WorldWideScience

Sample records for genome oryza species

  1. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime

    2015-11-18

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a textbased browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  2. OryzaGenome: Genome Diversity Database of Wild Oryza Species.

    Science.gov (United States)

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  3. Genome evolution of Oryza

    Directory of Open Access Journals (Sweden)

    Tieyan Liu

    2014-01-01

    Full Text Available The genus Oryza is composed of approximately 24 species. Wild species of Oryza contain a largely untapped resource of agronomically important genes. As an increasing number of genomes of wild rice species have been or will be sequenced, Oryza is becoming a model system for plant comparative, functional and evolutionary genomics studies. Comparative analyses of large genomic regions and whole-genome sequences have revealed molecular mechanisms involved in genome size variation, gene movement, genome evolution of polyploids, transition of euchromatin to heterochromatin and centromere evolution in the genus Oryza. Transposon activity and removal of transposable elements by unequal recombination or illegitimate recombination are two important factors contributing to expansion or contraction of Oryza genomes. Double-strand break repair mediated gene movement, especially non-homologous end joining, is an important source of non-colinear genes. Transition of euchromatin to heterochromatin is accompanied by transposable element amplification, segmental and tandem duplication of genic segments, and acquisition of heterochromatic genes from other genomic locations. Comparative analyses of multiple genomes dramatically improve the precision and sensitivity of evolutionary inference than single-genome analyses can provide. Further investigations on the impact of structural variation, lineage-specific genes and evolution of agriculturally important genes on phenotype diversity and adaptation in the genus Oryza should facilitate molecular breeding and genetic improvement of rice.

  4. Phylogeny and species delimitation of the C-genome diploid species in Oryza

    Institute of Scientific and Technical Information of China (English)

    Li-Li ZANG; Xin-Hui ZOU; Fu-Min ZHANG; Ziheng YANG; Song GE

    2011-01-01

    The diploid Oryza species with C-genome type possesses abundant genes useful for rice improvement and provides parental donors of many tetraploid species with the C-genome (BBCC,CCDD).Despite extensive studies,the phylogenetic relationship among the C-genome species and the taxonomic status of some taxa remain controversial.In this study,we reconstructed the phylogeny of three diploid species with C-genome (Oryza officinalis,O.rhizomatis,and O.eichingeri) based on sequences of 68 nuclear single-copy genes.We obtained a fully resolved phylogenetic tree,clearly indicating the sister relationship of O.officinalis and O.rhizomatis,with O.eichingeri being the more divergent lineage.Incongruent phylogenies of the C-genome species found in previous studies might result from lineage sorting,introgression/hybridization and limited number of genetic markers used.We further applied a recently developed Bayesian species delimitation method to investigate the species status of the Sri Lankan and African O.eichingeri.Analyses of two datasets (68 genes with a single sample,and 10 genes with multiple samples) support the distinct species status of the Sri Lankan and African O.eichingeri.In addition,we evaluated the impact of the number of sampled individuals and loci on species delimitation.Our simulation suggests that sampling multiple individuals is critically important for species delimitation,particularly for closely related species.

  5. SSR Analysis on Diversity of AA Genome Oryza Species in the Southeast and South Asia

    Institute of Scientific and Technical Information of China (English)

    LU Jian-zhen; ZHANG Xiao-li; WANG Hai-gang; YUAN Xiao-ping; XU Qun; WANG Yi-ping; YU Han-yong; TANG Sheng-xiang; WEI Xing-hua

    2008-01-01

    To investigate genetic diversities among the AA genome Oryza species in the Southeast and South'Asia, a total of 428 accessions of the AA genome Oryza species were genotyped using 36 simple sequence repeats (SSR) markers distributed throughout the rice genome. All of the 36 SSR markers generated polymorphic bands, revealing 100% polymorphism. The number of alleles per locus ranged from 3 to 17 with the mean of 8.6. The Nei's genetic diversity index (He) ranged from 0.337 at RM455 to 0.865 at RM 169 with an average value of 0.650. The genetic diversity of the AA genome Oryza species in the Southeast Asia was obviously higher than that in the South Asia. Among the detected Oryza species in the South and Southeast Asia, O. rufipogon showed the highest genetic diversity. Meanwhile, a higher genetic differentiation (Fst) was found among the detected Oryza species in the Southeast Asia than in the South Asia. The Fst value between O. nivara and O. sativa was the highest. The results from the number of specific alleles, specific loci, and allele frequency confirmed the greater genetic variation among the detected species. In addition, the specific allele in RM161 displayed higher frequency (0.193), suggesting its important function in identifying Oryza species of AA genome.

  6. SSR Analysis on Diversity of AA Genome Oryza Species in the Southeast and South Asia

    Directory of Open Access Journals (Sweden)

    Jian-zhen LU

    2008-12-01

    Full Text Available To investigate genetic diversities among the AA genome Oryza species in the Southeast and South Asia, a total of 428 accessions of the AA genome Oryza species were genotyped using 36 simple sequence repeats (SSR markers distributed throughout the rice genome. All of the 36 SSR markers generated polymorphic bands, revealing 100% polymorphism. The number of alleles per locus ranged from 3 to 17 with the mean of 8.6. The Nei's genetic diversity index (He ranged from 0.337 at RM455 to 0.865 at RM169 with an average value of 0.650. The genetic diversity of the AA genome Oryza species in the Southeast Asia was obviously higher than that in the South Asia. Among the detected Oryza species in the South and Southeast Asia, O. rufipogon showed the highest genetic diversity. Meanwhile, a higher genetic differentiation (Fst was found among the detected Oryza species in the Southeast Asia than in the South Asia. The Fst value between O. nivara and O. sativa was the highest. The results from the number of specific alleles, specific loci, and allele frequency confirmed the greater genetic variation among the detected species. In addition, the specific allele in RM161 displayed higher frequency (0.193, suggesting its important function in identifying Oryza species of AA genome.

  7. Mitochondrial Genome Analysis of Wild Rice (Oryza minuta) and Its Comparison with Other Related Species

    Science.gov (United States)

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Abdur Rahim; Waqas, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Shahzad, Raheem; Seo, Chang-Woo; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Oryza minuta (Poaceae family) is a tetraploid wild relative of cultivated rice with a BBCC genome. O. minuta has the potential to resist against various pathogenic diseases such as bacterial blight (BB), white backed planthopper (WBPH) and brown plant hopper (BPH). Here, we sequenced and annotated the complete mitochondrial genome of O. minuta. The mtDNA genome is 515,022 bp, containing 60 protein coding genes, 31 tRNA genes and two rRNA genes. The mitochondrial genome organization and the gene content at the nucleotide level are highly similar (89%) to that of O. rufipogon. Comparison with other related species revealed that most of the genes with known function are conserved among the Poaceae members. Similarly, O. minuta mt genome shared 24 protein-coding genes, 15 tRNA genes and 1 ribosomal RNA gene with other rice species (indica and japonica). The evolutionary relationship and phylogenetic analysis revealed that O. minuta is more closely related to O. rufipogon than to any other related species. Such studies are essential to understand the evolutionary divergence among species and analyze common gene pools to combat risks in the current scenario of a changing environment. PMID:27045847

  8. Seed Length Controlled by Same Locus in Four Different AA Genome Species of Genus Oryza

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu; LI Jing; ZHOU Jia-wu; XU Peng; DENG Xian-neng; YANG Fei; DENG Wei; HU Feng-yi; TAO Da-yun

    2014-01-01

    To broaden the genetic basis and overcome the yield plateau in Asian cultivated rice, the exploitation and utilization of favorable alleles from rice species with the AA genome has become important and urgent in modern breeding programs. Four different interspecific populations were used to detect quantitative trait locus (QTL) for seed length, including a BC4F2 population derived from Oryza glumaepatula crossed with Dianjingyou 1 (a japonica cultivar), a BC4F2 population derived from O. nivara crossed with Dianjingyou 1, a BC7F1 population derived from a cross between O. longistaminata and RD23 (an indica cultivar), and a BC8F1 population derived from a cross between O. glaberrima and Dianjingyou 1. The QTLs for seed length in four different populations were termed as SL-3a, SL-3b, SL-3c and SL-3d, respectively. They had good collinearity and accounted for 49% to 60% of the phenotypic variations. Sequencing data indicated that four QTLs were different alleles of GS3 which were responsible for the seed length variation between O. sativa and its four AA genome relatives. These results will be valuable for confirming the evolution of GS3 and also be helpful for rice breeding.

  9. Characterization of Interspecific Hybrids Between Oryza sativa L. and Three Wild Rice Species of China by Genomic In Situ Hybridization

    Institute of Scientific and Technical Information of China (English)

    Guang-Xuan Tan; Zhi-Yong Xiong; Hua-Jun Jin; Gang Li; Li-Li Zhu; Li-Hui Shu; Guang-Cun He

    2006-01-01

    In the genus Oryza, interspecific hybrids are useful bridges for transferring the desired genes from wild species to cultivated rice (Oryza sativa L.). In the present study, hybrids between O. sativa (AA genome)and three Chinese wild rices, namely O. rufipogon (AA genome), O. officinalis (CC genome), and O. meyeriana (GG genome), were produced. Agricultural traits of the F1 hybrids surveyed were intermediate between their parents and appreciably resembled wild rice parents. Except for the O. sativa × O. rufipogon hybrid,the other F1 hybrids were completely sterile. Genomic in situ hybridization (GISH) was used for hybrid verification. Wild rice genomic DNAs were used as probes and cultivated rice DNA was used as a block. With the exception of O. rufipogon chromosomes, this method distinguished the other two wild rice and cultivated rice chromosomes at the stage of mitotic metaphase with different blocking ratios. The results suggest that a more distant phylogenetic relationship exists between O. meyeriana and O. sativa and that O. rufipogon and O. sativa share a high degree of sequence homology. The average mitotic chromosome length of O. officinalis and O. meyeriana was 1.25- and 1.51-fold that of O. sativa, respectively. 4',6'-Diamidino2-phenylindole staining showed that the chromosomes of O. officinalis and O. meyeriana harbored more heterochromatin, suggesting that the C and G genomes were amplified with repetitive sequences compared with the A genome. Although chromocenters formed by chromatln compaction were detected with wild rice-specific signals corresponding to the C and G genomes in discrete domains of the F1 hybrid interphase nuclei, the size and number of O. meyeriana chromocenters were bigger and greater than those of O. officinalis. The present results provide an important understanding of the genomic relationships and a tool for the transfer of useful genes from three native wild rice species in China to cultivars.

  10. Comparative Analysis on Genomes from Oryza alta and Oryza latifolia by C0t-1 DNA

    Institute of Scientific and Technical Information of China (English)

    WANG De-bin; WANG Yang; WU Qi; ZHAO Hou-ming; LI Gang; QIN Rui; WANG Chun-tai; LIU Hong

    2010-01-01

    In order to reveal the origin and evolutionary relationship between two CCDD genome species, Oryza alta and Oryza latifolia, fluorescence in situ hybridization (FISH) was adopted to analyze the genomes of the two species with C0t-1 DNA from O. alta as a probe. Karyotype was also comparatively analyzed between O. alta and O. latifolia based on their similar band patterns of the hybridization signals. There were a high homology and close relationship between O. alta and O. latifolia, however, the distinction between the hybridization signals was also clear. C0t-1 DNA was proved to be species- and genome type-specific. It is suggested that C0t-1 DNA-FISH could be more efficient to analyze the genomic relationship between different species. According to the comparative analysis of highly and moderately repetitive DNA sequences between the two allotetraploidy species, O. alta and O. latifolia, the possible origin and evolutionary mechanism of allotetraploidy of Oryza were discussed.

  11. Transposable element distribution, abundance and role in genome size variation in the genus Oryza.

    Science.gov (United States)

    Zuccolo, Andrea; Sebastian, Aswathy; Talag, Jayson; Yu, Yeisoo; Kim, HyeRan; Collura, Kristi; Kudrna, Dave; Wing, Rod A

    2007-08-29

    The genus Oryza is composed of 10 distinct genome types, 6 diploid and 4 polyploid, and includes the world's most important food crop - rice (Oryza sativa [AA]). Genome size variation in the Oryza is more than 3-fold and ranges from 357 Mbp in Oryza glaberrima [AA] to 1283 Mbp in the polyploid Oryza ridleyi [HHJJ]. Because repetitive elements are known to play a significant role in genome size variation, we constructed random sheared small insert genomic libraries from 12 representative Oryza species and conducted a comprehensive study of the repetitive element composition, distribution and phylogeny in this genus. Particular attention was paid to the role played by the most important classes of transposable elements (Long Terminal Repeats Retrotransposons, Long interspersed Nuclear Elements, helitrons, DNA transposable elements) in shaping these genomes and in their contributing to genome size variation. We identified the elements primarily responsible for the most strikingly genome size variation in Oryza. We demonstrated how Long Terminal Repeat retrotransposons belonging to the same families have proliferated to very different extents in various species. We also showed that the pool of Long Terminal Repeat Retrotransposons is substantially conserved and ubiquitous throughout the Oryza and so its origin is ancient and its existence predates the speciation events that originated the genus. Finally we described the peculiar behavior of repeats in the species Oryza coarctata [HHKK] whose placement in the Oryza genus is controversial. Long Terminal Repeat retrotransposons are the major component of the Oryza genomes analyzed and, along with polyploidization, are the most important contributors to the genome size variation across the Oryza genus. Two families of Ty3-gypsy elements (RIRE2 and Atlantys) account for a significant portion of the genome size variations present in the Oryza genus.

  12. Transposable element distribution, abundance and role in genome size variation in the genus Oryza

    Directory of Open Access Journals (Sweden)

    Collura Kristi

    2007-08-01

    Full Text Available Abstract Background The genus Oryza is composed of 10 distinct genome types, 6 diploid and 4 polyploid, and includes the world's most important food crop – rice (Oryza sativa [AA]. Genome size variation in the Oryza is more than 3-fold and ranges from 357 Mbp in Oryza glaberrima [AA] to 1283 Mbp in the polyploid Oryza ridleyi [HHJJ]. Because repetitive elements are known to play a significant role in genome size variation, we constructed random sheared small insert genomic libraries from 12 representative Oryza species and conducted a comprehensive study of the repetitive element composition, distribution and phylogeny in this genus. Particular attention was paid to the role played by the most important classes of transposable elements (Long Terminal Repeats Retrotransposons, Long interspersed Nuclear Elements, helitrons, DNA transposable elements in shaping these genomes and in their contributing to genome size variation. Results We identified the elements primarily responsible for the most strikingly genome size variation in Oryza. We demonstrated how Long Terminal Repeat retrotransposons belonging to the same families have proliferated to very different extents in various species. We also showed that the pool of Long Terminal Repeat Retrotransposons is substantially conserved and ubiquitous throughout the Oryza and so its origin is ancient and its existence predates the speciation events that originated the genus. Finally we described the peculiar behavior of repeats in the species Oryza coarctata [HHKK] whose placement in the Oryza genus is controversial. Conclusion Long Terminal Repeat retrotransposons are the major component of the Oryza genomes analyzed and, along with polyploidization, are the most important contributors to the genome size variation across the Oryza genus. Two families of Ty3-gypsy elements (RIRE2 and Atlantys account for a significant portion of the genome size variations present in the Oryza genus.

  13. Diversity of the Ty-1 copia retrotransposon Tos17 in rice (Oryza sativa L.) and the AA genome of the Oryza genus

    OpenAIRE

    Petit, J.; Bourgeois, E; Stenger, W.; Bes, M.; Droc, G.; Meynard, D.; Courtois, B.; Ghesquière, Alain; Sabot, François; Panaud, O.; Guiderdoni, E.

    2009-01-01

    Retrotransposons are mobile genetic elements, ubiquitous in Eukaryotic genomes, which have proven to be major genetic tools in determining phylogeny and structuring genetic diversity, notably in plants. We investigate here the diversity of the Ty1-copia retrotransposon Tos17 in the cultivated rice of Asian origin (Oryza sativa L.) and related AA genome species of the Oryza genus, to contribute understanding of the complex evolutionary history in this group of species through that of the eleme...

  14. Genomic affinity between Oryza sativa and Oryza brachyantha as ...

    African Journals Online (AJOL)

    USER

    2010-05-24

    May 24, 2010 ... brachyantha as revealed by in situ hybridization and ... Department of Genetics, Hazara University, Garden Campus Mansehra, Pakistan. Accepted 26 April ..... Oryza complex identified on the basis of molecular divergence.

  15. The oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species.

    Science.gov (United States)

    Wing, Rod A; Ammiraju, Jetty S S; Luo, Meizhong; Kim, Hyeran; Yu, Yeisoo; Kudrna, Dave; Goicoechea, Jose L; Wang, Wenming; Nelson, Will; Rao, Kiran; Brar, Darshan; Mackill, Dave J; Han, Bin; Soderlund, Cari; Stein, Lincoln; SanMiguel, Phillip; Jackson, Scott

    2005-09-01

    The wild species of the genus Oryza offer enormous potential to make a significant impact on agricultural productivity of the cultivated rice species Oryza sativa and Oryza glaberrima. To unlock the genetic potential of wild rice we have initiated a project entitled the 'Oryza Map Alignment Project' (OMAP) with the ultimate goal of constructing and aligning BAC/STC based physical maps of 11 wild and one cultivated rice species to the International Rice Genome Sequencing Project's finished reference genome--O. sativa ssp. japonica c. v. Nipponbare. The 11 wild rice species comprise nine different genome types and include six diploid genomes (AA, BB, CC, EE, FF and GG) and four tetrapliod genomes (BBCC, CCDD, HHKK and HHJJ) with broad geographical distribution and ecological adaptation. In this paper we describe our strategy to construct robust physical maps of all 12 rice species with an emphasis on the AA diploid O. nivara--thought to be the progenitor of modern cultivated rice.

  16. 基于ISSR标记的稻属AA基因组遗传多样性分析%ANALYSIS ON GENETIC DIVERSITY OF AA-GENOME ORYZA SPECIES BY ISSR MARKERS

    Institute of Scientific and Technical Information of China (English)

    段世华; 郑卓; 罗强; 龙伟雄; 廖佛才

    2013-01-01

      In order to determine genetic diversity of the AA-genome Oryza species (Poaceae), inter-simple sequence repeat (ISSR) markers from a total of 62 rice accessions collected worldwide were analyzed. These accessions encompassed six wild (O. nivara, O. rufipogon, O. barthii, O. longistaminata, O. glumaepatula, and O. meridionalis) and two cultivated (O. sativa and O. glaberrima) species. 21 selected ISSR primers that produced consistent and repeatable banding patterns revealed significant polymorphisms among the 62 rice accessions with an overall gene diversity (DG) of 0.527, indicating the power of ISSR markers in studying genetic diversity in Oryza germplasm. The consensus tree constructed on the basis of the pairwise Jaccard similarity coefficients of the ISSR banding pattern revealed an evident genetic variation relationships of the AA-genome Oryza species with high bootstrap value supports. It is concluded from this study that the Oryza species from different continents possessed close linkages and current classification of the AA-genome Oryza species suggested by Vaughan (1989) remains valid, particularly in relation to that of the Asian wild rice. The knowledge will be useful for the effective utilization of AA-genome wild Oryza species in rice breeding programs.%  为了确定稻属AA基因组物种间的遗传差异和系统进化关系,62份来自广泛地理分布的水稻品系被用于 ISSR 标记分析。这些品系包含有6个野生稻种(O. nivara, O. rufipogon、O. barthi, O. longistaminata, O. glumaepatula,和O. meridionalis)和2个栽培稻种(O. sativa 和O. glaberrima)。21条能产生良好重复性条带模式的ISSR引物被筛选出,并在62个水稻品系中揭示出非常好的多态性。全部样品的基因多样性为0.527,同时显示出ISSR标记在稻属物种遗传多样性研究中具有强大的作用。根据ISSR条带模式,利用Jaccard配对相似系数构建的一致性树状图,显示出具有良好

  17. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A

    Directory of Open Access Journals (Sweden)

    Szurek Boris

    2008-05-01

    Full Text Available Abstract Background Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L., a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. Results The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively, and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. Conclusion Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world.

  18. Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan [ORNL; Jawdy, Sara [ORNL; Tschaplinski, Timothy J [ORNL; Tuskan, Gerald A [ORNL

    2009-01-01

    Protein sequences were compared among Arabidopsis, Oryza and Populus to identify differential gene (DG) sets that are in one but not the other two genomes. The DG sets were screened against a plant transcript database, the NR protein database and six newly-sequenced genomes (Carica, Glycine, Medicago, Sorghum, Vitis and Zea) to identify a set of species-specific genes (SS). Gene expression, protein motif and intron number were examined. 192, 641 and 109 SS genes were identified in Arabidopsis, Oryza and Populus, respectively. Some SS genes were preferentially expressed in flowers, roots, xylem and cambium or up-regulated by stress. Six conserved motifs in Arabidopsis and Oryza SS proteins were found in other distant lineages. The SS gene sets were enriched with intronless genes. The results reflect functional and/or anatomical differences between monocots and eudicots or between herbaceous and woody plants. The Populus-specific genes are candidates for carbon sequestration and biofuel research.

  19. Construction of Oryza Sativa genome contigs by fingerprint strategy

    Institute of Scientific and Technical Information of China (English)

    TAOQUAZHOU; GUOFANHONG; 等

    1995-01-01

    We described the construction of BAC contigs of the genome of a indica variety of Oryza sativa.Guang Lu Ai 4. An entire representative(Sixfold coverage of rice chromosomes)and genetically stable BAC library of rice genome constructed in this lab has been systematically analysed by restriction enzyme fragmentation and polyacrylamide gel electrophoresis.And all the images thus obtained were subject to image-processing,which consisted of preliminary location of bands,cooperative tracking of lanes by correlation of adjacent bads.a precise densitometric pass,alignment at the marker bands with the standard,optional interactive editing,and normalization of the accepted bands.The contigs were generated based on the Computer Software specially designed for genome mapping.The number of contigs with 600 kb in length on average was 464.of contigs with 1000kb in length on average was 107; of contigs with 1500 kb in length on average was Construction of Oryza Sativa genome contigs.23.Therefor,all the contigs we have obtained ampunted up to 420 megabases in length.Considering the size of rice genome(430 megabased),the contigs generated in this lab have covered nearly 98% of the rice genome.We are now in the process of mapping the contigs to chromosomes.

  20. Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere.

    Directory of Open Access Journals (Sweden)

    Min-Jung Kwak

    Full Text Available Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated.

  1. The whole chloroplast genome of wild rice (Oryza australiensis).

    Science.gov (United States)

    Wu, Zhiqiang; Ge, Song

    2016-01-01

    The whole chloroplast genome of wild rice (Oryza australiensis) is characterized in this study. The genome size is 135,224  bp, exhibiting a typical circular structure including a pair of 25,776  bp inverted repeats (IRa,b) separated by a large single-copy region (LSC) of 82,212  bp and a small single-copy region (SSC) of 12,470  bp. The overall GC content of the genome is 38.95%. 110 unique genes were annotated, including 76 protein-coding genes, 4 ribosomal RNA genes, and 30t RNA genes. Among these, 18 are duplicated in the inverted repeat regions, 13 genes contain one intron, and 2 genes (rps12 and ycf3) have two introns.

  2. Population genomic insights into variation and evolution of Xanthomonas oryzae pv. oryzae

    Science.gov (United States)

    Midha, Samriti; Bansal, Kanika; Kumar, Sanjeet; Girija, Anil Madhusoodana; Mishra, Deo; Brahma, Kranthi; Laha, Gouri Sankar; Sundaram, Raman Meenakshi; Sonti, Ramesh V.; Patil, Prabhu B.

    2017-01-01

    Xanthomonas oryzae pv. oryzae ( Xoo) is a serious pathogen of rice causing bacterial leaf blight disease. Resistant varieties and breeding programs are being hampered by the emergence of highly virulent strains. Herein we report population based whole genome sequencing and analysis of 100 Xoo strains from India. Phylogenomic analysis revealed the clustering of Xoo strains from India along with other Asian strains, distinct from African and US Xo strains. The Indian Xoo population consists of a major clonal lineage and four minor but highly diverse lineages. Interestingly, the variant alleles, gene clusters and highly pathogenic strains are primarily restricted to minor lineages L-II to L-V and in particularly to lineage L-III. We could also find the association of an expanded CRISPR cassette and a highly variant LPS gene cluster with the dominant lineage. Molecular dating revealed that the major lineage, L-I is youngest and of recent origin compared to remaining minor lineages that seems to have originated much earlier in the past. Further, we were also able to identify core effector genes that may be helpful in efforts towards building durable resistance against this pathogen. PMID:28084432

  3. Diversity of the Ty-1 copia retrotransposon Tos17 in rice (Oryza sativa L.) and the AA genome of the Oryza genus.

    Science.gov (United States)

    Petit, Julie; Bourgeois, Emmanuelle; Stenger, Wilfried; Bès, Martine; Droc, Gaétan; Meynard, Donaldo; Courtois, Brigitte; Ghesquière, Alain; Sabot, François; Panaud, Olivier; Guiderdoni, Emmanuel

    2009-12-01

    Retrotransposons are mobile genetic elements, ubiquitous in Eukaryotic genomes, which have proven to be major genetic tools in determining phylogeny and structuring genetic diversity, notably in plants. We investigate here the diversity of the Ty1-copia retrotransposon Tos17 in the cultivated rice of Asian origin (Oryza sativa L.) and related AA genome species of the Oryza genus, to contribute understanding of the complex evolutionary history in this group of species through that of the element in the lineages. In that aim, we used a combination of Southern hybridization with a reverse transcriptase (RT) probe and an adapter-PCR mediated amplification, which allowed the sequencing of the genomic regions flanking Tos17 insertions. This analysis was carried out in a collection of 47 A-genome Oryza species accessions and 202 accessions of a core collection of Oryza sativa L. representative of the diversity of the species. Our Southern hybridization results show that Tos17 is present in all the accessions of the A-genome Oryza species, except for the South American species O. glumaepatula and the African species O. glaberrima and O. breviligulata. In O. sativa, the number of putative copies of Tos17 per accession ranged from 1 to 11 and multivariate analysis based on presence/absence of putative copies yielded a varietal clustering which is consistent with the isozyme classification of rice. Adapter PCR amplification and sequencing of flanking regions of Tos17 insertions in A-genome species other than O. sativa, followed by anchoring on the Nipponbare genome sequence, revealed 13 insertion sites of Tos17 in the surveyed O. rufipogon and O. longistaminata accessions, including one shared by both species. In O. sativa, the same approach revealed 25 insertions in the 6 varietal groups. Four insertion sites located on chromosomes 1, 2, 10, and 11 were found orthologous in O. rufipogon and O. sativa. The chromosome 1 insertion was also shared between O. rufipogon and O

  4. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication.

    Directory of Open Access Journals (Sweden)

    Li-Jun Ma

    2009-07-01

    Full Text Available Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called "zygomycetes," R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99-880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs, comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin-proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14alpha-demethylase (ERG11, could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.

  5. Comparison of Genomes of Three Xanthomonas oryzae Bacteriophages

    Directory of Open Access Journals (Sweden)

    Chen Hui-Yi

    2007-11-01

    Full Text Available Abstract Background Xp10 and OP1 are phages of Xanthomonas oryzae pv. oryzae (Xoo, the causative agent of bacterial leaf blight in rice plants, which were isolated in 1967 in Taiwan and in 1954 in Japan, respectively. We recently isolated the Xoo phage Xop411. Results The linear Xop411 genome (44,520 bp, 58 ORFs sequenced here is 147 bp longer than that of Xp10 (60 ORFs and 735 bp longer than that of OP1 (59 ORFs. The G+C contents of OP1 (51% and Xop411 and Xp10 (52% each are less than that of the host (65%. The 9-bp 3'-overhangs (5'-GGACAGTCT-3' in Xop411 and Xp10 are absent from OP1. More of the deduced Xop411 proteins share higher degrees of identity with Xp10 than with OP1 proteins, while the right end of the genomes of Xp10 and OP1, containing all predicted promoters, share stronger homology. Xop411, Xp10, and OP1 contain 8, 7, and 6 freestanding HNH endonuclease genes, respectively. These genes can be classified into five groups depending on their possession of the HNH domain (HNN or HNH type and/or AP2 domain in intact or truncated forms. While the HNN-AP2 type endonuclease genes dispersed in the genome, the HNH type endonuclease genes, each with a unique copy, were located within the same genome context. Mass spectrometry and N-terminal sequencing showed nine Xop411 coat proteins, among which three were identified, six were assigned as coat proteins (4 and conserved phage proteins (2 in Xp10. The major coat protein, in which only the N-terminal methionine is removed, appears to exist in oligomeric forms containing 2 to 6 subunits. The three phages exhibit different patterns of domain duplication in the N-terminus of the tail fiber, which are involved in determination of the host range. Many short repeated sequences are present in and around the duplicated domains. Conclusion Geographical separation may have confined lateral gene transfer among the Xoo phages. The HNN-AP2 type endonucleases were more likely to transfer their genes

  6. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Vongsangnak, Wanwipa; Olsen, Peter; Hansen, Kim;

    2008-01-01

    to a genome scale metabolic model of A. oryzae. Results: Our assembled EST sequences we identified 1,046 newly predicted genes in the A. oryzae genome. Furthermore, it was possible to assign putative protein functions to 398 of the newly predicted genes. Noteworthy, our annotation strategy resulted......Background: Since ancient times the filamentous fungus Aspergillus oryzae has been used in the fermentation industry for the production of fermented sauces and the production of industrial enzymes. Recently, the genome sequence of A. oryzae with 12,074 annotated genes was released but the number...... of hypothetical proteins accounted for more than 50% of the annotated genes. Considering the industrial importance of this fungus, it is therefore valuable to improve the annotation and further integrate genomic information with biochemical and physiological information available for this microorganism and other...

  7. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences

    Directory of Open Access Journals (Sweden)

    Ganko Eric W

    2004-03-01

    Full Text Available Abstract Background LTR Retrotransposons transpose through reverse transcription of an RNA intermediate and are ubiquitous components of all eukaryotic genomes thus far examined. Plant genomes, in particular, have been found to be comprised of a remarkably high number of LTR retrotransposons. There is a significant body of direct and indirect evidence that LTR retrotransposons have contributed to gene and genome evolution in plants. Results To explore the evolutionary history of long terminal repeat (LTR retrotransposons and their impact on the genome of Oryza sativa, we have extended an earlier computer-based survey to include all identifiable full-length, fragmented and solo LTR elements in the rice genome database as of April 2002. A total of 1,219 retroelement sequences were identified, including 217 full-length elements, 822 fragmented elements, and 180 solo LTRs. In order to gain insight into the chromosomal distribution of LTR-retrotransposons in the rice genome, a detailed examination of LTR-retrotransposon sequences on Chromosome 10 was carried out. An average of 22.3 LTR-retrotransposons per Mb were detected in Chromosome 10. Conclusions Gypsy-like elements were found to be >4 × more abundant than copia-like elements. Eleven of the thirty-eight investigated LTR-retrotransposon families displayed significant subfamily structure. We estimate that at least 46.5% of LTR-retrotransposons in the rice genome are older than the age of the species (

  8. Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future.

    Science.gov (United States)

    Machida, Masayuki; Yamada, Osamu; Gomi, Katsuya

    2008-08-01

    At a time when the notion of microorganisms did not exist, our ancestors empirically established methods for the production of various fermentation foods: miso (bean curd seasoning) and shoyu (soy sauce), both of which have been widely used and are essential for Japanese cooking, and sake, a magical alcoholic drink consumed at a variety of ritual occasions, are typical examples. A filamentous fungus, Aspergillus oryzae, is the key organism in the production of all these traditional foods, and its solid-state cultivation (SSC) has been confirmed to be the secret for the high productivity of secretory hydrolases vital for the fermentation process. Indeed, our genome comparison and transcriptome analysis uncovered mechanisms for effective degradation of raw materials in SSC: the extracellular hydrolase genes that have been found only in the A. oryzae genome but not in A. fumigatus are highly induced during SSC but not in liquid cultivation. Also, the temperature reduction process empirically adopted in the traditional soy-sauce fermentation processes has been found to be important to keep strong expression of the A. oryzae-specific extracellular hydrolases. One of the prominent potentials of A. oryzae is that it has been successfully applied to effective degradation of biodegradable plastic. Both cutinase, responsible for the degradation of plastic, and hydrophobin, which recruits cutinase on the hydrophobic surface to enhance degradation, have been discovered in A. oryzae. Genomic analysis in concert with traditional knowledge and technology will continue to be powerful tools in the future exploration of A. oryzae.

  9. Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima).

    Science.gov (United States)

    Nabholz, Benoit; Sarah, Gautier; Sabot, François; Ruiz, Manuel; Adam, Hélène; Nidelet, Sabine; Ghesquière, Alain; Santoni, Sylvain; David, Jacques; Glémin, Sylvain

    2014-05-01

    The African cultivated rice (Oryza glaberrima) was domesticated in West Africa 3000 years ago. Although less cultivated than the Asian rice (O. sativa), O. glaberrima landraces often display interesting adaptation to rustic environment (e.g. drought). Here, using RNA-seq technology, we were able to compare more than 12,000 transcripts between 9 O. glaberrima, 10 wild O. barthii and one O. meridionalis individuals. With a synonymous nucleotide diversity πs = 0.0006 per site, O. glaberrima appears as the least genetically diverse crop grass ever documented. Using approximate Bayesian computation, we estimated that O. glaberrima experienced a severe bottleneck during domestication. This demographic scenario almost fully accounts for the pattern of genetic diversity across O. glaberrima genome as we detected very few outliers regions where positive selection may have further impacted genetic diversity. Moreover, the large excess of derived nonsynonymous substitution that we detected suggests that the O. glaberrima population suffered from the 'cost of domestication'. In addition, we used this genome-scale data set to demonstrate that (i) O. barthii genetic diversity is positively correlated with recombination rate and negatively with gene density, (ii) expression level is negatively correlated with evolutionary constraint, and (iii) one region on chromosome 5 (position 4-6 Mb) exhibits a clear signature of introgression with a yet unidentified Oryza species. This work represents the first genome-wide survey of the African rice genetic diversity and paves the way for further comparison between the African and the Asian rice, notably regarding the genetics underlying domestication traits.

  10. Comparative analysis of A, B,C and D genomes in the genus Oryza with C0t-1 DNA of C genome

    Institute of Scientific and Technical Information of China (English)

    LAN Weizhen; QIN Rui; LI Gang; HE Guangcun

    2006-01-01

    Fluorescence in situ hybridization (FISH)was applied to somatic chromosomes preparations of Oryza officinalis Wall. (CC), O. sativa L. (AA)×O. officinalis F1 hybrid (AC), backcross progenies BC1 (AAC and ACC), O. latifolia Desv. (CCDD), O. alta Swallen (CCDD) and O. punctata Kotschy (BBCC)with a labelled probe of Cot-1 DNA from O. officinalis.In O. officinalis, the homologous chromosomes showed similar signal bands probed by C0t-1 DNA and karyotype analysis was conducted based on the band patterns. Using no blocking DNA, the probe identified the chromosomes of C genome clearly, but detected few signals on chromosomes of A genome in the F1 hybrid and two backcross progenies of BC1.It is obvious that the highly and moderately repetitive DNA sequences were considerably different between C and A genomes. The chromosomes of C genome were also discriminated from the chromosomes of D-and B-genome in the tetraploid species O. latifolia, O.alta and O. punctata by C0t-1 DNA-FISH. Comparison of the fluorescence intensity on the chromosomes of B, C and D genomes in O. latifolia, O. alta,and O. punctata indicated that the differentiations between C and D genomes are less than that between C and B genomes. The relationship between C and D genomes in O. alta is closer than that of C and D genomes in O. latifolia. This would be one of the causes for the fact that both the genomes are of the same karyotype (CCDD) but belong to different species. The above results showed that the C0t-1 DNA had a high specificity of genome and species. In this paper, the origin of allotetraploid in genus Oryza is also discussed.

  11. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Cory A. Leonard

    2013-01-01

    Full Text Available Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-resistant Staphylococcus aureus (MRSA in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS. Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitive Staphylococcus aureus, MRSA, and Pseudomonas aeruginosa, but not Klebsiella pneumonia or Proteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis of A. oryzae. Because the genome of A. oryzae has been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system.

  12. Repetitive genomic sequences as a substrate for homologous integration in the Rhizopus oryzae genome.

    Science.gov (United States)

    Yuzbashev, Tigran V; Larina, Anna S; Vybornaya, Tatiana V; Yuzbasheva, Evgeniya Y; Gvilava, Ilia T; Sineoky, Sergey P

    2015-06-01

    The vast number of repetitive genomic elements was identified in the genome of Rhizopus oryzae. Such genomic repeats can be used as homologous regions for integration of plasmids. Here, we evaluated the use of two different repeats: the short (575 bp) rptZ, widely distributed (about 34 copies per genome) and the long (2053 bp) rptH, less prevalent (about 15 copies). The plasmid carrying rptZ integrated, but did so through a 2256-bp region of homology to the pyrG locus, a unique genomic sequence. Thus, the length of rptZ was below the minimal requirements for homologous strand exchange in this fungus. In contrast, rptH was used efficiently for homologous integration. The plasmid bearing this repeat integrated in multicopy fashion, with up to 25 copies arranged in tandem. The latter vector, pPyrG-H, could be a valuable tool for integration at homologous sequences, for such purposes as high-level expression of proteins. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. Genome analysis of rice-blast fungus Magnaporthe oryzae field isolates from southern India

    Directory of Open Access Journals (Sweden)

    Malali Gowda

    2015-09-01

    Full Text Available The Indian subcontinent is the center of origin and diversity for rice (Oryza sativa L.. The O. sativa ssp. indica is a major food crop grown in India, which occupies the first and second position in area and production, respectively. Blast disease caused by Magnaporthe oryzae is a major constraint to rice production. Here, we report the analysis of genome architecture and sequence variation of two field isolates, B157 and MG01, of the blast fungus from southern India. The 40 Mb genome of B157 and 43 Mb genome of MG01 contained 11,344 and 11,733 predicted genes, respectively. Genomic comparisons unveiled a large set of SNPs and several isolate specific genes in the Indian blast isolates. Avr genes were analyzed in several sequenced Magnaporthe strains; this analysis revealed the presence of Avr-Pizt and Avr-Ace1 genes in all the sequenced isolates. Availability of whole genomes of field isolates from India will contribute to global efforts to understand genetic diversity of M. oryzae population and to track the emergence of virulent pathotypes.

  14. Genomics of Bacillus Species

    Science.gov (United States)

    Økstad, Ole Andreas; Kolstø, Anne-Brit

    Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

  15. Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza.

    Science.gov (United States)

    Kim, HyeRan; Hurwitz, Bonnie; Yu, Yeisoo; Collura, Kristi; Gill, Navdeep; SanMiguel, Phillip; Mullikin, James C; Maher, Christopher; Nelson, William; Wissotski, Marina; Braidotti, Michele; Kudrna, David; Goicoechea, José Luis; Stein, Lincoln; Ware, Doreen; Jackson, Scott A; Soderlund, Carol; Wing, Rod A

    2008-01-01

    We describe the establishment and analysis of a genus-wide comparative framework composed of 12 bacterial artificial chromosome fingerprint and end-sequenced physical maps representing the 10 genome types of Oryza aligned to the O. sativa ssp. japonica reference genome sequence. Over 932 Mb of end sequence was analyzed for repeats, simple sequence repeats, miRNA and single nucleotide variations, providing the most extensive analysis of Oryza sequence to date.

  16. Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication

    OpenAIRE

    Zhang, Fantao; Xu, Tao; Mao, Linyong; Yan, Shuangyong; Chen, Xiwen; Wu, Zhenfeng; Chen, Rui; Luo, Xiangdong; Xie, Jiankun; Gao, Shan

    2016-01-01

    Background It is widely accepted that cultivated rice (Oryza sativa L.) was domesticated from common wild rice (Oryza rufipogon Griff.). Compared to other studies which concentrate on rice origin, this study is to genetically elucidate the substantially phenotypic and physiological changes from wild rice to cultivated rice at the whole genome level. Results Instead of comparing two assembled genomes, this study directly compared the Dongxiang wild rice (DXWR) Illumina sequencing reads with th...

  17. The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Gibbons, John G; Salichos, Leonidas; Slot, Jason C; Rinker, David C; McGary, Kriston L; King, Jonas G; Klich, Maren A; Tabb, David L; McDonald, W Hayes; Rokas, Antonis

    2012-08-01

    The domestication of animals, plants, and microbes fundamentally transformed the lifestyle and demography of the human species [1]. Although the genetic and functional underpinnings of animal and plant domestication are well understood, little is known about microbe domestication [2-6]. Here, we systematically examined genome-wide sequence and functional variation between the domesticated fungus Aspergillus oryzae, whose saccharification abilities humans have harnessed for thousands of years to produce sake, soy sauce, and miso from starch-rich grains, and its wild relative A. flavus, a potentially toxigenic plant and animal pathogen [7]. We discovered dramatic changes in the sequence variation and abundance profiles of genes and wholesale primary and secondary metabolic pathways between domesticated and wild relative isolates during growth on rice. Our data suggest that, through selection by humans, an atoxigenic lineage of A. flavus gradually evolved into a "cell factory" for enzymes and metabolites involved in the saccharification process. These results suggest that whereas animal and plant domestication was largely driven by Neolithic "genetic tinkering" of developmental pathways, microbe domestication was driven by extensive remodeling of metabolism.

  18. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level

    Directory of Open Access Journals (Sweden)

    Henrissat Bernard

    2011-01-01

    Full Text Available Abstract Background Rhizopus oryzae is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses. Results Carbohydrate Active enzyme (CAZy annotation of the R. oryzae identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs and a high number of glycosyl transferases (GTs and carbohydrate esterases (CEs. A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars, chitin, chitosan, β-1,3-glucan and fungal cell wall fractions suggest specific adaptations of R. oryzae to its environment. Conclusions CAZy analyses of the genome of the zygomycete fungus R. oryzae and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota.

  19. Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Minfeng Xue

    Full Text Available Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice worldwide. The fungal pathogen is notorious for its ability to overcome host resistance. To better understand its genetic variation in nature, we sequenced the genomes of two field isolates, Y34 and P131. In comparison with the previously sequenced laboratory strain 70-15, both field isolates had a similar genome size but slightly more genes. Sequences from the field isolates were used to improve genome assembly and gene prediction of 70-15. Although the overall genome structure is similar, a number of gene families that are likely involved in plant-fungal interactions are expanded in the field isolates. Genome-wide analysis on asynonymous to synonymous nucleotide substitution rates revealed that many infection-related genes underwent diversifying selection. The field isolates also have hundreds of isolate-specific genes and a number of isolate-specific gene duplication events. Functional characterization of randomly selected isolate-specific genes revealed that they play diverse roles, some of which affect virulence. Furthermore, each genome contains thousands of loci of transposon-like elements, but less than 30% of them are conserved among different isolates, suggesting active transposition events in M. oryzae. A total of approximately 200 genes were disrupted in these three strains by transposable elements. Interestingly, transposon-like elements tend to be associated with isolate-specific or duplicated sequences. Overall, our results indicate that gain or loss of unique genes, DNA duplication, gene family expansion, and frequent translocation of transposon-like elements are important factors in genome variation of the rice blast fungus.

  20. Gene space dynamics during the evolution of Aegilops tauschii, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor genomes.

    Science.gov (United States)

    Massa, A N; Wanjugi, H; Deal, K R; O'Brien, K; You, F M; Maiti, R; Chan, A P; Gu, Y Q; Luo, M C; Anderson, O D; Rabinowicz, P D; Dvorak, J; Devos, K M

    2011-09-01

    Nine different regions totaling 9.7 Mb of the 4.02 Gb Aegilops tauschii genome were sequenced using the Sanger sequencing technology and compared with orthologous Brachypodium distachyon, Oryza sativa (rice), and Sorghum bicolor (sorghum) genomic sequences. The ancestral gene content in these regions was inferred and used to estimate gene deletion and gene duplication rates along each branch of the phylogenetic tree relating the four species. The total gene number in the extant Ae. tauschii genome was estimated to be 36,371. The gene deletion and gene duplication rates and total gene numbers in the four genomes were used to estimate the total gene number in each node of the phylogenetic tree. The common ancestor of the Brachypodieae and Triticeae lineages was estimated to have had 28,558 genes, and the common ancestor of the Panicoideae, Ehrhartoideae, and Pooideae subfamilies was estimated to have had 27,152 or 28,350 genes, depending on the ancestral gene scenario. Relative to the Brachypodieae and Triticeae common ancestor, the gene number was reduced in B. distachyon by 3,026 genes and increased in Ae. tauschii by 7,813 genes. The sum of gene deletion and gene duplication rates, which reflects the rate of gene synteny loss, was correlated with the rate of structural chromosome rearrangements and was highest in the Ae. tauschii lineage and lowest in the rice lineage. The high rate of gene space evolution in the Ae. tauschii lineage accounts for the fact that, contrary to the expectations, the level of synteny between the phylogenetically more related Ae. tauschii and B. distachyon genomes is similar to the level of synteny between the Ae. tauschii genome and the genomes of the less related rice and sorghum. The ratio of gene duplication to gene deletion rates in these four grass species closely parallels both the total number of genes in a species and the overall genome size. Because the overall genome size is to a large extent a function of the repeated

  1. Genomics of Salmonella Species

    Science.gov (United States)

    Canals, Rocio; McClelland, Michael; Santiviago, Carlos A.; Andrews-Polymenis, Helene

    Progress in the study of Salmonella survival, colonization, and virulence has increased rapidly with the advent of complete genome sequencing and higher capacity assays for transcriptomic and proteomic analysis. Although many of these techniques have yet to be used to directly assay Salmonella growth on foods, these assays are currently in use to determine Salmonella factors necessary for growth in animal models including livestock animals and in in vitro conditions that mimic many different environments. As sequencing of the Salmonella genome and microarray analysis have revolutionized genomics and transcriptomics of salmonellae over the last decade, so are new high-throughput sequencing technologies currently accelerating the pace of our studies and allowing us to approach complex problems that were not previously experimentally tractable.

  2. What can comparative genomics tell us about species concepts in the genus Aspergillus?

    Energy Technology Data Exchange (ETDEWEB)

    Rokas, Antonis; payne, gary; Federova, Natalie D.; Baker, Scott E.; Machida, Masa; yu, Jiujiang; georgianna, D. R.; Dean, Ralph A.; Bhatnagar, Deepak; Cleveland, T. E.; Wortman, Jennifer R.; Maiti, R.; Joardar, V.; Amedeo, Paolo; Denning, David W.; Nierman, William C.

    2007-12-15

    Understanding the nature of species" boundaries is a fundamental question in evolutionary biology. The availability of genomes from several species of the genus Aspergillus allows us for the first time to examine the demarcation of fungal species at the whole-genome level. Here, we examine four case studies, two of which involve intraspecific comparisons, whereas the other two deal with interspecific genomic comparisons between closely related species. These four comparisons reveal significant variation in the nature of species boundaries across Aspergillus. For example, comparisons between A. fumigatus and Neosartorya fischeri (the teleomorph of A. fischerianus) and between A. oryzae and A. flavus suggest that measures of sequence similarity and species-specific genes are significantly higher for the A. fumigatus - N. fischeri pair. Importantly, the values obtained from the comparison between A. oryzae and A. flavus are remarkably similar to those obtained from an intra-specific comparison of A. fumigatus strains, giving support to the proposal that A. oryzae represents a distinct ecotype of A. flavus and not a distinct species. We argue that genomic data can aid Aspergillus taxonomy by serving as a source of novel and unprecedented amounts of comparative data, as a resource for the development of additional diagnostic tools, and finally as a knowledge database about the biological differences between strains and species.

  3. Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whote-Genome Duplication

    Science.gov (United States)

    Rhizopus oryzae is the primary etiologic agent of mucormycosis, an emerging lifethreatening infection. The rapid growth and angioinvasive nature of mucormycotic infections in humans result in an overall mortality rate that exceeds 50%, even with combined surgical and antifungal therapies. As part ...

  4. Ultrastructural morphologic description of the wild rice species Oryza latifolia (Poaceae in Costa Rica

    Directory of Open Access Journals (Sweden)

    Ethel Sánchez

    2003-06-01

    Full Text Available The wild rice species Oryza latifolia is endemic to Tropical America, allotetraploid and has a CCDD genome type. It belongs to the officinalis group of the genus Oryza. This species is widely distributed through-out the lowlands of Costa Rica and it is found on different life zones, having great morphologic diversity. The purpose of this research is to perform a morphologic description of O. latifolia samples of three Costa Rican localities (Carara, Liberia and Cañas and to see if the phenotypic diversity of the species is reflected at the ultra-structure level. Structures such as the leaf blade, ligule, auricles and spikelet were analyzed. Leaf blade morphology of the specimens from the three localities is characterized by the presence of diamond-shaped stomata with papillae, zipper-like rows of silica cells; a variety of evenly distributed epicuticular wax papillae and bulky prickle trichomes. The central vein of the leaf blade from the Cañas populations is glabrous, while those from Carara and Liberia have abundant papillae. There are also differences among the borders of the leaf blade between these locations. Cañas and Liberia present alternating large and small prickle trichomes ca. 81 and 150 µm, while Carara exhibits even sized prickle trichomes of ca. 93 µm. Auricles from Cañas are rectangular and present long trichomes along the surface ca. 1.5 mm, while those of Liberia and Carara wrap the culm and exhibit trichomes only in the borders. The ligule from the plants of Carara has an acute distal tip, while that of Cañas and Liberia is blunt. The Liberia spikelet has large lignified spines while Cañas and Carara show flexible trichomes.La especie silvestre Oryza latifolia es endémica de América, tetraploide y de genoma CCDD. Pertenece a las especies del género Oryza del grupo officinalis. Presenta una amplia distribución en las tierras bajas de Costa Rica y se le encuentra en varias zonas de vida, mostrando una gran diversidad

  5. Genome-wide analysis of potential cross-reactive endogenous allergens in rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Fang Chao Zhu

    2015-01-01

    Full Text Available The proteins in the food are the source of common allergic components to certain patients. Current lists of plant endogenous allergens were based on the medical/clinical reports as well as laboratory results. Plant genome sequences made it possible to predict and characterize the genome-wide of putative endogenous allergens in rice (Oryza sativa L.. In this work, we identified and characterized 122 candidate rice allergens including the 22 allergens in present databases. Conserved domain analysis also revealed 37 domains among rice allergens including one novel domain (histidine kinase-, DNA gyrase B-, and HSP90-like ATPase, PF13589 adding to the allergen protein database. Phylogenetic analysis of the allergens revealed the diversity among the Prolamin superfamily and DnaK protein family, respectively. Additionally, some allergens proteins clustered on the rice chromosome might suggest the molecular function during the evolution.

  6. Practical Utilization of OryzaExpress and Plant Omics Data Center Databases to Explore Gene Expression Networks in Oryza Sativa and Other Plant Species.

    Science.gov (United States)

    Kudo, Toru; Terashima, Shin; Takaki, Yuno; Nakamura, Yukino; Kobayashi, Masaaki; Yano, Kentaro

    2017-01-01

    Analysis of a gene expression network (GEN), which is constructed based on similarity of gene expression profiles, is a widely used approach to gain clues for new biological insights. The recent abundant availability of transcriptome data in public databases is enabling GEN analysis under various experimental conditions, and even comparative GEN analysis across species. To provide a platform to gain biological insights from public transcriptome data, valuable databases have been created and maintained. This chapter introduces the web database OryzaExpress, providing omics information on Oryza sativa (rice). The integrated database Plant Omics Data Center, supporting a wide variety of plant species, is also described to compare omics information among multiple plant species.

  7. Grain Accumulation of Selenium Species in Rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Anne-Marie; Scheckel, Kirk G.; Lombi, Enzo; Newville, Matt; Choi, Yongseong; Norton, Gareth J.; Price, Adam H.; Meharg, Andrew A. (EPA); (U. South Australia); (Aberdeen); (UC)

    2012-09-05

    Efficient Se biofortification programs require a thorough understanding of the accumulation and distribution of Se species within the rice grain. Therefore, the translocation of Se species to the filling grain and their spatial unloading were investigated. Se species were supplied via cut flag leaves of intact plants and excised panicle stems subjected to a {+-} stem-girdling treatment during grain fill. Total Se concentrations in the flag leaves and grain were quantified by inductively coupled plasma mass spectrometry. Spatial accumulation was investigated using synchrotron X-ray fluorescence microtomography. Selenomethionine (SeMet) and selenomethylcysteine (SeMeSeCys) were transported to the grain more efficiently than selenite and selenate. SeMet and SeMeSeCys were translocated exclusively via the phloem, while inorganic Se was transported via both the phloem and xylem. For SeMet- and SeMeSeCys-fed grain, Se dispersed throughout the external grain layers and into the endosperm and, for SeMeSeCys, into the embryo. Selenite was retained at the point of grain entry. These results demonstrate that the organic Se species SeMet and SeMeSeCys are rapidly loaded into the phloem and transported to the grain far more efficiently than inorganic species. Organic Se species are distributed more readily, and extensively, throughout the grain than selenite.

  8. Species boundaries and nomenclature of Rhizopus arrhizus (syn. R. oryzae).

    Science.gov (United States)

    Dolatabadi, Somayeh; de Hoog, G Sybren; Meis, Jacques F; Walther, Grit

    2014-12-01

    Rhizopus arrhizus (Mucorales, Mucoromycotina) is the prevalent opportunist worldwide among the mucoralean species causing human infections. On the other hand the species has been used since ancient times to ferment African and Asian traditional foods and condiments based on ground soybeans. As producer of organic acids and hydrolytic enzymes it is widely applied in food industry and biotechnology. Using a set of 82 strains we studied phylogenetic and biological species boundaries within Rhizopus arrhizus s.l. to test the taxonomic status of R. delemar that was recently separated from R. arrhizus. Sequence analyses based on the internal transcribed spacer region, the gene of the largest subunit of the RNA polymerase II, a part of the actin gene, and the translation elongation factor 1-α as well as amplified fragment length polymorphism analysis were performed. Phenotypic characters such as enzyme profiles and growth kinetics were examined and the mating behavior was tested. Molecular analyses supported the existence of two phylogenetic species. However, the results of the mating test suggest that the mating barrier is still not complete. No physiological, ecological or epidemiological distinction could be found beside the difference in the production of organic acids. Consequently the status of varieties is proposed for the two phylogenetic species. Because the description of the first described R. arrhizus is considered to be conclusive we recommend the use of Rhizopus arrhizus var. arrhizus and var. delemar.

  9. The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima).

    Science.gov (United States)

    Wang, Kai; Wambugu, Peterson W; Zhang, Bin; Wu, Alex Chi; Henry, Robert J; Gilbert, Robert G

    2015-09-20

    The molecular structure and gelatinization properties of starches from domesticated African rice (Oryza glaberrima) and its wild progenitor (Oryza barthii) are determined and comparison made with Asian domesticated rice (Oryza sativa), the commonest commercial rice. This suggests possible enzymatic processes contributing to the unique traits of the African varieties. These have similar starch structures, including smaller amylose molecules, but larger amounts of amylose chains across the whole amylose chain-length distribution, and higher amylose contents, than O. sativa. They also show a higher proportion of two- and three-lamellae spanning amylopectin branch chains (degree of polymerization 34-100) than O. sativa, which contributes to their higher gelatinization temperatures. Fitting amylopectin chain-length distribution with a biosynthesis-based mathematical model suggests that the reason for this difference might be because O. glaberrima and O. barthii have more active SSIIIa and/or less active SBEIIb enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Global characterization of the root transcriptome of a wild species of rice, Oryza longistaminata, by deep sequencing

    Directory of Open Access Journals (Sweden)

    Reinhold-Hurek Barbara

    2010-12-01

    Full Text Available Abstract Background Oryza longistaminata, an AA genome type (2 n = 24, originates from Africa and is closely related to Asian cultivated rice (O. sativa L.. It contains various valuable traits with respect to tolerance to biotic and abiotic stress, QTLs with agronomically important traits and high ability to use nitrogen efficiently (NUE. However, only limited genomic or transcriptomic data of O. longistaminata are currently available. Results In this study we present the first comprehensive characterization of the O. longistaminata root transcriptome using 454 pyrosequencing. One sequencing run using a normalized cDNA library from O. longistaminata roots adapted to low N conditions generated 337,830 reads, which assembled into 41,189 contigs and 30,178 singletons. By similarity search against protein databases, putative functions were assigned to over 34,510 uni-ESTs. Comparison with ESTs derived from cultivated rice collections revealed expressed genes across different plant species, however 16.7% of the O. longistaminata ESTs had not been detected as expressed in O. sativa. Additionally, 15.7% had no significant similarity to known sequences. RT-PCR and Southern blot analyses confirmed the expression of selected novel transcripts in O. longistaminata. Conclusion Our results show that one run using a Genome Sequencer FLX from 454 Life Science/Roche generates sufficient genomic information for adequate de novo assembly of a large number of transcripts in a wild rice species, O. longistaminata. The generated sequence data are publicly available and will facilitate gene discovery in O. longistaminata and rice functional genomic studies. The large number of abundant of novel ESTs suggests different metabolic activity in O. longistaminata roots in comparison to O. sativa roots.

  11. Ultrastructure of Oryza glumaepatula , a wild rice species endemic of tropical America

    Directory of Open Access Journals (Sweden)

    Ethel Sánchez

    2005-06-01

    Full Text Available Oryza glumaepatula is a perennial wild rice species,endemic to tropical America, previously known as the Latin American race of Oryza rufipogon .In Costa Rica, it is found in the northern region of the country, mainly in the wetland of the Medio Queso River, Los Chiles, Alajuela. It is diploid, of AA type genome and because of its genetic relatedness to cultivated rice it is included in the O.sativa complex. We describe the ultrastructure of leaf blade, spikelet, ligule and auricles. Special emphasis is given to those traits of major taxonomic value for O.glumaepatula and to those characters that distinguish this species from O. rufipogon and O. sativa . O. glumaepatula has a leaf blade covered with tombstone-shaped, oblong and spheroid epicuticular wax papillae. It has diamond-shaped stomata surrounded by spherical papillae, rows of zipper-like silica cells, bulky prickle trichomes of ca .40 mu m in length and small hirsute trichomes of ca. 32 mu m in length.The central vein is covered with large,globular papillae of ca. 146 mu m in length,a characteristic that distinguishes this species from O.rufipogon and O.sativa. The border of the leaf blade exhibits a row of even-sized bulky prickle trichomes of ca .42.5 mu m in length.Auricles have attenuated trichomes of ca .5.5 mm in length on the edges and small bicellular trichomes of 120 mu m in length on the surface.The ligule has a large number of short attenuated trichomes on its surface of 100 mu m in length.These latter two traits have important taxonomic value since they were found in O.glumaepatula but not found in O.sativa or in O.rufipogon . The spikelet has the typical morphology of the Oryza genus. Fertile lemmas have abundant spines, a trait shared with O.rufipogon but not with O.sativa. The sterile lemmas are wing-shaped with serrated borders,a characteristic that distinguishes this species from O. rufipogon and O.sativa. All the ultrastructure characters observed in O.glumaepatula from

  12. Genomic dissection of small RNAs in wild rice (Oryza rufipogon): lessons for rice domestication.

    Science.gov (United States)

    Wang, Yu; Bai, Xuefei; Yan, Chenghai; Gui, Yiejie; Wei, Xinghua; Zhu, Qian-Hao; Guo, Longbiao; Fan, Longjiang

    2012-11-01

    The lack of a MIRNA set and genome sequence of wild rice (Oryza rufipogon) has prevented us from determining the role of MIRNA genes in rice domestication. In this study, a genome, three small RNA populations and a degradome of O. rufipogon were sequenced by Illumina platform and the expression levels of microRNAs (miRNAs) were investigated by miRNA chips. A de novo O. rufipogon genome was assembled using c. 55× coverage of raw sequencing data and a total of 387 MIRNAs were identified in the O. rufipogon genome based on c. 5.2 million unique small RNA reads from three different tissues of O. rufipogon. Of these, O. rufipogon MIRNAs, 259 were not found in the cultivated rice, suggesting a loss of these MIRNAs in the cultivated rice. We also found that 48 MIRNAs were novel in the cultivated rice, suggesting that they were potential targets of domestication selection. Some miRNAs showed significant expression differences between wild and cultivated rice, suggesting that expression of miRNA could also be a target of domestication, as demonstrated for the miR164 family. Our results illustrated that MIRNA genes, like protein-coding genes, might have been significantly shaped during rice domestication and could be one of the driving forces that contributed to rice domestication.

  13. A draft sequence of the rice(Oryza sativa ssp. indica) genome

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sequence of the rice genome holds fundamental information for its biology, including physiology, genetics, development, and evolution, as well as information on many beneficial phenotypes of economic significance. Using a "whole genome shotgun" approach, we have produced a draft rice genome sequence of Oryza sativa ssp. indica, the major crop rice subspecies in China and many other regions of Asia. The draft genome sequence is constructed from over 4.3 million successful sequencing traces with an accumulative total length of 2214.9 Mb. The initial assembly of the non-redundant sequences reached 409.76 Mb in length, based on 3.30 million successful sequencing traces with a total length of 1797.4 Mb from an indica variant cultivar 93-11, giving an estimated coverage of 95.29% of the rice genome with an average base accuracy of higher than 99%. The coverage of the draft sequence, the randomness of the sequence distribution, and the consistency of BIG-ASSEM- BLER, a custom-designed software package used for the initial assembly, were verified rigorously by comparisons against finished BAC clone sequences from both indica and japanica strains, available from the public databases. Over all, 96.3% of full-length cDNAs, 96.4% of STS, STR, RFLP markers, 94.0% of ESTs and 94.9% unigene clusters were identified from the draft sequence. Our preliminary analysis on the data set shows that our rice draft sequence is consistent with the comman standard accepted by the genome sequencing community. The unconditional release of the draft to the public also undoubtedly provides a fundamental resource to the international scientific communities to facilitate genomic and genetic studies on rice biology.

  14. Genomic organization and sequence dynamics of the AvrPiz-t locus in Magnaporthe oryzae

    Institute of Scientific and Technical Information of China (English)

    Ping LI; Bin BAI; Hong-yan ZHANG; Heng ZHOU; Bo ZHOU

    2012-01-01

    Plants utilize multiple layers of defense mechanisms to fight against the invasion of diverse pathogens.The R gene mediates resistance,in most cases,dependent on the co-existence of its cognate pathogen-derived avirulence (Avr) gene.The rice blast R gene Piz-t corresponds in gene-for-gene fashion to the Magnaporthe oryzae Avrgene AvrPiz-t.In this study,we determined and compared the genomic sequences surrounding the AvrPiz-t gene in both avirulent and virulent isolates,designating as AvrPiz-t-ZB15 and avrPiz-t-70-15 regions,respectively.The sequence of the AvrPiz-t-ZB15 region is 120966 bp whereas avrPiz-t-70-15 is 146292 bp in length.The extreme sequence similarity and good synteny in gene order and content along with the absence of two predicted genes in the avrPiz-t-70-15 region were observed in the predicted protein-coding regions in the AvrPiz-t locus.Nevertheless,frequent presence/absence and highly dynamic organization of transposable elements (TEs) were identified,representing the major variation of the AvrPiz-t locus between different isolates.Moreover,TEs constitute 27.3% and 43.2%of the genomic contents of the AvrPiz-t-ZB15 and avrPiz-t-70-15 regions,respectively,indicating that TEs contribute largely to the organization and evolution of AvrPiz-t locus.The findings of this study suggest that M.oryzae could benefit in an evolutionary sense from the presence of active TEs in genes conferring avirulence and provide an ability to rapidly change and thus to overcome host R genes.

  15. Patogenicidade de Helminthosporium oryzae a algumas espécies de gramíneas Pathogenicity of Helminthosporium oryzae against some grass species

    Directory of Open Access Journals (Sweden)

    V.H. Artigiani Filho

    1995-04-01

    Full Text Available O fungo Helminthosporium oryzae é um patógeno do arroz. Devido a sua variabilidade patogênica, foi investigada a possibilidade deste fungo infectar outras gramíneas. Através de inoculação artificial, ficou demonstrada a capacidade deste patógeno provocar infecção em aveia, cana, centeio, sorgo, trigo, Brachiaria decumbens e Panicum maximum. Assim, estas espécies vegetais podem ser consideradas potenciais hospedeiros do fungo na natureza.Helminthosporium oryzae is a rice pathogen. Due to its variability in pathogenicity, the possibility of this fungus Infecting other grasses was investigated. The capacity of this pathogen was demonstrated to be able to infect oat, sugar-cane, rye, sorghum, wheat, Brachiaria decumbens and Panicum maximum through artificial inoculations. Therefore, those plant species can be considered potencial hosts for the fungus in nature.

  16. Construction of a full bacterial artificial chromosome (BAC) library of Oryza sativa genome

    Institute of Scientific and Technical Information of China (English)

    TAOQUANZHOU; HAIYINGZHAO; 等

    1994-01-01

    We have constructed a full BAC library for the superior early indica variety of Oryza sativa,Guang Lu Ai 4.The MAX Efficiency DH10B with increased stability of inserts was used as BAC host cells.The potent pBelo BACII with double selection markers was used as cloning vector.The cloning efficiency we have reached was as high as 98%,and the transformation efficiency was raised up to 106 transformants/μg of large fragment DNA.The BAC recombinant transformants were picked at random and analyzed for the size of inserts,which turned out to be of 120 kb in length on average.We have obtained more than 20,000 such BAC clones.According to conventional probability equation,they covered the entire rice genome of 420,000 kb in length.The entire length of inserts of the library obtained has the 5-to 6-fold coverage of the genome.To our knowledge,this is the first reported full BAC library for a complex genome.

  17. Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa.

    Science.gov (United States)

    Xu, Ruirui; Zhang, Shizhong; Huang, Jinguang; Zheng, Chengchao

    2013-01-01

    RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of

  18. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species.

    Directory of Open Access Journals (Sweden)

    Izumi Chuma

    2011-07-01

    Full Text Available Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2 is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation.

  19. Whole genomic sequencing of RT98 mitochondria derived from Oryza rufipogon and northern blot analysis to uncover a cytoplasmic male sterility-associated gene.

    Science.gov (United States)

    Igarashi, Keisuke; Kazama, Tomohiko; Motomura, Keiji; Toriyama, Kinya

    2013-02-01

    Cytoplasmic male sterility (CMS) is a maternally inherited trait resulting in the failure to produce functional pollen and is often observed when an alien cytoplasm is transferred into a cultivated species. An RT98A CMS line and an RT98C fertility restorer line were obtained by successive backcrossing between Oryza rufipogon W1109 and Oryza sativa cultivar Taichung 65. To uncover the CMS-associated mitochondrial genes, we determined the complete sequence of the RT98-CMS mitochondrial genome using next-generation pyrosequencing, and searched new open reading frames (orfs) absent in a reported mitochondrial genome of O. sativa Nipponbare. Then, six candidates were selected for the CMS-associated genes based on the criteria in which they were chimeric in structure or encoded a peptide with transmembrane domains. One of the candidates, orf113, showed different transcript sizes between RT98A and RT98C on Northern blot analysis. The orf113 gene was shown to be co-transcribed with atp4 and cox3 encoding ATP synthase F0 subunit 4 and Cyt c oxidase subunit 3, respectively, and their transcripts were distinctly processed in the presence of a fertility restorer gene. Our results indicate that orf113 is a CMS-associated gene of RT98-CMS.

  20. A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes

    Directory of Open Access Journals (Sweden)

    Lin Ye

    2008-06-01

    Full Text Available Abstract Background Xanthomonas oryzae pv. oryzae (Xoo and X. oryzae pv. oryzicola (Xoc are bacterial pathogens of the worldwide staple and grass model, rice. Xoo and Xoc are closely related but Xoo invades rice vascular tissue to cause bacterial leaf blight, a serious disease of rice in many parts of the world, and Xoc colonizes the mesophyll parenchyma to cause bacterial leaf streak, a disease of emerging importance. Both pathogens depend on hrp genes for type III secretion to infect their host. We constructed a 50–70 mer oligonucleotide microarray based on available genome data for Xoo and Xoc and compared gene expression in Xoo strains PXO99A and Xoc strain BLS256 grown in the rich medium PSB vs. XOM2, a minimal medium previously reported to induce hrp genes in Xoo strain T7174. Results Three biological replicates of the microarray experiment to compare global gene expression in representative strains of Xoo and Xoc grown in PSB vs. XOM2 were carried out. The non-specific error rate and the correlation coefficients across biological replicates and among duplicate spots revealed that the microarray data were robust. 247 genes of Xoo and 39 genes of Xoc were differentially expressed in the two media with a false discovery rate of 5% and with a minimum fold-change of 1.75. Semi-quantitative-RT-PCR assays confirmed differential expression of each of 16 genes each for Xoo and Xoc selected for validation. The differentially expressed genes represent 17 functional categories. Conclusion We describe here the construction and validation of a two-genome microarray for the two pathovars of X. oryzae. Microarray analysis revealed that using representative strains, a greater number of Xoo genes than Xoc genes are differentially expressed in XOM2 relative to PSB, and that these include hrp genes and other genes important in interactions with rice. An exception was the rax genes, which are required for production of the host resistance elicitor AvrXa21

  1. Cross-species bacterial artificial chromosome (BAC) library screening via overgo-based hybridization and BAC-contig mapping of a yield enhancement quantitative trait locus (QTL) yld1.1 in the Malaysian wild rice Oryza rufipogon

    OpenAIRE

    Song, Beng-Kah; Nadarajah, Kalaivani; Romanov, Michael N.; Ratnam, Wickneswari

    2005-01-01

    The construction of BAC-contig physical maps is an important step towards a partial or ultimate genome sequence analysis. Here, we describe our initial efforts to apply an overgo approach to screen a BAC library of the Malaysian wild rice species, Oryza rufipogon. Overgo design is based on repetitive element masking and sequence uniqueness, and uses short probes (approximately 40 bp), making this method highly efficient and specific. Pairs of 24-bp oligos that contain an 8-bp overlap were dev...

  2. Polyploid evolution in Oryza officinalis complex of the genus Oryza

    Directory of Open Access Journals (Sweden)

    Li Changbao

    2009-10-01

    Full Text Available Abstract Background Polyploidization is a prominent process in plant evolution, whereas the mechanism and tempo-spatial process remained poorly understood. Oryza officinalis complex, a polyploid complex in the genus Oryza, could exemplify the issues not only for it covering a variety of ploidy levels, but also for the pantropical geographic pattern of its polyploids in Asia, Africa, Australia and Americas, in which a pivotal genome, the C-genome, witnessed all the polyploidization process. Results Tracing the C-genome evolutionary history in Oryza officinalis complex, this study revealed the genomic relationships, polyploid forming and diverging times, and diploidization process, based on phylogeny, molecular-clock analyses and fluorescent in situ hybridization using genome-specific probes. Results showed that C-genome split with B-genome at ca. 4.8 Mya, followed by a series of speciation of C-genome diploids (ca. 1.8-0.9 Mya, which then partook in successive polyploidization events, forming CCDD tetraploids in ca. 0.9 Mya, and stepwise forming BBCC tetraploids between ca. 0.3-0.6 Mya. Inter-genomic translocations between B- and C-genomes were identified in BBCC tetraploid, O. punctata. Distinct FISH (fluorescent in situ hybridization patterns among three CCDD species were visualized by C-genome-specific probes. B-genome was modified before forming the BBCC tetraploid, O. malampuzhaensis. Conclusion C-genome, shared by all polyploid species in the complex, had experienced different evolutionary history particularly after polyploidization, e.g., inter-genomic exchange in BBCC and genomic invasion in CCDD tetraploids. It diverged from B-genome at 4.8 Mya, then participated in the tetraploid formation spanning from 0.9 to 0.3 Mya, and spread into tropics of the disjunct continents by transcontinentally long-distance dispersal, instead of vicariance, as proposed by this study, given that the continental splitting was much earlier than the C-genome

  3. Comparative genomics of Listeria species.

    Science.gov (United States)

    Glaser, P; Frangeul, L; Buchrieser, C; Rusniok, C; Amend, A; Baquero, F; Berche, P; Bloecker, H; Brandt, P; Chakraborty, T; Charbit, A; Chetouani, F; Couvé, E; de Daruvar, A; Dehoux, P; Domann, E; Domínguez-Bernal, G; Duchaud, E; Durant, L; Dussurget, O; Entian, K D; Fsihi, H; García-del Portillo, F; Garrido, P; Gautier, L; Goebel, W; Gómez-López, N; Hain, T; Hauf, J; Jackson, D; Jones, L M; Kaerst, U; Kreft, J; Kuhn, M; Kunst, F; Kurapkat, G; Madueno, E; Maitournam, A; Vicente, J M; Ng, E; Nedjari, H; Nordsiek, G; Novella, S; de Pablos, B; Pérez-Diaz, J C; Purcell, R; Remmel, B; Rose, M; Schlueter, T; Simoes, N; Tierrez, A; Vázquez-Boland, J A; Voss, H; Wehland, J; Cossart, P

    2001-10-26

    Listeria monocytogenes is a food-borne pathogen with a high mortality rate that has also emerged as a paradigm for intracellular parasitism. We present and compare the genome sequences of L. monocytogenes (2,944,528 base pairs) and a nonpathogenic species, L. innocua (3,011,209 base pairs). We found a large number of predicted genes encoding surface and secreted proteins, transporters, and transcriptional regulators, consistent with the ability of both species to adapt to diverse environments. The presence of 270 L. monocytogenes and 149 L. innocua strain-specific genes (clustered in 100 and 63 islets, respectively) suggests that virulence in Listeria results from multiple gene acquisition and deletion events.

  4. Significant Comparative Characteristics between Orphan and Nonorphan Genes in the Rice (Oryza sativa L. Genome

    Directory of Open Access Journals (Sweden)

    Wen-Jiu Guo

    2007-01-01

    Full Text Available Microsatellites are short tandem repeats of one to six bases in genomic DNA. As microsatellites are highly polymorphic and play a vital role in gene function and recombination, they are an attractive subject for research in evolution and in the genetics and breeding of animals and plants. Orphan genes have no known homologs in existing databases. Using bioinformatic computation and statistical analysis, we identified 19,26 orphan genes in the rice (Oryza sativa ssp. Japanica cv. Nipponbare proteome. We found that a larger proportion of orphan genes are expressed after sexual maturation and under environmental pressure than nonorphan genes. Orphan genes generally have shorter protein lengths and intron size, and are faster evolving. Additionally, orphan genes have fewer PROSITE patterns with larger pattern sizes than those in nonorphan genes. The average microsatellite content and the percentage of trinucleotide repeats in orphan genes are also significantly higher than in nonorphan genes. Microsatellites are found less often in PROSITE patterns in orphan genes. Taken together, these orphan gene characteristics suggest that microsatellites play an important role in orphan gene evolution and expression.

  5. Microbial species delineation using whole genome sequences

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos; Mukherjee, Supratim; Ivanova, Natalia; Mavrommatics, Kostas; Pati, Amrita; Konstantinidis, Konstantinos

    2014-10-20

    Species assignments in prokaryotes use a manual, poly-phasic approach utilizing both phenotypic traits and sequence information of phylogenetic marker genes. With thousands of genomes being sequenced every year, an automated, uniform and scalable approach exploiting the rich genomic information in whole genome sequences is desired, at least for the initial assignment of species to an organism. We have evaluated pairwise genome-wide Average Nucleotide Identity (gANI) values and alignment fractions (AFs) for nearly 13,000 genomes using our fast implementation of the computation, identifying robust and widely applicable hard cut-offs for species assignments based on AF and gANI. Using these cutoffs, we generated stable species-level clusters of organisms, which enabled the identification of several species mis-assignments and facilitated the assignment of species for organisms without species definitions.

  6. Genomic definition of species. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Drmanac, R.

    1993-03-01

    A genome is the sum total of the DNA sequences in the cells of an individual organism. The common usage that species possess genomes comes naturally to biochemists, who have shown that all protein and nucleic acid molecules are at the same time species- and individual-specific, with minor individual variations being superimposed on a consensus sequence that is constant for a species. By extension, this property is attributed to the common features of DNA in the chromosomes of members of a given species and is called species genome. Our proposal for the definition of a biological species is as follows: A species comprises a group of actual and potential biological organisms built according to a unique genome program that is recorded, and at least in part expressed, in the structures of their genomic nucleic acid molecule(s), having intragroup sequence differences which can be fully interconverted in the process of organismal reproduction.

  7. Progress on Transferring Elite Genes from Non-AA Genome Wild Rice into Oryza sativa through Interspecific Hybridization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The progress of research on transferring elite genes from non-AA genome wild rice into Oryza sativa through interspecific hybridization are in three respects,that is,breeding monosomic alien addition lines (MAALs),constructing introgression lines (ILs) and analyzing the heredity of the characters and mapping the related genes.There are serious reproductive barriers,mainly incrossability and hybrid sterility,in the interspecific hybridization of O.sativa with non-AA genome wild rice.These are the 'bottleneck' for transferring elite genes from wild rice to O.sativa.Combining traditional crossing method with biotechnique is a reliable way to overcome the reproductive barriers and to improve the utilizing efficiency of non-AA genome wild rice.

  8. Genomic definition of species. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Dramanac, R.

    1992-06-01

    A genome is the sum total of the DNA sequences in the cells of an individual organism. The common usage that species possess genomes comes naturally to biochemists, who have shown that all protein and nucleic acid molecules are at the same time species and individual-specific, with minor individual variations being superimposed on a consensus sequence that is constant for a species. By extension, this property is attributed to the common features of DNA in the chromosomes of members of a given species and is called (species) genome. The definition of species based on chromosomes, genes, or genome common to its member organisms has been implied or mentioned in passing numerous times. Some population biologists think that members of species have similar ``homeostatic genotypes,`` which are to a degree resistant to mutation or environmental change in the production of a basic phenotype.

  9. A new species of Harpophora (Magnaporthaceae) recovered from healthy wild rice (Oryza granulata) roots, representing a novel member of a beneficial dark septate endophyte.

    Science.gov (United States)

    Yuan, Zhi-Lin; Lin, Fu-Cheng; Zhang, Chu-Long; Kubicek, Christian P

    2010-06-01

    A survey of the endophytic fungal community of wild rice (Oryza granulata) in China was conducted. Two isolates recovered from healthy roots are assumed to be dark septate endophytes (DSEs). They are morphologically similar to species from the genus Harpophora and are identified as a new species, Harpophora oryzae, based on the molecular phylogeny and morphological characteristics. A neighbor-joining tree constructed from ITS-5.8S rRNA gene regions reveals that H. oryzae forms a distinctive subclade within the genus Harpophora, and is not genetically close to other species of Harpophora. Harpophora oryzae exhibits a moderate growth rate, with a frequent production of rope-like strands. It sporulates readily on artificial medium. Phialides are usually flask or bottle shaped and occur singly along hyphae or laterally and terminally on branched, hyaline to brown conidiophores, and also form whorls on metulae. Conidiophores are mostly branched with a slightly thickened wall, varying in dimensions. Conidia are one-celled and hyaline, most of them being falcate and strongly curved. The morphological differences between Harpophora spp. and Harpophora-like anamorphs representing different orders are also discussed. An in vitro inoculation test showed that H. oryzae may contribute towards improving rice (Oryza sativa L.) growth. Microscopic inspection of roots and phylogenetic placement of isolates further confirmed that H. oryzae represents a novel member of DSEs.

  10. Population Dynamics Among six Major Groups of the Oryza rufipogon Species Complex, Wild Relative of Cultivated Asian Rice

    OpenAIRE

    Kim, Hyunjung; Jung, Janelle; Singh, Namrata; Greenberg, Anthony; Jeff J. Doyle; Tyagi, Wricha; Chung, Jong-Wook; Kimball, Jennifer; Hamilton, Ruaraidh Sackville; McCouch, Susan R.

    2016-01-01

    Background Understanding population structure of the wild progenitor of Asian cultivated rice (O. sativa), the Oryza rufipogon species complex (ORSC), is of interest to plant breeders and contributes to our understanding of rice domestication. A collection of 286 diverse ORSC accessions was evaluated for nuclear variation using genotyping-by-sequencing (113,739 SNPs) and for chloroplast variation using Sanger sequencing (25 polymorphic sites). Results Six wild subpopulations were identified, ...

  11. Genomics, environmental genomics and the issue of microbial species.

    Science.gov (United States)

    Ward, D M; Cohan, F M; Bhaya, D; Heidelberg, J F; Kühl, M; Grossman, A

    2008-02-01

    A microbial species concept is crucial for interpreting the variation detected by genomics and environmental genomics among cultivated microorganisms and within natural microbial populations. Comparative genomic analyses of prokaryotic species as they are presently described and named have led to the provocative idea that prokaryotes may not form species as we think about them for plants and animals. There are good reasons to doubt whether presently recognized prokaryotic species are truly species. To achieve a better understanding of microbial species, we believe it is necessary to (i) re-evaluate traditional approaches in light of evolutionary and ecological theory, (ii) consider that different microbial species may have evolved in different ways and (iii) integrate genomic, metagenomic and genome-wide expression approaches with ecological and evolutionary theory. Here, we outline how we are using genomic methods to (i) identify ecologically distinct populations (ecotypes) predicted by theory to be species-like fundamental units of microbial communities, and (ii) test their species-like character through in situ distribution and gene expression studies. By comparing metagenomic sequences obtained from well-studied hot spring cyanobacterial mats with genomic sequences of two cultivated cyanobacterial ecotypes, closely related to predominant native populations, we can conduct in situ population genetics studies that identify putative ecotypes and functional genes that determine the ecotypes' ecological distinctness. If individuals within microbial communities are found to be grouped into ecologically distinct, species-like populations, knowing about such populations should guide us to a better understanding of how genomic variation is linked to community function.

  12. Comparative Analysis of Genomes in Oryza sativa, O.officinalis, and O. meyeriana with C0t-1 DNA and Genomic DNA of Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) were applied to somatic chromosomes preparations of Oryza sativa, O. officinalis, and O. meyeriana with labeled probes of C0t-1 DNA and genomic DNA from the cultivated rice. The coverage percentage (%) and size (Mb) of C0t-1 DNA in O. sativa, O. officinalis, and O. meyeriana were 47.1 ±0.16, 38.61 ±0.13, 44.38±0.13, and 212.33± 1.21,269.42 ± 0.89, 532.56± 1.68 Mb, respectively. The coverage percentage and size of genomic DNA from O. sativa in O. officinalis and O. meyeriana were 91.0, 93.6% and 634, 1 123 Mb, respectively, in which 365 and 591 Mb in O. officinalis and O. meyeriana were from O. sativa genomic DNA, but not from repetitive sequences of O. sativa, and the uncoverage genome size in O. officinalis and O. meyeriana were 64 and 78 Mb, respectively. In addition, karyotype analysis was conducted based on the signal bands of C0t-1 DNA in O. sativa, O. officinalis, and O. meyeriana. The results showed that highly and moderately repetitive sequences in Oryza genus were conserved as the functional genes during evolution. The repetitive sequences reduplication may be one of the important causes of the genome enlargement of O. officinalis and O. meyeriana, and O. officinalis genome enlarged more slowly when compared with O. meyeriana. Based on the above results, it is concluded that O. officinalis and O. meyeriana were formed by reduplication, rearrangement, and gene selective loss during the evolution process.

  13. Species-specific aminoacylation of Oryza sativa mitochondrial tRNATrp

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Abstract The details of species- specific aminoacylation in Oryza sativa mitochondrial tRNATrp by bacterial and eukaryotic (cytoplasm) tryptophanyl-tRNA synthetases (TrpRS) were inves-tigated. Seven single or multiple mutations of three bases (G73, U72, A 68) were made in O. sativa mi-tochondrial tRNATrp to the corresponding nucleotides present in human tRNATrp. In vitro transcripts of these mutant genes were tryptophanylated by Bacillus subtilis and human tryptophanyl-tRNA synthetases (TrpRS), and the kinetic parameters were determined. The results showed that the aminoacylation of seven mutant transcripts by B. subtilis TrpRS was 53.33%―99.79% less efficient than that by wild-type O. sativa mitochondrial tRNATrp, but was 4―330 times more efficient than that by human TrpRS. The mutant MPH7 (G73, U72 and C68 in O. sativa mitochondrial tRNA were all replaced by the counterpart residues from human tRNATrp and showed a great change in aminoacylation efficiency. Our results indicate that the species-specific identity elements of O. sativa mitochondrial tRNATrp are similar to bacterial and eukaryotic (cytoplasm). They are mainly located at the discriminator base, the first and the fifth pairs of bases, the discriminator base G73, two bases in the acceptor stem G1/U72 and U5/A68. Our results also provide new data in support of the hypothesis that mitochondrial tRNATrp is of eubacterial origin.

  14. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Liu, Lifang; Feizi, Amir; Osterlund, Tobias

    2014-01-01

    Background: The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to th...

  15. The chemical heritage of Aspergillus flavus in A. oryzae RIB 40

    DEFF Research Database (Denmark)

    Rank, Christian; Klejnstrup, Marie Louise; Petersen, Lene Maj

    Aspergillus oryzae is a very important species in biotechnology and has been used for centuries in traditional Asian fermentation. The RIB40 strain is particularly interesting as it was one of the first genome sequenced Aspergilli together with A. flavus, a prominent food and feed contaminant...... with indications to specific genetic changes. Several new metabolites and changes in biosynthetic routes have been found in A. oryzae, indicating subtle changes in the genomic heritage from A. flavus....

  16. Experimental and genomic evidence for theindica-type cytoplasmic effect inOryza sativa L. ssp.japonica

    Institute of Scientific and Technical Information of China (English)

    LIU You-hong; TANG Liang; XU Quan; MA Dian-rong; ZHAO Ming-hui; SUN Jian; CHEN Wen-fu

    2016-01-01

    Cytoplasmic effects are important agronomical phenomena that have generated widespread interest in both theory and application. In the present study, ifve high yield rice cultivars (Oryza sativa L. ssp.japonica) in large-scale cultivation in northeast China were determined to possessOryza sativa L. ssp.indica-type cytoplasmusing cytoplasmic subspecies-spe-ciifc molecular markers. This was conifrmed by cytoplasmic genome-wide single nucleotide polymorphisms (SNPs) and functional gene sequencing. Two of these ifvejaponicacultivars were core breeding parents with high yield and the other three were super-high-yield varieties registered by the Ministry of Agriculture of China. We constructed nuclear substitution lines to further demonstrate whether and how thisindica-type cytoplasm contributed to yield improvement by comparing yield components. The results showed that under the samejaponicanuclear background, the lines withindica-type cytoplasm had a signiifcant decrease in tilers in exchange for increased grain number per panicle compared with their recurrent parents. Our results implied that botanical basis of this cytoplasmic effect was to reduce the plant’s branching differentiation to pro-duce more lforal organs under the constant nutrition. Our ifndings open another door for the utilization of inter-subspeciifc hybridization for the improvement of rice cultivar.

  17. Comparative genomic analysis of the GRF genes in Chinese pear (Pyrus bretschneideri Rehd, poplar (Populous, grape (Vitis vinifera, Arabidopsis and rice (Oryza sativa

    Directory of Open Access Journals (Sweden)

    Yun Peng Cao

    2016-11-01

    Full Text Available Growth-regulating factors (GRFs are plant-specific transcription factors that have important functions in regulating plant growth and development. Previous studies on GRF family members focused either on a single or a small set of genes. Here, a comparative genomic analysis of the GRF gene family was performed in poplar (a model tree species, Arabidopsis (a model plant for annual herbaceous dicots, grape (one model plant for perennial dicots, rice (a model plant for monocots and Chinese pear (one of the economical fruit crops. In total, 58 GRF genes were identified, 12 genes in rice (Oryza sativa, 8 genes in grape (Vitis vinifera, 9 genes in Arabidopsis thaliana, 19 genes in poplar (Populus trichocarpa and 10 genes in Chinese pear (Pyrus bretschneideri. The GRF genes were divided into five subfamilies based on the phylogenetic analysis, which was supported by their structural analysis. Furthermore, microsynteny analysis indicated that highly conserved regions of microsynteny were identified in all of the five species tested. And Ka/Ks analysis revealed that purifying selection play an important role in the maintenance of GRF genes. Our results provide basic information on GRF genes in five plant species and lay the foundation for future research on the functions of these genes.

  18. Natural variation of rice blast resistant gene Pi-ta in Oryza species

    Science.gov (United States)

    The Pi-ta gene in rice is a putative NBS type cytoplasmic receptor conferring resistance to races of Magnaporthe oryzae in a gene-for-gene manner. A Functional Nucleotide Polymorphism (FNP) change resulting in an amino acid substitution of Alanine to Serine at position 918 (nucleotide G to T at posi...

  19. Genome size and genome evolution in diploid Triticeae species.

    Science.gov (United States)

    Eilam, T; Anikster, Y; Millet, E; Manisterski, J; Sagi-Assif, O; Feldman, M

    2007-11-01

    One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops, the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum. No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group's distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed.

  20. Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza saliva and Populus trichocarpa

    Institute of Scientific and Technical Information of China (English)

    JI Qian; ZHANG Liang-sheng; WANG Yi-fei; WANG Jian

    2009-01-01

    The basic leucine zipper (bZIP) transcription factors form a large gene family that is important in pathogen defense, light and stress signaling, etc. The Completed whole genome sequences of model plants Arabidopsis (Arabidopsis thaliana), rice (Oryza saliva) and poplar (Populus trichocarpa) constitute a valuable resource for genome-wide analysis and genomic comparative analysis, as they are representatives of the two major evolutionary lineages within the angiosperms: the monocotyledons and the dicotyledons. In this study, bioinformatics analysis identified 74, 89 and 88 bZIP genes respectively in Arabidopsis, rice and poplar. Moreover, a comprehensive overview of this gene family is presented, including the gene structure, phylogeny, chromosome distribution, conserved motifs. As a result, the plant bZIPs were organized into 10 subfamilies on basis of phylogenetic relationship. Gene duplication events during the family evolution history were also investigated. And it was further concluded that chromosomal/segmental duplication might have played a key role in gene expansion of bZIP gene family.

  1. The Oryza map alignment project: Construction, alignment and analysis of 12 BAC fingerprint/end sequence framework physical maps that represent the 10 genome types of genus Oryza

    Science.gov (United States)

    The Oryza Map Alignment Project (OMAP) provides the first comprehensive experimental system for understanding the evolution, physiology and biochemistry of a full genus in plants or animals. We have constructed twelve deep-coverage BAC libraries that are representative of both diploid and tetraploid...

  2. Genome-Wide Distribution, Organisation and Functional Characterization of Disease Resistance and Defence Response Genes across Rice Species

    Science.gov (United States)

    Singh, Sangeeta; Chand, Suresh; Singh, N. K.; Sharma, Tilak Raj

    2015-01-01

    The resistance (R) genes and defense response (DR) genes have become very important resources for the development of disease resistant cultivars. In the present investigation, genome-wide identification, expression, phylogenetic and synteny analysis was done for R and DR-genes across three species of rice viz: Oryza sativa ssp indica cv 93-11, Oryza sativa ssp japonica and wild rice species, Oryza brachyantha. We used the in silico approach to identify and map 786 R -genes and 167 DR-genes, 672 R-genes and 142 DR-genes, 251 R-genes and 86 DR-genes in the japonica, indica and O. brachyanth a genomes, respectively. Our analysis showed that 60.5% and 55.6% of the R-genes are tandemly repeated within clusters and distributed over all the rice chromosomes in indica and japonica genomes, respectively. The phylogenetic analysis along with motif distribution shows high degree of conservation of R- and DR-genes in clusters. In silico expression analysis of R-genes and DR-genes showed more than 85% were expressed genes showing corresponding EST matches in the databases. This study gave special emphasis on mechanisms of gene evolution and duplication for R and DR genes across species. Analysis of paralogs across rice species indicated 17% and 4.38% R-genes, 29% and 11.63% DR-genes duplication in indica and Oryza brachyantha, as compared to 20% and 26% duplication of R-genes and DR-genes in japonica respectively. We found that during the course of duplication only 9.5% of R- and DR-genes changed their function and rest of the genes have maintained their identity. Syntenic relationship across three genomes inferred that more orthology is shared between indica and japonica genomes as compared to brachyantha genome. Genome wide identification of R-genes and DR-genes in the rice genome will help in allele mining and functional validation of these genes, and to understand molecular mechanism of disease resistance and their evolution in rice and related species. PMID:25902056

  3. Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens.

    Science.gov (United States)

    Lassalle, Florent; Campillo, Tony; Vial, Ludovic; Baude, Jessica; Costechareyre, Denis; Chapulliot, David; Shams, Malek; Abrouk, Danis; Lavire, Céline; Oger-Desfeux, Christine; Hommais, Florence; Guéguen, Laurent; Daubin, Vincent; Muller, Daniel; Nesme, Xavier

    2011-01-01

    The definition of bacterial species is based on genomic similarities, giving rise to the operational concept of genomic species, but the reasons of the occurrence of differentiated genomic species remain largely unknown. We used the Agrobacterium tumefaciens species complex and particularly the genomic species presently called genomovar G8, which includes the sequenced strain C58, to test the hypothesis of genomic species having specific ecological adaptations possibly involved in the speciation process. We analyzed the gene repertoire specific to G8 to identify potential adaptive genes. By hybridizing 25 strains of A. tumefaciens on DNA microarrays spanning the C58 genome, we highlighted the presence and absence of genes homologous to C58 in the taxon. We found 196 genes specific to genomovar G8 that were mostly clustered into seven genomic islands on the C58 genome-one on the circular chromosome and six on the linear chromosome-suggesting higher plasticity and a major adaptive role of the latter. Clusters encoded putative functional units, four of which had been verified experimentally. The combination of G8-specific functions defines a hypothetical species primary niche for G8 related to commensal interaction with a host plant. This supports that the G8 ancestor was able to exploit a new ecological niche, maybe initiating ecological isolation and thus speciation. Searching genomic data for synapomorphic traits is a powerful way to describe bacterial species. This procedure allowed us to find such phenotypic traits specific to genomovar G8 and thus propose a Latin binomial, Agrobacterium fabrum, for this bona fide genomic species.

  4. Dynamics of genome change among Legionella species

    Science.gov (United States)

    Joseph, Sandeep J.; Cox, Daniel; Wolff, Bernard; Morrison, Shatavia S.; Kozak-Muiznieks, Natalia A.; Frace, Michael; Didelot, Xavier; Castillo-Ramirez, Santiago; Winchell, Jonas; Read, Timothy D.; Dean, Deborah

    2016-01-01

    Legionella species inhabit freshwater and soil ecosystems where they parasitize protozoa. L. pneumonphila (LP) serogroup-1 (Lp1) is the major cause of Legionnaires’ Disease (LD), a life-threatening pulmonary infection that can spread systemically. The increased global frequency of LD caused by Lp and non-Lp species underscores the need to expand our knowledge of evolutionary forces underlying disease pathogenesis. Whole genome analyses of 43 strains, including all known Lp serogroups 1–17 and 17 emergent LD-causing Legionella species (of which 33 were sequenced in this study) in addition to 10 publicly available genomes, resolved the strains into four phylogenetic clades along host virulence demarcations. Clade-specific genes were distinct for genetic exchange and signal-transduction, indicating adaptation to specific cellular and/or environmental niches. CRISPR spacer comparisons hinted at larger pools of accessory DNA sequences in Lp than predicted by the pan-genome analyses. While recombination within Lp was frequent and has been reported previously, population structure analysis identified surprisingly few DNA admixture events between species. In summary, diverse Legionella LD–causing species share a conserved core-genome, are genetically isolated from each other, and selectively acquire genes with potential for enhanced virulence. PMID:27633769

  5. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  6. Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54

    Directory of Open Access Journals (Sweden)

    Soham Ray

    2016-08-01

    Full Text Available Rice blast caused by Magnaporthe oryzae is one of the most important diseases of rice. Pi54, a rice gene that imparts resistance to M. oryzae isolates prevalent in India, was already cloned but its avirulent counterpart in the pathogen was not known.. After decoding the whole genome of an avirulent isolate of M. oryzae, we predicted 11440 protein coding genes and then identified four candidate effector proteins which are exclusively expressed in the infectious structure, appresoria. In silico protein modeling followed by interaction analysis between Pi54 protein model and selected four candidate effector proteins models revealed that Mo-01947_9 protein model encoded by a gene located at chromosome 4 of M. oryzae, interacted best at the Leucine Rich Repeat domain of Pi54 protein model. Yeast-two-hybrid analysis showed that Mo-01947_9 protein physically interacts with Pi54 protein. Nicotiana benthamiana leaf infiltration assay confirmed induction of hypersensitive response in the presence of Pi54 gene in a heterologous system. Genetic complementation test also proved that Mo-01947_9 protein induces avirulence response in the pathogen in the presence of Pi54 gene. Here, we report identification and cloning of a new fungal effector gene which interacts with resistance gene Pi54 gene in rice.

  7. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L. Heynh and Oryza sativa L. reveals their developmental and stress regulation

    Directory of Open Access Journals (Sweden)

    Sopory Sudhir K

    2009-04-01

    Full Text Available Abstract Background In Arabidopsis thaliana (L. Heynh and Oryza sativa L., a large number of genes encode proteins of unknown functions, whose characterization still remains one of the major challenges. With an aim to characterize these unknown proteins having defined features (PDFs in plants, we have chosen to work on proteins having a cystathionine β-synthase (CBS domain. CBS domain as such has no defined function(s but plays a regulatory role for many enzymes and thus helps in maintaining the intracellular redox balance. Its function as sensor of cellular energy has also been widely suggested. Results Our analysis has identified 34 CBS domain containing proteins (CDCPs in Arabidopsis and 59 in Oryza. In most of these proteins, CBS domain coexists with other functional domain(s, which may indicate towards their probable functions. In order to investigate the role(s of these CDCPs, we have carried out their detailed analysis in whole genomes of Arabidopsis and Oryza, including their classification, nomenclature, sequence analysis, domain analysis, chromosomal locations, phylogenetic relationships and their expression patterns using public databases (MPSS database and microarray data. We have found that the transcript levels of some members of this family are altered in response to various stresses such as salinity, drought, cold, high temperature, UV, wounding and genotoxic stress, in both root and shoot tissues. This data would be helpful in exploring the so far obscure functions of CBS domain and CBS domain-containing proteins in plant stress responses. Conclusion We have identified, classified and suggested the nomenclature of CDCPs in Arabidopsis and Oryza. A comprehensive analysis of expression patterns for CDCPs using the already existing transcriptome profiles and MPSS database reveals that a few CDCPs may have an important role in stress response/tolerance and development in plants, which needs to be validated further through

  8. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation.

    Science.gov (United States)

    Kushwaha, Hemant R; Singh, Anil K; Sopory, Sudhir K; Singla-Pareek, Sneh L; Pareek, Ashwani

    2009-04-28

    In Arabidopsis thaliana (L.) Heynh and Oryza sativa L., a large number of genes encode proteins of unknown functions, whose characterization still remains one of the major challenges. With an aim to characterize these unknown proteins having defined features (PDFs) in plants, we have chosen to work on proteins having a cystathionine beta-synthase (CBS) domain. CBS domain as such has no defined function(s) but plays a regulatory role for many enzymes and thus helps in maintaining the intracellular redox balance. Its function as sensor of cellular energy has also been widely suggested. Our analysis has identified 34 CBS domain containing proteins (CDCPs) in Arabidopsis and 59 in Oryza. In most of these proteins, CBS domain coexists with other functional domain(s), which may indicate towards their probable functions. In order to investigate the role(s) of these CDCPs, we have carried out their detailed analysis in whole genomes of Arabidopsis and Oryza, including their classification, nomenclature, sequence analysis, domain analysis, chromosomal locations, phylogenetic relationships and their expression patterns using public databases (MPSS database and microarray data). We have found that the transcript levels of some members of this family are altered in response to various stresses such as salinity, drought, cold, high temperature, UV, wounding and genotoxic stress, in both root and shoot tissues. This data would be helpful in exploring the so far obscure functions of CBS domain and CBS domain-containing proteins in plant stress responses. We have identified, classified and suggested the nomenclature of CDCPs in Arabidopsis and Oryza. A comprehensive analysis of expression patterns for CDCPs using the already existing transcriptome profiles and MPSS database reveals that a few CDCPs may have an important role in stress response/tolerance and development in plants, which needs to be validated further through functional genomics.

  9. Estimation of genome length

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The genome length is a fundamental feature of a species. This note outlined the general concept and estimation method of the physical and genetic length. Some formulae for estimating the genetic length were derived in detail. As examples, the genome genetic length of Pinus pinaster Ait. and the genetic length of chromosome Ⅵ of Oryza sativa L. were estimated from partial linkage data.

  10. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Partha Talukdar

    Full Text Available Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population and a genome wide association (GWA study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity. However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed.

  11. Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice

    OpenAIRE

    Waters, Daniel L. E.; Nock, Catherine J; Ishikawa, Ryuji; Rice, Nicole; Henry, Robert J.

    2012-01-01

    Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively pa...

  12. Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.)

    OpenAIRE

    Azizur Rahman, Mohammad; Mamunur, Rahman, Mohammad; Kadohashi, K.; Maki, Teruya; Hasegawa, Hiroshi

    2011-01-01

    This study was conducted to investigate the effect of external iron status and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake. Rice seedlings (Oryza sativa L.) were used as model plant, and were grown in artificially contaminated sandy soils irrigated with Murashige and Skoog (MS) culture solution. Arsenate uptake in roots and shoots of rice seedlings were affected significantly (p > 0.05) while dimethylarsinic acid (DMAA) was not by the additional iron and chelat...

  13. Genome Sequences of Three Phytopathogenic Species of the Magnaporthaceae Family of Fungi.

    Science.gov (United States)

    Okagaki, Laura H; Nunes, Cristiano C; Sailsbery, Joshua; Clay, Brent; Brown, Doug; John, Titus; Oh, Yeonyee; Young, Nelson; Fitzgerald, Michael; Haas, Brian J; Zeng, Qiandong; Young, Sarah; Adiconis, Xian; Fan, Lin; Levin, Joshua Z; Mitchell, Thomas K; Okubara, Patricia A; Farman, Mark L; Kohn, Linda M; Birren, Bruce; Ma, Li-Jun; Dean, Ralph A

    2015-09-28

    Magnaporthaceae is a family of ascomycetes that includes three fungi of great economic importance: Magnaporthe oryzae, Gaeumannomyces graminis var. tritici, and Magnaporthe poae. These three fungi cause widespread disease and loss in cereal and grass crops, including rice blast disease (M. oryzae), take-all disease in wheat and other grasses (G. graminis), and summer patch disease in turf grasses (M. poae). Here, we present the finished genome sequence for M. oryzae and draft sequences for M. poae and G. graminis var. tritici. We used multiple technologies to sequence and annotate the genomes of M. oryzae, M. poae, and G. graminis var. tritici. The M. oryzae genome is now finished to seven chromosomes whereas M. poae and G. graminis var. tritici are sequenced to 40.0× and 25.0× coverage respectively. Gene models were developed by the use of multiple computational techniques and further supported by RNAseq data. In addition, we performed preliminary analysis of genome architecture and repetitive element DNA.

  14. Cross-species bacterial artificial chromosome (BAC) library screening via overgo-based hybridization and BAC-contig mapping of a yield enhancement quantitative trait locus (QTL) yld1.1 in the Malaysian wild rice Oryza rufipogon.

    Science.gov (United States)

    Song, Beng-Kah; Nadarajah, Kalaivani; Romanov, Michael N; Ratnam, Wickneswari

    2005-01-01

    The construction of BAC-contig physical maps is an important step towards a partial or ultimate genome sequence analysis. Here, we describe our initial efforts to apply an overgo approach to screen a BAC library of the Malaysian wild rice species, Oryza rufipogon. Overgo design is based on repetitive element masking and sequence uniqueness, and uses short probes (approximately 40 bp), making this method highly efficient and specific. Pairs of 24-bp oligos that contain an 8-bp overlap were developed from the publicly available genomic sequences of the cultivated rice, O. sativa, to generate 20 overgo probes for a 1-Mb region that encompasses a yield enhancement QTL yld1.1 in O. rufipogon. The advantages of a high similarity in melting temperature, hybridization kinetics and specific activities of overgos further enabled a pooling strategy for library screening by filter hybridization. Two pools of ten overgos each were hybridized to high-density filters representing the O. rufipogon genomic BAC library. These screening tests succeeded in providing 69 PCR-verified positive hits from a total of 23,040 BAC clones of the entire O. rufipogon library. A minimal tilling path of clones was generated to contribute to a fully covered BAC-contig map of the targeted 1-Mb region. The developed protocol for overgo design based on O. sativa sequences as a comparative genomic framework, and the pooled overgo hybridization screening technique are suitable means for high-resolution physical mapping and the identification of BAC candidates for sequencing.

  15. Comparative chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357)

    DEFF Research Database (Denmark)

    Rank, Christian; Klejnstrup, Marie Louise; Petersen, Lene Maj

    2012-01-01

    Aspergillus oryzae and A. flavus are important species in industrial biotechnology and food safety and have been some of the first aspergilli to be fully genome sequenced. Bioinformatic analysis has revealed 99.5% gene homology between the two species pointing towards a large coherence...... in the secondary metabolite production. In this study we report on the first comparison of secondary metabolite production between the full genome sequenced strains of A. oryzae (RIB40) and A. flavus (NRRL 3357). Surprisingly, the overall chemical profiles of the two strains were mostly very different across 15...... alkaloids related to the A. flavus metabolites ditryptophenalines and miyakamides. Generally the secondary metabolite capability of A. oryzae presents several novel end products likely to result from the domestication process from A. flavus....

  16. Genetic Architecture of Cold Tolerance in Rice (Oryza sativa) Determined through High Resolution Genome-Wide Analysis

    Science.gov (United States)

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases se...

  17. Genomics and the origin of species.

    Science.gov (United States)

    Seehausen, Ole; Butlin, Roger K; Keller, Irene; Wagner, Catherine E; Boughman, Janette W; Hohenlohe, Paul A; Peichel, Catherine L; Saetre, Glenn-Peter; Bank, Claudia; Brännström, Ake; Brelsford, Alan; Clarkson, Chris S; Eroukhmanoff, Fabrice; Feder, Jeffrey L; Fischer, Martin C; Foote, Andrew D; Franchini, Paolo; Jiggins, Chris D; Jones, Felicity C; Lindholm, Anna K; Lucek, Kay; Maan, Martine E; Marques, David A; Martin, Simon H; Matthews, Blake; Meier, Joana I; Möst, Markus; Nachman, Michael W; Nonaka, Etsuko; Rennison, Diana J; Schwarzer, Julia; Watson, Eric T; Westram, Anja M; Widmer, Alex

    2014-03-01

    Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.

  18. From genomes to pangenomes: understanding variation among individuals and species

    OpenAIRE

    Contreras-Moreira, Bruno; Vinuesa, Pablo

    2017-01-01

    This tutorial illustrates how to analyze pan-genomes using GET_HOMOLOGUES and GET_HOMOLOGUES-EST. After a short introduction, where the main concepts are illustrated, the remaining sections cover the installation and typical operations required to analyze and annotate genomes and transcriptomes from a pan-genome perspective, in which individuals or species contribute genetic material to a pool.

  19. THE PHYLOGENY AND GENOME OF TRICHINELLA SPECIES

    Science.gov (United States)

    In 2004, funding was received by Washington University’s Genome Sequencing Center through NHGRI, to completely sequence several nematode genomes as part of a holistic effort to advance our understanding of the human genome. Trichinella spiralis was among this group because of its strategic ...

  20. Genomics and the origin of species

    OpenAIRE

    Seehausen, O.; Butlin, R K; Keller, I.; Wagner, C. E.; Boughman, J W; Hohenlohe, P. A.; Peichel, C.A.; Saetre, G.-P.; Bank, C.; Brannstrom, A.

    2013-01-01

    Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integ...

  1. Genomics and the origin of species

    NARCIS (Netherlands)

    Seehausen, Ole; Butlin, Roger K.; Keller, Irene; Wagner, Catherine E.; Boughman, Janette W.; Hohenlohe, Paul A.; Peichel, Catherine L.; Saetre, Glenn-Peter; Bank, Claudia; Brännström, Åke; Brelsford, Alan; Clarkson, Chris S.; Eroukhmanoff, Fabrice; Feder, Jeffrey L.; Fischer, Martin C.; Foote, Andrew D.; Franchini, Paolo; Jiggins, Chris D.; Jones, Felicity C.; Lindholm, Anna K.; Lucek, Kay; Maan, Martine E.; Marques, David A.; Martin, Simon H.; Matthews, Blake; Meier, Joana I.; Möst, Markus; Nachman, Michael W.; Nonaka, Etsuko; Rennison, Diana J.; Schwarzer, Julia; Watson, Eric T.; Westram, Anja M.; Widmer, Alex

    Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive

  2. Genomics and the origin of species

    NARCIS (Netherlands)

    Seehausen, Ole; Butlin, Roger K.; Keller, Irene; Wagner, Catherine E.; Boughman, Janette W.; Hohenlohe, Paul A.; Peichel, Catherine L.; Saetre, Glenn-Peter; Bank, Claudia; Brännström, Åke; Brelsford, Alan; Clarkson, Chris S.; Eroukhmanoff, Fabrice; Feder, Jeffrey L.; Fischer, Martin C.; Foote, Andrew D.; Franchini, Paolo; Jiggins, Chris D.; Jones, Felicity C.; Lindholm, Anna K.; Lucek, Kay; Maan, Martine E.; Marques, David A.; Martin, Simon H.; Matthews, Blake; Meier, Joana I.; Möst, Markus; Nachman, Michael W.; Nonaka, Etsuko; Rennison, Diana J.; Schwarzer, Julia; Watson, Eric T.; Westram, Anja M.; Widmer, Alex

    2014-01-01

    Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isola

  3. Genomics and the origin of species

    NARCIS (Netherlands)

    Seehausen, Ole; Butlin, Roger K.; Keller, Irene; Wagner, Catherine E.; Boughman, Janette W.; Hohenlohe, Paul A.; Peichel, Catherine L.; Saetre, Glenn-Peter; Bank, Claudia; Brännström, Åke; Brelsford, Alan; Clarkson, Chris S.; Eroukhmanoff, Fabrice; Feder, Jeffrey L.; Fischer, Martin C.; Foote, Andrew D.; Franchini, Paolo; Jiggins, Chris D.; Jones, Felicity C.; Lindholm, Anna K.; Lucek, Kay; Maan, Martine E.; Marques, David A.; Martin, Simon H.; Matthews, Blake; Meier, Joana I.; Möst, Markus; Nachman, Michael W.; Nonaka, Etsuko; Rennison, Diana J.; Schwarzer, Julia; Watson, Eric T.; Westram, Anja M.; Widmer, Alex

    2014-01-01

    Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isola

  4. Defining species specific genome differences in malaria parasites.

    Science.gov (United States)

    Liew, Kingsley J L; Hu, Guangan; Bozdech, Zbynek; Peter, Preiser R

    2010-02-23

    In recent years a number of genome sequences for different plasmodium species have become available. This has allowed the identification of numerous conserved genes across the different species and has significantly enhanced our understanding of parasite biology. In contrast little is known about species specific differences between the different genomes partly due to the lower sequence coverage and therefore relatively poor annotation of some of the draft genomes particularly the rodent malarias parasite species. To improve the current annotation and gene identification status of the draft genomes of P. berghei, P. chabaudi and P. yoelii, we performed genome-wide comparisons between these three species. Through analyses via comparative genome hybridizations using a newly designed pan-rodent array as well as in depth bioinformatics analysis, we were able to improve on the coverage of the draft rodent parasite genomes by detecting orthologous genes between these related rodent parasite species. More than 1,000 orthologs for P. yoelii were now newly associated with a P. falciparum gene. In addition to extending the current core gene set for all plasmodium species this analysis also for the first time identifies a relatively small number of genes that are unique to the primate malaria parasites while a larger gene set is uniquely conserved amongst the rodent malaria parasites. These findings allow a more thorough investigation of the genes that are important for host specificity in malaria.

  5. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability

    Directory of Open Access Journals (Sweden)

    Joardar Vinita

    2012-12-01

    Full Text Available Abstract Background The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. Results Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus, A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum. The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25–36 Kb among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus, contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. Conclusions The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent

  6. Comparative Genomics Reveals the Core and Accessory Genomes of Streptomyces Species.

    Science.gov (United States)

    Kim, Ji-Nu; Kim, Yeonbum; Jeong, Yujin; Roe, Jung-Hye; Kim, Byung-Gee; Cho, Byung-Kwan

    2015-10-01

    The development of rapid and efficient genome sequencing methods has enabled us to study the evolutionary background of bacterial genetic information. Here, we present comparative genomic analysis of 17 Streptomyces species, for which the genome has been completely sequenced, using the pan-genome approach. The analysis revealed that 34,592 ortholog clusters constituted the pan-genome of these Streptomyces species, including 2,018 in the core genome, 11,743 in the dispensable genome, and 20,831 in the unique genome. The core genome was converged to a smaller number of genes than reported previously, with 3,096 gene families. Functional enrichment analysis showed that genes involved in transcription were most abundant in the Streptomyces pan-genome. Finally, we investigated core genes for the sigma factors, mycothiol biosynthesis pathway, and secondary metabolism pathways; our data showed that many genes involved in stress response and morphological differentiation were commonly expressed in Streptomyces species. Elucidation of the core genome offers a basis for understanding the functional evolution of Streptomyces species and provides insights into target selection for the construction of industrial strains.

  7. Fine de novo sequencing of a fungal genome using only SOLiD short read data: verification on Aspergillus oryzae RIB40.

    Directory of Open Access Journals (Sweden)

    Myco Umemura

    Full Text Available The development of next-generation sequencing (NGS technologies has dramatically increased the throughput, speed, and efficiency of genome sequencing. The short read data generated from NGS platforms, such as SOLiD and Illumina, are quite useful for mapping analysis. However, the SOLiD read data with lengths of <60 bp have been considered to be too short for de novo genome sequencing. Here, to investigate whether de novo sequencing of fungal genomes is possible using only SOLiD short read sequence data, we performed de novo assembly of the Aspergillus oryzae RIB40 genome using only SOLiD read data of 50 bp generated from mate-paired libraries with 2.8- or 1.9-kb insert sizes. The assembled scaffolds showed an N50 value of 1.6 Mb, a 22-fold increase than those obtained using only SOLiD short read in other published reports. In addition, almost 99% of the reference genome was accurately aligned by the assembled scaffold fragments in long lengths. The sequences of secondary metabolite biosynthetic genes and clusters, whose products are of considerable interest in fungal studies due to their potential medicinal, agricultural, and cosmetic properties, were also highly reconstructed in the assembled scaffolds. Based on these findings, we concluded that de novo genome sequencing using only SOLiD short reads is feasible and practical for molecular biological study of fungi. We also investigated the effect of filtering low quality data, library insert size, and k-mer size on the assembly performance, and recommend for the assembly use of mild filtered read data where the N50 was not so degraded and the library has an insert size of ∼2.0 kb, and k-mer size 33.

  8. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae.

    Science.gov (United States)

    Jeon, Junhyun; Choi, Jaeyoung; Lee, Gir-Won; Park, Sook-Young; Huh, Aram; Dean, Ralph A; Lee, Yong-Hwan

    2015-02-24

    DNA methylation is an important epigenetic modification that regulates development of plants and mammals. To investigate the roles of DNA methylation in fungal development, we profiled genome-wide methylation patterns at single-nucleotide resolution during vegetative growth, asexual reproduction, and infection-related morphogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. We found that DNA methylation occurs in and around genes as well as transposable elements and undergoes global reprogramming during fungal development. Such reprogramming of DNA methylation suggests that it may have acquired new roles other than controlling the proliferation of TEs. Genetic analysis of DNA methyltransferase deletion mutants also indicated that proper reprogramming in methylomes is required for asexual reproduction in the fungus. Furthermore, RNA-seq analysis showed that DNA methylation is associated with transcriptional silencing of transposable elements and transcript abundance of genes in context-dependent manner, reinforcing the role of DNA methylation as a genome defense mechanism. This comprehensive approach suggests that DNA methylation in fungi can be a dynamic epigenetic entity contributing to fungal development and genome defense. Furthermore, our DNA methylomes provide a foundation for future studies exploring this key epigenetic modification in fungal development and pathogenesis.

  9. Whole mitochondrial genome sequencing and transcriptional analysis to uncover an RT102-type cytoplasmic male sterility-associated candidate Gene Derived from Oryza rufipogon.

    Science.gov (United States)

    Okazaki, Masayuki; Kazama, Tomohiko; Murata, Hayato; Motomura, Keiji; Toriyama, Kinya

    2013-09-01

    Cytoplasmic male sterility (CMS) is a maternally inherited trait in which plants fail to produce functional pollen and is associated with the expression of a novel open reading frame (orf) gene encoded by the mitochondrial genome. An RT102A CMS line and an RT102C fertility restorer line were obtained by successive backcrossing between Oryza rufipogon W1125 and O. sativa Taichung 65. Using next-generation pyrosequencing, we determined whole-genome sequences of the mitochondria in RT102-CMS cytoplasm. To identify candidates for the CMS-associated gene in RT102 mitochondria, we screened the mitochondrial genome for the presence of specific orf genes that were chimeric or whose products carried predicted transmembrane domains. One of these orf genes, orf352, which showed different transcript sizes depending on whether the restorer of fertility (Rf) gene was present or not, was identified. The orf352 gene was co-transcribed with the ribosomal protein gene rpl5, and the 2.8 kb rpl5-orf352 transcripts were processed into 2.6 kb transcripts with a cleavage at the inside of the orf352 coding region in the presence of the Rf gene. The orf352 gene is an excellent candidate for the CMS-associated gene for RT102-CMS.

  10. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov.

    Science.gov (United States)

    Reinhold-Hurek, B; Hurek, T

    2000-03-01

    The taxonomic structure of members of the genus Azoarcus sensu lato was reassessed in a polyphasic approach. Two species, Azoarcus communis and Azoarcus indigens, three unnamed species containing diazotrophs associated with Kallar grass roots (groups C, D) and a group of strains (E) isolated from fungi were analysed. They were compared by PAGE analyses of cellular proteins, genomic fingerprints, morphological and nutritional features to new isolates from rice roots. All strains within groups C, D and E containing 5-12 isolates showed group-specific cell and colony morphology and carbon source utilization patterns, with exception of the obligately microaerobic strain BS20-3, a member of group C. All strains, with this exception, also had almost indistinguishable electrophoretic protein patterns and genomic fingerprints generated with tDNA-directed primers, suggesting they belong to the same species. Phylogenetic analyses of almost complete 16S rDNA sequences carried out with three different algorithms (neighbour-joining, maximum-likelihood, parsimony) revealed that Azoarcus sensu lato is not monophyletic. Groups C, D and E formed three distinct lineages located between the Azoarcus/Thauera and the Rhodocyclus clusters. Phylogenetic distances between groups C, D and E were as large as between other genera (93-94% sequence similarity). This suggested they have the rank of three different genera. Since it was possible to differentiate them from each other and other related bacteria by phenotypic features, three new genera with one type species each are proposed: Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov.

  11. Mycobacterial species as case-study of comparative genome analysis.

    Science.gov (United States)

    Zakham, F; Belayachi, L; Ussery, D; Akrim, M; Benjouad, A; El Aouad, R; Ennaji, M M

    2011-02-08

    The genus Mycobacterium represents more than 120 species including important pathogens of human and cause major public health problems and illnesses. Further, with more than 100 genome sequences from this genus, comparative genome analysis can provide new insights for better understanding the evolutionary events of these species and improving drugs, vaccines, and diagnostics tools for controlling Mycobacterial diseases. In this present study we aim to outline a comparative genome analysis of fourteen Mycobacterial genomes: M. avium subsp. paratuberculosis K—10, M. bovis AF2122/97, M. bovis BCG str. Pasteur 1173P2, M. leprae Br4923, M. marinum M, M. sp. KMS, M. sp. MCS, M. tuberculosis CDC1551, M. tuberculosis F11, M. tuberculosis H37Ra, M. tuberculosis H37Rv, M. tuberculosis KZN 1435 , M. ulcerans Agy99,and M. vanbaalenii PYR—1, For this purpose a comparison has been done based on their length of genomes, GC content, number of genes in different data bases (Genbank, Refseq, and Prodigal). The BLAST matrix of these genomes has been figured to give a lot of information about the similarity between species in a simple scheme. As a result of multiple genome analysis, the pan and core genome have been defined for twelve Mycobacterial species. We have also introduced the genome atlas of the reference strain M. tuberculosis H37Rv which can give a good overview of this genome. And for examining the phylogenetic relationships among these bacteria, a phylogenic tree has been constructed from 16S rRNA gene for tuberculosis and non tuberculosis Mycobacteria to understand the evolutionary events of these species.

  12. Molecular Cytogenetic Analysis of Spontaneous Interspecific Hybrid Between Oryza sativa and Oryza minuta

    Institute of Scientific and Technical Information of China (English)

    YI Chuan-deng; CHENG Xu; WANG Bei-bei; LIANG Guo-hua; GONG Zhi-yun; TANG Shu-zhu; GU Ming-hong

    2008-01-01

    Genomic in situ hybridization (GISH) is a powerful tool to characterize parental chromosomes in interspecific hybrids, including the behaviour of autosynapsis and chromosome paidng. It was used to distinguish the chromosomes of Oryza sativa from wild species in a spontaneous interspecific hybdd and to investigate the chromosome pairing at metaphase I in meiosis of the hybdd in this study. The hybrid was a triploid with 36 chromosomes according to the chromosome nurnber investigated in mitosis of root tips. During metaphase I of meiosis in the hybrid, less chromosome pairing was observed and most of the chromosomes existed as univalent. Based on GISH and FISH (Fluorescent in situ hybridization) analyses, the chromosomes of the hybrid were composed of genomes A, B and C. Thus, it was believed that the hybrid was the result of natural hybridization between cultivated rice and wild species O. minuta which was planted in experimental fields.

  13. Molecular Cytogenetic Analysis of Spontaneous Interspecific Hybrid Between Oryza sativa and Oryza minuta

    Directory of Open Access Journals (Sweden)

    Chuan-deng YI

    2008-12-01

    Full Text Available Genomic in situ hybridization (GISH is a powerful tool to characterize parental chromosomes in interspecific hybrids, including the behaviour of autosynapsis and chromosome pairing. It was used to distinguish the chromosomes of Oryza sativa from wild species in a spontaneous interspecific hybrid and to investigate the chromosome pairing at metaphase I in meiosis of the hybrid in this study. The hybrid was a triploid with 36 chromosomes according to the chromosome number investigated in mitosis of root tips. During metaphase I of meiosis in the hybrid, less chromosome pairing was observed and most of the chromosomes existed as univalent. Based on GISH and FISH (Fluorescent in situ hybridization analyses, the chromosomes of the hybrid were composed of genomes A, B and C. Thus, it was believed that the hybrid was the result of natural hybridization between cultivated rice and wild species O. minuta which was planted in experimental fields.

  14. 利用粳稻基因组DNA和Cot-1 DNA探针对普通野生稻和亚洲栽培稻的比较分析%Comparative Analysis of Oryza rufipogon Griff. and Oryza sativa with Nipponbare Genomic DNA and Cot-1 DNA Probes

    Institute of Scientific and Technical Information of China (English)

    覃瑞; 李智; 刘虹; 陈雁; 蔡朝晖; 李刚

    2012-01-01

    Using genomic DNA and Cot-1 DNA of Nipponbare as probes, GISH( genimic in situ hybridization) and Cot-1 DNA FISH (fluorescence in situ hybridization ) were adopted to analyse the genomes of japonica Nipponbare, indica Guangluai 4 and Oryza rufipogon Griff. karyotype. Homologous clustering and comparative study of the above 3 genomes were also made. The results indicated that the distribution and coverage of genomic DNA and Cot-1 DNA probes in 3 rice genomes were very similar. The coverage percentage of Cot-1 DNA in Nipponbare, Guangluai 4 and Oryza rufipogon Griff. were (47.13 ±0. 18)%, (45.89 ±0.22)% and (44.24 ±0.21 )% respectively, demonstrating the high homology and close relationship among them. The highly and moderately repetitive DNA sequences played an important role in the evolution of rice species and indica-japonica genetic differentiation, since their hybridization signal distribution had their own characteristics . The chromosomes which contain less highly and moderately repetitive DNA sequences( No. 2,5,8 ) are more active in rice genome' s evolution.%以粳稻日本晴基因组DNA和Cot-1 DNA为探针,分别对日本晴、籼稻广陆矮4号和普通野生稻的染色体组进行了基因组原位杂交(GISH)和Cot-1 DNA荧光原位杂交(FISH)分析,并对3种染色体组进行了同源聚类和比较研究.结果表明:粳稻基因组DNA和Cot-1 DNA探针信号在3种水稻染色体组中的分布状况和覆盖率相似,Cot-1 DNA的覆盖率分别为(47.13±0.18)%、(45.89±0.22)%、(44.24±0.21)%,3种水稻基因组同源性高,亲缘关系接近.Cot-1 DNA在3种水稻染色体上的杂交信号分布各有特点,中高度重复序列的变异在普通野生稻向栽培稻进化和亚洲栽培稻籼、粳分化过程中具有重要意义,中高度重复序列含量较低的2、5、8号染色体是水稻染色体组进化过程中相对活跃的成分.

  15. Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems.

    Directory of Open Access Journals (Sweden)

    Len J Wade

    Full Text Available The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7-40.7 Mb and on chromosome 8 (20.3-21.9 Mb. Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions.

  16. Comparative Genome Analysis of Lolium-Festuca Complex Species

    DEFF Research Database (Denmark)

    Czaban, Adrian; Byrne, Stephen; Sharma, Sapna

    2015-01-01

    The Lolium-Festuca complex incorporates species from the Lolium genera and the broad leaf Fescues. Plants belonging to this complex exhibit significant phenotypic plasticity for agriculturally important traits, such as annuality/perenniality, establishment potential, growth speed, nutritional value......, winter hardiness, drought tolerance and resistance to grazing. In this study we have sequenced and assembled the low copy fraction of the genomes of Lolium westerwoldicum, Lolium multiflorum, Festuca pratensis and Lolium temulentum. We have also generated de-novo transcriptome assemblies for each species......, and these have aided in the annotation of the genomic sequence. Using this data we were able to generate annotated assemblies of the gene rich regions of the four species to complement the already sequenced Lolium perenne genome. Using these gene models we have identified orthologous genes between the species...

  17. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing.

    Directory of Open Access Journals (Sweden)

    Margaret Staton

    Full Text Available Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence.

  18. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species.

    Science.gov (United States)

    Hirakawa, Hideki; Shirasawa, Kenta; Kosugi, Shunichi; Tashiro, Kosuke; Nakayama, Shinobu; Yamada, Manabu; Kohara, Mistuyo; Watanabe, Akiko; Kishida, Yoshie; Fujishiro, Tsunakazu; Tsuruoka, Hisano; Minami, Chiharu; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Komaki, Akiko; Yanagi, Tomohiro; Guoxin, Qin; Maeda, Fumi; Ishikawa, Masami; Kuhara, Satoru; Sato, Shusei; Tabata, Satoshi; Isobe, Sachiko N

    2014-01-01

    Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ∼200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species.

  19. Intra-species sequence comparisons for annotating genomes

    Energy Technology Data Exchange (ETDEWEB)

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  20. GenomePixelizer--a visualization program for comparative genomics within and between species.

    Science.gov (United States)

    Kozik, A; Kochetkova, E; Michelmore, R

    2002-02-01

    GenomePixelizer is a visualization tool that generates custom images of the physical or genetic positions of specified sets of genes in whole genomes or parts of genomes. Multiple sets of genes can be shown simultaneously with user-defined characteristics displayed. It allows the analysis of duplication events within and between species based on sequence similarities. The program is written in Tcl/Tk and works on any platform that supports the Tcl/Tk toolkit. GenomePixelizer generates HTML ImageMap tags for each gene in the image allowing links to databases. Images can be saved and presented on web pages.

  1. Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.).

    Science.gov (United States)

    Rahman, M Azizur; Rahman, M Mamunur; Kadohashi, K; Maki, T; Hasegawa, H

    2011-07-01

    This study was conducted to investigate the effect of external iron status and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake. Rice seedlings (Oryza sativa L.) were used as model plant, and were grown in artificially contaminated sandy soils irrigated with Murashige and Skoog (MS) culture solution. Arsenate uptake in roots and shoots of rice seedlings were affected significantly (p>0.05) while dimethylarsinic acid (DMAA) was not by the additional iron and chelating ligand treatments. Regardless of iron concentrations in the soil solution, HIDS increased arsenic uptake for roots more than EDTA and EDDS. Chelating ligands and arsenic species also influenced iron uptake in rice roots. Irrespective of arsenic species, HIDS was found to be more effective in the increase of iron bioavailability and uptake in rice roots compared to other chelants. There was a significant positive correlation (r=0.78, parsenic in shoots indicated that iron uptake in shoots was neither affected by additional iron nor by arsenic species. Compared to the control, chelating ligands increased iron uptake in shoots of rice seedlings significantly (parsenic species, iron uptake in rice shoots did not differed among EDTA, EDDS, and HIDS treatments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity.

    Science.gov (United States)

    Smokvina, Tamara; Wels, Michiel; Polka, Justyna; Chervaux, Christian; Brisse, Sylvain; Boekhorst, Jos; van Hylckama Vlieg, Johan E T; Siezen, Roland J

    2013-01-01

    Lactobacillus paracasei is a member of the normal human and animal gut microbiota and is used extensively in the food industry in starter cultures for dairy products or as probiotics. With the development of low-cost, high-throughput sequencing techniques it has become feasible to sequence many different strains of one species and to determine its "pan-genome". We have sequenced the genomes of 34 different L. paracasei strains, and performed a comparative genomics analysis. We analysed genome synteny and content, focussing on the pan-genome, core genome and variable genome. Each genome was shown to contain around 2800-3100 protein-coding genes, and comparative analysis identified over 4200 ortholog groups that comprise the pan-genome of this species, of which about 1800 ortholog groups make up the conserved core. Several factors previously associated with host-microbe interactions such as pili, cell-envelope proteinase, hydrolases p40 and p75 or the capacity to produce short branched-chain fatty acids (bkd operon) are part of the L. paracasei core genome present in all analysed strains. The variome consists mainly of hypothetical proteins, phages, plasmids, transposon/conjugative elements, and known functions such as sugar metabolism, cell-surface proteins, transporters, CRISPR-associated proteins, and EPS biosynthesis proteins. An enormous variety and variability of sugar utilization gene cassettes were identified, with each strain harbouring between 25-53 cassettes, reflecting the high adaptability of L. paracasei to different niches. A phylogenomic tree was constructed based on total genome contents, and together with an analysis of horizontal gene transfer events we conclude that evolution of these L. paracasei strains is complex and not always related to niche adaptation. The results of this genome content comparison was used, together with high-throughput growth experiments on various carbohydrates, to perform gene-trait matching analysis, in order to link

  3. Combination Patterns of Major R Genes Determine the Level of Resistance to the M. oryzae in Rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Yunyu Wu

    Full Text Available Rice blast caused by Magnaporthe oryzae is the most devastating disease of rice and poses a serious threat to world food security. In this study, the distribution and effectiveness of 18 R genes in 277 accessions were investigated based on pathogenicity assays and molecular markers. The results showed that most of the accessions exhibited some degree of resistance (resistance frequency, RF >50%. Accordingly, most of the accessions were observed to harbor two or more R genes, and the number of R genes harbored in accessions was significantly positively correlated with RF. Some R genes were demonstrated to be specifically distributed in the genomes of rice sub-species, such as Pigm, Pi9, Pi5 and Pi1, which were only detected in indica-type accessions, and Pik and Piz, which were just harbored in japonica-type accessions. By analyzing the relationship between R genes and RF using a multiple stepwise regression model, the R genes Pid3, Pi5, Pi9, Pi54, Pigm and Pit were found to show the main effects against M. oryzae in indica-type accessions, while Pita, Pb1, Pik, Pizt and Pia were indicated to exhibit the main effects against M. oryzae in japonica-type accessions. Principal component analysis (PCA and cluster analysis revealed that combination patterns of major R genes were the main factors determining the resistance of rice varieties to M. oryzae, such as 'Pi9+Pi54', 'Pid3+Pigm', 'Pi5+Pid3+Pigm', 'Pi5+Pi54+Pid3+Pigm', 'Pi5+Pid3' and 'Pi5+Pit+Pid3' in indica-type accessions and 'Pik+Pib', 'Pik+Pita', 'Pik+Pb1', 'Pizt+Pia' and 'Pizt+Pita' in japonica-type accessions, which were able to confer effective resistance against M. oryzae. The above results provide good theoretical support for the rational utilization of combinations of major R genes in developing rice cultivars with broad-spectrum resistance.

  4. Photosynthetic Characteristics of Rice Transformed with Genomic DNA of Oryza minuta%转小粒野生稻基因组DNA水稻的光合性状研究

    Institute of Scientific and Technical Information of China (English)

    匡勇; 袁娇; 夏石头; 黄志远; 孙一丹; 赵炳然

    2011-01-01

    A new rice germplasm Yewei B was bred through transformed with genomic DNA of the distantly related species Oryza minuta into hybrid rice parent V20B by ear-stem injecting. Compared with V2OB, Yewei B has loose plant type, small and thin stem. The leaf area of the top 1st, top 2nd and top 3rd leaf is significantly smaller than that of V20B respectively. The content of chlorophyll of Yewei B and V20B decreased gradually from initial heading stage ( I ) to heading stage ( Ⅱ ), milk ripening stage ( Ⅲ ), wax ripening stage (Ⅳ) and yellow ripening stage ( V ), and there is no significant difference between these two varieties. However the photosynthetic rate of the top 1st, top 2nd and top 3rd leaf in Yewei B is significantly higher than that of V20B.%通过"穗茎注射法",将远缘物种小粒野生稻(Oryza minuta)的基因组DNA导入杂交水稻亲本V20B中,培育出转基因水稻新种质野威B.与亲本V20B相比,野威B的株型较松散,茎较细小,其倒1、倒2和倒3叶的叶面积均显著小于亲本的.从始穗期(Ⅰ期)、齐穗期(Ⅱ期)到乳熟期(Ⅲ期)再到黄熟期(Ⅳ期)和腊熟期(Ⅴ期),野威B和V20B的叶绿素含量逐渐降低,两者之间差异未达到显著水平,但野威B的倒1、倒2和倒3叶片的光合速率均极显著高于亲本V20B的光合速率.

  5. gyrB Multiplex PCR To Differentiate between Acinetobacter calcoaceticus and Acinetobacter Genomic Species 3 ▿

    OpenAIRE

    Higgins, Paul G.; Lehmann, Marlene; Wisplinghoff, Hilmar; Seifert, Harald

    2010-01-01

    A previously established multiplex PCR that identifies to the species level Acinetobacter baumannii and Acinetobacter genomic species 13TU (GS13TU) was expanded to include Acinetobacter calcoaceticus and Acinetobacter genomic species 3.

  6. Shifting the genomic gold standard for the prokaryotic species definition.

    Science.gov (United States)

    Richter, Michael; Rosselló-Móra, Ramon

    2009-11-10

    DNA-DNA hybridization (DDH) has been used for nearly 50 years as the gold standard for prokaryotic species circumscriptions at the genomic level. It has been the only taxonomic method that offered a numerical and relatively stable species boundary, and its use has had a paramount influence on how the current classification has been constructed. However, now, in the era of genomics, DDH appears to be an outdated method for classification that needs to be substituted. The average nucleotide identity (ANI) between two genomes seems the most promising method since it mirrors DDH closely. Here we examine the work package JSpecies as a user-friendly, biologist-oriented interface to calculate ANI and the correlation of the tetranucleotide signatures between pairwise genomic comparisons. The results agreed with the use of ANI to substitute DDH, with a narrowed boundary that could be set at approximately 95-96%. In addition, the JSpecies package implemented the tetranucleotide signature correlation index, an alignment-free parameter that generally correlates with ANI and that can be of help in deciding when a given pair of organisms should be classified in the same species. Moreover, for taxonomic purposes, the analyses can be produced by simply randomly sequencing at least 20% of the genome of the query strains rather than obtaining their full sequence.

  7. The genomes of four tapeworm species reveal adaptations to parasitism.

    Science.gov (United States)

    Tsai, Isheng J; Zarowiecki, Magdalena; Holroyd, Nancy; Garciarrubio, Alejandro; Sanchez-Flores, Alejandro; Brooks, Karen L; Tracey, Alan; Bobes, Raúl J; Fragoso, Gladis; Sciutto, Edda; Aslett, Martin; Beasley, Helen; Bennett, Hayley M; Cai, Jianping; Camicia, Federico; Clark, Richard; Cucher, Marcela; De Silva, Nishadi; Day, Tim A; Deplazes, Peter; Estrada, Karel; Fernández, Cecilia; Holland, Peter W H; Hou, Junling; Hu, Songnian; Huckvale, Thomas; Hung, Stacy S; Kamenetzky, Laura; Keane, Jacqueline A; Kiss, Ferenc; Koziol, Uriel; Lambert, Olivia; Liu, Kan; Luo, Xuenong; Luo, Yingfeng; Macchiaroli, Natalia; Nichol, Sarah; Paps, Jordi; Parkinson, John; Pouchkina-Stantcheva, Natasha; Riddiford, Nick; Rosenzvit, Mara; Salinas, Gustavo; Wasmuth, James D; Zamanian, Mostafa; Zheng, Yadong; Cai, Xuepeng; Soberón, Xavier; Olson, Peter D; Laclette, Juan P; Brehm, Klaus; Berriman, Matthew

    2013-04-01

    Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.

  8. The genomes of four tapeworm species reveal adaptations to parasitism

    Science.gov (United States)

    Sánchez-Flores, Alejandro; Brooks, Karen L.; Tracey, Alan; Bobes, Raúl J.; Fragoso, Gladis; Sciutto, Edda; Aslett, Martin; Beasley, Helen; Bennett, Hayley M.; Cai, Xuepeng; Camicia, Federico; Clark, Richard; Cucher, Marcela; De Silva, Nishadi; Day, Tim A; Deplazes, Peter; Estrada, Karel; Fernández, Cecilia; Holland, Peter W. H.; Hou, Junling; Hu, Songnian; Huckvale, Thomas; Hung, Stacy S.; Kamenetzky, Laura; Keane, Jacqueline A.; Kiss, Ferenc; Koziol, Uriel; Lambert, Olivia; Liu, Kan; Luo, Xuenong; Luo, Yingfeng; Macchiaroli, Natalia; Nichol, Sarah; Paps, Jordi; Parkinson, John; Pouchkina-Stantcheva, Natasha; Riddiford, Nick; Rosenzvit, Mara; Salinas, Gustavo; Wasmuth, James D.; Zamanian, Mostafa; Zheng, Yadong; Cai, Jianping; Soberón, Xavier; Olson, Peter D.; Laclette, Juan P.; Brehm, Klaus; Berriman, Matthew

    2014-01-01

    Summary Tapeworms cause debilitating neglected diseases that can be deadly and often require surgery due to ineffective drugs. Here we present the first analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115-141 megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have species-specific expansions of non-canonical heat shock proteins and families of known antigens; specialised detoxification pathways, and metabolism finely tuned to rely on nutrients scavenged from their hosts. We identify new potential drug targets, including those on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control. PMID:23485966

  9. Targeted genome editing across species using ZFNs and TALENs.

    Science.gov (United States)

    Wood, Andrew J; Lo, Te-Wen; Zeitler, Bryan; Pickle, Catherine S; Ralston, Edward J; Lee, Andrew H; Amora, Rainier; Miller, Jeffrey C; Leung, Elo; Meng, Xiangdong; Zhang, Lei; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D; Meyer, Barbara J

    2011-07-15

    Evolutionary studies necessary to dissect diverse biological processes have been limited by the lack of reverse genetic approaches in most organisms with sequenced genomes. We established a broadly applicable strategy using zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) for targeted disruption of endogenous genes and cis-acting regulatory elements in diverged nematode species.

  10. Genomic insights that advance the species definition for prokaryotes.

    Science.gov (United States)

    Konstantinidis, Konstantinos T; Tiedje, James M

    2005-02-15

    To help advance the species definition for prokaryotes, we have compared the gene content of 70 closely related and fully sequenced bacterial genomes to identify whether species boundaries exist, and to determine the role of the organism's ecology on its shared gene content. We found the average nucleotide identity (ANI) of the shared genes between two strains to be a robust means to compare genetic relatedness among strains, and that ANI values of approximately 94% corresponded to the traditional 70% DNA-DNA reassociation standard of the current species definition. At the 94% ANI cutoff, current species includes only moderately homogeneous strains, e.g., most of the >4-Mb genomes share only 65-90% of their genes, apparently as a result of the strains having evolved in different ecological settings. Furthermore, diagnostic genetic signatures (boundaries) are evident between groups of strains of the same species, and the intergroup genetic similarity can be as high as 98-99% ANI, indicating that justifiable species might be found even among organisms that are nearly identical at the nucleotide level. Notably, a large fraction, e.g., up to 65%, of the differences in gene content within species is associated with bacteriophage and transposase elements, revealing an important role of these elements during bacterial speciation. Our findings are consistent with a definition for species that would include a more homogeneous set of strains than provided by the current definition and one that considers the ecology of the strains in addition to their evolutionary distance.

  11. Mitochondrial genome variability within the Candida parapsilosis species complex.

    Science.gov (United States)

    Valach, Matus; Pryszcz, Leszek P; Tomaska, Lubomir; Gacser, Attila; Gabaldón, Toni; Nosek, Jozef

    2012-09-01

    Candida parapsilosis species complex includes three closely related species, namely C. parapsilosis (sensu stricto), C. orthopsilosis, and C. metapsilosis. Unlike most other yeast lineages, members of this species complex possess a linear mitochondrial genome. Yet, its circularized mutant form was identified in strains of C. orthopsilosis and C. metapsilosis. To investigate the underlying variability, we performed comparative analyses of the complete mitochondrial DNA sequences in a collection of strains. Our results demonstrate that in contrast to C. parapsilosis and C. metapsilosis, C. orthopsilosis exhibits remarkably high nucleotide diversity whose pattern is consistent with intraspecific genetic exchange.

  12. Promoter sequence of 3-phosphoglycerate kinase gene 1 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species

    Science.gov (United States)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-10-15

    The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 1 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

  13. Promoter sequence of 3-phosphoglycerate kinase gene 2 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2003-03-04

    The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 2 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

  14. Draft genome sequence of the oilseed species Ricinus communis.

    Science.gov (United States)

    Chan, Agnes P; Crabtree, Jonathan; Zhao, Qi; Lorenzi, Hernan; Orvis, Joshua; Puiu, Daniela; Melake-Berhan, Admasu; Jones, Kristine M; Redman, Julia; Chen, Grace; Cahoon, Edgar B; Gedil, Melaku; Stanke, Mario; Haas, Brian J; Wortman, Jennifer R; Fraser-Liggett, Claire M; Ravel, Jacques; Rabinowicz, Pablo D

    2010-09-01

    Castor bean (Ricinus communis) is an oilseed crop that belongs to the spurge (Euphorbiaceae) family, which comprises approximately 6,300 species that include cassava (Manihot esculenta), rubber tree (Hevea brasiliensis) and physic nut (Jatropha curcas). It is primarily of economic interest as a source of castor oil, used for the production of high-quality lubricants because of its high proportion of the unusual fatty acid ricinoleic acid. However, castor bean genomics is also relevant to biosecurity as the seeds contain high levels of ricin, a highly toxic, ribosome-inactivating protein. Here we report the draft genome sequence of castor bean (4.6-fold coverage), the first for a member of the Euphorbiaceae. Whereas most of the key genes involved in oil synthesis and turnover are single copy, the number of members of the ricin gene family is larger than previously thought. Comparative genomics analysis suggests the presence of an ancient hexaploidization event that is conserved across the dicotyledonous lineage.

  15. Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity.

    Directory of Open Access Journals (Sweden)

    Tamara Smokvina

    Full Text Available Lactobacillus paracasei is a member of the normal human and animal gut microbiota and is used extensively in the food industry in starter cultures for dairy products or as probiotics. With the development of low-cost, high-throughput sequencing techniques it has become feasible to sequence many different strains of one species and to determine its "pan-genome". We have sequenced the genomes of 34 different L. paracasei strains, and performed a comparative genomics analysis. We analysed genome synteny and content, focussing on the pan-genome, core genome and variable genome. Each genome was shown to contain around 2800-3100 protein-coding genes, and comparative analysis identified over 4200 ortholog groups that comprise the pan-genome of this species, of which about 1800 ortholog groups make up the conserved core. Several factors previously associated with host-microbe interactions such as pili, cell-envelope proteinase, hydrolases p40 and p75 or the capacity to produce short branched-chain fatty acids (bkd operon are part of the L. paracasei core genome present in all analysed strains. The variome consists mainly of hypothetical proteins, phages, plasmids, transposon/conjugative elements, and known functions such as sugar metabolism, cell-surface proteins, transporters, CRISPR-associated proteins, and EPS biosynthesis proteins. An enormous variety and variability of sugar utilization gene cassettes were identified, with each strain harbouring between 25-53 cassettes, reflecting the high adaptability of L. paracasei to different niches. A phylogenomic tree was constructed based on total genome contents, and together with an analysis of horizontal gene transfer events we conclude that evolution of these L. paracasei strains is complex and not always related to niche adaptation. The results of this genome content comparison was used, together with high-throughput growth experiments on various carbohydrates, to perform gene-trait matching analysis

  16. The transfer RNA genes in Oryza sativa L.ssp.indica

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiyin(王希胤); SHI; Xiaoli(史晓黎); HAO; Bailin(郝柏林)

    2002-01-01

    The availability of the draft genome sequence of Oryza sativa L. ssp. indica has made it possible to study the rice tRNA genes. A total of 596 tRNA genes, including 3 selenocysteine tRNA genes and one suppressor tRNA gene are identified in 127551 rice contigs. There are 45 species of tRNA genes and the revised wobble hypothesis proposed by Guthrie and Abelson is perfectly obeyed. The relationship between codon usage and the number of corresponding tRNA genes is discussed. Redundancy may exist in the present list of tRNA genes and novel ones may be found in the future. A set of 33 tRNA genes is discovered in the complete chloroplast genome of Oryza sativa L. ssp. indica. These tRNA genes are identical to those in ssp. japonica identified by us independently from the origional annotation.

  17. Karyotype and genome size in Euterpe Mart. (Arecaceae) species

    Science.gov (United States)

    Oliveira, Ludmila Cristina; de Oliveira, Maria do Socorro Padilha; Davide, Lisete Chamma; Torres, Giovana Augusta

    2016-01-01

    Abstract Euterpe (Martius, 1823), a genus from Central and South America, has species with high economic importance in Brazil, because of their palm heart and fruits, known as açaí berries. Breeding programs have been conducted to increase yield and establish cultivation systems to replace the extraction of wild material. These programs need basic information about the genome of these species to better explore the available genetic variability. The aim of this study was to compare Euterpe edulis (Martius, 1824), Euterpe oleracea (Martius, 1824) and Euterpe precatoria (Martius, 1842), with regard to karyotype, type of interphase nucleus and nuclear DNA amount. Metaphase chromosomes and interphase nuclei from root tip meristematic cells were obtained by the squashing technique and solid stained for microscope analysis. The DNA amount was estimated by flow cytometry. There were previous reports on the chromosome number of Euterpe edulis and Euterpe oleracea, but chromosome morphology of these two species and the whole karyotype of Euterpe precatoria are reported for the first time. The species have 2n=36, a number considered as a pleisomorphic feature in Arecoideae since the modern species, according to floral morphology, have the lowest chromosome number (2n=28 and 2n=30). The three Euterpe species also have the same type of interphase nuclei, classified as semi-reticulate. The species differed on karyotypic formulas, on localization of secondary constriction and genome size. The data suggest that the main forces driving Euterpe karyotype evolution were structural rearrangements, such as inversions and translocations that alter chromosome morphology, and either deletion or amplification that led to changes in chromosome size. PMID:27186334

  18. Role of DetR in defence is critical for virulence of Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Nguyen, Minh-Phuong; Park, Jongchan; Cho, Man-Ho; Lee, Sang-Won

    2016-05-01

    Like other bacteria, Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight disease in rice, possesses intracellular signalling systems, known as two-component regulatory systems (TCSs), which regulate pathogenesis and biological processes. Completion of the genome sequences of three Xoo strains has facilitated the functional study of genes, including those of TCSs, but the biological functions of most Xoo TCSs have not yet been uncovered. To identify TCSs involved in Xoo pathogenesis, we generated knockout strains lacking response regulators (RRs, a cytoplasmic signalling component of the TCS) and examined the virulence of the RR knockout strains. This study presents a knockout strain (detR(-) ) lacking the PXO_04659 gene which shows dramatically reduced virulence relative to the wild-type. Our studies to elucidate detR function in Xoo pathogenesis revealed a reduction in extracellular polysaccharide (EPS), intolerance to reactive oxygen species (ROS) and deregulation of iron homeostasis in the detR(-) strain. Moreover, gene expression of regulatory factors, including other RRs and transcription factors (TFs), was altered in the absence of DetR protein, as determined by reverse transcription-polymerase chain reaction (RT-PCR) and/or real-time quantitative RT-PCR analyses. All evidence leads to the conclusion that DetR is essential for Xoo virulence through the regulation of the Xoo defence system including EPS synthesis, ROS detoxification and iron homeostasis, solely or cooperatively with other regulatory factors.

  19. Transposable elements and small RNAs: Genomic fuel for species diversity.

    Science.gov (United States)

    Hoffmann, Federico G; McGuire, Liam P; Counterman, Brian A; Ray, David A

    2015-01-01

    While transposable elements (TE) have long been suspected of involvement in species diversification, identifying specific roles has been difficult. We recently found evidence of TE-derived regulatory RNAs in a species-rich family of bats. The TE-derived small RNAs are temporally associated with the burst of species diversification, suggesting that they may have been involved in the processes that led to the diversification. In this commentary, we expand on the ideas that were briefly touched upon in that manuscript. Specifically, we suggest avenues of research that may help to identify the roles that TEs may play in perturbing regulatory pathways. Such research endeavors may serve to inform evolutionary biologists of the ways that TEs have influenced the genomic and taxonomic diversity around us.

  20. Flux balance analysis of genome-scale metabolic model of rice (Oryza sativa): Aiming to increase biomass

    Indian Academy of Sciences (India)

    Rahul Shaw; Sudip Kundu

    2015-10-01

    Due to socio-economic reasons, it is essential to design efficient stress-tolerant, more nutritious, high yielding rice varieties. A systematic understanding of the rice cellular metabolism is essential for this purpose. Here, we analyse a genome-scale metabolic model of rice leaf using Flux Balance Analysis to investigate whether it has potential metabolic flexibility to increase the biosynthesis of any of the biomass components. We initially simulate the metabolic responses under an objective to maximize the biomass components. Using the estimated maximum value of biomass synthesis as a constraint, we further simulate the metabolic responses optimizing the cellular economy. Depending on the physiological conditions of a cell, the transport capacities of intracellular transporters (ICTs) can vary. To mimic this physiological state, we randomly vary the ICTs’ transport capacities and investigate their effects. The results show that the rice leaf has the potential to increase glycine and starch in a wide range depending on the ICTs’ transport capacities. The predicted biosynthesis pathways vary slightly at the two different optimization conditions. With the constraint of biomass composition, the cell also has the metabolic plasticity to fix a wide range of carbon-nitrogen ratio.

  1. Interspecifc hybrid plants obtained from cultivars (AA) crossed with wild Oryza species (CC)

    Institute of Scientific and Technical Information of China (English)

    TANGShengxiang; YANHuthuang; HuHulying

    1994-01-01

    Wild dee O.officinalis(CNW 258, CNW 259) and O. eichingeri (CNW 260, CNW 261) have CC genome and high resistance to brown planthopper (BPH) and whitebacked planthopper (WBPH). To transfer the resistant gene(s) of the wild rice into Asian cultivated rice, the interspecific crosses between O. sativa L. (AA) and O. officinafis and O.eiclungeri (CC) was made in present study.

  2. The Complete Chloroplast Genome Sequences of Six Rehmannia Species

    Directory of Open Access Journals (Sweden)

    Shuyun Zeng

    2017-03-01

    Full Text Available Rehmannia is a non-parasitic genus in Orobanchaceae including six species mainly distributed in central and north China. Its phylogenetic position and infrageneric relationships remain uncertain due to potential hybridization and polyploidization. In this study, we sequenced and compared the complete chloroplast genomes of six Rehmannia species using Illumina sequencing technology to elucidate the interspecific variations. Rehmannia plastomes exhibited typical quadripartite and circular structures with good synteny of gene order. The complete genomes ranged from 153,622 bp to 154,055 bp in length, including 133 genes encoding 88 proteins, 37 tRNAs, and 8 rRNAs. Three genes (rpoA, rpoC2, accD have potentially experienced positive selection. Plastome size variation of Rehmannia was mainly ascribed to the expansion and contraction of the border regions between the inverted repeat (IR region and the single-copy (SC regions. Despite of the conserved structure in Rehmannia plastomes, sequence variations provide useful phylogenetic information. Phylogenetic trees of 23 Lamiales species reconstructed with the complete plastomes suggested that Rehmannia was monophyletic and sister to the clade of Lindenbergia and the parasitic taxa in Orobanchaceae. The interspecific relationships within Rehmannia were completely different with the previous studies. In future, population phylogenomic works based on plastomes are urgently needed to clarify the evolutionary history of Rehmannia.

  3. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species.

    Directory of Open Access Journals (Sweden)

    Eva Kucerova

    Full Text Available BACKGROUND: The genus Cronobacter (formerly called Enterobacter sakazakii is composed of five species; C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii, and C. dublinensis. The genus includes opportunistic human pathogens, and the first three species have been associated with neonatal infections. The most severe diseases are caused in neonates and include fatal necrotizing enterocolitis and meningitis. The genetic basis of the diversity within the genus is unknown, and few virulence traits have been identified. METHODOLOGY/PRINCIPAL FINDINGS: We report here the first sequence of a member of this genus, C. sakazakii strain BAA-894. The genome of Cronobacter sakazakii strain BAA-894 comprises a 4.4 Mb chromosome (57% GC content and two plasmids; 31 kb (51% GC and 131 kb (56% GC. The genome was used to construct a 387,000 probe oligonucleotide tiling DNA microarray covering the whole genome. Comparative genomic hybridization (CGH was undertaken on five other C. sakazakii strains, and representatives of the four other Cronobacter species. Among 4,382 annotated genes inspected in this study, about 55% of genes were common to all C. sakazakii strains and 43% were common to all Cronobacter strains, with 10-17% absence of genes. CONCLUSIONS/SIGNIFICANCE: CGH highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii

  4. The Rice Genome Knowledgebase (RGKbase): an annotation database for rice comparative genomics and evolutionary biology.

    Science.gov (United States)

    Wang, Dapeng; Xia, Yan; Li, Xinna; Hou, Lixia; Yu, Jun

    2013-01-01

    Over the past 10 years, genomes of cultivated rice cultivars and their wild counterparts have been sequenced although most efforts are focused on genome assembly and annotation of two major cultivated rice (Oryza sativa L.) subspecies, 93-11 (indica) and Nipponbare (japonica). To integrate information from genome assemblies and annotations for better analysis and application, we now introduce a comparative rice genome database, the Rice Genome Knowledgebase (RGKbase, http://rgkbase.big.ac.cn/RGKbase/). RGKbase is built to have three major components: (i) integrated data curation for rice genomics and molecular biology, which includes genome sequence assemblies, transcriptomic and epigenomic data, genetic variations, quantitative trait loci (QTLs) and the relevant literature; (ii) User-friendly viewers, such as Gbrowse, GeneBrowse and Circos, for genome annotations and evolutionary dynamics and (iii) Bioinformatic tools for compositional and synteny analyses, gene family classifications, gene ontology terms and pathways and gene co-expression networks. RGKbase current includes data from five rice cultivars and species: Nipponbare (japonica), 93-11 (indica), PA64s (indica), the African rice (Oryza glaberrima) and a wild rice species (Oryza brachyantha). We are also constantly introducing new datasets from variety of public efforts, such as two recent releases-sequence data from ∼1000 rice varieties, which are mapped into the reference genome, yielding ample high-quality single-nucleotide polymorphisms and insertions-deletions.

  5. Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae

    NARCIS (Netherlands)

    Coutinho, Pedro M; Andersen, Mikael R; Kolenova, Katarina; vanKuyk, Patricia A; Benoit, Isabelle; Gruben, Birgit S; Trejo-Aguilar, Blanca; Visser, Hans; van Solingen, Piet; Pakula, Tiina; Seiboth, Bernard; Battaglia, Evy; Aguilar-Osorio, Guillermo; de Jong, Jan F; Ohm, Robin A; Aguilar, Mariana; Henrissat, Bernard; Nielsen, Jens; Stålbrand, Henrik; de Vries, Ronald P

    The plant polysaccharide degradative potential of Aspergillus nidulans was analysed in detail and compared to that of Aspergillus niger and Aspergillus oryzae using a combination of bioinformatics, physiology and transcriptomics. Manual verification indicated that 28.4% of the A. nidulans ORFs

  6. Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae

    DEFF Research Database (Denmark)

    Coutinho, Pedro M.; Andersen, Mikael Rørdam; Kolenova, Katarina

    2009-01-01

    The plant polysaccharide degradative potential of Aspergillus nidulans was analysed in detail and compared to that of Aspergillus niger and Aspergillus oryzae using a combination of bioinformatics, physiology and transcriptomics. Manual verification indicated that 28.4% of the A. nidulans ORFs an...

  7. Molecular cloning and functional characterization of a Δ6-fatty acid desaturase gene from Rhizopus oryzae.

    Science.gov (United States)

    Zhu, Yu; Zhang, Bi-Bo

    2013-09-01

    The objective was to screen for and isolate a novel enzyme with the specific activity of a Δ6-fatty acid desaturase from Rhizopus oryzae. In this study, R. oryzae was identified as a novel fungal species that produces large amounts of γ-linolenic acid. A full-length cDNA, designated here as RoD6D, with high homology to fungal Δ6-fatty acid desaturase genes was isolated from R. oryzae by using the rapid amplification of cDNA ends method. It had an open reading frame of 1176 bp encoding a deduced polypeptide of 391 amino acids. Bioinformatics analysis characterized the putative RoD6D protein as a typical membrane-bound desaturase, including three conserved histidine-rich motifs, a hydropathy profile, and a cytochrome b5 -like domain in the N terminus. When the coding sequence was expressed in the Saccharomyces cerevisiae strain INVScl, the encoded product of RoD6D exhibited Δ6-fatty acid desaturase activity that led to the accumulation of γ-linolenic acid. The corresponding genomic sequence of RoD6D was 1565 bp in length, with five introns. This is the first report on the characterization and gene cloning of a Δ6-fatty acid desaturase of R. oryzae from Douchi.

  8. Genomic and phenotypic characterization of the species Acinetobacter venetianus

    Science.gov (United States)

    Fondi, Marco; Maida, Isabel; Perrin, Elena; Orlandini, Valerio; La Torre, Laura; Bosi, Emanuele; Negroni, Andrea; Zanaroli, Giulio; Fava, Fabio; Decorosi, Francesca; Giovannetti, Luciana; Viti, Carlo; Vaneechoutte, Mario; Dijkshoorn, Lenie; Fani, Renato

    2016-01-01

    Crude oil is a complex mixture of hydrocarbons and other organic compounds that can produce serious environmental problems and whose removal is highly demanding in terms of human and technological resources. The potential use of microbes as bioremediation agents is one of the most promising fields in this area. Members of the species Acinetobacter venetianus have been previously characterized for their capability to degrade n-alkanes and thus may represent interesting model systems to implement this process. Although a preliminary experimental characterization of the overall hydrocarbon degradation capability has been performed for five of them, to date, the genetic/genomic features underlying such molecular processes have not been identified. Here we have integrated genomic and phenotypic information for six A. venetianus strains, i.e. VE-C3, RAG-1T, LUH 13518, LUH 7437, LUH 5627 and LUH 8758. Besides providing a thorough description of the A. venetianus species, these data were exploited to infer the genetic features (presence/absence patterns of genes) and the short-term evolutionary events possibly responsible for the variability in n-alkane degradation efficiency of these strains, including the mechanisms of interaction with the fuel droplet and the subsequent catabolism of this pollutant. PMID:26902269

  9. Genomic and phenotypic characterization of the species Acinetobacter venetianus.

    Science.gov (United States)

    Fondi, Marco; Maida, Isabel; Perrin, Elena; Orlandini, Valerio; La Torre, Laura; Bosi, Emanuele; Negroni, Andrea; Zanaroli, Giulio; Fava, Fabio; Decorosi, Francesca; Giovannetti, Luciana; Viti, Carlo; Vaneechoutte, Mario; Dijkshoorn, Lenie; Fani, Renato

    2016-02-23

    Crude oil is a complex mixture of hydrocarbons and other organic compounds that can produce serious environmental problems and whose removal is highly demanding in terms of human and technological resources. The potential use of microbes as bioremediation agents is one of the most promising fields in this area. Members of the species Acinetobacter venetianus have been previously characterized for their capability to degrade n-alkanes and thus may represent interesting model systems to implement this process. Although a preliminary experimental characterization of the overall hydrocarbon degradation capability has been performed for five of them, to date, the genetic/genomic features underlying such molecular processes have not been identified. Here we have integrated genomic and phenotypic information for six A. venetianus strains, i.e. VE-C3, RAG-1(T), LUH 13518, LUH 7437, LUH 5627 and LUH 8758. Besides providing a thorough description of the A. venetianus species, these data were exploited to infer the genetic features (presence/absence patterns of genes) and the short-term evolutionary events possibly responsible for the variability in n-alkane degradation efficiency of these strains, including the mechanisms of interaction with the fuel droplet and the subsequent catabolism of this pollutant.

  10. Characterization of St and Y genome in StStYY Elymus species (Triticeae: Poaceae) using Sequential FISH and GISH

    Science.gov (United States)

    Tetraploid species possessing StY genome could be donors to hexaploid species having StYH, StYP, or StYW genome constitution in the genus Elymus, and a few of StY species have been intensely studied for inferring the origin of the Y genome. In this study, genome characterization of St and Y genome w...

  11. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Marathi Balram

    2012-08-01

    Full Text Available Abstract Background Rice is staple food for more than half of the world’s population including two billion Asians, who obtain 60-70% of their energy intake from rice and its derivatives. To meet the growing demand from human population, rice varieties with higher yield potential and greater yield stability need to be developed. The favourable alleles for yield and yield contributing traits are distributed among two subspecies i.e., indica and japonica of cultivated rice (Oryza sativa L.. Identification of novel favourable alleles in indica/japonica will pave way to marker-assisted mobilization of these alleles in to a genetic background to break genetic barriers to yield. Results A new plant type (NPT based mapping population of 310 recombinant inbred lines (RILs was used to map novel genomic regions and QTL hotspots influencing yield and eleven yield component traits. We identified major quantitative trait loci (QTLs for days to 50% flowering (R2 = 25%, LOD = 14.3, panicles per plant (R2 = 19%, LOD = 9.74, flag leaf length (R2 = 22%, LOD = 3.05, flag leaf width (R2 = 53%, LOD = 46.5, spikelets per panicle (R2 = 16%, LOD = 13.8, filled grains per panicle (R2 = 22%, LOD = 15.3, percent spikelet sterility (R2 = 18%, LOD = 14.24, thousand grain weight (R2 = 25%, LOD = 12.9 and spikelet setting density (R2 = 23%, LOD = 15 expressing over two or more locations by using composite interval mapping. The phenotypic variation (R2 ranged from 8 to 53% for eleven QTLs expressing across all three locations. 19 novel QTLs were contributed by the NPT parent, Pusa1266. 15 QTL hotpots on eight chromosomes were identified for the correlated traits. Six epistatic QTLs effecting five traits at two locations were identified. A marker interval (RM3276-RM5709 on chromosome 4 harboring major QTLs for four traits was identified. Conclusions The present study reveals that favourable alleles for

  12. Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, Sarah E., E-mail: rothenberg.sarah@gmail.com [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Feng Xinbin, E-mail: fengxinbin@vip.skleg.cn [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Dong Bin, E-mail: dongbin@whu.edu.cn [State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 (China); Shang Lihai, E-mail: shanglihai@vip.gyig.ac.cn [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Yin Runsheng, E-mail: yinrunsheng2002@163.com [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Yuan Xiaobo, E-mail: xiantao_131@163.com [College of Resources and the Environment, Southwest University, Chongqing 400716 (China)

    2011-05-15

    In China, total Hg (Hg{sub T}) and methylmercury (MeHg) were quantified in rice grain grown in three sites using water-saving rice cultivation methods, and in one Hg-contaminated site, where rice was grown under flooded conditions. Polished white rice concentrations of Hg{sub T} (water-saving: 3.3 {+-} 1.6 ng/g; flooded: 110 {+-} 9.2 ng/g) and MeHg (water-saving 1.3 {+-} 0.56 ng/g; flooded: 12 {+-} 2.4 ng/g) were positively correlated with root-soil Hg{sub T} and MeHg contents (Hg{sub T}: r{sup 2} = 0.97, MeHg: r{sup 2} = 0.87, p < 0.05 for both), which suggested a portion of Hg species in rice grain was derived from the soil, and translocation of Hg species from soil to rice grain was independent of irrigation practices and Hg levels, although other factors may be important. Concentrations of Hg{sub T} and other trace elements were significantly higher in unmilled brown rice (p < 0.05), while MeHg content was similar (p > 0.20), indicating MeHg infiltrated the endosperm (i.e., white rice) more efficiently than inorganic Hg(II). - Highlights: > First time that Hg{sub T} and MeHg were characterized in both brown and white rice. > MeHg translocation into the endosperm was more efficient than inorganic Hg(II). > In this respect, MeHg behaved like dimethylarsinic acid and organic Se species. > In white rice, Hg{sub T} and MeHg were positively correlated with soil Hg{sub T} and MeHg. > Uptake rates of Hg{sub T} and MeHg were independent of irrigation methods and Hg content. - Methylmercury was more efficiently translocated to the endosperm than inorganic mercury.

  13. Genetic relatedness of genus Oryza from Eastern Himalayan region as revealed by chloroplast matK gene

    Directory of Open Access Journals (Sweden)

    Doris Zodinpuii

    2013-12-01

    Full Text Available Phylogenetic relationship was studied in wild and cultivated rice using the chloroplast matK gene. The aligned sequence fragments were 826bp in length with 7.02% variable and 4.47% phylogenetically informative sites and the estimated Transition/Transversion bias (R was 1.97. Seven hundred and two characters were constant, 74 variable characters were parsimony-uninformative and 50 were parsimony–informative. Haplotypes of Mizoram rice and wild relatives (A genome were more similar than those of distantly related species (B, C/CD, E and G genomes. It further revealed that the EE genome species is most closely related to the CC genome and CCDD genomes. The BBCC genome species had different origins, and their maternal parents had either the BB or CC genome. An additional genome type, HHKK was recognized in O. coarctata and O. schlechteri. Within the AA genome the African, O. glaberrima and O. longistaminatea and American, O. glumipatula and O. barthii were closer to the Indian Oryza species, O. nivara and O. rufipogon. The unknown genome O. malampuzhaensis from India is closer to BB and BBCC genome containing respectively O. punctata from Cameroon and O. minuta from Philippines. CpG rich matK sequences were rich in GG and FF genotypes, whereas CpA rich sequences belonged to BB and BBCC related genomes variety.

  14. The complete genome sequence of Dickeya zeae EC1 reveals substantial divergence from other Dickeya strains and species.

    Science.gov (United States)

    Zhou, Jianuan; Cheng, Yingying; Lv, Mingfa; Liao, Lisheng; Chen, Yufan; Gu, Yanfang; Liu, Shiyin; Jiang, Zide; Xiong, Yuanyan; Zhang, Lianhui

    2015-08-04

    Dickeya zeae is a bacterial species that infects monocotyledons and dicotyledons. Two antibiotic-like phytotoxins named zeamine and zeamine II were reported to play an important role in rice seed germination, and two genes associated with zeamines production, i.e., zmsA and zmsK, have been thoroughly characterized. However, other virulence factors and its molecular mechanisms of host specificity and pathogenesis are hardly known. The complete genome of D. zeae strain EC1 isolated from diseased rice plants was sequenced, annotated, and compared with the genomes of other Dickeya spp.. The pathogen contains a chromosome of 4,532,364 bp with 4,154 predicted protein-coding genes. Comparative genomics analysis indicates that D. zeae EC1 is most co-linear with D. chrysanthemi Ech1591, most conserved with D. zeae Ech586 and least similar to D. paradisiaca Ech703. Substantial genomic rearrangement was revealed by comparing EC1 with Ech586 and Ech703. Most virulence genes were well-conserved in Dickeya strains except Ech703. Significantly, the zms gene cluster involved in biosynthesis of zeamines, which were shown previously as key virulence determinants, is present in D. zeae strains isolated from rice, and some D. solani strains, but absent in other Dickeya species and the D. zeae strains isolated from other plants or sources. In addition, a DNA fragment containing 9 genes associated with fatty acid biosynthesis was found inserted in the fli gene cluster encoding flagellar biosynthesis of strain EC1 and other two rice isolates but not in other strains. This gene cluster shares a high protein similarity to the fatty acid genes from Pantoea ananatis. Our findings delineate the genetic background of D. zeae EC1, which infects both dicotyledons and monocotyledons, and suggest that D. zeae strains isolated from rice could be grouped into a distinct pathovar, i.e., D. zeae subsp. oryzae. In addition, the results of this study also unveiled that the zms gene cluster presented in

  15. Conserved and species-specific alternative splicing in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Favorov Alexander V

    2007-12-01

    Full Text Available Abstract Background Alternative splicing has been shown to be one of the major evolutionary mechanisms for protein diversification and proteome expansion, since a considerable fraction of alternative splicing events appears to be species- or lineage-specific. However, most studies were restricted to the analysis of cassette exons in pairs of genomes and did not analyze functionality of the alternative variants. Results We analyzed conservation of human alternative splice sites and cassette exons in the mouse and dog genomes. Alternative exons, especially minor-isofom ones, were shown to be less conserved than constitutive exons. Frame-shifting alternatives in the protein-coding regions are less conserved than frame-preserving ones. Similarly, the conservation of alternative sites is highest for evenly used alternatives, and higher when the distance between the sites is divisible by three. The rate of alternative-exon and site loss in mouse is slightly higher than in dog, consistent with faster evolution of the former. The evolutionary dynamics of alternative sites was shown to be consistent with the model of random activation of cryptic sites. Conclusion Consistent with other studies, our results show that minor cassette exons are less conserved than major-alternative and constitutive exons. However, our study provides evidence that this is caused not only by exon birth, but also lineage-specific loss of alternative exons and sites, and it depends on exon functionality.

  16. Telling plant species apart with DNA: from barcodes to genomes

    Science.gov (United States)

    Li, De-Zhu; van der Bank, Michelle

    2016-01-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity—yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481790

  17. Hygromycin B-induced cell death is partly mediated by reactive oxygen species in rice (Oryza sativa L.).

    Science.gov (United States)

    Oung, Hui-Min; Lin, Ke-Chun; Wu, Tsung-Meng; Chandrika, Nulu Naga Prafulla; Hong, Chwan-Yang

    2015-12-01

    The aminoglycoside antibiotic hygromycin B (Hyg) inhibits prokaryotic, chloroplast and mitochondrial protein synthesis. Because of the toxic effect of Hyg on plant cells, the HPT gene, encoding hygromycin phosphotransferase, has become one of the most widely used selectable markers in plant transformation. Yet the mechanism behind Hyg-induced cell lethality in plants is not clearly understood. In this study, we aimed to decipher this mechanism. With Hyg treatment, rice calli exhibited cell death, and rice seedlings showed severe growth defects, leaf chlorosis and leaf shrinkage. Rice seedlings also exhibited severe lipid peroxidation and protein carbonylation, for oxidative stress damage at the cellular level. The production of reactive oxygen species such as O2(·-), H2O2 and OH(·) was greatly induced in rice seedlings under Hyg stress, and pre-treatment with ascorbate increased resistance to Hyg-induced toxicity indicating the existence of oxidative stress. Overexpression of mitochondrial Alternative oxidase1a gene without HPT selection marker in rice enhanced tolerance to Hyg and attenuated the degradation of protein content, whereas the rice plastidial glutathione reductase 3 mutant showed increased sensitivity to Hyg. These results demonstrate that Hyg-induced cell lethality in rice is not only due to the inhibition of protein synthesis but also mediated by oxidative stress.

  18. [RAPD analysis of the intraspecific and interspecific variation and phylogenetic relationships of Aegilops L. species with the U genome].

    Science.gov (United States)

    Goriunova, S V; Chikida, N N; Kochieva, E Z

    2010-07-01

    RAPD analysis was used to study the genetic variation and phylogenetic relationships of polyploid Aegilops species with the U genome. In total, 115 DNA samples of eight polyploid species containing the U genome and the diploid species Ae. umbellulata (U) were examined. Substantial interspecific polymorphism was observed for the majority of the polyploid species with the U genome (interspecific differences, 0.01-0,2; proportion of polymorphic loci, 56.6-88.2%). Aegilops triuncialis was identified as the only alloploid species with low interspecific polymorphism (interspecific differences, 0-0.01, P = 50%) in the U-genome group. The U-genome Aegilops species proved to be separated from other species of the genus. The phylogenetic relationships were established for the U-genome species. The greatest separation within the U-genome group was observed for the US-genome species Ae. kotschyi and Ae. variabilis. The tetraploid species Ae. triaristata and Ae. columnaris, which had the UX genome, and the hexaploid species Ae. recta (UXN) were found to be related to each other and separate from the UM-genome species. A similarity was observed between the U M-genome species Ae. ovata and Ae. biuncialis, which had the UM genome, and the ancestral diploid U-genome species Ae. umbellulata. The UC-genome species Ae. triuncialis was rather separate and slightly similar to the UX-genome species.

  19. ZINC-INDUCED FACILITATOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa paralogs

    Directory of Open Access Journals (Sweden)

    Lopes Karina L

    2011-01-01

    Full Text Available Abstract Background Duplications are very common in the evolution of plant genomes, explaining the high number of members in plant gene families. New genes born after duplication can undergo pseudogenization, neofunctionalization or subfunctionalization. Rice is a model for functional genomics research, an important crop for human nutrition and a target for biofortification. Increased zinc and iron content in the rice grain could be achieved by manipulation of metal transporters. Here, we describe the ZINC-INDUCED FACILITATOR-LIKE (ZIFL gene family in plants, and characterize the genomic structure and expression of rice paralogs, which are highly affected by segmental duplication. Results Sequences of sixty-eight ZIFL genes, from nine plant species, were comparatively analyzed. Although related to MSF_1 proteins, ZIFL protein sequences consistently grouped separately. Specific ZIFL sequence signatures were identified. Monocots harbor a larger number of ZIFL genes in their genomes than dicots, probably a result of a lineage-specific expansion. The rice ZIFL paralogs were named OsZIFL1 to OsZIFL13 and characterized. The genomic organization of the rice ZIFL genes seems to be highly influenced by segmental and tandem duplications and concerted evolution, as rice genome contains five highly similar ZIFL gene pairs. Most rice ZIFL promoters are enriched for the core sequence of the Fe-deficiency-related box IDE1. Gene expression analyses of different plant organs, growth stages and treatments, both from our qPCR data and from microarray databases, revealed that the duplicated ZIFL gene pairs are mostly co-expressed. Transcripts of OsZIFL4, OsZIFL5, OsZIFL7, and OsZIFL12 accumulate in response to Zn-excess and Fe-deficiency in roots, two stresses with partially overlapping responses. Conclusions We suggest that ZIFL genes have different evolutionary histories in monocot and dicot lineages. In rice, concerted evolution affected ZIFL duplicated genes

  20. Draft genome sequence of an aflatoxigenic Aspergillus species, A. bombycis

    Science.gov (United States)

    The genome of the A. bombycis Type strain was sequenced using a Personal Genome Machine, followed by annotation of its predicted genes. The genome size for A. bombycis was found to be approximately 37 Mb and contained 12,266 genes. This announcement introduces a sequenced genome for an aflatoxigenic...

  1. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species

    Science.gov (United States)

    Hirao, Tomonori; Watanabe, Atsushi; Kurita, Manabu; Kondo, Teiji; Takata, Katsuhiko

    2008-01-01

    Background The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. Results The C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements. Conclusion The observed differences in genomic structure between C. japonica and other land plants, including

  2. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  3. Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes

    Directory of Open Access Journals (Sweden)

    Handa Naofumi

    2011-05-01

    -like, drug target. Conclusions These results demonstrate dramatic genome evolution within a species, especially in likely host interaction genes. The East Asian strains appear to differ greatly from the European strains in electron transfer and redox reactions. These findings also suggest a model of adaptive evolution through proteome diversification and selection through modulation of translational fidelity. The results define H. pylori East Asian lineages and provide essential information for understanding their pathogenesis and designing drugs and therapies that target them.

  4. Comparative genomics reveals evidence of marine adaptation in Salinispora species

    Science.gov (United States)

    2012-01-01

    Background Actinobacteria represent a consistent component of most marine bacterial communities yet little is known about the mechanisms by which these Gram-positive bacteria adapt to life in the marine environment. Here we employed a phylogenomic approach to identify marine adaptation genes in marine Actinobacteria. The focus was on the obligate marine actinomycete genus Salinispora and the identification of marine adaptation genes that have been acquired from other marine bacteria. Results Functional annotation, comparative genomics, and evidence of a shared evolutionary history with bacteria from hyperosmotic environments were used to identify a pool of more than 50 marine adaptation genes. An Actinobacterial species tree was used to infer the likelihood of gene gain or loss in accounting for the distribution of each gene. Acquired marine adaptation genes were associated with electron transport, sodium and ABC transporters, and channels and pores. In addition, the loss of a mechanosensitive channel gene appears to have played a major role in the inability of Salinispora strains to grow following transfer to low osmotic strength media. Conclusions The marine Actinobacteria for which genome sequences are available are broadly distributed throughout the Actinobacterial phylogenetic tree and closely related to non-marine forms suggesting they have been independently introduced relatively recently into the marine environment. It appears that the acquisition of transporters in Salinispora spp. represents a major marine adaptation while gene loss is proposed to play a role in the inability of this genus to survive outside of the marine environment. This study reveals fundamental differences between marine adaptations in Gram-positive and Gram-negative bacteria and no common genetic basis for marine adaptation among the Actinobacteria analyzed. PMID:22401625

  5. Comparative genomics reveals evidence of marine adaptation in Salinispora species.

    Science.gov (United States)

    Penn, Kevin; Jensen, Paul R

    2012-03-08

    Actinobacteria represent a consistent component of most marine bacterial communities yet little is known about the mechanisms by which these Gram-positive bacteria adapt to life in the marine environment. Here we employed a phylogenomic approach to identify marine adaptation genes in marine Actinobacteria. The focus was on the obligate marine actinomycete genus Salinispora and the identification of marine adaptation genes that have been acquired from other marine bacteria. Functional annotation, comparative genomics, and evidence of a shared evolutionary history with bacteria from hyperosmotic environments were used to identify a pool of more than 50 marine adaptation genes. An Actinobacterial species tree was used to infer the likelihood of gene gain or loss in accounting for the distribution of each gene. Acquired marine adaptation genes were associated with electron transport, sodium and ABC transporters, and channels and pores. In addition, the loss of a mechanosensitive channel gene appears to have played a major role in the inability of Salinispora strains to grow following transfer to low osmotic strength media. The marine Actinobacteria for which genome sequences are available are broadly distributed throughout the Actinobacterial phylogenetic tree and closely related to non-marine forms suggesting they have been independently introduced relatively recently into the marine environment. It appears that the acquisition of transporters in Salinispora spp. represents a major marine adaptation while gene loss is proposed to play a role in the inability of this genus to survive outside of the marine environment. This study reveals fundamental differences between marine adaptations in Gram-positive and Gram-negative bacteria and no common genetic basis for marine adaptation among the Actinobacteria analyzed.

  6. Comparative genomics reveals evidence of marine adaptation in Salinispora species

    Directory of Open Access Journals (Sweden)

    Penn Kevin

    2012-03-01

    Full Text Available Abstract Background Actinobacteria represent a consistent component of most marine bacterial communities yet little is known about the mechanisms by which these Gram-positive bacteria adapt to life in the marine environment. Here we employed a phylogenomic approach to identify marine adaptation genes in marine Actinobacteria. The focus was on the obligate marine actinomycete genus Salinispora and the identification of marine adaptation genes that have been acquired from other marine bacteria. Results Functional annotation, comparative genomics, and evidence of a shared evolutionary history with bacteria from hyperosmotic environments were used to identify a pool of more than 50 marine adaptation genes. An Actinobacterial species tree was used to infer the likelihood of gene gain or loss in accounting for the distribution of each gene. Acquired marine adaptation genes were associated with electron transport, sodium and ABC transporters, and channels and pores. In addition, the loss of a mechanosensitive channel gene appears to have played a major role in the inability of Salinispora strains to grow following transfer to low osmotic strength media. Conclusions The marine Actinobacteria for which genome sequences are available are broadly distributed throughout the Actinobacterial phylogenetic tree and closely related to non-marine forms suggesting they have been independently introduced relatively recently into the marine environment. It appears that the acquisition of transporters in Salinispora spp. represents a major marine adaptation while gene loss is proposed to play a role in the inability of this genus to survive outside of the marine environment. This study reveals fundamental differences between marine adaptations in Gram-positive and Gram-negative bacteria and no common genetic basis for marine adaptation among the Actinobacteria analyzed.

  7. Characterization of the complete chloroplast genome of the endangered species Carya sinensis (Juglandaceae)

    Science.gov (United States)

    Yiheng Hu; Xi Chen; Xiaojia Feng; Keith E. Woeste; Peng Zhao

    2016-01-01

    Carya sinensis (Chinese Hickory, beaked walnut, or beaked hickory) is an endangered species that needs urgent conservation action. Here, we reported the complete chloroplast (cp) genome sequence and the genomic features of the C. sinensis cp, which is the first complete cp genome of any member of Carya. The...

  8. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice.

    Science.gov (United States)

    Park, Ju-Young; Jin, Jianming; Lee, Yin-Won; Kang, Seogchan; Lee, Yong-Hwan

    2009-01-01

    Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice (Oryza sativa) blast. Although M. oryzae as a whole infects a wide variety of monocotyledonous hosts, no dicotyledonous plant has been reported as a host. We found that two rice pathogenic strains of M. oryzae, KJ201 and 70-15, interacted differentially with 16 ecotypes of Arabidopsis (Arabidopsis thaliana). Strain KJ201 infected all ecotypes with varying degrees of virulence, whereas strain 70-15 caused no symptoms in certain ecotypes. In highly susceptible ecotypes, small chlorotic lesions appeared on infected leaves within 3 d after inoculation and subsequently expanded across the affected leaves. The fungus produced spores in susceptible ecotypes but not in resistant ecotypes. Fungal cultures recovered from necrotic lesions caused the same symptoms in healthy plants, satisfying Koch's postulates. Histochemical analyses showed that infection by the fungus caused an accumulation of reactive oxygen species and eventual cell death. Similar to the infection process in rice, the fungus differentiated to form appressorium and directly penetrated the leaf surface in Arabidopsis. However, the pathogenic mechanism in Arabidopsis appears distinct from that in rice; three fungal genes essential for pathogenicity in rice played only limited roles in causing disease symptoms in Arabidopsis, and the fungus seems to colonize Arabidopsis as a necrotroph through the secretion of phytotoxic compounds, including 9,12-octadecadienoic acid. Expression of PR-1 and PDF1.2 was induced in response to infection by the fungus, suggesting the activation of salicylic acid- and jasmonic acid/ethylene-dependent signaling pathways. However, the roles of these signaling pathways in defense against M. oryzae remain unclear. In combination with the wealth of genetic and genomic resources available for M. oryzae, this newly established pathosystem allows comparison of the molecular and cellular mechanisms underlying

  9. Pigment and Virulence Deficiencies Associated with Mutations in the aroE Gene of Xanthomonas oryzae pv. oryzae

    OpenAIRE

    2001-01-01

    Xanthomonadins are yellow, membrane-bound pigments produced by members of the genus Xanthomonas. We identified an ethyl methanesulfonate-induced Xanthomonas oryzae pv. oryzae mutant (BXO65) that is deficient for xanthomonadin production and virulence on rice, as well as auxotrophic for aromatic amino acids (Pig− Vir− Aro−). Reversion analysis indicated that these multiple phenotypes are due to a single mutation. A genomic library of the wild-type strain was used to isolate a 7.0-kb clone that...

  10. Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae).

    Science.gov (United States)

    Krahulcová, Anna; Trávnícek, Pavel; Krahulec, František; Rejmánek, Marcel

    2017-04-01

    Aesculus L. (horse chestnut, buckeye) is a genus of 12-19 extant woody species native to the temperate Northern Hemisphere. This genus is known for unusually large seeds among angiosperms. While chromosome counts are available for many Aesculus species, only one has had its genome size measured. The aim of this study is to provide more genome size data and analyse the relationship between genome size and seed mass in this genus. Chromosome numbers in root tip cuttings were confirmed for four species and reported for the first time for three additional species. Flow cytometric measurements of 2C nuclear DNA values were conducted on eight species, and mean seed mass values were estimated for the same taxa. The same chromosome number, 2 n = 40, was determined in all investigated taxa. Original measurements of 2C values for seven Aesculus species (eight taxa), added to just one reliable datum for A. hippocastanum , confirmed the notion that the genome size in this genus with relatively large seeds is surprisingly low, ranging from 0·955 pg 2C -1 in A. parviflora to 1·275 pg 2C -1 in A. glabra var. glabra. The chromosome number of 2 n = 40 seems to be conclusively the universal 2 n number for non-hybrid species in this genus. Aesculus genome sizes are relatively small, not only within its own family, Sapindaceae, but also within woody angiosperms. The genome sizes seem to be distinct and non-overlapping among the four major Aesculus clades. These results provide an extra support for the most recent reconstruction of Aesculus phylogeny. The correlation between the 2C values and seed masses in examined Aesculus species is slightly negative and not significant. However, when the four major clades are treated separately, there is consistent positive association between larger genome size and larger seed mass within individual lineages.

  11. Genome analysis of 7 Kengyilia (Triticeae Poaceae) species with FISH and GISH

    Science.gov (United States)

    Genome composition of and genetic relationships among seven Kengyilia species were assessed using a technique of sequential FISH (fluorescence in situ hybridization) and GISH (genomic in situ hybridization). Five of these 7 species, K. kokonorica, K. rigidula, K. hirsula, K. grandiglumis, and K. th...

  12. Investigating hookworm genomes by comparative analysis of two Ancylostoma species

    Directory of Open Access Journals (Sweden)

    Kapulkin Wadim

    2005-04-01

    Full Text Available Abstract Background Hookworms, infecting over one billion people, are the mostly closely related major human parasites to the model nematode Caenorhabditis elegans. Applying genomics techniques to these species, we analyzed 3,840 and 3,149 genes from Ancylostoma caninum and A. ceylanicum. Results Transcripts originated from libraries representing infective L3 larva, stimulated L3, arrested L3, and adults. Most genes are represented in single stages including abundant transcripts like hsp-20 in infective L3 and vit-3 in adults. Over 80% of the genes have homologs in C. elegans, and nearly 30% of these were with observable RNA interference phenotypes. Homologies were identified to nematode-specific and clade V specific gene families. To study the evolution of hookworm genes, 574 A. caninum / A. ceylanicum orthologs were identified, all of which were found to be under purifying selection with distribution ratios of nonsynonymous to synonymous amino acid substitutions similar to that reported for C. elegans / C. briggsae orthologs. The phylogenetic distance between A. caninum and A. ceylanicum is almost identical to that for C. elegans / C. briggsae. Conclusion The genes discovered should substantially accelerate research toward better understanding of the parasites' basic biology as well as new therapies including vaccines and novel anthelmintics.

  13. Systematic determination of the mosaic structure of bacterial genomes: species backbone versus strain-specific loops

    Directory of Open Access Journals (Sweden)

    Gendrault-Jacquemard A

    2005-07-01

    Full Text Available Abstract Background Public databases now contain multitude of complete bacterial genomes, including several genomes of the same species. The available data offers new opportunities to address questions about bacterial genome evolution, a task that requires reliable fine comparison data of closely related genomes. Recent analyses have shown, using pairwise whole genome alignments, that it is possible to segment bacterial genomes into a common conserved backbone and strain-specific sequences called loops. Results Here, we generalize this approach and propose a strategy that allows systematic and non-biased genome segmentation based on multiple genome alignments. Segmentation analyses, as applied to 13 different bacterial species, confirmed the feasibility of our approach to discern the 'mosaic' organization of bacterial genomes. Segmentation results are available through a Web interface permitting functional analysis, extraction and visualization of the backbone/loops structure of documented genomes. To illustrate the potential of this approach, we performed a precise analysis of the mosaic organization of three E. coli strains and functional characterization of the loops. Conclusion The segmentation results including the backbone/loops structure of 13 bacterial species genomes are new and available for use by the scientific community at the URL: http://genome.jouy.inra.fr/mosaic.

  14. Genome-wide analysis and evolutionary study of sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family members in Arabidopsis and Oryza.

    Science.gov (United States)

    Saha, Jayita; Chatterjee, Chitrita; Sengupta, Atreyee; Gupta, Kamala; Gupta, Bhaskar

    2014-04-01

    The over-expression of plant specific SnRK2 gene family members by hyperosmotic stress and some by abscisic acid is well established. In this report, we have analyzed the evolution of SnRK2 gene family in different plant lineages including green algae, moss, lycophyte, dicot and monocot. Our results provide some evidences to indicate that the natural selection pressure had considerable influence on cis-regulatory promoter region and coding region of SnRK2 members in Arabidopsis and Oryza independently through time. Observed degree of sequence/motif conservation amongst SnRK2 homolog in all the analyzed plant lineages strongly supported their inclusion as members of this family. The chromosomal distributions of duplicated SnRK2 members have also been analyzed in Arabidopsis and Oryza. Massively Parallel Signature Sequencing (MPSS) database derived expression data and the presence of abiotic stress related promoter elements within the 1 kb upstream promoter region of these SnRK2 family members further strengthen the observations of previous workers. Additionally, the phylogenetic relationships of SnRK2 have been studied in all plant lineages along with their respective exon-intron structural patterns. Our results indicate that the ancestral SnRK2 gene of land plants gradually evolved by duplication and diversification and modified itself through exon-intron loss events to survive under environmental stress conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. OsSERK1 regulates rice development but not immunity to Xanthomonas oryzae pv. oryzae or Magnaporthe oryzae

    Institute of Scientific and Technical Information of China (English)

    Shimin Zuo; and Pamela C Ronald; Xiaogang Zhou; Mawsheng Chen; Shilu Zhang; Benjamin Schwessinger; Deling Ruan; Can Yuan; Jing Wang; Xuewei Chen

    2014-01-01

    Somatic embryogenesis receptor kinase (SERK) proteins play pivotal roles in regulation of plant development and immunity. The rice genome contains two SERK genes, OsSerk1 and OsSerk2. We previously demonstrated that OsSerk2 is required for rice Xa21‐mediated resistance to Xanthomonas oryzae pv. oryzae (Xoo) and for normal development. Here we report the molecular characterization of OsSerk1. Overexpres-sion of OsSerk1 results in a semi‐dwarf phenotype whereas silencing of OsSerk1 results in a reduced angle of the lamina joint. OsSerk1 is not required for rice resistance to Xoo or Magnaporthe oryzae. Overexpression of OsSerk1 in OsSerk2‐silenced lines complements phenotypes associated with brassinosteroid (BR) signaling defects, but not the disease resistance phenotype mediated by Xa21. In yeast, OsSERK1 interacts with itself forming homodimers, and also interacts with the kinase domains of OsSERK2 and BRI1, respectively. OsSERK1 is a functional protein kinase capable of auto‐phosphorylation in vitro. We conclude that, whereas OsSERK2 regulates both rice development and immunity, OsSERK1 functions in rice development but not immunity to Xoo and M. oryzae.

  16. Unexpected cross-species contamination in genome sequencing projects

    Directory of Open Access Journals (Sweden)

    Samier Merchant

    2014-11-01

    Full Text Available The raw data from a genome sequencing project sometimes contains DNA from contaminating organisms, which may be introduced during sample collection or sequence preparation. In some instances, these contaminants remain in the sequence even after assembly and deposition of the genome into public databases. As a result, searches of these databases may yield erroneous and confusing results. We used efficient microbiome analysis software to scan the draft assembly of domestic cow, Bos taurus, and identify 173 small contigs that appeared to derive from microbial contaminants. In the course of verifying these findings, we discovered that one genome, Neisseria gonorrhoeae TCDC-NG08107, although putatively a complete genome, contained multiple sequences that actually derived from the cow and sheep genomes. Our findings illustrate the need to carefully validate findings of anomalous DNA that rely on comparisons to either draft or finished genomes.

  17. Comparative Genomics of the Bacterial Genus Streptococcus Illuminates Evolutionary Implications of Species Groups

    Science.gov (United States)

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups. PMID:24977706

  18. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups.

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Gao

    Full Text Available Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into "species groups". However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.

  19. Genome sequence of mungbean and insights into evolution within Vigna species

    Science.gov (United States)

    Kang, Yang Jae; Kim, Sue K.; Kim, Moon Young; Lestari, Puji; Kim, Kil Hyun; Ha, Bo-Keun; Jun, Tae Hwan; Hwang, Won Joo; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Yoon, Min Young; Jang, Young Eun; Han, Kwang Soo; Taeprayoon, Puntaree; Yoon, Na; Somta, Prakit; Tanya, Patcharin; Kim, Kwang Soo; Gwag, Jae-Gyun; Moon, Jung-Kyung; Lee, Yeong-Ho; Park, Beom-Seok; Bombarely, Aureliano; Doyle, Jeffrey J.; Jackson, Scott A.; Schafleitner, Roland; Srinives, Peerasak; Varshney, Rajeev K.; Lee, Suk-Ha

    2014-01-01

    Mungbean (Vigna radiata) is a fast-growing, warm-season legume crop that is primarily cultivated in developing countries of Asia. Here we construct a draft genome sequence of mungbean to facilitate genome research into the subgenus Ceratotropis, which includes several important dietary legumes in Asia, and to enable a better understanding of the evolution of leguminous species. Based on the de novo assembly of additional wild mungbean species, the divergence of what was eventually domesticated and the sampled wild mungbean species appears to have predated domestication. Moreover, the de novo assembly of a tetraploid Vigna species (V. reflexo-pilosa var. glabra) provides genomic evidence of a recent allopolyploid event. The species tree is constructed using de novo RNA-seq assemblies of 22 accessions of 18 Vigna species and protein sets of Glycine max. The present assembly of V. radiata var. radiata will facilitate genome research and accelerate molecular breeding of the subgenus Ceratotropis. PMID:25384727

  20. Genomic variation across the Yellow-rumped Warbler species complex

    OpenAIRE

    Toews, David P.L.; Brelsford, Alan; Grossen, Christine; Milá, Borja; Irwin, Darren E.

    2016-01-01

    Populations that have experienced long periods of geographic isolation will diverge over time. The application of highthroughput sequencing technologies to study the genomes of related taxa now allows us to quantify, at a fine scale, the consequences of this divergence across the genome. Throughout a number of studies, a notable pattern has emerged. In many cases, estimates of differentiation across the genome are strongly heterogeneous; however, the evolutionary processes driving this striki...

  1. The complete chloroplast genome sequences of five Epimedium species: lights into phylogenetic and taxonomic analyses

    Directory of Open Access Journals (Sweden)

    Yanjun eZhang

    2016-03-01

    Full Text Available Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR region and the single-copy (SC boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants.

  2. Comparative Analysis of Begonia Plastid Genomes and Their Utility for Species-Level Phylogenetics.

    Science.gov (United States)

    Harrison, Nicola; Harrison, Richard J; Kidner, Catherine A

    2016-01-01

    Recent, rapid radiations make species-level phylogenetics difficult to resolve. We used a multiplexed, high-throughput sequencing approach to identify informative genomic regions to resolve phylogenetic relationships at low taxonomic levels in Begonia from a survey of sixteen species. A long-range PCR method was used to generate draft plastid genomes to provide a strong phylogenetic backbone, identify fast evolving regions and provide informative molecular markers for species-level phylogenetic studies in Begonia.

  3. Development and characterization of interspecific hybrids between Oryza sativa and O. latifolia by in situ hybridization

    Institute of Scientific and Technical Information of China (English)

    YI ChuanDeng; TANG ShuZhu; ZHOU Yong; LIANG GuoHua; GONG ZhiYun; GU MingHong

    2008-01-01

    Oryza sativa and O. latifolia belong to the AA and CCDD genomes of Oryza, respectively. In this study, interspecific hybrids of these species were obtained using the embryo rescue technique. Hybrid pani-cle traits, such as long awns, small grain, exoteric large purple stigma, grain shattering and dispersed panicles, resemble that of the paternal parent, O. latifolia, whereas there is obvious heterosis in such respects as plant height, tillering ability and vegetative vigor. Chromosome pairing and the genomic components of the hybrid were subsequently investigated using genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH) analysis. Based on the mitotic metaphase chromosome numbers of the root tips investigated, the hybrid is a triploid with 36 chromosomes. The genomic con-stitution of the hybrid is ACD. In the meiotic metaphase I of the hybrid pollen mother cell, poor chro-mosome pairing was identified and most of the chromosomes were univalent, which resulted in com-plete male sterility in the hybrid.

  4. Identification, Biochemical Characterization, and Evolution of the Rhizopus oryzae 99-880 Polygalacturonase Gene Family

    Science.gov (United States)

    A search of the recently sequenced Rhizopus oryzae strain 99-880 genome database uncovered 18 putative polygalacturonase genes with 2 genes being identical and only 1 with similarity to a previously reported R. oryzae polygalacturonase gene. The 17 different genes share 50% to greater than 90% iden...

  5. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines.

    Science.gov (United States)

    Spindel, Jennifer; Begum, Hasina; Akdemir, Deniz; Virk, Parminder; Collard, Bertrand; Redoña, Edilberto; Atlin, Gary; Jannink, Jean-Luc; McCouch, Susan R

    2015-02-01

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.

  6. Genomic selection and association mapping in rice (Oryza sativa: effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines.

    Directory of Open Access Journals (Sweden)

    Jennifer Spindel

    2015-02-01

    Full Text Available Genomic Selection (GS is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.

  7. PENGARUH RHIZOPUS ORYZAE DAN ASPERGILLUS ORYZAE TERHADAP KUALITAS KECAP

    Directory of Open Access Journals (Sweden)

    Dewi Sabita Slamet

    2012-11-01

    Full Text Available Telah diteliti pengganti fermentasi mikroorganisme Aspergillus oryzae Rhyzopus oryzae dan campuran Aspergillus dan Rhyzopus oryzae, dengan perendaman dalam larutan garam 20% dalam waktu yang berbeda terhadap kualitas kecap.Lamanya perendaman dalam larutan garam 20% yang berbeda menghasilkan kadar protein kecap yang berbeda. Aspergillus oryzae lebih baik dalam menghasilkan enzima protease dari pada Rhyzopus oryzae.Uji organoleptik menunjukkan perbedaan tidak bermakna dalam hal rasa maupun aroma antar kecap yang dibuat dengan strain jamur yang berlainan serta waktu perendaman yang berbeda. Untuk membuat kecap, sebaiknya dilakukan perendaman dalam larutan garam 20% selama 14 hari.

  8. 基因组水平预测稻瘟菌分泌蛋白组及富集分析%Prediction for Secretome from Magnaporthe oryzae at Genome Scale and Its Enrichment Analysis

    Institute of Scientific and Technical Information of China (English)

    曹继东; 刘俊; 李遂焰

    2016-01-01

    ,further the CSPs involved in the degradation of plant derived compounds were predicted. Total 789 CSPs were found in M. oryzae genome and the amino acid lengths of CSPs were mainly concentrated between 100 to 500 aa exclusively. GO function analysis of CSPs indicated that they were enriched in the secreting pathways and in the interactions with host. Interestingly,the results of KEGG metabolism and domain analysis of CSPs suggested that some of them contributed to sugar metabolism. Around 156 CSPs were recruited in the degradation of cell walls of plants. Besides,many non-classical leaderless secreted proteins were discovered in the M. oryzae secretome. In summary,by designing the informatics procedure,we predicted the secretome of M. oryzae,CSPs were able to degrade plant derived compounds such as cell walls, and some were involved in sugar metabolism. In addition,M. oryzae. harbored many non-classical leaderless secreted proteins.

  9. Survey of genome size in 28 hydrothermal vent species covering 10 families.

    Science.gov (United States)

    Bonnivard, Eric; Catrice, Olivier; Ravaux, Juliette; Brown, Spencer C; Higuet, Dominique

    2009-06-01

    Knowledge of genome size is a useful and necessary prerequisite for the development of many genomic resources. To better understand the origins and effects of DNA gains and losses among species, it is important to collect data from a broad taxonomic base, but also from particular ecosystems. Oceanic thermal vents are an interesting model to investigate genome size in very unstable environments. Here we provide data estimated by flow cytometry for 28 vent-living species among the most representative from different hydrothermal vents. We also report the genome size of closely related coastal decapods. Haploid C-values were compared with those previously reported for species from corresponding orders or infraorders. This is the first broad survey of 2C values in vent organisms. Contrary to expectations, it shows that certain hydrothermal vent species have particularly large genomes. The vent squat lobster Munidopsis recta has the largest genome yet reported for any anomuran: 2C=31.1 pg=30.4x10(9) bp. In several groups, such as Brachyura, Phyllodocida, and Veneroida, vent species have genomes that clearly rank at the high end of published values for each group. We also describe the highest DNA content yet recorded for the Brachyura (coastal crabs Xantho pilipes and Necora puber). Finally, analysis of genome size variation across populations revealed unexpected intraspecific variation in the vent shrimp Mirocaris fortunata that could not be attributed simply to ploidy changes.

  10. Roegneria alashanica Keng: a species with the StStSt(Y)St(Y) genome constitution.

    Science.gov (United States)

    Wang, Richard R-C; Jensen, Kevin B

    2017-06-01

    The genome constitution of tetraploid Roegneria alashanica Keng has been in question for a long time. Most scientific studies have suggested that R. alashanica had two versions of the St genome, St1St2, similar to that of Pseudoroegneria elytrigioides (C. Yen & J.L. Yang) B.R. Lu. A study, however, concluded that R. alashanica had the StY genome formula typical for tetraploid species of Roegneria. For the present study, R. alashanica, Elymus longearistatus (Bioss.) Tzvelev (StY genomes), Pseudoroegneria strigosa (M. Bieb.) Á. Löve (St), Pseudoroegneria libanoctica (Hackel) D.R. Dewey (St), and Pseudoroegneria spicata (Pursh) Á. Löve (St) were screened for the Y-genome specific marker B14(F+R)269. All E. longearistatus plants expressed intense bands specific to the Y genome. Only 6 of 10 R. alashanica plants exhibited relatively faint bands for the STS marker. Previously, the genome in species of Pseudoroegneria exhibiting such faint Y-genome specific marker was designated as St(Y). Based on these results, R. alashanica lacks the Y genome in E. longearistatus but likely possess two remotely related St genomes, St and St(Y). According to its genome constitution, R. alashanica should be classified in the genus Pseudoroenera and given the new name Pseudoroegneria alashanica (Keng) R.R.-C. Wang and K.B. Jensen.

  11. The genomic impact of 100 million years of social evolution in seven ant species

    DEFF Research Database (Denmark)

    Gadau, Jürgen; Helmkampf, Martin; Nygaard, Sanne

    2012-01-01

    Ants (Hymenoptera, Formicidae) represent one of the most successful eusocial taxa in terms of both their geographic distribution and species number. The publication of seven ant genomes within the past year was a quantum leap for socio- and ant genomics. The diversity of social organization in ants...... makes them excellent model organisms to study the evolution of social systems. Comparing the ant genomes with those of the honeybee, a lineage that evolved eusociality independently from ants, and solitary insects suggests that there are significant differences in key aspects of genome organization...... between social and solitary insects, as well as among ant species. Altogether, these seven ant genomes open exciting new research avenues and opportunities for understanding the genetic basis and regulation of social species, and adaptive complex systems in general....

  12. The genomic impact of 100 million years of social evolution in seven ant species

    DEFF Research Database (Denmark)

    Gadau, Jürgen; Helmkampf, Martin; Nygaard, Sanne;

    2012-01-01

    Ants (Hymenoptera, Formicidae) represent one of the most successful eusocial taxa in terms of both their geographic distribution and species number. The publication of seven ant genomes within the past year was a quantum leap for socio- and ant genomics. The diversity of social organization in ants...... makes them excellent model organisms to study the evolution of social systems. Comparing the ant genomes with those of the honeybee, a lineage that evolved eusociality independently from ants, and solitary insects suggests that there are significant differences in key aspects of genome organization...... between social and solitary insects, as well as among ant species. Altogether, these seven ant genomes open exciting new research avenues and opportunities for understanding the genetic basis and regulation of social species, and adaptive complex systems in general....

  13. Genome analysis of seven species of Kengyilia (Triticeae: Poaceae) with FISH and GISH.

    Science.gov (United States)

    Dou, Quanwen; Wang, Richard R-C; Lei, Yuting; Yu, Feng; Li, Yuan; Wang, Haiqing; Chen, Zhiguo

    2013-11-01

    The genome compositions and genetic relationships of seven species of Kengyilia were assessed using a sequential fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) technique. Five species, K. kokonorica, K. rigidula, K. hirsuta, K. grandiglumis, and K. thoroldiana, are native to Qinghai (China). The other two, K. alatavica and K. batalinii, are distributed in Xinjiang (China) and Kyrgyzstan, respectively. Each chromosome could be easily identified using chromosome markers (45S rDNA, 5S rDNA, pAs1, and AAG repeats) by FISH and allocated to the St, P, or Y genome by GISH. Molecular karyotype comparison indicated that K. alatavica and K. batalinii were distinct from the Qinghai species in all three genomes. These results support that the species of Kengyilia from Central Asia and the Qinghai-Tibetan plateau have independent origins. Genomic differentiation was still detected among the species of Kengyilia from Qinghai. Specifically, a common species-specific pericentric inversion was identified in both K. grandiglumis and K. thoroldiana, and an identical St-P non-Robertsonian translocation was frequently detected in K. hirsuta. The Qinghai species formed three genetic groups, K. kokonorica-K. rigidula, K. hirsuta, and K. grandiglumis-K. thoroldiana. The possible role of species-specific inversions and translocations in the evolution of StPY species is discussed.

  14. Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments

    Directory of Open Access Journals (Sweden)

    Arun S. Seetharam

    2013-12-01

    Full Text Available Type IIB restriction endonucleases are site-specific endonucleases that cut both strands of double-stranded DNA upstream and downstream of their recognition sequences. These restriction enzymes have recognition sequences that are generally interrupted and range from 5 to 7 bases long. They produce DNA fragments which are uniformly small, ranging from 21 to 33 base pairs in length (without cohesive ends. The fragments are generated from throughout the entire length of a genomic DNA providing an excellent fractional representation of the genome. In this study we simulated restriction enzyme digestions on 21 sequenced genomes of various Drosophila species using the predicted targets of 16 Type IIB restriction enzymes to effectively produce a large and arbitrary selection of loci from these genomes. The fragments were then used to compare organisms and to calculate the distance between genomes in pair-wise combination by counting the number of shared fragments between the two genomes. Phylogenetic trees were then generated for each enzyme using this distance measure and the consensus was calculated. The consensus tree obtained agrees well with the currently accepted tree for the Drosophila species. We conclude that multi-locus sub-genomic representation combined with next generation sequencing, especially for individuals and species without previous genome characterization, can accelerate studies of comparative genomics and the building of accurate phylogenetic trees.

  15. Draft genome sequences of five clinical Enterococcus cecorum strains isolated from different poultry species in Poland

    DEFF Research Database (Denmark)

    Dolka, Beata; Olsen, Rikke Heidemann; Thøfner, Ida;

    2015-01-01

    Here, we report five draft genome sequences of Enterococcus cecorum strains that were isolated from different bird species of affected poultry flocks (commercial broilers [CB], broiler breeders [BB], commercial layers [CL], ducks [D], and geese [G]) in Poland....

  16. A draft physical map of a D-genome cotton species (Gossypium raimondii

    Directory of Open Access Journals (Sweden)

    Kudrna Dave

    2010-06-01

    Full Text Available Abstract Background Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, Gossypium hirsutum and G. barbadense, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago. Toward the long-term goal of characterizing the spectrum of diversity among cotton genomes, the worldwide cotton community has prioritized the D genome progenitor Gossypium raimondii for complete sequencing. Results A whole genome physical map of G. raimondii, the putative D genome ancestral species of tetraploid cottons was assembled, integrating genetically-anchored overgo hybridization probes, agarose based fingerprints and 'high information content fingerprinting' (HICF. A total of 13,662 BAC-end sequences and 2,828 DNA probes were used in genetically anchoring 1585 contigs to a cotton consensus genetic map, and 370 and 438 contigs, respectively to Arabidopsis thaliana (AT and Vitis vinifera (VV whole genome sequences. Conclusion Several lines of evidence suggest that the G. raimondii genome is comprised of two qualitatively different components. Much of the gene rich component is aligned to the Arabidopsis and Vitis vinifera genomes and shows promise for utilizing translational genomic approaches in understanding this important genome and its resident genes. The integrated genetic-physical map is of value both in assembling and validating a planned reference sequence.

  17. Genome Sizes of Nine Insect Species Determined by Flow Cytometry and k-mer Analysis

    Science.gov (United States)

    He, Kang; Lin, Kejian; Wang, Guirong; Li, Fei

    2016-01-01

    The flow cytometry method was used to estimate the genome sizes of nine agriculturally important insects, including two coleopterans, five Hemipterans, and two hymenopterans. Among which, the coleopteran Lissorhoptrus oryzophilus (Kuschel) had the largest genome of 981 Mb. The average genome size was 504 Mb, suggesting that insects have a moderate-size genome. Compared with the insects in other orders, hymenopterans had small genomes, which were averagely about ~200 Mb. We found that the genome sizes of four insect species were different between male and female, showing the organismal complexity of insects. The largest difference occurred in the coconut leaf beetle Brontispa longissima (Gestro). The male coconut leaf beetle had a 111 Mb larger genome than females, which might be due to the chromosome number difference between the sexes. The results indicated that insect invasiveness was not related to genome size. We also determined the genome sizes of the small brown planthopper Laodelphax striatellus (Fallén) and the parasitic wasp Macrocentrus cingulum (Brischke) using k-mer analysis with Illunima Solexa sequencing data. There were slight differences in the results from the two methods. k-mer analysis indicated that the genome size of L. striatellus was 500–700 Mb and that of M. cingulum was ~150 Mb. In all, the genome sizes information presented here should be helpful for designing the genome sequencing strategy when necessary. PMID:27932995

  18. Integrating Genomic Data Sets for Knowledge Discovery: An Informed Approach to Management of Captive Endangered Species.

    Science.gov (United States)

    Irizarry, Kristopher J L; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L; Barrett, Gini; Barr, Margaret C

    2016-01-01

    Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.

  19. Effect of different factors on the induced resistance of Xanthomonas oryzae pv. oryzae and relationship between the effect and active oxygen metabolism in rice seedling leaves

    Institute of Scientific and Technical Information of China (English)

    ZENGFuhua; WUYuexuan; LUOZemin

    1999-01-01

    We studied the relationship between the resistance to Xanthomonas oryzae pv, oryzae (XOO) and active oxygen species (AOS).Materials used were Yushuinuo (high resistant) and Zhefu 802 (high susceptible).Paraquat (PQ) specially generated superoxide anion (O2 ) and Tiron (4, 5-dihydroxy-1.3-benzenedisufonic acid).

  20. Rice (Oryza) hemoglobins

    Science.gov (United States)

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  1. Genetic variation in a population of Bipolaris oryzae based on RAPD ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... Isolates of Bipolaris oryzae were analysed by RAPD techniques to determine the ... samples for DNA extraction were grown on potato-dextrose broth ... Then for determining DNA quantity as empirical, the genomic DNA.

  2. Using comparative genomic hybridization to survey genomic sequence divergence across species: a proof-of-concept from Drosophila

    Directory of Open Access Journals (Sweden)

    Kulathinal Rob J

    2010-04-01

    Full Text Available Abstract Background Genome-wide analysis of sequence divergence among species offers profound insights into the evolutionary processes that shape lineages. When full-genome sequencing is not feasible for a broad comparative study, we propose the use of array-based comparative genomic hybridization (aCGH in order to identify orthologous genes with high sequence divergence. Here we discuss experimental design, statistical power, success rate, sources of variation and potential confounding factors. We used a spotted PCR product microarray platform from Drosophila melanogaster to assess sequence divergence on a gene-by-gene basis in three fully sequenced heterologous species (D. sechellia, D. simulans, and D. yakuba. Because complete genome assemblies are available for these species this study presents a powerful test for the use of aCGH as a tool to measure sequence divergence. Results We found a consistent and linear relationship between hybridization ratio and sequence divergence of the sample to the platform species. At higher levels of sequence divergence (D. melanogaster ~84% of features had significantly less hybridization to the array in the heterologous species than the platform species, and thus could be identified as "diverged". At lower levels of divergence (≥ 97% identity, only 13% of genes were identified as diverged. While ~40% of the variation in hybridization ratio can be accounted for by variation in sequence identity of the heterologous sample relative to D. melanogaster, other individual characteristics of the DNA sequences, such as GC content, also contribute to variation in hybridization ratio, as does technical variation. Conclusions Here we demonstrate that aCGH can accurately be used as a proxy to estimate genome-wide divergence, thus providing an efficient way to evaluate how evolutionary processes and genomic architecture can shape species diversity in non-model systems. Given the increased number of species for which

  3. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species.

    Science.gov (United States)

    Kim, Seungill; Park, Minkyu; Yeom, Seon-In; Kim, Yong-Min; Lee, Je Min; Lee, Hyun-Ah; Seo, Eunyoung; Choi, Jaeyoung; Cheong, Kyeongchae; Kim, Ki-Tae; Jung, Kyongyong; Lee, Gir-Won; Oh, Sang-Keun; Bae, Chungyun; Kim, Saet-Byul; Lee, Hye-Young; Kim, Shin-Young; Kim, Myung-Shin; Kang, Byoung-Cheorl; Jo, Yeong Deuk; Yang, Hee-Bum; Jeong, Hee-Jin; Kang, Won-Hee; Kwon, Jin-Kyung; Shin, Chanseok; Lim, Jae Yun; Park, June Hyun; Huh, Jin Hoe; Kim, June-Sik; Kim, Byung-Dong; Cohen, Oded; Paran, Ilan; Suh, Mi Chung; Lee, Saet Buyl; Kim, Yeon-Ki; Shin, Younhee; Noh, Seung-Jae; Park, Junhyung; Seo, Young Sam; Kwon, Suk-Yoon; Kim, Hyun A; Park, Jeong Mee; Kim, Hyun-Jin; Choi, Sang-Bong; Bosland, Paul W; Reeves, Gregory; Jo, Sung-Hwan; Lee, Bong-Woo; Cho, Hyung-Taeg; Choi, Hee-Seung; Lee, Min-Soo; Yu, Yeisoo; Do Choi, Yang; Park, Beom-Seok; van Deynze, Allen; Ashrafi, Hamid; Hill, Theresa; Kim, Woo Taek; Pai, Hyun-Sook; Ahn, Hee Kyung; Yeam, Inhwa; Giovannoni, James J; Rose, Jocelyn K C; Sørensen, Iben; Lee, Sang-Jik; Kim, Ryan W; Choi, Ik-Young; Choi, Beom-Soon; Lim, Jong-Sung; Lee, Yong-Hwan; Choi, Doil

    2014-03-01

    Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.

  4. Identification of a whitefly species by genomic and behavioral studies

    Science.gov (United States)

    Perring, T.M.; Cooper, A.D.; Rodriguez, R.J.; Farrar, C.A.; Bellows, T.S.

    1993-01-01

    An introduced whitefly species, responsible for over a half billion dollars in damage to U.S. agricultural production in 1991, is morphologically indistinguishable from Bemisia tabaci (Gennadius). However, with the use of polymerase chain reaction-based DNA differentiation tests, allozymic frequency analyses, crossing experiments, and mating behavior studies, the introduced whitefly is found to be a distinct species. Recognition of this new species, the silverleaf whitefly, is critical in the search for management options.

  5. Predicting the Interactome of Xanthomonas oryzae pathovar oryzae for target selection and DB service

    Directory of Open Access Journals (Sweden)

    Yoon Kyong-Oh

    2008-01-01

    Full Text Available Abstract Background Protein-protein interactions (PPIs play key roles in various cellular functions. In addition, some critical inter-species interactions such as host-pathogen interactions and pathogenicity occur through PPIs. Phytopathogenic bacteria infect hosts through attachment to host tissue, enzyme secretion, exopolysaccharides production, toxins release, iron acquisition, and effector proteins secretion. Many such mechanisms involve some kind of protein-protein interaction in hosts. Our first aim was to predict the whole protein interaction pairs (interactome of Xanthomonas oryzae pathovar oryzae (Xoo that is an important pathogenic bacterium that causes bacterial blight (BB in rice. We developed a detection protocol to find possibly interacting proteins in its host using whole genome PPI prediction algorithms. The second aim was to build a DB server and a bioinformatic procedure for finding target proteins in Xoo for developing pesticides that block host-pathogen protein interactions within critical biochemical pathways. Description A PPI network in Xoo proteome was predicted by bioinformatics algorithms: PSIMAP, PEIMAP, and iPfam. We present the resultant species specific interaction network and host-pathogen interaction, XooNET. It is a comprehensive predicted initial PPI data for Xoo. XooNET can be used by experimentalists to pick up protein targets for blocking pathological interactions. XooNET uses most of the major types of PPI algorithms. They are: 1 Protein Structural Interactome MAP (PSIMAP, a method using structural domain of SCOP, 2 Protein Experimental Interactome MAP (PEIMAP, a common method using public resources of experimental protein interaction information such as HPRD, BIND, DIP, MINT, IntAct, and BioGrid, and 3 Domain-domain interactions, a method using Pfam domains such as iPfam. Additionally, XooNET provides information on network properties of the Xoo interactome. Conclusion XooNET is an open and free public

  6. Genomic evidence of rapid, global-scale gene flow in a Sulfolobus species.

    Science.gov (United States)

    Mao, Dominic; Grogan, Dennis

    2012-08-01

    Local populations of Sulfolobus islandicus diverge genetically with geographical separation, and this has been attributed to restricted transfer of propagules imposed by the unfavorable spatial distribution of acidic geothermal habitat. We tested the generality of genetic divergence with distance in Sulfolobus species by analyzing genomes of Sulfolobus acidocaldarius drawn from three populations separated by more than 8000 km. In sharp contrast to S. islandicus, the geographically diverse S. acidocaldarius genomes proved to be nearly identical. We could not link the difference in genome conservation between the two species to a corresponding difference in genome stability or ecological factors affecting propagule dispersal. The results provide the first evidence that genetic isolation of local populations does not result primarily from properties intrinsic to Sulfolobus and the severe discontinuity of its geothermal habitat, but varies with species, and thus may reflect biotic interactions that act after propagule dispersal.

  7. A critical assessment of cross-species detection of gene duplicates using comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Renn Suzy CP

    2010-05-01

    Full Text Available Abstract Background Comparison of genomic DNA among closely related strains or species is a powerful approach for identifying variation in evolutionary processes. One potent source of genomic variation is gene duplication, which is prevalent among individuals and species. Array comparative genomic hybridization (aCGH has been successfully utilized to detect this variation among lineages. Here, beyond the demonstration that gene duplicates among species can be quantified with aCGH, we consider the effect of sequence divergence on the ability to detect gene duplicates. Results Using the X chromosome genomic content difference between male D. melanogaster and female D. yakuba and D. simulans, we describe a decrease in the ability to accurately measure genomic content (copy number for orthologs that are only 90% identical. We demonstrate that genome characteristics (e.g. chromatin environment and non-orthologous sequence similarity can also affect the ability to accurately measure genomic content. We describe a normalization strategy and statistical criteria to be used for the identification of gene duplicates among any species group for which an array platform is available from a closely related species. Conclusions Array CGH can be used to effectively identify gene duplication and genome content; however, certain biases are present due to sequence divergence and other genome characteristics resulting from the divergence between lineages. Highly conserved gene duplicates will be more readily recovered by aCGH. Duplicates that have been retained for a selective advantage due to directional selection acting on many loci in one or both gene copies are likely to be under-represented. The results of this study should inform the interpretation of both previously published and future work that employs this powerful technique.

  8. Study on seed germination of Oryza rufipogon

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Oryza rufipogon, distributed in tropical and subtropical regions is an important germplasm for rice breeding. Dongxiang (28°14′N, 116°36′E) is the northernmost area of this species recorded in the world, and Chaling (26°50′N, 113°40′E) is near to the northern range limit. Seed dormancy commonly exists in O. rufipogon seeds.

  9. Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species

    Science.gov (United States)

    Khan, Abdul Latif; Aaqil Khan, Muhammad; Muhammad Imran, Qari; Kang, Sang-Mo; Al-Hosni, Khdija; Jeong, Eun Ju; Lee, Ko Eun; Lee, In-Jung

    2017-01-01

    The plastid genomes of different plant species exhibit significant variation, thereby providing valuable markers for exploring evolutionary relationships and population genetics. Glycine soja (wild soybean) is recognized as the wild ancestor of cultivated soybean (G. max), representing a valuable genetic resource for soybean breeding programmes. In the present study, the complete plastid genome of G. soja was sequenced using Illumina paired-end sequencing and then compared it for the first time with previously reported plastid genome sequences from nine other Glycine species. The G. soja plastid genome was 152,224 bp in length and possessed a typical quadripartite structure, consisting of a pair of inverted repeats (IRa/IRb; 25,574 bp) separated by small (178,963 bp) and large (83,181 bp) single-copy regions, with a 51-kb inversion in the large single-copy region. The genome encoded 134 genes, including 87 protein-coding genes, eight ribosomal RNA genes, and 39 transfer RNA genes, and possessed 204 randomly distributed microsatellites, including 15 forward, 25 tandem, and 34 palindromic repeats. Whole-plastid genome comparisons revealed an overall high degree of sequence similarity between G. max and G. gracilis and some divergence in the intergenic spacers of other species. Greater numbers of indels and SNP substitutions were observed compared with G. cyrtoloba. The sequence of the accD gene from G. soja was highly divergent from those of the other species except for G. max and G. gracilis. Phylogenomic analyses of the complete plastid genomes and 76 shared genes yielded an identical topology and indicated that G. soja is closely related to G. max and G. gracilis. The complete G. soja genome sequenced in the present study is a valuable resource for investigating the population and evolutionary genetics of Glycine species and can be used to identify related species. PMID:28763486

  10. Comparative chloroplast genomes of eleven Schima (Theaceae) species: Insights into DNA barcoding and phylogeny.

    Science.gov (United States)

    Yu, Xiang-Qin; Drew, Bryan T; Yang, Jun-Bo; Gao, Lian-Ming; Li, De-Zhu

    2017-01-01

    Schima is an ecologically and economically important woody genus in tea family (Theaceae). Unresolved species delimitations and phylogenetic relationships within Schima limit our understanding of the genus and hinder utilization of the genus for economic purposes. In the present study, we conducted comparative analysis among the complete chloroplast (cp) genomes of 11 Schima species. Our results indicate that Schima cp genomes possess a typical quadripartite structure, with conserved genomic structure and gene order. The size of the Schima cp genome is about 157 kilo base pairs (kb). They consistently encode 114 unique genes, including 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, with 17 duplicated in the inverted repeat (IR). These cp genomes are highly conserved and do not show obvious expansion or contraction of the IR region. The percent variability of the 68 coding and 93 noncoding (>150 bp) fragments is consistently less than 3%. The seven most widely touted DNA barcode regions as well as one promising barcode candidate showed low sequence divergence. Eight mutational hotspots were identified from the 11 cp genomes. These hotspots may potentially be useful as specific DNA barcodes for species identification of Schima. The 58 cpSSR loci reported here are complementary to the microsatellite markers identified from the nuclear genome, and will be leveraged for further population-level studies. Phylogenetic relationships among the 11 Schima species were resolved with strong support based on the cp genome data set, which corresponds well with the species distribution pattern. The data presented here will serve as a foundation to facilitate species identification, DNA barcoding and phylogenetic reconstructions for future exploration of Schima.

  11. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level

    Science.gov (United States)

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea’s genetic data sources. PMID:27446038

  12. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level.

    Science.gov (United States)

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea's genetic data sources.

  13. Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola

    Directory of Open Access Journals (Sweden)

    Fu Bin-Ying

    2010-02-01

    Full Text Available Abstract Background Non-host resistance in rice to its bacterial pathogen, Xanthomonas oryzae pv. oryzicola (Xoc, mediated by a maize NBS-LRR type R gene, Rxo1 shows a typical hypersensitive reaction (HR phenotype, but the molecular mechanism(s underlying this type of non-host resistance remain largely unknown. Results A microarray experiment was performed to reveal the molecular mechanisms underlying HR of rice to Xoc mediated by Rxo1 using a pair of transgenic and non-transgenic rice lines. Our results indicated that Rxo1 appeared to function in the very early step of the interaction between rice and Xoc, and could specifically activate large numbers of genes involved in signaling pathways leading to HR and some basal defensive pathways such as SA and ET pathways. In the former case, Rxo1 appeared to differ from the typical host R genes in that it could lead to HR without activating NDR1. In the latter cases, Rxo1 was able to induce a unique group of WRKY TF genes and a large set of genes encoding PPR and RRM proteins that share the same G-box in their promoter regions with possible functions in post-transcriptional regulation. Conclusions In conclusion, Rxo1, like most host R genes, was able to trigger HR against Xoc in the heterologous rice plants by activating multiple defensive pathways related to HR, providing useful information on the evolution of plant resistance genes. Maize non-host resistance gene Rxo1 could trigger the pathogen-specific HR in heterologous rice, and ultimately leading to a localized programmed cell death which exhibits the characteristics consistent with those mediated by host resistance genes, but a number of genes encoding pentatricopeptide repeat and RNA recognition motif protein were found specifically up-regulated in the Rxo1 mediated disease resistance. These results add to our understanding the evolution of plant resistance genes.

  14. Phylogenomic Analyses and Reclassification of Species within the Genus Tsukamurella: Insights to Species Definition in the Post-genomic Era.

    Science.gov (United States)

    Teng, Jade L L; Tang, Ying; Huang, Yi; Guo, Feng-Biao; Wei, Wen; Chen, Jonathan H K; Wong, Samson S Y; Lau, Susanna K P; Woo, Patrick C Y

    2016-01-01

    Owing to the highly similar phenotypic profiles, protein spectra and 16S rRNA gene sequences observed between three pairs of Tsukamurella species (Tsukamurella pulmonis/Tsukamurella spongiae, Tsukamurella tyrosinosolvens/Tsukamurella carboxy-divorans, and Tsukamurella pseudospumae/Tsukamurella sunchonensis), we hypothesize that and the six Tsukamurella species may have been misclassified and that there may only be three Tsukamurella species. In this study, we characterized the type strains of these six Tsukamurella species by tradition DNA-DNA hybridization (DDH) and "digital DDH" after genome sequencing to determine their exact taxonomic positions. Traditional DDH showed 81.2 ± 0.6% to 99.7 ± 1.0% DNA-DNA relatedness between the two Tsukamurella species in each of the three pairs, which was above the threshold for same species designation. "Digital DDH" based on Genome-To-Genome Distance Calculator and Average Nucleotide Identity for the three pairs also showed similarity results in the range of 82.3-92.9 and 98.1-99.1%, respectively, in line with results of traditional DDH. Based on these evidence and according to Rules 23a and 42 of the Bacteriological Code, we propose that T. spongiae Olson et al. 2007, should be reclassified as a later heterotypic synonym of T. pulmonis Yassin et al. 1996, T. carboxydivorans Park et al. 2009, as a later heterotypic synonym of T. tyrosinosolvens Yassin et al. 1997, and T. sunchonensis Seong et al. 2008 as a later heterotypic synonym of T. pseudospumae Nam et al. 2004. With the advancement of genome sequencing technologies, classification of bacterial species can be readily achieved by "digital DDH" than traditional DDH.

  15. Differential metabolism of Mycoplasma species as revealed by their genomes

    Directory of Open Access Journals (Sweden)

    Fabricio B.M. Arraes

    2007-01-01

    Full Text Available The annotation and comparative analyses of the genomes of Mycoplasma synoviae and Mycoplasma hyopneumonie, as well as of other Mollicutes (a group of bacteria devoid of a rigid cell wall, has set the grounds for a global understanding of their metabolism and infection mechanisms. According to the annotation data, M. synoviae and M. hyopneumoniae are able to perform glycolytic metabolism, but do not possess the enzymatic machinery for citrate and glyoxylate cycles, gluconeogenesis and the pentose phosphate pathway. Both can synthesize ATP by lactic fermentation, but only M. synoviae can convert acetaldehyde to acetate. Also, our genome analysis revealed that M. synoviae and M. hyopneumoniae are not expected to synthesize polysaccharides, but they can take up a variety of carbohydrates via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS. Our data showed that these two organisms are unable to synthesize purine and pyrimidine de novo, since they only possess the sequences which encode salvage pathway enzymes. Comparative analyses of M. synoviae and M. hyopneumoniae with other Mollicutes have revealed differential genes in the former two genomes coding for enzymes that participate in carbohydrate, amino acid and nucleotide metabolism and host-pathogen interaction. The identification of these metabolic pathways will provide a better understanding of the biology and pathogenicity of these organisms.

  16. Genome-wide comparative analysis of NBS-encoding genes in four Gossypium species

    Science.gov (United States)

    Nucleotide binding site (NBS) genes encode a large family of disease resistance (R) proteins in plants. The availability of genomic data of the two diploid cotton species, Gossypium arboreum and Gossypium raimondii, and the two allotetraploid cotton species, Gossypium hirsutum (TM-1) and Gossypium ...

  17. Total centromere size and genome size are strongly correlated in ten grass species.

    Science.gov (United States)

    Zhang, Han; Dawe, R Kelly

    2012-05-01

    It has been known for decades that centromere size varies across species, but the factors involved in setting centromere boundaries are unknown. As a means to address this question, we estimated centromere sizes in ten species of the grass family including rice, maize, and wheat, which diverged 60~80 million years ago and vary by 40-fold in genome size. Measurements were made using a broadly reactive antibody to rice centromeric histone H3 (CENH3). In species-wide comparisons, we found a clear linear relationship between total centromere size and genome size. Species with large genomes and few chromosomes tend to have the largest centromeres (e.g., rye) while species with small genomes and many chromosomes have the smallest centromeres (e.g., rice). However, within a species, centromere size is surprisingly uniform. We present evidence from three oat-maize addition lines that support this claim, indicating that each of three maize centromeres propagated in oat are not measurably different from each other. In the context of previously published data, our results suggest that the apparent correlation between chromosome and centromere size is incidental to a larger trend that reflects genome size. Centromere size may be determined by a limiting component mechanism similar to that described for Caenorhabditis elegans centrosomes.

  18. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis

    Science.gov (United States)

    Zhang, Shuang; Yu, Xiao-Yue; Ren, Ya-Chao; Yang, Min-Sheng; Wang, Jin-Mao

    2017-01-01

    Elm (Ulmus) has a long history of use as a high-quality heavy hardwood famous for its resistance to drought, cold, and salt. It grows in temperate, warm temperate, and subtropical regions. This is the first report of Ulmaceae chloroplast genomes by de novo sequencing. The Ulmus chloroplast genomes exhibited a typical quadripartite structure with two single-copy regions (long single copy [LSC] and short single copy [SSC] sections) separated by a pair of inverted repeats (IRs). The lengths of the chloroplast genomes from five Ulmus ranged from 158,953 to 159,453 bp, with the largest observed in Ulmus davidiana and the smallest in Ulmus laciniata. The genomes contained 137–145 protein-coding genes, of which Ulmus davidiana var. japonica and U. davidiana had the most and U. pumila had the fewest. The five Ulmus species exhibited different evolutionary routes, as some genes had been lost. In total, 18 genes contained introns, 13 of which (trnL-TAA+, trnL-TAA−, rpoC1-, rpl2-, ndhA-, ycf1, rps12-, rps12+, trnA-TGC+, trnA-TGC-, trnV-TAC-, trnI-GAT+, and trnI-GAT) were shared among all five species. The intron of ycf1 was the longest (5,675bp) while that of trnF-AAA was the smallest (53bp). All Ulmus species except U. davidiana exhibited the same degree of amplification in the IR region. To determine the phylogenetic positions of the Ulmus species, we performed phylogenetic analyses using common protein-coding genes in chloroplast sequences of 42 other species published in NCBI. The cluster results showed the closest plants to Ulmaceae were Moraceae and Cannabaceae, followed by Rosaceae. Ulmaceae and Moraceae both belonged to Urticales, and the chloroplast genome clustering results were consistent with their traditional taxonomy. The results strongly supported the position of Ulmaceae as a member of the order Urticales. In addition, we found a potential error in the traditional taxonomies of U. davidiana and U. davidiana var. japonica, which should be confirmed with a

  19. Genome sequences of three phytopathogenic species of the Magnaporthaceae family of fungi

    Science.gov (United States)

    Magnaporthaceae is a family of ascomycetes that includes three fungi of great economic importance: Magnaporthe oryzae, Gaeumannomyces graminis var. tritici, and Magnaporthe poae. These three fungi cause widespread disease and loss in cereal and grass crops, including rice blast disease (M. oryzae), ...

  20. The Population Structure of African Cultivated Rice Oryza glaberrima (Steud.)

    DEFF Research Database (Denmark)

    Semon, Mande; Nielsen, Rasmus; Jones, Monty P.;

    2005-01-01

    Genome-wide linkage disequilibrium (LD) was investigated for 198 accessions of Oryza glaberrima using 93 nuclear microsatellite markers. Significantly elevated levels of LD were detected, even among distantly located markers. Free recombination among loci at the population genetic level was shown...

  1. Comparative cytogenetic analysis of Avena macrostachya and diploid C-genome Avena species.

    Science.gov (United States)

    Badaeva, Ekaterina D; Shelukhina, Olga Yu; Diederichsen, Axel; Loskutov, Igor G; Pukhalskiy, Vitaly A

    2010-02-01

    The chromosome set of Avena macrostachya Balansa ex Coss. et Durieu was analyzed using C-banding and fluorescence in situ hybridization with 5S and 18S-5.8S-26S rRNA gene probes, and the results were compared with the C-genome diploid Avena L. species. The location of major nucleolar organizer regions and 5S rDNA sites on different chromosomes confirmed the affiliation of A. macrostachya with the C-genome group. However, the symmetric karyotype, the absence of "diffuse heterochromatin" and the location of large C-band complexes in proximal chromosome regions pointed to an isolated position of A. macrostachya from other Avena species. Based on the distribution of rDNA loci on the C-genome chromosomes of diploid and polyploid Avena species, we propose a model of the chromosome alterations that occurred during the evolution of oat species.

  2. Comparative Genome Analysis of Lolium-Festuca Complex Species

    DEFF Research Database (Denmark)

    Czaban, Adrian; Byrne, Stephen; Sharma, Sapna;

    2015-01-01

    The Lolium-Festuca complex incorporates species from the Lolium genera and the broad leaf Fescues. Plants belonging to this complex exhibit significant phenotypic plasticity for agriculturally important traits, such as annuality/perenniality, establishment potential, growth speed, nutritional val...

  3. The complete chloroplast genome sequences for four Amaranthus species (Amaranthaceae)1

    Science.gov (United States)

    Chaney, Lindsay; Mangelson, Ryan; Ramaraj, Thiruvarangan; Jellen, Eric N.; Maughan, Peter J.

    2016-01-01

    Premise of the study: The amaranth genus contains many important grain and weedy species. We further our understanding of the genus through the development of a complete reference chloroplast genome. Methods and Results: A high-quality Amaranthus hypochondriacus (Amaranthaceae) chloroplast genome assembly was developed using long-read technology. This reference genome was used to reconstruct the chloroplast genomes for two closely related grain species (A. cruentus and A. caudatus) and their putative progenitor (A. hybridus). The reference genome was 150,518 bp and possesses a circular structure of two inverted repeats (24,352 bp) separated by small (17,941 bp) and large (83,873 bp) single-copy regions; it encodes 111 genes, 72 for proteins. Relative to the reference chloroplast genome, an average of 210 single-nucleotide polymorphisms (SNPs) and 122 insertion/deletion polymorphisms (indels) were identified across the analyzed genomes. Conclusions: This reference chloroplast genome, along with the reported simple sequence repeats, SNPs, and indels, is an invaluable genetic resource for studying the phylogeny and genetic diversity within the amaranth genus. PMID:27672525

  4. Characterization of genome in tetraploid StY species of Elymus (Triticeae: Poaceae) using sequential FISH and GISH.

    Science.gov (United States)

    Liu, Ruijuan; Wang, Richard R-C; Yu, Feng; Lu, Xingwang; Dou, Quanwen

    2017-08-01

    Genomes of ten species of Elymus, either presumed or known as tetraploid StY, were characterized using fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH). These tetraploid species could be grouped into three categories. Type I included StY genome reported species-Roegneria pendulina, R. nutans, R. glaberrima, R. ciliaris, and Elymus nevskii, and StY genome presumed species-R. sinica, R. breviglumis, and R. dura, whose genome could be separated into two sets based on different GISH intensities. Type I genome constitution was deemed as putative StY. The St genome were mainly characterized with intense hybridization with pAs1, fewer AAG sites, and linked distribution of 5S rDNA and 18S-26S rDNA, while the Y genome with less intense hybridization with pAs1, more varied AAG sites, and isolated distribution of 5S rDNA and 18S-26S rDNA. Nevertheless, further genomic variations were detected among the different StY species. Type II included E. alashanicus, whose genome could be easily separated based on GISH pattern. FISH and GISH patterns suggested that E. alashanicus comprised a modified St genome and an unknown genome. Type III included E. longearistatus, whose genome could not be separated by GISH and was designated as St(l)Y(l). Notably, a close relationship between S(l) and Y(l) genomes was observed.

  5. Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution

    Science.gov (United States)

    Deng, Pingchuan; Wang, Meng; Feng, Kewei; Cui, Licao; Tong, Wei; Song, Weining; Nie, Xiaojun

    2016-01-01

    Microsatellites are an important constituent of plant genome and distributed across entire genome. In this study, genome-wide analysis of microsatellites in 8 Triticeae species and 9 model plants revealed that microsatellite characteristics were similar among the Triticeae species. Furthermore, genome-wide microsatellite markers were designed in wheat and then used to analyze the evolutionary relationship of wheat and other Triticeae species. Results displayed that Aegilops tauschii was found to be the closest species to Triticum aestivum, followed by Triticum urartu, Triticum turgidum and Aegilops speltoides, while Triticum monococcum, Aegilops sharonensis and Hordeum vulgare showed a relatively lower PCR amplification effectivity. Additionally, a significantly higher PCR amplification effectivity was found in chromosomes at the same subgenome than its homoeologous when these markers were subjected to search against different chromosomes in wheat. After a rigorous screening process, a total of 20,666 markers showed high amplification and polymorphic potential in wheat and its relatives, which were integrated with the public available wheat markers and then anchored to the genome of wheat (CS). This study not only provided the useful resource for SSR markers development in Triticeae species, but also shed light on the evolution of polyploid wheat from the perspective of microsatellites. PMID:27561724

  6. 水稻白叶枯病菌GX1329基因组文库的构建及含编码TAL效应物基因的克隆的分离%Construction of a Genomic Library of Xanthomonas oryzae pv. oryzae Strain GX1329 and Isolation of Clones Containing the Genes Encoding TAL Ef- fectors

    Institute of Scientific and Technical Information of China (English)

    张子宇; 赵帅; 莫伟兰; 罗雪梅; 玉延华; 段承杰; 冯家勋

    2011-01-01

    由革兰氏阴性细菌水稻白叶枯病菌引起的水稻白叶枯病是亚洲、北美以及非洲部分地区最严重的水稻病害之一,水稻白叶枯病可使水稻减产高达50%以上。研究表明水稻白叶枯病菌的毒力主要依靠三型分泌系统所分泌的效应物。为了解水稻白叶枯病菌广西菌株GX1329中含有avrBs3/pthA家族基因的情况,本研究应用Alu I部分酶切其基因组DNA,构建了含有736个克隆的菌株GX1329的基因组文库。BamHI酶切分析随机挑取的15个文库克隆表明,克隆的外源DNA随机性良好,克隆的最小片段为27.7kb,最大为58.5kb,平均大小为39.9kb,文库克隆容量约为2.8×10^3Mb,该文库中包含基因组中任一个基因的概率为99.4%。利用来自水稻白叶枯病菌菲律宾菌株PX086的无毒基因avrXa10的第252位~第486位核苷酸序列作为探针,通过菌落原位杂交从GX1329基因组文库中筛选到37个含avrBs3/pthA家族基因的克隆。再通过Southern杂交分析,得到了17个独立克隆。这17个克隆中至少含有13个不同的avrBs3/pthA家族基因。这些基因在GX1329基因组中有的单独存在,有的两个或两个以上串联存在。本工作基本上明确了菌株GX1329基因组中avrBs3/pthA家族基因的数量,为进一步研究菌株GX1329中avrBs3/pthA家族基因的功能奠定了基础。%Bacterial leaf blight (BLB), caused by Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is a serious threat to yield losses in the main regions of rice growth including Asia, North America and Africa. BLB could lead to a crop loss of up to 50%. It is known that the virulence of Xoo mainly relies on type BI secre- tion system (T3SS) and its secreted effectors. To know the numbers of genes encoding avrBs3/pthA family mem- bers in Guangxi Xoo strain GX1329, a genomic DNA library containing 736 clones was successfully constructed by partially

  7. 水稻白叶枯病菌GX1329基因组文库的构建及含编码TAL效应物基因的克隆的分离%Construction of a Genomic Library of Xanthomonas oryzae pv.oryzae Strain GX1329 and Isolation of Clones Containing the Genes Encoding TAL Effectors

    Institute of Scientific and Technical Information of China (English)

    张子宇; 赵帅; 莫伟兰; 罗雪梅; 玉延华; 段承杰; 冯家勋

    2011-01-01

    Bacterial leaf blight (BLB), caused by Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo),is a serious threat to yield losses in the main regions of rice growth including Asia, North America and Africa.BLB could lead to a crop loss of up to 50%. It is known that the virulence of Xoo mainly relies on type Ⅲ secretion system (T3SS) and its secreted effectors. To know the numbers of genes encoding avrBs3/pthA family members in Guangxi Xoo strain GX1329, a genomic DNA library containing 736 clones was successfully constructed by partially digesting the genomic DNA with A lu Ⅰ . Restriction enzyme BamH Ⅰ digestion analysis of plasmids from 15 randomly chosen library clones showed that the cloned DNA in the genomic library was highly random.The size of the smallest cloned DNA in one clone was 27.7kb, the size of the biggest cloned DNA in one clone was 58.5 kb, and the average size of cloned DNA in one clone was 39.9 kb. The cloning capacity of the library is about 2.8x103 Mb with high randomness, and the probability of any one gene contained in the library was about 99.4%.Thirty-seven positive clones were screened out from the GX1329 genomic library by colony in situ hybridization using the 252th to 486th bp sequence of avrXa10 from Xoo strain PXO86 as probe. Southern hybridization analysis of the 17 clones showed that they contain at least 13 different avrBs3/pthA genes. The results also showed that the avrB.s3/pthA family genes occurred in individual or clusters in the genome of strain GX1329. This work defined the number of avrBs3/pthA family genes in the genome of GX1329, which may provide a solid basis for further studying the function of the genes.%由革兰氏阴性细菌水稻白叶枯病菌引起的水稻白叶枯病是亚洲、北美以及非洲部分地区最严重的水稻病害之一,水稻白叶枯病可使水稻减产高达50%以上.研究表明水稻白叶枯病菌的毒力主要依靠三型分泌系统所分泌的效应物.为了解

  8. Authentication Markers for Five Major Panax Species Developed via Comparative Analysis of Complete Chloroplast Genome Sequences.

    Science.gov (United States)

    Nguyen, Van Binh; Park, Hyun-Seung; Lee, Sang-Choon; Lee, Junki; Park, Jee Young; Yang, Tae-Jin

    2017-08-02

    Ginseng represents a set of high-value medicinal plants of different species: Panax ginseng (Asian ginseng), Panax quinquefolius (American ginseng), Panax notoginseng (Chinese ginseng), Panax japonicus (Bamboo ginseng), and Panax vietnamensis (Vietnamese ginseng). Each species is pharmacologically and economically important, with differences in efficacy and price. Accordingly, an authentication system is needed to combat economically motivated adulteration of Panax products. We conducted comparative analysis of the chloroplast genome sequences of these five species, identifying 34-124 InDels and 141-560 SNPs. Fourteen InDel markers were developed to authenticate the Panax species. Among these, eight were species-unique markers that successfully differentiated one species from the others. We generated at least one species-unique marker for each of the five species, and any of the species can be authenticated by selection among these markers. The markers are reliable, easily detectable, and valuable for applications in the ginseng industry as well as in related research.

  9. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa).

    Science.gov (United States)

    Begum, Hasina; Spindel, Jennifer E; Lalusin, Antonio; Borromeo, Teresita; Gregorio, Glenn; Hernandez, Jose; Virk, Parminder; Collard, Bertrand; McCouch, Susan R

    2015-01-01

    Genome-wide association mapping studies (GWAS) are frequently used to detect QTL in diverse collections of crop germplasm, based on historic recombination events and linkage disequilibrium across the genome. Generally, diversity panels genotyped with high density SNP panels are utilized in order to assay a wide range of alleles and haplotypes and to monitor recombination breakpoints across the genome. By contrast, GWAS have not generally been performed in breeding populations. In this study we performed association mapping for 19 agronomic traits including yield and yield components in a breeding population of elite irrigated tropical rice breeding lines so that the results would be more directly applicable to breeding than those from a diversity panel. The population was genotyped with 71,710 SNPs using genotyping-by-sequencing (GBS), and GWAS performed with the explicit goal of expediting selection in the breeding program. Using this breeding panel we identified 52 QTL for 11 agronomic traits, including large effect QTLs for flowering time and grain length/grain width/grain-length-breadth ratio. We also identified haplotypes that can be used to select plants in our population for short stature (plant height), early flowering time, and high yield, and thus demonstrate the utility of association mapping in breeding populations for informing breeding decisions. We conclude by exploring how the newly identified significant SNPs and insights into the genetic architecture of these quantitative traits can be leveraged to build genomic-assisted selection models.

  10. Homologous recombination in Agrobacterium: potential implications for the genomic species concept in bacteria.

    Science.gov (United States)

    Costechareyre, Denis; Bertolla, Franck; Nesme, Xavier

    2009-01-01

    According to current taxonomical rules, a bona fide bacterial species is a genomic species characterized by the genomic similarity of its members. It has been proposed that the genomic cohesion of such clusters may be related to sexual isolation, which limits gene flow between too divergent bacteria. Homologous recombination is one of the most studied mechanisms responsible for this genetic isolation. Previous studies on several bacterial models showed that recombination frequencies decreased exponentially with increasing DNA sequence divergence. In the present study, we investigated this relationship in the Agrobacterium tumefaciens species complex, which allowed us to focus on sequence divergence in the vicinity of the genetic boundaries of genomic species. We observed that the sensitivity of the recombination frequency to DNA divergence fitted a log-linear function until approximately 10% sequence divergence. The results clearly revealed that there was no sharp drop in recombination frequencies at the point where the sequence divergence distribution showed a "gap" delineating genomic species. The ratio of the recombination frequency in homogamic conditions relative to this frequency in heterogamic conditions, that is, sexual isolation, was found to decrease from 8 between the most distant strains within a species to 9 between the most closely related species, for respective increases from 4.3% to 6.4% mismatches in the marker gene chvA. This means that there was only a 1.13-fold decrease in recombination frequencies for recombination events at both edges of the species border. Hence, from the findings of this investigation, we conclude that--at least in this taxon--sexual isolation based on homologous recombination is likely not high enough to strongly hamper gene flow between species as compared with gene flow between distantly related members of the same species. The 70% relative binding ratio cutoff used to define bacterial species is likely correlated to

  11. LINE-1 distribution in six rodent genomes follow a species-specific pattern

    Indian Academy of Sciences (India)

    A. Vieira-Da-Silva; F. Adega; H. Guedes-Pinto; R. Chaves

    2016-03-01

    L1 distribution in mammal’s genomes is yet a huge riddle. However, these repetitive sequences were already found in all chromosomic regions, and in general, they seem to be nonrandomly distributed in the genome. It also seems that after insertionand when they are not deleterious, they are always involved in dynamic processes occurring on that particular chromosomic region. Furthermore, it seems that large-scale genome rearrangements and L1 activity and accumulation are somehow interconnected. In the present study, we analysed L1 genomic distribution in Tatera gambiana (Muridae, Gerbillinae), Acomys sp. (Muridae, Deomyinae), Cricetomys sp. (Nesomyidae, Cricetomyinae), Microtus arvalis (Cricetidae, Arvicolinae), Phodopus roborovskii and P. sungorus (Cricetidae, Cricetinae). All the species studied here seems to exhibit a species-specific pattern.Possible mechanisms, and processes involved in L1 distribution and preferential accumulation in certain regions are discussed.

  12. The complete chloroplast genome of two Brassica species, Brassica nigra and B. Oleracea.

    Science.gov (United States)

    Seol, Young-Joo; Kim, Kyunghee; Kang, Sang-Ho; Perumal, Sampath; Lee, Jonghoon; Kim, Chang-Kug

    2017-03-01

    The two Brassica species, Brassica nigra and Brassica oleracea, are important agronomic crops. The chloroplast genome sequences were generated by de novo assembly using whole genome next-generation sequences. The chloroplast genomes of B. nigra and B. oleracea were 153 633 bp and 153 366 bp in size, respectively, and showed conserved typical chloroplast structure. The both chloroplast genomes contained a total of 114 genes including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis revealed that B. oleracea is closely related to B. rapa and B. napus but B. nigra is more diverse than the neighbor species Raphanus sativus.

  13. Draft Genome Sequence of the Type Species of the Genus Citrobacter, Citrobacter freundii MTCC 1658

    OpenAIRE

    Kumar, Shailesh; Kaur, Chandandeep; Kimura, Kazuyuki; Takeo, Masahiro; Raghava, Gajendra Pal Singh; Mayilraj, Shanmugam

    2013-01-01

    We report the 5.0-Mb genome sequence of the type species of the genus Citrobacter, Citrobacter freundii strain MTCC 1658, isolated from canal water. This draft genome sequence of C. freundii strain MTCC 1658T consists of 5,001,265 bp with a G+C content of 51.61%, 4,691 protein-coding genes, 70 tRNAs, and 10 rRNAs.

  14. Comparative optical genome analysis of two pangolin species: Manis pentadactyla and Manis javanica.

    Science.gov (United States)

    Zhihai, Huang; Jiang, Xu; Shuiming, Xiao; Baosheng, Liao; Yuan, Gao; Chaochao, Zhai; Xiaohui, Qiu; Wen, Xu; Shilin, Chen

    2016-12-01

    The pangolin is a Pholidota mammal with large keratin scales protecting its skin. Two pangolin species ( Manis pentadactyla and Manis javanica ) have been recorded as critically endangered on the International Union for Conservation of Nature Red List of Threatened Species. Optical mapping constructs high-resolution restriction maps from single DNA molecules for genome analysis at the megabase scale and to assist genome assembly. Here, we constructed restriction maps of M. pentadactyla and M. javanica using optical mapping to assist with genome assembly and analysis of these species. Genomic DNA was nicked with Nt.BspQI and then labeled using fluorescently labeled bases that were detected by the Irys optical mapping system. In total, 3,313,734 DNA molecules (517.847 Gb) for M. pentadactyla and 3,439,885 DNA molecules (504.743 Gb) for M. javanica were obtained, which corresponded to approximately 178X and 177X genome coverage, respectively. Qualified molecules (≥150 kb with a label density of >6 sites per 100 kb) were analyzed using the de novo assembly program embedded in the IrysView pipeline. We obtained two maps that were 2.91 Gb and 2.85 Gb in size with N50s of 1.88 Mb and 1.97 Mb, respectively. Optical mapping reveals large-scale structural information that is especially important for non-model genomes that lack a good reference. The approach has the potential to guide de novo assembly of genomes sequenced using next-generation sequencing. Our data provide a resource for Manidae genome analysis and references for de novo assembly. This note also provides new insights into Manidae evolutionary analysis at the genome structure level.

  15. Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content

    Directory of Open Access Journals (Sweden)

    Nakai Kenta

    2009-08-01

    Full Text Available Abstract Background Streptococcus mutans is the major pathogen of dental caries, and it occasionally causes infective endocarditis. While the pathogenicity of this species is distinct from other human pathogenic streptococci, the species-specific evolution of the genus Streptococcus and its genomic diversity are poorly understood. Results We have sequenced the complete genome of S. mutans serotype c strain NN2025, and compared it with the genome of UA159. The NN2025 genome is composed of 2,013,587 bp, and the two strains show highly conserved core-genome. However, comparison of the two S. mutans strains showed a large genomic inversion across the replication axis producing an X-shaped symmetrical DNA dot plot. This phenomenon was also observed between other streptococcal species, indicating that streptococcal genetic rearrangements across the replication axis play an important role in Streptococcus genetic shuffling. We further confirmed the genomic diversity among 95 clinical isolates using long-PCR analysis. Genomic diversity in S. mutans appears to occur frequently between insertion sequence (IS elements and transposons, and these diversity regions consist of restriction/modification systems, antimicrobial peptide synthesis systems, and transporters. S. mutans may preferentially reject the phage infection by clustered regularly interspaced short palindromic repeats (CRISPRs. In particular, the CRISPR-2 region, which is highly divergent between strains, in NN2025 has long repeated spacer sequences corresponding to the streptococcal phage genome. Conclusion These observations suggest that S. mutans strains evolve through chromosomal shuffling and that phage infection is not needed for gene acquisition. In contrast, S. pyogenes tolerates phage infection for acquisition of virulence determinants for niche adaptation.

  16. Study on the structures of papilla of lemma in Oryza

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Structures of papilla of lemma among 23 Oryza species were investigated and classified into 6 kinds by scanning electron microscopy. The lemma surface was composed of papilla pedestals with multi-row longitudinal ordered arrangements and the papilla was inserted into pedestal. The morphology and characterization of papilla varied among species.

  17. Comparison and correlation of Simple Sequence Repeats distribution in genomes of Brucella species

    Science.gov (United States)

    Kiran, Jangampalli Adi Pradeep; Chakravarthi, Veeraraghavulu Praveen; Kumar, Yellapu Nanda; Rekha, Somesula Swapna; Kruti, Srinivasan Shanthi; Bhaskar, Matcha

    2011-01-01

    Computational genomics is one of the important tools to understand the distribution of closely related genomes including simple sequence repeats (SSRs) in an organism, which gives valuable information regarding genetic variations. The central objective of the present study was to screen the SSRs distributed in coding and non-coding regions among different human Brucella species which are involved in a range of pathological disorders. Computational analysis of the SSRs in the Brucella indicates few deviations from expected random models. Statistical analysis also reveals that tri-nucleotide SSRs are overrepresented and tetranucleotide SSRs underrepresented in Brucella genomes. From the data, it can be suggested that over expressed tri-nucleotide SSRs in genomic and coding regions might be responsible in the generation of functional variation of proteins expressed which in turn may lead to different pathogenicity, virulence determinants, stress response genes, transcription regulators and host adaptation proteins of Brucella genomes. Abbreviations SSRs - Simple Sequence Repeats, ORFs - Open Reading Frames. PMID:21738309

  18. Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice.

    Science.gov (United States)

    Waters, Daniel L E; Nock, Catherine J; Ishikawa, Ryuji; Rice, Nicole; Henry, Robert J

    2012-01-01

    Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively parallel sequencing and compared with the chloroplast genome sequence of domesticated O. sativa. Oryza australiensis differed in more than 850 sites single nucleotide polymorphism or indel from each of the other samples. The other wild rice species had only around 100 differences relative to cultivated rice. The chloroplast genomes of Australian O. rufipogon and O. meridionalis were closely related with only 32 differences. The Asian O. rufipogon chloroplast genome (with only 68 differences) was closer to O. sativa than the Australian taxa (both with more than 100 differences). The chloroplast sequences emphasize the genetic distinctness of the Australian populations and their potential as a source of novel rice germplasm. The Australian O. rufipogon may be a perennial form of O. meridionalis.

  19. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology

    Science.gov (United States)

    Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P.; Guerra, Miguel P.

    2015-01-01

    During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100–220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field. PMID:26284102

  20. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  1. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species.

    Science.gov (United States)

    Nyerges, Ákos; Csörgő, Bálint; Nagy, István; Bálint, Balázs; Bihari, Péter; Lázár, Viktória; Apjok, Gábor; Umenhoffer, Kinga; Bogos, Balázs; Pósfai, György; Pál, Csaba

    2016-03-01

    Currently available tools for multiplex bacterial genome engineering are optimized for a few laboratory model strains, demand extensive prior modification of the host strain, and lead to the accumulation of numerous off-target modifications. Building on prior development of multiplex automated genome engineering (MAGE), our work addresses these problems in a single framework. Using a dominant-negative mutant protein of the methyl-directed mismatch repair (MMR) system, we achieved a transient suppression of DNA repair in Escherichia coli, which is necessary for efficient oligonucleotide integration. By integrating all necessary components into a broad-host vector, we developed a new workflow we term pORTMAGE. It allows efficient modification of multiple loci, without any observable off-target mutagenesis and prior modification of the host genome. Because of the conserved nature of the bacterial MMR system, pORTMAGE simultaneously allows genome editing and mutant library generation in other biotechnologically and clinically relevant bacterial species. Finally, we applied pORTMAGE to study a set of antibiotic resistance-conferring mutations in Salmonella enterica and E. coli. Despite over 100 million y of divergence between the two species, mutational effects remained generally conserved. In sum, a single transformation of a pORTMAGE plasmid allows bacterial species of interest to become an efficient host for genome engineering. These advances pave the way toward biotechnological and therapeutic applications. Finally, pORTMAGE allows systematic comparison of mutational effects and epistasis across a wide range of bacterial species.

  2. Chromosome Numbers and Genome Size Variation in Indian Species of Curcuma (Zingiberaceae)

    Science.gov (United States)

    Leong-Škorničková, Jana; Šída, Otakar; Jarolímová, Vlasta; Sabu, Mamyil; Fér, Tomáš; Trávníček, Pavel; Suda, Jan

    2007-01-01

    Background and Aims Genome size and chromosome numbers are important cytological characters that significantly influence various organismal traits. However, geographical representation of these data is seriously unbalanced, with tropical and subtropical regions being largely neglected. In the present study, an investigation was made of chromosomal and genome size variation in the majority of Curcuma species from the Indian subcontinent, and an assessment was made of the value of these data for taxonomic purposes. Methods Genome size of 161 homogeneously cultivated plant samples classified into 51 taxonomic entities was determined by propidium iodide flow cytometry. Chromosome numbers were counted in actively growing root tips using conventional rapid squash techniques. Key Results Six different chromosome counts (2n = 22, 42, 63, >70, 77 and 105) were found, the last two representing new generic records. The 2C-values varied from 1·66 pg in C. vamana to 4·76 pg in C. oligantha, representing a 2·87-fold range. Three groups of taxa with significantly different homoploid genome sizes (Cx-values) and distinct geographical distribution were identified. Five species exhibited intraspecific variation in nuclear DNA content, reaching up to 15·1 % in cultivated C. longa. Chromosome counts and genome sizes of three Curcuma-like species (Hitchenia caulina, Kaempferia scaposa and Paracautleya bhatii) corresponded well with typical hexaploid (2n = 6x = 42) Curcuma spp. Conclusions The basic chromosome number in the majority of Indian taxa (belonging to subgenus Curcuma) is x = 7; published counts correspond to 6x, 9x, 11x, 12x and 15x ploidy levels. Only a few species-specific C-values were found, but karyological and/or flow cytometric data may support taxonomic decisions in some species alliances with morphological similarities. Close evolutionary relationships among some cytotypes are suggested based on the similarity in homoploid genome sizes and geographical grouping

  3. Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease.

    Directory of Open Access Journals (Sweden)

    Zhen-Zhu Su

    Full Text Available The mutualism pattern of the dark septate endophyte (DSE Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast.

  4. Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease.

    Science.gov (United States)

    Su, Zhen-Zhu; Mao, Li-Juan; Li, Na; Feng, Xiao-Xiao; Yuan, Zhi-Lin; Wang, Li-Wei; Lin, Fu-Cheng; Zhang, Chu-Long

    2013-01-01

    The mutualism pattern of the dark septate endophyte (DSE) Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA) signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS) and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast.

  5. Proposal of fifteen new species of Parasynechococcus based on genomic, physiological and ecological features.

    Science.gov (United States)

    Coutinho, F H; Dutilh, B E; Thompson, C C; Thompson, F L

    2016-12-01

    Members of the recently proposed genus Parasynechococcus (Cyanobacteria) are extremely abundant throughout the global ocean and contribute significantly to global primary productivity. However, the taxonomy of these organisms remains poorly characterized. The aim of this study was to propose a new taxonomic framework for Parasynechococcus based on a genomic taxonomy approach that incorporates genomic, physiological and ecological data. Through in silico DNA-DNA hybridization, average amino acid identity, dinucleotide signatures and phylogenetic reconstruction, a total of 15 species of Parasynechococcus could be delineated. Each species was then described on the basis of their gene content, light and nutrient utilization strategies, geographical distribution patterns throughout the oceans and response to environmental parameters.

  6. Effector Diversification Contributes to Xanthomonas oryzae pv. oryzae Phenotypic Adaptation in a Semi-Isolated Environment

    Science.gov (United States)

    Quibod, Ian Lorenzo; Perez-Quintero, Alvaro; Booher, Nicholas J.; Dossa, Gerbert S.; Grande, Genelou; Szurek, Boris; Vera Cruz, Casiana; Bogdanove, Adam J.; Oliva, Ricardo

    2016-01-01

    Understanding the processes that shaped contemporary pathogen populations in agricultural landscapes is quite important to define appropriate management strategies and to support crop improvement efforts. Here, we took advantage of an historical record to examine the adaptation pathway of the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo) in a semi-isolated environment represented in the Philippine archipelago. By comparing genomes of key Xoo groups we showed that modern populations derived from three Asian lineages. We also showed that diversification of virulence factors occurred within each lineage, most likely driven by host adaptation, and it was essential to shape contemporary pathogen races. This finding is particularly important because it expands our understanding of pathogen adaptation to modern agriculture. PMID:27667260

  7. Intron Derived Size Polymorphism in the Mitochondrial Genomes of Closely Related Chrysoporthe Species.

    Science.gov (United States)

    Kanzi, Aquillah Mumo; Wingfield, Brenda Diana; Steenkamp, Emma Theodora; Naidoo, Sanushka; van der Merwe, Nicolaas Albertus

    2016-01-01

    In this study, the complete mitochondrial (mt) genomes of Chrysoporthe austroafricana (190,834 bp), C. cubensis (89,084 bp) and C. deuterocubensis (124,412 bp) were determined. Additionally, the mitochondrial genome of another member of the Cryphonectriaceae, namely Cryphonectria parasitica (158,902 bp), was retrieved and annotated for comparative purposes. These genomes showed high levels of synteny, especially in regions including genes involved in oxidative phosphorylation and electron transfer, unique open reading frames (uORFs), ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), as well as intron positions. Comparative analyses revealed signatures of duplication events, intron number and length variation, and varying intronic ORFs which highlighted the genetic diversity of mt genomes among the Cryphonectriaceae. These mt genomes showed remarkable size polymorphism. The size polymorphism in the mt genomes of these closely related Chrysoporthe species was attributed to the varying number and length of introns, coding sequences and to a lesser extent, intergenic sequences. Compared to publicly available fungal mt genomes, the C. austroafricana mt genome is the second largest in the Ascomycetes thus far.

  8. Polygalacturonase from Sitophilus oryzae: Possible horizontal transfer of a pectinase gene from fungi to weevils

    Directory of Open Access Journals (Sweden)

    Zhicheng Shen

    2003-08-01

    Full Text Available Endo-polygalacturonase, one of the group of enzymes known collectively as pectinases, is widely distributed in bacteria, plants and fungi. The enzyme has also been found in several weevil species and a few other insects, such as aphids, but not in Drosophila melanogaster, Anopheles gambiae, or Caenorhabditis elegans or, as far as is known, in any more primitive animal species. What, then, is the genetic origin of the polygalacturonases in weevils? Since some weevil species harbor symbiotic microorganisms, it has been suggested, reasonably, that the symbionts' genomes of both aphids and weevils, rather than the insects' genomes, could encode polygalacturonase. We report here the cloning of a cDNA that encodes endo-polygalacturonase in the rice weevil, Sitophilus oryzae (L., and investigations based on the cloned cDNA. Our results, which include analysis of genes in antibiotic-treated rice weevils, indicate that the enzyme is, in fact, encoded by the insect genome. Given the apparent absence of the gene in much of the rest of the animal kingdom, it is therefore likely that the rice weevil polygalacturonase gene was incorporated into the weevil's genome by horizontal transfer, possibly from a fungus.

  9. De Novo Assembly and Characterization of Oryza officinalis Leaf Transcriptome by Using RNA-Seq

    Directory of Open Access Journals (Sweden)

    Ying Bao

    2015-01-01

    Full Text Available Although endeavors have been made to identify useful wild rice genes that can be used to improve cultivated rice, the virtual reservoir of genetic variation hidden within the wild relatives of cultivated rice is largely untapped. Here, using next-generation sequencing technology, we investigated the leaf transcriptome of a wild rice O. officinalis with CC genome. Approximately 23 million reads were produced in the species leaf transcriptome analysis and de novo assembly methods constructed 68,132 unigenes. Functional annotations for the unigenes were conducted using sequence similarity comparisons against the following databases: the nonredundant nucleotide database, the nonredundant protein database, the SWISS-PROT database, the Clusters of Orthologous Groups of proteins database, the Kyoto Encyclopedia of Genes and Genomes database, the Gene Ontology Consortium database, and the InterPro domains database. In addition, a total of 476 unigenes related to disease resistance were identified in O. officinalis, and these unigenes can serve as important genetic resources for cultivated rice breeding and quality improvement. The present study broadens our understanding of the genetic background of non-AA genomic wild rice species and it also provides a bridge to extend studies to other Oryza species with CC genomes.

  10. The multiple facets of homology and their use in comparative genomics to study the evolution of genes, genomes, and species.

    Science.gov (United States)

    Descorps-Declère, Stéphane; Lemoine, Frédéric; Sculo, Quentin; Lespinet, Olivier; Labedan, Bernard

    2008-04-01

    The incredible development of comparative genomics during the last decade has required a correct use of the concept of homology that was previously utilized only by evolutionary biologists. Unhappily, this concept has been often misunderstood and thus misused when exploited outside its evolutionary context. This review brings back to the correct definition of homology and explains how this definition has been progressively refined in order to adapt it to the various new kinds of analysis of gene properties and of their products that appear with the progress of comparative genomics. Then, we illustrate the power and the proficiency of such a concept when using the available genomics data in order to study the evolution of individual genes, of entire genomes and of species, respectively. After explaining how we detect homologues by an exhaustive comparison of a hundred of complete proteomes, we describe three main lines of research we have developed in the recent years. The first one exploits synteny and gene context data to better understand the mechanisms of genome evolution in prokaryotes. The second one is based on phylogenomics approaches to reconstruct the tree of life. The last one is devoted to reminding that protein homology is often limited to structural segments (SOH=segment of homology or module). Detecting and numbering modules allows tracing back protein history by identifying the events of gene duplication and gene fusion. We insist that one of the main present difficulties in such studies is a lack of a reliable method to identify genuine orthologues. Finally, we show how these homology studies are helpful to annotate genes and genomes and to study the complexity of the relationships between sequence and function of a gene.

  11. Development of genomic resources for Nothofagus species using next-generation sequencing data.

    Science.gov (United States)

    El Mujtar, V A; Gallo, L A; Lang, T; Garnier-Géré, P

    2014-11-01

    Using next-generation sequencing, we developed the first whole-genome resources for two hybridizing Nothofagus species of the Patagonian forests that crucially lack genomic data, despite their ecological and industrial value. A de novo assembly strategy combining base quality control and optimization of the putative chloroplast gene map yielded ~32,000 contigs from 43% of the reads produced. With 12.5% of assembled reads, we covered ~96% of the chloroplast genome and ~70% of the mitochondrial gene content, providing functional and structural annotations for 112 and 52 genes, respectively. Functional annotation was possible on 15% of the contigs, with ~1750 potentially novel nuclear genes identified for Nothofagus species. We estimated that the new resources (13.41 Mb in total) included ~4000 gene regions representing ~6.5% of the expected genic partition of the genome, the remaining contigs potentially being nongenic DNA. A high-quality single nucleotide polymorphisms resource was developed by comparing various filtering methods, and preliminary results indicate a strong conservation of cpDNA genomes in contrast to numerous exclusive nuclear polymorphisms in both species. Finally, we characterized 2274 potential simple sequence repeat (SSR) loci, designed primers for 769 of them and validated nine of 29 loci in 42 individuals per species. Nothofagus obliqua had more alleles (4.89) on average than N. nervosa (2.89), 8 SSRs were efficient to discriminate species, and three were successfully transferred in three other Nothofagus species. These resources will greatly help for future inferences of demographic, adaptive and hybridizing events in Nothofagus species, and for conserving and managing natural populations. © 2014 John Wiley & Sons Ltd.

  12. Survey and analysis of simple sequence repeats (SSRs) in three genomes of Candida species.

    Science.gov (United States)

    Jia, Dongmei

    2016-06-15

    Simple sequence repeats (SSRs) or microsatellites, which composed of tandem repeated short units of 1-6 bp, have been paying attention continuously. Here, the distribution, composition and polymorphism of microsatellites and compound microsatellites were analyzed in three available genomes of Candida species (Candida dubliniensis, Candida glabrata and Candida orthopsilosis). The results show that there were 118,047, 66,259 and 61,119 microsatellites in genomes of C. dubliniensis, C. glabrata and C. orthopsilosis, respectively. The SSRs covered more than 1/3 length of genomes in the three species. The microsatellites, which just consist of bases A and (or) T, such as (A)n, (T)n, (AT)n, (TA)n, (AAT)n, (TAA)n, (TTA)n, (ATA)n, (ATT)n and (TAT)n, were predominant in the three genomes. The length of microsatellites was focused on 6 bp and 9 bp either in the three genomes or in its coding sequences. What's more, the relative abundance (19.89/kbp) and relative density (167.87 bp/kbp) of SSRs in sequence of mitochondrion of C. glabrata were significantly great than that in any one of genomes or chromosomes of the three species. In addition, the distance between any two adjacent microsatellites was an important factor to influence the formation of compound microsatellites. The analysis may be helpful for further studying the roles of microsatellites in genomes' origination, organization and evolution of Candida species. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Cell biology of the Koji mold Aspergillus oryzae.

    Science.gov (United States)

    Kitamoto, Katsuhiko

    2015-01-01

    Koji mold, Aspergillus oryzae, has been used for the production of sake, miso, and soy sauce for more than one thousand years in Japan. Due to the importance, A. oryzae has been designated as the national micro-organism of Japan (Koku-kin). A. oryzae has been intensively studied in the past century, with most investigations focusing on breeding techniques and developing methods for Koji making for sake brewing. However, the understanding of fundamental biology of A. oryzae remains relatively limited compared with the yeast Saccharomyces cerevisiae. Therefore, we have focused on studying the cell biology including live cell imaging of organelles, protein vesicular trafficking, autophagy, and Woronin body functions using the available genomic information. In this review, I describe essential findings of cell biology of A. oryzae obtained in our study for a quarter of century. Understanding of the basic biology will be critical for not its biotechnological application, but also for an understanding of the fundamental biology of other filamentous fungi.

  14. Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments

    LENUS (Irish Health Repository)

    OhEigeartaigh, Sean S

    2011-07-26

    Abstract Background In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically. Results We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in Saccharomyces cerevisiae. We found additional genes for the mating pheromone a-factor in six species including Kluyveromyces lactis. Conclusions SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external

  15. Microarray-based whole-genome hybridization as a tool for determining procaryotic species relatedness

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L.; Liu, X.; Fields, M.W.; Thompson, D.K.; Bagwell, C.E.; Tiedje, J. M.; Hazen, T.C.; Zhou, J.

    2008-01-15

    The definition and delineation of microbial species are of great importance and challenge due to the extent of evolution and diversity. Whole-genome DNA-DNA hybridization is the cornerstone for defining procaryotic species relatedness, but obtaining pairwise DNA-DNA reassociation values for a comprehensive phylogenetic analysis of procaryotes is tedious and time consuming. A previously described microarray format containing whole-genomic DNA (the community genome array or CGA) was rigorously evaluated as a high-throughput alternative to the traditional DNA-DNA reassociation approach for delineating procaryotic species relationships. DNA similarities for multiple bacterial strains obtained with the CGA-based hybridization were comparable to those obtained with various traditional whole-genome hybridization methods (r=0.87, P<0.01). Significant linear relationships were also observed between the CGA-based genome similarities and those derived from small subunit (SSU) rRNA gene sequences (r=0.79, P<0.0001), gyrB sequences (r=0.95, P<0.0001) or REP- and BOX-PCR fingerprinting profiles (r=0.82, P<0.0001). The CGA hybridization-revealed species relationships in several representative genera, including Pseudomonas, Azoarcus and Shewanella, were largely congruent with previous classifications based on various conventional whole-genome DNA-DNA reassociation, SSU rRNA and/or gyrB analyses. These results suggest that CGA-based DNA-DNA hybridization could serve as a powerful, high-throughput format for determining species relatedness among microorganisms.

  16. Using Network Extracted Ontologies to Identify Novel Genes with Roles in Appressorium Development in the Rice Blast Fungus Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Ryan M. Ames

    2017-01-01

    Full Text Available Magnaporthe oryzae is the causal agent of rice blast disease, the most important infection of rice worldwide. Half the world’s population depends on rice for its primary caloric intake and, as such, rice blast poses a serious threat to food security. The stages of M. oryzae infection are well defined, with the formation of an appressorium, a cell type that allows penetration of the plant cuticle, particularly well studied. However, many of the key pathways and genes involved in this disease stage are yet to be identified. In this study, I have used network-extracted ontologies (NeXOs, hierarchical structures inferred from RNA-Seq data, to identify pathways involved in appressorium development, which in turn highlights novel genes with potential roles in this process. This study illustrates the use of NeXOs for pathway identification from large-scale genomics data and also identifies novel genes with potential roles in disease. The methods presented here will be useful to study disease processes in other pathogenic species and these data represent predictions of novel targets for intervention in M. oryzae.

  17. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria.

    Science.gov (United States)

    Sundararaman, Sesh A; Plenderleith, Lindsey J; Liu, Weimin; Loy, Dorothy E; Learn, Gerald H; Li, Yingying; Shaw, Katharina S; Ayouba, Ahidjo; Peeters, Martine; Speede, Sheri; Shaw, George M; Bushman, Frederic D; Brisson, Dustin; Rayner, Julian C; Sharp, Paul M; Hahn, Beatrice H

    2016-03-22

    African apes harbour at least six Plasmodium species of the subgenus Laverania, one of which gave rise to human Plasmodium falciparum. Here we use a selective amplification strategy to sequence the genome of chimpanzee parasites classified as Plasmodium reichenowi and Plasmodium gaboni based on the subgenomic fragments. Genome-wide analyses show that these parasites indeed represent distinct species, with no evidence of cross-species mating. Both P. reichenowi and P. gaboni are 10-fold more diverse than P. falciparum, indicating a very recent origin of the human parasite. We also find a remarkable Laverania-specific expansion of a multigene family involved in erythrocyte remodelling, and show that a short region on chromosome 4, which encodes two essential invasion genes, was horizontally transferred into a recent P. falciparum ancestor. Our results validate the selective amplification strategy for characterizing cryptic pathogen species, and reveal evolutionary events that likely predisposed the precursor of P. falciparum to colonize humans.

  18. Genomic relations among 31 species of Mammillaria haworth (Cactaceae) using random amplified polymorphic DNA.

    Science.gov (United States)

    Mattagajasingh, Ilwola; Mukherjee, Arup Kumar; Das, Premananda

    2006-01-01

    Thirty-one species of Mammillaria were selected to study the molecular phylogeny using random amplified polymorphic DNA (RAPD) markers. High amount of mucilage (gelling polysaccharides) present in Mammillaria was a major obstacle in isolating good quality genomic DNA. The CTAB (cetyl trimethyl ammonium bromide) method was modified to obtain good quality genomic DNA. Twenty-two random decamer primers resulted in 621 bands, all of which were polymorphic. The similarity matrix value varied from 0.109 to 0.622 indicating wide variability among the studied species. The dendrogram obtained from the unweighted pair group method using arithmetic averages (UPGMA) analysis revealed that some of the species did not follow the conventional classification. The present work shows the usefulness of RAPD markers for genetic characterization to establish phylogenetic relations among Mammillaria species.

  19. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species.

    Science.gov (United States)

    Khan, Suliman; Nabi, Ghulam; Ullah, Muhammad Wajid; Yousaf, Muhammad; Manan, Sehrish; Siddique, Rabeea; Hou, Hongwei

    2016-01-01

    In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a "sixth" mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species.

  20. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species

    Directory of Open Access Journals (Sweden)

    Suliman Khan

    2016-01-01

    Full Text Available In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a “sixth” mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species.

  1. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L. grown at four international field sites.

    Directory of Open Access Journals (Sweden)

    Gareth J Norton

    Full Text Available The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ∼ 300 accessions and 36.9 k single nucleotide polymorphisms (SNPs. The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel. This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.

  2. Production of fosmid genomic libraries optimized for liquid culture recombineering and cross-species transgenesis.

    Science.gov (United States)

    Ejsmont, Radoslaw Kamil; Bogdanzaliewa, Maria; Lipinski, Kamil Andrzej; Tomancak, Pavel

    2011-01-01

    Genomic DNA libraries are a valuable source of large constructs that can contain all the regulatory elements necessary for recapitulating wild-type gene expression when introduced into animal genomes as a transgene. Such clones can be directly used in complementation studies. In combination with recombineering manipulation, the tagged genomic clones can serve as faithful in vivo gene activity reporters that enable studies of tissue specificity of gene expression, subcellular protein localization, and affinity purification of complexes. We present a detailed protocol for generating an unbiased genomic library in a custom pFlyFos vector that is optimized for liquid culture recombineering manipulation and site-specific transgenesis of fosmid-size loci across different Drosophila species. The cross-species properties of the library can be used, for example, to establish the specificity of RNAi phenotypes or to selectively introgress specific genomic loci among different Drosophila species making it an ideal tool for experimental evolutionary studies. The FlyFos system can be easily adapted to other organisms.

  3. The evolution of microbial species - a view through the genomic lens

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Neha; Mukherjee, Supratim; ivanova, Natalia; Mavromatis, Konstantinos; Konstantinidis, Konstantinos; Kyrpides, Nikos; Pati, Amrita

    2014-03-17

    For a long time prokaryotic species definition has been under debate and a constant source of turmoil in microbiology. This has recently prompted the ASM to call for a scalable and reproducible technique, which uses meaningful commonalities to cluster microorganisms into groups corresponding to prokaryotic species. Whole-genome Average Nucleotide Identity (gANI) was previously suggested as a measure of genetic distance that generally agrees with prokaryotic species assignments based on the accepted best practices (DNA-DNA hybridization and 16S rDNA similarity). In this work, we prove that gANI is indeed the meaningful commonality based on which microorganisms can be grouped into the aforementioned clusters. By analyzing 1.76 million pairs of genomes we find that identification of the closest relatives of an organism via gANI is precise, scalable, reproducible, and reflects the evolutionary dynamics of microbes. We model the previously unexplored statistical properties of gANI using 6,000 microbial genomes and apply species-specific gANI cutoffs to reveal anomalies in the current taxonomic species definitions for almost 50percent of the species with multiple genome sequences. We also provide evidence of speciation events and genetic continuums in 17.8percent of those species. We consider disagreements between gANI-based groupings and named species and demonstrate that the former have all the desired features to serve as the much-needed natural groups for moving forward with taxonomy. Further, the groupings identified are presented in detail at http://ani.jgi-psf.org to facilitate comprehensive downstream analysis for researchers across different disciplines

  4. The complete mitochondrial genomes for three Toxocara species of human and animal health significance

    Directory of Open Access Journals (Sweden)

    Wu Xiang-Yun

    2008-05-01

    Full Text Available Abstract Background Studying mitochondrial (mt genomics has important implications for various fundamental areas, including mt biochemistry, physiology and molecular biology. In addition, mt genome sequences have provided useful markers for investigating population genetic structures, systematics and phylogenetics of organisms. Toxocara canis, Toxocara cati and Toxocara malaysiensis cause significant health problems in animals and humans. Although they are of importance in human and animal health, no information on the mt genomes for any of Toxocara species is available. Results The sizes of the entire mt genome are 14,322 bp for T. canis, 14029 bp for T. cati and 14266 bp for T. malaysiensis, respectively. These circular genomes are amongst the largest reported to date for all secernentean nematodes. Their relatively large sizes relate mainly to an increased length in the AT-rich region. The mt genomes of the three Toxocara species all encode 12 proteins, two ribosomal RNAs and 22 transfer RNA genes, but lack the ATP synthetase subunit 8 gene, which is consistent with all other species of Nematode studied to date, with the exception of Trichinella spiralis. All genes are transcribed in the same direction and have a nucleotide composition high in A and T, but low in G and C. The contents of A+T of the complete genomes are 68.57% for T. canis, 69.95% for T. cati and 68.86% for T. malaysiensis, among which the A+T for T. canis is the lowest among all nematodes studied to date. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. The mt genome structures for three Toxocara species, including genes and non-coding regions, are in the same order as for Ascaris suum and Anisakis simplex, but differ from Ancylostoma duodenale, Necator americanus and Caenorhabditis elegans only in the location of the AT-rich region, whereas there are substantial differences when compared with Onchocerca volvulus

  5. Complete mitochondrial genome of the versicoloured emerald hummingbird Amazilia versicolor, a polymorphic species.

    Science.gov (United States)

    Prosdocimi, Francisco; Souto, Helena Magarinos; Ruschi, Piero Angeli; Furtado, Carolina; Jennings, W Bryan

    2016-09-01

    The genome of the versicoloured emerald hummingbird (Amazilia versicolor) was partially sequenced in one-sixth of an Illumina HiSeq lane. The mitochondrial genome was assembled using MIRA and MITObim software, yielding a circular molecule of 16,861 bp in length and deposited in GenBank under the accession number KF624601. The mitogenome contained 13 protein-coding genes, 22 transfer tRNAs, 2 ribosomal RNAs and 1 non-coding control region. The molecule was assembled using 21,927 sequencing reads of 100 bp each, resulting in ∼130 × coverage of uniformly distributed reads along the genome. This is the forth mitochondrial genome described for this highly diverse family of birds and may benefit further phylogenetic, phylogeographic, population genetic and species delimitation studies of hummingbirds.

  6. An efficient method for genomic DNA extraction from different molluscs species.

    Science.gov (United States)

    Pereira, Jorge C; Chaves, Raquel; Bastos, Estela; Leitão, Alexandra; Guedes-Pinto, Henrique

    2011-01-01

    The selection of a DNA extraction method is a critical step when subsequent analysis depends on the DNA quality and quantity. Unlike mammals, for which several capable DNA extraction methods have been developed, for molluscs the availability of optimized genomic DNA extraction protocols is clearly insufficient. Several aspects such as animal physiology, the type (e.g., adductor muscle or gills) or quantity of tissue, can explain the lack of efficiency (quality and yield) in molluscs genomic DNA extraction procedure. In an attempt to overcome these aspects, this work describes an efficient method for molluscs genomic DNA extraction that was tested in several species from different orders: Veneridae, Ostreidae, Anomiidae, Cardiidae (Bivalvia) and Muricidae (Gastropoda), with different weight sample tissues. The isolated DNA was of high molecular weight with high yield and purity, even with reduced quantities of tissue. Moreover, the genomic DNA isolated, demonstrated to be suitable for several downstream molecular techniques, such as PCR sequencing among others.

  7. An Efficient Method for Genomic DNA Extraction from Different Molluscs Species

    Directory of Open Access Journals (Sweden)

    Henrique Guedes-Pinto

    2011-11-01

    Full Text Available The selection of a DNA extraction method is a critical step when subsequent analysis depends on the DNA quality and quantity. Unlike mammals, for which several capable DNA extraction methods have been developed, for molluscs the availability of optimized genomic DNA extraction protocols is clearly insufficient. Several aspects such as animal physiology, the type (e.g., adductor muscle or gills or quantity of tissue, can explain the lack of efficiency (quality and yield in molluscs genomic DNA extraction procedure. In an attempt to overcome these aspects, this work describes an efficient method for molluscs genomic DNA extraction that was tested in several species from different orders: Veneridae, Ostreidae, Anomiidae, Cardiidae (Bivalvia and Muricidae (Gastropoda, with different weight sample tissues. The isolated DNA was of high molecular weight with high yield and purity, even with reduced quantities of tissue. Moreover, the genomic DNA isolated, demonstrated to be suitable for several downstream molecular techniques, such as PCR sequencing among others.

  8. Combination of ARDRA and RAPD genotyping techniques in identification of Acinetobacter spp. genomic species

    Institute of Scientific and Technical Information of China (English)

    Yong ZHANG; Yuqing CHEN; Yingchun TANG; Kouxing ZHANG

    2008-01-01

    A total of 10 non-repetitive multi-drug-resist-ant Acinetobacter strains were collected. With reference to A. calcoaceticus (ATCC23055), A. baumannii (ATCC19606), A. lwoffii (ATCC17986), and A. junii (NCTC5866), DNA fingerprint technique, amplified ribo-somal DNA restriction analysis (ARDRA), and random amplified polymorphism DNA (RAPD) were carried out to identify the genomic species of Acinetobacter spp. The distances between them were calculated by the unweighted pair group method with arithmetic (UPGMA). Genotypes ofAcinetobacter spp. were effectively classified and an A. junii together with nine A. baumannii isolates was genomically identified. The combination of ARDRA and RAPD DNA-fingerprint technique shows high com-plementarity, and could be a useful tool in Acinetobacter genomic species identification.

  9. Multiple Genome Sequences of the Important Beer-Spoiling Species Lactobacillus backii

    OpenAIRE

    Geissler, Andreas J.; Behr, Jürgen; Vogel, Rudi F.

    2016-01-01

    Lactobacillus backii is an important beer-spoiling species. Five strains isolated from four different breweries were sequenced using single-molecule real-time sequencing. Five complete genomes were generated, which will help to understand niche adaptation to beer and provide the basis for consecutive analyses.

  10. Genomics and introgression: discovery and mapping of thousands of species-diagnostic SNPs using RAD sequencing

    Science.gov (United States)

    Hand, Brian K; Hether, Tyler D; Kovach, Ryan P.; Muhlfeld, Clint C.; Amish, Stephen J.; Boyer, Matthew C.; O’Rourke, Sean M.; Miller, Michael R.; Lowe, Winsor H.; Hohenlohe, Paul A.; Luikart, Gordon

    2015-01-01

    Invasive hybridization and introgression pose a serious threat to the persistence of many native species. Understanding the effects of hybridization on native populations (e.g., fitness consequences) requires numerous species-diagnostic loci distributed genome-wide. Here we used RAD sequencing to discover thousands of single-nucleotide polymorphisms (SNPs) that are diagnostic between rainbow trout (RBT, Oncorhynchus mykiss), the world’s most widely introduced fish, and native westslope cutthroat trout (WCT, O. clarkii lewisi) in the northern Rocky Mountains, USA. We advanced previous work that identified 4,914 species-diagnostic loci by using longer sequence reads (100 bp vs. 60 bp) and a larger set of individuals (n = 84). We sequenced RAD libraries for individuals from diverse sampling sources, including native populations of WCT and hatchery broodstocks of WCT and RBT. We also took advantage of a newly released reference genome assembly for RBT to align our RAD loci. In total, we discovered 16,788 putatively diagnostic SNPs, 10,267 of which we mapped to anchored chromosome locations on the RBT genome. A small portion of previously discovered putative diagnostic loci (325 of 4,914) were no longer diagnostic (i.e., fixed between species) based on our wider survey of non-hybridized RBT and WCT individuals. Our study suggests that RAD loci mapped to a draft genome assembly could provide the marker density required to identify genes and chromosomal regions influencing selection in admixed populations of conservation concern and evolutionary interest.

  11. Draft Genome Sequence of an Enterobacter Species Associated with Illnesses and Powdered Infant Formula

    Science.gov (United States)

    Jackson, Emily E.; Ogrodzki, Pauline; Pascoe, Ben; Sheppard, Samuel K.

    2016-01-01

    This is the first report of the draft genome sequence of an Enterobacter species that may have been transmitted from powdered infant formula (PIF) to infants, resulting in illness. Enterobacter spp. are currently permitted in PIF, but the transmission of this strain indicates that the microbiological criteria for PIF may need revision. PMID:26769921

  12. Clade- and species-specific features of genome evolution in the Saccharomycetaceae.

    Science.gov (United States)

    Wolfe, Kenneth H; Armisén, David; Proux-Wera, Estelle; ÓhÉigeartaigh, Seán S; Azam, Haleema; Gordon, Jonathan L; Byrne, Kevin P

    2015-08-01

    Many aspects of the genomes of yeast species in the family Saccharomycetaceae have been well conserved during evolution. They have similar genome sizes, genome contents, and extensive collinearity of gene order along chromosomes. Gene functions can often be inferred reliably by using information from Saccharomyces cerevisiae. Beyond this conservative picture however, there are many instances where a species or a clade diverges substantially from the S. cerevisiae paradigm-for example, by the amplification of a gene family, or by the absence of a biochemical pathway or a protein complex. Here, we review clade-specific features, focusing on genomes sequenced in our laboratory from the post-WGD genera Naumovozyma, Kazachstania and Tetrapisispora, and from the non-WGD species Torulaspora delbrueckii. Examples include the loss of the pathway for histidine synthesis in the cockroach-associated species Tetrapisispora blattae; the presence of a large telomeric GAL gene cluster in To. delbrueckii; losses of the dynein and dynactin complexes in several independent yeast lineages; fragmentation of the MAT locus and loss of the HO gene in Kazachstania africana; and the patchy phylogenetic distribution of RNAi pathway components. © FEMS 2015.

  13. Insights into the Musa genome: Syntenic relationships to rice and between Musa species

    NARCIS (Netherlands)

    Piffanelli, P.; Ciampi, A.Y.; Silva, F.R.; Santos, C.R.; Dhont, A.; Vilarinhos, A.; Pappas, G.; Souza, M.T.; Milller, R.N.G.

    2008-01-01

    Musa species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no la

  14. An evolutionary and functional genomics study of Noccaea caerulescens, a heavy metal hyperaccumulating plant species

    NARCIS (Netherlands)

    Wang, Y.

    2016-01-01

    Noccaea caerulescens is the only known Zn/Cd/Ni hyperaccumulator. The Ganges accession (2n = 14) has an, yet unpublished, genome size of ~319 Mb, with 29,712 predicted genes representing 15,874 gene families. This species is distributed mainly in Europe. Three ecotypes can be distinguished: two

  15. A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure.

    Science.gov (United States)

    Zuccolo, Andrea; Bowers, John E; Estill, James C; Xiong, Zhiyong; Luo, Meizhong; Sebastian, Aswathy; Goicoechea, José Luis; Collura, Kristi; Yu, Yeisoo; Jiao, Yuannian; Duarte, Jill; Tang, Haibao; Ayyampalayam, Saravanaraj; Rounsley, Steve; Kudrna, Dave; Paterson, Andrew H; Pires, J Chris; Chanderbali, Andre; Soltis, Douglas E; Chamala, Srikar; Barbazuk, Brad; Soltis, Pamela S; Albert, Victor A; Ma, Hong; Mandoli, Dina; Banks, Jody; Carlson, John E; Tomkins, Jeffrey; dePamphilis, Claude W; Wing, Rod A; Leebens-Mack, Jim

    2011-01-01

    Recent phylogenetic analyses have identified Amborella trichopoda, an understory tree species endemic to the forests of New Caledonia, as sister to a clade including all other known flowering plant species. The Amborella genome is a unique reference for understanding the evolution of angiosperm genomes because it can serve as an outgroup to root comparative analyses. A physical map, BAC end sequences and sample shotgun sequences provide a first view of the 870 Mbp Amborella genome. Analysis of Amborella BAC ends sequenced from each contig suggests that the density of long terminal repeat retrotransposons is negatively correlated with that of protein coding genes. Syntenic, presumably ancestral, gene blocks were identified in comparisons of the Amborella BAC contigs and the sequenced Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa genomes. Parsimony mapping of the loss of synteny corroborates previous analyses suggesting that the rate of structural change has been more rapid on lineages leading to Arabidopsis and Oryza compared with lineages leading to Populus and Vitis. The gamma paleohexiploidy event identified in the Arabidopsis, Populus and Vitis genomes is shown to have occurred after the divergence of all other known angiosperms from the lineage leading to Amborella. When placed in the context of a physical map, BAC end sequences representing just 5.4% of the Amborella genome have facilitated reconstruction of gene blocks that existed in the last common ancestor of all flowering plants. The Amborella genome is an invaluable reference for inferences concerning the ancestral angiosperm and subsequent genome evolution.

  16. The complete mitochondrial genomes of three cestode species of Taenia infecting animals and humans.

    Science.gov (United States)

    Liu, Guo-Hua; Lin, Rui-Qing; Li, Ming-Wei; Liu, Wei; Liu, Yi; Yuan, Zi-Guo; Song, Hui-Qun; Zhao, Guang-Hui; Zhang, Kou-Xing; Zhu, Xing-Quan

    2011-04-01

    Mitochondrial (mt) genome sequences provide useful markers for investigating population genetic structures, systematics and phylogenetics of organisms. Although Taenia multiceps, T. hydatigena, and T. taeniaeformis are common taeniid tapeworms of ruminants, pigs, dogs, or cats, causing significant economic losses, no published study on their mt genomes is available. The complete mt genomes of T. multiceps, T. hydatigena, and T. taeniaeformis were amplified in two overlapping fragments and then sequenced. The sizes of the entire mt genome were 13700 bp for T. multiceps, 13489 bp for T. hydatigena, and 13647 bp for T. taeniaeformis. Each of the three genomes contains 36 genes, consisting of 12 genes for proteins, 2 genes for rRNA, and 22 genes for tRNA, which are the same as the mt genomes of all other cestode species studied to date. All genes are transcribed in the same direction and have a nucleotide composition high in A and T. The contents of A+T of the complete genomes are 71.3% for T. multiceps, 70.8% for T. hydatigena, and 73.0% for T. taeniaeformis. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. T. multiceps and T. hydatigena had two noncoding regions, but T. taeniaeformis had only one. Phylogenetic analyses based on concatenated amino acid sequences of 12 protein-coding genes revealed that T. multiceps, T. hydatigena, and T. taeniaeformis were more closely related to the other members of the Taenia genus, consistent with results of previous morphological and molecular studies. The present study determined the complete mt genome sequences for three Taenia species of animal and human health significance, providing useful markers for studying the systematics, population genetics, and molecular epidemiology of these cestode parasites of animals and humans.

  17. Comparative transcriptome and chloroplast genome analyses of two related Dipteronia species

    Directory of Open Access Journals (Sweden)

    Tao Zhou

    2016-10-01

    Full Text Available Dipteronia (order Sapindales is an endangered genus endemic to China and has two living species, D. sinensis and D. dyeriana. The plants are closely related to the genus Acer, which is also classified in the order Sapindales. Evolutionary studies on Dipteronia have been hindered by the paucity of information on their genomes and plastids. Here, we used next generation sequencing to characterize the transcriptomes and complete chloroplast genomes of both Dipteronia species. A comparison of the transcriptomes of both species identified a total of 7,814 orthologs. Estimation of selection pressures using Ka/Ks ratios showed that only 30 of 5,435 orthologous pairs had a ratio significantly greater than 1, i.e., showing positive selection. However, 4,041 orthologs had a Ka/Ks < 0.5 (p < 0.05, suggesting that most genes had likely undergone purifying selection. Based on orthologous unigenes, 314 single copy nuclear genes were identified. Through a combination of de novo and reference guided assembly, plastid genomes were obtained; that of D. sinensis was 157,080 bp and that of D. dyeriana was 157,071 bp. Both plastid genomes encoded 87 protein coding genes, 40 tRNAs, and 8 rRNAs; no significant differences were detected in the size, gene content, and organization of the two plastomes. We used the whole chloroplast genomes to determine the phylogeny of D. sinensis and D. dyeriana and confirmed that the two species were highly divergent. Overall, our study provides comprehensive transcriptomic and chloroplast genomic resources, which will be valuable for future evolutionary studies of Dipteronia.

  18. Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers.

    Science.gov (United States)

    Wang, Nian; Thomson, Marian; Bodles, William J A; Crawford, Robert M M; Hunt, Harriet V; Featherstone, Alan Watson; Pellicer, Jaume; Buggs, Richard J A

    2013-06-01

    New sequencing technologies allow development of genome-wide markers for any genus of ecological interest, including plant genera such as Betula (birch) that have previously proved difficult to study due to widespread polyploidy and hybridization. We present a de novo reference genome sequence assembly, from 66× short read coverage, of Betula nana (dwarf birch) - a diploid that is the keystone woody species of subarctic scrub communities but of conservation concern in Britain. We also present 100 bp PstI RAD markers for B. nana and closely related Betula tree species. Assembly of RAD markers in 15 individuals by alignment to the reference B. nana genome yielded 44-86k RAD loci per individual, whereas de novo RAD assembly yielded 64-121k loci per individual. Of the loci assembled by the de novo method, 3k homologous loci were found in all 15 individuals studied, and 35k in 10 or more individuals. Matching of RAD loci to RAD locus catalogues from the B. nana individual used for the reference genome showed similar numbers of matches from both methods of RAD locus assembly but indicated that the de novo RAD assembly method may overassemble some paralogous loci. In 12 individuals hetero-specific to B. nana 37-47k RAD loci matched a catalogue of RAD loci from the B. nana individual used for the reference genome, whereas 44-60k RAD loci aligned to the B. nana reference genome itself. We present a preliminary study of allele sharing among species, demonstrating the utility of the data for introgression studies and for the identification of species-specific alleles.

  19. Phylogeny and molecular evolution of the Acc1 gene within the StH genome species in Triticeae (Poaceae).

    Science.gov (United States)

    Fan, Xing; Sha, Li-Na; Wang, Xiao-Li; Zhang, Hai-Qin; Kang, Hou-Yang; Wang, Yi; Zhou, Yong-Hong

    2013-10-15

    To estimate the phylogeny and molecular evolution of a single-copy gene encoding plastid acetyl-CoA carboxylase (Acc1) within the StH genome species, two Acc1 homoeologous sequences were isolated from nearly all the sampled StH genome species and were analyzed with those from 35 diploid taxa representing 19 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) the StH genome species from the same areas or neighboring geographic regions are closely related to each other; (2) the Acc1 gene sequences of the StH genome species from North America and Eurasia are evolutionarily distinct; (3) Dasypyrum has contributed to the nuclear genome of Elymus repens and Elymus mutabilis; (4) the StH genome polyploids have higher levels of sequence diversity in the H genome homoeolog than the St genome homoeolog; and (5) the Acc1 sequence may evolve faster in the polyploid species than in the diploids. Our result provides some insight on evolutionary dynamics of duplicate Acc1 gene, the polyploidy speciation and phylogeny of the StH genome species. © 2013 Elsevier B.V. All rights reserved.

  20. Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development

    Energy Technology Data Exchange (ETDEWEB)

    Vamathevan, Jessica J., E-mail: jessica.j.vamathevan@gsk.com [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom); Hall, Matthew D.; Hasan, Samiul; Woollard, Peter M. [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom); Xu, Meng; Yang, Yulan; Li, Xin; Wang, Xiaoli [BGI-Shenzen, Shenzhen (China); Kenny, Steve [Safety Assessment, PTS, GlaxoSmithKline, Ware (United Kingdom); Brown, James R. [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, PA (United States); Huxley-Jones, Julie [UK Platform Technology Sciences (PTS) Operations and Planning, PTS, GlaxoSmithKline, Stevenage (United Kingdom); Lyon, Jon; Haselden, John [Safety Assessment, PTS, GlaxoSmithKline, Ware (United Kingdom); Min, Jiumeng [BGI-Shenzen, Shenzhen (China); Sanseau, Philippe [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom)

    2013-07-15

    Improving drug attrition remains a challenge in pharmaceutical discovery and development. A major cause of early attrition is the demonstration of safety signals which can negate any therapeutic index previously established. Safety attrition needs to be put in context of clinical translation (i.e. human relevance) and is negatively impacted by differences between animal models and human. In order to minimize such an impact, an earlier assessment of pharmacological target homology across animal model species will enhance understanding of the context of animal safety signals and aid species selection during later regulatory toxicology studies. Here we sequenced the genomes of the Sus scrofa Göttingen minipig and the Canis familiaris beagle, two widely used animal species in regulatory safety studies. Comparative analyses of these new genomes with other key model organisms, namely mouse, rat, cynomolgus macaque, rhesus macaque, two related breeds (S. scrofa Duroc and C. familiaris boxer) and human reveal considerable variation in gene content. Key genes in toxicology and metabolism studies, such as the UGT2 family, CYP2D6, and SLCO1A2, displayed unique duplication patterns. Comparisons of 317 known human drug targets revealed surprising variation such as species-specific positive selection, duplication and higher occurrences of pseudogenized targets in beagle (41 genes) relative to minipig (19 genes). These data will facilitate the more effective use of animals in biomedical research. - Highlights: • Genomes of the minipig and beagle dog, two species used in pharmaceutical studies. • First systematic comparative genome analysis of human and six experimental animals. • Key drug toxicology genes display unique duplication patterns across species. • Comparison of 317 drug targets show species-specific evolutionary patterns.

  1. Studies on the yield and quality characteristics of YeiweiB plants transformed with Oryza minuta genomic DNA%转小粒野生稻基因种质野威B的产量与米质性状

    Institute of Scientific and Technical Information of China (English)

    匡勇; 杨曼云; 匡逢春; 黄志远; 胡远艺; 夏石头; 赵炳然

    2011-01-01

    野威B是将小粒野生稻(Oryza minuta)的基因组DNA通过穗茎注射法导入杂交水稻亲本V20B中培育出的转基因水稻新种质.与亲本V20B相比,野威B的有效穗数和每穗总粒数小于V20B,但每穗实粒数却高于V20B,平均结实率比V20B增加11.8%,千粒重比V20B的少6 g.野威B倒1叶和倒2叶叶鞘中可溶性糖含量先降低,黄熟期略微升高,蜡熟期降低;V20B倒1叶叶鞘中可溶性糖含量变化不明显,倒2叶叶鞘中可溶性糖含量先升高,乳熟期降低,之后升高.野威B的糙米率和整精米率与V20B相近,垩白粒率比V20B降低47.5%,垩白面积下降62.1%,胶稠度比V20B的高,直链淀粉含量比V20B降低39.0%.%Yewei B, a new rice germplasm was bred through transformed with genomic DNA of Oryza minuta into V20B by earstem injecting.Compared with V20B, the effective panicles numbers and the spikelets number per panicles of Yewei B are smaller, but the filled grains per spike are higher.The average seed setting percentage of Yewei B is found to be 11.8 % higher than that of V20B, but 1 000-grain weight of Yewei B is 6 gram less than that of V20B.The content of soluble sugar in leaf sheath of the topl st and top 2nd leaf decreases first then increases slightly and then decreases again in Yewei B.In V20B, the content of soluble sugar is less distinctly changed in leaf sheath of the top 1st leaf, and it increases first then decreases and then increases again in leaf sheath of the top 2nd leaf.The brown rice percentage and head rice rate of Yewei B is similar to V20B, but the percentage of chalky grain and the area of chalkiness are 47.5% and 62.1%lower than that of V20B respectively.Gel consistency of Yewei B is higher and the content of amylose is 39.0% lower than that of V20B.

  2. Mediterranean species of Caulerpa are polyploid with smaller genomes in the invasive ones.

    Directory of Open Access Journals (Sweden)

    Elena Varela-Álvarez

    Full Text Available Caulerpa species are marine green algae, which often act as invasive species with rapid clonal proliferation when growing outside their native biogeographical borders. Despite many publications on the genetics and ecology of Caulerpa species, their life history and ploidy levels are still to be resolved and are the subject of large controversy. While some authors claimed that the thallus found in nature has a haplodiplobiontic life cycle with heteromorphic alternation of generations, other authors claimed a diploid or haploid life cycle with only one generation involved. DAPI-staining with image analysis and microspectrophotometry were used to estimate relative nuclear DNA contents in three species of Caulerpa from the Mediterranean, at individual, population and species levels. Results show that ploidy levels and genome size vary in these three Caulerpa species, with a reduction in genome size for the invasive ones. Caulerpa species in the Mediterranean are polyploids in different life history phases; all sampled C. taxifolia and C. racemosa var. cylindracea were in haplophasic phase, but in C. prolifera, the native species, individuals were found in both diplophasic and haplophasic phases. Different levels of endopolyploidy were found in both C. prolifera and C. racemosa var. cylindracea. Life history is elucidated for the Mediterranean C. prolifera and it is hypothesized that haplophasic dominance in C. racemosa var. cylindracea and C. taxifolia is a beneficial trait for their invasive strategies.

  3. Gridded genomic libraries of different chordate species: a reference library system for basic and comparative genetic studies of chordate genomes.

    Science.gov (United States)

    Burgtorf, C; Welzel, K; Hasenbank, R; Zehetner, G; Weis, S; Lehrach, H

    1998-09-01

    The use of genomic libraries maintained in arrayed format is becoming a more and more popular tool for the analysis of molecular evolution and comparative molecular development. Being able to use already existing reference libraries considerably reduces the work load, and if results are made publicly available, it will facilitate in silica experiments in the future. Here we describe the construction and preliminary characterization of six cosmid libraries of different chordate species, Ciona intestinalis (Hemichordate), Branchiostoma floridae (Cephalochordate), Lampetra fluviatilis (Cyclostoma), Xiphophorus maculatus, and Danio rerio (Osteichthyes) in Lawrist7 and Fugu rubripes in Lawrist4.

  4. Genome-wide analyses of recombination suggest that Giardia intestinalis assemblages represent different species.

    Science.gov (United States)

    Xu, Feifei; Jerlström-Hultqvist, Jon; Andersson, Jan O

    2012-10-01

    Giardia intestinalis is a major cause of waterborne enteric disease in humans. The species is divided into eight assemblages suggested to represent separate Giardia species based on host specificities and the genetic divergence of marker genes. We have investigated whether genome-wide recombination occurs between assemblages using the three available G. intestinalis genomes. First, the relative nonsynonymous substitution rates of the homologs were compared for 4,009 positional homologs. The vast majority of these comparisons indicate genetic isolation without interassemblage recombinations. Only a region of 6 kbp suggests genetic exchange between assemblages A and E, followed by gene conversion events. Second, recombination-detecting software fails to identify within-gene recombination between the different assemblages for most of the homologs. Our results indicate very low frequency of recombination between the syntenic core genes, suggesting that G. intestinalis assemblages are genetically isolated lineages and thus should be viewed as separated Giardia species.

  5. The Genome of a Southern Hemisphere Seagrass Species (Zostera muelleri)1[OPEN

    Science.gov (United States)

    Golicz, Agnieszka A.; Paterson, Andrew H.; Sablok, Gaurav; Krishnaraj, Rahul R.; Chan, Chon-Kit Kenneth; Batley, Jacqueline; Ralph, Peter J.

    2016-01-01

    Seagrasses are marine angiosperms that evolved from land plants but returned to the sea around 140 million years ago during the early evolution of monocotyledonous plants. They successfully adapted to abiotic stresses associated with growth in the marine environment, and today, seagrasses are distributed in coastal waters worldwide. Seagrass meadows are an important oceanic carbon sink and provide food and breeding grounds for diverse marine species. Here, we report the assembly and characterization of the Zostera muelleri genome, a southern hemisphere temperate species. Multiple genes were lost or modified in Z. muelleri compared with terrestrial or floating aquatic plants that are associated with their adaptation to life in the ocean. These include genes for hormone biosynthesis and signaling and cell wall catabolism. There is evidence of whole-genome duplication in Z. muelleri; however, an ancient pan-commelinid duplication event is absent, highlighting the early divergence of this species from the main monocot lineages. PMID:27373688

  6. Genome mining of the genetic diversity in the Aspergillus genus - from a collection of more than 30 Aspergillus species

    DEFF Research Database (Denmark)

    Rasmussen, Jane Lind Nybo; Vesth, Tammi Camilla; Theobald, Sebastian;

    In the era of high-throughput sequencing, comparative genomics can be applied for evaluating species diversity. In this project we aim to compare the genomes of 300 species of filamentous fungi from the Aspergillus genus, a complex task. To be able to define species, clade, and core features......, this project uses BLAST on the amino acid level to discover orthologs. With a potential of 300 Aspergillus species each having ~12,000 annotated genes, traditional clustering will demand supercomputing. Instead, our approach reduces the search space by identifying isoenzymes within each genome creating...... intragenomic protein families (iPFs), and then connecting iPFs across all genomes. The initial findings in a set of 31 species show that ~48% of the annotated genes are core genes (genes shared between all species) and 2-24% of the genes are defining the individual species. The methods presented here...

  7. Examining phylogenetic relationships of Erwinia and Pantoea species using whole genome sequence data.

    Science.gov (United States)

    Zhang, Yucheng; Qiu, Sai

    2015-11-01

    The genera Erwinia and Pantoea contain species that are devastating plant pathogens, non-pathogen epiphytes, and opportunistic human pathogens. However, some controversies persist in the taxonomic classification of these two closely related genera. The phylogenomic analysis of these two genera was investigated via a comprehensive analysis of 25 Erwinia genomes and 23 Pantoea genomes. Single-copy orthologs could be extracted from the Erwinia/Pantoea core-genome to reconstruct the Erwinia/Pantoea phylogeny. This tree has strong bootstrap support for almost all branches. We also estimated the in silico DNA-DNA hybridization (isDDH) and the average nucleotide identity (ANI) values between each genome; strains from the same species showed ANI values ≥96% and isDDH values >70%. These data confirm that whole genome sequence data provides a powerful tool to resolve the complex taxonomic questions of Erwinia/Pantoea, e.g. Pantoea agglomerans 299R was not clustered into a single group with other P. agglomerans strains, and the ANI values and isDDH values between them were Erwinia/Pantoea phylogeny.

  8. Assessment of genetic diversity of Xanthomonas oryzae pv. oryzae

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Bacterial blight of rice, caused by Xanthomonas oryzae pv. Oryzae(Xoo. ), is one of the major rice diseases in China. Making clear the shift of genetic diversity of the pathogen will provide important information for rice breeding. Strains collected from 11 provinces located in Southern region of the Changjiang River in China were assessed by using inoculation method and IS-PCR(Insertion Sequence-Based Polymerase Chain Reaction) analysis.

  9. Ectopic Gene Conversions in the Genome of Ten Hemiascomycete Yeast Species

    Directory of Open Access Journals (Sweden)

    Robert T. Morris

    2011-01-01

    Full Text Available We characterized ectopic gene conversions in the genome of ten hemiascomycete yeast species. Of the ten species, three diverged prior to the whole genome duplication (WGD event present in the yeast lineage and seven diverged after it. We analyzed gene conversions from three separate datasets: paralogs from the three pre-WGD species, paralogs from the seven post-WGD species, and common ohnologs from the seven post-WGD species. Gene conversions have similar lengths and frequency and occur between sequences having similar degrees of divergence, in paralogs from pre- and post-WGD species. However, the sequences of ohnologs are both more divergent and less frequently converted than those of paralogs. This likely reflects the fact that ohnologs are more often found on different chromosomes and are evolving under stronger selective pressures than paralogs. Our results also show that ectopic gene conversions tend to occur more frequently between closely linked genes. They also suggest that the mechanisms responsible for the loss of introns in S. cerevisiae are probably also involved in the gene 3'-end gene conversion bias observed between the paralogs of this species.

  10. Draft Genome Sequences of Two Closely Related Aflatoxigenic Aspergillus Species Obtained from the Ivory Coast.

    Science.gov (United States)

    Moore, Geromy G; Mack, Brian M; Beltz, Shannon B

    2015-12-03

    Aspergillus ochraceoroseus and Aspergillus rambellii were isolated from soil detritus in Taï National Park, Ivory Coast, Africa. The Type strain for each species happens to be the only representative ever sampled. Both species secrete copious amounts of aflatoxin B1 and sterigmatocystin, because each of their genomes contains clustered genes for biosynthesis of these mycotoxins. We sequenced their genomes using a personal genome machine and found them to be smaller in size (A. ochraceoroseus = 23.9 Mb and A. rambellii = 26.1 Mb), as well as in numbers of predicted genes (7,837 and 7,807, respectively), compared to other sequenced Aspergilli. Our findings also showed that the A. ochraceoroseus Type strain contains a single MAT1-1 gene, while the Type strain of A. rambellii contains a single MAT1-2 gene, indicating that these species are heterothallic (self-infertile). These draft genomes will be useful for understanding the genes and pathways necessary for the cosynthesis of these two toxic secondary metabolites as well as the evolution of these pathways in aflatoxigenic fungi. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2015. This work is written by a US Government employee and is in the public domain in the US.

  11. Innovative molecular diagnosis of Trichinella species based on β-carbonic anhydrase genomic sequence.

    Science.gov (United States)

    Zolfaghari Emameh, Reza; Kuuslahti, Marianne; Näreaho, Anu; Sukura, Antti; Parkkila, Seppo

    2016-03-01

    Trichinellosis is a helminthic infection where different species of Trichinella nematodes are the causative agents. Several molecular assays have been designed to aid diagnostics of trichinellosis. These assays are mostly complex and expensive. The genomes of Trichinella species contain certain parasite-specific genes, which can be detected by polymerase chain reaction (PCR) methods. We selected β-carbonic anhydrase (β-CA) gene as a target, because it is present in many parasites genomes but absent in vertebrates. We developed a novel β-CA gene-based method for detection of Trichinella larvae in biological samples. We first identified a β-CA protein sequence from Trichinella spiralis by bioinformatic tools using β-CAs from Caenorhabditis elegans and Drosophila melanogaster. Thereafter, 16 sets of designed primers were tested to detect β-CA genomic sequences from three species of Trichinella, including T. spiralis, Trichinella pseudospiralis and Trichinella nativa. Among all 16 sets of designed primers, the primer set No. 2 efficiently amplified β-CA genomic sequences from T. spiralis, T. pseudospiralis and T. nativa without any false-positive amplicons from other parasite samples including Toxoplasma gondii, Toxocara cati and Parascaris equorum. This robust and straightforward method could be useful for meat inspection in slaughterhouses, quality control by food authorities and medical laboratories.

  12. Drosophila genomes and the development of affordable molecular markers for species genotyping.

    Science.gov (United States)

    Minuk, Leigh; Civetta, Alberto

    2011-04-01

    The recent completion of genome sequencing of 12 species of Drosophila has provided a powerful resource for hypothesis testing, as well as the development of technical tools. Here we take advantage of genome sequence data from two closely related species of Drosophila, Drosophila simulans and Drosophila sechellia, to quickly identify candidate molecular markers for genotyping based on expected insertion or deletion (indel) differences between species. Out of 64 candidate molecular markers selected along the second and third chromosome of Drosophila, 51 molecular markers were validated using PCR and gel electrophoresis. We found that the 20% error rate was due to sequencing errors in the genome data, although we cannot rule out possible indel polymorphisms. The approach has the advantage of being affordable and quick, as it only requires the use of bioinformatics tools for predictions and a PCR and agarose gel based assay for validation. Moreover, the approach could be easily extended to a wide variety of taxa with the only limitation being the availability of complete or partial genome sequence data.

  13. Next generation haplotyping to decipher nuclear genomic interspecific admixture in Citrus species: analysis of chromosome 2.

    Science.gov (United States)

    Curk, Franck; Ancillo, Gema; Garcia-Lor, Andres; Luro, François; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Navarro, Luis; Ollitrault, Patrick

    2014-12-29

    The most economically important Citrus species originated by natural interspecific hybridization between four ancestral taxa (Citrus reticulata, Citrus maxima, Citrus medica, and Citrus micrantha) and from limited subsequent interspecific recombination as a result of apomixis and vegetative propagation. Such reticulate evolution coupled with vegetative propagation results in mosaic genomes with large chromosome fragments from the basic taxa in frequent interspecific heterozygosity. Modern breeding of these species is hampered by their complex heterozygous genomic structures that determine species phenotype and are broken by sexual hybridisation. Nevertheless, a large amount of diversity is present in the citrus gene pool, and breeding to allow inclusion of desirable traits is of paramount importance. However, the efficient mobilization of citrus biodiversity in innovative breeding schemes requires previous understanding of Citrus origins and genomic structures. Haplotyping of multiple gene fragments along the whole genome is a powerful approach to reveal the admixture genomic structure of current species and to resolve the evolutionary history of the gene pools. In this study, the efficiency of parallel sequencing with 454 methodology to decipher the hybrid structure of modern citrus species was assessed by analysis of 16 gene fragments on chromosome 2. 454 amplicon libraries were established using the Fluidigm array system for 48 genotypes and 16 gene fragments from chromosome 2. Haplotypes were established from the reads of each accession and phylogenetic analyses were performed using the haplotypic data for each gene fragment. The length of 454 reads and the level of differentiation between the ancestral taxa of modern citrus allowed efficient haplotype phylogenetic assignations for 12 of the 16 gene fragments. The analysis of the mixed genomic structure of modern species and cultivars (i) revealed C. maxima introgressions in modern mandarins, (ii) was

  14. Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora.

    Directory of Open Access Journals (Sweden)

    Xiaojun Nie

    Full Text Available BACKGROUND: Crofton weed (Ageratina adenophora is one of the most hazardous invasive plant species, which causes serious economic losses and environmental damages worldwide. However, the sequence resource and genome information of A. adenophora are rather limited, making phylogenetic identification and evolutionary studies very difficult. Here, we report the complete sequence of the A. adenophora chloroplast (cp genome based on Illumina sequencing. METHODOLOGY/PRINCIPAL FINDINGS: The A. adenophora cp genome is 150, 689 bp in length including a small single-copy (SSC region of 18, 358 bp and a large single-copy (LSC region of 84, 815 bp separated by a pair of inverted repeats (IRs of 23, 755 bp. The genome contains 130 unique genes and 18 duplicated in the IR regions, with the gene content and organization similar to other Asteraceae cp genomes. Comparative analysis identified five DNA regions (ndhD-ccsA, psbI-trnS, ndhF-ycf1, ndhI-ndhG and atpA-trnR containing parsimony-informative characters higher than 2%, which may be potential informative markers for barcoding and phylogenetic analysis. Repeat structure, codon usage and contraction of the IR were also investigated to reveal the pattern of evolution. Phylogenetic analysis demonstrated a sister relationship between A. adenophora and Guizotia abyssinica and supported a monophyly of the Asterales. CONCLUSION: We have assembled and analyzed the chloroplast genome of A. adenophora in this study, which was the first sequenced plastome in the Eupatorieae tribe. The complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family.

  15. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species

    Energy Technology Data Exchange (ETDEWEB)

    Schmoll, Monika; Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E.; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R.; Hernández-Oñate, Miguel; Kruszewska, Joanna S.; Lawry, Robert; Mora-Montes, Hector M.; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R.; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J. Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio; Herrera-Estrella, Alfredo

    2016-02-10

    SUMMARY

    The genusspecies'>Trichodermacontains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for “hot topic” research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism inspecies'>T. reesei,species'>T. atroviride, andspecies'>T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of eachspecies'>Trichodermaspecies discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved inN-linked glycosylation was detected, as were indications for the ability ofspecies'>Trichodermaspp. to generate hybrid galactose-containingN-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique tospecies'>Trichoderma, and these warrant further

  16. Gene expansion shapes genome architecture in the human pathogen Lichtheimia corymbifera: an evolutionary genomics analysis in the ancient terrestrial mucorales (Mucoromycotina.

    Directory of Open Access Journals (Sweden)

    Volker U Schwartze

    2014-08-01

    Full Text Available Lichtheimia species are the second most important cause of mucormycosis in Europe. To provide broader insights into the molecular basis of the pathogenicity-associated traits of the basal Mucorales, we report the full genome sequence of L. corymbifera and compared it to the genome of Rhizopus oryzae, the most common cause of mucormycosis worldwide. The genome assembly encompasses 33.6 MB and 12,379 protein-coding genes. This study reveals four major differences of the L. corymbifera genome to R. oryzae: (i the presence of an highly elevated number of gene duplications which are unlike R. oryzae not due to whole genome duplication (WGD, (ii despite the relatively high incidence of introns, alternative splicing (AS is not frequently observed for the generation of paralogs and in response to stress, (iii the content of repetitive elements is strikingly low (<5%, (iv L. corymbifera is typically haploid. Novel virulence factors were identified which may be involved in the regulation of the adaptation to iron-limitation, e.g. LCor01340.1 encoding a putative siderophore transporter and LCor00410.1 involved in the siderophore metabolism. Genes encoding the transcription factors LCor08192.1 and LCor01236.1, which are similar to GATA type regulators and to calcineurin regulated CRZ1, respectively, indicating an involvement of the calcineurin pathway in the adaption to iron limitation. Genes encoding MADS-box transcription factors are elevated up to 11 copies compared to the 1-4 copies usually found in other fungi. More findings are: (i lower content of tRNAs, but unique codons in L. corymbifera, (ii Over 25% of the proteins are apparently specific for L. corymbifera. (iii L. corymbifera contains only 2/3 of the proteases (known to be essential virulence factors in comparison to R. oryzae. On the other hand, the number of secreted proteases, however, is roughly twice as high as in R. oryzae.

  17. Bipolaris oryzae, a novel fungal opportunist causing keratitis.

    Science.gov (United States)

    Wang, Luxia; Al-Hatmi, Abdullah M S; Lai, Xuwen; Peng, Lianghong; Yang, Chuanhong; Lai, Huangwen; Li, Jianxun; Meis, Jacques F; de Hoog, G Sybren; Zhuo, Chao; Chen, Min

    2016-05-01

    We report a case of mycotic keratitis caused by Bipolaris oryzae with predisposing trauma from a foreign body. The fungus was identified by sequencing the internal transcribed spacer region, translation elongation factor 1α (TEF1) gene, and partial glyceraldehyde-3-phosphate dehydrogenase (GPDH) gene, and the species identity was confirmed on the basis of its characteristic conidial phenotype. The patient was treated with surgical intervention and antifungal agents, including intravenous fluconazole (FLC), oral itraconazole, topical 0.15% amphotericin B eye drops, and 0.5% FLC eye drops. To our knowledge, this is the first report of mycotic keratitis caused by B. oryzae worldwide.

  18. Fifteen million years of evolution in the Oryza genus shows extensive gene family expansion.

    Science.gov (United States)

    Jacquemin, Julie; Ammiraju, Jetty S S; Haberer, Georg; Billheimer, Dean D; Yu, Yeisoo; Liu, Liana C; Rivera, Luis F; Mayer, Klaus; Chen, Mingsheng; Wing, Rod A

    2014-04-01

    In analyzing gene families in the whole-genome sequences available for O. sativa (AA), O. glaberrima (AA), and O. brachyantha (FF), we observed large size expansions in the AA genomes compared to FF genomes for the super-families F-box and NB-ARC, and five additional families: the Aspartic proteases, BTB/POZ proteins (BTB), Glutaredoxins, Trypsin α-amylase inhibitor proteins, and Zf-Dof proteins. Their evolutionary dynamic was investigated to understand how and why such important size variations are observed between these closely related species. We show that expansions resulted from both amplification, largely by tandem duplications, and contraction by gene losses. For the F-box and NB-ARC gene families, the genes conserved in all species were under strong purifying selection while expanded orthologous genes were under more relaxed purifying selection. In F-box, NB-ARC, and BTB, the expanded groups were enriched in genes with little evidence of expression, in comparison with conserved groups. We also detected 87 loci under positive selection in the expanded groups. These results show that most of the duplicated copies in the expanded groups evolve neutrally after duplication because of functional redundancy but a fraction of these genes were preserved following neofunctionalization. Hence, the lineage-specific expansions observed between Oryza species were partly driven by directional selection.

  19. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Nor’Aishah, E-mail: aishahnh@ns.uitm.edu.my [Faculty of Applied Science, UniversitiTeknologi MARA (UiTM), Kuala Pilah, Negeri Sembilan (Malaysia); Rafii, Mohd Y., E-mail: mrafii@upm.edu.my [Institute of Tropical Agriculture, Universiti Putra Malaysia (UPM), Serdang, Selangor (Malaysia); Department of Crop Science, Universiti Putra Malaysia (UPM), Serdang, Selangor (Malaysia); Rahim, Harun A. [Agrotechnology & Bioscience Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor (Malaysia); Ali, Nusaibah Syd [Department of Plant Protection, Universiti Putra Malaysia (UPM), Serdang, Selangor (Malaysia); Mazlan, Norida [Department of Agriculture Technology, Universiti Putra Malaysia (UPM), Serdang, Selangor (Malaysia); Abdullah, Shamsiah [Faculty of Plantation and Agrotechnology, UniversitiTeknologi MARA (UiTM), Shah Alam, Selangor (Malaysia)

    2016-02-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberang Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management.

  20. Motif-independent prediction of a secondary metabolism gene cluster using comparative genomics: application to sequenced genomes of Aspergillus and ten other filamentous fungal species.

    Science.gov (United States)

    Takeda, Itaru; Umemura, Myco; Koike, Hideaki; Asai, Kiyoshi; Machida, Masayuki

    2014-08-01

    Despite their biological importance, a significant number of genes for secondary metabolite biosynthesis (SMB) remain undetected due largely to the fact that they are highly diverse and are not expressed under a variety of cultivation conditions. Several software tools including SMURF and antiSMASH have been developed to predict fungal SMB gene clusters by finding core genes encoding polyketide synthase, nonribosomal peptide synthetase and dimethylallyltryptophan synthase as well as several others typically present in the cluster. In this work, we have devised a novel comparative genomics method to identify SMB gene clusters that is independent of motif information of the known SMB genes. The method detects SMB gene clusters by searching for a similar order of genes and their presence in nonsyntenic blocks. With this method, we were able to identify many known SMB gene clusters with the core genes in the genomic sequences of 10 filamentous fungi. Furthermore, we have also detected SMB gene clusters without core genes, including the kojic acid biosynthesis gene cluster of Aspergillus oryzae. By varying the detection parameters of the method, a significant difference in the sequence characteristics was detected between the genes residing inside the clusters and those outside the clusters. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  1. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires.

    Science.gov (United States)

    Burstein, David; Amaro, Francisco; Zusman, Tal; Lifshitz, Ziv; Cohen, Ofir; Gilbert, Jack A; Pupko, Tal; Shuman, Howard A; Segal, Gil

    2016-02-01

    Infection by the human pathogen Legionella pneumophila relies on the translocation of ∼ 300 virulence proteins, termed effectors, which manipulate host cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species and predicted their effector repertoires using a previously validated machine learning approach. This analysis identified 5,885 predicted effectors. The effector repertoires of different Legionella species were found to be largely non-overlapping, and only seven core effectors were shared by all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from the natural protozoan hosts of these species. Furthermore, we detected numerous new conserved effector domains and discovered new domain combinations, which allowed the inference of as yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution.

  2. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    Science.gov (United States)

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  3. Seroprevalence and genomic divergence of circulating strains of feline immunodeficiency virus among Felidae and Hyaenidae species.

    Science.gov (United States)

    Troyer, Jennifer L; Pecon-Slattery, Jill; Roelke, Melody E; Johnson, Warren; VandeWoude, Sue; Vazquez-Salat, Nuria; Brown, Meredith; Frank, Laurence; Woodroffe, Rosie; Winterbach, Christiaan; Winterbach, Hanlie; Hemson, Graham; Bush, Mitch; Alexander, Kathleen A; Revilla, Eloy; O'Brien, Stephen J

    2005-07-01

    Feline immunodeficiency virus (FIV) infects numerous wild and domestic feline species and is closely related to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Species-specific strains of FIV have been described for domestic cat (Felis catus), puma (Puma concolor), lion (Panthera leo), leopard (Panthera pardus), and Pallas' cat (Otocolobus manul). Here, we employ a three-antigen Western blot screening (domestic cat, puma, and lion FIV antigens) and PCR analysis to survey worldwide prevalence, distribution, and genomic differentiation of FIV based on 3,055 specimens from 35 Felidae and 3 Hyaenidae species. Although FIV infects a wide variety of host species, it is confirmed to be endemic in free-ranging populations of nine Felidae and one Hyaenidae species. These include the large African carnivores (lion, leopard, cheetah, and spotted hyena), where FIV is widely distributed in multiple populations; most of the South American felids (puma, jaguar, ocelot, margay, Geoffroy's cat, and tigrina), which maintain a lower FIV-positive level throughout their range; and two Asian species, the Pallas' cat, which has a species-specific strain of FIV, and the leopard cat, which has a domestic cat FIV strain in one population. Phylogenetic analysis of FIV proviral sequence demonstrates that most species for which FIV is endemic harbor monophyletic, genetically distinct species-specific FIV strains, suggesting that FIV transfer between cat species has occurred in the past but is quite infrequent today.

  4. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    Science.gov (United States)

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  5. Comparative Genomics Revealed Genetic Diversity and Species/Strain-Level Differences in Carbohydrate Metabolism of Three Probiotic Bifidobacterial Species

    Directory of Open Access Journals (Sweden)

    Toshitaka Odamaki

    2015-01-01

    Full Text Available Strains of Bifidobacterium longum, Bifidobacterium breve, and Bifidobacterium animalis are widely used as probiotics in the food industry. Although numerous studies have revealed the properties and functionality of these strains, it is uncertain whether these characteristics are species common or strain specific. To address this issue, we performed a comparative genomic analysis of 49 strains belonging to these three bifidobacterial species to describe their genetic diversity and to evaluate species-level differences. There were 166 common clusters between strains of B. breve and B. longum, whereas there were nine common clusters between strains of B. animalis and B. longum and four common clusters between strains of B. animalis and B. breve. Further analysis focused on carbohydrate metabolism revealed the existence of certain strain-dependent genes, such as those encoding enzymes for host glycan utilisation or certain membrane transporters, and many genes commonly distributed at the species level, as was previously reported in studies with limited strains. As B. longum and B. breve are human-residential bifidobacteria (HRB, whereas B. animalis is a non-HRB species, several of the differences in these species’ gene distributions might be the result of their adaptations to the nutrient environment. This information may aid both in selecting probiotic candidates and in understanding their potential function as probiotics.

  6. Gene Duplication, Population Genomics, and Species-Level Differentiation within a Tropical Mountain Shrub

    Science.gov (United States)

    Mastretta-Yanes, Alicia; Zamudio, Sergio; Jorgensen, Tove H.; Arrigo, Nils; Alvarez, Nadir; Piñero, Daniel; Emerson, Brent C.

    2014-01-01

    Gene duplication leads to paralogy, which complicates the de novo assembly of genotyping-by-sequencing (GBS) data. The issue of paralogous genes is exacerbated in plants, because they are particularly prone to gene duplication events. Paralogs are normally filtered from GBS data before undertaking population genomics or phylogenetic analyses. However, gene duplication plays an important role in the functional diversification of genes and it can also lead to the formation of postzygotic barriers. Using populations and closely related species of a tropical mountain shrub, we examine 1) the genomic differentiation produced by putative orthologs, and 2) the distribution of recent gene duplication among lineages and geography. We find high differentiation among populations from isolated mountain peaks and species-level differentiation within what is morphologically described as a single species. The inferred distribution of paralogs among populations is congruent with taxonomy and shows that GBS could be used to examine recent gene duplication as a source of genomic differentiation of nonmodel species. PMID:25223767

  7. Characterization and phylogenetic analysis of -gliadin gene sequences reveals significant genomic divergence in Triticeae species

    Indian Academy of Sciences (India)

    Guang-Rong Li; Tao Lang; En-Nian Yang; Cheng Liu; Zu-Jun Yang

    2014-12-01

    Although the unique properties of wheat -gliadin gene family are well characterized, little is known about the evolution and genomic divergence of -gliadin gene family within the Triticeae. We isolated a total of 203 -gliadin gene sequences from 11 representative diploid and polyploid Triticeae species, and found 108 sequences putatively functional. Our results indicate that -gliadin genes may have possibly originated from wild Secale species, where the sequences contain the shortest repetitive domains and display minimum variation. A miniature inverted-repeat transposable element insertion is reported for the first time in -gliadin gene sequence of Thinopyrum intermedium in this study, indicating that the transposable element might have contributed to the diversification of -gliadin genes family among Triticeae genomes. The phylogenetic analyses revealed that the -gliadin gene sequences of Dasypyrum, Australopyrum, Lophopyrum, Eremopyrum and Pseudoroengeria species have amplified several times. A search for four typical toxic epitopes for celiac disease within the Triticeae -gliadin gene sequences showed that the -gliadins of wild Secale, Australopyrum and Agropyron genomes lack all four epitopes, while other Triticeae species have accumulated these epitopes, suggesting that the evolution of these toxic epitopes sequences occurred during the course of speciation, domestication or polyploidization of Triticeae.

  8. Genetic Segregation and Genomic Hybridization Patterns Support an Allotetraploid Structure and Disomic Inheritance for Salix Species

    Directory of Open Access Journals (Sweden)

    Gianni Barcaccia

    2014-09-01

    Full Text Available The Salix alba L. (white willow—Salix fragilis L. (crack willow complex includes closely related polyploid species, mainly tetraploid (2n = 4x = 76, which are dioecious and hence obligate allogamous. Because little is known about the genome constitution and chromosome behavior of these pure willow trees, genetic analysis of their naturally occurring interspecific polyploid hybrids is still very difficult. A two-way pseudo-testcross strategy was exploited using single-dose AFLP markers in order to assess the main inheritance patterns of tetraploid biotypes (disomy vs. tetrasomy in segregating populations stemmed from S. alba × S. fragilis crosses and reciprocals. In addition, a genomic in situ hybridization (GISH technology was implemented in willow to shed some light on the genome structure of S. alba and S. fragilis species, and their hybrids (allopolyploidy vs. autopolyploidy. The frequency of S. alba-specific molecular markers was almost double compared to that of S. fragilis-specific ones, suggesting the phylogenetic hypothesis of S. fragilis as derivative species from S. alba-like progenitors. Cytogenetic observations at pro-metaphase revealed about half of the chromosome complements being less contracted than the remaining ones, supporting an allopolyploid origin of both S. alba and S. fragilis. Both genetic segregation and genomic hybridization data are consistent with an allotetraploid nature of the Salix species. In particular, the vast majority of the AFLP markers were inherited according to disomic patterns in S. alba × S. fragilis populations and reciprocals. Moreover, in all S. alba against S. fragilis hybridizations and reciprocals, GISH signals were observed only on the contracted chromosomes whereas the non-contracted chromosomes were never hybridized. In conclusion, half of the chromosomes of the pure species S. alba and S. fragilis are closely related and they could share a common diploid ancestor, while the rest of

  9. The Complete Genome of Brucella Suis 019 Provides Insights on Cross-Species Infection

    Directory of Open Access Journals (Sweden)

    Yuanzhi Wang

    2016-01-01

    Full Text Available Brucella species are the most important zoonotic pathogens worldwide and cause considerable harm to humans and animals. In this study, we presented the complete genome of B. suis 019 isolated from sheep (ovine with epididymitis. B. suis 019 has a rough phenotype and can infect sheep, rhesus monkeys and possibly humans. The comparative genome analysis demonstrated that B. suis 019 is closest to the vaccine strain B. suis bv. 1 str. S2. Further analysis associated the rsh gene to the pathogenicity of B. suis 019, and the WbkA gene to the rough phenotype of B. suis 019. The 019 complete genome data was deposited in the GenBank database with ID PRJNA308608.

  10. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system.

    Science.gov (United States)

    Cobb, Ryan E; Wang, Yajie; Zhao, Huimin

    2015-06-19

    Actinobacteria, particularly those of genus Streptomyces, remain invaluable hosts for the discovery and engineering of natural products and their cognate biosynthetic pathways. However, genetic manipulation of these bacteria is often labor and time intensive. Here, we present an engineered CRISPR/Cas system for rapid multiplex genome editing of Streptomyces strains, demonstrating targeted chromosomal deletions in three different Streptomyces species and of various sizes (ranging from 20 bp to 30 kb) with efficiency ranging from 70 to 100%. The designed pCRISPomyces plasmids are amenable to assembly of spacers and editing templates via Golden Gate assembly and isothermal assembly (or traditional digestion/ligation), respectively, allowing rapid plasmid construction to target any genomic locus of interest. As such, the pCRISPomyces system represents a powerful new tool for genome editing in Streptomyces.

  11. Systematic planning of genome-scale experiments in poorly studied species.

    Science.gov (United States)

    Guan, Yuanfang; Dunham, Maitreya; Caudy, Amy; Troyanskaya, Olga

    2010-03-05

    Genome-scale datasets have been used extensively in model organisms to screen for specific candidates or to predict functions for uncharacterized genes. However, despite the availability of extensive knowledge in model organisms, the planning of genome-scale experiments in poorly studied species is still based on the intuition of experts or heuristic trials. We propose that computational and systematic approaches can be applied to drive the experiment planning process in poorly studied species based on available data and knowledge in closely related model organisms. In this paper, we suggest a computational strategy for recommending genome-scale experiments based on their capability to interrogate diverse biological processes to enable protein function assignment. To this end, we use the data-rich functional genomics compendium of the model organism to quantify the accuracy of each dataset in predicting each specific biological process and the overlap in such coverage between different datasets. Our approach uses an optimized combination of these quantifications to recommend an ordered list of experiments for accurately annotating most proteins in the poorly studied related organisms to most biological processes, as well as a set of experiments that target each specific biological process. The effectiveness of this experiment- planning system is demonstrated for two related yeast species: the model organism Saccharomyces cerevisiae and the comparatively poorly studied Saccharomyces bayanus. Our system recommended a set of S. bayanus experiments based on an S. cerevisiae microarray data compendium. In silico evaluations estimate that less than 10% of the experiments could achieve similar functional coverage to the whole microarray compendium. This estimation was confirmed by performing the recommended experiments in S. bayanus, therefore significantly reducing the labor devoted to characterize the poorly studied genome. This experiment-planning framework could

  12. Mitochondrial genome sequences reveal deep divergences among Anopheles punctulatus sibling species in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Logue Kyle

    2013-02-01

    Full Text Available Abstract Background Members of the Anopheles punctulatus group (AP group are the primary vectors of human malaria in Papua New Guinea. The AP group includes 13 sibling species, most of them morphologically indistinguishable. Understanding why only certain species are able to transmit malaria requires a better comprehension of their evolutionary history. In particular, understanding relationships and divergence times among Anopheles species may enable assessing how malaria-related traits (e.g. blood feeding behaviours, vector competence have evolved. Methods DNA sequences of 14 mitochondrial (mt genomes from five AP sibling species and two species of the Anopheles dirus complex of Southeast Asia were sequenced. DNA sequences from all concatenated protein coding genes (10,770 bp were then analysed using a Bayesian approach to reconstruct phylogenetic relationships and date the divergence of the AP sibling species. Results Phylogenetic reconstruction using the concatenated DNA sequence of all mitochondrial protein coding genes indicates that the ancestors of the AP group arrived in Papua New Guinea 25 to 54 million years ago and rapidly diverged to form the current sibling species. Conclusion Through evaluation of newly described mt genome sequences, this study has revealed a divergence among members of the AP group in Papua New Guinea that would significantly predate the arrival of humans in this region, 50 thousand years ago. The divergence observed among the mtDNA sequences studied here may have resulted from reproductive isolation during historical changes in sea-level through glacial minima and maxima. This leads to a hypothesis that the AP sibling species have evolved independently for potentially thousands of generations. This suggests that the evolution of many phenotypes, such as insecticide resistance will arise independently in each of the AP sibling species studied here.

  13. Inbreeding and selection shape genomic diversity in captive populations: Implications for the conservation of endangered species.

    Science.gov (United States)

    Willoughby, Janna R; Ivy, Jamie A; Lacy, Robert C; Doyle, Jacqueline M; DeWoody, J Andrew

    2017-01-01

    Captive breeding programs are often initiated to prevent species extinction until reintroduction into the wild can occur. However, the evolution of captive populations via inbreeding, drift, and selection can impair fitness, compromising reintroduction programs. To better understand the evolutionary response of species bred in captivity, we used nearly 5500 single nucleotide polymorphisms (SNPs) in populations of white-footed mice (Peromyscus leucopus) to measure the impact of breeding regimes on genomic diversity. We bred mice in captivity for 20 generations using two replicates of three protocols: random mating (RAN), selection for docile behaviors (DOC), and minimizing mean kinship (MK). The MK protocol most effectively retained genomic diversity and reduced the effects of selection. Additionally, genomic diversity was significantly related to fitness, as assessed with pedigrees and SNPs supported with genomic sequence data. Because captive-born individuals are often less fit in wild settings compared to wild-born individuals, captive-estimated fitness correlations likely underestimate the effects in wild populations. Therefore, minimizing inbreeding and selection in captive populations is critical to increasing the probability of releasing fit individuals into the wild.

  14. Comparative genomics of two jute species and insight into fibre biogenesis.

    Science.gov (United States)

    Islam, Md Shahidul; Saito, Jennifer A; Emdad, Emdadul Mannan; Ahmed, Borhan; Islam, Mohammad Moinul; Halim, Abdul; Hossen, Quazi Md Mosaddeque; Hossain, Md Zakir; Ahmed, Rasel; Hossain, Md Sabbir; Kabir, Shah Md Tamim; Khan, Md Sarwar Alam; Khan, Md Mursalin; Hasan, Rajnee; Aktar, Nasima; Honi, Ummay; Islam, Rahin; Rashid, Md Mamunur; Wan, Xuehua; Hou, Shaobin; Haque, Taslima; Azam, Muhammad Shafiul; Moosa, Mahdi Muhammad; Elias, Sabrina M; Hasan, A M Mahedi; Mahmood, Niaz; Shafiuddin, Md; Shahid, Saima; Shommu, Nusrat Sharmeen; Jahan, Sharmin; Roy, Saroj; Chowdhury, Amlan; Akhand, Ashikul Islam; Nisho, Golam Morshad; Uddin, Khaled Salah; Rabeya, Taposhi; Hoque, S M Ekramul; Snigdha, Afsana Rahman; Mortoza, Sarowar; Matin, Syed Abdul; Islam, Md Kamrul; Lashkar, M Z H; Zaman, Mahboob; Yuryev, Anton; Uddin, Md Kamal; Rahman, Md Sharifur; Haque, Md Samiul; Alam, Md Monjurul; Khan, Haseena; Alam, Maqsudul

    2017-01-30

    Jute (Corchorus sp.) is one of the most important sources of natural fibre, covering ∼80% of global bast fibre production(1). Only Corchorus olitorius and Corchorus capsularis are commercially cultivated, though there are more than 100 Corchorus species(2) in the Malvaceae family. Here we describe high-quality draft genomes of these two species and their comparisons at the functional genomics level to support tailor-designed breeding. The assemblies cover 91.6% and 82.2% of the estimated genome sizes for C. olitorius and C. capsularis, respectively. In total, 37,031 C. olitorius and 30,096 C. capsularis genes are identified, and most of the genes are validated by cDNA and RNA-seq data. Analyses of clustered gene families and gene collinearity show that jute underwent shared whole-genome duplication ∼18.66 million years (Myr) ago prior to speciation. RNA expression analysis from isolated fibre cells reveals the key regulatory and structural genes involved in fibre formation. This work expands our understanding of the molecular basis of fibre formation laying the foundation for the genetic improvement of jute.

  15. The complete mitochondrial genomes of five Eimeria species infecting domestic rabbits.

    Science.gov (United States)

    Liu, Guo-Hua; Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-12-01

    Rabbit coccidiosis caused by members of the genus Eimeria can cause enormous economic impact worldwide, but the genetics, epidemiology and biology of these parasites remain poorly understood. In the present study, we sequenced and annotated the complete mitochondrial (mt) genomes of five Eimeria species that commonly infect the domestic rabbits. The complete mt genomes of Eimeria intestinalis, Eimeria flavescens, Eimeria media, Eimeria vejdovskyi and Eimeria irresidua were 6261bp, 6258bp, 6168bp, 6254bp, 6259bp in length, respectively. All of the mt genomes consist of 3 genes for proteins (cytb, cox1, and cox3), 14 gene fragments for the large subunit (LSU) rRNA and 11 gene fragments for the small subunit (SSU) rRNA, but no transfer RNA (tRNA) genes. The gene order of the mt genomes is similar to that of Plasmodium, but distinct from Haemosporida and Theileria. Phylogenetic analyses based on full nucleotide sequences using Bayesian analysis revealed that the monophyly of the Eimeria of rabbits was strongly statistically supported with a Bayesian posterior probabilities. These data provide novel mtDNA markers for studying the population genetics and molecular epidemiology of the Eimeria species, and should have implications for the molecular diagnosis, prevention and control of coccidiosis in rabbits.

  16. miReader: Discovering Novel miRNAs in Species without Sequenced Genome.

    Directory of Open Access Journals (Sweden)

    Ashwani Jha

    Full Text Available Along with computational approaches, NGS led technologies have caused a major impact upon the discoveries made in the area of miRNA biology, including novel miRNAs identification. However, to this date all microRNA discovery tools compulsorily depend upon the availability of reference or genomic sequences. Here, for the first time a novel approach, miReader, has been introduced which could discover novel miRNAs without any dependence upon genomic/reference sequences. The approach used NGS read data to build highly accurate miRNA models, molded through a Multi-boosting algorithm with Best-First Tree as its base classifier. It was comprehensively tested over large amount of experimental data from wide range of species including human, plants, nematode, zebrafish and fruit fly, performing consistently with >90% accuracy. Using the same tool over Illumina read data for Miscanthus, a plant whose genome is not sequenced; the study reported 21 novel mature miRNA duplex candidates. Considering the fact that miRNA discovery requires handling of high throughput data, the entire approach has been implemented in a standalone parallel architecture. This work is expected to cause a positive impact over the area of miRNA discovery in majority of species, where genomic sequence availability would not be a compulsion any more.

  17. The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species.

    Science.gov (United States)

    Dang, Ha X; Pryor, Barry; Peever, Tobin; Lawrence, Christopher B

    2015-03-25

    Alternaria is considered one of the most common saprophytic fungal genera on the planet. It is comprised of many species that exhibit a necrotrophic phytopathogenic lifestyle. Several species are clinically associated with allergic respiratory disorders although rarely found to cause invasive infections in humans. Finally, Alternaria spp. are among the most well known producers of diverse fungal secondary metabolites, especially toxins. We have recently sequenced and annotated the genomes of 25 Alternaria spp. including but not limited to many necrotrophic plant pathogens such as A. brassicicola (a pathogen of Brassicaceous crops like cabbage and canola) and A. solani (a major pathogen of Solanaceous plants like potato and tomato), and several saprophytes that cause allergy in human such as A. alternata isolates. These genomes were annotated and compared. Multiple genetic differences were found in the context of plant and human pathogenicity, notably the pro-inflammatory potential of A. alternata. The Alternaria genomes database was built to provide a public platform to access the whole genome sequences, genome annotations, and comparative genomics data of these species. Genome annotation and comparison were performed using a pipeline that integrated multiple computational and comparative genomics tools. Alternaria genome sequences together with their annotation and comparison data were ported to Ensembl database schemas using a self-developed tool (EnsImport). Collectively, data are currently hosted using a customized installation of the Ensembl genome browser platform. Recent efforts in fungal genome sequencing have facilitated the studies of the molecular basis of fungal pathogenicity as a whole system. The Alternaria genomes database provides a comprehensive resource of genomics and comparative data of an important saprophytic and plant/human pathogenic fungal genus. The database will be updated regularly with new genomes when they become available. The

  18. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    Science.gov (United States)

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of

  19. An evolutionary and functional genomics study of Noccaea caerulescens, a heavy metal hyperaccumulating plant species

    OpenAIRE

    Wang, Y.

    2016-01-01

    Noccaea caerulescens is the only known Zn/Cd/Ni hyperaccumulator. The Ganges accession (2n = 14) has an, yet unpublished, genome size of ~319 Mb, with 29,712 predicted genes representing 15,874 gene families. This species is distributed mainly in Europe. Three ecotypes can be distinguished: two metallicolous ecotypes, resident to serpentine soil (Ni enriched) and calamine soil (Zn/Cd enriched), and a non-metallicolous ecotype, growing on regular, non-metalliferous soils. The physiological dif...

  20. A stable hybrid containing haploid genomes of two obligate diploid Candida species.

    Science.gov (United States)

    Chakraborty, Uttara; Mohamed, Aiyaz; Kakade, Pallavi; Mugasimangalam, Raja C; Sadhale, Parag P; Sanyal, Kaustuv

    2013-08-01

    Candida albicans and Candida dubliniensis are diploid, predominantly asexual human-pathogenic yeasts. In this study, we constructed tetraploid (4n) strains of C. albicans of the same or different lineages by spheroplast fusion. Induction of chromosome loss in the tetraploid C. albicans generated diploid or near-diploid progeny strains but did not produce any haploid progeny. We also constructed stable heterotetraploid somatic hybrid strains (2n + 2n) of C. albicans and C. dubliniensis by spheroplast fusion. Heterodiploid (n + n) progeny hybrids were obtained after inducing chromosome loss in a stable heterotetraploid hybrid. To identify a subset of hybrid heterodiploid progeny strains carrying at least one copy of all chromosomes of both species, unique centromere sequences of various chromosomes of each species were used as markers in PCR analysis. The reduction of chromosome content was confirmed by a comparative genome hybridization (CGH) assay. The hybrid strains were found to be stably propagated. Chromatin immunoprecipitation (ChIP) assays with antibodies against centromere-specific histones (C. albicans Cse4/C. dubliniensis Cse4) revealed that the centromere identity of chromosomes of each species is maintained in the hybrid genomes of the heterotetraploid and heterodiploid strains. Thus, our results suggest that the diploid genome content is not obligatory for the survival of either C. albicans or C. dubliniensis. In keeping with the recent discovery of the existence of haploid C. albicans strains, the heterodiploid strains of our study can be excellent tools for further species-specific genome elimination, yielding true haploid progeny of C. albicans or C. dubliniensis in future.

  1. Identification of Genomic Species of Acinetobacter Isolated from Burns of ICU Patients.

    Science.gov (United States)

    Shaykh Baygloo, Nima; Bouzari, Majid; Rahimi, Fateh; Abedini, Fereydoon; Yadegari, Sima; Soroushnia, Mohsen; Beigi, Fahimeh

    2015-10-01

    The worldwide emergence of multi-drug resistant (MDR) bacteria in recent years has caused many problems for hospitals and patients, especially intensive care unit patients. Among these clinically important MDR bacteria are Acinetobacter baumannii complex species (A. baumannii, Acinetobacter genomic species 3 and Acinetobacter genomic species 13TU) that cause a wide range of infections. The sequencing and bioinformatics analysis of a part of the Zone 1 of rpoB gene was performed for species identification of Acinetobacter isolates obtained from ICU patients with infected burns hospitalized in a hospital in Isfahan, Iran, over a 9-month period. Antibiotic sensitivity of Acinetobacter isolates was investigated using the disk diffusion method and different classes of antibiotics including amikacin, cefotaxime, ceftriaxone, ciprofloxacin, imipenem and piperacillin. Acinetobacter spp. were isolated from 10 of 80 (12.5%) investigated patients. All of the 10 Acinetobacter isolates were identified as Acinetobacter baumannii and multi-drug resistant according to antibiotic susceptibility tests. Of the Acinetobacter baumannii complex members, only A. baumannii species was identified among the isolates obtained from patients with infected burns in an Isfahan hospital over a 9-month period.

  2. A robust universal method for extraction of genomic DNA from bacterial species.

    Science.gov (United States)

    Atashpaz, Sina; Khani, Sajjad; Barzegari, Abolfazl; Barar, Jaleh; Vahed, Sepideh Zununi; Azarbaijani, Reza; Omidi, Yadollah

    2010-01-01

    The intactness of DNA is the keystone of genome-based clinical investigations, where rapid molecular detection of life-threatening bacteria is largely dependent on the isolation of high-quality DNA. Various protocols have been so far developed for genomic DNA isolation from bacteria, most of which have been claimed to be reproducible with relatively good yields of high-quality DNA. Nonetheless, they are not fully applicable to various types of bacteria, their processing cost is relatively high, and some toxic reagents are used. The routine protocols for DNA extraction appear to be sensitive to species diversity, and may fail to produce high-quality DNA from different species. Such protocols remain time-consuming and tedious, thus to resolve some of these impediments, we report development of a very simple, rapid, and high-throughput protocol for extracting of high-quality DNA from different bacterial species. Based upon our protocol, interfering phenolic compounds were removed from extraction using polyvinylpyrrolidone (PVP) and RNA contamination was precipitated using LiCI. The UV spectrophotometric and gel electrophoresis analysis resulted in high A260/A280 ratio (>1.8) with high intactness of DNA. Subsequent evaluations were performed using some quality-dependent techniques (e.g., RAPD marker and restriction digestions). The isolated DNA from 9 different bacterial species confirmed the accuracy of this protocol which requires no enzymatic processing and accordingly its low-cost making it an appropriate method f r large-scale DNA isolation fromvarious bacterial species.

  3. Genetic diversity of Greek Aegilops species using different types of nuclear genome markers.

    Science.gov (United States)

    Thomas, Konstantinos G; Bebeli, Penelope J

    2010-09-01

    Random Amplified Polymorphic DNA (RAPD) and Inter-Simple Sequence Repeat (ISSR) analyses were used to evaluate genetic variability and relationships of Greek Aegilops species. Thirty-eight accessions of seven Greek Aegilops species [Ae. triuncialis (genome UC), Ae. neglecta (UM), Ae. biuncialis (UM), Ae. caudata (C), Ae. comosa (M), Ae. geniculata (MU) and Ae. umbellulata (U)] as well as Triticum accessions were studied. Nineteen RAPD and ten ISSR primers yielded 344 and 170 polymorphic bands, respectively, that were used for the construction of dendrograms. Regardless of the similarity coefficient and marker type used, UPGMA placed 38 Aegilops accessions into one branch while the other branch consisted of wheat species. Within the Aegilops cluster, subgroups were identified that included species that shared the same genome or belonged to the same botanical section. Within the Triticum cluster, two robust subgroups were formed, one including diploid wheat and another including polyploid wheat. In conclusion, results showed that there is genetic diversity in the Greek Aegilops species studied, and clustering based on genetic similarities was in agreement with botanical classifications.

  4. Comparative Genome-Scale Reconstruction of Gapless Metabolic Networks for Present and Ancestral Species

    Science.gov (United States)

    Pitkänen, Esa; Jouhten, Paula; Hou, Jian; Syed, Muhammad Fahad; Blomberg, Peter; Kludas, Jana; Oja, Merja; Holm, Liisa; Penttilä, Merja; Rousu, Juho; Arvas, Mikko

    2014-01-01

    We introduce a novel computational approach, CoReCo, for comparative metabolic reconstruction and provide genome-scale metabolic network models for 49 important fungal species. Leveraging on the exponential growth in sequenced genome availability, our method reconstructs genome-scale gapless metabolic networks simultaneously for a large number of species by integrating sequence data in a probabilistic framework. High reconstruction accuracy is demonstrated by comparisons to the well-curated Saccharomyces cerevisiae consensus model and large-scale knock-out experiments. Our comparative approach is particularly useful in scenarios where the quality of available sequence data is lacking, and when reconstructing evolutionary distant species. Moreover, the reconstructed networks are fully carbon mapped, allowing their use in 13C flux analysis. We demonstrate the functionality and usability of the reconstructed fungal models with computational steady-state biomass production experiment, as these fungi include some of the most important production organisms in industrial biotechnology. In contrast to many existing reconstruction techniques, only minimal manual effort is required before the reconstructed models are usable in flux balance experiments. CoReCo is available at http://esaskar.github.io/CoReCo/. PMID:24516375

  5. Relationships among the A Genomes of Triticum L. Species as Evidenced by SSR Markers, in Iran

    Directory of Open Access Journals (Sweden)

    Simon G. Krattinger

    2010-11-01

    Full Text Available The relationships among 55 wheat accessions (47 accessions collected from Iran and eight accessions provided by the Institute of Plant Biology of the University of Zurich, Switzerland belonging to eight species carrying A genome (Triticum monococcum L., T. boeoticum Boiss., T. urartu Tumanian ex Gandilyan, T. durum Desf., T. turgidum L., T. dicoccum Schrank ex Schübler, T. dicoccoides (Körn. ex Asch. & Graebner Schweinf. and T. aestivum L. were evaluated using 31 A genome specific microsatellite markers. A high level of polymorphism was observed among the accessions studied (PIC = 0.77. The highest gene diversity was revealed among T. durum genotypes, while the lowest genetic variation was found in T. dicoccoides accessions. The analysis of molecular variance (AMOVA showed a significant genetic variance (75.56% among these accessions, representing a high intra-specific genetic diversity within Triticum taxa in Iran. However, such a variance was not observed among their ploidy levels. Based on the genetic similarity analysis, the accessions collected from Iran were divided into two main groups: diploids and polyploids. The genetic similarity among the diploid and polyploid species was 0.85 and 0.89 respectively. There were no significant differences in A genome diversity from different geographic regions. Based on the genetic diversity analyses, we consider there is value in a greater sampling of each species in Iran to discover useful genes for breeding purposes.

  6. Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species.

    Directory of Open Access Journals (Sweden)

    Esa Pitkänen

    2014-02-01

    Full Text Available We introduce a novel computational approach, CoReCo, for comparative metabolic reconstruction and provide genome-scale metabolic network models for 49 important fungal species. Leveraging on the exponential growth in sequenced genome availability, our method reconstructs genome-scale gapless metabolic networks simultaneously for a large number of species by integrating sequence data in a probabilistic framework. High reconstruction accuracy is demonstrated by comparisons to the well-curated Saccharomyces cerevisiae consensus model and large-scale knock-out experiments. Our comparative approach is particularly useful in scenarios where the quality of available sequence data is lacking, and when reconstructing evolutionary distant species. Moreover, the reconstructed networks are fully carbon mapped, allowing their use in 13C flux analysis. We demonstrate the functionality and usability of the reconstructed fungal models with computational steady-state biomass production experiment, as these fungi include some of the most important production organisms in industrial biotechnology. In contrast to many existing reconstruction techniques, only minimal manual effort is required before the reconstructed models are usable in flux balance experiments. CoReCo is available at http://esaskar.github.io/CoReCo/.

  7. Complete mitochondrial genome of Porzana fusca and Porzana pusilla and phylogenetic relationship of 16 Rallidae species.

    Science.gov (United States)

    Chen, Peng; Han, Yuqing; Zhu, Chaoying; Gao, Bin; Ruan, Luzhang

    2017-09-23

    The complete mitochondrial genome sequences of Porzana fusca and Porzana pusilla were determined. The two avian species share a high degree of homology in terms of mitochondrial genome organization and gene arrangement. Their corresponding mitochondrial genomes are 16,935 and 16,978 bp and consist of 37 genes and a control region. Their PCGs were both 11,365 bp long and have similar structure. Their tRNA gene sequences could be folded into canonical cloverleaf secondary structure, except for tRNA(Ser (AGY)), which lost its "DHU" arm. Based on the concatenated nucleotide sequences of the complete mitochondrial DNA genes of 16 Rallidae species, reconstruction of phylogenetic trees and analysis of the molecular clock of P. fusca and P. pusilla indicated that these species from a sister group, which in turn are sister group to Rallina eurizonoides. The genus Gallirallus is a sister group to genus Lewinia, and these groups in turn are sister groups to genus Porphyrio. Moreover, molecular clock analyses suggested that the basal divergence of Rallidae could be traced back to 40.47 (41.46‒39.45) million years ago (Mya), and the divergence of Porzana occurred approximately 5.80 (15.16‒0.79) Mya.

  8. The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae.

    Science.gov (United States)

    Carvalho, Natalia D M; Pinheiro, Vanessa S S; Carmo, Edson J; Goll, Leonardo G; Schneider, Carlos H; Gross, Maria C

    2015-01-01

    Repetitive DNA is the largest fraction of the eukaryote genome and comprises tandem and dispersed sequences. It presents variations in relation to its composition, number of copies, distribution, dynamics, and genome organization, and participates in the evolutionary diversification of different vertebrate species. Repetitive sequences are usually located in the heterochromatin of centromeric and telomeric regions of chromosomes, contributing to chromosomal structures. Therefore, the aim of this study was to physically map repetitive DNA sequences (5S rDNA, telomeric sequences, tropomyosin gene 1, and retroelements Rex1 and SINE) of mitotic chromosomes of Amazonian species of teiids (Ameiva ameiva, Cnemidophorus sp. 1, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin) to understand their genome organization and karyotype evolution. The mapping of repetitive sequences revealed a distinct pattern in Cnemidophorus sp. 1, whereas the other species showed all sequences interspersed in the heterochromatic region. Physical mapping of the tropomyosin 1 gene was performed for the first time in lizards and showed that in addition to being functional, this gene has a structural function similar to the mapped repetitive elements as it is located preferentially in centromeric regions and termini of chromosomes.

  9. Collection and comparative analysis of 1888 full-length cDNAs from wild rice Oryza rufipogon Griff. W1943.

    Science.gov (United States)

    Lu, Tingting; Yu, Shuliang; Fan, Danlin; Mu, Jie; Shangguan, Yingying; Wang, Zixuan; Minobe, Yuzo; Lin, Zhixin; Han, Bin

    2008-10-01

    A huge amount of cDNA and EST resources have been developed for cultivated rice species Oryza sativa; however, only few cDNA resources are available for wild rice species. In this study, we isolated and completely sequenced 1888 putative full-length cDNA (FLcDNA) clones from wild rice Oryza rufipogon Griff. W1943 for comparative analysis between wild and cultivated rice species. Two cDNA libraries were constructed from 3-week-old leaf samples under either normal or cold-treated conditions. Homology searching of these cDNA sequences revealed that >96.8% of the wild rice cDNAs were matched to the cultivated rice O. sativa ssp. japonica cv. Nipponbare genome sequence. However, sequence. The comparative analysis showed that O. rufipogon W1943 had greater similarity to O. sativa ssp. japonica than to ssp. indica cultivars. In addition, 17 novel rice cDNAs were identified, and 41 putative tissue-specific expression genes were defined through searching the rice massively parallel signature-sequencing database. In conclusion, these FLcDNA clones are a resource for further function verification and could be broadly utilized in rice biological studies.

  10. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon

    Directory of Open Access Journals (Sweden)

    N Sarla

    2005-06-01

    Full Text Available Abstract Background Cultivated rice (Oryza sativa L. is endowed with a rich genetic variability. In spite of such a great diversity, the modern rice cultivars have narrow genetic base for most of the agronomically important traits. To sustain the demand of an ever increasing population, new avenues have to be explored to increase the yield of rice. Wild progenitor species present potential donor sources for complex traits such as yield and would help to realize the dream of sustained food security. Results Advanced backcross method was used to introgress and map new quantitative trait loci (QTLs relating to yield and its components from an Indian accession of Oryza rufipogon. An interspecific BC2 testcross progeny (IR58025A/O. rufipogon//IR580325B///IR58025B////KMR3 was evaluated for 13 agronomic traits pertaining to yield and its components. Transgressive segregants were obtained for all the traits. Thirty nine QTLs were identified using interval mapping and composite interval mapping. In spite of it's inferiority for most of the traits studied, O. rufipogon alleles contributed positively to 74% of the QTLs. Thirty QTLs had corresponding occurrences with the QTLs reported earlier, indicating that these QTLs are stable across genetic backgrounds. Nine QTLs are novel and reported for the first time. Conclusion The study confirms that the progenitor species constitute a prominent source of still unfolded variability for traits of complex inheritance like yield. With the availability of the complete genome sequence of rice and the developments in the field of genomics, it is now possible to identify the genes underlying the QTLs. The identification of the genes constituting QTLs would help us to understand the molecular mechanisms behind the action of QTLs.

  11. Analyses of Old Prokaryotic Proteins Indicate Functional Diversification in Arabidopsis and Oryza sativa

    Directory of Open Access Journals (Sweden)

    Anupama eSingh

    2016-03-01

    Full Text Available During evolution, various processes such as duplication, divergence, recombination and many other events leads to the evolution of new genes with novel functions. These evolutionary events, thus significantly impact the evolution of cellular, physiological, morphological and other phenotypic trait of organisms. While evolving, eukaryotes have acquired large number of genes from the earlier prokaryotes. This work is focused upon identification of old prokaryotic proteins in Arabidopsis and Oryza sativa genome, further highlighting their possible role(s in the two genomes. Our results suggest that with respect to their genome size, the fraction of old prokaryotic proteins is higher in Arabidopsis than in Oryza sativa. The large fractions of such proteins encoding genes were found to be localized in various endo-symbiotic organelles. The domain architecture of the old prokaryotic proteins revealed similar distribution in both Arabidopsis and Oryza sativa genomes showing their conserved evolution. In Oryza sativa, the old prokaryotic proteins were more involved in developmental processes, might be due to constant man-made selection pressure for better agronomic traits/productivity. While in Arabidopsis, these proteins were involved in metabolic functions. Overall, the analysis indicates the distinct pattern of evolution of old prokaryotic proteins in Arabidopsis and Oryza sativa.

  12. Comparative analysis of the complete chloroplast genome sequences in psammophytic Haloxylon species (Amaranthaceae

    Directory of Open Access Journals (Sweden)

    Wenpan Dong

    2016-11-01

    Full Text Available The Haloxylon genus belongs to the Amaranthaceae (formerly Chenopodiaceae family. The small trees or shrubs in this genus are referred to as the King of psammophytic plants, and perform important functions in environmental protection, including wind control and sand fixation in deserts. To better understand these beneficial plants, we sequenced the chloroplast (cp genomes of Haloxylon ammodendron (HA and Haloxylon persicum (HP and conducted comparative genomic analyses on these and two other representative Amaranthaceae species. Similar to other higher plants, we found that the Haloxylon cp genome is a quadripartite, double-stranded, circular DNA molecule of 151,570 bp in HA and 151,586 bp in HP. It contains a pair of inverted repeats (24,171 bp in HA and 24,177 bp in HP that separate the genome into a large single copy region of 84,214 bp in HA and 84,217 bp in HP, and a small single copy region of 19,014 bp in HA and 19,015 bp in HP. Each Haloxylon cp genome contains 112 genes, including 78 coding, 30 tRNA, and four ribosomal RNA genes. We detected 59 different simple sequence repeat loci, including 44 mono-nucleotide, three di-nucleotide, one tri-nucleotide, and 11 tetra-nucleotide repeats. Comparative analysis revealed only 67 mutations between the two species, including 44 substitutions, 23 insertions/deletions, and two micro-inversions. The two inversions, with lengths of 14 and 3 bp, occur in the petA-psbJ intergenic region and rpl16 intron, respectively, and are predicted to form hairpin structures with repeat sequences of 27 and 19 bp, respectively, at the two ends. The ratio of transitions to transversions was 0.76. These results are valuable for future studies on Haloxylon genetic diversity and will enhance our understanding of the phylogenetic evolution of Amaranthaceae.

  13. [A novel method of the genome-wide prediction for the target genes and its application].

    Science.gov (United States)

    Zhang, Jing-Jing; Feng, Jing; Zhu, Ying-Guo; Li, Yang-Sheng

    2006-10-01

    Based on the protein databases of several model species, this study developed a new method of the Genome-wide prediction for the target genes, using Hidden Markov model by Perl programming. The advantages of this method are high throughput, high quality and easy prediction, especially in the case of multi-domains proteins families. By this method, we predicted the PPR and TPR proteins families in whole genome of several model species. There were 536 PPR proteins and 199 TPR proteins in Oryza sativa ssp. japonica, 519 PPR proteins and 177 TPR proteins in Oryza sativa L. ssp. indica, 735 PPR proteins and 292 TPR proteins in Arabidopsis thaliana, 6 PPR proteins and 32 TPR proteins in Cyanidioschyzon merolae. Synechococcus and Thermophilic archaebacterium did not have PPR proteins. By contrast, 10 TPR proteins were found in Synechococcus and 4 TPR proteins were found in Thermophilic archaebacterium. Moreover, of these results, some further bioinformatics analyses were conducted.

  14. Genomic Biorepository of Coastal Marine Species in Estero Padre Ramos and Estero Real, Nicaragua

    Directory of Open Access Journals (Sweden)

    Jorge A. Huete-Pérez

    2012-12-01

    Full Text Available Nicaragua, located in southern Mesoamerica between the Caribbean Sea and the Pacific Ocean, has acted as a land bridge for flora and fauna migrating between North and South America during the last 3 million years. Because of Nicaragua’s location and history, it is rich in terrestrial and aquatic biodiversity. To study this biodiversity and preserve it for the future, Nicaragua’s Molecular Biology Center at the University of Central America (CBM-UCA created the Genomic Biorepository Project. The Project collects and catalogs coastal marine biodiversity in the Estero Real and Padre Ramos estuaries, located in Nicaragua’s northern Pacific region.The biorepository holds more than three thousand tissue and genomic specimens, comprising 1,049 samples (714 specimens from Estero Padre Ramos and 335 from Estero Real belonging to 100 species and 54 families, genomic extracts in triplicates for every sample collected and environmental sandy sediments representing 60 different sites. Changes in the biological composition of the region were documented as compared to previous sampling. Of the 1,049 samples obtained from the two estuaries, 30 new residents were recorded in Estero Real, and 19 in Estero PadreRamos. The Cytochrome Oxidase I (COI gene was sequenced for a number of species, including 19 fish species, and published to public databases (BOLD SYSTEMS. The records contained in the genomic biorepository here described lay the foundation for the most complete marine biodiversity database in Nicaragua and is made available to national and international specialists, facilitating knowledge of Nicaraguan biodiversity.

  15. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths.

    Directory of Open Access Journals (Sweden)

    Marie Touchon

    2009-01-01

    Full Text Available The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re- annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species, including seven that we sequenced to completion. Within the approximately 18,000 families of orthologous genes, we found approximately 2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an

  16. Comparative genomics of Toll-like receptor signalling in five species

    Directory of Open Access Journals (Sweden)

    Wu Chunhua

    2009-05-01

    Full Text Available Abstract Background Over the last decade, several studies have identified quantitative trait loci (QTL affecting variation of immune related traits in mammals. Recent studies in humans and mice suggest that part of this variation may be caused by polymorphisms in genes involved in Toll-like receptor (TLR signalling. In this project, we used a comparative approach to investigate the importance of TLR-related genes in comparison with other immunologically relevant genes for resistance traits in five species by associating their genomic location with previously published immune-related QTL regions. Results We report the genomic localisation of TLR1-10 and ten associated signalling molecules in sheep and pig using in-silico and/or radiation hybrid (RH mapping techniques and compare their positions with their annotated homologues in the human, cattle and mouse whole genome sequences. We also report medium-density RH maps for porcine chromosomes 8 and 13. A comparative analysis of the positions of previously published relevant QTLs allowed the identification of homologous regions that are associated with similar health traits in several species and which contain TLR related and other immunologically relevant genes. Additional evidence was gathered by examining relevant gene expression and association studies. Conclusion This comparative genomic approach identified eight genes as potentially causative genes for variations of health related traits. These include susceptibility to clinical mastitis in dairy cattle, general disease resistance in sheep, cattle, humans and mice, and tolerance to protozoan infection in cattle and mice. Four TLR-related genes (TLR1, 6, MyD88, IRF3 appear to be the most likely candidate genes underlying QTL regions which control the resistance to the same or similar pathogens in several species. Further studies are required to investigate the potential role of polymorphisms within these genes.

  17. The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Zeng, Q.; Xie, Z.; Tang, H.; Zhu, C. (Chinese Academy of Sciences. State Key Lab. of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing (China)); Hasegawa, T. (National Institute for Agro-Environmental Sciences. Agro-Meteorology Div., Tsukuba (Japan)); Ziska, L. (Crop Systems and Global Change Lab., Beltsville, MD (United States)); Jia, X. (Chinese Academic of Sciences/Nanjing Botanical Garden Memorial Sun Yat-Sen. Jiangsu Institute of Botany, Nanjing (China))

    2012-07-15

    In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, g{sub s}, g{sub m}, C{sub i}/C{sub a}, C{sub i}/C{sub c}, V{sub cmax}, J{sub max}, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid-anthesis and the late grain-filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid-anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO{sub 2}]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non-structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO{sub 2}] appeared to enhance the rate of N degradation and senescence so that by late-grain fill, photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO{sub 2}] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation. (Author)

  18. Genomic identification of founding haplotypes reveals the history of the selfing species Capsella rubella.

    Directory of Open Access Journals (Sweden)

    Yaniv Brandvain

    Full Text Available The shift from outcrossing to self-fertilization is among the most common evolutionary transitions in flowering plants. Until recently, however, a genome-wide view of this transition has been obscured by both a dearth of appropriate data and the lack of appropriate population genomic methods to interpret such data. Here, we present a novel population genomic analysis detailing the origin of the selfing species, Capsella rubella, which recently split from its outcrossing sister, Capsella grandiflora. Due to the recency of the split, much of the variation within C. rubella is also found within C. grandiflora. We can therefore identify genomic regions where two C. rubella individuals have inherited the same or different segments of ancestral diversity (i.e. founding haplotypes present in C. rubella's founder(s. Based on this analysis, we show that C. rubella was founded by multiple individuals drawn from a diverse ancestral population closely related to extant C. grandiflora, that drift and selection have rapidly homogenized most of this ancestral variation since C. rubella's founding, and that little novel variation has accumulated within this time. Despite the extensive loss of ancestral variation, the approximately 25% of the genome for which two C. rubella individuals have inherited different founding haplotypes makes up roughly 90% of the genetic variation between them. To extend these findings, we develop a coalescent model that utilizes the inferred frequency of founding haplotypes and variation within founding haplotypes to estimate that C. rubella was founded by a potentially large number of individuals between 50 and 100 kya, and has subsequently experienced a twenty-fold reduction in its effective population size. As population genomic data from an increasing number of outcrossing/selfing pairs are generated, analyses like the one developed here will facilitate a fine-scaled view of the evolutionary and demographic impact of the

  19. Complete mitochondrial genomes of eleven extinct or possibly extinct bird species.

    Science.gov (United States)

    Anmarkrud, Jarl A; Lifjeld, Jan T

    2017-03-01

    Natural history museum collections represent a vast source of ancient and historical DNA samples from extinct taxa that can be utilized by high-throughput sequencing tools to reveal novel genetic and phylogenetic information about them. Here, we report on the successful sequencing of complete mitochondrial genome sequences (mitogenomes) from eleven extinct bird species, using de novo assembly of short sequences derived from toepad samples of degraded DNA from museum specimens. For two species (the Passenger Pigeon Ectopistes migratorius and the South Island Piopio Turnagra capensis), whole mitogenomes were already available from recent studies, whereas for five others (the Great Auk Pinguinis impennis, the Imperial Woodpecker Campehilus imperialis, the Huia Heteralocha acutirostris, the Kauai Oo Moho braccathus and the South Island Kokako Callaeas cinereus), there were partial mitochondrial sequences available for comparison. For all seven species, we found sequence similarities of >98%. For the remaining four species (the Kamao Myadestes myadestinus, the Paradise Parrot Psephotellus pulcherrimus, the Ou Psittirostra psittacea and the Lesser Akialoa Akialoa obscura), there was no sequence information available for comparison, so we conducted blast searches and phylogenetic analyses to determine their phylogenetic positions and identify their closest extant relatives. These mitogenomes will be valuable for future analyses of avian phylogenetics and illustrate the importance of museum collections as repositories for genomics resources. © 2016 John Wiley & Sons Ltd.

  20. Major structural differences and novel potential virulence mechanisms from the genomes of multiple campylobacter species.

    Directory of Open Access Journals (Sweden)

    Derrick E Fouts

    2005-01-01

    Full Text Available Sequencing and comparative genome analysis of four strains of Campylobacter including C. lari RM2100, C. upsaliensis RM3195, and C. coli RM2228 has revealed major structural differences that are associated with the insertion of phage- and plasmid-like genomic islands, as well as major variations in the lipooligosaccharide complex. Poly G tracts are longer, are greater in number, and show greater variability in C. upsaliensis than in the other species. Many genes involved in host colonization, including racR/S, cadF, cdt, ciaB, and flagellin genes, are conserved across the species, but variations that appear to be species specific are evident for a lipooligosaccharide locus, a capsular (extracellular polysaccharide locus, and a novel Campylobacter putative licABCD virulence locus. The strains also vary in their metabolic profiles, as well as their resistance profiles to a range of antibiotics. It is evident that the newly identified hypothetical and conserved hypothetical proteins, as well as uncharacterized two-component regulatory systems and membrane proteins, may hold additional significant information on the major differences in virulence among the species, as well as the specificity of the strains for particular hosts.

  1. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera.

    Science.gov (United States)

    Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-15

    Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes.

  2. Structure, allelic diversity and selection of Asr genes, candidate for drought tolerance, in Oryza sativa L. and wild relatives.

    Science.gov (United States)

    Philippe, Romain; Courtois, Brigitte; McNally, Kenneth L; Mournet, Pierre; El-Malki, Redouane; Le Paslier, Marie Christine; Fabre, Denis; Billot, Claire; Brunel, Dominique; Glaszmann, Jean-Christophe; This, Dominique

    2010-08-01

    Asr (ABA, stress, ripening) genes represent a small gene family potentially involved in drought tolerance in several plant species. To analyze their interest for rice breeding for water-limited environments, this gene family was characterized further. Genomic organization of the gene family reveals six members located on four different chromosomes and with the same exon-intron structure. The maintenance of six members of the Asr gene family, which are the result of combination between tandem duplication and whole genome duplication, and their differential regulation under water stress, involves probably some sub-functionalization. The polymorphism of four members was studied in a worldwide collection of 204 accessions of Oryza sativa L. and 14 accessions of wild relatives (O. rufipogon and O. nivara). The nucleotide diversity of the Asr genes was globally low, but contrasted for the different genes, leading to different shapes of haplotype networks. Statistical tests for neutrality were used and compared to their distribution in a set of 111 reference genes spread across the genome, derived from another published study. Asr3 diversity exhibited a pattern concordant with a balancing selection at the species level and with a directional selection in the tropical japonica sub-group. This study provides a thorough description of the organization of the Asr family, and the nucleotide and haplotype diversity of four Asr in Oryza sativa species. Asr3 stood out as the best potential candidate. The polymorphism detected here represents a first step towards an association study between genetic polymorphisms of this gene family and variation in drought tolerance traits.

  3. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for γ-aminobutyric acid (GABA) production.

    Science.gov (United States)

    Ab Kadir, Safuan; Wan-Mohtar, Wan Abd Al Qadr Imad; Mohammad, Rosfarizan; Abdul Halim Lim, Sarina; Sabo Mohammed, Abdulkarim; Saari, Nazamid

    2016-10-01

    In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P GABA concentration was obtained from NSK (194 mg/L) followed by NSZ (63 mg/L), NSJ (51.53 mg/L) and NST (31.66 mg/L). Therefore, A. oryzae NSK was characterized and the sequence was found to be similar to A. oryzae and A. flavus with 99 % similarity. The evolutionary distance (K nuc) between sequences of identical fungal species was calculated and a phylogenetic tree prepared from the K nuc data showed that the isolate belonged to the A. oryzae species. This finding may allow the development of GABA-rich ingredients using A. oryzae NSK as a starter culture for soy sauce production.

  4. In silico analysis of Simple Sequence Repeats from chloroplast genomes of Solanaceae species

    Directory of Open Access Journals (Sweden)

    Evandro Vagner Tambarussi

    2009-01-01

    Full Text Available The availability of chloroplast genome (cpDNA sequences of Atropa belladonna, Nicotiana sylvestris, N.tabacum, N. tomentosiformis, Solanum bulbocastanum, S. lycopersicum and S. tuberosum, which are Solanaceae species,allowed us to analyze the organization of cpSSRs in their genic and intergenic regions. In general, the number of cpSSRs incpDNA ranged from 161 in S. tuberosum to 226 in N. tabacum, and the number of intergenic cpSSRs was higher than geniccpSSRs. The mononucleotide repeats were the most frequent in studied species, but we also identified di-, tri-, tetra-, pentaandhexanucleotide repeats. Multiple alignments of all cpSSRs sequences from Solanaceae species made the identification ofnucleotide variability possible and the phylogeny was estimated by maximum parsimony. Our study showed that the plastomedatabase can be exploited for phylogenetic analysis and biotechnological approaches.

  5. Comparative analysis of mitochondrial genomes of five aphid species (Hemiptera: Aphididae and phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    Full Text Available Insect mitochondrial genomes (mitogenomes are of great interest in exploring molecular evolution, phylogenetics and population genetics. Only two mitogenomes have been previously released in the insect group Aphididae, which consists of about 5,000 known species including some agricultural, forestry and horticultural pests. Here we report the complete 16,317 bp mitogenome of Cavariella salicicola and two nearly complete mitogenomes of Aphis glycines and Pterocomma pilosum. We also present a first comparative analysis of mitochondrial genomes of aphids. Results showed that aphid mitogenomes share conserved genomic organization, nucleotide and amino acid composition, and codon usage features. All 37 genes usually present in animal mitogenomes were sequenced and annotated. The analysis of gene evolutionary rate revealed the lowest and highest rates for COI and ATP8, respectively. A unique repeat region exclusively in aphid mitogenomes, which included variable numbers of tandem repeats in a lineage-specific manner, was highlighted for the first time. This region may have a function as another origin of replication. Phylogenetic reconstructions based on protein-coding genes and the stem-loop structures of control regions confirmed a sister relationship between Cavariella and pterocommatines. Current evidence suggest that pterocommatines could be formally transferred into Macrosiphini. Our paper also offers methodological instructions for obtaining other Aphididae mitochondrial genomes.

  6. Genome-wide scans detect adaptation to aridity in a widespread forest tree species.

    Science.gov (United States)

    Steane, Dorothy A; Potts, Brad M; McLean, Elizabeth; Prober, Suzanne M; Stock, William D; Vaillancourt, René E; Byrne, Margaret

    2014-05-01

    Patterns of adaptive variation within plant species are best studied through common garden experiments, but these are costly and time-consuming, especially for trees that have long generation times. We explored whether genome-wide scanning technology combined with outlier marker detection could be used to detect adaptation to climate and provide an alternative to common garden experiments. As a case study, we sampled nine provenances of the widespread forest tree species, Eucalyptus tricarpa, across an aridity gradient in southeastern Australia. Using a Bayesian analysis, we identified a suite of 94 putatively adaptive (outlying) sequence-tagged markers across the genome. Population-level allele frequencies of these outlier markers were strongly correlated with temperature and moisture availability at the site of origin, and with population differences in functional traits measured in two common gardens. Using the output from a canonical analysis of principal coordinates, we devised a metric that provides a holistic measure of genomic adaptation to aridity that could be used to guide assisted migration or genetic augmentation. © 2014 John Wiley & Sons Ltd.

  7. Genome size and phenotypic variation of Nymphaea (Nymphaeaceae species from Eastern Europe and temperate Asia

    Directory of Open Access Journals (Sweden)

    Magdalena Anna Dąbrowska

    2015-07-01

    Full Text Available Despite long-term research, the aquatic genus Nymphaea still possesses major taxonomic challenges. High phenotypic plasticity and possible interspecific hybridization often make it impossible to identify individual specimens. The main aim of this study was to assess phenotypic variation in Nymphaea taxa sampled over a wide area of Eastern Europe and temperate Asia. Samples were identified based on species-specific genome sizes and diagnostic morphological characters for each taxon were then selected. A total of 353 specimens from 32 populations in Poland, Russia and Ukraine were studied, with nine biometric traits being examined. Although some specimens morphologically matched N. ×borealis (a hybrid between N. alba and N. candida according to published determination keys, only one hybrid individual was revealed based on genome size data. Other specimens with intermediate morphology possessed genome size corresponding to N. alba, N. candida or N. tetragona. This indicates that natural hybridization between N. alba and N. candida is not as frequent as previously suggested. Our results also revealed a considerably higher variation in the studied morphological traits (especially the quantitative ones in N. alba and N. candida than reported in the literature. A determination key for the investigated Nymphaea species is provided, based on taxonomically-informative morphological characters identified in our study.

  8. Genome-Wide Comparative Analysis of Chemosensory Gene Families in Five Tsetse Fly Species.

    Directory of Open Access Journals (Sweden)

    Rosaline Macharia

    2016-02-01

    Full Text Available For decades, odour-baited traps have been used for control of tsetse flies (Diptera; Glossinidae, vectors of African trypanosomes. However, differential responses to known attractants have been reported in different Glossina species, hindering establishment of a universal vector control tool. Availability of full genome sequences of five Glossina species offers an opportunity to compare their chemosensory repertoire and enhance our understanding of their biology in relation to chemosensation. Here, we identified and annotated the major chemosensory gene families in Glossina. We identified a total of 118, 115, 124, and 123 chemosensory genes in Glossina austeni, G. brevipalpis, G. f. fuscipes, G. pallidipes, respectively, relative to 127 reported in G. m. morsitans. Our results show that tsetse fly genomes have fewer chemosensory genes when compared to other dipterans such as Musca domestica (n>393, Drosophila melanogaster (n = 246 and Anopheles gambiae (n>247. We also found that Glossina chemosensory genes are dispersed across distantly located scaffolds in their respective genomes, in contrast to other insects like D. melanogaster whose genes occur in clusters. Further, Glossina appears to be devoid of sugar receptors and to have expanded CO2 associated receptors, potentially reflecting Glossina's obligate hematophagy and the need to detect hosts that may be out of sight. We also identified, in all species, homologs of Ir84a; a Drosophila-specific ionotropic receptor that promotes male courtship suggesting that this is a conserved trait in tsetse flies. Notably, our selection analysis revealed that a total of four gene loci (Gr21a, GluRIIA, Gr28b, and Obp83a were under positive selection, which confers fitness advantage to species. These findings provide a platform for studies to further define the language of communication of tsetse with their environment, and influence development of novel approaches for control.

  9. Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome.

    Science.gov (United States)

    Roux, Brice; Bolot, Stéphanie; Guy, Endrick; Denancé, Nicolas; Lautier, Martine; Jardinaud, Marie-Françoise; Fischer-Le Saux, Marion; Portier, Perrine; Jacques, Marie-Agnès; Gagnevin, Lionel; Pruvost, Olivier; Lauber, Emmanuelle; Arlat, Matthieu; Carrère, Sébastien; Koebnik, Ralf; Noël, Laurent D

    2015-11-18

    The bacterial species Xanthomonas campestris infects a wide range of Brassicaceae. Specific pathovars of this species cause black rot (pv. campestris), bacterial blight of stock (pv. incanae) or bacterial leaf spot (pv. raphani). In this study, we extended the genomic coverage of the species by sequencing and annotating the genomes of strains from pathovar incanae (CFBP 1606R and CFBP 2527R), pathovar raphani (CFBP 5828R) and a pathovar formerly named barbareae (CFBP 5825R). While comparative analyses identified a large core ORFeome at the species level, the core type III effectome was limited to only three putative type III effectors (XopP, XopF1 and XopAL1). In Xanthomonas, these effector proteins are injected inside the plant cells by the type III secretion system and contribute collectively to virulence. A deep and strand-specific RNA sequencing strategy was adopted in order to experimentally refine genome annotation for strain CFBP 5828R. This approach also allowed the experimental definition of novel ORFs and non-coding RNA transcripts. Using a constitutively active allele of hrpG, a master regulator of the type III secretion system, a HrpG-dependent regulon of 141 genes co-regulated with the type III secretion system was identified. Importantly, all these genes but seven are positively regulated by HrpG and 56 of those encode components of the Hrp type III secretion system and putative effector proteins. This dataset is an important resource to mine for novel type III effector proteins as well as for bacterial genes which could contribute to pathogenicity of X. campestris.

  10. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    Directory of Open Access Journals (Sweden)

    Derrick E Fouts

    2016-02-01

    Full Text Available Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1 the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2 genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12 autotrophy as a bacterial virulence factor; 3 CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4 finding Leptospira pathogen-specific specialized protein secretion systems; 5 novel virulence-related genes/gene families such as the Virulence Modifying (VM (PF07598 paralogs proteins and pathogen-specific adhesins; 6 discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7 and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately

  11. Draft Genome of Streptomyces zinciresistens K42, a Novel Metal-Resistant Species Isolated from Copper-Zinc Mine Tailings

    Science.gov (United States)

    Lin, Yanbing; Hao, Xiuli; Johnstone, Laurel; Miller, Susan J.; Baltrus, David A.; Rensing, Christopher; Wei, Gehong

    2011-01-01

    A draft genome sequence of Streptomyces zinciresistens K42, a novel Streptomyces species displaying a high level of resistance to zinc and cadmium, is presented here. The genome contains a large number of genes encoding proteins predicted to be involved in conferring metal resistance. Many of these genes appear to have been acquired through horizontal gene transfer. PMID:22038968

  12. Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species

    DEFF Research Database (Denmark)

    Li, Shengbin; Li, Bo; Cheng, Cheng;

    2014-01-01

    sequences of multiple crested ibis individuals, its thriving co-habitant, the little egret, Egretta garzetta, and the recently sequenced genomes of 41 other avian species that are under various degrees of survival threats, including the bald eagle, we carry out comparative analyses for genomic signatures...

  13. Revisiting the reference genomes of human pathogenic Cryptosporidium species: reannotation of C. parvum Iowa and a new C. hominis reference

    Science.gov (United States)

    Isaza, Juan P.; Galván, Ana Luz; Polanco, Victor; Huang, Bernice; Matveyev, Andrey V.; Serrano, Myrna G.; Manque, Patricio; Buck, Gregory A.; Alzate, Juan F.

    2015-01-01

    Cryptosporidium parvum and C. hominis are the most relevant species of this genus for human health. Both cause a self-limiting diarrhea in immunocompetent individuals, but cause potentially life-threatening disease in the immunocompromised. Despite the importance of these pathogens, only one reference genome of each has been analyzed and published. These two reference genomes were sequenced using automated capillary sequencing; as of yet, no next generation sequencing technology has been applied to improve their assemblies and annotations. For C. hominis, the main challenge that prevents a larger number of genomes to be sequenced is its resistance to axenic culture. In the present study, we employed next generation technology to analyse the genomic DNA and RNA to generate a new reference genome sequence of a C. hominis strain isolated directly from human stool and a new genome annotation of the C. parvum Iowa reference genome. PMID:26549794

  14. SISP: a Fast Species Identification System for Prokaryotes Based on Total Nucleotide Identity of Whole Genome Sequences

    Directory of Open Access Journals (Sweden)

    Jiapeng Chen

    2015-06-01

    Full Text Available In the genomic era, new techniques and criteria are proposed to improve the traditionally phenotypic and biochemical test–based approaches for prokaryotic species definition. Among them, average nucleotide identity (ANI mirrors DNA-DNA hybridization and is widely used by the microbial research community. However, our test shows that ANI possibly defines distinct taxa as the same species when they shared highly homologous sequences in a very short genomic region. In this study, we propose an improved algorithm named total nucleotide identity (TNI for use in bacterial taxonomy; this algorithm provided higher accuracy for species classification than ANI. Furthermore, we developed a species identification system for prokaryotes (SISP based on pairwise TNI of 3,073 genomes acquired from GenBank. For a submitted query genome, SISP can quickly find its most closely related genome from the established database based on the TNI calculation and infer the possible species of the query genome. Given a criterion of TNI > 70%, SISP has an accuracy that was above 90% for 3,596 prokaryotic genomes. SISP is open source and is available at https://github.com/chjp/SISProkaryotes.

  15. Use of genome sequence data in the design and testing of SSR markers for Phytophthora species

    Directory of Open Access Journals (Sweden)

    Cardle Linda

    2008-12-01

    Full Text Available Abstract Background Microsatellites or single sequence repeats (SSRs are a powerful choice of marker in the study of Phytophthora population biology, epidemiology, ecology, genetics and evolution. A strategy was tested in which the publicly available unigene datasets extracted from genome sequences of P. infestans, P. sojae and P. ramorum were mined for candidate SSR markers that could be applied to a wide range of Phytophthora species. Results A first approach, aimed at the identification of polymorphic SSR loci common to many Phytophthora species, yielded 171 reliable sequences containing 211 SSRs. Microsatellites were identified from 16 target species representing the breadth of diversity across the genus. Repeat number ranged from 3 to 16 with most having seven repeats or less and four being the most commonly found. Trinucleotide repeats such as (AAGn, (AGGn and (AGCn were the most common followed by pentanucleotide, tetranucleotide and dinucleotide repeats. A second approach was aimed at the identification of useful loci common to a restricted number of species more closely related to P. sojae (P. alni, P. cambivora, P. europaea and P. fragariae. This analysis yielded 10 trinucleotide and 2 tetranucleotide SSRs which were repeated 4, 5 or 6 times. Conclusion Key studies on inter- and intra-specific variation of selected microsatellites remain. Despite the screening of conserved gene coding regions, the sequence diversity between species was high and the identification of useful SSR loci applicable to anything other than the most closely related pairs of Phytophthora species was challenging. That said, many novel SSR loci for species other than the three 'source species' (P. infestans, P. sojae and P. ramorum are reported, offering great potential for the investigation of Phytophthora populations. In addition to the presence of microsatellites, many of the amplified regions may represent useful molecular marker regions for other studies as

  16. Evolution of sociality in spiders leads to depleted genomic diversity at both population and species levels.

    Science.gov (United States)

    Settepani, V; Schou, M F; Greve, M; Grinsted, L; Bechsgaard, J; Bilde, T

    2017-08-01

    Across several animal taxa, the evolution of sociality involves a suite of characteristics, a "social syndrome," that includes cooperative breeding, reproductive skew, primary female-biased sex ratio, and the transition from outcrossing to inbreeding mating system, factors that are expected to reduce effective population size (Ne). This social syndrome may be favoured by short-term benefits but come with long-term costs, because the reduction in Ne amplifies loss of genetic diversity by genetic drift, ultimately restricting the potential of populations to respond to environmental change. To investigate the consequences of this social life form on genetic diversity, we used a comparative RAD-sequencing approach to estimate genomewide diversity in spider species that differ in level of sociality, reproductive skew and mating system. We analysed multiple populations of three independent sister-species pairs of social inbreeding and subsocial outcrossing Stegodyphus spiders, and a subsocial outgroup. Heterozygosity and within-population diversity were sixfold to 10-fold lower in social compared to subsocial species, and demographic modelling revealed a tenfold reduction in Ne of social populations. Species-wide genetic diversity depends on population divergence and the viability of genetic lineages. Population genomic patterns were consistent with high lineage turnover, which homogenizes the genetic structure that builds up between inbreeding populations, ultimately depleting genetic diversity at the species level. Indeed, species-wide genetic diversity of social species was 5-8 times lower than that of subsocial species. The repeated evolution of species with this social syndrome is associated with severe loss of genomewide diversity, likely to limit their evolutionary potential. © 2017 John Wiley & Sons Ltd.

  17. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species.

    Science.gov (United States)

    Schmoll, Monika; Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R; Hernández-Oñate, Miguel; Kruszewska, Joanna S; Lawry, Robert; Mora-Montes, Hector M; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio; Herrera-Estrella, Alfredo

    2016-03-01

    The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.

  18. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species

    Science.gov (United States)

    Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E.; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R.; Hernández-Oñate, Miguel; Kruszewska, Joanna S.; Lawry, Robert; Mora-Montes, Hector M.; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R.; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J. Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio

    2016-01-01

    SUMMARY The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for “hot topic” research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway. PMID:26864432

  19. Genomic Characterization Reveals Insights Into Patulin Biosynthesis and Pathogenicity in Penicillium Species.

    Science.gov (United States)

    Li, Boqiang; Zong, Yuanyuan; Du, Zhenglin; Chen, Yong; Zhang, Zhanquan; Qin, Guozheng; Zhao, Wenming; Tian, Shiping

    2015-06-01

    Penicillium species are fungal pathogens that infect crop plants worldwide. P. expansum differs from P. italicum and P. digitatum, all major postharvest pathogens of pome and citrus, in that the former is able to produce the mycotoxin patulin and has a broader host range. The molecular basis of host-specificity of fungal pathogens has now become the focus of recent research. The present report provides the whole genome sequence of P. expansum (33.52 Mb) and P. italicum (28.99 Mb) and identifies differences in genome structure, important pathogenic characters, and secondary metabolite (SM) gene clusters in Penicillium species. We identified a total of 55 gene clusters potentially related to secondary metabolism, including a cluster of 15 genes (named PePatA to PePatO), that may be involved in patulin biosynthesis in P. expansum. Functional studies confirmed that PePatL and PePatK play crucial roles in the biosynthesis of patulin and that patulin production is not related to virulence of P. expansum. Collectively, P. expansum contains more pathogenic genes and SM gene clusters, in particular, an intact patulin cluster, than P. italicum or P. digitatum. These findings provide important information relevant to understanding the molecular network of patulin biosynthesis and mechanisms of host-specificity in Penicillium species.

  20. Differentiating sibling species of Zeugodacus caudatus (Insecta: Tephritidae) by complete mitochondrial genome.

    Science.gov (United States)

    Yong, Hoi-Sen; Song, Sze-Looi; Lim, Phaik-Eem; Eamsobhana, Praphathip; Suana, I Wayan

    2016-10-01

    Zeugodacus caudatus is a pest of pumpkin flowers. It has a Palearctic and Oriental distribution. We report here the complete mitochondrial genome of the Malaysian and Indonesian samples of Z. caudatus determined by next-generation sequencing of genomic DNA and determine their taxonomic status as sibling species and phylogeny with other taxa of the genus Zeugodacus. The whole mitogenome of both samples possessed 37 genes (13 protein-coding genes-PCGs, 2 rRNA and 22 tRNA genes) and a control region. The mitogenome of the Indonesian sample (15,885 bp) was longer than that of the Malaysian sample (15,866 bp). In both samples, TΨC-loop was absent in trnF and DHU-loop was absent in trnS1. Molecular phylogeny based on 13 PCGs was concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with the two samples of Z. caudatus forming a sister group and the genus Zeugodacus was monophyletic. The Malaysian and Indonesian samples of Z. caudatus have a genetic distance of p = 7.8 % based on 13 PCGs and p = 7.0 % based on 15 mitochondrial genes, indicating status of sibling species. They are proposed to be accorded specific status as members of a species complex.

  1. “Controlled, cross-species dataset for exploring biases in genome annotation and modification profiles”

    Directory of Open Access Journals (Sweden)

    Alison McAfee

    2015-12-01

    Full Text Available Since the sequencing of the honey bee genome, proteomics by mass spectrometry has become increasingly popular for biological analyses of this insect; but we have observed that the number of honey bee protein identifications is consistently low compared to other organisms [1]. In this dataset, we use nanoelectrospray ionization-coupled liquid chromatography–tandem mass spectrometry (nLC–MS/MS to systematically investigate the root cause of low honey bee proteome coverage. To this end, we present here data from three key experiments: a controlled, cross-species analyses of samples from Apis mellifera, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Mus musculus and Homo sapiens; a proteomic analysis of an individual honey bee whose genome was also sequenced; and a cross-tissue honey bee proteome comparison. The cross-species dataset was interrogated to determine relative proteome coverages between species, and the other two datasets were used to search for polymorphic sequences and to compare protein cleavage profiles, respectively.

  2. Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species.

    Science.gov (United States)

    Hess, Jon E; Campbell, Nathan R; Close, David A; Docker, Margaret F; Narum, Shawn R

    2013-06-01

    Unlike most anadromous fishes that have evolved strict homing behaviour, Pacific lamprey (Entosphenus tridentatus) seem to lack philopatry as evidenced by minimal population structure across the species range. Yet unexplained findings of within-region population genetic heterogeneity coupled with the morphological and behavioural diversity described for the species suggest that adaptive genetic variation underlying fitness traits may be responsible. We employed restriction site-associated DNA sequencing to genotype 4439 quality filtered single nucleotide polymorphism (SNP) loci for 518 individuals collected across a broad geographical area including British Columbia, Washington, Oregon and California. A subset of putatively neutral markers (N = 4068) identified a significant amount of variation among three broad populations: northern British Columbia, Columbia River/southern coast and 'dwarf' adults (F(CT) = 0.02, P ≪ 0.001). Additionally, 162 SNPs were identified as adaptive through outlier tests, and inclusion of these markers revealed a signal of adaptive variation related to geography and life history. The majority of the 162 adaptive SNPs were not independent and formed four groups of linked loci. Analyses with matsam software found that 42 of these outlier SNPs were significantly associated with geography, run timing and dwarf life history, and 27 of these 42 SNPs aligned with known genes or highly conserved genomic regions using the genome browser available for sea lamprey. This study provides both neutral and adaptive context for observed genetic divergence among collections and thus reconciles previous findings of population genetic heterogeneity within a species that displays extensive gene flow.

  3. Comparative Genomics of Non-TNL Disease Resistance Genes from Six Plant Species.

    Science.gov (United States)

    Nepal, Madhav P; Andersen, Ethan J; Neupane, Surendra; Benson, Benjamin V

    2017-09-30

    Disease resistance genes (R genes), as part of the plant defense system, have coevolved with corresponding pathogen molecules. The main objectives of this project were to identify non-Toll interleukin receptor, nucleotide-binding site, leucine-rich repeat (nTNL) genes and elucidate their evolutionary divergence across six plant genomes. Using reference sequences from Arabidopsis, we investigated nTNL orthologs in the genomes of common bean, Medicago, soybean, poplar, and rice. We used Hidden Markov Models for sequence identification, performed model-based phylogenetic analyses, visualized chromosomal positioning, inferred gene clustering, and assessed gene expression profiles. We analyzed 908 nTNL R genes in the genomes of the six plant species, and classified them into 12 subgroups based on the presence of coiled-coil (CC), nucleotide binding site (NBS), leucine rich repeat (LRR), resistance to Powdery mildew 8 (RPW8), and BED type zinc finger domains. Traditionally classified CC-NBS-LRR (CNL) genes were nested into four clades (CNL A-D) often with abundant, well-supported homogeneous subclades of Type-II R genes. CNL-D members were absent in rice, indicating a unique R gene retention pattern in the rice genome. Genomes from Arabidopsis, common bean, poplar and soybean had one chromosome without any CNL R genes. Medicago and Arabidopsis had the highest and lowest number of gene clusters, respectively. Gene expression analyses suggested unique patterns of expression for each of the CNL clades. Differential gene expression patterns of the nTNL genes were often found to correlate with number of introns and GC content, suggesting structural and functional divergence.

  4. Mitochondrial Genome Analyses Suggest Multiple Trichuris Species in Humans, Baboons, and Pigs from Different Geographical Regions.

    Directory of Open Access Journals (Sweden)

    Mohamed B F Hawash

    Full Text Available The whipworms Trichuris trichiura and Trichuris suis are two parasitic nematodes of humans and pigs, respectively. Although whipworms in human and non-human primates historically have been referred to as T. trichiura, recent reports suggest that several Trichuris spp. are found in primates.We sequenced and annotated complete mitochondrial genomes of Trichuris recovered from a human in Uganda, an olive baboon in the US, a hamadryas baboon in Denmark, and two pigs from Denmark and Uganda. Comparative analyses using other published mitochondrial genomes of Trichuris recovered from a human and a porcine host in China and from a françois' leaf-monkey (China were performed, including phylogenetic analyses and pairwise genetic and amino acid distances. Genetic and protein distances between human Trichuris in Uganda and China were high (~19% and 15%, respectively suggesting that they represented different species. Trichuris from the olive baboon in US was genetically related to human Trichuris in China, while the other from the hamadryas baboon in Denmark was nearly identical to human Trichuris from Uganda. Baboon-derived Trichuris was genetically distinct from Trichuris from françois' leaf monkey, suggesting multiple whipworm species circulating among non-human primates. The genetic and protein distances between pig Trichuris from Denmark and other regions were roughly 9% and 6%, respectively, while Chinese and Ugandan whipworms were more closely related.Our results indicate that Trichuris species infecting humans and pigs are phylogenetically distinct across geographical regions, which might have important implications for the implementation of suitable and effective control strategies in different regions. Moreover, we provide support for the hypothesis that Trichuris infecting primates represents a complex of cryptic species with some species being able to infect both humans and non-human primates.

  5. Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites

    DEFF Research Database (Denmark)

    Grijseels, Sietske; Nielsen, Jens Christian; Randelovic, Milica;

    2016-01-01

    confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted...... of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential...

  6. [The application of genome editing in identification of plant gene function and crop breeding].

    Science.gov (United States)

    Xiangchun, Zhou; Yongzhong, Xing

    2016-03-01

    Plant genome can be modified via current biotechnology with high specificity and excellent efficiency. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system are the key engineered nucleases used in the genome editing. Genome editing techniques enable gene targeted mutagenesis, gene knock-out, gene insertion or replacement at the target sites during the endogenous DNA repair process, including non-homologous end joining (NHEJ) and homologous recombination (HR), triggered by the induction of DNA double-strand break (DSB). Genome editing has been successfully applied in the genome modification of diverse plant species, such as Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. In this review, we summarize the application of genome editing in identification of plant gene function and crop breeding. Moreover, we also discuss the improving points of genome editing in crop precision genetic improvement for further study.

  7. Genome-wide transcription analyses in rice using tiling microarrays

    DEFF Research Database (Denmark)

    Li, Lei; Wang, Xiangfeng; Stolc, Viktor;

    2006-01-01

    Sequencing and computational annotation revealed several features, including high gene numbers, unusual composition of the predicted genes and a large number of genes lacking homology to known genes, that distinguish the rice (Oryza sativa) genome from that of other fully sequenced model species....... We report here a full-genome transcription analysis of the indica rice subspecies using high-density oligonucleotide tiling microarrays. Our results provided expression data support for the existence of 35,970 (81.9%) annotated gene models and identified 5,464 unique transcribed intergenic regions...... activity between duplicated segments of the genome. Collectively, our results provide the first whole-genome transcription map useful for further understanding the rice genome. Udgivelsesdato: 2006-Jan...

  8. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species.

    Science.gov (United States)

    Lassiter, Erica S; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda C; Olarte, Rodrigo A; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L; Ristaino, Jean B

    2015-11-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.

  9. Genomic organization and expression of the HSP70 locus in New and Old World Leishmania species.

    Science.gov (United States)

    Folgueira, C; Cañavate, C; Chicharro, C; Requena, J M

    2007-03-01

    Heat shock is believed to be a developmental inductor of differentiation in Leishmania. Furthermore, heat shock genes are extensively studied as gene models to decipher mechanisms of gene regulation in kinetoplastids. Here, we describe the organization and expression of the HSP70 loci in representative Leishmania species (L. infantum, L. major, L. tropica, L. mexicana, L. amazonensis and L. braziliensis). With the exception of L. braziliensis, the organization of the HSP70 loci was found to be well conserved among the other Leishmania species. Two types of genes, HSP70-I and HSP70-II, were found to be present in these Leishmania species except for L. braziliensis that lacks HSP70-II gene. Polymorphisms in the HSP70 locus allow the differentiation of the Old and New World species within the subgenus Leishmania. A notable discrepancy between our data and those of the L. major genome database in relation to the gene copy number composing the L. major HSP70 locus was revealed. The temperature-dependent accumulation of the HSP70-I mRNAs is also conserved among the different Leishmania species with the exception of L. braziliensis. In spite of these differences, analysis of the HSP70 synthesis indicated that the HSP70 mRNAs are also preferentially translated during heat shock in L. braziliensis.

  10. Comprehensive Phylogenetic Analysis of Bovine Non-aureus Staphylococci Species Based on Whole-Genome Sequencing

    Science.gov (United States)

    Naushad, Sohail; Barkema, Herman W.; Luby, Christopher; Condas, Larissa A. Z.; Nobrega, Diego B.; Carson, Domonique A.; De Buck, Jeroen

    2016-01-01

    Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity. PMID:28066335

  11. Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species

    DEFF Research Database (Denmark)

    Li, Shengbin; Li, Bo; Cheng, Cheng

    2014-01-01

    BackgroundNearly a quarter of all avian species is either threatened or nearly threatened. Of these, 73 species are currently being rescued from going extinct in wildlife sanctuaries. One of the previously most critically-endangered is the crested ibis, Nipponia nippon. Once widespread across North...... of near extinction events in association with environmental and behavioral attributes of species. We confirm that both loss of genetic diversity and enrichment of deleterious mutations of protein-coding genes contribute to the major genetic defects of the endangered species. We further identify...... practices, to facilitate sustainable recovery of endangered species.ConclusionsThese findings demonstrate common genomic signatures of population decline across avian species and pave a way for further effort in saving endangered species and enhancing conservation genomic efforts....

  12. Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice.

    Science.gov (United States)

    Brozynska, Marta; Copetti, Dario; Furtado, Agnelo; Wing, Rod A; Crayn, Darren; Fox, Glen; Ishikawa, Ryuji; Henry, Robert J

    2016-11-27

    The related A genome species of the Oryza genus are the effective gene pool for rice. Here, we report draft genomes for two Australian wild A genome taxa: O. rufipogon-like population, referred to as Taxon A, and O. meridionalis-like population, referred to as Taxon B. These two taxa were sequenced and assembled by integration of short- and long-read next-generation sequencing (NGS) data to create a genomic platform for a wider rice gene pool. Here, we report that, despite the distinct chloroplast genome, the nuclear genome of the Australian Taxon A has a sequence that is much closer to that of domesticated rice (O. sativa) than to the other Australian wild populations. Analysis of 4643 genes in the A genome clade showed that the Australian annual, O. meridionalis, and related perennial taxa have the most divergent (around 3 million years) genome sequences relative to domesticated rice. A test for admixture showed possible introgression into the Australian Taxon A (diverged around 1.6 million years ago) especially from the wild indica/O. nivara clade in Asia. These results demonstrate that northern Australia may be the centre of diversity of the A genome Oryza and suggest the possibility that this might also be the centre of origin of this group and represent an important resource for rice improvement.

  13. The Agassiz’s desert tortoise genome provides a resource for the conservation of a threatened species

    Science.gov (United States)

    Tollis, Marc; DeNardo, Dale F.; Cornelius, John A.; Dolby, Greer A.; Edwards, Taylor; Henen, Brian T.; Karl, Alice E.; Murphy, Robert W.

    2017-01-01

    Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex. PMID:28562605

  14. Evolution of genome organizations of squirrels (Sciuridae) revealed by cross-species chromosome painting.

    Science.gov (United States)

    Li, Tangliang; O'Brien, Patricia C M; Biltueva, Larisa; Fu, Beiyuan; Wang, Jinhuan; Nie, Wenhui; Ferguson-Smith, Malcolm A; Graphodatsky, Alexander S; Yang, Fengtang

    2004-01-01

    With complete sets of chromosome-specific painting probes derived from flow-sorted chromosomes of human and grey squirrel (Sciurus carolinensis), the whole genome homologies between human and representatives of tree squirrels (Sciurus carolinensis, Callosciurus erythraeus), flying squirrels (Petaurista albiventer) and chipmunks (Tamias sibiricus) have been defined by cross-species chromosome painting. The results show that, unlike the highly rearranged karyotypes of mouse and rat, the karyotypes of squirrels are highly conserved. Two methods have been used to reconstruct the genome phylogeny of squirrels with the laboratory rabbit (Oryctolagus cuniculus) as the out-group: (1) phylogenetic analysis by parsimony using chromosomal characters identified by comparative cytogenetic approaches; (2) mapping the genome rearrangements onto recently published sequence-based molecular trees. Our chromosome painting results, in combination with molecular data, show that flying squirrels are phylogenetically close to New World tree squirrels. Chromosome painting and G-banding comparisons place chipmunks (Tamias sibiricus ), with a derived karyotype, outside the clade comprising tree and flying squirrels. The superorder Glires (orde Rodentia + order Lagomorpha) is firmly supported by two conserved syntenic associations between human chromosomes 1 and 10p homologues, and between 9 and 11 homologues.

  15. Analysis of Adaptive Evolution in Lyssavirus Genomes Reveals Pervasive Diversifying Selection during Species Diversification

    Directory of Open Access Journals (Sweden)

    Carolina M. Voloch

    2014-11-01

    Full Text Available Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G, RNA-dependent RNA polymerase (L and polymerase (P genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.

  16. Cross-Species Genome-Wide Identification of Evolutionary Conserved MicroProteins

    Science.gov (United States)

    Straub, Daniel

    2017-01-01

    MicroProteins are small single-domain proteins that act by engaging their targets into different, sometimes nonproductive protein complexes. In order to identify novel microProteins in any sequenced genome of interest, we have developed miPFinder, a program that identifies and classifies potential microProteins. In the past years, several microProteins have been discovered in plants where they are mainly involved in the regulation of development by fine-tuning transcription factor activities. The miPFinder algorithm identifies all up to date known plant microProteins and extends the microProtein concept beyond transcription factors to other protein families. Here, we reveal potential microProtein candidates in several plant and animal reference genomes. A large number of these microProteins are species-specific while others evolved early and are evolutionary highly conserved. Most known microProtein genes originated from large ancestral genes by gene duplication, mutation and subsequent degradation. Gene ontology analysis shows that putative microProtein ancestors are often located in the nucleus, and involved in DNA binding and formation of protein complexes. Additionally, microProtein candidates act in plant transcriptional regulation, signal transduction and anatomical structure development. MiPFinder is freely available to find microProteins in any genome and will aid in the identification of novel microProteins in plants and animals. PMID:28338802

  17. Identification of Escherichia coli and Shigella Species from Whole-Genome Sequences.

    Science.gov (United States)

    Chattaway, Marie A; Schaefer, Ulf; Tewolde, Rediat; Dallman, Timothy J; Jenkins, Claire

    2017-02-01

    Escherichia coli and Shigella species are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species of Shigella are therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982 Escherichia coli and Shigella sp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasive E. coli isolates that were misidentified as Shigella flexneri or S. boydii by the kmer ID, and 8 were S. flexneri isolates misidentified by TB&S as S. boydii due to nonfunctional S. flexneri O antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising both S. boydii and S. dysenteriae strains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data. Shigella can be differentiated from E. coli and accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species of Shigella, and identified emerging pathoadapted lineages. © Crown copyright 2017.

  18. Comparative genomics of non-pseudomonal bacterial species colonising paediatric cystic fibrosis patients

    Directory of Open Access Journals (Sweden)

    Kate L. Ormerod

    2015-09-01

    Full Text Available The genetic disorder cystic fibrosis is a life-limiting condition affecting ∼70,000 people worldwide. Targeted, early, treatment of the dominant infecting species, Pseudomonas aeruginosa, has improved patient outcomes; however, there is concern that other species are now stepping in to take its place. In addition, the necessarily long-term antibiotic therapy received by these patients may be providing a suitable environment for the emergence of antibiotic resistance. To investigate these issues, we employed whole-genome sequencing of 28 non-Pseudomonas bacterial strains isolated from three paediatric patients. We did not find any trend of increasing antibiotic resistance (either by mutation or lateral gene transfer in these isolates in comparison with other examples of the same species. In addition, each isolate contained a virulence gene repertoire that was similar to other examples of the relevant species. These results support the impaired clearance of the CF lung not demanding extensive virulence for survival in this habitat. By analysing serial isolates of the same species we uncovered several examples of strain persistence. The same strain of Staphylococcus aureus persisted for nearly a year, despite administration of antibiotics to which it was shown to be sensitive. This is consistent with previous studies showing antibiotic therapy to be inadequate in cystic fibrosis patients, which may also explain the lack of increasing antibiotic resistance over time. Serial isolates of two naturally multi-drug resistant organisms, Achromobacter xylosoxidans and Stenotrophomonas maltophilia, revealed that while all S. maltophilia strains were unique, A. xylosoxidans persisted for nearly five years, making this a species of particular concern. The data generated by this study will assist in developing an understanding of the non-Pseudomonas species associated with cystic fibrosis.

  19. Comparative Genomics of Core Metabolism Genes of Cellulolytic and Non-cellulolytic Clostridium Species.

    Science.gov (United States)

    Lal, Sadhana; Levin, David B

    Microbial production of fuels such as ethanol, butanol, hydrogen (H2), and methane (CH4) from waste biomass has the potential to provide sustainable energy systems that can displace fossil fuel consumption. Screening for microbial diversity and genome sequencing of a wide-range of microorganisms can identify organisms with natural abilities to synthesize these alternative fuels and/or other biotechnological applications. Clostridium species are the most widely studied strict anaerobes capable of fermentative synthesis of ethanol, butanol, or hydrogen directly from waste biomass. Clostridium termitidis CT1112 is a mesophilic, cellulolytic species capable of direct cellulose fermentation to ethanol and organic acids, with concomitant synthesis of H2 and CO2. On the basis of 16S ribosomal RNA (rRNA) and chaperonin 60 (cpn60) gene sequence data, phylogenetic analyses revealed a close relationship between C. termitidis and C. cellobioparum. Comparative bioinformatic analyses of the C. termitidis genome with 18 cellulolytic and 10 non-cellulolytic Clostridium species confirmed this relationship, and further revealed that the majority of core metabolic pathway genes in C. termitidis and C. cellobioparum share more than 90% amino acid sequence identity. The gene loci and corresponding amino acid sequences of the encoded enzymes for each pathway were correlated by percentage identity, higher score (better alignment), and lowest e-value (most significant "hit"). In addition, the function of each enzyme was proposed by conserved domain analysis. In this chapter we discuss the comparative analysis of metabolic pathways involved in synthesis of various useful products by cellulolytic and non-cellulolytic biofuel and solvent producing Clostridium species. This study has generated valuable information concerning the core metabolism genes and pathways of C. termitidis CT1112, which is helpful in developing metabolic engineering strategies to enhance its natural capacity for better

  20. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates

    Science.gov (United States)

    Chitsazzadeh, Vida; Coarfa, Cristian; Drummond, Jennifer A.; Nguyen, Tri; Joseph, Aaron; Chilukuri, Suneel; Charpiot, Elizabeth; Adelmann, Charles H.; Ching, Grace; Nguyen, Tran N.; Nicholas, Courtney; Thomas, Valencia D.; Migden, Michael; MacFarlane, Deborah; Thompson, Erika; Shen, Jianjun; Takata, Yoko; McNiece, Kayla; Polansky, Maxim A.; Abbas, Hussein A.; Rajapakshe, Kimal; Gower, Adam; Spira, Avrum; Covington, Kyle R.; Xiao, Weimin; Gunaratne, Preethi; Pickering, Curtis; Frederick, Mitchell; Myers, Jeffrey N.; Shen, Li; Yao, Hui; Su, Xiaoping; Rapini, Ronald P.; Wheeler, David A.; Hawk, Ernest T.; Flores, Elsa R.; Tsai, Kenneth Y.

    2016-01-01

    Cutaneous squamous cell carcinoma (cuSCC) comprises 15–20% of all skin cancers, accounting for over 700,000 cases in USA annually. Most cuSCC arise in association with a distinct precancerous lesion, the actinic keratosis (AK). To identify potential targets for molecularly targeted chemoprevention, here we perform integrated cross-species genomic analysis of cuSCC development through the preneoplastic AK stage using matched human samples and a solar ultraviolet radiation-driven Hairless mouse model. We identify the major transcriptional drivers of this progression sequence, showing that the key genomic changes in cuSCC development occur in the normal skin to AK transition. Our data validate the use of this ultraviolet radiation-driven mouse cuSCC model for cross-species analysis and demonstrate that cuSCC bears deep molecular similarities to multiple carcinogen-driven SCCs from diverse sites, suggesting that cuSCC may serve as an effective, accessible model for multiple SCC types and that common treatment and prevention strategies may be feasible. PMID:27574101

  1. Genomic architecture of MHC-linked odorant receptor gene repertoires among 16 vertebrate species.

    Science.gov (United States)

    Santos, Pablo Sandro Carvalho; Kellermann, Thomas; Uchanska-Ziegler, Barbara; Ziegler, Andreas

    2010-09-01

    The recent sequencing and assembly of the genomes of different organisms have shown that almost all vertebrates studied in detail so far have one or more clusters of genes encoding odorant receptors (OR) in close physical linkage to the major histocompatibility complex (MHC). It has been postulated that MHC-linked OR genes could be involved in MHC-influenced mate choice, comprising both pre- as well as post-copulatory mechanisms. We have therefore carried out a systematic comparison of protein sequences of these receptors from the genomes of man, chimpanzee, gorilla, orangutan, rhesus macaque, mouse, rat, dog, cat, cow, pig, horse, elephant, opossum, frog and zebra fish (amounting to a total of 559 protein sequences) in order to identify OR families exhibiting evolutionarily conserved MHC linkage. In addition, we compared the genomic structure of this region within these 16 species, accounting for presence or absence of OR gene families, gene order, transcriptional orientation and linkage to the MHC or framework genes. The results are presented in the form of gene maps and phylogenetic analyses that reveal largely concordant repertoires of gene families, at least among tetrapods, although each of the eight taxa studied (primates, rodents, ungulates, carnivores, proboscids, marsupials, amphibians and teleosts) exhibits a typical architecture of MHC (or MHC framework loci)-linked OR genes. Furthermore, the comparison of the genomic organization of this region has implications for phylogenetic relationships between closely related taxa, especially in disputed cases such as the evolutionary history of even- and odd-toed ungulates and carnivores. Finally, the largely conserved linkage between distinct OR genes and the MHC supports the concept that particular alleles within a given haplotype function in a concerted fashion during self-/non-self-discrimination processes in reproduction.

  2. Development of microsatellite markers for six Tetranychus species by transfer from Tetranychus urticae genome.

    Science.gov (United States)

    Zhang, Jia; Sun, Jing-Tao; Jin, Peng-Yu; Hong, Xiao-Yue

    2016-09-01

    Microsatellite markers are frequently used to explore the population genetic structure of organisms. Spider mites (genus Tetranychus) are important agricultural pests. Several markers have been developed for T. urticae, but for other spider mites, few such markers are available, hampering studies of their population genetics. In this study, we developed and characterized microsatellite markers for six non-model spider mite species (T. truncatus, T. kanzawai, T. ludeni, T. piercei, T. phaselus and T. pueraricola) by cross-species amplification of markers in the T. urticae genome, in order to better understand the population structure of Tetranychus species. Among 228 screened loci, many were polymorphic, including 13 loci in T. urticae, 11 loci in T. truncatus, 15 loci in T. pueraricola, 23 loci in T. kanzawai, 19 loci in T. piercei, 11 loci in T. phaselus and 9 loci in T. ludeni. Sequence analysis determined that the fragment length variations of the transferred microsatellites were mainly due to the variations of the numbers of repeats. These new microsatellite markers should be useful for studying the population genetics of the seven Tetranychus species.

  3. Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species.

    Science.gov (United States)

    Lai, Alvina G; Aboobaker, A Aziz

    2017-05-18

    Growing global demands for crustacean food crop species have driven large investments in aquaculture research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in developing economies. Thus, a thorough understanding of the immune system components of food crop species is imperative for research to combat pathogens. Through a comparative genomics approach utilising extant data from 55 species, we describe the innate immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system. Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in crustacean food crops.

  4. Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level

    Directory of Open Access Journals (Sweden)

    Georg Conrads

    2014-12-01

    Full Text Available Background: Two closely related species of mutans streptococci, namely Streptococcus mutans and Streptococcus sobrinus, are associated with dental caries in humans. Their acidogenic and aciduric capacity is directly associated with the cariogenic potential of these bacteria. To survive acidic and temporarily harsh conditions in the human oral cavity with hundreds of other microbial co-colonizers as competitors, both species have developed numerous mechanisms for adaptation. Objectives: The recently published novel genome information for both species is used to elucidate genetic similarities but especially differences and to discuss the impact on cariogenicity of the corresponding phenotypic properties including adhesion, carbohydrate uptake and fermentation, acid tolerance, signaling by two component systems, competence, and oxidative stress resistance. Conclusions: S. sobrinus can down-regulate the SpaA-mediated adherence to the pellicle. It has a smaller number of two-component signaling systems and bacteriocin-related genes than S. mutans, but all or even more immunity proteins. It lacks the central competence genes comC, comS, and comR. There are more genes coding for glucosyltransferases and a novel energy production pathway formed by lactate oxidase, which is not found in S. mutans. Both species show considerable differences in the regulation of fructan catabolism. However, both S. mutans and S. sobrinus share most of these traits and should therefore be considered as equally virulent with regard to dental caries.

  5. In planta gene expression analysis of Xanthomonas oryzae pathovar oryzae, African strain MAI1

    Directory of Open Access Journals (Sweden)

    Verdier Valérie

    2010-06-01

    Full Text Available Abstract Background Bacterial leaf blight causes significant yield losses in rice crops throughout Asia and Africa. Although both the Asian and African strains of the pathogen, Xanthomonas oryzae pv. oryzae (Xoo, induce similar symptoms, they are nevertheless genetically different, with the African strains being more closely related to the Asian X. oryzae pv. oryzicola (Xoc. Results Changes in gene expression of the African Xoo strain MAI1 in the susceptible rice cultivar Nipponbare were profiled, using an SSH Xoo DNA microarray. Microarray hybridization was performed comparing bacteria recovered from plant tissues at 1, 3, and 6 days after inoculation (dai with bacteria grown in vitro. A total of 710 bacterial genes were found to be differentially expressed, with 407 up-regulated and 303 down-regulated. Expression profiling indicated that less than 20% of the 710 bacterial transcripts were induced in the first 24 h after inoculation, whereas 63% were differentially expressed at 6 dai. The 710 differentially expressed genes were one-end sequenced. 535 sequences were obtained from which 147 non-redundant sequences were identified. Differentially expressed genes were related to metabolism, secretion and transport, pathogen adherence to plant tissues, plant cell-wall degradation, IS elements, and virulence. In addition, various other genes encoding proteins with unknown function or showing no similarity to other proteins were also induced. The Xoo MAI1 non-redundant set of sequences was compared against several X. oryzae genomes, revealing a specific group of genes that was present only in MAI1. Numerous IS elements were also found to be differentially expressed. Quantitative real-time PCR confirmed 86% of the identified profile on a set of 14 genes selected according to the microarray analysis. Conclusions This is the first report to compare the expression of Xoo genes in planta across different time points during infection. This work shows that

  6. Complete mitochondrial genome of Military Macaw (Ara militaris): its comparison with mitogenomes of two other Ara species.

    Science.gov (United States)

    Dawid Urantowka, Adam

    2016-09-01

    The Military Macaw is one of the eight species of the genus Ara. The genus is one of six genera, which form morphologically diverse group termed as Macaws. Parrots of this group differ in body size on demand of the genus and species. Six of Ara species are classified as large Macaws. Based on morphological similarities and differences, these species can be segregated into three pairs according to their plumage coloration. Representative mitochondrial genomes were sequenced only for A. glaucogularis (blue and yellow coloration) and A. macao (predominantly red/scarlet). Ara militaris is one of two predominantly green species and full mitochondrial genome of considered species was sequenced in this study. It's comparison with A. glaucogularis and A. macao mitogenomes revealed higher degree of identity between militaris and macao sequences than between militaris and glaucogularis mtDNAs. Ara militaris mitogenome will be indispensable to refine the phylogenetic relationships within Macaw group.

  7. Full Genome Sequence Analysis of Two Isolates Reveals a Novel Xanthomonas Species Close to the Sugarcane Pathogen Xanthomonas albilineans

    Directory of Open Access Journals (Sweden)

    Isabelle Pieretti

    2015-07-01

    Full Text Available Xanthomonas albilineans is the bacterium responsible for leaf scald, a lethal disease of sugarcane. Within the Xanthomonas genus, X. albilineans exhibits distinctive genomic characteristics including the presence of significant genome erosion, a non-ribosomal peptide synthesis (NRPS locus involved in albicidin biosynthesis, and a type 3 secretion system (T3SS of the Salmonella pathogenicity island-1 (SPI-1 family. We sequenced two X. albilineans-like strains isolated from unusual environments, i.e., from dew droplets on sugarcane leaves and from the wild grass Paspalum dilatatum, and compared these genomes sequences with those of two strains of X. albilineans and three of Xanthomonas sacchari. Average nucleotide identity (ANI and multi-locus sequence analysis (MLSA showed that both X. albilineans-like strains belong to a new species close to X. albilineans that we have named “Xanthomonas pseudalbilineans”. X. albilineans and “X. pseudalbilineans” share many genomic features including (i the lack of genes encoding a hypersensitive response and pathogenicity type 3 secretion system (Hrp-T3SS, and (ii genome erosion that probably occurred in a common progenitor of both species. Our comparative analyses also revealed specific genomic features that may help X. albilineans interact with sugarcane, e.g., a PglA endoglucanase, three TonB-dependent transporters and a glycogen metabolism gene cluster. Other specific genomic features found in the “X. pseudalbilineans” genome may contribute to its fitness and specific ecological niche.

  8. The complete chloroplast genome sequence of Gentiana lawrencei var. farreri (Gentianaceae and comparative analysis with its congeneric species

    Directory of Open Access Journals (Sweden)

    Peng-Cheng Fu

    2016-09-01

    Full Text Available Background The chloroplast (cp genome is useful in plant systematics, genetic diversity analysis, molecular identification and divergence dating. The genus Gentiana contains 362 species, but there are only two valuable complete cp genomes. The purpose of this study is to report the characterization of complete cp genome of G. lawrencei var. farreri, which is endemic to the Qinghai-Tibetan Plateau (QTP. Methods Using high throughput sequencing technology, we got the complete nucleotide sequence of the G. lawrencei var. farreri cp genome. The comparison analysis including genome difference and gene divergence was performed with its congeneric species G. straminea. The simple sequence repeats (SSRs and phylogenetics were studied as well. Results The cp genome of G. lawrencei var. farreri is a circular molecule of 138,750 bp, containing a pair of 24,653 bp inverted repeats which are separated by small and large single-copy regions of 11,365 and 78,082 bp, respectively. The cp genome contains 130 known genes, including 85 protein coding genes (PCGs, eight ribosomal RNA genes and 37 tRNA genes. Comparative analyses indicated that G. lawrencei var. farreri is 10,241 bp shorter than its congeneric species G. straminea. Four large gaps were detected that are responsible for 85% of the total sequence loss. Further detailed analyses revealed that 10 PCGs were included in the four gaps that encode nine NADH dehydrogenase subunits. The cp gene content, order and orientation are similar to those of its congeneric species, but with some variation among the PCGs. Three genes, ndhB, ndhF and clpP, have high nonsynonymous to synonymous values. There are 34 SSRs in the G. lawrencei var. farreri cp genome, of which 25 are mononucleotide repeats: no dinucleotide repeats were detected. Comparison with the G. straminea cp genome indicated that five SSRs have length polymorphisms and 23 SSRs are species-specific. The phylogenetic analysis of 48 PCGs from 12 Gentianales

  9. LRR-RLK family from two Citrus species: genome-wide identification and evolutionary aspects.

    Science.gov (United States)

    Magalhães, Diogo M; Scholte, Larissa L S; Silva, Nicholas V; Oliveira, Guilherme C; Zipfel, Cyril; Takita, Marco A; De Souza, Alessandra A

    2016-08-12

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of plant RLKs. The functions of most LRR-RLKs have remained undiscovered, and a few that have been experimentally characterized have been shown to have important roles in growth and development as well as in defense responses. Although RLK subfamilies have been previously studied in many plants, no comprehensive study has been performed on this gene family in Citrus species, which have high economic importance and are frequent targets for emerging pathogens. In this study, we performed in silico analysis to identify and classify LRR-RLK homologues in the predicted proteomes of Citrus clementina (clementine) and Citrus sinensis (sweet orange). In addition, we used large-scale phylogenetic approaches to elucidate the evolutionary relationships of the LRR-RLKs and further narrowed the analysis to the LRR-XII group, which contains several previously described cell surface immune receptors. We built integrative protein signature databases for Citrus clementina and Citrus sinensis using all predicted protein sequences obtained from whole genomes. A total of 300 and 297 proteins were identified as LRR-RLKs in C. clementina and C. sinensis, respectively. Maximum-likelihood phylogenetic trees were estimated using Arabidopsis LRR-RLK as a template and they allowed us to classify Citrus LRR-RLKs into 16 groups. The LRR-XII group showed a remarkable expansion, containing approximately 150 paralogs encoded in each Citrus genome. Phylogenetic analysis also demonstrated the existence of two distinct LRR-XII clades, each one constituted mainly by RD and non-RD kinases. We identified 68 orthologous pairs from the C. clementina and C. sinensis LRR-XII genes. In addition, among the paralogs, we identified a subset of 78 and 62 clustered genes probably derived from tandem duplication events in the genomes of C. clementina and C. sinensis, respectively. This work provided the first comprehensive

  10. Identification of genetic bases of vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis.

    Science.gov (United States)

    Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang; Zhu, Jun; Kan, Biao

    2014-03-01

    Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen.

  11. Comparative Genome Analysis of Three Thiocyanate Oxidizing Thioalkalivibrio Species Isolated from Soda Lakes

    Science.gov (United States)

    Berben, Tom; Overmars, Lex; Sorokin, Dimitry Y.; Muyzer, Gerard

    2017-01-01

    Thiocyanate is a C1 compound containing carbon, nitrogen, and sulfur. It is a (by)product in a number of natural and industrial processes. Because thiocyanate is toxic to many organisms, including humans, its removal from industrial waste streams is an important problem. Although a number of bacteria can use thiocyanate as a nitrogen source, only a few can use it as an electron donor. There are two distinct pathways to use thiocyanate: (i) the “carbonyl sulfide pathway,” which has been extensively studied, and (ii) the “cyanate pathway,” whose key enzyme, thiocyanate dehydrogenase, was recently purified and studied. Three species of Thioalkalivibrio, a group of haloalkaliphilic sulfur-oxidizing bacteria isolated from soda lakes, have been described as thiocyanate oxidizers: (i) Thioalkalivibrio paradoxus (“cyanate pathway”), (ii) Thioalkalivibrio thiocyanoxidans (“cyanate pathway”) and (iii) Thioalkalivibrio thiocyanodenitrificans (“carbonyl sulfide pathway”). In this study we provide a comparative genome analysis of these described thiocyanate oxidizers, with genomes ranging in size from 2.5 to 3.8 million base pairs. While focusing on thiocyanate degradation, we also analyzed the differences in sulfur, carbon, and nitrogen metabolism. We found that the thiocyanate dehydrogenase gene is present in 10 different Thioalkalivibrio strains, in two distinct genomic contexts/genotypes. The first genotype is defined by having genes for flavocytochrome c sulfide dehydrogenase upstream from the thiocyanate dehydrogenase operon (present in two strains including the type strain of Tv. paradoxus), whereas in the second genotype these genes are located downstream, together with two additional genes of unknown function (present in eight strains, including the type strains of Tv. thiocyanoxidans). Additionally, we found differences in the presence/absence of genes for various sulfur oxidation pathways, such as sulfide:quinone oxidoreductase, dissimilatory

  12. Complete mitochondrial genome sequences of Atlantic representatives of the invasive Pacific coral species Tubastraea coccinea and T. tagusensis (Scleractinia, Dendrophylliidae): Implications for species identification.

    Science.gov (United States)

    Capel, K C C; Migotto, A E; Zilberberg, C; Lin, M F; Forsman, Z; Miller, D J; Kitahara, M V

    2016-09-30

    Members of the azooxanthellate coral genus Tubastraea are invasive species with particular concern because they have become established and are fierce competitors in the invaded areas in many parts of the world. Pacific Tubastraea species are spreading fast throughout the Atlantic Ocean, occupying over 95% of the available substrate in some areas and out-competing native endemic species. Approximately half of all known coral species are azooxanthellate but these are seriously under-represented compared to zooxanthellate corals in terms of the availability of mitochondrial (mt) genome data. In the present study, the complete mt DNA sequences of Atlantic individuals of the invasive scleractinian species Tubastraea coccinea and Tubastraea tagusensis were determined and compared to the GenBank reference sequence available for a Pacific "T. coccinea" individual. At 19,094bp (compared to 19,070bp for the GenBank specimen), the mt genomes assembled for the Atlantic T. coccinea and T. tagusensis were among the longest sequence determined to date for "Complex" scleractinians. Comparisons of genomes data showed that the "T. coccinea" sequence deposited on GenBank was more closely related to that from Dendrophyllia arbuscula than to the Atlantic Tubastraea spp., in terms of genome length and base pair similarities. This was confirmed by phylogenetic analysis, suggesting that the former was misidentified and might actually be a member from the genus Dendrophyllia. In addition, although in general the COX1 locus has a slow evolutionary rate in Scleractinia, it was the most variable region of the Tubastraea mt genome and can be used as markers for genus or species identification. Given the limited data available for azooxanthellate corals, the results presented here represent an important contribution to our understanding of phylogenetic relationships and the evolutionary history of the Scleractinia. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Genomic and evolutionary analyses of Tango transposons in Aedes aegypti, Anopheles gambiae and other mosquito species.

    Science.gov (United States)

    Coy, M R; Tu, Z

    2007-08-01

    Tango is a transposon of the Tc1 family and was originally discovered in the African malaria mosquito, Anopheles gambiae. Here we report a systematic analysis of the genome sequence of the yellow fever mosquito, Aedes aegypti, which uncovered three distinct Tango transposons. We name the only An. gambiae Tango transposon AgTango1 and the three Ae. aegypti Tango elements AeTango1-3. Like AgTango1, AeTango1 and AeTango2 elements both have members that retain characteristics of autonomous elements such as intact open reading frames and terminal inverted repeats (TIRs). AeTango3 is a degenerate transposon with no full-length members. All full-length Tango transposons contain subterminal direct repeats within their TIRs. AgTango1 and AeTango1-3 form a single clade among other Tc1 transposons. Within this clade, AgTango1 and AeTango1 are closely related and share approximately 80% identity at the amino acid level, which exceeds the level of similarity of the majority of host genes in the two species. A survey of Tango in other mosquito species was carried out using degenerate PCR. Tango was isolated and sequenced in all members of the An. gambiae species complex, Aedes albopictus and Ochlerotatus atropalpus. Oc. atropalpus contains a rich diversity of Tango elements, while Tango elements in Ae. albopictus and the An. gambiae species complex all belong to Tango1. No Tango was detected in Culex pipiens quinquefasciatus, Anopheles stephensi, Anopheles dirus, Anopheles farauti or Anopheles albimanus using degenerate PCR. Bioinformatic searches of the Cx. p. quinquefasciatus (~10 x coverage) and An. stephensi (0.33 x coverage) databases also failed to uncover any Tango elements. Although other evolutionary scenarios cannot be ruled out, there are indications that Tango1 underwent horizontal transfer among divergent mosquito species.

  14. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R

    2007-01-01

    Mold strains belonging to the species Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional preparation of fermented foods, such as miso, sake, and shoyu, and as protein production hosts in modern industrial processes. A. oryzae and A. sojae are relatives...... of the wild molds Aspergillus flavus and Aspergillus parasiticus. All four species are classified to the A. flavus group. Strains of the A. flavus group are characterized by a high degree of morphological similarity. Koji mold species are generally perceived of as being nontoxigenic, whereas wild molds...

  15. The Oryza Map Alignment Project (OMAP) introgression lines for allelic diversity and new germplasm development

    Science.gov (United States)

    The Oryza Map Alignment Project (OMAP) has developed a genus wide model system for the study of rice that will ultimately provide a complete understanding of the genus. The purpose of this project is to capitalize on the strengths of the Arizona Genomics Institute (AGI), OMAP participants and the r...

  16. Isolation and characterization of 17 different genes encoding putative endopolygalacturonase genes from Rhizopus oryzae

    Science.gov (United States)

    Polygalacturonase enzymes are a valuable aid in the retting of flax for production of linens and, more recently, production of biofuels from citrus wastes. In a search of the recently sequenced Rhizopus oryzae strain 99-880 genome database, 18 putative endopolygalacturonase genes were identified, w...

  17. Identification, Characterization, and Evolution of a Large Polygalacturonase Gene Family from Rhizopus oryzae

    Science.gov (United States)

    Polygalacturonase enzymes are a valuable aid in the retting of flax for production of linens, clarification of juices, and more recently, production of value-added products from citrus wastes. A search of the recently sequenced Rhizopus oryzae strain 99-880 genome database uncovered 18 putative pol...

  18. Genome based analyses of six hexacorallian species reject the “naked coral” hypothesis

    KAUST Repository

    Wang, Xin

    2017-09-23

    Scleractinian corals are the foundation species of the coral-reef ecosystem. Their calcium carbonate skeletons form extensive structures that are home to millions of species, making coral reefs one of the most diverse ecosystems of our planet. However, our understanding of how reef-building corals have evolved the ability to calcify and become the ecosystem builders they are today is hampered by uncertain relationships within their subclass Hexacorallia. Corallimorpharians have been proposed to originate from a complex scleractinian ancestor that lost the ability to calcify in response to increasing ocean acidification, suggesting the possibility for corals to lose and gain the ability to calcify in response to increasing ocean acidification. Here we employed a phylogenomic approach using whole-genome data from six hexacorallian species to resolve the evolutionary relationship between reef-building corals and their non-calcifying relatives. Phylogenetic analysis based on 1,421 single-copy orthologs, as well as gene presence/absence and synteny information, converged on the same topologies, showing strong support for scleractinian monophyly and a corallimorpharian sister clade. Our broad phylogenomic approach using sequence-based and sequence-independent analyses provides unambiguous evidence for the monophyly of scleractinian corals and the rejection of corallimorpharians as descendants of a complex coral ancestor.

  19. Intertypic modular exchanges of genomic segments by homologous recombination at universally conserved segments in human adenovirus species D.

    Science.gov (United States)

    Gonzalez, Gabriel; Koyanagi, Kanako O; Aoki, Koki; Kitaichi, Nobuyoshi; Ohno, Shigeaki; Kaneko, Hisatoshi; Ishida, Susumu; Watanabe, Hidemi

    2014-08-15

    Human adenovirus species D (HAdV-D), which is composed of clinically and epidemiologically important pathogens worldwide, contains more taxonomic "types" than any other species of the genus Mastadenovirus, although the mechanisms accounting for the high level of diversity remain to be disclosed. Recent studies of known and new types of HAdV-D have indicated that intertypic recombination between distant types contributes to the increasing diversity of the species. However, such findings raise the question as to how homologous recombination events occur between diversified types since homologous recombination is suppressed as nucleotide sequences diverge. In order to address this question, we investigated the distribution of the recombination boundaries in comparison with the landscape of intergenomic sequence conservation assessed according to the synonymous substitution rate (dS). The results revealed that specific genomic segments are conserved between even the most distantly related genomes; we call these segments "universally conserved segments" (UCSs). These findings suggest that UCSs facilitate homologous recombination, resulting in intergenomic segmental exchanges of UCS-flanking genomic regions as recombination modules. With the aid of such a mechanism, the haploid genomes of HAdV-Ds may have been reshuffled, resulting in chimeric genomes out of diversified repertoires in the HAdV-D population analogous to the MHC region reshuffled via crossing over in vertebrates. In addition, some HAdVs with chimeric genomes may have had the opportunity to avoid host immune responses thereby causing epidemics. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Bamboo Flowering from the Perspective of Comparative Genomics and Transcriptomics.

    Science.gov (United States)

    Biswas, Prasun; Chakraborty, Sukanya; Dutta, Smritikana; Pal, Amita; Das, Malay

    2016-01-01

    Bamboos are an important member of the subfamily Bambusoideae, family Poaceae. The plant group exhibits wide variation with respect to the timing (1-120 years) and nature (sporadic vs. gregarious) of flowering among species. Usually flowering in woody bamboos is synchronous across culms growing over a large area, known as gregarious flowering. In many monocarpic bamboos this is followed by mass death and seed setting. While in sporadic flowering an isolated wild clump may flower, set little or no seed and remain alive. Such wide variation in flowering time and extent means that the plant group serves as repositories for genes and expression patterns that are unique to bamboo. Due to the dearth of available genomic and transcriptomic resources, limited studies have been undertaken to identify the potential molecular players in bamboo flowering. The public release of the first bamboo genome sequence Phyllostachys heterocycla, availability of related genomes Brachypodium distachyon and Oryza sativa provide us the opportunity to study this long-standing biological problem in a comparative and functional genomics framework. We identified bamboo genes homologous to those of Oryza and Brachypodium that are involved in established pathways such as vernalization, photoperiod, autonomous, and hormonal regulation of flowering. Additionally, we investigated triggers like stress (drought), physiological maturity and micro RNAs that may play crucial roles in flowering. We also analyzed available transcriptome datasets of different bamboo species to identify genes and their involvement in bamboo flowering. Finally, we summarize potential research hurdles that need to be addressed in future research.

  1. The single-species metagenome: subtyping Staphylococcus aureus core genome sequences from shotgun metagenomic data

    Science.gov (United States)

    Li, Ben; Petit III, Robert A.; Qin, Zhaohui S.; Darrow, Lyndsey

    2016-01-01

    In this study we developed a genome-based method for detecting Staphylococcus aureus subtypes from metagenome shotgun sequence data. We used a binomial mixture model and the coverage counts at >100,000 known S. aureus SNP (single nucleotide polymorphism) sites derived from prior comparative genomic analysis to estimate the proportion of 40 subtypes in metagenome samples. We were able to obtain >87% sensitivity and >94% specificity at 0.025X coverage for S. aureus. We found that 321 and 149 metagenome samples from the Human Microbiome Project and metaSUB analysis of the New York City subway, respectively, contained S. aureus at genome coverage >0.025. In both projects, CC8 and CC30 were the most common S. aureus clonal complexes encountered. We found evidence that the subtype composition at different body sites of the same individual were more similar than random sampling and more limited evidence that certain body sites were enriched for particular subtypes. One surprising finding was the apparent high frequency of CC398, a lineage often associated with livestock, in samples from the tongue dorsum. Epidemiologic analysis of the HMP subject population suggested that high BMI (body mass index) and health insurance are possibly associated with S. aureus carriage but there was limited power to identify factors linked to carriage of even the most common subtype. In the NYC subway data, we found a small signal of geographic distance affecting subtype clustering but other unknown factors influence taxonomic distribution of the species around the city. PMID:27781166

  2. Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species.

    Science.gov (United States)

    Wang, Richard R-C; Larson, Steve R; Jensen, Kevin B; Bushman, B Shaun; DeHaan, Lee R; Wang, Shuwen; Yan, Xuebing

    2015-02-01

    Intermediate wheatgrass (Thinopyrum intermedium (Host) Barkworth & D.R. Dewey), a segmental autoallohexaploid (2n = 6x = 42), is not only an important forage crop but also a valuable gene reservoir for wheat (Triticum aestivum L.) improvement. Throughout the scientific literature, there continues to be disagreement as to the origin of the different genomes in intermediate wheatgrass. Genotypic data obtained from newly developed EST-SSR primers derived from the putative progenitor diploid species Pseudoroegneria spicata (Pursh) Á. Löve (St genome), Thinopyrum bessarabicum (Savul. & Rayss) Á. Löve (J = J(b) = E(b)), and Thinopyrum elongatum (Host) D. Dewey (E = J(e) = E(e)) indicate that the V genome of Dasypyrum (Coss. & Durieu) T. Durand is not one of the three genomes in intermediate wheatgrass. Based on all available information in the literature and findings in this study, the genomic designation of intermediate wheatgrass should be changed to J(vs)J(r)St, where J(vs) and J(r) represent ancestral genomes of present-day J(b) of Th. bessarabicum and J(e) of Th. elongatum, with J(vs) being more ancient. Furthermore, the information suggests that the St genome in intermediate wheatgrass is most similar to the present-day St found in diploid species of Pseudoroegneria from Eurasia.

  3. Genomic insights into the evolution of industrial yeast species Brettanomyces bruxellensis.

    Science.gov (United States)

    Curtin, Christopher D; Pretorius, Isak S

    2014-11-01

    Brettanomyces bruxellensis, like its wine yeast counterpart Saccharomyces cerevisiae, is intrinsically linked with industrial fermentations. In wine, B. bruxellensis is generally considered to contribute negative influences on wine quality, whereas for some styles of beer, it is an essential contributor. More recently, it has shown some potential for bioethanol production. Our relatively poor understanding of B. bruxellensis biology, at least when compared with S. cerevisiae, is partly due to a lack of laboratory tools. As it is a nonmodel organism, efforts to develop methods for sporulation and transformation have been sporadic and largely unsuccessful. Recent genome sequencing efforts are now providing B. bruxellensis researchers unprecedented access to gene catalogues, the possibility of performing transcriptomic studies and new insights into evolutionary drivers. This review summarises these findings, emphasises the rich data sets already available yet largely unexplored and looks over the horizon at what might be learnt soon through comprehensive population genomics of B. bruxellensis and related species. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae.

    Science.gov (United States)

    Ehrlich, Kenneth C; Mack, Brian M

    2014-06-23

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  5. Comparison of Expression of Secondary Metabolite Biosynthesis Cluster Genes in Aspergillus flavus, A. parasiticus, and A. oryzae

    Directory of Open Access Journals (Sweden)

    Kenneth C. Ehrlich

    2014-06-01

    Full Text Available Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  6. Functional divergence in the genus Oenococcus as predicted by genome sequencing of the newly-described species, Oenococcus kitaharae.

    Directory of Open Access Journals (Sweden)

    Anthony R Borneman

    Full Text Available Oenococcus kitaharae is only the second member of the genus Oenococcus to be identified and is the closest relative of the industrially important wine bacterium Oenococcus oeni. To provide insight into this new species, the genome of the type strain of O. kitaharae, DSM 17330, was sequenced. Comparison of the sequenced genomes of both species show that the genome of O. kitaharae DSM 17330 contains many genes with predicted functions in cellular defence (bacteriocins, antimicrobials, restriction-modification systems and a CRISPR locus which are lacking in O. oeni. The two genomes also appear to differentially encode several metabolic pathways associated with amino acid biosynthesis and carbohydrate utilization and which have direct phenotypic consequences. This would indicate that the two species have evolved different survival techniques to suit their particular environmental niches. O. oeni has adapted to survive in the harsh, but predictable, environment of wine that provides very few competitive species. However O. kitaharae appears to have adapted to a growth environment in which biological competition provides a significant selective pressure by accumulating biological defence molecules, such as bacteriocins and restriction-modification systems, throughout its genome.

  7. Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae

    Directory of Open Access Journals (Sweden)

    Zhang Jie-Qiong

    2011-01-01

    Full Text Available Abstract Background Small non-coding RNAs (sRNAs are regarded as important regulators in prokaryotes and play essential roles in diverse cellular processes. Xanthomonas oryzae pathovar oryzae (Xoo is an important plant pathogenic bacterium which causes serious bacterial blight of rice. However, little is known about the number, genomic distribution and biological functions of sRNAs in Xoo. Results Here, we performed a systematic screen to identify sRNAs in the Xoo strain PXO99. A total of 850 putative non-coding RNA sequences originated from intergenic and gene antisense regions were identified by cloning, of which 63 were also identified as sRNA candidates by computational prediction, thus were considered as Xoo sRNA candidates. Northern blot hybridization confirmed the size and expression of 6 sRNA candidates and other 2 cloned small RNA sequences, which were then added to the sRNA candidate list. We further examined the expression profiles of the eight sRNAs in an hfq deletion mutant and found that two of them showed drastically decreased expression levels, and another exhibited an Hfq-dependent transcript processing pattern. Deletion mutants were obtained for seven of the Northern confirmed sRNAs, but none of them exhibited obvious phenotypes. Comparison of the proteomic differences between three of the ΔsRNA mutants and the wild-type strain by two-dimensional gel electrophoresis (2-DE analysis showed that these sRNAs are involved in multiple physiological and biochemical processes. Conclusions We experimentally verified eight sRNAs in a genome-wide screen and uncovered three Hfq-dependent sRNAs in Xoo. Proteomics analysis revealed Xoo sRNAs may take part in various metabolic processes. Taken together, this work represents the first comprehensive screen and functional analysis of sRNAs in rice pathogenic bacteria and facilitates future studies on sRNA-mediated regulatory networks in this important phytopathogen.

  8. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species

    Directory of Open Access Journals (Sweden)

    Hornett Emily A

    2012-08-01

    Full Text Available Abstract Background How well does RNA-Seq data perform for quantitative whole gene expression analysis in the absence of a genome? This is one unanswered question facing the rapidly growing number of researchers studying non-model species. Using Homo sapiens data and resources, we compared the direct mapping of sequencing reads to predicted genes from the genome with mapping to de novo transcriptomes assembled from RNA-Seq data. Gene coverage and expression analysis was further investigated in the non-model context by using increasingly divergent genomic reference species to group assembled contigs by unique genes. Results Eight transcriptome sets, composed of varying amounts of Illumina and 454 data, were assembled and assessed. Hybrid 454/Illumina assemblies had the highest transcriptome and individual gene coverage. Quantitative whole gene expression levels were highly similar between using a de novo hybrid assembly and the predicted genes as a scaffold, although mapping to the de novo transcriptome assembly provided data on fewer genes. Using non-target species as reference scaffolds does result in some loss of sequence and expression data, and bias and error increase with evolutionary distance. However, within a 100 million year window these effect sizes are relatively small. Conclusions Predicted gene sets from sequenced genomes of related species can provide a powerful method for grouping RNA-Seq reads and annotating contigs. Gene expression results can be produced that are similar to results obtained using gene models derived from a high quality genome, though biased towards conserved genes. Our results demonstrate the power and limitations of conducting RNA-Seq in non-model species.

  9. Nonhost resistance of barley is successfully manifested against Magnaporthe grisea and a closely related Pennisetum-infecting lineage but is overcome by Magnaporthe oryzae

    NARCIS (Netherlands)

    Zellerhoff, N.; Jarosch, B.; Groenewald, J.Z.; Crous, P.W.; Schaffrath, U.

    2006-01-01

    Magnaporthe oryzae is a major pathogen of rice (Oryza sativa L.) but is also able to infect other grasses, including barley (Hordeum vulgare L.). Here, we report a study using Magnaporthe isolates collected from other host plant species to evaluate their capacity to infect barley. A nonhost type of

  10. Draft genome sequences of two closely-related aflatoxigenic Aspergillus species obtained from the Ivory Coast

    Science.gov (United States)

    The genomes of the A. ochraceoroseus and A. rambellii type strains were sequenced using a personal genome machine, followed by annotation of their genes. The genome size for A. ochraceoroseus was found to be approximately 23 Mb and contained 7,837 genes, while the A. rambellii genome was found to be...

  11. Analysis of the complete genome sequence of Nocardia seriolae UTF1, the causative agent of fish nocardiosis: The first reference genome sequence of the fish pathogenic Nocardia species

    Science.gov (United States)

    Yasuike, Motoshige; Nishiki, Issei; Iwasaki, Yuki; Nakamura, Yoji; Fujiwara, Atushi; Shimahara, Yoshiko; Kamaishi, Takashi; Yoshida, Terutoyo; Nagai, Satoshi; Kobayashi, Takanori; Katoh, Masaya

    2017-01-01

    Nocardiosis caused by Nocardia seriolae is one of the major threats in the aquaculture of Seriola species (yellowtail; S. quinqueradiata, amberjack; S. dumerili and kingfish; S. lalandi) in Japan. Here, we report the complete nucleotide genome sequence of N. seriolae UTF1, isolated from a cultured yellowtail. The genome is a circular chromosome of 8,121,733 bp with a G+C content of 68.1% that encodes 7,697 predicted proteins. In the N. seriolae UTF1 predicted genes, we found orthologs of virulence factors of pathogenic mycobacteria and human clinical Nocardia isolates involved in host cell invasion, modulation of phagocyte function and survival inside the macrophages. The virulence factor candidates provide an essential basis for understanding their pathogenic mechanisms at the molecular level by the fish nocardiosis research community in future studies. We also found many potential antibiotic resistance genes on the N. seriolae UTF1 chromosome. Comparative analysis with the four existing complete genomes, N. farcinica IFM 10152, N. brasiliensis HUJEG-1 and N. cyriacigeorgica GUH-2 and N. nova SH22a, revealed that 2,745 orthologous genes were present in all five Nocardia genomes (core genes) and 1,982 genes were unique to N. seriolae UTF1. In particular, the N. seriolae UTF1 genome contains a greater number of mobile elements and genes of unknown function that comprise the differences in structure and gene content from the other Nocardia genomes. In addition, a lot of the N. seriolae UTF1-specific genes were assigned to the ABC transport system. Because of limited resources in ocean environments, these N. seriolae UTF1 specific ABC transporters might facilitate adaptation strategies essential for marine environment survival. Thus, the availability of the complete N. seriolae UTF1 genome sequence will provide a valuable resource for comparative genomic studies of N. seriolae isolates, as well as provide new insights into the ecological and functional diversity of

  12. Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

    Directory of Open Access Journals (Sweden)

    Chang-Gi Back

    2015-09-01

    Full Text Available In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP, X. hyacinthi (XH and X. campestris pv. zantedeschiae (XCZ, based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of 1 pg/μl per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.

  13. DNA Barcoding: Amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species

    Directory of Open Access Journals (Sweden)

    Javed Iqbal Wattoo

    2016-11-01

    Full Text Available Background: DNA barcoding is a novel method of species identification based on nucleotide diversity of conserved sequences. The establishment and refining of plant DNA barcoding systems is more challenging due to high genetic diversity among different species. Therefore, targeting the conserved nuclear transcribed regions would be more reliable for plant scientists to reveal genetic diversity, species discrimination and phylogeny. Methods: In this study, we amplified and sequenced the chloroplast DNA regions (matk+rbcl of Solanum nigrum, Euphorbia helioscopia and Dalbergia sissoo to study the functional annotation, homology modeling and sequence analysis to allow a more efficient utilization of these sequences among different plant species. These three species represent three families; Solanaceae, Euphorbiaceae and Fabaceae respectively. Biological sequence homology and divergence of amplified sequences was studied using Basic Local Alignment Tool (BLAST. Results: Both primers (matk+rbcl showed good amplification in three species. The sequenced regions reveled conserved genome information for future identification of different medicinal plants belonging to these species. The amplified conserved barcodes revealed different levels of biological homology after sequence analysis. The results clearly showed that the use of these conserved DNA sequences as barcode primers would be an accurate way for species identification and discrimination. Conclusion: The amplification and sequencing of conserved genome regions identified a novel sequence of matK in native species of Solanum nigrum. The findings of the study would be applicable in medicinal industry to establish DNA based identification of different medicinal plant species to monitor adulteration.

  14. Full genome sequence analysis of a novel adenovirus of rhesus macaque origin indicates a new simian adenovirus type and species

    Directory of Open Access Journals (Sweden)

    Daniel Malouli

    2014-09-01

    Full Text Available Multiple novel simian adenoviruses have been isolated over the past years and their potential to cross the species barrier and infect the human population is an ever present threat. Here we describe the isolation and full genome sequencing of a novel simian adenovirus (SAdV isolated from the urine of two independent, never co-housed, late stage simian immunodeficiency virus (SIV-infected rhesus macaques. The viral genome sequences revealed a novel type with a unique genome length, GC content, E3 region and DNA polymerase amino acid sequence that is sufficiently distinct from all currently known human- or simian adenovirus species to warrant classifying these isolates as a novel species of simian adenovirus. This new species, termed Simian mastadenovirus D (SAdV-D, displays the standard genome organization for the genus Mastadenovirus containing only one copy of the fiber gene which sets it apart from the old world monkey adenovirus species HAdV-G, SAdV-B and SAdV-C.

  15. Impact of genomics approaches on plant genetics and physiology.

    Science.gov (United States)

    Tabata, Satoshi

    2002-08-01

    Comprehensive analysis of genetic information in higher plants is under way for several plants of biological and agronomical importance. Among them, Arabidopsis thaliana, a member of Brassica family, and Oryza sativa(rice) have been chosen as model plants most suitable for genome analysis. Sequencing of the genome of A. thaliana was completed in December 2000, and rice genome sequencing is in progress. The accumulated genome sequences, together with the hundreds of thousands of ESTs from several tens of plant species, have drastically changed the strategy of plant genetics. By utilizing the information on the genome and gene structures, comprehensive approaches for genome-wide functional analysis of the genes, including transcriptome analysis using microarray systems and a comprehensive analysis of a large number of insertion mutant lines, have been widely adopted. As a consequence, a large quantity of information on both the structure and function of genes in these model plants has been accumulated. However, other plant species may have their own characteristics and advantages to study individual phenomena. Application of knowledge from the model plants to other plant species and vice versa through the common language, namely the genome information, should facilitate understanding of the genetic systems underlying a variety of biological phenomena. Introduction of this common language may not be very simple, especially in the case of complex pathways such as a process of cell-covering formation. Nevertheless, it should be emphasized that genomics approaches are the most promising way to understand these processes.

  16. Multiplex PCR for detection of the Vibrio genus and five pathogenic Vibrio species with primer sets designed using comparative genomics.

    Science.gov (United States)

    Kim, Hyun-Joong; Ryu, Ji-Oh; Lee, Shin-Young; Kim, Ei-Seul; Kim, Hae-Yeong

    2015-10-26

    The genus Vibrio is clinically significant and major pathogenic Vibrio species causing human Vibrio infections are V. cholerae, V. parahaemolyticus, V. vulnificus, V. alginolyticus and V. mimicus. In this study, we screened for novel genetic markers using comparative genomics and developed a Vibrio multiplex PCR for the reliable diagnosis of the Vibrio genus and the associated major pathogenic Vibrio species. A total of 30 Vibrio genome sequences were subjected to comparative genomics, and specific genes of the Vibrio genus and five major pathogenic Vibrio species were screened. The designed primer sets from the screened genes were evaluated by single PCR using DNAs from various Vibrio spp. and other non-Vibrio bacterial strains. A sextuplet multiplex PCR using six primer sets was developed to enable detection of the Vibrio genus and five pathogenic Vibrio species. The designed primer sets from the screened genes yielded specific diagnostic results for target the Vibrio genus and Vibrio species. The specificity of the developed multiplex PCR was confirmed with various Vibrio and non-Vibrio strains. This Vibrio multiplex PCR was evaluated using 117 Vibrio strains isolated from the south seashore areas in Korea and Vibrio isolates were identified as Vibrio spp., V. parahaemolyticus, V. vulnificus and V. alginolyticus, demonstrating the specificity and discriminative ability of the assay towards Vibrio species. This novel multiplex PCR method could provide reliable and informative identification of the Vibrio genus and major pathogenic Vibrio species in the food safety industry and in early clinical treatment, thereby protecting humans against Vibrio infection.

  17. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well.

    Directory of Open Access Journals (Sweden)

    Aron J Fazekas

    Full Text Available A universal barcode system for land plants would be a valuable resource, with potential utility in fields as diverse as ecology, floristics, law enforcement and industry. However, the application of plant barcoding has been constrained by a lack of consensus regarding the most variable and technically practical DNA region(s. We compared eight candidate plant barcoding regions from the plastome and one from the mitochondrial genome for how well they discriminated the monophyly of 92 species in 32 diverse genera of land plants (N = 251 samples. The plastid markers comprise portions of five coding (rpoB, rpoC1, rbcL, matK and 23S rDNA and three non-coding (trnH-psbA, atpF-atpH, and psbK-psbI loci. Our survey included several taxonomically complex groups, and in all cases we examined multiple populations and species. The regions differed in their ability to discriminate species, and in ease of retrieval, in terms of amplification and sequencing success. Single locus resolution ranged from 7% (23S rDNA to 59% (trnH-psbA of species with well-supported monophyly. Sequence recovery rates were related primarily to amplification success (85-100% for plastid loci, with matK requiring the greatest effort to achieve reasonable recovery (88% using 10 primer pairs. Several loci (matK, psbK-psbI, trnH-psbA were problematic for generating fully bidirectional sequences. Setting aside technical issues related to amplification and sequencing, combining the more variable plastid markers provided clear benefits for resolving species, although with diminishing returns, as all combinations assessed using four to seven regions had only marginally different success rates (69-71%; values that were approached by several two- and three-region combinations. This performance plateau may indicate fundamental upper limits on the precision of species discrimination that is possible with DNA barcoding systems that include moderate numbers of plastid markers. Resolution to the

  18. Precise genome modification in the crop species Zea mays using zinc-finger nucleases.

    Science.gov (United States)

    Shukla, Vipula K; Doyon, Yannick; Miller, Jeffrey C; DeKelver, Russell C; Moehle, Erica A; Worden, Sarah E; Mitchell, Jon C; Arnold, Nicole L; Gopalan, Sunita; Meng, Xiangdong; Choi, Vivian M; Rock, Jeremy M; Wu, Ying-Ying; Katibah, George E; Zhifang, Gao; McCaskill, David; Simpson, Matthew A; Blakeslee, Beth; Greenwalt, Scott A; Butler, Holly J; Hinkley, Sarah J; Zhang, Lei; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D

    2009-05-21

    Agricultural biotechnology is limited by the inefficiencies of conventional random mutagenesis and transgenesis. Because targeted genome modification in plants has been intractable, plant trait engineering remains a laborious, time-consuming and unpredictable undertaking. Here we report a broadly applicable, versatile solution to this problem: the use of designed zinc-finger nucleases (ZFNs) that induce a double-stranded break at their target locus. We describe the use of ZFNs to modify endogenous loci in plants of the crop species Zea mays. We show that simultaneous expression of ZFNs and delivery of a simple heterologous donor molecule leads to precise targeted addition of an herbicide-tolerance gene at the intended locus in a significant number of isolated events. ZFN-modified maize plants faithfully transmit these genetic changes to the next generation. Insertional disruption of one target locus, IPK1, results in both herbicide tolerance and the expected alteration of the inositol phosphate profile in developing seeds. ZFNs can be used in any plant species amenable to DNA delivery; our results therefore establish a new strategy for plant genetic manipulation in basic science and agricultural applications.

  19. Genome size and base composition of five Pinus species from the Balkan region.

    Science.gov (United States)

    Bogunic, F; Muratovic, E; Brown, S C; Siljak-Yakovlev, S

    2003-08-01

    The 2C DNA content and base composition of five Pinus (2 n=24) species and two Pinus subspecies from the Balkan region have been estimated by flow cytometry. P. heldreichii (five populations) and P. peuce (one population) were assessed for the first time, as also were subspecies of P. nigra (three populations-two of subspecies nigra and one of subspecies dalmatica) along with P. sylvestris, and P. mugo from the same region. The 2C DNA values of these Pinus ranged from 42.5 pg to 54.9 pg (41.7-53.8 x 10(9)bp), and the base composition was quite stable (about 39.5% GC). Significant differences were observed between two subspecies of P. nigra and even between two populations of subsp. nigra. The two other species (P. sylvestris and P. mugo) had 2C values of 42.5 pg and 42.8 pg, respectively, while that of P. peuce was 54.9 pg. These genome sizes are in accordance with published values except for P. sylvestris, which was 20% below estimates made by other authors.

  20. Molecular phylogenetic and dating analysis of pierid butterfly species using complete mitochondrial genomes.

    Science.gov (United States)

    Cao, Y; Hao, J S; Sun, X Y; Zheng, B; Yang, Q

    2016-12-02

    Pieridae is a butterfly family whose evolutionary history is poorly understood. Due to the difficulties in identifying morphological synapomorphies within the group and the scarcity of the fossil records, only a few studies on higher phylogeny of Pieridae have been reported to date. In this study, we describe the complete mitochondrial genomes of four pierid butterfly species (Aporia martineti, Aporia hippia, Aporia bieti, and Mesapia peloria), in order to better characterize the pierid butterfly mitogenomes and perform the phylogenetic analyses using all available mitogenomic sequence data (13PCGs, rRNAs, and tRNAs) from the 18 pierid butterfly species comprising the three main subfamilies (Dismorphiinae, Coliadinae and Pierinae). Our analysis shows that the four new mitogenomes share similar features with other known pierid mitogenomes in gene order and organization. Phylogenetic analyses by maximum likelihood and Bayesian inference show that the pierid higher-level relationship is: Dismorphiinae + (Coliadinae + Pierinae), which corroborates the results of some previous molecular and morphological studies. However, we found that the Hebomoia and Anthocharis make a sister group, supporting the traditional tribe Anthocharidini; in addition, the Mesapia peloria was shown to be clustered within the Aporia group, suggesting that the genus Mesapia should be reduced to the taxonomic status of subgenus. Our molecular dating analysis indicates that the family Pieridae began to diverge during the Late Cretaceous about 92 million years ago (mya), while the subfamily Pierinae diverged from the Coliadinae at about 86 mya (Late Cretaceous).

  1. Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association

    Directory of Open Access Journals (Sweden)

    Xiaorui Chen

    2017-10-01

    Full Text Available Pest control in agriculture employs diverse strategies, among which the use of predatory insects has steadily increased. The use of several species within the genus Orius in pest control is widely spread, particularly in Mediterranean Europe. Commercial mass rearing of predatory insects is costly, and research efforts have concentrated on diet manipulation and selective breeding to reduce costs and improve efficacy. The characterisation and contribution of microbial symbionts to Orius sp. fitness, behaviour, and potential impact on human health has been neglected. This paper provides the first genome sequence level description of the predominant culturable facultative bacterial symbionts associated with five Orius species (O. laevigatus, O. niger, O. pallidicornis, O. majusculus, and O. albidipennis from several geographical locations. Two types of symbionts were broadly classified as members of the genera Serratia and Leucobacter, while a third constitutes a new genus within the Erwiniaceae. These symbionts were found to colonise all the insect specimens tested, which evidenced an ancestral symbiotic association between these bacteria and the genus Orius. Pangenome analyses of the Serratia sp. isolates offered clues linking Type VI secretion system effector–immunity proteins from the Tai4 sub-family to the symbiotic lifestyle.

  2. Rice-Map: a new-generation rice genome browser

    Directory of Open Access Journals (Sweden)

    Luo Jingchu

    2011-03-01

    Full Text Available Abstract Background The concurrent release of rice genome sequences for two subspecies (Oryza sativa L. ssp. japonica and Oryza sativa L. ssp. indica facilitates rice studies at the whole genome level. Since the advent of high-throughput analysis, huge amounts of functional genomics data have been delivered rapidly, making an integrated online genome browser indispensable for scientists to visualize and analyze these data. Based on next-generation web technologies and high-throughput experimental data, we have developed Rice-Map, a novel genome browser for researchers to navigate, analyze and annotate rice genome interactively. Description More than one hundred annotation tracks (81 for japonica and 82 for indica have been compiled and loaded into Rice-Map. These pre-computed annotations cover gene models, transcript evidences, expression profiling, epigenetic modifications, inter-species and intra-species homologies, genetic markers and other genomic features. In addition to these pre-computed tracks, registered users can interactively add comments and research notes to Rice-Map as User-Defined Annotation entries. By smoothly scrolling, dragging and zooming, users can browse various genomic features simultaneously at multiple scales. On-the-fly analysis for selected entries could be performed through dedicated bioinformatic analysis platforms such as WebLab and Galaxy. Furthermore, a BioMart-powered data warehouse "Rice Mart" is offered for advanced users to fetch bulk datasets based on complex criteria. Conclusions Rice-Map delivers abundant up-to-date japonica and indica annotations, providing a valuable resource for both computational and bench biologists. Rice-Map is publicly accessible at http://www.ricemap.org/, with all data available for free downloading.

  3. 利用叶绿体基因探讨稻属BBCC基因组物种的系统起源%Phylogenetic Origin of BBCC Genome Allotetraploids in Oryza Revealed by Chloroplast Gene Sequences

    Institute of Scientific and Technical Information of China (English)

    杜家潇; 秦宗燕; 徐思; 景翔; 包颖

    2016-01-01

    基于9个叶绿体基因片段(atpA、atpB、matK、petA、psaA、psbA、psbB、psbC和rbcL),深入探讨了稻属(Oryza)3个BBCC基因组异源四倍体和5个与之相关的BB或CC基因组二倍体物种间的谱系关系.进一步的系统发育分析表明:3个具有相同BBCC基因组的四倍体物种并非同一次物种形成事件的产物,而是在不同的分布区经历了至少3次分别的物种起源.其中,四倍体Oryza punctata的母本可能来自同样分布在非洲并具有CC基因组的二倍体物种O.eichingeri;而四倍体O.malampuzhaensis和O.minuta的母本则可能来自亚洲已经灭绝的具有BB基因组的不同二倍体.研究结果不但为追溯稻属异源四倍体的复杂网状进化提供了重要的分子证据,而且拓展了我们对有花植物复杂物种形成的深入理解.

  4. Genome analysis of Betanodavirus from cultured marine fish species in Malaysia.

    Science.gov (United States)

    Ransangan, Julian; Manin, Benny Obrain

    2012-04-23

    Betanodavirus is the causative agent of the viral nervous necrosis (VNN) or viral encephalopathy and retinopathy disease in marine fish. This disease is responsible for most of the mass mortalities that occurred in marine fish hatcheries in Malaysia. The genome of this virus consists of two positive-sense RNA molecules which are the RNA1 and RNA2. The RNA1 molecule contains the RdRp gene which encodes for the RNA-dependent RNA polymerase and the RNA2 molecule contains the Cp gene which encodes for the viral coat protein. In this study, total RNAs were extracted from 32 fish specimens representing the four most cultured marine fish species in Malaysia. The fish specimens were collected from different hatcheries and aquaculture farms in Malaysia. The RNA1 was successfully amplified using three pairs of overlapping PCR primers whereas the RNA2 was amplified using a pair of primers. The nucleotide analysis of RdRp gene revealed that the Betanodavirus in Malaysia were 94.5-99.7% similar to the RGNNV genotype, 79.8-82.1% similar to SJNNV genotype, 81.5-82.4% similar to BFNNV genotype and 79.8-80.7% similar to TPNNV genotype. However, they showed lower similarities to FHV (9.4-14.2%) and BBV (7.2-15.7%), respectively. Similarly, the Cp gene revealed that the viruses showed high nucleotide similarity to RGNNV (95.9-99.8%), SJNNV (72.2-77.4%), BFNNV (80.9-83.5%), TPNNV (77.2-78.1%) and TNV (75.1-76.5%). However, as in the RdRp gene, the coat protein gene was highly dissimilar to FHV (3.0%) and BBV (2.6-4.1%), respectively. Based on the genome analysis, the Betanodavirus infecting cultured marine fish species in Malaysia belong to the RGNNV genotype. However, the phylogenetic analysis of the genes revealed that the viruses can be further divided into nine sub-groups. This has been expected since various marine fish species of different origins are cultured in Malaysia.

  5. Whole-genome sequence and analysis of Xanthomonas euvesicatoria strains and reassessment of the species

    Directory of Open Access Journals (Sweden)

    Jeri D. Barak

    2016-12-01

    Full Text Available Multiple species of Xanthomonas cause bacterial spot of tomato (BST and pepper. We sequenced five Xanthomonas euvesicatoria strains isolated from three continents (Africa, Asia, and South America to provide a set of representative genomes with temporal and geographic diversity. LMG strains 667, 905, 909, and 933 were pathogenic on tomato and pepper, except LMG 918 which was pathogenic on pepper but elicited a hypersensitive reaction (HR on tomato. Furthermore, LMG 667, 909, and 918 elicited a HR on Early Cal Wonder 30R containing Bs3. We examined pectolytic activity and starch hydrolysis, two tests which are useful in differentiating X. euvesicatoria from X. perforans, both causal agents of BST. LMG strains 905, 909, 918, and 933 were nonpectolytic while only LMG 918 was amylolytic. These results suggest that these strains are all atypical to both X. euvesicatoria and X. perforans. Sequence analysis of all the publicly available X. euvesicatoria and X. perforans strains comparing seven housekeeping genes identified seven haplotypes with few polymorphisms. Whole genome comparison by average nucleotide identity (ANI resulted in values of >99% among the LMG strains 667, 905, 909, 918, and 933 and X. euvesicatoria strains and >99.6% among the LMG strains and a subset of X. perforans strains. These results suggest that X. euvesicatoria and X. perforans should be considered a single species. ANI values between strains of X. euvesicatoria, X. perforans, X. allii, X. alfalfa subsp. citrumelonis, X. dieffenbachiae, and a recently described pathogen of rose were >97.8% suggesting these pathogens should be a single species and recognized as X. euvesicatoria as well. Analysis of the newly sequenced X. euvesicatoria strains revealed interesting findings among the type 3 (T3 effectors, relatively ancient stepwise erosion of some T3 effectors, additional X. euvesicatoria-specific T3 effectors among the causal agents of BST, orthologs of avrBs3 and avrBs4, and

  6. Prediction and Expression Analysis of miRNAs Associated with Heat Stress in Oryza sativa

    Institute of Scientific and Technical Information of China (English)

    B.SAILAJA; S.R.VOLETI; D.SUBRAHMANYAM; N.SARLA; V.VISHNU PRASANTH; V.P.BHADANA; S.K.MANGRAUTHIA

    2014-01-01

    Computational prediction of potential microRNAs (miRNAs) and their target genes was performed to identify the miRNAs and genes associated with temperature response in rice. The data of temperature-responsive miRNAs of Arabidopsis, and miRNAs and the whole genome data of rice were used to predict potential miRNAs in Oryza sativa involved in temperature response. A total of 55 miRNAs were common in both the species, and 27 miRNAs were predicted at the first time in rice. Target genes were searched for these 27 miRNAs in rice genome following stringent criteria. Real time PCR based on expression analysis of nine miRNAs showed that majority of the miRNAs were down regulated under heat stress for rice cultivar Nagina 22. Furthermore, miR169, miR1884 and miR160 showed differential expression in root and shoot tissues of rice. Identification and expression studies of miRNAs during heat stress will advance the understanding of gene regulation under stress in rice.

  7. The Complete Mitochondrial Genome Sequence of Bactericera cockerelli and Comparison with Three Other Psylloidea Species.

    Directory of Open Access Journals (Sweden)

    Fengnian Wu

    Full Text Available Potato psyllid (Bactericera cockerelli is an important pest of potato, tomato and pepper. Not only could a toxin secreted by nymphs results in serious phytotoxemia in some host plants, but also over the past few years B. cockerelli was shown to transmit "Candidatus Liberibacter solanacearum", the putative bacterial pathogen of potato zebra chip (ZC disease, to potato and tomato. ZC has caused devastating losses to potato production in the western U.S., Mexico, and elsewhere. New knowledge of the genetic diversity of the B. cockerelli is needed to develop improved strategies to manage pest populations. Mitochondrial genome (mitogenome sequencing provides important knowledge about insect evolution and diversity in and among populations. This report provides the first complete B. cockerelli mitogenome sequence as determined by next generation sequencing technology (Illumina MiSeq. The circular B. cockerelli mitogenome had a size of 15,220 bp with 13 protein-coding gene (PCGs, 2 ribosomal RNA genes (rRNAs, 22 transfer RNA genes (tRNAs, and a non-coding region of 975 bp. The overall gene order of the B. cockerelli mitogenome is identical to three other published Psylloidea mitogenomes: one species from the Triozidae, Paratrioza sinica; and two species from the Psyllidae, Cacopsylla coccinea and Pachypsylla venusta. This suggests all of these species share a common ancestral mitogenome. However, sequence analyses revealed differences between and among the insect families, in particular a unique region that can be folded into three stem-loop secondary structures present only within the B. cockerelli mitogenome. A phylogenetic tree based on the 13 PCGs matched an existing taxonomy scheme that was based on morphological characteristics. The available complete mitogenome sequence makes it accessible to all genes for future population diversity evaluation of B. cockerelli.

  8. Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Maguin Emmanuelle

    2007-08-01

    Full Text Available Abstract Background While genes that are conserved between related bacterial species are usually thought to have evolved along with the species, phylogenetic trees reconstructed for individual genes may contradict this picture and indicate horizontal gene transfer. Individual trees are often not resolved with high confidence, however, and in that case alternative trees are generally not considered as contradicting the species tree, although not confirming it either. Here we conduct an in-depth analysis of 401 protein phylogenetic trees inferred with varying levels of confidence for three lactobacilli from the acidophilus complex. At present the relationship between these bacteria, isolated from environments as diverse as the gastrointestinal tract (Lactobacillus acidophilus and Lactobacillus johnsonii and yogurt (Lactobacillus delbrueckii ssp. bulgaricus, is ambiguous due to contradictory phenotypical and 16S rRNA based classifications. Results Among the 401 phylogenetic trees, those that could be reconstructed with high confidence support the 16S-rRNA tree or one alternative topology in an astonishing 3:2 ratio, while the third possible topology is practically absent. Lowering the confidence threshold for trees to be taken into consideration does not significantly affect this ratio, and therefore suggests that gene transfer may have affected as much as 40% of the core genome genes. Gene function bias suggests that the 16S rRNA phylogeny of the acidophilus complex, which indicates that L. acidophilus and L. delbrueckii ssp. bulgaricus are the closest related of these three species, is correct. A novel approach of comparison of interspecies protein divergence data employed in this study allowed to determine that gene transfer most likely took place between the lineages of the two species found in the gastrointestinal tract. Conclusion This case-study reports an unprecedented level of phylogenetic incongruence, presumably resulting from extensive

  9. The complete mitochondrial genome of eastern lowland gorilla, Gorilla beringei graueri, and comparative mitochondrial genomics of Gorilla species.

    Science.gov (United States)

    Hu, Xiao-di; Gao, Li-zhi

    2016-01-01

    In this study, we determined the complete mitochondrial (mt) genome of eastern lowland gorilla, Gorilla beringei graueri for the first time. The total genome was 16,416 bp in length. It contained a total of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 1 control region (D-loop region). The base composition was A (30.88%), G (13.10%), C (30.89%) and T (25.13%), indicating that the percentage of A+T (56.01%) was higher than G+C (43.99%). Comparisons with the other publicly available Gorilla mitogenome showed the conservation of gene order and base compositions but a bunch of nucleotide diversity. This complete mitochondrial genome sequence will provide valuable genetic information for further studies on conservation genetics of eastern lowland gorilla.

  10. CSTminer: a web tool for the identification of coding and noncoding conserved sequence tags through cross-species genome comparison.

    Science.gov (United States)

    Castrignanò, Tiziana; Canali, Alessandro; Grillo, Giorgio; Liuni, Sabino; Mignone, Flavio; Pesole, Graziano

    2004-07-01

    The identification and characterization of genome tracts that are highly conserved across species during evolution may contribute significantly to the functional annotation of whole-genome sequences. Indeed, such sequences are likely to correspond to known or unknown coding exons or regulatory motifs. Here, we present a web server implementing a previously developed algorithm that, by comparing user-submitted genome sequences, is able to identify statistically significant conserved blocks and assess their coding or noncoding nature through the measure of a coding potential score. The web tool, available at http://www.caspur.it/CSTminer/, is dynamically interconnected with the Ensembl genome resources and produces a graphical output showing a map of detected conserved sequences and annotated gene features.

  11. Micro-plasticity of genomes as illustrated by the evolution of glutathione transferases in 12 Drosophila species.

    Directory of Open Access Journals (Sweden)

    Chonticha Saisawang

    Full Text Available Glutathione transferases (GST are an ancient superfamily comprising a large number of paralogous proteins in a single organism. This multiplicity of GSTs has allowed the copies to diverge for neofunctionalization with proposed roles ranging from detoxication and oxidative stress response to involvement in signal transduction cascades. We performed a comparative genomic analysis using FlyBase annotations and Drosophila melanogaster GST sequences as templates to further annotate the GST orthologs in the 12 Drosophila sequenced genomes. We found that GST genes in the Drosophila subgenera have undergone repeated local duplications followed by transposition, inversion, and micro-rearrangements of these copies. The colinearity and orientations of the orthologous GST genes appear to be unique in many of the species which suggests that genomic rearrangement events have occurred multiple times during speciation. The high micro-plasticity of the genomes appears to have a functional contribution utilized for evolution of this gene family.

  12. Micro-plasticity of genomes as illustrated by the evolution of glutathione transferases in 12 Drosophila species.

    Science.gov (United States)

    Saisawang, Chonticha; Ketterman, Albert J

    2014-01-01

    Glutathione transferases (GST) are an ancient superfamily comprising a large number of paralogous proteins in a single organism. This multiplicity of GSTs has allowed the copies to diverge for neofunctionalization with proposed roles ranging from detoxication and oxidative stress response to involvement in signal transduction cascades. We performed a comparative genomic analysis using FlyBase annotations and Drosophila melanogaster GST sequences as templates to further annotate the GST orthologs in the 12 Drosophila sequenced genomes. We found that GST genes in the Drosophila subgenera have undergone repeated local duplications followed by transposition, inversion, and micro-rearrangements of these copies. The colinearity and orientations of the orthologous GST genes appear to be unique in many of the species which suggests that genomic rearrangement events have occurred multiple times during speciation. The high micro-plasticity of the genomes appears to have a functional contribution utilized for evolution of this gene family.

  13. In situ genomic DNA extraction for PCR analysis of regions of interest in four plant species and one filamentous fungi

    Directory of Open Access Journals (Sweden)

    Luis E. Rojas

    2014-07-01

    Full Text Available The extraction methods of genomic DNA are usually laborious and hazardous to human health and the environment by the use of organic solvents (chloroform and phenol. In this work a protocol for in situ extraction of genomic DNA by alkaline lysis is validated. It was used in order to amplify regions of DNA in four species of plants and fungi by polymerase chain reaction (PCR. From plant material of Saccharum officinarum L., Carica papaya L. and Digitalis purpurea L. it was possible to extend different regions of the genome through PCR. Furthermore, it was possible to amplify a fragment of avr-4 gene DNA purified from lyophilized mycelium of Mycosphaerella fijiensis. Additionally, it was possible to amplify the region ap24 transgene inserted into the genome of banana cv. `Grande naine' (Musa AAA. Key words: alkaline lysis, Carica papaya L., Digitalis purpurea L., Musa, Saccharum officinarum L.

  14. Cytological analysis for meiotic patterns in wild rice (Oryza rufipogon Griff.

    Directory of Open Access Journals (Sweden)

    Sutanu Sarkar

    2017-03-01

    Full Text Available The present report explores the chromosomal patterns during meiosis as a fundamental cell division study in wild rice (Oryza rufipogon Griff.. Cytological assays revealed normal meiosis in most cases but in some instances meiotic abnormalities such as weak desynapsis, univalent and quadrivalent formation, translocation, spindle abnormalities and precocious movement of chromosomes were noticed. Interestingly, this wild species also has the bi-nucleoli in first meiotic stages alike the cultivated species of Oryza (O. sativa. The present investigation emphatically addresses the questions of high adaptability of wild rice supported by high pollen fertility for their potential to strong fitness in nature.

  15. The genome of African yam (Dioscorea cayenensis-rotundata complex) hosts endogenous sequences from four distinct Badnavirus species.

    Science.gov (United States)

    Umber, Marie; Filloux, Denis; Muller, Emmanuelle; Laboureau, Nathalie; Galzi, Serge; Roumagnac, Philippe; Iskra-Caruana, Marie-Line; Pavis, Claudie; Teycheney, Pierre-Yves; Seal, Susan E

    2014-10-01

    Several endogenous viral elements (EVEs) have been identified in plant genomes, including endogenous pararetroviruses (EPRVs). Here, we report the first characterization of EPRV sequences in the genome of African yam of the Dioscorea cayenensis-rotundata complex. We propose that these sequences should be termed 'endogenous Dioscorea bacilliform viruses' (eDBVs). Molecular characterization of eDBVs shows that they constitute sequences originating from various parts of badnavirus genomes, resulting in a mosaic structure that is typical of most EPRVs characterized to date. Using complementary molecular approaches, we show that eDBVs belong to at least four distinct Badnavirus species, indicating multiple, independent, endogenization events. Phylogenetic analyses of eDBVs support and enrich the current taxonomy of yam badnaviruses and lead to the characterization of a new Badnavirus species in yam. The impact of eDBVs on diagnosis, yam germplasm conservation and movement, and breeding is discussed. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  16. Functional genomics in the rice blast fungus to unravel the fungal pathogenicity

    Institute of Scientific and Technical Information of China (English)

    Junhyun JEON; Jaehyuk CHOI; Jongsun PARK; Yong-Hwan LEE

    2008-01-01

    A rapidly growing number of successful genome sequencing projects in plant pathogenic fungi greatly increase the demands for tools and methodologies to study fungal pathogenicity at genomic scale. Magnaporthe oryzae is an economically important plant pathogenic fungus whose genome is fully sequenced. Recently we have reported the development and application of functional genomics platform technologies in M. oryzae. This model approach would have many practical ramifications in design and implementation of upcoming functional genomics studies of filamentous fungi aimed at understanding fungal pathogenicity.

  17. Complete genome sequence of an Edwardsiella piscicida-like species recovered from tilapia in the United States

    Science.gov (United States)

    Edwardsiella piscicida-like sp. is a Gram-negative, facultative anaerobe that causes disease in some fish species. In this report we present the complete and annotated genome of isolate LADL05-105, recovered from cultured tilapia reared in Louisiana, which contains a chromosome of 4,142,037 bp and n...

  18. Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species.

    Science.gov (United States)

    Kim, Jae-Heup; Antunes, Agostinho; Luo, Shu-Jin; Menninger, Joan; Nash, William G; O'Brien, Stephen J; Johnson, Warren E

    2006-02-01

    Translocation of cymtDNA into the nuclear genome, also referred to as numt, has been reported in many species, including several closely related to the domestic cat (Felis catus). We describe the recent transposition of 12,536 bp of the 17 kb mitochondrial genome into the nucleus of the common ancestor of the five Panthera genus species: tiger, P. tigris; snow leopard, P. uncia; jaguar, P. onca; leopard, P. pardus; and lion, P. leo. This nuclear integration, representing 74% of the mitochondrial genome, is one of the largest to be reported in eukaryotes. The Panthera genus numt differs from the numt previously described in the Felis genus in: (1) chromosomal location (F2-telomeric region vs. D2-centromeric region), (2) gene make up (from the ND5 to the ATP8 vs. from the CR to the COII), (3) size (12.5 vs. 7.9 kb), and (4) structure (single monomer vs. tandemly repeated in Felis). These distinctions indicate that the origin of this large numt fragment in the nuclear genome of the Panthera species is an independent insertion from that of the domestic cat lineage, which has been further supported by phylogenetic analyses. The tiger cymtDNA shared around 90% sequence identity with the homologous numt sequence, suggesting an origin for the Panthera numt at around 3.5 million years ago, prior to the radiation of the five extant Panthera species.

  19. Optimizing read mapping to reference genomes to determine composition and species prevalence in microbial communities.

    Directory of Open Access Journals (Sweden)

    John Martin

    Full Text Available The Human Microbiome Project (HMP aims to characterize the microbial communities of 18 body sites from healthy individuals. To accomplish this, the HMP generated two types of shotgun data: reference shotgun sequences isolated from different anatomical sites on the human body and shotgun metagenomic sequences from the microbial communities of each site. The alignment strategy for characterizing these metagenomic communities using available reference sequence is important to the success of HMP data analysis. Six next-generation aligners were used to align a community of known composition against a database comprising reference organisms known to be present in that community. All aligners report nearly complete genome coverage (>97% for strains with over 6X depth of coverage, however they differ in speed, memory requirement and ease of use issues such as database size limitations and supported mapping strategies. The selected aligner was tested across a range of parameters to maximize sensitivity while maintaining a low false positive rate. We found that constraining alignment length had more impact on sensitivity than does constraining similarity in all cases tested. However, when reference species were replaced with phylogenetic neighbors, similarity begins to play a larger role in detection. We also show that choosing the top hit randomly when multiple, equally strong mappings are available increases overall sensitivity at the expense of taxonomic resolution. The results of this study identified a strategy that was used to map over 3 tera-bases of microbial sequence against a database of more than 5,000 reference genomes in just over a month.

  20. Genomic evidence of reactive oxygen species elevation in papillary thyroid carcinoma with Hashimoto thyroiditis.

    Science.gov (United States)

    Yi, Jin Wook; Park, Ji Yeon; Sung, Ji-Youn; Kwak, Sang Hyuk; Yu, Jihan; Chang, Ji Hyun; Kim, Jo-Heon; Ha, Sang Yun; Paik, Eun Kyung; Lee, Woo Seung; Kim, Su-Jin; Lee, Kyu Eun; Kim, Ju Han

    2015-01-01

    Elevated levels of reactive oxygen species (ROS) have been proposed as a risk factor for the development of papillary thyroid carcinoma (PTC) in patients with Hashimoto thyroiditis (HT). However, it has yet to be proven that the total levels of ROS are sufficiently increased to contribute to carcinogenesis. We hypothesized that if the ROS levels were increased in HT, ROS-related genes would also be differently expressed in PTC with HT. To find differentially expressed genes (DEGs) we analyzed data from the Cancer Genomic Atlas, gene expression data from RNA sequencing: 33 from normal thyroid tissue, 232 from PTC without HT, and 60 from PTC with HT. We prepared 402 ROS-related genes from three gene sets by genomic database searching. We also analyzed a public microarray data to validate our results. Thirty-three ROS related genes were up-regulated in PTC with HT, whereas there were only nine genes in PTC without HT (Chi-square p-value < 0.001). Mean log2 fold changes of up-regulated genes was 0.562 in HT group and 0.252 in PTC without HT group (t-test p-value = 0.001). In microarray data analysis, 12 of 32 ROS-related genes showed the same differential expression pattern with statistical significance. In gene ontology analysis, up-regulated ROS-related genes were related with ROS metabolism and apoptosis. Immune function-related and carcinogenesis-related gene sets were enriched only in HT group in Gene Set Enrichment Analysis. Our results suggested that ROS levels may be increased in PTC with HT. Increased levels of ROS may contribute to PTC development in patients with HT.

  1. Genome-wide macrosynteny among Fusarium species in the Gibberella fujikuroi complex revealed by amplified fragment length polymorphisms.

    Science.gov (United States)

    De Vos, Lieschen; Steenkamp, Emma T; Martin, Simon H; Santana, Quentin C; Fourie, Gerda; van der Merwe, Nicolaas A; Wingfield, Michael J; Wingfield, Brenda D

    2014-01-01

    The Gibberella fujikuroi complex includes many Fusarium species that cause significant losses in yield and quality of agricultural and forestry crops. Due to their economic importance, whole-genome sequence information has rapidly become available for species including Fusarium circinatum, Fusarium fujikuroi and Fusarium verticillioides, each of which represent one of the three main clades known in this complex. However, no previous studies have explored the genomic commonalities and differences among these fungi. In this study, a previously completed genetic linkage map for an interspecific cross between Fusarium temperatum and F. circinatum, together with genomic sequence data, was utilized to consider the level of synteny between the three Fusarium genomes. Regions that are homologous amongst the Fusarium genomes examined were identified using in silico and pyrosequenced amplified fragment length polymorphism (AFLP) fragment analyses. Homology was determined using BLAST analysis of the sequences, with 777 homologous regions aligned to F. fujikuroi and F. verticillioides. This also made it possible to assign the linkage groups from the interspecific cross to their corresponding chromosomes in F. verticillioides and F. fujikuroi, as well as to assign two previously unmapped supercontigs of F. verticillioides to probable chromosomal locations. We further found evidence of a reciprocal translocation between the distal ends of chromosome 8 and 11, which apparently originated before the divergence of F. circinatum and F. temperatum. Overall, a remarkable level of macrosynteny was observed among the three Fusarium genomes, when comparing AFLP fragments. This study not only demonstrates how in silico AFLPs can aid in the integration of a genetic linkage map to the physical genome, but it also highlights the benefits of using this tool to study genomic synteny and architecture.

  2. Transposon fingerprinting using low coverage whole genome shotgun sequencing in cacao (Theobroma cacao L.) and related species.

    Science.gov (United States)

    Sveinsson, Saemundur; Gill, Navdeep; Kane, Nolan C; Cronk, Quentin

    2013-07-24

    Transposable elements (TEs) and other repetitive elements are a large and dynamically evolving part of eukaryotic genomes, especially in plants where they can account for a significant proportion of genome size. Their dynamic nature gives them the potential for use in identifying and characterizing crop germplasm. However, their repetitive nature makes them challenging to study using conventional methods of molecular biology. Next generation sequencing and new computational tools have greatly facilitated the investigation of TE variation within species and among closely related species. (i) We generated low-coverage Illumina whole genome shotgun sequencing reads for multiple individuals of cacao (Theobroma cacao) and related species. These reads were analysed using both an alignment/mapping approach and a de novo (graph based clustering) approach. (ii) A standard set of ultra-conserved orthologous sequences (UCOS) standardized TE data between samples and provided phylogenetic information on the relatedness of samples. (iii) The mapping approach proved highly effective within the reference species but underestimated TE abundance in interspecific comparisons relative to the de novo methods. (iv) Individual T. cacao accessions have unique patterns of TE abundance indicating that the TE composition of the genome is evolving actively within this species. (v) LTR/Gypsy elements are the most abundant, comprising c.10% of the genome. (vi) Within T. cacao the retroelement families show an order of magnitude greater sequence variability than the DNA transposon families. (vii) Theobroma grandiflorum has a similar TE composition to T. cacao, but the related genus Herrania is rather different, with LTRs making up a lower proportion of the genome, perhaps because of a massive presence (c. 20%) of distinctive low complexity satellite-like repeats in this genome. (i) Short read alignment/mapping to reference TE contigs provides a simple and effective method of investigating

  3. Detailed analysis of targeted gene mutations caused by the Platinum-Fungal TALENs in Aspergillus oryzae RIB40 strain and a ligD disruptant.

    Science.gov (United States)

    Mizutani, Osamu; Arazoe, Takayuki; Toshida, Kenji; Hayashi, Risa; Ohsato, Shuichi; Sakuma, Tetsushi; Yamamoto, Takashi; Kuwata, Shigeru; Yamada, Osamu

    2017-03-01

    Transcription activator-like effector nucleases (TALENs), which can generate DNA double-strand breaks at specific sites in the desired genome locus, have been used in many organisms as a tool for genome editing. In Aspergilli, including Aspergillus oryzae, however, the use of TALENs has not been validated. In this study, we performed genome editing of A. oryzae wild-type strain via error of nonhomologous end-joining (NHEJ) repair by transient expression of high-efficiency Platinum-Fungal TALENs (PtFg TALENs). Targeted mutations were observed as various mutation patterns. In particular, approximately half of the PtFg TALEN-mediated deletion mutants had deletions larger than 1 kb in the TALEN-targeting region. We also conducted PtFg TALEN-based genome editing in A. oryzae ligD disruptant (ΔligD) lacking the ligD gene involved in the final step of the NHEJ repair and found that mutations were still obtained as well as wild-type. In this case, the ratio of the large deletions reduced compared to PtFg TALEN-based genome editing in the wild-type. In conclusion, we demonstrate that PtFg TALENs are sufficiently functional to cause genome editing via error of NHEJ in A. oryzae. In addition, we reveal that genome editing using TALENs in A. oryzae tends to cause large deletions at the target region, which were partly suppressed by deletion of ligD.

  4. Fungal Histidine Phosphotransferase Plays a Crucial Role in Photomorphogenesis and Pathogenesis in Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Varsha C. Mohanan

    2017-05-01

    Full Text Available Two-component signal transduction (TCST pathways play crucial roles in many cellular functions such as stress responses, biofilm formation, and sporulation. The histidine phosphotransferase (HPt, which is an intermediate phosphotransfer protein in a two-component system, transfers a phosphate group to a phosphorylatable aspartate residue in the target protein(s, and up-regulates stress-activated MAP kinase cascades. Most fungal genomes carry a single copy of the gene coding for HPt, which are potential antifungal targets. However, unlike the histidine kinases (HK or the downstream response regulators (RR in two-component system, the HPts have not been well-studied in phytopathogenic fungi. In this study, we investigated the role of HPt in the model rice-blast fungal pathogen Magnaporthe oryzae. We found that in M. oryzae an additional isoform of the HPT gene YPD1 was expressed specifically in response to light. Further, the expression of light-regulated genes such as those encoding envoy and blue-light-harvesting protein, and PAS domain containing HKs was significantly reduced upon down-regulation of YPD1 in M. oryzae. Importantly, down-regulation of YPD1 led to a significant decrease in the ability to penetrate the host cuticle and in light-dependent conidiation in M. oryzae. Thus, our results indicate that Ypd1 plays an important role in asexual development and host invasion, and suggest that YPD1 isoforms likely have distinct roles to play in the rice-blast pathogen M. oryzae.

  5. Fungal histidine phosphotransferase plays a crucial role in photomorphogenesis and pathogenesis in Magnaporthe oryzae

    Science.gov (United States)

    Mohanan, Varsha C.; Chandarana, Pinal M.; Chattoo, Bharat. B.; Patkar, Rajesh N.; Manjrekar, Johannes

    2017-05-01

    Two-component signal transduction (TCST) pathways play crucial roles in many cellular functions such as stress responses, biofilm formation and sporulation. The histidine phosphotransferase (HPt), which is an intermediate phosphotransfer protein in a two-component system, transfers a phosphate group to a phosphorylatable aspartate residue in the target protein(s), and up-regulates stress-activated MAP kinase cascades. Most fungal genomes carry a single copy of the gene coding for HPt, which are potential antifungal targets. However, unlike the histidine kinases (HK) or the downstream response regulators (RR) in two-component system, the HPts have not been well studied in phytopathogenic fungi. In this study, we investigated the role of HPt in the model rice-blast fungal pathogen Magnaporthe oryzae. We found that in M. oryzae an additional isoform of the HPT gene YPD1 was expressed specifically in response to light. Further, the expression of light-regulated genes such as those encoding envoy and blue-light-harvesting protein, and PAS domain containing HKs was significantly reduced upon down-regulation of YPD1 in M. oryzae. Importantly, down-regulation of YPD1 led to a significant decrease in the ability to penetrate the host cuticle and in light-dependent conidiation in M. oryzae. Thus, our results indicate that Ypd1 plays an important role in asexual development and host invasion, and suggest that YPD1 isoforms likely have distinct roles to play in the rice-blast pathogen M. oryzae.

  6. Deciphering the signaling mechanisms of the plant cell wall degradation machinery in Aspergillus oryzae

    DEFF Research Database (Denmark)

    Udatha, D. B. R. K. Gupta; Topakas, Evangelos; Salazar, Margarita Pena;

    2015-01-01

    . oryzae genome were only partially explained by the chemical similarity of the enzyme inducers. Genes encoding enzymes that have attracted considerable interest such as cellobiose dehydrogenases and copper-dependent polysaccharide mono-oxygenases presented a substrate-specific induction. Several homology...... in 2360 reactions in the genome scale metabolic network of A. oryzae, was performed through a two-step molecular docking against the binding pockets of the transcription factors AoXlnR and AoAmyR. A total of six metabolites viz., sulfite (H2SO3), sulfate (SLF), uroporphyrinogen III (UPGIII), ethanolamine...

  7. The genome of the mesopolyploid crop species Brassica rapa

    DEFF Research Database (Denmark)

    Wang, Xiaowu; Wang, Hanzhong; Wang, Jun;

    2011-01-01

    We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the ...

  8. INTEGRATING GENOMICS AND PHYLOGENETICS IN UNDERSTANDING THE HISTORY OF TRICHINELLA SPECIES

    Science.gov (United States)