon

    2017-01-01

    ABSTRACT The complete genome sequence of Staphylococcus succinus 14BME20, isolated from a Korean fermented soybean food and selected as a possible starter culture candidate, was determined. Comparative genome analysis with S.?succinus CSM-77 from a Triassic salt mine revealed the presence of strain-specific genes for lipid degradation in strain 14BME20.

  17. Complete Genome Sequence ofStaphylococcus succinus14BME20 Isolated from a Traditional Korean Fermented Soybean Food.

    Science.gov (United States)

    Jeong, Do-Won; Lee, Jong-Hoon

    2017-03-02

    The complete genome sequence of Staphylococcus succinus 14BME20, isolated from a Korean fermented soybean food and selected as a possible starter culture candidate, was determined. Comparative genome analysis with S. succinus CSM-77 from a Triassic salt mine revealed the presence of strain-specific genes for lipid degradation in strain 14BME20. Copyright © 2017 Jeong and Lee.

  18. Complete genome sequences of four avian paramyxoviruses of serotype 10 isolated from Rockhopper Penguins on the Falkland Islands

    Science.gov (United States)

    The first complete genome sequences of four Avian paramyxovirus serotype 10 (APMV-10) isolates are described here. The viruses were isolated from Rockhopper Penguins sampled in 2007 on the Falkland Islands. All four genomes are 15,456 nucleotides in length and phylogenetic analyses show them to be c...

  19. Complete Genome Sequence of Bacillus velezensis CN026 Exhibiting Antagonistic Activity against Gram-Negative Foodborne Pathogens.

    Science.gov (United States)

    Nannan, Catherine; Gillis, Annika; Caulier, Simon; Mahillon, Jacques

    2018-01-25

    We report here the complete genome sequence of Bacillus velezensis strain CN026, a member of the B. subtilis group, which is known for its many industrial applications. The genome contains 3,995,812 bp and displays six gene clusters potentially involved in strain CN026's activity against Gram-negative foodborne pathogens. Copyright © 2018 Nannan et al.

  20. Complete Genome Sequence of Bacillus velezensis CN026 Exhibiting Antagonistic Activity against Gram-Negative Foodborne Pathogens

    OpenAIRE

    Nannan, Catherine; Gillis, Annika; Caulier, Simon; Mahillon, Jacques

    2018-01-01

    ABSTRACT We report here the complete genome sequence of Bacillus velezensis strain CN026, a member of the B. subtilis group, which is known for its many industrial applications. The genome contains 3,995,812 bp and displays six gene clusters potentially involved in strain CN026’s activity against Gram-negative foodborne pathogens.

  1. Complete genome sequence of avian paramyxovirus (APMV serotype 5 completes the analysis of nine APMV serotypes and reveals the longest APMV genome.

    Directory of Open Access Journals (Sweden)

    Arthur S Samuel

    2010-02-01

    Full Text Available Avian paramyxoviruses (APMV consist of nine known serotypes. The genomes of representatives of all APMV serotypes except APMV type 5 have recently been fully sequenced. Here, we report the complete genome sequence of the APMV-5 prototype strain budgerigar/Kunitachi/74.APMV-5 Kunitachi virus is unusual in that it lacks a virion hemagglutinin and does not grow in the allantoic cavity of embryonated chicken eggs. However, the virus grew in the amniotic cavity of embryonated chicken eggs and in twelve different established cell lines and two primary cell cultures. The genome is 17,262 nucleotides (nt long, which is the longest among members of genus Avulavirus, and encodes six non-overlapping genes in the order of 3'N-P/V/W-M-F-HN-L-5' with intergenic regions of 4-57 nt. The genome length follows the 'rule of six' and contains a 55-nt leader sequence at the 3'end and a 552 nt trailer sequence at the 5' end. The phosphoprotein (P gene contains a conserved RNA editing site and is predicted to encode P, V, and W proteins. The cleavage site of the F protein (G-K-R-K-K-R downward arrowF conforms to the cleavage site motif of the ubiquitous cellular protease furin. Consistent with this, exogenous protease was not required for virus replication in vitro. However, the intracerebral pathogenicity index of APMV-5 strain Kunitachi in one-day-old chicks was found to be zero, indicating that the virus is avirulent for chickens despite the presence of a polybasic F cleavage site.Phylogenetic analysis of the sequences of the APVM-5 genome and proteins versus those of the other APMV serotypes showed that APMV-5 is more closely related to APMV-6 than to the other APMVs. Furthermore, these comparisons provided evidence of extensive genome-wide divergence that supports the classification of the APMVs into nine separate serotypes. The structure of the F cleavage site does not appear to be a reliable indicator of virulence among APMV serotypes 2-9. The availability of

  2. Phylogenomic analysis of 11 complete African swine fever virus genome sequences

    International Nuclear Information System (INIS)

    Villiers, Etienne P. de; Gallardo, Carmina; Arias, Marisa; Silva, Melissa da; Upton, Chris; Martin, Raquel; Bishop, Richard P.

    2010-01-01

    Viral molecular epidemiology has traditionally analyzed variation in single genes. Whole genome phylogenetic analysis of 123 concatenated genes from 11 ASFV genomes, including E75, a newly sequenced virulent isolate from Spain, identified two clusters. One contained South African isolates from ticks and warthog, suggesting derivation from a sylvatic transmission cycle. The second contained isolates from West Africa and the Iberian Peninsula. Two isolates, from Kenya and Malawi, were outliers. Of the nine genomes within the clusters, seven were within p72 genotype 1. The 11 genomes sequenced comprised only 5 of the 22 p72 genotypes. Comparison of synonymous and non-synonymous mutations at the genome level identified 20 genes subject to selection pressure for diversification. A novel gene of the E75 virus evolved by the fusion of two genes within the 360 multicopy family. Comparative genomics reveals high diversity within a limited sample of the ASFV viral gene pool.

  3. Complete genome sequence of Corynebacterium pseudotuberculosis Cp31, isolated from an Egyptian buffalo

    DEFF Research Database (Denmark)

    Silva, Artur; Ramos, Rommel Thiago Jucá; Ribeiro Carneiro, Adriana

    2012-01-01

    Corynebacterium pseudotuberculosis is of major veterinary importance because it affects many animal species, causing economically significant livestock diseases and losses. Therefore, the genomic sequencing of various lines of this organism, isolated from different hosts, will aid in the developm...

  4. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Science.gov (United States)

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  5. Sequencing and analysis of the complete mitochondrial genome of Elaphe anomala (Squamata Colubridae).

    Science.gov (United States)

    Liu, Peng; Zhao, Wen-Ge

    2016-07-01

    In this study, the complete mitogenome sequence of Elaphe anomala (Squamata: Colubridae) is first determined using long PCR. It is a circular molecule of 17,164 bp in length and contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes and 2 control regions (CRI and CRII). The gene order and nucleotide composition of E. anomala are very similar with E. schrenckii. Mitochondrial genomes analyses based on the NJ method yield phylogenetic tree of 17 species snakes of Colubridae. Species E. anomala, E. schrenckii, E. bimaculata and E. davidi seemed to have formed a monophyletic group with the high bootstrap value (100%) except E. poryphyracea. Oligodon ningshaanensis and Thermophis zhaoermii are special species. The molecular data presented here provide a useful tool for setting the stage for further studies.

  6. Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Sultana Tahera

    2013-01-01

    Full Text Available Abstract Background The nematode infraorder Tylenchomorpha (Class Chromadorea includes plant parasites that are of agricultural and economic importance, as well as insect-associates and fungal feeding species. Among tylenchomorph plant parasites, members of the superfamily Tylenchoidea, such as root-knot nematodes, have great impact on agriculture. Of the five superfamilies within Tylenchomorpha, one (Aphelenchoidea includes mainly fungal-feeding species, but also some damaging plant pathogens, including certain Bursaphelenchus spp. The evolutionary relationships of tylenchoid and aphelenchoid nematodes have been disputed based on classical morphological features and molecular data. For example, similarities in the structure of the stomatostylet suggested a common evolutionary origin. In contrast, phylogenetic hypotheses based on nuclear SSU ribosomal DNA sequences have revealed paraphyly of Aphelenchoidea, with, for example, fungal-feeding Aphelenchus spp. within Tylenchomorpha, but Bursaphelenchus and Aphelenchoides spp. more closely related to infraorder Panagrolaimomorpha. We investigated phylogenetic relationships of plant-parasitic tylenchoid and aphelenchoid species in the context of other chromadorean nematodes based on comparative analysis of complete mitochondrial genome data, including two newly sequenced genomes from Bursaphelenchus xylophilus (Aphelenchoidea and Pratylenchus vulnus (Tylenchoidea. Results The complete mitochondrial genomes of B. xylophilus and P. vulnus are 14,778 bp and 21,656 bp, respectively, and identical to all other chromadorean nematode mtDNAs in that they contain 36 genes (lacking atp8 encoded in the same direction. Their mitochondrial protein-coding genes are biased toward use of amino acids encoded by T-rich codons, resulting in high A+T richness. Phylogenetic analyses of both nucleotide and amino acid sequence datasets using maximum likelihood and Bayesian methods did not support B. xylophilus as most

  7. Complete genome sequence of Paracoccus marcusii phage vB_PmaS-R3 isolated from the South China Sea

    OpenAIRE

    Xu, Yongle; Zhang, Rui; Jiao, Nianzhi

    2015-01-01

    Paracoccus spp. are isolated from both terrestrial and aquatic habitats, indicating their ubiquitous existence in the environment. Here we present the first phage isolated from this genus, vB_PmaS-R3, and its complete genome sequence. Paracoccus phage vB_PmaS-R3 is a siphophage isolated from the South China Sea. The genome sequence is 42,093?bp, with a G?+?C content of 56.36?%. Fifty-two open reading frames were predicted from the genome. The genome can mainly be divided into three regions: g...

  8. The complete mitochondrial genome sequence of the Xizang Plateau frog, Nanorana parkeri (Anura: Dicroglossidae).

    Science.gov (United States)

    Jiang, Lichun; Ruan, Qiping; Chen, Wei

    2016-09-01

    The Xizang Plateau frog (Nanorana parkeri) belongs to the family Dicroglossidae, which distributes in southern and eastern Xizang, southern-most Qinghai in China, high elevations of north-central Nepal, Himalayan Bhutan, northeastern Kashmir and India. In this study, the complete mitochondrial genome of N. parkeri was sequenced. The mitogenome was 17,837 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA genes, and a non-coding control region (CR). As in other vertebrates, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes, which are encoded on the light strand. The overall base composition of the N. parkeri is A: 27.7 % A, T: 30.1 % T, C: 26.6% and G: 15.6%. The alignment of the Nanorana species CRs exhibited high genetic variability and rich A + T content. In comparison with the mtDNA sequences typical of vertebrates, a tandem duplication of the tRNA(Met) gene and a rearrangement of the tRNA(Thr), tRNA(Pro) and tRNA(Leu) (CUN) genes were found. The complete mitogenome of N. parkeri can provided an important data for the studies on phylogenetic relationship and population genetics to further explore the taxonomic status of this species.

  9. Complete nucleotide sequence and genome organization of a Cactus virus X strain from Hylocereus undatus (Cactaceae).

    Science.gov (United States)

    Liou, M R; Chen, Y R; Liou, R F

    2004-05-01

    The complete nucleotide sequence of a strain of Cactus virus X (CVX-Hu) isolated from Hylocereus undatus (Cactaceae) has been determined. Excluding the poly(A) tail, the sequence is 6614 nucleotides in length and contains seven open reading frames (ORFs). The genome organization of CVX is similar to that of other potexviruses. ORF1 encodes the putative viral replicase with conserved methyltransferase, helicase, and polymerase motifs. Within ORF1, two other ORFs were located separately in the +2 reading frame, we call these ORF6 and ORF7. ORF2, 3, and 4, which form the "triple gene block" characteristic of the potexviruses, encode proteins with molecular mass of 25, 12, and 7 KDa, respectively. ORF5 encodes the coat protein with an estimated molecular mass of 24 KDa. Sequence analysis indicated that proteins encoded by ORF1-5 display certain degree of homology to the corresponding proteins of other potexviruses. Putative product of ORF6, however, shows no significant similarity to those of other potexviruses. Phylogenetic analyses based on the replicase (the methyltransferase, helicase, and polymerase domains) and coat protein demonstrated a closer relationship of CVX with Bamboo mosaic virus, Cassava common mosaic virus, Foxtail mosaic virus, Papaya mosaic virus, and Plantago asiatica mosaic virus.

  10. The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, iain J.; Dharmarajan, Lakshmi; Rodriguez, Jason; Hooper, Sean; Porat, Iris; Ulrich, Luke E.; Elkins, James G.; Mavromatis, Kostas; Sun, Hui; Land, Miriam; Lapidus, Alla; Lucas, Susan; Barry, Kerrie; Huber, Harald; Zhulin, Igor B.; Whitman, William B.; Mukhopadhyay, Biswarup; Woese, Carl; Bristow, James; Kyrpides, Nikos

    2008-09-05

    Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes. The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced - Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes. The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.

  11. The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota

    Directory of Open Access Journals (Sweden)

    Barry Kerrie

    2009-04-01

    Full Text Available Abstract Background Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes. Results The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced – Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes. Conclusion The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.

  12. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp cremoris MG1363

    NARCIS (Netherlands)

    Wegmann, Udo; O'Connell-Motherwy, Mary; Zomer, Aldert; Buist, Girbe; Shearman, Claire; Canchaya, Carlos; Ventura, Marco; Goesmann, Alexander; Gasson, Michael J.; Kuipers, Oscar P.; van Sinderen, Douwe; Kok, Jan

    Lactococcus lactis is of great importance for the nutrition of hundreds of millions of people worldwide. This paper describes the genome sequence of Lactococcus lactis subsp. cremoris MG1363, the lactococcal strain most intensively studied throughout the world. The 2,529,478-bp genome contains 81

  13. The complete nucleotide sequence of the mitochondrial genome of Bactrocera minax (Diptera: Tephritidae).

    Science.gov (United States)

    Zhang, Bin; Nardi, Francesco; Hull-Sanders, Helen; Wan, Xuanwu; Liu, Yinghong

    2014-01-01

    The complete 16,043 bp mitochondrial genome (mitogenome) of Bactrocera minax (Diptera: Tephritidae) has been sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned above, although it contains the lowest genome-wide A+T content (67.3%). Four short intergenic spacers with a high degree of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear counterparts in the control regions (CRs). Correlation analysis among these ten tephritid species revealed close positive correlation between the A+T content of zero-fold degenerate sites (P0FD), the ratio of nucleotide substitution frequency at P0FD sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites) and amino acid sequence distance (ASD) were found. Further, significant positive correlation was observed between the A+T content of four-fold degenerate sites (P4FD) and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites; however, we found significant negative correlation between ASD and the A+T content of P4FD, and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites. A higher nucleotide substitution frequency at non-synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect mitogenome. A poly(T) stretch at the 5' end of the CR followed by a [TA(A)]n-like stretch was also found. In addition, a highly conserved G+A-rich sequence block was observed in front of the

  14. The complete nucleotide sequence of the mitochondrial genome of Bactrocera minax (Diptera: Tephritidae.

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    Full Text Available The complete 16,043 bp mitochondrial genome (mitogenome of Bactrocera minax (Diptera: Tephritidae has been sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned above, although it contains the lowest genome-wide A+T content (67.3%. Four short intergenic spacers with a high degree of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear counterparts in the control regions (CRs. Correlation analysis among these ten tephritid species revealed close positive correlation between the A+T content of zero-fold degenerate sites (P0FD, the ratio of nucleotide substitution frequency at P0FD sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites and amino acid sequence distance (ASD were found. Further, significant positive correlation was observed between the A+T content of four-fold degenerate sites (P4FD and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites; however, we found significant negative correlation between ASD and the A+T content of P4FD, and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites. A higher nucleotide substitution frequency at non-synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect mitogenome. A poly(T stretch at the 5' end of the CR followed by a [TA(A]n-like stretch was also found. In addition, a highly conserved G+A-rich sequence block was observed in front

  15. Complete genome sequence of a banana bract mosaic virus isolate infecting the French plantain cv. Nendran in India.

    Science.gov (United States)

    Balasubramanian, V; Selvarajan, R

    2012-02-01

    The first complete genome sequence of an Indian isolate (TRY) of Banana bract mosaic virus (BBrMV) was determined following virus RNA extraction from the French plantain cv. Nendran (AAB). The complete genome was 9711 nucleotides excluding the poly(A) tail and had a genome organization similar to that of a Philippine (PHI) isolate characterized earlier. When compared to BBrMV-PHI, the complete genome sequence of BBrMV-TRY was 94% identical at the nucleotide level and its ten mature proteins had amino acid sequence identities ranging from 88 to 98%. Phylogenetic analysis suggests that the BBrMV-TRY isolate is closely related to the BBrMV-PHI isolate.

  16. Complete genome sequence of a nonculturable Methanococcus maripaludis strain extracted in a metagenomic survey of petroleum reservoir fluids.

    Science.gov (United States)

    Wang, Xiaoyi; Greenfield, Paul; Li, Dongmei; Hendry, Philip; Volk, Herbert; Sutherland, Tara D

    2011-10-01

    Extraction of genome sequences from metagenomic data is crucial for reconstructing the metabolism of microbial communities that cannot be mimicked in the laboratory. A complete Methanococcus maripaludis genome was generated from metagenomic data derived from a thermophilic subsurface oil reservoir. M. maripaludis is a hydrogenotrophic methanogenic species that is common in mesophilic saline environments. Comparison of the genome from the thermophilic, subsurface environment with the genome of the type species will provide insight into the adaptation of a methanogenic genome to an oil reservoir environment.

  17. Complete Mitochondrial Genome Sequence ofAethina tumida(Coleoptera: Nitidulidae), a Beekeeping Pest.

    Science.gov (United States)

    Duquesne, Véronique; Delcont, Aurélie; Huleux, Anthéa; Beven, Véronique; Touzain, Fabrice; Ribière-Chabert, Magali

    2017-11-02

    We report here the full mitochondrial genome sequence of Aethina tumida , a Nitidulidae species beetle, that is a pest of bee hives. The obtained sequence is 16,576 bp in length and contains 13 protein-coding genes, 2 rRNA genes, and 22 tRNAs. Copyright © 2017 Duquesne et al.

  18. Complete Genome Sequence of the Avian-Pathogenic Escherichia coli Strain APEC O18

    OpenAIRE

    Nicholson, Bryon A.; Wannemuehler, Yvonne M.; Logue, Catherine M.; Li, Ganwu; Nolan, Lisa K.

    2016-01-01

    Avian-pathogenic Escherichia coli (APEC) is the causative agent of colibacillosis, a disease that affects all facets of poultry production worldwide, resulting in multimillion dollar losses annually. Here, we report the genome sequence of an APEC O18 sequence type 95 (ST95) strain associated with disease in a chicken.

  19. Complete genome sequence of a street rabies virus isolated from a dog in Nigeria.

    Science.gov (United States)

    Zhou, Ming; Zhou, Zutao; Kia, Grace S N; Gnanadurai, Clement W; Leyson, Christina M; Umoh, Jarlath U; Kwaga, Jacob P; Kazeem, Haruna M; Fu, Zhen F

    2013-01-01

    A canine rabies virus (RABV) was isolated from a trade dog in Nigeria. Its entire genome was sequenced and found to be closely related to canine RABVs circulating in Africa. Sequence comparison indicates that the virus is closely related to the Africa 2 RABV lineage. The virus is now termed DRV-NG11.

  20. A first report and complete genome sequence of alfalfa enamovirus from Sudan

    Science.gov (United States)

    A full genome sequence of a viral pathogen, provisionally named alfalfa enamovirus 2 (AEV-2), was reconstructed from short reads obtained by Illumina RNA sequencing of alfalfa sample originating from Sudan. Ambiguous nucleotides in the resultant consensus assembly and identity of the predicted virus...

  1. A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome.

    Science.gov (United States)

    Fang, Yongjun; Wu, Hao; Zhang, Tongwu; Yang, Meng; Yin, Yuxin; Pan, Linlin; Yu, Xiaoguang; Zhang, Xiaowei; Hu, Songnian; Al-Mssallem, Ibrahim S; Yu, Jun

    2012-01-01

    Based on next-generation sequencing data, we assembled the mitochondrial (mt) genome of date palm (Phoenix dactylifera L.) into a circular molecule of 715,001 bp in length. The mt genome of P. dactylifera encodes 38 proteins, 30 tRNAs, and 3 ribosomal RNAs, which constitute a gene content of 6.5% (46,770 bp) over the full length. The rest, 93.5% of the genome sequence, is comprised of cp (chloroplast)-derived (10.3% with respect to the whole genome length) and non-coding sequences. In the non-coding regions, there are 0.33% tandem and 2.3% long repeats. Our transcriptomic data from eight tissues (root, seed, bud, fruit, green leaf, yellow leaf, female flower, and male flower) showed higher gene expression levels in male flower, root, bud, and female flower, as compared to four other tissues. We identified 120 potential SNPs among three date palm cultivars (Khalas, Fahal, and Sukry), and successfully found seven SNPs in the coding sequences. A phylogenetic analysis, based on 22 conserved genes of 15 representative plant mitochondria, showed that P. dactylifera positions at the root of all sequenced monocot mt genomes. In addition, consistent with previous discoveries, there are three co-transcribed gene clusters-18S-5S rRNA, rps3-rpl16 and nad3-rps12-in P. dactylifera, which are highly conserved among all known mitochondrial genomes of angiosperms.

  2. A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L. mitochondrial genome.

    Directory of Open Access Journals (Sweden)

    Yongjun Fang

    Full Text Available Based on next-generation sequencing data, we assembled the mitochondrial (mt genome of date palm (Phoenix dactylifera L. into a circular molecule of 715,001 bp in length. The mt genome of P. dactylifera encodes 38 proteins, 30 tRNAs, and 3 ribosomal RNAs, which constitute a gene content of 6.5% (46,770 bp over the full length. The rest, 93.5% of the genome sequence, is comprised of cp (chloroplast-derived (10.3% with respect to the whole genome length and non-coding sequences. In the non-coding regions, there are 0.33% tandem and 2.3% long repeats. Our transcriptomic data from eight tissues (root, seed, bud, fruit, green leaf, yellow leaf, female flower, and male flower showed higher gene expression levels in male flower, root, bud, and female flower, as compared to four other tissues. We identified 120 potential SNPs among three date palm cultivars (Khalas, Fahal, and Sukry, and successfully found seven SNPs in the coding sequences. A phylogenetic analysis, based on 22 conserved genes of 15 representative plant mitochondria, showed that P. dactylifera positions at the root of all sequenced monocot mt genomes. In addition, consistent with previous discoveries, there are three co-transcribed gene clusters-18S-5S rRNA, rps3-rpl16 and nad3-rps12-in P. dactylifera, which are highly conserved among all known mitochondrial genomes of angiosperms.

  3. Complete genome sequence of virulence-enhancing Siphophage VHS1 from Vibrio harveyi.

    Science.gov (United States)

    Khemayan, Krit; Prachumwat, Anuphap; Sonthayanon, Burachai; Intaraprasong, Aungkul; Sriurairatana, Siriporn; Flegel, Timothy W

    2012-04-01

    Vibrio harveyi siphophage 1 (VHS1) is a tailed phage with an icosahedral head of approximately 66 nm in diameter and an unornamented, flexible tail of approximately 153 nm in length. When Vibrio harveyi 1114GL is lysogenized with VHS1, its virulence for the black tiger shrimp (Penaeus monodon) increases by more than 100 times, and this coincides with production of a toxin(s) associated with shrimp hemocyte agglutination. Curiously, the lysogen does not show increased virulence for the whiteleg shrimp (Penaeus [Litopenaeus] vannamei). Here we present and annotate the complete, circular genome of VHS1 (81,509 kbp; GenBank accession number JF713456). By software analysis, the genome contains 125 putative open reading frames (ORFs), all of which appear to be located on the same DNA strand, similar to the case for many other bacteriophages. Most of the putative ORFs show no significant homology to known sequences in GenBank. Notable exceptions are ORFs for a putative DNA polymerase and putative phage structural proteins, including a portal protein, a phage tail tape measure protein, and a phage head protein. The last protein was identified as a component of the species-specific toxin mixture described above as being associated with agglutination of hemocytes from P. monodon.

  4. [Sequencing and analysis of the complete mitochondrial genome of Podoces hendersoni (Ave, Corvidae)].

    Science.gov (United States)

    Ke, Yang; Huang, Yuan; Lei, Fu-Min

    2010-09-01

    The complete mitochondrial genome of a China endemic bird, Podoces hendersoni, was sequenced using La-PCR and conserved primer walking approaches. The mtDNA seqnence is 16 867 bp in length and deposited in GenBank with accession number GU592504. The mitochondrial genomic organization of P. hendersoni is the same with that in chicken, which contains 13 protein coding genes (PCGs), 22 tRNA, 2 rRNA, and a control region. Except for COI gene, which uses GTG as the initiation codon, all other 12 PCGs of the P. hendersoni mtDNA start with the typical ATG codon. Codons TAA, AGG, and AGA were used in 11 PCGs as usual termination codons; however, the COIII and ND4 had incomplete termination codon T. The secondary structures of 20 tRNAs formed typical cloverleaf, except for tRNASer (AGY) that had an absence of the DHU arm and tRNALeu (CUN) in which anticodon-loop consisted of 9 bases, rather than the standard 7 bases. The secondary structures of rRNA were predicted. There are 4 domains, 43 helices structures in 12S rRNA, and 6 domains, 55 helices structures in 16S rRNA. Besides, F-box, D-box, C-box, B-box, Bird similarity-box and CSB1-box, which were found in the control region of other birds, also existed in the P. hendersoni.

  5. An efficient and high fidelity method for amplification, cloning and sequencing of complete tospovirus genomic RNA segments

    Science.gov (United States)

    Amplification and sequencing of the complete M- and S-RNA segments of Tomato spotted wilt virus and Impatiens necrotic spot virus as a single fragment is useful for whole genome sequencing of tospoviruses co-infecting a single host plant. It avoids issues associated with overlapping amplicon-based ...

  6. The complete genome sequence of Plodia interpunctella granulovirus: Discovery of an unusual inhibitor-of-apoptosis gene

    Science.gov (United States)

    The Indianmeal moth, Plodia interpunctella (Lepidoptera: Pyralidae), is a common pest of stored goods with a worldwide distribution. The complete genome sequence for a larval pathogen of this moth, the baculovirus Plodia interpunctella granulovirus (PiGV), was determined by next-generation sequenci...

  7. Complete Genome Sequence of Bovine Pestivirus Strain PG-2, a Second Member of the Tentative Pestivirus Species Giraffe

    OpenAIRE

    Becher, Paul; Fischer, Nicole; Grundhoff, Adam; Stalder, Hanspeter; Schweizer, Matthias; Postel, Alexander

    2014-01-01

    We report the complete genome sequence of bovine pestivirus strain PG-2. The sequence data from this virus showed that PG-2 is closely related to the giraffe pestivirus strain H138. PG-2 and H138 belong to one pestivirus species that should be considered an approved member of the genus Pestivirus.

  8. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart.

    Science.gov (United States)

    Strouhal, Michal; Mikalová, Lenka; Havlíčková, Pavla; Tenti, Paolo; Čejková, Darina; Rychlík, Ivan; Bruisten, Sylvia; Šmajs, David

    2017-09-01

    Treponema pallidum subsp. pertenue (TPE) is the causative agent of yaws, a multi-stage disease, endemic in tropical regions of Africa, Asia, Oceania, and South America. To date, four TPE strains have been completely sequenced including three TPE strains of human origin (Samoa D, CDC-2, and Gauthier) and one TPE strain (Fribourg-Blanc) isolated from a baboon. All TPE strains are highly similar to T. pallidum subsp. pallidum (TPA) strains. The mutation rate in syphilis and related treponemes has not been experimentally determined yet. Complete genomes of two TPE strains, CDC 2575 and Ghana-051, that infected patients in Ghana and were isolated in 1980 and 1988, respectively, were sequenced and analyzed. Both strains had identical consensus genome nucleotide sequences raising the question whether TPE CDC 2575 and Ghana-051 represent two different strains. Several lines of evidence support the fact that both strains represent independent samples including regions showing intrastrain heterogeneity (13 and 5 intrastrain heterogeneous sites in TPE Ghana-051 and TPE CDC 2575, respectively). Four of these heterogeneous sites were found in both genomes but the frequency of alternative alleles differed. The identical consensus genome sequences were used to estimate the upper limit of the yaws treponeme evolution rate, which was 4.1 x 10-10 nucleotide changes per site per generation. The estimated upper limit for the mutation rate of TPE was slightly lower than the mutation rate of E. coli, which was determined during a long-term experiment. Given the known diversity between TPA and TPE genomes and the assumption that both TPA and TPE have a similar mutation rate, the most recent common ancestor of syphilis and yaws treponemes appears to be more than ten thousand years old and likely even older.

  9. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart.

    Directory of Open Access Journals (Sweden)

    Michal Strouhal

    2017-09-01

    Full Text Available Treponema pallidum subsp. pertenue (TPE is the causative agent of yaws, a multi-stage disease, endemic in tropical regions of Africa, Asia, Oceania, and South America. To date, four TPE strains have been completely sequenced including three TPE strains of human origin (Samoa D, CDC-2, and Gauthier and one TPE strain (Fribourg-Blanc isolated from a baboon. All TPE strains are highly similar to T. pallidum subsp. pallidum (TPA strains. The mutation rate in syphilis and related treponemes has not been experimentally determined yet.Complete genomes of two TPE strains, CDC 2575 and Ghana-051, that infected patients in Ghana and were isolated in 1980 and 1988, respectively, were sequenced and analyzed. Both strains had identical consensus genome nucleotide sequences raising the question whether TPE CDC 2575 and Ghana-051 represent two different strains. Several lines of evidence support the fact that both strains represent independent samples including regions showing intrastrain heterogeneity (13 and 5 intrastrain heterogeneous sites in TPE Ghana-051 and TPE CDC 2575, respectively. Four of these heterogeneous sites were found in both genomes but the frequency of alternative alleles differed. The identical consensus genome sequences were used to estimate the upper limit of the yaws treponeme evolution rate, which was 4.1 x 10-10 nucleotide changes per site per generation.The estimated upper limit for the mutation rate of TPE was slightly lower than the mutation rate of E. coli, which was determined during a long-term experiment. Given the known diversity between TPA and TPE genomes and the assumption that both TPA and TPE have a similar mutation rate, the most recent common ancestor of syphilis and yaws treponemes appears to be more than ten thousand years old and likely even older.

  10. Complete genome sequence of Colocasia bobone disease-associated virus, a putative cytorhabdovirus infecting taro.

    Science.gov (United States)

    Higgins, Colleen M; Bejerman, Nicolas; Li, Ming; James, Anthony P; Dietzgen, Ralf G; Pearson, Michael N; Revill, Peter A; Harding, Robert M

    2016-03-01

    We report the first genome sequence of a Colocasia bobone disease-associated virus (CBDaV) derived from bobone-affected taro [Colocasia esculenta L. Schott] from Solomon Islands. The negative-strand RNA genome is 12,193 nt long, with six major open reading frames (ORFs) with the arrangement 3'-N-P-P3-M-G-L-5'. Typical of all rhabdoviruses, the 3' leader and 5' trailer sequences show complementarity to each other. Phylogenetic analysis indicated that CBDaV is a member of the genus Cytorhabdovirus, supporting previous reports of virus particles within the cytoplasm of bobone-infected taro cells. The availability of the CBDaV genome sequence now makes it possible to assess the role of this virus in bobone, and possibly alomae disease of taro and confirm that this sequence is that of Colocasia bobone disease virus (CBDV).

  11. Complete genome sequence of the frog pathogen Mycobacterium ulcerans ecovar Liflandii.

    Science.gov (United States)

    Tobias, Nicholas J; Doig, Kenneth D; Medema, Marnix H; Chen, Honglei; Haring, Volker; Moore, Robert; Seemann, Torsten; Stinear, Timothy P

    2013-02-01

    In 2004, a previously undiscovered mycobacterium resembling Mycobacterium ulcerans (the agent of Buruli ulcer) was reported in an outbreak of a lethal mycobacteriosis in a laboratory colony of the African clawed frog Xenopus tropicalis. This mycobacterium makes mycolactone and is one of several strains of M. ulcerans-like mycolactone-producing mycobacteria recovered from ectotherms around the world. Here, we describe the complete 6,399,543-bp genome of this frog pathogen (previously unofficially named "Mycobacterium liflandii"), and we show that it has undergone an intermediate degree of reductive evolution between the M. ulcerans Agy99 strain and the fish pathogen Mycobacterium marinum M strain. Like M. ulcerans Agy99, it has the pMUM mycolactone plasmid, over 200 chromosomal copies of the insertion sequence IS2404, and a high proportion of pseudogenes. However, M. liflandii has a larger genome that is closer in length, sequence, and architecture to M. marinum M than to M. ulcerans Agy99, suggesting that the M. ulcerans Agy99 strain has undergone accelerated evolution. Scrutiny of the genes specifically lost suggests that M. liflandii is a tryptophan, tyrosine, and phenylalanine auxotroph. A once-extensive M. marinum-like secondary metabolome has also been diminished through reductive evolution. Our analysis shows that M. liflandii, like M. ulcerans Agy99, has the characteristics of a niche-adapted mycobacterium but also has several distinctive features in important metabolic pathways that suggest that it is responding to different environmental pressures, supporting earlier proposals that it could be considered an M. ulcerans ecotype, hence the name M. ulcerans ecovar Liflandii.

  12. Prevalence, complete genome sequencing and phylogenetic analysis of porcine deltacoronavirus in South Korea, 2014-2016.

    Science.gov (United States)

    Jang, G; Lee, K-K; Kim, S-H; Lee, C

    2017-10-01

    Porcine deltacoronavirus (PDCoV) is a newly emerged enterotropic swine coronavirus that causes enteritis and diarrhoea in piglets. Here, a nested reverse transcription (RT)-PCR approach for the detection of PDCoV was developed to identify and characterize aetiologic agent(s) associated with diarrhoeal diseases in piglets in South Korea. A PCR-based method was applied to investigate the presence of PDCoV in 683 diarrhoeic samples collected from 449 commercial pig farms in South Korea from January 2014 to December 2016. The molecular-based survey indicated a relatively high prevalence of PDCoV (19.03%) in South Korea. Among those, the monoinfection of PDCoV (9.66%) and co-infection of PDCoV (6.30%) with porcine epidemic diarrhoea (PEDV) were predominant in diarrhoeal samples. The full-length genomes or the complete spike genes of the most recent strains identified in 2016 (KNU16-07, KNU16-08 and KNU16-11) were sequenced and analysed to characterize PDCoV currently prevalent in South Korea. We found a single insertion-deletion signature and dozens of genetic changes in the spike (S) genes of the KNU16 isolates. Phylogenetic analysis based on the entire genome and spike protein sequences of these strains indicated that they are most closely related to other Korean isolates grouped with the US strains. However, Korean PDCoV strains formed different branches within the same cluster, implying continuous evolution in the field. Our data will advance the understanding of the molecular epidemiology and evolutionary characteristics of PDCoV circulating in South Korea. © 2017 Blackwell Verlag GmbH.

  13. Surveillance, isolation and complete genome sequence of bovine parainfluenza virus type 3 in Egyptian cattle

    Directory of Open Access Journals (Sweden)

    Nader M. Sobhy

    2017-06-01

    Full Text Available Parainfluenza virus type 3 (PIV-3 can infect a wide variety of mammals including humans, domestic animals, and wild animals. In the present study, bovine parainfluenza virus type 3 (BPIV-3 was isolated from nasal swabs of Egyptian cattle presenting with clinical signs of mild pneumonia. The virus was isolated in Madin-Darby bovine kidney (MDBK cells and confirmed by reverse transcription-polymerase chain reaction (RT-PCR. The complete genome of Egyptian BPIV-3 strain was sequenced by using next generation (Illumina sequencing. The new isolate classified with genotype A of BPIV-3 and was closely related to the Chinese NM09 strain (JQ063064. Subsequently in 2015–16, a molecular surveillance study was undertaken by collecting and testing samples from cattle and buffaloes with respiratory tract infections. The survey revealed a higher rate of BPIV-3 infection in cattle than in buffaloes. The infection was inversely proportional to the age of the animals and to warm weather. This report should form a basis for further molecular studies on animal viruses in Egypt.

  14. Complete genome sequence of a velogenic Newcastle disease virus isolated in Mexico.

    Science.gov (United States)

    Absalón, Angel E; Mariano-Matías, Andrea; Vásquez-Márquez, Alejandra; Morales-Garzón, Andrés; Cortés-Espinosa, Diana V; Ortega-García, Roberto; Lucio-Decanini, Eduardo

    2012-10-01

    In Mexico, the number of cases of the highly virulent Newcastle disease virus is increasing. In 2005, an outbreak of Newcastle disease occurred on an egg laying hen farm in the state of Puebla despite vaccination with the LaSota strain. Farmers experienced a major drop in egg production as a consequence of a field challenge virus. In this study, we characterize the virus, APMV1/chicken/Mexico/P05/2005, responsible for the outbreak. The virus is categorized as a velogenic virus with an intracranial pathogenicity index of 1.99 and a chicken embryo mean death time of 36 h. The complete genome length of the virus was sequenced as consisting of 15,192 bp. In addition, phylogenetic analysis classified the virus as a member of the class II, genotype V. The highly pathogenic nature of the virus has been linked to the amino acid sequence at the fusion protein cleavage site, which contains multiple basic amino acids (RRQKR↓F).

  15. A Bac Library and Paired-PCR Approach to Mapping and Completing the Genome Sequence of Sulfolobus Solfataricus P2

    DEFF Research Database (Denmark)

    She, Qunxin; Confalonieri, F.; Zivanovic, Y.

    2000-01-01

    The original strategy used in the Sulfolobus solfatnricus genome project was to sequence non overlapping, or minimally overlapping, cosmid or lambda inserts without constructing a physical map. However, after only about two thirds of the genome sequence was completed, this approach became counter...... selected for walking over small gaps and preparing template libraries for larger ones. It is concluded that an optimal strategy for sequencing microorganism genomes involves construction of a high-resolution physical map by BAC end analyses, PCR screening and paired-PCR chromosome walking after about half......-productive because there was a high sequence bias in the cosmid and lambda libraries. Therefore, a new approach was devised for linking the sequenced regions which may be generally applicable. BAC libraries were constructed and terminal sequences of the clones were determined and used for both end mapping and PCR...

  16. Complete Genome Sequence of the Probiotic Lactic Acid Bacterium Lactobacillus Rhamnosus

    Directory of Open Access Journals (Sweden)

    Samat Kozhakhmetov

    2014-01-01

    Full Text Available Introduction: Lactobacilli are a bacteria commonly found in the gastrointestinal tract. Some species of this genus have probiotic properties. The most common of these is Lactobacillus rhamnosus, a microoganism, generally regarded as safe (GRAS. It is also a homofermentative L-(+-lactic acid producer. The genus Lactobacillus is characterized by an extraordinary degree of the phenotypic and genotypic diversity. However, the studies of the genus were conducted mostly with the unequally distributed, non-random choice of species for sequencing; thus, there is only one representative genome from the Lactobacillus rhamnosus clade available to date. The aim of this study was to characterize the genome sequencing of selected strains of Lactobacilli. Methods: 109 samples were isolated from national domestic dairy products in the laboratory of Center for life sciences. After screaning isolates for probiotic properties, a highly active Lactobacillus spp strain was chosen. Genomic DNA was extracted according to the manufacturing protocol (Wizard® Genomic DNA Purification Kit. The Lactobacillus rhamnosus strain was identified as the highly active Lactobacillus strain accoridng to its morphological, cultural, physiological, and biochemical properties, and a genotypic analysis. Results: The genome of Lactobacillus rhamnosus was sequenced using the Roche 454 GS FLX (454 GS FLX platforms. The initial draft assembly was prepared from 14 large contigs (20 all contigs by the Newbler gsAssembler 2.3 (454 Life Sciences, Branford, CT. Conclusion: A full genome-sequencing of selected strains of lactic acid bacteria was made during the study.

  17. The phylogeny of Mediterranean tortoises and their close relativesbased on complete mitochondrial genome sequences from museumspecimens

    Energy Technology Data Exchange (ETDEWEB)

    Parham, James F.; Macey, J. Robert; Papenfuss, Theodore J.; Feldman, Chris R.; Turkozan, Oguz; Polymeni, Rosa; Boore, Jeffrey

    2005-04-29

    As part of an ongoing project to generate a mitochondrial database for terrestrial tortoises based on museum specimens, the complete mitochondrial genome sequences of 10 species and a {approx}14 kb sequence from an eleventh species are reported. The sampling of the present study emphasizes Mediterranean tortoises (genus Testudo and their close relatives). Our new sequences are aligned, along with those of two testudinoid turtles from GenBank, Chrysemys picta and Mauremys reevesii, yielding an alignment of 14,858 positions, of which 3,238 are parsimony informative. We develop a phylogenetic taxonomy for Testudo and related species based on well-supported, diagnosable clades. Several well-supported nodes are recovered, including the monophyly of a restricted Testudo, T. kleinmanni + T. marginata (the Chersus clade), and the placement of the enigmatic African pancake tortoise (Malacochersustornieri) within the predominantly Palearctic greater Testudo group (Testudona tax. nov.). Despite the large amount of sequence reported, there is low statistical support for some nodes within Testudona and Sowe do not propose names for those groups. A preliminary and conservative estimation of divergence times implies a late Miocene diversification for the testudonan clade (6-12 million years ago), matching their first appearance in the fossil record. The multi-continental distribution of testudonan turtles can be explained by the establishment of permanent connections between Europe, Africa, and Asia at this time. The arrival of testudonan turtles to Africa occurred after one or more initial tortoise invasions gave rise to the diverse (>25 species) 'Geochelone complex.'Two unusual genomic features are reported for the mtDNA of one tortoise, M. tornieri: (1) nad4 has a shift of reading frame that we suggest is resolved by translational frameshifting of the mRNA on the ribosome during protein synthesis and (2) there are two copies of the control region and trnF, with the

  18. Complete Genome Sequence of Bacillus paralicheniformis 14DA11, Exhibiting Resistance to Clindamycin and Erythromycin

    OpenAIRE

    Lee, Jong-Hoon; Jeong, Do-Won

    2017-01-01

    ABSTRACT Bacillus paralicheniformis 14DA11, exhibiting resistance to clindamycin and erythromycin, was isolated from a Korean fermented soybean food product. The complete genome of strain 14DA11 includes genes that potentially contribute to the antibiotic resistance.

  19. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-12-01

    Full Text Available Abstract Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas.

  20. Complete Genome Sequence of Mulberry Vein Banding Associated Virus, a New Tospovirus Infecting Mulberry.

    Directory of Open Access Journals (Sweden)

    Jiaorong Meng

    Full Text Available Mulberry vein banding associated virus (MVBaV that infects mulberry plants with typical vein banding symptoms had been identified as a tentative species of the genus Tospovirus based on the homology of N gene sequence to those of tospoviruses. In this study, the complete sequence of the tripartite RNA genome of MVBaV was determined and analyzed. The L RNA has 8905 nucleotides (nt and encodes the putative RNA-dependent RNA polymerase (RdRp of 2877 aa amino acids (aa in the viral complementary (vc strand. The RdRp of MVBaV shares the highest aa sequence identity (85.9% with that of Watermelon silver mottle virus (WSMoV, and contains conserved motifs shared with those of the species of the genus Tospovirus. The M RNA contains 4731 nt and codes in ambisense arrangement for the NSm protein of 309 aa in the sense strand and the Gn/Gc glycoprotein precursor (GP of 1,124 aa in the vc strand. The NSm and GP of MVBaV share the highest aa sequence identities with those of Capsicum chlorosis virus (CaCV and Groundnut bud necrosis virus (GBNV (83.2% and 84.3%, respectively. The S RNA is 3294 nt in length and contains two open reading frames (ORFs in an ambisense coding strategy, encoding a 439-aa non-structural protein (NSs and the 277-aa nucleocapsid protein (N, respectively. The NSs and N also share the highest aa sequence identity (71.1% and 74.4%, respectively with those of CaCV. Phylogenetic analysis of the RdRp, NSm, GP, NSs, and N proteins showed that MVBaV is most closely related to CaCV and GBNV and that these proteins cluster with those of the WSMoV serogroup, and that MVBaV seems to be a species bridging the two subgroups within the WSMoV serogroup of tospoviruses in evolutionary aspect, suggesting that MVBaV represents a distinct tospovirus. Analysis of S RNA sequence uncovered the highly conserved 5'-/3'-ends and the coding regions, and the variable region of IGR with divergent patterns among MVBaV isolates.

  1. Complete mitochondrial genome sequence of the Sichuan digging frog Kaloula rugifera (Anura: Microhylidae).

    Science.gov (United States)

    Jiang, Lichun; Zhao, Li; Shuai, Xiaoling; Ren, Zhilin; Shen, Han; Liu, Fuchun; Ruan, Qiping; Chen, Wei

    2017-03-01

    The Sichuan Digging Frog (Kaloula rugifera) belongs to the family Dicroglossidae, which is endemic to northeastern Sichuan and southernmost Gansu provinces, in southwestern China. In this study, the complete mitochondrial genome of K. rugifera was sequenced. The mitogenome was 17 074 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and a non-coding control region. As in other vertebrates, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes which are encoded on the light strand. The overall base composition of the K. rugifera is 29.7% A, 30.3% T, 25.8% C, and 14.2% G. The alignment of the Kaloula species control regions exhibited high genetic variability and rich A + T content. Phylogenetic tree demonstrated that K. rugifera was clustered together with K. borealis and K. verrucosa and they had a close relationship with each other. The complete mitogenome of K. rugifera can provide an important data for the studies on phylogenetic relationship to further explore the taxonomic status of Kaloula species.

  2. The complete mitochondrial genome sequence of the Dark-spotted frog Pelophylax nigromaculatus (Amphibia, Anura, Ranidae).

    Science.gov (United States)

    Jiang, Lichun; Zhao, Li; Liu, Yabin; Leng, Zheng; Zhao, Liping; Ruan, Qiping

    2017-03-01

    The dark-spotted frog (Pelophylax nigromaculatus) belongs to Ranidae. This species is known from the Russian Far East, central, northern and north-eastern China, the Democratic People's Republic of Korea, the Republic of Korea, and Japan. In this study, the complete mitochondrial genome of P. nigromaculatus was sequenced. The mitogenome was 17 567 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and a non-coding control region. As in other vertebrates, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes which are encoded on the light strand. The overall base composition of the P. nigromaculatus is 29.2% A, 27.4% T, 28.4% C, and 15.0% G. Phylogenetic analysis showed P. nigromaculatus was closely related to P. plancyi and P. chosenicus. The complete mitogenome of P. nigromaculatus can provide important data for the studies on phylogenetic relationship and population genetics to further explore the taxonomic status of this species.

  3. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...... on transcriptional evidence. Analysis of repetitive sequences suggests that they are underrepresented in the reference assembly, reflecting an enrichment of gene-rich regions in the current assembly. Characterization of Lotus natural variation by resequencing of L. japonicus accessions and diploid Lotus species...... is currently ongoing, facilitated by the MG20 reference sequence...

  4. Authentication of Zanthoxylum Species Based on Integrated Analysis of Complete Chloroplast Genome Sequences and Metabolite Profiles.

    Science.gov (United States)

    Lee, Hyeon Ju; Koo, Hyun Jo; Lee, Jonghoon; Lee, Sang-Choon; Lee, Dong Young; Giang, Vo Ngoc Linh; Kim, Minjung; Shim, Hyeonah; Park, Jee Young; Yoo, Ki-Oug; Sung, Sang Hyun; Yang, Tae-Jin

    2017-11-29

    We performed chloroplast genome sequencing and comparative analysis of two Rutaceae species, Zanthoxylum schinifolium (Korean pepper tree) and Z. piperitum (Japanese pepper tree), which are medicinal and culinary crops in Asia. We identified more than 837 single nucleotide polymorphisms and 103 insertions/deletions (InDels) based on a comparison of the two chloroplast genomes and developed seven DNA markers derived from five tandem repeats and two InDel variations that discriminated between Korean Zanthoxylum species. Metabolite profile analysis pointed to three metabolic groups, one with Korean Z. piperitum samples, one with Korean Z. schinifolium samples, and the last containing all the tested Chinese Zanthoxylum species samples, which are considered to be Z. bungeanum based on our results. Two markers were capable of distinguishing among these three groups. The chloroplast genome sequences identified in this study represent a valuable genomics resource for exploring diversity in Rutaceae, and the molecular markers will be useful for authenticating dried Zanthoxylum berries in the marketplace.

  5. Complete Genome Sequence of Mannheimia haemolytica Strain Mh10517, Isolated from Sheep in South Africa.

    Science.gov (United States)

    Kidanemariam Gelaw, Awoke; Bihon, Wubetu; Faranani, Ramagoma; Mafofo, Joseph; Rees, Jasper; Madoroba, Evelyn

    2015-04-09

    Respiratory disease caused by Mannheimia haemolytica is a major concern in the cattle and small stock industry worldwide. This problem arises due to the interaction of numerous contributing factors, including physical stresses associated with weaning, shipment, inclement weather, and overcrowding coupled with viral and bacterial infections. The whole genome of M. haemolytica strain Mh10517 was analyzed using an Illumina MiSeq high-throughput sequencing platform. The genome size is 2.67 Mb with 2,879 predicted gene sequences. The availability of this genome sequence will advance studies on various aspects of the biology of M. haemolytica in Africa and the world at large. Copyright © 2015 Kidanemariam Gelaw et al.

  6. Complete Genome Sequence of Mannheimia haemolytica Strain Mh10517, Isolated from Sheep in South Africa

    OpenAIRE

    Kidanemariam Gelaw, Awoke; Bihon, Wubetu; Faranani, Ramagoma; Mafofo, Joseph; Rees, Jasper; Madoroba, Evelyn

    2015-01-01

    Respiratory disease caused by Mannheimia haemolytica is a major concern in the cattle and small stock industry worldwide. This problem arises due to the interaction of numerous contributing factors, including physical stresses associated with weaning, shipment, inclement weather, and overcrowding coupled with viral and bacterial infections. The whole genome of M.?haemolytica strain Mh10517 was analyzed using an Illumina MiSeq high-throughput sequencing platform. The genome size is 2.67?Mb wit...

  7. Complete Genome Sequences of Zika Virus Strains Isolated from the Blood of Patients in Thailand (2014) and Philippines (2012)

    Science.gov (United States)

    2016-03-09

    Complete genome sequences of Zika Virus strains isolated from the blood of patients in 1 Thailand (2014) and Philippines (2012). 2 Ellison,D.W.1...Institute, Seoul, Republic of Korea. 20 21 Running Head: Zika Virus Genomes 22 23 ABSTRACT 24 ZIKV is an arbovirus and member of the family...genome sequences of two Zika Virus (ZIKV) strains, Zika virus /H.sapiens-27 tc/THA/2014/SV0127-14 and Zika virus /H.sapiens-tc/PHL/2012/CPC-0740, isolated

  8. A new HCV genotype 6 subtype designated 6v was confirmed with three complete genome sequences.

    Science.gov (United States)

    Wang, Yizhong; Xia, Xueshan; Li, Chunhua; Maneekarn, Niwat; Xia, Wenjie; Zhao, Wenhua; Feng, Yue; Kung, Hsiang Fu; Fu, Yongshui; Lu, Ling

    2009-03-01

    Although hepatitis C virus (HCV) genotype 6 is classified into 21 subtypes, 6a-6u, new variants continue to be identified. To characterize the full-length genomes of three novel HCV genotype 6 variants: KMN02, KM046 and KM181. From sera of patients with HCV infection, the entire HCV genome was amplified by RT-PCR followed by direct DNA sequencing and phylogenetic analysis. The sera contained HCV genomes of 9461, 9429, and 9461nt in length, and each harboured a single ORF of 9051nt. The genomes showed 95.3-98.1% nucleotide similarity to each other and 72.2-75.4% similarity to 23 genotype 6 reference sequences, which represent subtypes 6a-6u and unassigned variants km41 and gz52557. Phylogenetic analyses demonstrated that they were genotype 6, but were subtypically distinct. Based on the current criteria of HCV classification, they were designed to represent a new subtype, 6v. Analysis of E1 and NS5B region partial sequences revealed two additional related variants, CMBD-14 and CMBD-86 that had been previously reported in northern Thailand and sequences dropped into Genbank. Three novel HCV genotype 6 variants were entirely sequenced and designated subtype 6v.

  9. Near-complete genome sequencing of swine vesicular disease virus using the Roche GS FLX sequencing platform

    DEFF Research Database (Denmark)

    Nielsen, Sandra Cathrine Abel; Bruhn, Christian Anders Wathne; Samaniego Castruita, Jose Alfredo

    2014-01-01

    of the capacity of a Roche GS FLX sequencing platform. Sequences were initially verified through one of two criteria; either a match between a de novo assembly and a reference mapping, or a match between all of five different reference mappings performed against a fixed set of starting reference genomes...... with significant genetic distances within the same species of viruses. All reference mappings used an iterative method to avoid bias. Further verification was achieved through phylogenetic analysis against published SVDV genomes and additional Enterovirus B sequences. This approach allows high confidence...

  10. Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NALT)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Pan, Chongle [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute

    2012-01-01

    Sulfobacillus acidophilus Norris et al. 1996 is a member of the genus Sulfobacillus which comprises five species of the order Clostridiales. Sulfobacillus species are of interest for comparison to other sulfur and iron oxidizers and also have biomining applications. This is the first completed genome sequence of a type strain of the genus Sulfobacillus, and the second published genome of a member of the species S. acidophilus. The genome, which consists of one chromosome and one plasmid with a total size of 3,557,831 bp, harbors 3,626 protein-coding and 69 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  11. Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani.

    Science.gov (United States)

    Brüggemann, Holger; Gottschalk, Gerhard

    2004-04-01

    The decryption of prokaryotic genome sequences progresses rapidly and provides the scientific community with an enormous amount of information. Clostridial genome sequencing projects have been finished only recently, starting with the genome of the solvent-producing Clostridium acetobutylicum in 2001. A lot of attention has been devoted to the genomes of pathogenic clostridia. In 2002, the genome sequence of C. perfringens, the causative agent of gas gangrene, has been released. Currently in the finishing stage and prior to publication are the genomes of the foodborne botulism-causing C. botulinum and of C. difficile, the causative agent of a wide spectrum of clinical manifestations such as antibiotic-associated diarrhea. Our team sequenced the genome of neuropathogenic C. tetani, a Gram-positive spore-forming bacterium predominantly found in the soil. In deep wound infections it occasionally causes spastic paralysis in humans and vertebrate animals, known as tetanus disease, by the secretion of potent neurotoxin, designated tetanus toxin. The toxin blocks the release of neurotransmitters from presynaptic membranes of interneurons of the spinal cord and the brainstem, thus preventing muscle relaxation. Fortunately, this disease is successfully controlled through immunization with tetanus toxoid, a formaldehyde-treated tetanus toxin, but nevertheless, an estimated 400,000 cases still occur each year, mainly of neonatal tetanus. The World Health Organization has stated that neonatal tetanus is the second leading cause of death from vaccine preventable diseases among children worldwide. This minireview focuses on an analysis of the genome sequence of C. tetani E88, a vaccine production strain, which is a toxigenic non-sporulating variant of strain Massachusetts. The genome consists of a 2,799,250 bp chromosome encoding 2618 open reading frames. The tetanus toxin is encoded on a 74,082 kb plasmid, containing 61 genes. Additional virulence-related factors as well as an

  12. Rapid Genome Mapping in Nanochannel Arrays for Highly Complete and Accurate De Novo Sequence Assembly of the Complex Aegilops tauschii Genome

    Science.gov (United States)

    Hastie, Alex R.; Dong, Lingli; Smith, Alexis; Finklestein, Jeff; Lam, Ernest T.; Huo, Naxin; Cao, Han; Kwok, Pui-Yan; Deal, Karin R.; Dvorak, Jan; Luo, Ming-Cheng; Gu, Yong; Xiao, Ming

    2013-01-01

    Next-generation sequencing (NGS) technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences and to facilitate unambiguous assembly. Plant genomes are notorious for containing high quantities of repetitive elements, which combined with huge genome sizes, makes accurate assembly of these large and complex genomes intractable thus far. Using two-color genome mapping of tiling bacterial artificial chromosomes (BAC) clones on nanochannel arrays, we completed high-confidence assembly of a 2.1-Mb, highly repetitive region in the large and complex genome of Aegilops tauschii, the D-genome donor of hexaploid wheat (Triticum aestivum). Genome mapping is based on direct visualization of sequence motifs on single DNA molecules hundreds of kilobases in length. With the genome map as a scaffold, we anchored unplaced sequence contigs, validated the initial draft assembly, and resolved instances of misassembly, some involving contigs <2 kb long, to dramatically improve the assembly from 75% to 95% complete. PMID:23405223

  13. Complete Genome Sequence of Bacillus horikoshii Strain 20a from Cuatro Cienegas, Coahuila, Mexico

    OpenAIRE

    Zarza, Eugenia; Alcaraz, Luis D.; Aguilar-Salinas, Bernardo; Islas, Africa; Olmedo-?lvarez, Gabriela

    2017-01-01

    ABSTRACT We sequenced the Bacillus horikoshii 20a genome, isolated from sediment collected in Cuatro Cienegas, Mexico. We identified genes involved in establishing antagonistic interactions in microbial communities (antibiotic resistance and bacteriocins) and genes related to the metabolism of cyanophycin, a reserve compound and spore matrix material potentially relevant for survival in an oligotrophic environment.

  14. Complete genome sequence of the Campylobacter cuniculorum type strain LMG 24588

    Science.gov (United States)

    Campylobacter cuniculorum has been isolated from rabbits (Oryctolagus cuniculus). Although C. cuniculorum is highly prevalent in rabbits farmed for human consumption, the pathogenicity of this organism in humans is still unknown. This study describes the whole-genome sequence of the C. cuniculorum t...

  15. Complete genome sequence of the Campylobacter helveticus type strain ATCC 51209T

    Science.gov (United States)

    Campylobacter helveticus has been isolated from domestic dogs and cats. Although C. helveticus is closely related to the emerging human pathogen C. upsaliensis, no C. helveticus-associated cases of human illness have been reported. This study describes the whole-genome sequence of the C. helveticus ...

  16. Complete Genome Sequence of the Avian Pathogenic Escherichia coli Strain APEC O78

    OpenAIRE

    Mangiamele, Paul; Nicholson, Bryon; Wannemuehler, Yvonne; Seemann, Torsten; Logue, Catherine M.; Li, Ganwu; Tivendale, Kelly A.; Nolan, Lisa K.

    2013-01-01

    Colibacillosis, caused by avian pathogenic Escherichia coli (APEC), is a significant disease, causing extensive animal and financial losses globally. Because of the significance of this disease, more knowledge is needed regarding APEC's mechanisms of virulence. Here, we present the fully closed genome sequence of a typical avian pathogenic E.?coli strain belonging to the serogroup O78.

  17. Complete genome sequence for the shellfish pathogen Vibrio coralliilyticus RE98 isolated from a shellfish hatchery

    Science.gov (United States)

    Vibrio coralliilyticus is a pathogen of corals and larval shellfish. Publications on strain RE98 list it as a Vibrio tubiashii; however, whole genome sequencing confirms RE98 as V. coralliilyticus containing a total of 6,037,824 bp consisting of two chromosomes (3,420,228 and 1,917,482 bp), and two...

  18. Complete genome sequence of the larval shellfish pathogen Vibrio Tubiashii type strain ATCC 19109

    Science.gov (United States)

    Vibrio tubiashii is a larval shellfish pathogen. Here we report the first closed genome sequence for this species (American Type Culture Collection type strain 19109), which has two chromosomes (3,294,490 and 1,766,582 bp), two megaplasmids (251,408 and 122,808 bp) and two plasmids (57,076 and 47,9...

  19. Complete genome sequence of a Klebsiella pneumoniae strain isolated from a known cotton insect boll vector

    Science.gov (United States)

    Klebsiella pneumoniae (associated with bacterial pneumonia) was previously isolated from Nezara viridula, a significant vector of cotton boll-rot pathogens. We provide the first annotated genome sequence of the cotton opportunistic strain K. pneumoniae 5-1. This data provides guidance to study the...

  20. Complete Genome Sequence of the Campylobacter ureolyticus Clinical Isolate RIGS 9880

    DEFF Research Database (Denmark)

    Miller, William G; Yee, Emma; On, Stephen L W

    2015-01-01

    The emerging pathogen Campylobacter ureolyticus has been isolated from human and animal genital infections, human periodontal disease, domestic and food animals, and from cases of human gastroenteritis. We report the whole-genome sequence of the human clinical isolate RIGS 9880, which is the first...

  1. Complete Genome Sequence of Mycobacterium fortuitum subsp. fortuitum Type Strain DSM46621

    KAUST Repository

    Ho, Y. S

    2012-10-26

    Mycobacterium fortuitum is a member of the rapidly growing nontuberculous mycobacteria (NTM). It is ubiquitous in water and soil habitats, including hospital environments. M. fortuitum is increasingly recognized as an opportunistic nosocomial pathogen causing disseminated infection. Here we report the genome sequence of M. fortuitum subsp. fortuitum type strain DSM46621.

  2. The complete chloroplast genome sequence of sugar beet (Beta vulgaris ssp. vulgaris).

    Science.gov (United States)

    Li, Han; Cao, Hua; Cai, Yan-Fei; Wang, Ji-Hua; Qu, Su-Ping; Huang, Xing-Qi

    2014-06-01

    The complete nucleotide sequence of the sugar beet (Beta vulgaris ssp. vulgaris) chloroplast genome (cpDNA) was determined in this study. The cpDNA was 149,637 bp in length, containing a pair of 24,439 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 17,701 and 83,057 bp, respectively. 53.4% of the sugar beet cpDNA consisted of gene coding regions (protein coding and RNA genes). The gene content and relative positions of 113 individual genes (79 protein encoding genes, 30 tRNA genes, 4 rRNA genes) were almost identical to those of tobacco cpDNA. The overall AT contents of the sugar beet cpDNA were 63.6% and in the LSC, SSC and IR regions were 65.9%, 70.8% and 57.8%, respectively. Fifteen genes contained one intron, while three genes had two introns.

  3. Sequencing and characterization of the complete mitochondrial genome of Japanese Swellshark (Cephalloscyllium umbratile).

    Science.gov (United States)

    Zhu, Ke-Cheng; Liang, Yin-Yin; Wu, Na; Guo, Hua-Yang; Zhang, Nan; Jiang, Shi-Gui; Zhang, Dian-Chang

    2017-11-10

    To further comprehend the genome features of Cephalloscyllium umbratile (Carcharhiniformes), an endangered species, the complete mitochondrial DNA (mtDNA) was firstly sequenced and annotated. The full-length mtDNA of C. umbratile was 16,697 bp and contained ribosomal RNA (rRNA) genes, 13 protein-coding genes (PCGs), 23 transfer RNA (tRNA) genes, and a major non-coding control region. Each PCG was initiated by an authoritative ATN codon, except for COX1 initiated by a GTG codon. Seven of 13 PCGs had a typical TAA termination codon, while others terminated with a single T or TA. Moreover, the relative synonymous codon usage of the 13 PCGs was consistent with that of other published Carcharhiniformes. All tRNA genes had typical clover-leaf secondary structures, except for tRNA-Ser (GCT), which lacked the dihydrouridine 'DHU' arm. Furthermore, the analysis of the average Ka/Ks in the 13 PCGs of three Carcharhiniformes species indicated a strong purifying selection within this group. In addition, phylogenetic analysis revealed that C. umbratile was closely related to Glyphis glyphis and Glyphis garricki. Our data supply a useful resource for further studies on genetic diversity and population structure of C. umbratile.

  4. Complete Genomic Sequence of Border Disease Virus, a Pestivirus from Sheep

    Science.gov (United States)

    Becher, Paul; Orlich, Michaela; Thiel, Heinz-Jürgen

    1998-01-01

    The genus Pestivirus of the family Flaviviridae comprises three established species, namely, bovine viral diarrhea virus (BVDV), classical swine fever virus (CSFV), and border disease virus from sheep (BDV). In this study, we report the first complete nucleotide sequence of BDV, that of strain X818. The genome is 12,333 nucleotides long and contains one long open reading frame encoding 3,895 amino acids. The 5′ noncoding region (NCR) of BDV X818 consists of 372 nucleotides and is thus similar in length to the 5′ NCR reported for other pestiviruses. The 3′ NCR of X818 is 273 nucleotides long and thereby at least 32 nucleotides longer than the 3′ NCR of pestiviruses analyzed thus far. Within the 3′ NCR of BDV X818, the sequence motif TATTTATTTA was identified at four locations. The same repeat was found at two or three locations within the 3′ NCR of different CSFV isolates but was absent in the 3′ NCR of BVDV. Analysis of five additional BDV strains showed that the 3′ NCR sequences are highly conserved within this species. Comparison of the deduced amino acid sequence of X818 with the ones of other pestiviruses allowed the prediction of polyprotein cleavage sites which were conserved with regard to the structural proteins. It has been reported for two BVDV strains that cleavage at the nonstructural (NS) protein sites 3/4A, 4A/4B, 4B/5A, and 5A/5B is mediated by the NS3 serine protease and for each site a conserved leucine was found at the P1 position followed by either serine or alanine at P1′ (N. Tautz, K. Elbers, D. Stoll, G. Meyers, and H.-J. Thiel, J. Virol. 71:5415–5422, 1997; J. Xu, E. Mendez, P. R. Caron, C. Lin, M. A. Murcko, M. S. Collett, and C. M. Rice, J. Virol. 71:5312–5322). Interestingly, P1′ of the predicted NS5A/5B cleavage site of BDV is represented by an asparagine residue. Transient expression studies demonstrated that this unusual NS5A/5B processing site is efficiently cleaved by the NS3 serine protease of BDV. PMID

  5. Complete genome sequence of an isolate of a novel genotype of yellow head virus from Fenneropenaeus chinensis indigenous in China.

    Science.gov (United States)

    Dong, Xuan; Liu, Sun; Zhu, Luoluo; Wan, Xiaoyuan; Liu, Qun; Qiu, Liang; Zou, Peizhuo; Zhang, Qingli; Huang, Jie

    2017-04-01

    Genotype 8 of yellow head virus (YHV-8) was identified recently, but the complete genome sequence of this new genotype has not been reported. In this study, the complete genome of YHV-8 isolate 20120706 collected from Hebei Province of China in 2012 was sequenced. It was found to be 26,769 nucleotides (nt) in length, including a 20,060-nt open reading frame 1 (ORF1), a 435-nt ORF2, and a 4971-nt ORF3. Isolate 20120706 shared 79.7-83.9% nucleotide sequence identity with all seven of the complete genome sequences of YHV that have been reported so far. The topology of a phylogenetic tree constructed based on the ORF1b region clearly showed that strain 20120706, together with five other YHV-8 strains isolated in China, represents a new genotype of YHV. This is the first report of the complete genome sequence of a YHV-8 isolate, and the 20120706 isolate will be useful for further analysis of the epidemiology and evolution of YHV-8.

  6. The complete chloroplast genome sequence of Gentiana lawrencei var. farreri (Gentianaceae) and comparative analysis with its congeneric species.

    Science.gov (United States)

    Fu, Peng-Cheng; Zhang, Yan-Zhao; Geng, Hui-Min; Chen, Shi-Long

    2016-01-01

    The chloroplast (cp) genome is useful in plant systematics, genetic diversity analysis, molecular identification and divergence dating. The genus Gentiana contains 362 species, but there are only two valuable complete cp genomes. The purpose of this study is to report the characterization of complete cp genome of G. lawrencei var. farreri , which is endemic to the Qinghai-Tibetan Plateau (QTP). Using high throughput sequencing technology, we got the complete nucleotide sequence of the G. lawrencei var. farreri cp genome. The comparison analysis including genome difference and gene divergence was performed with its congeneric species G. straminea . The simple sequence repeats (SSRs) and phylogenetics were studied as well. The cp genome of G. lawrencei var. farreri is a circular molecule of 138,750 bp, containing a pair of 24,653 bp inverted repeats which are separated by small and large single-copy regions of 11,365 and 78,082 bp, respectively. The cp genome contains 130 known genes, including 85 protein coding genes (PCGs), eight ribosomal RNA genes and 37 tRNA genes. Comparative analyses indicated that G. lawrencei var. farreri is 10,241 bp shorter than its congeneric species G. straminea. Four large gaps were detected that are responsible for 85% of the total sequence loss. Further detailed analyses revealed that 10 PCGs were included in the four gaps that encode nine NADH dehydrogenase subunits. The cp gene content, order and orientation are similar to those of its congeneric species, but with some variation among the PCGs. Three genes, ndhB , ndhF and clpP , have high nonsynonymous to synonymous values. There are 34 SSRs in the G. lawrencei var. farreri cp genome, of which 25 are mononucleotide repeats: no dinucleotide repeats were detected. Comparison with the G. straminea cp genome indicated that five SSRs have length polymorphisms and 23 SSRs are species-specific. The phylogenetic analysis of 48 PCGs from 12 Gentianales taxa cp genomes clearly identified

  7. Complete genome sequence of Hippea maritima type strain (MH2T)

    Energy Technology Data Exchange (ETDEWEB)

    Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Lu, Megan [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Hippea maritima (Miroshnichenko et al. 1999) is the type species of the genus Hippea, which belongs to the family Desulfurellaceae within the class Deltaproteobacteria. The anaerobic, moderately thermophilic marine sulfur-reducer was first isolated from shallow-water hot vents in Matipur Harbor, Papua New Guinea. H. maritima was of interest for genome se- quencing because of its isolated phylogenetic location, as a distant next neighbor of the ge- nus Desulfurella. Strain MH2T is the first type strain from the order Desulfurellales with a com- pletely sequenced genome. The 1,694,430 bp long linear genome with its 1,723 protein- coding and 57 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  8. Complete Genome Sequence of Mycoplasma hominis Strain Sprott (ATCC 33131), Isolated from a Patient with Nongonococcal Urethritis.

    Science.gov (United States)

    Calcutt, Michael J; Foecking, Mark F

    2015-07-09

    Presented here is the complete and annotated genome sequence of Mycoplasma hominis Sprott (ATCC 33131). The chromosome comprises 695,214 bp, which is approximately 30 kb larger than the syntenic genome of M. hominis PG21(T). Tetracycline resistance of strain Sprott is most probably conferred by the tetM determinant, harbored on a mosaic transposon-like structure. Copyright © 2015 Calcutt and Foecking.

  9. Complete genome sequence of an isolate of Potato virus X (PVX) infecting Cape gooseberry (Physalis peruviana) in Colombia.

    Science.gov (United States)

    Gutiérrez, Pablo A; Alzate, Juan F; Montoya, Mauricio Marín

    2015-06-01

    Transcriptome analysis of a Cape gooseberry (Physalis peruviana) plant with leaf symptoms of a mild yellow mosaic typical of a viral disease revealed an infection with Potato virus X (PVX). The genome sequence of the PVX-Physalis isolate comprises 6435 nt and exhibits higher sequence similarity to members of the Eurasian group of PVX (~95 %) than to the American group (~77 %). Genome organization is similar to other PVX isolates with five open reading frames coding for proteins RdRp, TGBp1, TGBp2, TGBp3, and CP. 5' and 3' untranslated regions revealed all regulatory motifs typically found in PVX isolates. The PVX-Physalis genome is the only complete sequence available for a Potexvirus in Colombia and is a new addition to the restricted number of available sequences of PVX isolates infecting plant species different to potato.

  10. Next generation sequencing yields the complete mitochondrial genome of the Regal angelfish, Pygoplites diacanthus (Perciformes: Pomacanthidae).

    Science.gov (United States)

    Shen, Kang-Ning; Chang, Chih-Wei; Chen, Ching-Hung; Hsiao, Chung-Der

    2016-11-01

    In this study, the complete mitogenome sequence of the Regal angelfish, Pygoplites diacanthus (Perciformes: Pomacanthidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome consisting of 16,784 bp includes 13 protein coding genes, 22 transfer RNAs, and two ribosomal RNAs genes. The overall base composition of Regal angelfish is 28.5% for A, 28.9% for C, 16.3% for G, 26.4% for T and show 85% identities to flame angelfish Centropyge loricula. The complete mitogenome of the Regal angelfish provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for marine angelfish phylogeny.

  11. Next generation sequencing yields the complete mitochondrial genome of the Japanese angelfish, Centropyge interrupta (Perciformes: Pomacanthidae).

    Science.gov (United States)

    Shen, Kang-Ning; Chang, Chih-Wei; Chen, Ching-Hung; Chassaing, Alexandre; Hsiao, Chung-Der

    2016-11-01

    In this study, the complete mitogenome sequence of the Japanese angelfish, Centropyge interrupta (Perciformes: Pomacanthidae), has been sequenced by the next-generation sequencing method. The assembled mitogenome consisting of 16,595 bp includes 13 protein coding genes, 22 transfer RNAs, and two ribosomal RNAs genes. The overall base composition of Japanese angelfish is 27.5% for A, 29.3% for C, 17.3% for G, 25.9% for T, and shows 85% identities to flame angelfish Centropyge loriculus. The complete mitogenome of the Japanese angelfish provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for marine angelfish phylogeny.

  12. Next generation sequencing yields the complete mitochondrial genome of the Clarion angelfish, Holacanthus clarionensis (Perciformes: Pomacanthidae).

    Science.gov (United States)

    Shen, Kang-Ning; Chang, Chih-Wei; Loh, Kar-Hoe; Chen, Ching-Hung; Hsiao, Chung-Der

    2016-11-01

    In this study, the complete mitogenome sequence of the Clarion angelfish, Holacanthus clarionensis (Perciformes: Pomacanthidae) has been sequenced by next-generation sequencing method. The length of the assembled mitogenome is 16,615 bp, including 13 protein coding genes, 22 transfer RNAs, and two ribosomal RNAs genes. The overall base composition of Clarion angelfish is 28.3% for A, 29.3% for C, 16.5% for G, 25.9% for T and show 85% identities to flame angelfish Centropyge loriculus. The complete mitogenome of the Clarion angelfish provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for marine angelfish phylogeny.

  13. Complete genome sequence of the first isolate of genotype C bovine parainfluenza virus type 3 in Japan.

    Science.gov (United States)

    Konishi, Misako; Ohkura, Takashi; Shimizu, Madoka; Akiyama, Masanori; Kameyama, Ken-Ichiro; Takeuchi, Kaoru

    2014-11-26

    Bovine parainfluenza virus type 3 (BPIV3) isolates are classified into three genotypes (BPIV3a to -c). Here, we report the complete genome sequence of the BPIV3c isolate for the first time in Japan. Our results indicate that new primer sets will be required to detect all genotypes of BPIV3 strains. Copyright © 2014 Konishi et al.

  14. Complete Genome Sequences of Bovine Parainfluenza Virus Type 3 Strain BN-1 and Vaccine Strain BN-CE.

    Science.gov (United States)

    Ohkura, Takashi; Kokuho, Takehiro; Konishi, Misako; Kameyama, Ken-Ichiro; Takeuchi, Kaoru

    2013-01-01

    Bovine parainfluenza virus type 3 (BPIV3) is associated with upper respiratory disease in cattle in many countries. Here, we report the complete genome sequences of the BPIV3 BN-1 strain, isolated from cattle in Japan, and the BN-CE vaccine strain, derived from the BN-1 strain by passages in chicken embryo fibroblasts.

  15. Complete genome sequence of Vibrio anguillarum phage CHOED successfully used for phage therapy in aquaculture

    DEFF Research Database (Denmark)

    Romero, Jaime; Higuera, Gastón; Gajardo, Felipe

    2014-01-01

    Vibrio anguillarum phage CHOED was isolated from Chilean mussels. It is a virulent phage showing effective inhibition of V. anguillarum. CHOED has potential in phage therapy, because it can protect fish from vibriosis in fish farms. Here, we announce the completely sequenced genome of V....... anguillarum phage CHOED....

  16. Complete genome sequence of Vibrio anguillarum phage CHOED successfully used for phage therapy in aquaculture

    OpenAIRE

    Romero, Jaime; Higuera, Gastón; Gajardo, Felipe; Castillo Bermúdez, Daniel Elías; Middelboe, Mathias; García, Katherine; Ramírez, Carolina; Espejo, Romilio T.

    2014-01-01

    Vibrio anguillarum phage CHOED was isolated from Chilean mussels. It is a virulent phage showing effective inhibition of V. anguillarum. CHOED has potential in phage therapy, because it can protect fish from vibriosis in fish farms. Here, we announce the completely sequenced genome of V. anguillarum phage CHOED.

  17. Complete Genome Sequence of Roe Deer Picobirnavirus Strain PBV/roe_deer/SLO/D38-14/2014

    OpenAIRE

    Kuhar, Urska; Vengust, Gorazd; Jamnikar-Ciglenecki, Urska

    2017-01-01

    ABSTRACT Picobirnaviruses (PBVs) have been detected in feces from various animal species and humans. Here, we report the complete genome sequence of the PBV/roe_deer/SLO/D38-14/2014 strain, which is the first PBV detected in roe deer, providing additional knowledge about the high diversity and host range of PBVs.

  18. Complete Genome Sequence of Roe Deer Picobirnavirus Strain PBV/roe_deer/SLO/D38-14/2014.

    Science.gov (United States)

    Kuhar, Urska; Vengust, Gorazd; Jamnikar-Ciglenecki, Urska

    2017-12-14

    Picobirnaviruses (PBVs) have been detected in feces from various animal species and humans. Here, we report the complete genome sequence of the PBV/roe_deer/SLO/D38-14/2014 strain, which is the first PBV detected in roe deer, providing additional knowledge about the high diversity and host range of PBVs. Copyright © 2017 Kuhar et al.

  19. Complete Genome Sequence of a Highly Divergent Dengue Virus Type 2 Strain, Imported into Australia from Sabah, Malaysia.

    Science.gov (United States)

    Pyke, Alyssa T; Huang, Bixing; Warrilow, David; Moore, Peter R; McMahon, Jamie; Harrower, Bruce

    2017-07-20

    In 2015, a female patient returning to Australia from Sabah, Malaysia, was diagnosed with a suspected sylvatic dengue virus type 2 (DENV-2) infection, becoming the second case of imported highly divergent dengue virus infection recorded in Australia. We describe here the complete genome sequencing of the DENV-2 strain isolated from this patient. © Crown copyright 2017.

  20. Complete genome sequence of livestock associated methicillin resistant Staphylococcus aureus ST398 isolated from swine in USA

    Science.gov (United States)

    Methicillin resistant Staphylococcus aureus colonizes and causes disease in many animal species. Livestock associated-MRSA isolates are represented by isolates of the sequence type 398. These isolates are considered to be livestock adapted. This report provides the complete genome of one swine assoc...

  1. Complete genome sequence of Pseudomonas rhizosphaerae IH5T (=DSM 16299T), a phosphate-solubilizing rhizobacterium for bacterial biofertilizer.

    Science.gov (United States)

    Kwak, Yunyoung; Jung, Byung Kwon; Shin, Jae-Ho

    2015-01-10

    Pseudomonas rhizosphaerae IH5(T) (=DSM 16299(T)), isolated from the rhizospheric soil of grass growing in Spain, has been reported as a novel species of the genus Pseudomonas harboring insoluble phosphorus solubilizing activity. To understanding the multifunctional biofertilizer better, we report the complete genome sequence of P. rhizosphaerae IH5(T). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Complete Genome Sequence of Streptococcus mitis Strain SVGS_061 Isolated from a Neutropenic Patient with Viridans Group Streptococcal Shock Syndrome.

    Science.gov (United States)

    Petrosyan, Varduhi; Holder, Michael; Ajami, Nadim J; Petrosino, Joseph F; Sahasrabhojane, Pranoti; Thompson, Erika J; Kalia, Awdhesh; Shelburne, Samuel A

    2016-04-07

    Streptococcus mitisfrequently causes invasive infections in neutropenic cancer patients, with a subset of patients developing viridans group streptococcal (VGS) shock syndrome. We report here the first complete genome sequence ofS. mitisstrain SVGS_061, which caused VGS shock syndrome, to help elucidate the pathogenesis of severe VGS infection. Copyright © 2016 Petrosyan et al.

  3. Complete Genome Sequence of Bacillus velezensis GQJK49, a Plant Growth-Promoting Rhizobacterium with Antifungal Activity.

    Science.gov (United States)

    Ma, Jinjin; Liu, Hu; Liu, Kai; Wang, Chengqiang; Li, Yuhuan; Hou, Qihui; Yao, Liangtong; Cui, Yanru; Zhang, Tongrui; Wang, Haide; Wang, Beibei; Wang, Yun; Ge, Ruofei; Xu, Baochao; Yao, Gan; Xu, Wenfeng; Fan, Lingchao; Ding, Yanqin; Du, Binghai

    2017-08-31

    Bacillus velezensis GQJK49 is a plant growth-promoting rhizobacterium with antifungal activity, which was isolated from Lycium barbarum L. rhizosphere. Here, we report the complete genome sequence of B. velezensis GQJK49. Twelve gene clusters related to its biosynthesis of secondary metabolites, including antifungal and antibacterial antibiotics, were predicted. Copyright © 2017 Ma et al.

  4. Complete genome sequences of two genotype A2 small ruminant lentiviruses isolated from infected U.S. sheep

    Science.gov (United States)

    Two distinct subgroups of genotype A2 SRLVs have been identified in the U.S. that infect sheep in association with their transmembrane protein 154 (TMEM154) diplotypes. Here, we report the first two complete genome sequences for SRLV strains infecting U.S. sheep belonging to genotype A2, subgroups 1...

  5. Complete Genome Sequence of Gallibacterium anatis Strain UMN179, Isolated from a Laying Hen with Peritonitis ▿

    OpenAIRE

    Johnson, Timothy J.; Fernandez-Alarcon, Claudia; Bojesen, Anders Miki; Nolan, Lisa K.; Trampel, Darrell W.; Seemann, Torsten

    2011-01-01

    Gallibacterium anatis is a member of the normal flora of avian hosts and an important causative agent of peritonitis and salpingitis in laying hens. Here we report the availability of the first completed G. anatis genome sequence of strain UMN179, isolated from an Iowa laying hen with peritonitis.

  6. Complete Genome Sequence of Gallibacterium anatis Strain UMN179, Isolated from a Laying Hen with Peritonitis ▿

    Science.gov (United States)

    Johnson, Timothy J.; Fernandez-Alarcon, Claudia; Bojesen, Anders Miki; Nolan, Lisa K.; Trampel, Darrell W.; Seemann, Torsten

    2011-01-01

    Gallibacterium anatis is a member of the normal flora of avian hosts and an important causative agent of peritonitis and salpingitis in laying hens. Here we report the availability of the first completed G. anatis genome sequence of strain UMN179, isolated from an Iowa laying hen with peritonitis. PMID:21602325

  7. Complete Genome Sequence of Lactobacillus curvatus Strain WiKim38 Isolated from Kimchi

    Science.gov (United States)

    Lee, Se Hee; Jung, Min Young; Song, Jung-Hee; Lee, Moeun

    2017-01-01

    ABSTRACT Lactobacillus curvatus WiKim38 is a potential probiotic strain isolated from kimchi, a traditional Korean fermented food. The complete genome of the WiKim38 strain consisted of a circular chromosome of 1,940,170 bp in length with a G+C content of 41.93%. PMID:28473381

  8. Complete Genome Sequence ofBacillus paralicheniformis14DA11, Exhibiting Resistance to Clindamycin and Erythromycin.

    Science.gov (United States)

    Lee, Jong-Hoon; Jeong, Do-Won

    2017-10-26

    Bacillus paralicheniformis 14DA11, exhibiting resistance to clindamycin and erythromycin, was isolated from a Korean fermented soybean food product. The complete genome of strain 14DA11 includes genes that potentially contribute to the antibiotic resistance. Copyright © 2017 Lee and Jeong.

  9. Complete genome sequences of blueberry red ringspot virus (Caulimoviridae) isolates from the Czech Republic and Slovenia

    Czech Academy of Sciences Publication Activity Database

    Petrzik, Karel; Přibylová, Jaroslava; Mavrič-Pleško, I.; Špak, Josef

    2011-01-01

    Roč. 156, č. 10 (2011), s. 1901-1903 ISSN 0304-8608 Institutional research plan: CEZ:AV0Z50510513 Keywords : Complete genome * blueberry virus * highbush blueberry Subject RIV: EE - Microbiology, Virology Impact factor: 2.111, year: 2011

  10. A study of the peopling of Greenland using next generation sequencing of complete mitochondrial genomes

    DEFF Research Database (Denmark)

    Lopopolo, Maria; Børsting, Claus; Pereira, Vania

    2016-01-01

    Objectives The Greenlandic population history is characterized by a number of migrations of people of various ethnicities. In this work, the analysis of the complete mtDNA genome aimed to contribute to the ongoing debate on the origin of current Greenlanders and, at the same time, to address the ...

  11. Complete nucleotide sequence and genome analysis of bacteriophage BFK20 — A lytic phage of the industrial producer Brevibacterium flavum

    Czech Academy of Sciences Publication Activity Database

    Bukovska, G.; Klucar, L.; Vlček, Čestmír; Adamovic, J.; Turna, J.; Timko, J.

    2006-01-01

    Roč. 348, č. 1 (2006), s. 57-71 ISSN 0042-6822 Grant - others:Slovenská akademie věd(SK) VEGA2/5068/25; Science and Technology Assistance Agency(SK) APVT-51-025004 Institutional research plan: CEZ:AV0Z50520514 Keywords : Bacteriophage * Complete genome sequence * Sequence analysis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.525, year: 2006

  12. Complete Genome Sequence of Treponema paraluiscuniculi, Strain Cuniculi A: The Loss of Infectivity to Humans Is Associated with Genome Decay

    Science.gov (United States)

    Šmajs, David; Zobaníková, Marie; Strouhal, Michal; Čejková, Darina; Dugan-Rocha, Shannon; Pospíšilová, Petra; Norris, Steven J.; Albert, Tom; Qin, Xiang; Hallsworth-Pepin, Kym; Buhay, Christian; Muzny, Donna M.; Chen, Lei; Gibbs, Richard A.; Weinstock, George M.

    2011-01-01

    Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies. PMID:21655244

  13. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay.

    Directory of Open Access Journals (Sweden)

    David Šmajs

    Full Text Available Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp, arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51. In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84 affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9% of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies.

  14. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay.

    Science.gov (United States)

    Šmajs, David; Zobaníková, Marie; Strouhal, Michal; Čejková, Darina; Dugan-Rocha, Shannon; Pospíšilová, Petra; Norris, Steven J; Albert, Tom; Qin, Xiang; Hallsworth-Pepin, Kym; Buhay, Christian; Muzny, Donna M; Chen, Lei; Gibbs, Richard A; Weinstock, George M

    2011-01-01

    Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies.

  15. Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Saraswoti [Uppsala University, Uppsala, Sweden; Hogberg, Nils [Uppsala University, Uppsala, Sweden; Alstrom, Sadhna [Uppsala University, Uppsala, Sweden; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Han, James [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Lu, Megan [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Fiebig, Anne [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Finlay, Roger D. [Uppsala University, Uppsala, Sweden

    2012-01-01

    Serratia plymuthica are plant-associated, plant beneficial species belonging to the family Enterobacteriaceae. The members of the genus Serratia are ubiquitous in nature and their life style varies from endophytic to free-living. S. plymuthica AS9 is of special interest for its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The genome of S. plymuthica AS9 comprises a 5,442,880 bp long circular chromosome that consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome is part of the project entitled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens awarded through the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  16. Comparative analysis of the complete chloroplast genome sequences in psammophytic Haloxylon species (Amaranthaceae

    Directory of Open Access Journals (Sweden)

    Wenpan Dong

    2016-11-01

    Full Text Available The Haloxylon genus belongs to the Amaranthaceae (formerly Chenopodiaceae family. The small trees or shrubs in this genus are referred to as the King of psammophytic plants, and perform important functions in environmental protection, including wind control and sand fixation in deserts. To better understand these beneficial plants, we sequenced the chloroplast (cp genomes of Haloxylon ammodendron (HA and Haloxylon persicum (HP and conducted comparative genomic analyses on these and two other representative Amaranthaceae species. Similar to other higher plants, we found that the Haloxylon cp genome is a quadripartite, double-stranded, circular DNA molecule of 151,570 bp in HA and 151,586 bp in HP. It contains a pair of inverted repeats (24,171 bp in HA and 24,177 bp in HP that separate the genome into a large single copy region of 84,214 bp in HA and 84,217 bp in HP, and a small single copy region of 19,014 bp in HA and 19,015 bp in HP. Each Haloxylon cp genome contains 112 genes, including 78 coding, 30 tRNA, and four ribosomal RNA genes. We detected 59 different simple sequence repeat loci, including 44 mono-nucleotide, three di-nucleotide, one tri-nucleotide, and 11 tetra-nucleotide repeats. Comparative analysis revealed only 67 mutations between the two species, including 44 substitutions, 23 insertions/deletions, and two micro-inversions. The two inversions, with lengths of 14 and 3 bp, occur in the petA-psbJ intergenic region and rpl16 intron, respectively, and are predicted to form hairpin structures with repeat sequences of 27 and 19 bp, respectively, at the two ends. The ratio of transitions to transversions was 0.76. These results are valuable for future studies on Haloxylon genetic diversity and will enhance our understanding of the phylogenetic evolution of Amaranthaceae.

  17. Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids

    Directory of Open Access Journals (Sweden)

    dePamphilis Claude W

    2006-10-01

    Full Text Available Abstract Background The magnoliids with four orders, 19 families, and 8,500 species represent one of the largest clades of early diverging angiosperms. Although several recent angiosperm phylogenetic analyses supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence resulted in phylogenetic reconstructions supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. We sequenced the plastid genomes of three magnoliids, Drimys (Canellales, Liriodendron (Magnoliales, and Piper (Piperales, and used these data in combination with 32 other angiosperm plastid genomes to assess phylogenetic relationships among magnoliids and to examine patterns of variation of GC content. Results The Drimys, Liriodendron, and Piper plastid genomes are very similar in size at 160,604, 159,886 bp, and 160,624 bp, respectively. Gene content and order are nearly identical to many other unrearranged angiosperm plastid genomes, including Calycanthus, the other published magnoliid genome. Overall GC content ranges from 34–39%, and coding regions have a substantially higher GC content than non-coding regions. Among protein-coding genes, GC content varies by codon position with 1st codon > 2nd codon > 3rd codon, and it varies by functional group with photosynthetic genes having the highest percentage and NADH genes the lowest. Phylogenetic analyses using parsimony and likelihood methods and sequences of 61 protein-coding genes provided strong support for the monophyly of magnoliids and two strongly supported groups were identified, the Canellales/Piperales and the Laurales/Magnoliales. Strong support is reported for monocots and eudicots as sister clades with magnoliids diverging before the monocot-eudicot split. The trees also provided

  18. Complete genome sequence of a street rabies virus isolated from a rabid dog in China.

    Science.gov (United States)

    Yu, Fulai; Zhang, Guoqing; Xiao, Shaobo; Fang, Liurong; Xu, Gelin; Yan, Jiaxing; Chen, Huanchun; Fu, Zhen F

    2012-10-01

    A rabies virus (RABV) was isolated from a dog in Anhui Province, China, in 2008. The virus was designated DRV-AH08. Its entire genome was sequenced and found to be closely related to RABV recently isolated in China and other Asian countries (homology of 87 to 98%) but distantly related to RABV in the "cosmopolitan" group (homology of 84 to 85%) in the clade I of RABV.

  19. Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2.

    Science.gov (United States)

    Chen, Yin; Crombie, Andrew; Rahman, M Tanvir; Dedysh, Svetlana N; Liesack, Werner; Stott, Matthew B; Alam, Maqsudul; Theisen, Andreas R; Murrell, J Colin; Dunfield, Peter F

    2010-07-01

    Methylocella silvestris BL2 is an aerobic methanotroph originally isolated from an acidic forest soil in Germany. It is the first fully authenticated facultative methanotroph. It grows not only on methane and other one-carbon (C(1)) substrates, but also on some compounds containing carbon-carbon bonds, such as acetate, pyruvate, propane, and succinate. Here we report the full genome sequence of this bacterium.

  20. Complete Genome Sequence of the Aerobic Facultative Methanotroph Methylocella silvestris BL2▿

    Science.gov (United States)

    Chen, Yin; Crombie, Andrew; Rahman, M. Tanvir; Dedysh, Svetlana N.; Liesack, Werner; Stott, Matthew B.; Alam, Maqsudul; Theisen, Andreas R.; Murrell, J. Colin; Dunfield, Peter F.

    2010-01-01

    Methylocella silvestris BL2 is an aerobic methanotroph originally isolated from an acidic forest soil in Germany. It is the first fully authenticated facultative methanotroph. It grows not only on methane and other one-carbon (C1) substrates, but also on some compounds containing carbon-carbon bonds, such as acetate, pyruvate, propane, and succinate. Here we report the full genome sequence of this bacterium. PMID:20472789

  1. Complete Genome Sequence of the Aerobic Facultative Methanotroph Methylocella silvestris BL2▿

    OpenAIRE

    Chen, Yin; Crombie, Andrew; Rahman, M. Tanvir; Dedysh, Svetlana N.; Liesack, Werner; Stott, Matthew B.; Alam, Maqsudul; Theisen, Andreas R.; Murrell, J. Colin; Dunfield, Peter F.

    2010-01-01

    Methylocella silvestris BL2 is an aerobic methanotroph originally isolated from an acidic forest soil in Germany. It is the first fully authenticated facultative methanotroph. It grows not only on methane and other one-carbon (C1) substrates, but also on some compounds containing carbon-carbon bonds, such as acetate, pyruvate, propane, and succinate. Here we report the full genome sequence of this bacterium.

  2. Complete genome sequence of the anaerobic, protein-degrading hyperthermophilic crenarchaeon Desulfurococcus kamchatkensis.

    Science.gov (United States)

    Ravin, Nikolai V; Mardanov, Andrey V; Beletsky, Alexey V; Kublanov, Ilya V; Kolganova, Tatiana V; Lebedinsky, Alexander V; Chernyh, Nikolai A; Bonch-Osmolovskaya, Elizaveta A; Skryabin, Konstantin G

    2009-04-01

    Desulfurococcus kamchatkensis is an anaerobic organotrophic hyperthermophilic crenarchaeon isolated from a terrestrial hot spring. Its genome consists of a single circular chromosome of 1,365,223 bp with no extrachromosomal elements. A total of 1,474 protein-encoding genes were annotated, among which 205 are exclusive for D. kamchatkensis. The search for a replication origin site revealed a single region coinciding with a global extreme of the nucleotide composition disparity curve and containing a set of crenarchaeon-type origin recognition boxes. Unlike in most archaea, two genes encoding homologs of the eukaryotic initiator proteins Orc1 and Cdc6 are located distantly from this site. A number of mobile elements are present in the genome, including seven transposons representing IS607 and IS200/IS605 families and multiple copies of miniature inverted repeat transposable elements. Two large clusters of regularly interspaced repeats are present; none of the spacer sequences matches known archaeal extrachromosomal elements, except one spacer matches the sequence of a resident gene of D. kamchatkensis. Many of the predicted metabolic enzymes are associated with the fermentation of peptides and sugars, including more than 30 peptidases with diverse specificities, a number of polysaccharide degradation enzymes, and many transporters. Consistently, the genome encodes both enzymes of the modified Embden-Meyerhof pathway of glucose oxidation and a set of enzymes needed for gluconeogenesis. The genome structure and content reflect the organism's nutritionally diverse, competitive natural environment, which is periodically invaded by viruses and other mobile elements.

  3. Complete genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812(T)).

    Science.gov (United States)

    Anderson, Iain; Saunders, Elizabeth; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Jeffries, Cynthia D; Chang, Yun-Juan; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2012-05-25

    Thermodesulfatator indicus Moussard et al. 2004 is a member of the Thermodesulfobacteriaceae, a family in the phylum Thermodesulfobacteria that is currently poorly characterized at the genome level. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. First complete genome sequence of vanilla mosaic strain of Dasheen mosaic virus isolated from the Cook Islands.

    Science.gov (United States)

    Puli'uvea, Christopher; Khan, Subuhi; Chang, Wee-Leong; Valmonte, Gardette; Pearson, Michael N; Higgins, Colleen M

    2017-02-01

    We present the first complete genome of vanilla mosaic virus (VanMV). The VanMV genomic structure is consistent with that of a potyvirus, containing a single open reading frame (ORF) encoding a polyprotein of 3139 amino acids. Motif analyses indicate the polyprotein can be cleaved into the expected ten individual proteins; other recognised potyvirus motifs are also present. As expected, the VanMV genome shows high sequence similarity to the published Dasheen mosaic virus (DsMV) genome sequences; comparisons with DsMV continue to support VanMV as a vanilla infecting strain of DsMV. Phylogenetic analyses indicate that VanMV and DsMV share a common ancestor, with VanMV having the closest relationship with DsMV strains from the South Pacific.

  5. Swine and Poultry Pathogens: the Complete Genome Sequences of Two Strains of Mycoplasma hyopneumoniae and a Strain of Mycoplasma synoviae†

    Science.gov (United States)

    Vasconcelos, Ana Tereza R.; Ferreira, Henrique B.; Bizarro, Cristiano V.; Bonatto, Sandro L.; Carvalho, Marcos O.; Pinto, Paulo M.; Almeida, Darcy F.; Almeida, Luiz G. P.; Almeida, Rosana; Alves-Filho, Leonardo; Assunção, Enedina N.; Azevedo, Vasco A. C.; Bogo, Maurício R.; Brigido, Marcelo M.; Brocchi, Marcelo; Burity, Helio A.; Camargo, Anamaria A.; Camargo, Sandro S.; Carepo, Marta S.; Carraro, Dirce M.; de Mattos Cascardo, Júlio C.; Castro, Luiza A.; Cavalcanti, Gisele; Chemale, Gustavo; Collevatti, Rosane G.; Cunha, Cristina W.; Dallagiovanna, Bruno; Dambrós, Bibiana P.; Dellagostin, Odir A.; Falcão, Clarissa; Fantinatti-Garboggini, Fabiana; Felipe, Maria S. S.; Fiorentin, Laurimar; Franco, Gloria R.; Freitas, Nara S. A.; Frías, Diego; Grangeiro, Thalles B.; Grisard, Edmundo C.; Guimarães, Claudia T.; Hungria, Mariangela; Jardim, Sílvia N.; Krieger, Marco A.; Laurino, Jomar P.; Lima, Lucymara F. A.; Lopes, Maryellen I.; Loreto, Élgion L. S.; Madeira, Humberto M. F.; Manfio, Gilson P.; Maranhão, Andrea Q.; Martinkovics, Christyanne T.; Medeiros, Sílvia R. B.; Moreira, Miguel A. M.; Neiva, Márcia; Ramalho-Neto, Cicero E.; Nicolás, Marisa F.; Oliveira, Sergio C.; Paixão, Roger F. C.; Pedrosa, Fábio O.; Pena, Sérgio D. J.; Pereira, Maristela; Pereira-Ferrari, Lilian; Piffer, Itamar; Pinto, Luciano S.; Potrich, Deise P.; Salim, Anna C. M.; Santos, Fabrício R.; Schmitt, Renata; Schneider, Maria P. C.; Schrank, Augusto; Schrank, Irene S.; Schuck, Adriana F.; Seuanez, Hector N.; Silva, Denise W.; Silva, Rosane; Silva, Sérgio C.; Soares, Célia M. A.; Souza, Kelly R. L.; Souza, Rangel C.; Staats, Charley C.; Steffens, Maria B. R.; Teixeira, Santuza M. R.; Urmenyi, Turan P.; Vainstein, Marilene H.; Zuccherato, Luciana W.; Simpson, Andrew J. G.; Zaha, Arnaldo

    2005-01-01

    This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae. PMID:16077101

  6. Complete genome sequence of Paracoccus marcusii phage vB_PmaS-R3 isolated from the South China Sea.

    Science.gov (United States)

    Xu, Yongle; Zhang, Rui; Jiao, Nianzhi

    2015-01-01

    Paracoccus spp. are isolated from both terrestrial and aquatic habitats, indicating their ubiquitous existence in the environment. Here we present the first phage isolated from this genus, vB_PmaS-R3, and its complete genome sequence. Paracoccus phage vB_PmaS-R3 is a siphophage isolated from the South China Sea. The genome sequence is 42,093 bp, with a G + C content of 56.36 %. Fifty-two open reading frames were predicted from the genome. The genome can mainly be divided into three regions: genes for DNA metabolism, regulatory genes and structure forming genes. Genes encoding DNA metabolism and structural proteins showed high sequence homology to corresponding genes of Burkholderia phage KL1 and Pseudomonas phage PA73. In addition, four gene transfer agent-like genes were found in the vB_PmaS-R3 genome. A putative L-alanoyl-D-glutamate peptidase was predicted as the endolysin. A MazG gene was found in the vB_PmaS-R3 genome, which indicates genomic adaption to the nutrient-limited marine environment.

  7. Complete Genome Sequence of Enterococcus mundtii QU 25, an Efficient l-(+)-Lactic Acid-Producing Bacterium

    Science.gov (United States)

    Shiwa, Yuh; Yanase, Hiroaki; Hirose, Yuu; Satomi, Shohei; Araya-Kojima, Tomoko; Watanabe, Satoru; Zendo, Takeshi; Chibazakura, Taku; Shimizu-Kadota, Mariko; Yoshikawa, Hirofumi; Sonomoto, Kenji

    2014-01-01

    Enterococcus mundtii QU 25, a non-dairy bacterial strain of ovine faecal origin, can ferment both cellobiose and xylose to produce l-lactic acid. The use of this strain is highly desirable for economical l-lactate production from renewable biomass substrates. Genome sequence determination is necessary for the genetic improvement of this strain. We report the complete genome sequence of strain QU 25, primarily determined using Pacific Biosciences sequencing technology. The E. mundtii QU 25 genome comprises a 3 022 186-bp single circular chromosome (GC content, 38.6%) and five circular plasmids: pQY182, pQY082, pQY039, pQY024, and pQY003. In all, 2900 protein-coding sequences, 63 tRNA genes, and 6 rRNA operons were predicted in the QU 25 chromosome. Plasmid pQY024 harbours genes for mundticin production. We found that strain QU 25 produces a bacteriocin, suggesting that mundticin-encoded genes on plasmid pQY024 were functional. For lactic acid fermentation, two gene clusters were identified—one involved in the initial metabolism of xylose and uptake of pentose and the second containing genes for the pentose phosphate pathway and uptake of related sugars. This is the first complete genome sequence of an E. mundtii strain. The data provide insights into lactate production in this bacterium and its evolution among enterococci. PMID:24568933

  8. Complete chloroplast genome sequences of Solanum commersonii and its application to chloroplast genotype in somatic hybrids with Solanum tuberosum.

    Science.gov (United States)

    Cho, Kwang-Soo; Cheon, Kyeong-Sik; Hong, Su-Young; Cho, Ji-Hong; Im, Ju-Seong; Mekapogu, Manjulatha; Yu, Yei-Soo; Park, Tae-Ho

    2016-10-01

    Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.

  9. Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Pyropia haitanensis and P. yezoensis are two economically important marine crops that are also considered to be research models to study the physiological ecology of intertidal seaweed communities, evolutionary biology of plastids, and the origins of sexual reproduction. This plastid genome information will facilitate study of breeding, population genetics and phylogenetics.We have fully sequenced using next-generation sequencing the circular plastid genomes of P. hatanensis (195,597 bp and P. yezoensis (191,975 bp, the largest of all the plastid genomes of the red lineage sequenced to date. Organization and gene contents of the two plastids were similar, with 211-213 protein-coding genes (including 29-31 unknown-function ORFs, 37 tRNA genes, and 6 ribosomal RNA genes, suggesting a largest coding capacity in the red lineage. In each genome, 14 protein genes overlapped and no interrupted genes were found, indicating a high degree of genomic condensation. Pyropia maintain an ancient gene content and conserved gene clusters in their plastid genomes, containing nearly complete repertoires of the plastid genes known in photosynthetic eukaryotes. Similarity analysis based on the whole plastid genome sequences showed the distance between P. haitanensis and P. yezoensis (0.146 was much smaller than that of Porphyra purpurea and P. haitanensis (0.250, and P. yezoensis (0.251; this supports re-grouping the two species in a resurrected genus Pyropia while maintaining P. purpurea in genus Porphyra. Phylogenetic analysis supports a sister relationship between Bangiophyceae and Florideophyceae, though precise phylogenetic relationships between multicellular red alage and chromists were not fully resolved.These results indicate that Pyropia have compact plastid genomes. Large coding capacity and long intergenic regions contribute to the size of the largest plastid genomes reported for the red lineage. Possessing the largest coding capacity and ancient gene

  10. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera.

    Science.gov (United States)

    Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-15

    Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Seventeen new complete mtDNA sequences reveal extensive mitochondrial genome evolution within the Demospongiae.

    Directory of Open Access Journals (Sweden)

    Xiujuan Wang

    Full Text Available Two major transitions in animal evolution--the origins of multicellularity and bilaterality--correlate with major changes in mitochondrial DNA (mtDNA organization. Demosponges, the largest class in the phylum Porifera, underwent only the first of these transitions and their mitochondrial genomes display a peculiar combination of ancestral and animal-specific features. To get an insight into the evolution of mitochondrial genomes within the Demospongiae, we determined 17 new mtDNA sequences from this group and analyzing them with five previously published sequences. Our analysis revealed that all demosponge mtDNAs are 16- to 25-kbp circular molecules, containing 13-15 protein genes, 2 rRNA genes, and 2-27 tRNA genes. All but four pairs of sampled genomes had unique gene orders, with the number of shared gene boundaries ranging from 1 to 41. Although most demosponge species displayed low rates of mitochondrial sequence evolution, a significant acceleration in evolutionary rates occurred in the G1 group (orders Dendroceratida, Dictyoceratida, and Verticillitida. Large variation in mtDNA organization was also observed within the G0 group (order Homosclerophorida including gene rearrangements, loss of tRNA genes, and the presence of two introns in Plakortis angulospiculatus. While introns are rare in modern-day demosponge mtDNA, we inferred that at least one intron was present in cox1 of the common ancestor of all demosponges. Our study uncovered an extensive mitochondrial genomic diversity within the Demospongiae. Although all sampled mitochondrial genomes retained some ancestral features, including a minimally modified genetic code, conserved structures of tRNA genes, and presence of multiple non-coding regions, they vary considerably in their size, gene content, gene order, and the rates of sequence evolution. Some of the changes in demosponge mtDNA, such as the loss of tRNA genes and the appearance of hairpin-containing repetitive elements

  12. The Complete Sequence of the First Spodoptera frugiperda Betabaculovirus Genome: A Natural Multiple Recombinant Virus

    Directory of Open Access Journals (Sweden)

    Paola E. Cuartas

    2015-01-01

    Full Text Available Spodoptera frugiperda (Lepidoptera: Noctuidae is a major pest in maize crops in Colombia, and affects several regions in America. A granulovirus isolated from S. frugiperda (SfGV VG008 has potential as an enhancer of insecticidal activity of previously described nucleopolyhedrovirus from the same insect species (SfMNPV. The SfGV VG008 genome was sequenced and analyzed showing circular double stranded DNA of 140,913 bp encoding 146 putative ORFs that include 37 Baculoviridae core genes, 88 shared with betabaculoviruses, two shared only with betabaculoviruses from Noctuide insects, two shared with alphabaculoviruses, three copies of own genes (paralogs and the other 14 corresponding to unique genes without representation in the other baculovirus species. Particularly, the genome encodes for important virulence factors such as 4 chitinases and 2 enhancins. The sequence analysis revealed the existence of eight homologous regions (hrs and also suggests processes of gene acquisition by horizontal transfer including the SfGV VG008 ORFs 046/047 (paralogs, 059, 089 and 099. The bioinformatics evidence indicates that the genome donors of mentioned genes could be alpha- and/or betabaculovirus species. The previous reported ability of SfGV VG008 to naturally co-infect the same host with other virus show a possible mechanism to capture genes and thus improve its fitness.

  13. Complete genome sequence of a novel extrachromosomal virus-like element identified in planarian Girardia tigrina

    Directory of Open Access Journals (Sweden)

    Vagner Loura L

    2002-06-01

    Full Text Available Abstract Background Freshwater planarians are widely used as models for investigation of pattern formation and studies on genetic variation in populations. Despite extensive information on the biology and genetics of planaria, the occurrence and distribution of viruses in these animals remains an unexplored area of research. Results Using a combination of Suppression Subtractive Hybridization (SSH and Mirror Orientation Selection (MOS, we compared the genomes of two strains of freshwater planarian, Girardia tigrina. The novel extrachromosomal DNA-containing virus-like element denoted PEVE (Planarian Extrachromosomal Virus-like Element was identified in one planarian strain. The PEVE genome (about 7.5 kb consists of two unique regions (Ul and Us flanked by inverted repeats. Sequence analyses reveal that PEVE comprises two helicase-like sequences in the genome, of which the first is a homolog of a circoviral replication initiator protein (Rep, and the second is similar to the papillomavirus E1 helicase domain. PEVE genome exists in at least two variant forms with different arrangements of single-stranded and double-stranded DNA stretches that correspond to the Us and Ul regions. Using PCR analysis and whole-mount in situ hybridization, we characterized PEVE distribution and expression in the planarian body. Conclusions PEVE is the first viral element identified in free-living flatworms. This element differs from all known viruses and viral elements, and comprises two potential helicases that are homologous to proteins from distant viral phyla. PEVE is unevenly distributed in the worm body, and is detected in specific parenchyma cells.

  14. The complete chloroplast genome sequence of Helwingia himalaica (Helwingiaceae, Aquifoliales) and a chloroplast phylogenomic analysis of the Campanulidae.

    Science.gov (United States)

    Yao, Xin; Liu, Ying-Ying; Tan, Yun-Hong; Song, Yu; Corlett, Richard T

    2016-01-01

    Complete chloroplast genome sequences have been very useful for understanding phylogenetic relationships in angiosperms at the family level and above, but there are currently large gaps in coverage. We report the chloroplast genome for Helwingia himalaica , the first in the distinctive family Helwingiaceae and only the second genus to be sequenced in the order Aquifoliales. We then combine this with 36 published sequences in the large (c. 35,000 species) subclass Campanulidae in order to investigate relationships at the order and family levels. The Helwingia genome consists of 158,362 bp containing a pair of inverted repeat (IR) regions of 25,996 bp separated by a large single-copy (LSC) region and a small single-copy (SSC) region which are 87,810 and 18,560 bp, respectively. There are 142 known genes, including 94 protein-coding genes, eight ribosomal RNA genes, and 40 tRNA genes. The topology of the phylogenetic relationships between Apiales, Asterales, and Dipsacales differed between analyses based on complete genome sequences and on 36 shared protein-coding genes, showing that further studies of campanulid phylogeny are needed.

  15. The complete chloroplast genome sequence of Helwingia himalaica (Helwingiaceae, Aquifoliales and a chloroplast phylogenomic analysis of the Campanulidae

    Directory of Open Access Journals (Sweden)

    Xin Yao

    2016-11-01

    Full Text Available Complete chloroplast genome sequences have been very useful for understanding phylogenetic relationships in angiosperms at the family level and above, but there are currently large gaps in coverage. We report the chloroplast genome for Helwingia himalaica, the first in the distinctive family Helwingiaceae and only the second genus to be sequenced in the order Aquifoliales. We then combine this with 36 published sequences in the large (c. 35,000 species subclass Campanulidae in order to investigate relationships at the order and family levels. The Helwingia genome consists of 158,362 bp containing a pair of inverted repeat (IR regions of 25,996 bp separated by a large single-copy (LSC region and a small single-copy (SSC region which are 87,810 and 18,560 bp, respectively. There are 142 known genes, including 94 protein-coding genes, eight ribosomal RNA genes, and 40 tRNA genes. The topology of the phylogenetic relationships between Apiales, Asterales, and Dipsacales differed between analyses based on complete genome sequences and on 36 shared protein-coding genes, showing that further studies of campanulid phylogeny are needed.

  16. Interspecific Comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola

    Energy Technology Data Exchange (ETDEWEB)

    Millenbaugh, Bonnie A; Pangilinan, Jasmyn L.; Torriani, Stefano F.F.; Goodwin, Stephen B.; Kema, Gert H.J.; McDonald, Bruce A.

    2007-12-07

    The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960 bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of thirty-five additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.

  17. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    Science.gov (United States)

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  18. Illumina next-generation sequencing reveals the complete mitochondrial genome of Psenopsis anomala (Perciformes: Centrolophidae) with phylogenetic consideration.

    Science.gov (United States)

    Chen, Huapu; Che, Zhiwei; Li, Jiantao; Dai, Mingli; Xiang, Ling; Deng, Siping; Zhu, Chunhua; Huang, Hai; Li, Guangli

    2016-09-01

    Using Illumina next-generation sequencing (NGS), the complete mitochondrial genome of the Psenopsis anomala was sequenced in the present study. The mitochondrial genome of P. anomala is 16,528 bp long and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a control region. The structure about gene order and composition of P. anomala mitochondrial genome is similar to those of most other vertebrates. The nucleotide compositions of the light strand in descending order is 29.18% of T, 27.97% of G, 27.06% of A, and 15.79% of C. With the exception of the NADH dehydrogenase subunit 6 (ND6) and eight tRNA genes, other mitochondrial genes are encoded on the heavy strand. The phylogenetic analysis by maximum-likelihood (ML) method shown that the Psenopsis anomala was closer to Peprilus triacanthus in the phylogenetic relationship.

  19. Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901.

    Directory of Open Access Journals (Sweden)

    Martin Wu

    2005-11-01

    Full Text Available We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a "minimal" model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously.

  20. Life in Hot Carbon Monoxide: The Complete Genome Sequence of Carboxydothermus hydrogenoformans Z-2901.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a "minimal" model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously.

  1. Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901.

    Science.gov (United States)

    Wu, Martin; Ren, Qinghu; Durkin, A Scott; Daugherty, Sean C; Brinkac, Lauren M; Dodson, Robert J; Madupu, Ramana; Sullivan, Steven A; Kolonay, James F; Haft, Daniel H; Nelson, William C; Tallon, Luke J; Jones, Kristine M; Ulrich, Luke E; Gonzalez, Juan M; Zhulin, Igor B; Robb, Frank T; Eisen, Jonathan A

    2005-11-01

    We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO) as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a "minimal" model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously.

  2. Complete genome sequences of three rabies viruses isolated from rabid raccoon dogs and a cow in Korea.

    Science.gov (United States)

    Oem, Jae-Ku; Kim, Seong-Hee; Kim, Yeon-Hee; Lee, Myoung-Heon; Lee, Kyoung-Ki

    2013-12-01

    The complete genomes of three rabies viruses (BD0406CC, BV9901PJ, and 08F40) of two raccoon dogs (Nyctereutes procyonoides koreensis) and a cow were determined. The genomic organization is typical of rabies viruses, and the open reading frames of the N, P, M, G, and L genes are 1,353, 894, 609, 1,575, and 6,384 bases in length, respectively. The full genome length of the three strains was 11,928 nucleotides, and the sequence similarity between the rabies viruses at the nucleotide level was 98.5-99.5%. Sequence comparisons indicated that these rabies viruses belong to the "Arctic and Arctic-like" group, with high homology to the Eurasian cluster. All Korean strains were clustered with the Mongolia strains, which belong to Arctic-like 1 clade. The 08F40 and BD0406CC strains were constructed with rabies virus strains isolated in Gangwon province. The BV9901PJ strain was closely related to strains isolated in Gyeonggi province in Korea. Three strains were more dependent upon geographical distribution and time period than host species. Complete genome sequencing of different host-origin rabies viruses will provide information that should contribute to understanding the transmission cycle and genetic variability of rabies from different hosts.

  3. Complete genome sequence of maize yellow striate virus, a new cytorhabdovirus infecting maize and wheat crops in Argentina.

    Science.gov (United States)

    Maurino, Fernanda; Dumón, Analía D; Llauger, Gabriela; Alemandri, Vanina; de Haro, Luis A; Mattio, M Fernanda; Del Vas, Mariana; Laguna, Irma Graciela; Giménez Pecci, María de la Paz

    2018-01-01

    A rhabdovirus infecting maize and wheat crops in Argentina was molecularly characterized. Through next-generation sequencing (NGS) of symptomatic leaf samples, the complete genome was obtained of two isolates of maize yellow striate virus (MYSV), a putative new rhabdovirus, differing by only 0.4% at the nucleotide level. The MYSV genome consists of 12,654 nucleotides for maize and wheat virus isolates, and shares 71% nucleotide sequence identity with the complete genome of barley yellow striate mosaic virus (BYSMV, NC028244). Ten open reading frames (ORFs) were predicted in the MYSV genome from the antigenomic strand and were compared with their BYSMV counterparts. The highest amino acid sequence identity of the MYSV and BYSMV proteins was 80% between the L proteins, and the lowest was 37% between the proteins 4. Phylogenetic analysis suggested that the MYSV isolates are new members of the genus Cytorhabdovirus, family Rhabdoviridae. Yellow striate, affecting maize and wheat crops in Argentina, is an emergent disease that presents a potential economic risk for these widely distributed crops.

  4. Complete genome sequence of Lactobacillus plantarum LZ95, a potential probiotic strain producing bacteriocins and B-group vitamin riboflavin.

    Science.gov (United States)

    Li, Ping; Gu, Qing

    2016-07-10

    Lactobacillus plantarum LZ95 is a potential probiotic isolated from newborn infant fecal and it is identified to produce riboflavin with great antimicrobial activity. The complete genome sequence of this strain was reported in the present study. The genome contains a 3,261,418-bp chromosome and two plasmids. Genes, related to the biosynthesis of bacteriocins and riboflavin, were identified. This work will facilitate to reveal the biosynthetic mechanism of bacteriocins and B-group vitamins in lactic acid bacteria and provide evidence for its potential application in food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The first complete mitochondrial genome sequences of Amblypygi (Chelicerata: Arachnida) reveal conservation of the ancestral arthropod gene order.

    Science.gov (United States)

    Fahrein, Kathrin; Masta, Susan E; Podsiadlowski, Lars

    2009-05-01

    Amblypygi (whip spiders) are terrestrial chelicerates inhabiting the subtropics and tropics. In morphological and rRNA-based phylogenetic analyses, Amblypygi cluster with Uropygi (whip scorpions) and Araneae (spiders) to form the taxon Tetrapulmonata, but there is controversy regarding the interrelationship of these three taxa. Mitochondrial genomes provide an additional large data set of phylogenetic information (sequences, gene order, RNA secondary structure), but in arachnids, mitochondrial genome data are missing for some of the major orders. In the course of an ongoing project concerning arachnid mitochondrial genomics, we present the first two complete mitochondrial genomes from Amblypygi. Both genomes were found to be typical circular duplex DNA molecules with all 37 genes usually present in bilaterian mitochondrial genomes. In both species, gene order is identical to that of Limulus polyphemus (Xiphosura), which is assumed to reflect the putative arthropod ground pattern. All tRNA gene sequences have the potential to fold into structures that are typical of metazoan mitochondrial tRNAs, except for tRNA-Ala, which lacks the D arm in both amblypygids, suggesting the loss of this feature early in amblypygid evolution. Phylogenetic analysis resulted in weak support for Uropygi being the sister group of Amblypygi.

  6. Phylogenomic relationship of feijoa (Acca sellowiana (O.Berg) Burret) with other Myrtaceae based on complete chloroplast genome sequences.

    Science.gov (United States)

    Machado, Lilian de Oliveira; Vieira, Leila do Nascimento; Stefenon, Valdir Marcos; Oliveira Pedrosa, Fábio de; Souza, Emanuel Maltempi de; Guerra, Miguel Pedro; Nodari, Rubens Onofre

    2017-04-01

    Given their distribution, importance, and richness, Myrtaceae species comprise a model system for studying the evolution of tropical plant diversity. In addition, chloroplast (cp) genome sequencing is an efficient tool for phylogenetic relationship studies. Feijoa [Acca sellowiana (O. Berg) Burret; CN: pineapple-guava] is a Myrtaceae species that occurs naturally in southern Brazil and northern Uruguay. Feijoa is known for its exquisite perfume and flavorful fruits, pharmacological properties, ornamental value and increasing economic relevance. In the present work, we reported the complete cp genome of feijoa. The feijoa cp genome is a circular molecule of 159,370 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC 88,028 bp) and a Small Single Copy region (SSC 18,598 bp) separated by Inverted Repeat regions (IRs 26,372 bp). The genome structure, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. When compared to other cp genome sequences of Myrtaceae, feijoa showed closest relationship with pitanga (Eugenia uniflora L.). Furthermore, a comparison of pitanga synonymous (Ks) and nonsynonymous (Ka) substitution rates revealed extremely low values. Maximum Likelihood and Bayesian Inference analyses produced phylogenomic trees identical in topology. These trees supported monophyly of three Myrtoideae clades.

  7. Toward Understanding Phage:Host Interactions in the Rumen; Complete Genome Sequences of Lytic Phages Infecting Rumen Bacteria

    Directory of Open Access Journals (Sweden)

    Rosalind A. Gilbert

    2017-12-01

    Full Text Available The rumen is known to harbor dense populations of bacteriophages (phages predicted to be capable of infecting a diverse range of rumen bacteria. While bacterial genome sequencing projects are revealing the presence of phages which can integrate their DNA into the genome of their host to form stable, lysogenic associations, little is known of the genetics of phages which utilize lytic replication. These phages infect and replicate within the host, culminating in host lysis, and the release of progeny phage particles. While lytic phages for rumen bacteria have been previously isolated, their genomes have remained largely uncharacterized. Here we report the first complete genome sequences of lytic phage isolates specifically infecting three genera of rumen bacteria: Bacteroides, Ruminococcus, and Streptococcus. All phages were classified within the viral order Caudovirales and include two phage morphotypes, representative of the Siphoviridae and Podoviridae families. The phage genomes displayed modular organization and conserved viral genes were identified which enabled further classification and determination of closest phage relatives. Co-examination of bacterial host genomes led to the identification of several genes responsible for modulating phage:host interactions, including CRISPR/Cas elements and restriction-modification phage defense systems. These findings provide new genetic information and insights into how lytic phages may interact with bacteria of the rumen microbiome.

  8. Complete genome sequence of Lactobacillus salivarius CECT 5713, a probiotic strain isolated from human milk and infant feces.

    Science.gov (United States)

    Jiménez, Esther; Martín, Rocío; Maldonado, Antonio; Martín, Virginia; Gómez de Segura, Aranzazu; Fernández, Leonides; Rodríguez, Juan M

    2010-10-01

    Lactobacillus salivarius is a homofermentative lactic acid bacterium and is frequently isolated from mucosal surfaces of healthy humans. L. salivarius CECT 5713, a strain isolated simultaneously from breast milk and infant feces of a healthy mother-infant pair, has immunomodulatory, anti-inflammatory, and anti-infectious properties, as revealed by several in vitro and in vivo assays. Here, we report its complete and annotated genome sequence.

  9. Analysis of complete genome sequence and major surface antigens of Neorickettsia helminthoeca, causative agent of salmon poisoning disease

    OpenAIRE

    Lin, Mingqun; Bachman, Katherine; Cheng, Zhihui; Daugherty, Sean C.; Nagaraj, Sushma; Sengamalay, Naomi; Ott, Sandra; Godinez, Al; Tallon, Luke J.; Sadzewicz, Lisa; Fraser, Claire; Dunning Hotopp, Julie C.; Rikihisa, Yasuko

    2017-01-01

    Summary Neorickettsia helminthoeca, a type species of the genus Neorickettsia, is an endosymbiont of digenetic trematodes of veterinary importance. Upon ingestion of salmonid fish parasitized with infected trematodes, canids develop salmon poisoning disease (SPD), an acute febrile illness that is particularly severe and often fatal in dogs without adequate treatment. We determined and analysed the complete genome sequence of N.?helminthoeca: a single small circular chromosome of 884?232?bp en...

  10. Complete genome sequence of Agarivorans gilvus WH0801(T), an agarase-producing bacterium isolated from seaweed.

    Science.gov (United States)

    Zhang, Pujuan; Rui, Junpeng; Du, Zongjun; Xue, Changhu; Li, Xiangzhen; Mao, Xiangzhao

    2016-02-10

    Agarivorans gilvus WH0801(T), an agarase-producing bacterium, was isolated from the surface of seaweed. Here, we present the complete genome sequence, which consists of one circular chromosome of 4,416,600 bp with a GC content of 45.9%. This genetic information will provide insight into biotechnological applications of producing agar for food and industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Whole Genome Sequencing and Comparisons of Different Chinese Rabies Virus Lineages Including the First Complete Genome of an Arctic-like Strain in China.

    Science.gov (United States)

    Li, Hao; Guo, Zhen Yang; Zhang, Jian; Tao, Xiao Yan; Zhu, Wu Yang; Tang, Qing; Liu, Hong Tu

    2016-05-01

    To learn the rabies genome molecular characteristics and compare the difference of China rabies lineages. The complete genomes of 12 strains from different China rabies lineages were amplified and sequenced, and all the China street strain genomes (total 43), Arctic and Arctic-like genomes were aligned using ClustalX2, the genome homologies were analyzed using MegAlign software, and the phylogenetic trees were constructed by MEGA 5. First Arctic-like rabies genome in China (CQH1202D) was reported, and we supplemented the rabies genome data of China, ensuring at least one genome was available in each China lineage. The genome size of China V (11908nt) is obviously shorter than other lineages' (11923-11925nt) for the difference of N-P non-coding regions. Among different lineages, the genome homologies are almost under 90%. CQH1202D (China IV lineage) has close relationship with strains from South Korea and they share about 95% genome similarities. The molecular characteristics of 6 different China rabies lineages were compared and analyzed from genome level, which benefits for continued comprehensive rabies surveillance, rabies prevention and control in China. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  12. Complete genome sequence of Tsukamurella sp. MH1: A wide-chain length alkane-degrading actinomycete.

    Science.gov (United States)

    Chiciudean, Iulia; Nie, Yong; Tănase, Ana-Maria; Stoica, Ileana; Wu, Xiao-Lei

    2018-02-20

    Tsukamurella sp. strain MH1, capable to use a wide range of n-alkanes as the only carbon source, was isolated from petroleum-contaminated soil (Pitești, Romania) and its complete genome was sequenced. The 4,922,396 bp genome contains only one circular chromosome with a G + C content of 71.12%, much higher than the type strains of this genus (68.4%). Based on the 16S rRNA genes sequence similarity, strain MH1 was taxonomically identified as Tsukamurella carboxydivorans. Genome analyses revealed that strain MH1 is harboring only one gene encoding for the alkB-like hydroxylase, arranged in a complete alkane monooxygenase operon. This is the first complete genome of the specie T. carboxydivorans, which will provide insights into the potential of Tsukamurella sp. MH1 and related strains for bioremediation of petroleum hydrocarbons-contaminated sites and into the environmental role of these bacteria. Copyright © 2017. Published by Elsevier B.V.

  13. Infidelity of SARS-CoV Nsp14-Exonuclease Mutant Virus Replication Is Revealed by Complete Genome Sequencing

    Science.gov (United States)

    Eckerle, Lance D.; Becker, Michelle M.; Halpin, Rebecca A.; Li, Kelvin; Venter, Eli; Lu, Xiaotao; Scherbakova, Sana; Graham, Rachel L.; Baric, Ralph S.; Stockwell, Timothy B.; Spiro, David J.; Denison, Mark R.

    2010-01-01

    Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and

  14. Complete Genome Sequences of emm111 Type Streptococcus pyogenes Strain GUR, with Antitumor Activity, and Its Derivative Strain GURSA1 with an Inactivated emm Gene

    DEFF Research Database (Denmark)

    Suvorova, Maria A; Tsapieva, Anna N; Bak, Emilie Glad

    2017-01-01

    We present here the complete genome sequence of Streptococcus pyogenes type emm111 strain GUR, a throat isolate from a scarlet fever patient, which has been used to treat cancer patients in the former Soviet Union. We also present the complete genome sequence of its derivative strain GURSA1...

  15. Complete genome sequence of virulent bacteriophage SHOU24, which infects foodborne pathogenic Vibrio parahaemolyticus.

    Science.gov (United States)

    Yuan, Lin; Cui, Zelin; Wang, Yanchun; Guo, Xiaokui; Zhao, Yong

    2014-11-01

    A novel lytic Vibrio parahaemolyticus phage (SHOU24) belonging to the family Siphoviridae was isolated from aquatic market sewage. The phage is only able to infect V. parahaemolyticus containing a tdh gene. SHOU24 has a linear genome of 77,837 bp with a G+C content of 46.0 %. In total, 88 predicted proteins have homologues in databases, and the majority of the core genes share high sequence similarity with genes from unrelated viruses and bacteria. Genes related to lysogeny and host lysis were not detected. However, the detection method, the results of a one-step growth experiment and analysis using the Phage Classification Tool Set (PHACTS) indicate that SHOU24 is lytic. A bioinformatics analysis showed that SHOU24 is not closely related to other Vibrio phages.

  16. First complete genome sequence of parainfluenza virus 5 isolated from lesser panda.

    Science.gov (United States)

    Zhai, Jun-Qiong; Zhai, Shao-Lun; Lin, Tao; Liu, Jian-Kui; Wang, He-Xing; Li, Bing; Zhang, He; Zou, Shu-Zhan; Zhou, Xia; Wu, Meng-Fan; Chen, Wu; Luo, Man-Lin

    2017-05-01

    Parainfluenza virus 5 (PIV5) is widespread in mammals and humans. Up to now, there is little information about PIV5 infection in lesser pandas. In this study, a PIV5 variant (named ZJQ-221) was isolated from a lesser panda with respiratory disease in Guangzhou zoo in Guangdong province, southern China. The full-length genome of ZJQ-221 was found to be 15,246 nucleotides and consisted of seven non-overlapping genes encoding eight proteins (i.e., NP, V, P, M, F, SH, HN and L). Sequence alignment and genetic analysis revealed that ZJQ-221 shared a close relationship with a PIV5 strain of canine-origin (1168-1) from South Korea. The findings of this study confirm the presence of PIV5 in lesser panda and indicate this mammal as a possible natural reservoir. Furthermore they highlight the urgent need to strengthen viral surveillance and control of PIV5 in zoo animals.

  17. The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Perez-Pantoja, Danilo; Ledger, Thomas; Mavromatis, Kostantinos; Anderson, Iain J.; Ivanova, Natalia N.; Hooper, Sean D.; Lapidus, Alla; Lucas, Susan; Gonzalez, Bernardo; Kyrpides, Nikos C.

    2010-02-01

    Cupriavidus necator JMP134 (formerly Ralstonia eutropha JMP134) is a Gram-negative {beta}-proteobacterium able to degrade a variety of chloroaromatic compounds and chemically-related pollutants. It was originally isolated based on its ability to use 2,4 dichlorophenoxyacetic acid (2,4-D) as a sole carbon and energy source [1]. In addition to 2,4-D, this strain can also grow on a variety of aromatic substrates, such as 4-chloro-2-methylphenoxyacetate (MCPA), 3-chlorobenzoic acid (3-CB) [2], 2,4,6-trichlorophenol [3], and 4-fluorobenzoate [4]. The genes necessary for 2,4-D utilization have been identified. They are located in two clusters on plasmid pPJ4: tfd{sub I} and tfd{sub II} [5,6,7,8]. The sequence and analysis of plasmid pJP4 was reported and a congruent model for bacterial adaptation to chloroaromatic pollutants was proposed [9]. According to this model, catabolic gene clusters assemble in a modular manner into broad-host-range plasmid backbones by means of repeated chromosomal capture events. Cupriavidus and related Burkholderia genomes are typically multipartite, composed of two large replicons (chromosomes) accompanied by classical plasmids. Previous work with Burkholderia xenovorans LB400 revealed a differential gene distribution with core functions preferentially encoded by the larger chromosome and secondary functions by the smaller [10]. It has been proposed that the secondary chromosomes in many bacteria originated from ancestral plasmids which, in turn, had been the recipient of genes transferred earlier from ancestral primary chromosomes [11]. The existence of multiple Cupriavidus and Burkholderia genomes provides the opportunity for comparative studies that will lead to a better understanding of the evolutionary mechanisms for the formation of multipartite genomes and the relation with biodegradation abilities.

  18. The Bryopsis hypnoides plastid genome: multimeric forms and complete nucleotide sequence.

    Directory of Open Access Journals (Sweden)

    Fang Lü

    Full Text Available BACKGROUND: Bryopsis hypnoides Lamouroux is a siphonous green alga, and its extruded protoplasm can aggregate spontaneously in seawater and develop into mature individuals. The chloroplast of B. hypnoides is the biggest organelle in the cell and shows strong autonomy. To better understand this organelle, we sequenced and analyzed the chloroplast genome of this green alga. PRINCIPAL FINDINGS: A total of 111 functional genes, including 69 potential protein-coding genes, 5 ribosomal RNA genes, and 37 tRNA genes were identified. The genome size (153,429 bp, arrangement, and inverted-repeat (IR-lacking structure of the B. hypnoides chloroplast DNA (cpDNA closely resembles that of Chlorella vulgaris. Furthermore, our cytogenomic investigations using pulsed-field gel electrophoresis (PFGE and southern blotting methods showed that the B. hypnoides cpDNA had multimeric forms, including monomer, dimer, trimer, tetramer, and even higher multimers, which is similar to the higher order organization observed previously for higher plant cpDNA. The relative amounts of the four multimeric cpDNA forms were estimated to be about 1, 1/2, 1/4, and 1/8 based on molecular hybridization analysis. Phylogenetic analyses based on a concatenated alignment of chloroplast protein sequences suggested that B. hypnoides is sister to all Chlorophyceae and this placement received moderate support. CONCLUSION: All of the results suggest that the autonomy of the chloroplasts of B. hypnoides has little to do with the size and gene content of the cpDNA, and the IR-lacking structure of the chloroplasts indirectly demonstrated that the multimeric molecules might result from the random cleavage and fusion of replication intermediates instead of recombinational events.

  19. The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis and phylogenetic relationships to other angiosperms

    Directory of Open Access Journals (Sweden)

    Gurusamy eRaman

    2016-03-01

    Full Text Available Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of

  20. Complete mitochondrial genome of Setipinna taty (Scaly hair-fin anchovy): repetitive sequences in the control region.

    Science.gov (United States)

    Zhang, Bo; Sun, Yuena

    2013-12-01

    The Scaly hair-fin anchovy, Setipinna taty (Clupeiformes, Engraulidae), is a commercially important marine fish species in China. In this paper, the complete mitochondrial genome of was first determined. The mitogenome (16,887 bp) comprises 22 tRNA genes, 2 rRNA genes, 13 protein-coding genes, and 2 main non-coding regions (the control region (CR) and the origin of the light strand replication). A 195 bp tandem repeat sequence was identified in the CR. This mitogenome sequence data would play an important role in population genetics and phylogenetic analysis of the Engraulidae.

  1. Complete genome sequence analysis of novel human bocavirus reveals genetic recombination between human bocavirus 2 and human bocavirus 4.

    Science.gov (United States)

    Khamrin, Pattara; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2013-07-01

    Epidemiological surveillance of human bocavirus (HBoV) was conducted on fecal specimens collected from hospitalized children with diarrhea in Chiang Mai, Thailand in 2011. By partial sequence analysis of VP1 gene, an unusual strain of HBoV (CMH-S011-11), was initially identified as HBoV4. The complete genome sequence of CMH-S011-11 was performed and analyzed further to clarify whether it was a recombinant strain or a new HBoV variant. Analysis of complete genome sequence revealed that the coding sequence starting from NS1, NP1 to VP1/VP2 was 4795 nucleotides long. Interestingly, the nucleotide sequence of NS1 gene of CMH-S011-11 was most closely related to the HBoV2 reference strains detected in Pakistan, which contradicted to the initial genotyping result of the partial VP1 region in the previous study. In addition, comparison of NP1 nucleotide sequence of CMH-S011-11 with those of other HBoV1-4 reference strains also revealed a high level of sequence identity with HBoV2. On the other hand, nucleotide sequence of VP1/VP2 gene of CMH-S011-11 was most closely related to those of HBoV4 reference strains detected in Nigeria. The overall full-length sequence analysis revealed that this CMH-S011-11 was grouped within HBoV4 species, but located in a separate branch from other HBoV4 prototype strains. Recombination analysis revealed that CMH-S011-11 was the result of recombination between HBoV2 and HBoV4 strains with the break point located near the start codon of VP2. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Comparative analysis of the complete genome of an epidemic hospital sequence type 203 clone of vancomycin-resistant Enterococcus faecium

    Science.gov (United States)

    2013-01-01

    Background In this report we have explored the genomic and microbiological basis for a sustained increase in bloodstream infections at a major Australian hospital caused by Enterococcus faecium multi-locus sequence type (ST) 203, an outbreak strain that has largely replaced a predecessor ST17 sequence type. Results To establish a ST203 reference sequence we fully assembled and annotated the genome of Aus0085, a 2009 vancomycin-resistant Enterococcus faecium (VREfm) bloodstream isolate, and the first example of a completed ST203 genome. Aus0085 has a 3.2 Mb genome, comprising a 2.9 Mb circular chromosome and six circular plasmids (2 kb–130 kb). Twelve percent of the 3222 coding sequences (CDS) in Aus0085 are not present in ST17 E. faecium Aus0004 and ST18 E. faecium TX16. Extending this comparison to an additional 12 ST17 and 14 ST203 E. faecium hospital isolate genomes revealed only six genomic regions spanning 41 kb that were present in all ST203 and absent from all ST17 genomes. The 40 CDS have predicted functions that include ion transport, riboflavin metabolism and two phosphotransferase systems. Comparison of the vancomycin resistance-conferring Tn1549 transposon between Aus0004 and Aus0085 revealed differences in transposon length and insertion site, and van locus sequence variation that correlated with a higher vancomycin MIC in Aus0085. Additional phenotype comparisons between ST17 and ST203 isolates showed that while there were no differences in biofilm-formation and killing of Galleria mellonella, ST203 isolates grew significantly faster and out-competed ST17 isolates in growth assays. Conclusions Here we have fully assembled and annotated the first ST203 genome, and then characterized the genomic differences between ST17 and ST203 E. faecium. We also show that ST203 E. faecium are faster growing and can out-compete ST17 E. faecium. While a causal genetic basis for these phenotype differences is not provided here, this study revealed conserved genetic

  3. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain SO2 (Sequence Type 302) Isolated from an Asymptomatic Child in Mexico

    Science.gov (United States)

    Calva, Edmundo; Puente, José L.; Zaidi, Mussaret B.

    2016-01-01

    The complete genome sequence of Salmonella enterica serovar Typhimurium strain SO2, isolated from an asymptomatic child in Mexico, was determined using PacBio single-molecule real-time technology. Strain SO2 has six complete chromosomal prophages, namely, ST104, Gifsy-2, ST64B, Gifsy-1, ELPhiS, and FSL SP-004, and carries a Salmonella virulence plasmid. PMID:27081133

  4. Complete genome sequence of Rhizobium leguminosarum bv. trifolii strain WSM1325, an effective microsymbiont of annual Mediterranean clovers.

    Science.gov (United States)

    Reeve, Wayne; O’Hara, Graham; Chain, Patrick; Ardley, Julie; Bräu, Lambert; Nandesena, Kemanthi; Tiwari, Ravi; Copeland, Alex; Nolan, Matt; Han, Cliff; Brettin, Thomas; Land, Miriam; Ovchinikova, Galina; Ivanova, Natalia; Mavromatis, Konstantinos; Markowitz, Victor; Kyrpides, Nikos; Melino, Vanessa; Denton, Matthew; Yates, Ron; Howieson, John

    2010-01-01

    Rhizobium leguminosarum bv trifolii is a soil-inhabiting bacterium that has the capacity to be an effective nitrogen fixing microsymbiont of a diverse range of annual Trifolium (clover) species. Strain WSM1325 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from root nodules collected in 1993 from the Greek Island of Serifos. WSM1325 is produced commercially in Australia as an inoculant for a broad range of annual clovers of Mediterranean origin due to its superior attributes of saprophytic competence, nitrogen fixation and acid-tolerance. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a microsymbiont of annual clovers. We reveal that its genome size is 7,418,122 bp encoding 7,232 protein-coding genes and 61 RNA-only encoding genes. This multipartite genome contains 6 distinct replicons; a chromosome of size 4,767,043 bp and 5 plasmids of size 828,924 bp, 660,973 bp, 516,088 bp, 350,312 bp and 294,782 bp. PMID:21304718

  5. Complete genome sequence of Rhizobium leguminosarum bv. trifolii strain WSM1325, an effective microsymbiont of annual Mediterranean clovers.

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, Wayne [Murdoch University, Perth, Australia; O' Hara, Graham [Murdoch University, Perth, Australia; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Ardley, Julie [Murdoch University, Perth, Australia; Brau, Lambert [Murdoch University, Perth, Australia; Nandesena, Kemanthi [Murdoch University, Perth, Australia; Tiwari, Ravi [Murdoch University, Perth, Australia; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Land, Miriam L [ORNL; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Melino, Vanessa [Murdoch University, Perth, Australia; Denton, Matthew [Department of Primary Industries, Victoria, Australia; Yates, Ron [Murdoch University, Perth, Australia; Howieson, John [Murdoch University, Perth, Australia

    2010-01-01

    Rhizobium leguminosarum bv trifolii is a soil-inhabiting bacterium that that has the capacity to be an effective nitrogen fixing microsymbiont of a diverse range of annual Trifolium (clover) species. Strain WSM1325 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from root nodules collected in 1993 from the Greek Island of Serifos. WSM1325 is manufactured commercially in Australia as an inoculant for a broad range of annual clovers of Mediterranean origin due to its superior attributes of saprophytic competence, nitrogen fixation and acid-tolerance. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a microsymbiont of annual clovers. We reveal that its genome size is 7,418,122 bp encoding 7,232 protein-coding genes and 61 RNA-only encoding genes. This multipartite genome contains 6 distinct replicons; a chromosome of size 4,767,043 bp and 5 plasmids of size 828,924, 660,973, 516,088, 350,312 and 294,782 bp.

  6. The complete chloroplast genome sequence of Morus cathayana and Morus multicaulis, and comparative analysis within genus Morus L

    Directory of Open Access Journals (Sweden)

    Wei Qing Kong

    2017-03-01

    Full Text Available Trees in the Morus genera belong to the Moraceae family. To better understand the species status of genus Morus and to provide information for studies on evolutionary biology within the genus, the complete chloroplast (cp genomes of M. cathayana and M. multicaulis were sequenced. The plastomes of the two species are 159,265 bp and 159,103 bp, respectively, with corresponding 83 and 82 simple sequence repeats (SSRs. Similar to the SSRs of M. mongolica and M. indica cp genomes, more than 70% are mononucleotides, ten are in coding regions, and one exhibits nucleotide content polymorphism. Results for codon usage and relative synonymous codon usage show a strong bias towards NNA and NNT codons in the two cp genomes. Analysis of a plot of the effective number of codons (ENc for five Morus spp. cp genomes showed that most genes follow the standard curve, but several genes have ENc values below the expected curve. The results indicate that both natural selection and mutational bias have contributed to the codon bias. Ten highly variable regions were identified among the five Morus spp. cp genomes, and 154 single-nucleotide polymorphism mutation events were accurately located in the gene coding region.

  7. The Complete Sequence of the Acacia ligulata Chloroplast Genome Reveals a Highly Divergent clpP1 Gene.

    Directory of Open Access Journals (Sweden)

    Anna V Williams

    Full Text Available Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes. The A. ligulata chloroplast genome is 174,233 bp in size, comprising inverted repeats of 38,225 bp and single-copy regions of 92,798 bp and 4,985 bp [corrected]. Acacia ligulata lacks the inversion present in many of the Papilionoideae, but is not otherwise significantly different in terms of gene and repeat content. The key feature is its highly divergent clpP1 gene, normally considered essential in chloroplast genomes. In A. ligulata, although transcribed and spliced, it probably encodes a catalytically inactive protein. This study provides a significant resource for further genetic research into Acacia and the Mimosoideae. The divergent clpP1 gene suggests that Acacia will provide an interesting source of information on the evolution and functional diversity of the chloroplast Clp protease complex.

  8. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  9. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  10. The complete genome sequence of the first hesperiid-infecting alphabaculovirus isolated from the leguminous pest Urbanus proteus (Lepidoptera: Hesperiidae).

    Science.gov (United States)

    Santos, Ethiane R; Oliveira, Lucas B; Peterson, Lenen; Sosa-Gómez, Daniel R; Ribeiro, Bergmann Morais; Ardisson-Araújo, Daniel M P

    2018-03-20

    Baculoviruses are insect viruses largely used as expression vectors and biopesticides. These viruses can efficiently infect the larval stage of several agricultural pests worldwide causing a lethal disease. In this work, we found a novel baculovirus isolated from the larval stage of Urbanus proteus (L.), the bean leafroller and characterized its complete genome. This is an important pest of several leguminous plants in Brazil and belongs to the butterfly family Hesperiidae, from where no baculovirus genome sequence has been described. This new virus was shown to have the smallest genome among all alphabaculoviruses sequenced to date, with 105,555 bp and 119 putative ORFs. We found ten unique genes, seven bro, and the 38 baculovirus core genes. UrprNPV was found to be related to the Adoxophyes-infecting baculoviruses AdorNPV and AdhoNPV with high genetic distance and a long branch length. Interestingly, few individual core gene-based phylogenies were found to support the relationship of UrprNPV to both AdorNPV and AdhoNPV. Importantly, the increase in number of completely sequenced baculovirus points to a very exciting way to understand baculovirus and its evolution and could potentially help the use of baculovirus as both biopesticides and expression vectors. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste.

    Science.gov (United States)

    Kim, Sang Yoon; Lee, Sang Yeob; Weon, Hang-Yeon; Sang, Mee Kyung; Song, Jaekyeong

    2017-01-10

    Bacillus species have been widely used as biological control agents in agricultural fields due to their ability to suppress plant pathogens. Bacillus velezensis M75 was isolated from cotton waste used for mushroom cultivation in Korea, and was found to be antagonistic to fungal plant pathogens. Here, we report the complete genome sequence of the M75 strain, which has a 4,007,450-bp single circular chromosome with 3921 genes and a G+C content of 46.60%. The genome contained operons encoding various non-ribosomal peptide synthetases and polyketide synthases, which are responsible for the biosynthesis of secondary metabolites. Our results will provide a better understanding of the genome of B. velezensis strains for their application as biocontrol agents against fungal plant pathogens in agricultural fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Complete genome sequence of Bacillus thuringiensis YC-10, a novel active strain against plant-parasitic nematodes.

    Science.gov (United States)

    Cheng, Feixue; Wang, Jian; Song, Zhiqiang; Cheng, Ju'e; Zhang, Deyong; Liu, Yong

    2015-09-20

    Bacillus thuringiensis is an important microbial biopesticide for controlling agricultural pests by the production of toxic parasporal crystals proteins.Here,we report the finished annotated genome sequence of B. thuringiensis YC-10,which is highly toxic to nematodes.The complete genome sequence consists of a circular chromosome and nine circular plasmids,which the biggest plasmid harbors six parasporal crystals proteins genes consisting of cry1Aa, cry1Ac, cry1Ia, cry2Aa, cry2Ab and cryB1. The crystals proteins of Cry1Ia and Cry1Aa have high nematicidal activity against Meloidogyne incognita. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The Complete Chloroplast Genome Sequence of Tree of Heaven (Ailanthus altissima (Mill. (Sapindales: Simaroubaceae, an Important Pantropical Tree

    Directory of Open Access Journals (Sweden)

    Josphat K. Saina

    2018-03-01

    Full Text Available Ailanthus altissima (Mill. Swingle (Simaroubaceae is a deciduous tree widely distributed throughout temperate regions in China, hence suitable for genetic diversity and evolutionary studies. Previous studies in A. altissima have mainly focused on its biological activities, genetic diversity and genetic structure. However, until now there is no published report regarding genome of this plant species or Simaroubaceae family. Therefore, in this paper, we first characterized A. altissima complete chloroplast genome sequence. The tree of heaven chloroplast genome was found to be a circular molecule 160,815 base pairs (bp in size and possess a quadripartite structure. The A. altissima chloroplast genome contains 113 unique genes of which 79 and 30 are protein coding and transfer RNA (tRNA genes respectively and also 4 ribosomal RNA genes (rRNA with overall GC content of 37.6%. Microsatellite marker detection identified A/T mononucleotides as majority SSRs in all the seven analyzed genomes. Repeat analyses of seven Sapindales revealed a total of 49 repeats in A. altissima, Rhus chinensis, Dodonaea viscosa, Leitneria floridana, while Azadirachta indica, Boswellia sacra, and Citrus aurantiifolia had a total of 48 repeats. The phylogenetic analysis using protein coding genes revealed that A. altissima is a sister to Leitneria floridana and also suggested that Simaroubaceae is a sister to Rutaceae family. The genome information reported here could be further applied for evolution and invasion, population genetics, and molecular studies in this plant species and family.

  14. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids.

    Science.gov (United States)

    Park, Seongjun; Ruhlman, Tracey A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; Baeshen, Mohammed N; Sabir, Meshaal J; Baeshen, Nabih A; Jansen, Robert K

    2014-05-28

    Rhazya stricta is native to arid regions in South Asia and the Middle East and is used extensively in folk medicine to treat a wide range of diseases. In addition to generating genomic resources for this medicinally important plant, analyses of the complete plastid and mitochondrial genomes and a nuclear transcriptome from Rhazya provide insights into inter-compartmental transfers between genomes and the patterns of evolution among eight asterid mitochondrial genomes. The 154,841 bp plastid genome is highly conserved with gene content and order identical to the ancestral organization of angiosperms. The 548,608 bp mitochondrial genome exhibits a number of phenomena including the presence of recombinogenic repeats that generate a multipartite organization, transferred DNA from the plastid and nuclear genomes, and bidirectional DNA transfers between the mitochondrion and the nucleus. The mitochondrial genes sdh3 and rps14 have been transferred to the nucleus and have acquired targeting presequences. In the case of rps14, two copies are present in the nucleus; only one has a mitochondrial targeting presequence and may be functional. Phylogenetic analyses of both nuclear and mitochondrial copies of rps14 across angiosperms suggests Rhazya has experienced a single transfer of this gene to the nucleus, followed by a duplication event. Furthermore, the phylogenetic distribution of gene losses and the high level of sequence divergence in targeting presequences suggest multiple, independent transfers of both sdh3 and rps14 across asterids. Comparative analyses of mitochondrial genomes of eight sequenced asterids indicates a complicated evolutionary history in this large angiosperm clade with considerable diversity in genome organization and size, repeat, gene and intron content, and amount of foreign DNA from the plastid and nuclear genomes. Organelle genomes of Rhazya stricta provide valuable information for improving the understanding of mitochondrial genome evolution

  15. Insights into Genome Plasticity and Pathogenicity of the Plant Pathogenic Bacterium Xanthomonas campestris pv. vesicatoria Revealed by the Complete Genome Sequence

    Science.gov (United States)

    Thieme, Frank; Koebnik, Ralf; Bekel, Thomas; Berger, Carolin; Boch, Jens; Büttner, Daniela; Caldana, Camila; Gaigalat, Lars; Goesmann, Alexander; Kay, Sabine; Kirchner, Oliver; Lanz, Christa; Linke, Burkhard; McHardy, Alice C.; Meyer, Folker; Mittenhuber, Gerhard; Nies, Dietrich H.; Niesbach-Klösgen, Ulla; Patschkowski, Thomas; Rückert, Christian; Rupp, Oliver; Schneiker, Susanne; Schuster, Stephan C.; Vorhölter, Frank-Jörg; Weber, Ernst; Pühler, Alfred; Bonas, Ulla; Bartels, Daniela; Kaiser, Olaf

    2005-01-01

    The gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria is the causative agent of bacterial spot disease in pepper and tomato plants, which leads to economically important yield losses. This pathosystem has become a well-established model for studying bacterial infection strategies. Here, we present the whole-genome sequence of the pepper-pathogenic Xanthomonas campestris pv. vesicatoria strain 85-10, which comprises a 5.17-Mb circular chromosome and four plasmids. The genome has a high G+C content (64.75%) and signatures of extensive genome plasticity. Whole-genome comparisons revealed a gene order similar to both Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris and a structure completely different from Xanthomonas oryzae pv. oryzae. A total of 548 coding sequences (12.2%) are unique to X. campestris pv. vesicatoria. In addition to a type III secretion system, which is essential for pathogenicity, the genome of strain 85-10 encodes all other types of protein secretion systems described so far in gram-negative bacteria. Remarkably, one of the putative type IV secretion systems encoded on the largest plasmid is similar to the Icm/Dot systems of the human pathogens Legionella pneumophila and Coxiella burnetii. Comparisons with other completely sequenced plant pathogens predicted six novel type III effector proteins and several other virulence factors, including adhesins, cell wall-degrading enzymes, and extracellular polysaccharides. PMID:16237009

  16. The complete mitochondrial genome sequence of Trichopodus leerii (Perciformes: Osphronemidae) and phylogenetic studies of Osphronemidae.

    Science.gov (United States)

    Wang, Guang-Peng; Liu, Wen-Jie; Si, Gui-Cai; Hu, Guo-Wen

    2016-07-01

    Trichopodus leerii has been given many popular names in the ornament market, such as pearl gourami, lace gourami and mosaic gourami, which causes confusion in species identification. This species belongs in the family Osphronemidae of Perciformes. This species and its congeners are characterized by a brownish-silver body, covered in a pearl-like pattern. In this study, we first determined and described the complete mitogenome sequence of T. leerii, which is 16,472 bp in length. The overall base composition is 29.2%, 27.3%, 28.0% and 15.5% for A, C, T and G, respectively, with a slight bias in the AT content (57.2%). All protein-coding genes share the start codon ATG and most of them have TAA or TAG as the stop codon, except ND4 and ND6 use an incomplete stop codon T. Maximum likelihood tree and Bayesian analyses based on partitioned nucleotide sequences of 12 mitochondrial protein-coding genes were constructed, and both yielded identical topologies. These results are expected to provide useful molecular data for species identification and further phylogenetic studies of Osphronemidae and Perciformes.

  17. Complete Mitochondrial Genome Sequencing of a Burial from a Romano–Christian Cemetery in the Dakhleh Oasis, Egypt: Preliminary Indications

    Directory of Open Access Journals (Sweden)

    J. Eldon Molto

    2017-10-01

    Full Text Available The curse of ancient Egyptian DNA was lifted by a recent study which sequenced the mitochondrial genomes (mtGenome of 90 ancient Egyptians from the archaeological site of Abusir el-Meleq. Surprisingly, these ancient inhabitants were more closely related to those from the Near East than to contemporary Egyptians. It has been accepted that the timeless highway of the Nile River seeded Egypt with African genetic influence, well before pre-Dynastic times. Here we report on the successful recovery and analysis of the complete mtGenome from a burial recovered from a remote Romano–Christian cemetery, Kellis 2 (K2. K2 serviced the ancient municipality of Kellis, a village located in the Dakhleh Oasis in the southwest desert in Egypt. The data were obtained by high throughput sequencing (HTS performed independently at two ancient DNA facilities (Armed Forces DNA Identification Laboratory, Dover, DE, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA. These efforts produced concordant haplotypes representing a U1a1a haplogroup lineage. This result indicates that Near Eastern maternal influence previously identified at Abusir el-Meleq was also present further south, in ancient Kellis during the Romano–Christian period.

  18. The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid.

    Science.gov (United States)

    Kim, Sang Yoon; Song, Hajin; Sang, Mee Kyung; Weon, Hang-Yeon; Song, Jaekyeong

    2017-10-10

    The bacterial strain Bacillus velezensis GH1-13, isolated from rice paddy soil in Korea, has been shown to promote plant growth and have strong antagonistic activities against pathogens. Here, we report the complete genome sequence of GH1-13, revealing that it possesses a single 4,071,980-bp circular chromosome with 46.2% GC-content. The chromosome encodes 3,930 genes, and we have also identified a unique plasmid in the strain that encodes a further 104 genes (71,628bp and 31.7% GC-content). The genome was found to contain various enzyme-encoding operons, including indole-3-acetic acid (IAA) biosynthesis proteins, 2,3-butanediol dehydrogenase, various non-ribosomal peptide synthetases, and several polyketide synthases. These properties are responsible for the promotion of plant growth and the biosynthesis of secondary metabolites. They therefore have multiple beneficial effects that could be applied to agriculture. Through curing, we found that the unique plasmid of GH1-13 has important roles in the production of phytohormones, such as IAA, and in shaping phenotypic and physiological characteristics. The plasmid therefore likely influences the biological activities of GH1-13. The complete genome sequence of B. velezensis GH1-13 contributes to our understanding of this beneficial strain and will encourage research into its development for agricultural or biotechnological applications, enhancing productivity and crop quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Complete genome sequence analysis of Nocardia brasiliensis HUJEG-1 reveals a saprobic lifestyle and the genes needed for human pathogenesis.

    Science.gov (United States)

    Vera-Cabrera, Lucio; Ortiz-Lopez, Rocio; Elizondo-Gonzalez, Ramiro; Ocampo-Candiani, Jorge

    2013-01-01

    Nocardia brasiliensis is an important etiologic agent of mycetoma. These bacteria live as a saprobe in soil or organic material and enter the tissue via minor trauma. Mycetoma is characterized by tumefaction and the production of fistula and abscesses, with no spontaneous cure. By using mass sequencing, we determined the complete genomic nucleotide sequence of the bacteria. According to our data, the genome is a circular chromosome 9,436,348-bp long with 68% G+C content that encodes 8,414 proteins. We observed orthologs for virulence factors, a higher number of genes involved in lipid biosynthesis and catabolism, and gene clusters for the synthesis of bioactive compounds, such as antibiotics, terpenes, and polyketides. An in silico analysis of the sequence supports the conclusion that the bacteria acquired diverse genes by horizontal transfer from other soil bacteria, even from eukaryotic organisms. The genome composition reflects the evolution of bacteria via the acquisition of a large amount of DNA, which allows it to survive in new ecological niches, including humans.

  20. Complete genome sequence analysis of Nocardia brasiliensis HUJEG-1 reveals a saprobic lifestyle and the genes needed for human pathogenesis.

    Directory of Open Access Journals (Sweden)

    Lucio Vera-Cabrera

    Full Text Available Nocardia brasiliensis is an important etiologic agent of mycetoma. These bacteria live as a saprobe in soil or organic material and enter the tissue via minor trauma. Mycetoma is characterized by tumefaction and the production of fistula and abscesses, with no spontaneous cure. By using mass sequencing, we determined the complete genomic nucleotide sequence of the bacteria. According to our data, the genome is a circular chromosome 9,436,348-bp long with 68% G+C content that encodes 8,414 proteins. We observed orthologs for virulence factors, a higher number of genes involved in lipid biosynthesis and catabolism, and gene clusters for the synthesis of bioactive compounds, such as antibiotics, terpenes, and polyketides. An in silico analysis of the sequence supports the conclusion that the bacteria acquired diverse genes by horizontal transfer from other soil bacteria, even from eukaryotic organisms. The genome composition reflects the evolution of bacteria via the acquisition of a large amount of DNA, which allows it to survive in new ecological niches, including humans.

  1. Complete genome sequencing of the luminescent bacterium, Vibrio qinghaiensis sp. Q67 using PacBio technology

    Science.gov (United States)

    Gong, Liang; Wu, Yu; Jian, Qijie; Yin, Chunxiao; Li, Taotao; Gupta, Vijai Kumar; Duan, Xuewu; Jiang, Yueming

    2018-01-01

    Vibrio qinghaiensis sp.-Q67 (Vqin-Q67) is a freshwater luminescent bacterium that continuously emits blue-green light (485 nm). The bacterium has been widely used for detecting toxic contaminants. Here, we report the complete genome sequence of Vqin-Q67, obtained using third-generation PacBio sequencing technology. Continuous long reads were attained from three PacBio sequencing runs and reads >500 bp with a quality value of >0.75 were merged together into a single dataset. This resultant highly-contiguous de novo assembly has no genome gaps, and comprises two chromosomes with substantial genetic information, including protein-coding genes, non-coding RNA, transposon and gene islands. Our dataset can be useful as a comparative genome for evolution and speciation studies, as well as for the analysis of protein-coding gene families, the pathogenicity of different Vibrio species in fish, the evolution of non-coding RNA and transposon, and the regulation of gene expression in relation to the bioluminescence of Vqin-Q67.

  2. First Complete Mitochondrial Genome Sequence from a Box Jellyfish Reveals a Highly Fragmented Linear Architecture and Insights into Telomere Evolution

    Science.gov (United States)

    Smith, David Roy; Kayal, Ehsan; Yanagihara, Angel A.; Collins, Allen G.; Pirro, Stacy; Keeling, Patrick J.

    2012-01-01

    Animal mitochondrial DNAs (mtDNAs) are typically single circular chromosomes, with the exception of those from medusozoan cnidarians (jellyfish and hydroids), which are linear and sometimes fragmented. Most medusozoans have linear monomeric or linear bipartite mitochondrial genomes, but preliminary data have suggested that box jellyfish (cubozoans) have mtDNAs that consist of many linear chromosomes. Here, we present the complete mtDNA sequence from the winged box jellyfish Alatina moseri (the first from a cubozoan). This genome contains unprecedented levels of fragmentation: 18 unique genes distributed over eight 2.9- to 4.6-kb linear chromosomes. The telomeres are identical within and between chromosomes, and recombination between subtelomeric sequences has led to many genes initiating or terminating with sequences from other genes (the most extreme case being 150 nt of a ribosomal RNA containing the 5′ end of nad2), providing evidence for a gene conversion–based model of telomere evolution. The silent-site nucleotide variation within the A. moseri mtDNA is among the highest observed from a eukaryotic genome and may be associated with elevated rates of recombination. PMID:22117085

  3. Complete genome sequence of the biofilm-formingCurtobacteriumsp. strain BH-2-1-1, isolated from lettuce (Lactuca sativa) originating from a conventional field in Norway.

    Science.gov (United States)

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2016-12-01

    Here, we present the 3,795,952 bp complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from conventionally grown lettuce ( Lactuca sativa ) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017580.

  4. Complete genome sequence of a lineage I Peste des Petits Ruminants Virus isolated in 1969 in West Africa

    International Nuclear Information System (INIS)

    Dundon, W.G.; Daojin, Y.; Loitsch, A.; Diallo, A.

    2015-01-01

    This is the earliest PPRV genome sequenced to date and only the second lineage I virus available in public databases. The sequence provides important information to those working on the molecular evolution of this important transboundary disease.

  5. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus: an evolutionary history of camelidae

    Directory of Open Access Journals (Sweden)

    Meng He

    2007-07-01

    Full Text Available Abstract Background The family Camelidae that evolved in North America during the Eocene survived with two distinct tribes, Camelini and Lamini. To investigate the evolutionary relationship between them and to further understand the evolutionary history of this family, we determined the complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus, the only wild survivor of the Old World camel. Results The mitochondrial genome sequence (16,680 bp from C. bactrianus ferus contains 13 protein-coding, two rRNA, and 22 tRNA genes as well as a typical control region; this basic structure is shared by all metazoan mitochondrial genomes. Its protein-coding region exhibits codon usage common to all mammals and possesses the three cryptic stop codons shared by all vertebrates. C. bactrianus ferus together with the rest of mammalian species do not share a triplet nucleotide insertion (GCC that encodes a proline residue found only in the nd1 gene of the New World camelid Lama pacos. This lineage-specific insertion in the L. pacos mtDNA occurred after the split between the Old and New World camelids suggests that it may have functional implication since a proline insertion in a protein backbone usually alters protein conformation significantly, and nd1 gene has not been seen as polymorphic as the rest of ND family genes among camelids. Our phylogenetic study based on complete mitochondrial genomes excluding the control region suggested that the divergence of the two tribes may occur in the early Miocene; it is much earlier than what was deduced from the fossil record (11 million years. An evolutionary history reconstructed for the family Camelidae based on cytb sequences suggested that the split of bactrian camel and dromedary may have occurred in North America before the tribe Camelini migrated from North America to Asia. Conclusion Molecular clock analysis of complete mitochondrial genomes from C. bactrianus ferus and L

  6. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes.

    Science.gov (United States)

    Turmel, M; Otis, C; Lemieux, C

    1999-08-31

    Green plants seem to form two sister lineages: Chlorophyta, comprising the green algal classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae, and Chlorophyceae, and Streptophyta, comprising the Charophyceae and land plants. We have determined the complete chloroplast DNA (cpDNA) sequence (200,799 bp) of Nephroselmis olivacea, a member of the class (Prasinophyceae) thought to include descendants of the earliest-diverging green algae. The 127 genes identified in this genome represent the largest gene repertoire among the green algal and land plant cpDNAs completely sequenced to date. Of the Nephroselmis genes, 2 (ycf81 and ftsI, a gene involved in peptidoglycan synthesis) have not been identified in any previously investigated cpDNA; 5 genes [ftsW, rnE, ycf62, rnpB, and trnS(cga)] have been found only in cpDNAs of nongreen algae; and 10 others (ndh genes) have been described only in land plant cpDNAs. Nephroselmis and land plant cpDNAs share the same quadripartite structure-which is characterized by the presence of a large rRNA-encoding inverted repeat and two unequal single-copy regions-and very similar sets of genes in corresponding genomic regions. Given that our phylogenetic analyses place Nephroselmis within the Chlorophyta, these structural characteristics were most likely present in the cpDNA of the common ancestor of chlorophytes and streptophytes. Comparative analyses of chloroplast genomes indicate that the typical quadripartite architecture and gene-partitioning pattern of land plant cpDNAs are ancient features that may have been derived from the genome of the cyanobacterial progenitor of chloroplasts. Our phylogenetic data also offer insight into the chlorophyte ancestor of euglenophyte chloroplasts.

  7. Complete Genomic Sequence of Bacteriophage H188: A Novel Vibrio kanaloae Phage Isolated from Yellow Sea.

    Science.gov (United States)

    Li, Yan; Wang, Min; Liu, Qian; Song, Xue; Wang, Duobing; Ma, Yu; Shao, Hongbing; Jiang, Yong

    2016-05-01

    Phage H188, a novel Vibrio kanaloae phage, was isolated from the surface water of Yellow Sea. Morphological analysis by transmission electron microscopy reveals that it belongs to the family Myoviridae. Present result suggests that the phage is stable at pH between 4.0 and 12.0. No significant difference in phage titers is noted at temperature 30-50 °C. A latent period of approximately 96 mins is indicated by the one-step growth curve. And, the burst size is about three virions per cell. Furthermore, genomic analysis of H188 reveals a genome size of 50364 bp with 43.63 % G+C content, and 76 putative open reading frames. There is no obvious similarity between H188 and other known phages by genomic comparison. Moreover, the H188 genome includes modules for phage structure, phage packaging, DNA replication and regulation, and some additional functions.

  8. Complete genome sequence of Lactobacillus plantarum LZ227, a potential probiotic strain producing B-group vitamins.

    Science.gov (United States)

    Li, Ping; Zhou, Qingqing; Gu, Qing

    2016-09-20

    B-group vitamins play an important role in human metabolism, whose deficiencies are associated with a variety of disorders and diseases. Certain microorganisms such as Lactic acid bacteria (LAB) have been shown to have capacities for B-group vitamin production and thus could potentially replace chemically synthesized vitamins for food fortification. A potential probiotic strain named Lactobacillus plantarum LZ227, which was isolated from raw cow milk in this study, exhibits the ability to produce B-group vitamins. Complete genome sequencing of LZ227 was performed to gain insights into the genetic elements involved in B-group vitamin production. The genome of LZ227 contains a circular 3,131,750-bp chromosome, three circular plasmids and two predicted linear plasmids. LZ227 also contains gene clusters for biosynthesis of both riboflavin and folate. This genome sequence provides a basis for further elucidation of its molecular genetics and probiotic functions, and will facilitate its applications as starter cultures in food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Complete genome sequence of Streptomyces peucetius ATCC 27952, the producer of anticancer anthracyclines and diverse secondary metabolites.

    Science.gov (United States)

    Dhakal, Dipesh; Lim, Si-Kyu; Kim, Dae Hee; Kim, Byung-Gee; Yamaguchi, Tokutaro; Sohng, Jae Kyung

    2018-02-10

    Streptomyces peucetius ATCC 27952 is a filamentous soil bacterium with potential to produce anthracyclines such as doxorubicin (DXR) and daunorubicin (DNR), which are potent chemotherapeutic agents for the treatment of cancer. Here we present the complete genome sequence of S. peucetius ATCC 27952, which consists of 8,023,114 bp with a linear chromosome, 7187 protein-coding genes, 18 rRNA operons and 66 tRNAs. Bioinformatic analysis of the genome sequence revealed ∼68 putative gene clusters involved in the biosynthesis of secondary metabolites, including diverse classes of natural products. Diverse secondary metabolites of PKS (polyketide synthase) type II (doxorubicin and daunorubicin), NRPS (non-ribosomal peptide synthase) (T1-pks), terpene (hopene) etc. have already been reported for this strain. In addition, in silico analysis suggests the potential to produce diverse compound classes such as lantipeptides, lassopeptides, NRPS and polyketides. Furthermore, many catalytically-efficient enzymes involved in hydroxylation, methylation etc. have been characterized in this strain. The availability of genomic information provides valuable insight for devising rational strategies for the production and isolation of diverse bioactive compounds as well as for the industrial application of efficient enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the scaphopod graptacme eborea and the bivalve mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Medina, Monica; Rosenberg, Lewis A.

    2004-01-31

    We have determined the complete sequence of the mitochondrial genome of the scaphopod mollusk Graptacme eborea (Conrad, 1846) (14,492 nts) and completed the sequence of the mitochondrial genome of the bivalve mollusk Mytilus edulis Linnaeus, 1758 (16,740 nts). (The name Graptacme eborea is a revision of the species formerly known as Dentalium eboreum.) G. eborea mtDNA contains the 37 genes that are typically found and has the genes divided about evenly between the two strands, but M. edulis contains an extra trnM and is missing atp8, and has all genes on the same strand. Each has a highly rearranged gene order relative to each other and to all other studied mtDNAs. G. eborea mtDNA has almost no strand skew, but the coding strand of M. edulis mtDNA is very rich in G and T. This is reflected in differential codon usage patterns and even in amino acid compositions. G. eborea mtDNA has fewer non-coding nucleotides than any other mtDNA studied to date, with the largest non-coding region being only 24 nt long. Phylogenetic analysis using 2,420 aligned amino acid positions of concatenated proteins weakly supports an association of the scaphopod with gastropods to the exclusion of Bivalvia, Cephalopoda, and Polyplacophora, but is generally unable to convincingly resolve the relationships among major groups of the Lophotrochozoa, in contrast to the good resolution seen for several other major metazoan groups.

  11. The complete genome sequence of a double-stranded RNA mycovirus from Fusarium graminearum strain HN1.

    Science.gov (United States)

    Wang, Luan; Wang, Shuangchao; Yang, Xiufen; Zeng, Hongmei; Qiu, Dewen; Guo, Lihua

    2017-07-01

    The complete nucleotide sequence of a double-stranded RNA (dsRNA) mycovirus, Fusarium graminearum dsRNA virus 5 (FgV5), was identified and characterized. The FgV5 genome comprises two dsRNA genome segments of 2030 bp and 1740 bp. FgV5 dsRNA1 contains a single open reading frame (ORF1), which is predicted to encode a protein of 613 amino acids (aa) with a molecular mass of 70.4 kDa and has a conserved RNA-dependent RNA polymerase (RdRp) motif. FgV5 dsRNA2 is predicted to contain two discontinuous ORFs (ORF2 and ORF3) that code for products of unknown function. Sequence comparisons showed that FgV5 has the highest aa sequence identities to Fusarium graminearum virus 4 (FgV4) (83.01% for ORF1, 78.70% for ORF2, and 76.27% for ORF3), suggesting that FgV5 and FgV4 should be regarded as members of different species. Phylogenetic analysis indicated that FgV5 belongs to a taxonomically unassigned dsRNA mycovirus group that is related to the families Amalgaviridae and Partitiviridae. Here, we propose that FgV5 and related viruses are members of a yet to be named and formally recognized new family.

  12. Complete Genome Sequence of the Hyperthermophilic and Piezophilic Archaeon Thermococcus barophilus Ch5, Capable of Growth at the Expense of Hydrogenogenesis from Carbon Monoxide and Formate.

    Science.gov (United States)

    Oger, Philippe; Sokolova, Tatyana G; Kozhevnikova, Darya A; Taranov, Evgeny A; Vannier, Pauline; Lee, Hyun Sook; Kwon, Kae Kyoung; Kang, Sung Gyun; Lee, Jung-Hyun; Bonch-Osmolovskaya, Elizaveta A; Lebedinsky, Alexander V

    2016-01-14

    We report here the complete sequence and fully manually curated annotation of the genome of strain Ch5, a new member of the piezophilic hyperthermophilic species Thermococcus barophilus. Copyright © 2016 Oger et al.

  13. Complete genome sequence of the actinobacterium Amycolatopsis japonica MG417-CF17T (=DSM 44213T) producing (S,S)-N,N′-ethylenediaminedisuccinic acid

    DEFF Research Database (Denmark)

    Stegmann, Evi; Albersmeier, Andreas; Spohn, Marius

    2014-01-01

    We report the complete genome sequence of Amycolatopsis japonica MG417-CF17T (=DSM 44213T) which was identified as the producer of (S,S)-N,N′-ethylenediaminedisuccinic acid during a screening for phospholipase C inhibitors. The genome of A. japonica MG417-CF17T consists of two replicons: the chro......We report the complete genome sequence of Amycolatopsis japonica MG417-CF17T (=DSM 44213T) which was identified as the producer of (S,S)-N,N′-ethylenediaminedisuccinic acid during a screening for phospholipase C inhibitors. The genome of A. japonica MG417-CF17T consists of two replicons...

  14. Complete genome sequence of Marinomonas posidonica type strain (IVIA-Po-181T)

    Energy Technology Data Exchange (ETDEWEB)

    Lucas-Elio, Patricia [University of Murcia, Murcia, Spain; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Detter, J C [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lu, Megan [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Johnston, Andrew W. B. [University of East Anglia, Norwich, United Kingdom; Sanchez-Amat, Antonio [University of Murcia, Murcia, Spain

    2012-01-01

    Marinomonas posidonica IVIA-Po-181T Lucas-Eli o et al. 2011 belongs to the family Oceanospirillaceae within the phylum Proteobacteria. Different species of the genus Marinomonas can be readily isolated from the seagrass Posidonia oceanica. M. posidonica is among the most abundant species of the genus detected in the cultured microbiota of P. oceanica, suggesting a close relationship with this plant, which has a great ecological value in the Mediterranean Sea, covering an estimated surface of 38,000 Km2. Here we describe the genomic features of M. posidonica. The 3,899,940 bp long genome harbors 3,544 pro- tein-coding genes and 107 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  15. Isolation of a complete circular virus genome sequence from an Alaskan black-capped chickadee (Poecile atricapillus) gastrointestinal tract sample.

    Science.gov (United States)

    Hanna, Zachary R.; Runckel, Charles; Fuchs, Jerome; DeRisi, Joseph L.; Mindell, David P.; Van Hemert, Caroline R.; Handel, Colleen M.; Dumbacher, John P.

    2015-01-01

    We report here the genome sequence of a circular virus isolated from samples of an Alaskan black-capped chickadee (Poecile atricapillus) gastrointestinal tract. The genome is 2,152 bp in length and is most similar (30 to 44.5% amino acid identity) to the genome sequences of other single-stranded DNA (ssDNA) circular viruses belonging to the gemycircularvirus group.

  16. Complete genome sequence of the melanogenic marine bacterium Marinomonas mediterranea type strain (MMB-1T)

    Energy Technology Data Exchange (ETDEWEB)

    Lucas-Elio, Patricia [University of Murcia, Murcia, Spain; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Detter, J C [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Johnston, Andrew W. B. [University of East Anglia, Norwich, United Kingdom; Sanchez-Amat, Antonio [University of Murcia, Murcia, Spain

    2012-01-01

    Marinomonas mediterranea MMB-1 T Solano & Sanchez-Amat 1999 belongs to the family Oceanospirillaceae within the phylum Proteobacteria. This species is of interest because it is the only species described in the genus Marinomonas to date that can synthesize melanin pigments, which is mediated by the activity of a tyrosinase. M. mediterranea expresses other oxidases of biotechnological interest, such as a multicopper oxidase with laccase activity and a novel L-lysine-epsilon-oxidase. The 4,684,316 bp long genome harbors 4,228 proteincoding genes and 98 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  17. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae, a mammalian family that experienced rapid speciation

    Directory of Open Access Journals (Sweden)

    Ryder Oliver A

    2007-10-01

    Full Text Available Abstract Background Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. Results This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Conclusion Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other

  18. Complete genome sequence of Corynebacterium pseudotuberculosis strain Cp267, isolated from a llama.

    Science.gov (United States)

    Lopes, Thiago; Silva, Artur; Thiago, Rommel; Carneiro, Adriana; Dorella, Fernanda Alves; Rocha, Flavia Souza; dos Santos, Anderson Rodrigues; Lima, Alex Ranieri Jerônimo; Guimarães, Luis Carlos; Barbosa, Eudes G V; Ribeiro, Dayana; Fiaux, Karina Kelly; Diniz, Carlos Augusto Almeida; de Abreu, Vinicius Augusto Carvalho; de Almeida, Sintia Silva; Hassan, Syed Shah; Ali, Amjad; Bakhtiar, Syeda Marriam; Aburjaile, Flávia Figueira; Pinto, Anne Cybelle; Soares, Siomar de Castro; Pereira, Ulisses de Padua; Schneider, Maria Paula C; Miyoshi, Anderson; Edman, Judy; Spier, Sharon; Azevedo, Vasco

    2012-07-01

    In this work we report the genome of Corynebacterium pseudotuberculosis strain 267, isolated from a llama. This pathogen is of great veterinary and economic importance, as it is the cause of caseous lymphadenitis in several livestock species around the world and causes significant losses due to the high cost of treatment.

  19. Complete Genomic Sequence of Canine Distemper Virus from an Ethiopian Wolf.

    Science.gov (United States)

    Marston, Denise A; Watson, Jemma; Wise, Emma L; Ellis, Richard J; Bedin, Eric; Ayalew, Girma; Abute, Muktar; de Lamballerie, Xavier; Fooks, Anthony R; Sillero-Zubiri, Claudio; Banyard, Ashley C

    2017-07-20

    Canine distemper virus (CDV) has been implicated in population declines of wildlife, including many threatened species. Here we present the full genome of CDV from an Ethiopian wolf, Canis simensis , the world's rarest and most endangered canid. © Crown copyright 2017.

  20. Complete Genome Sequence of Dietzia sp. Strain WMMA184, a Marine Coral-Associated Bacterium

    OpenAIRE

    Braun, Doug R.; Chevrette, Marc G.; Acharya, Deepa; Currie, Cameron R.; Rajski, Scott R.; Ritchie, Kim B.; Bugni, Tim S.

    2018-01-01

    ABSTRACT Dietzia sp. strain WMMA184 was isolated from the marine coral Montastraea faveolata as part of ongoing drug discovery efforts. Analysis of the 4.16-Mb genome provides information regarding interspecies interactions as it pertains to the regulation of secondary metabolism and natural product biosynthesis potential.

  1. Complete Genome Sequence of Rhodococcus sp. Strain WMMA185, a Marine Sponge-Associated Bacterium

    OpenAIRE

    Adnani, Navid; Braun, Doug R.; McDonald, Bradon R.; Chevrette, Marc G.; Currie, Cameron R.; Bugni, Tim S.

    2016-01-01

    The Rhodococcus strain WMMA185 was isolated from the marine sponge Chondrilla nucula as part of ongoing drug discovery efforts. Analysis of the 4.44-Mb genome provides information regarding interspecies interactions as pertains to regulation of secondary metabolism and natural product biosynthetic potentials.

  2. Complete genomic sequence of campylobacter jejuni subsp. jejuni HS:19 penner reference strain

    Science.gov (United States)

    Campylobacter jejuni subsp. jejuni (Cjj) infections are a leading cause of foodborne gastroenteritis and the most prevalent antecedent to Guillain-Barré syndrome (GBS). Capsular type Penner HS:19 is among several capsule types shown to be markers for GBS. This study describes the genome of Cjj HS:19...

  3. Complete Genome Sequence of the Commensal Enterococcus faecalis 62, Isolated from a Healthy Norwegian Infant

    DEFF Research Database (Denmark)

    Brede, Dag Anders; Snipen, Lars Gustav; Ussery, David

    2011-01-01

    The genome of Enterococcus faecalis 62, a commensal isolate from a healthy Norwegian infant, revealed multiple adaptive traits to the gastrointestinal tract (GIT) environment and the milk-containing diet of breast-fed infants. Adaptation to a commensal existence was emphasized by lactose and other...

  4. Complete genome sequence and analysis of the Streptomyces aureofaciens phage mu1/6

    Czech Academy of Sciences Publication Activity Database

    Farkasovská, J.; Klucar, L.; Vlček, Čestmír; Kokavec, J.; Godány, A.

    2007-01-01

    Roč. 52, č. 4 (2007), s. 347-358 ISSN 0015-5632 R&D Projects: GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : phage * genome * streptomyces Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.989, year: 2007

  5. Complete Genomic Sequence of Canine Distemper Virus from an Ethiopian Wolf

    Science.gov (United States)

    Watson, Jemma; Wise, Emma L.; Ellis, Richard J.; Bedin, Eric; Ayalew, Girma; Abute, Muktar; de Lamballerie, Xavier; Fooks, Anthony R.; Sillero-Zubiri, Claudio; Banyard, Ashley C.

    2017-01-01

    ABSTRACT Canine distemper virus (CDV) has been implicated in population declines of wildlife, including many threatened species. Here we present the full genome of CDV from an Ethiopian wolf, Canis simensis, the world’s rarest and most endangered canid. PMID:28729263