WorldWideScience

Sample records for genome mapping final

  1. Mapping and sequencing the human genome: Science, ethics, and public policy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.D.

    1993-03-31

    Development of Mapping and Sequencing the Human Genome: Science, Ethics, and Public Policy followed the standard process of curriculum development at the Biological Sciences Curriculum Study (BSCS), the process is described. The production of this module was a collaborative effort between BSCS and the American Medical Association (AMA). Appendix A contains a copy of the module. Copies of reports sent to the Department of Energy (DOE) during the development process are contained in Appendix B; all reports should be on file at DOE. Appendix B also contains copies of status reports submitted to the BSCS Board of Directors.

  2. Genome Maps, a new generation genome browser.

    Science.gov (United States)

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org.

  3. Genome Maps, a new generation genome browser

    Science.gov (United States)

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-01-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  4. Site specific endonucleases for human genome mapping. Final report, April 1, 1992--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Knoche, K.; Selman, S.; Hung, L. [and others

    1994-06-01

    Current large scale genome mapping methodology suffers from a lack of tools for generating specific DNA fragments in the megabase size range. While technology such as pulsed field gel electrophoresis can resolve DNA fragments greater than 10 megabases in size, current methods for cleaving mammalian DNA using bacterial restriction enzymes are incapable of producing such fragments. Though several multidimensional approaches are underway to overcome this limitation, there currently is no single step procedure to generate specific DNA fragments in the 2-100 megabase size range. In order to overcome these limitations, we proposed to develop a family of site-specific endonucleases capable of generating DNA fragments in the 2-100 megabase size range in a single step. Additionally, we proposed to accomplish this by relaxing the specificity of a very-rare cutting intron-encoded endonucleases, I-Ppo I, and potentially using the process as a model for development of other enzymes. Our research has uncovered a great deal of information about intron-encoded endonucleases. We have found that I-Ppo I has a remarkable ability to tolerate degeneracy within its recognition sequence, and we have shown that the recognition sequence is larger than 15 base pairs. These findings suggest that a detailed study of the mechanism by which intron-encoded endonucleases recognize their target sequences should provide new sights into DNA-protein interactions; this had led to a continuation of the study of I-Ppo I in Dr. Raines` laboratory and we expect a more detailed understanding of the mechanism of I-Ppo I action to result.

  5. cDNA/STS map of human genome. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The human gene identification and transcript mapping project has generated over 3,000 3`ESTs derived from human brain cDNA libraries and mapped over 300 of these. The data have been submitted to the appropriate gene sequence and mapping databases. Clones are either available from Greg Lennon at Lawrence Livermore or from ATCC. A summary of this work is provided and a News and Views article from the same issue is included which highlights this paper. The strategy developed by this laboratory is now being used by an international consortium to generate the first comprehensive human gene (transcript) map over the next year or two.

  6. Novel methods for physical mapping of the human genome applied to the long arm of chromosome 5. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, M.

    1991-12-01

    The object of our current grant is to develop novel methods for mapping of the human genome. The techniques to be assessed were: (1) three methods for the production of unique sequence clones from the region of interest; (2) novel methods for the production and separation of multi-megabase DNA fragments; (3) methods for the production of ``physical linking clones`` that contain rare restriction sites; (4) application of these methods and available resources to map the region of interest. Progress includes: In the first two years methods were developed for physical mapping and the production of arrayed clones; We have concentrated on developing rare- cleavage tools based or restriction endonucleases and methylases; We studied the effect of methylation on enzymes used for PFE mapping of the human genome; we characterized two new isoschizomers of rare cutting endonucleases; we developed a reliable way to produce partial digests of DNA in agarose plugs and applied it to the human genome; and we applied a method to double the apparent specificity of the ``rare-cutter`` endonucleases.

  7. Genome Mapping in Plant Comparative Genomics.

    Science.gov (United States)

    Chaney, Lindsay; Sharp, Aaron R; Evans, Carrie R; Udall, Joshua A

    2016-09-01

    Genome mapping produces fingerprints of DNA sequences to construct a physical map of the whole genome. It provides contiguous, long-range information that complements and, in some cases, replaces sequencing data. Recent advances in genome-mapping technology will better allow researchers to detect large (>1kbp) structural variations between plant genomes. Some molecular and informatics complications need to be overcome for this novel technology to achieve its full utility. This technology will be useful for understanding phenotype responses due to DNA rearrangements and will yield insights into genome evolution, particularly in polyploids. In this review, we outline recent advances in genome-mapping technology, including the processes required for data collection and analysis, and applications in plant comparative genomics.

  8. Mapping the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, Charles R.

    1989-06-01

    The following pages aim to lay a foundation for understanding the excitement surrounding the ''human genome project,'' as well as to convey a flavor of the ongoing efforts and plans at the Human Genome Center at the Lawrence Berkeley Laboratory. Our own work, of course, is only part of a broad international effort that will dramatically enhance our understanding of human molecular genetics before the end of this century. In this country, the bulk of the effort will be carried out under the auspices of the Department of Energy and the National Institutes of Health, but significant contributions have already been made both by nonprofit private foundations and by private corporation. The respective roles of the DOE and the NIH are being coordinated by an inter-agency committee, the aims of which are to emphasize the strengths of each agency, to facilitate cooperation, and to avoid unnecessary duplication of effort. The NIH, for example, will continue its crucial work in medical genetics and in mapping the genomes of nonhuman species. The DOE, on the other hand, has unique experience in managing large projects, and its national laboratories are repositories of expertise in physics, engineering, and computer science, as well as the life sciences. The tools and techniques the project will ultimately rely on are thus likely to be developed in multidisciplinary efforts at laboratories like LBL. Accordingly, we at LBL take great pride in this enterprise -- an enterprise that will eventually transform our understanding of ourselves.

  9. A physical map of the mouse genome

    NARCIS (Netherlands)

    Gregory, SG; Sekhon, M; Schein, J; Zhao, SY; Osoegawa, K; Scott, CE; Evans, RS; Burridge, PW; Cox, TV; Fox, CA; Hutton, RD; Mullenger, IR; Phillips, KJ; Smith, J; Stalker, J; Threadgold, GJ; Birney, E; Wylie, K; Chinwalla, A; Wallis, J; Hillier, L; Carter, J; Gaige, T; Jaeger, S; Kremitzki, C; Layman, D; McGrane, R; Mead, K; Walker, R; Jones, S; Smith, M; Asano, J; Bosdet, I; Chan, S; Chittaranjan, S; Chiu, R; Fjell, C; Fuhrmann, D; Girn, N; Gray, C; Guin, R; Hsiao, L; Krzywinski, M; Kutsche, R; Lee, SS; Mathewson, C; McLeavy, C; Messervier, S; Ness, S; Pandoh, P; Prabhu, AL; Saeedi, P; Smailus, D; Spence, L; Stott, J; Taylor, S; Terpstra, W; Tsai, M; Vardy, J; Wye, N; Yang, G; Shatsman, S; Ayodeji, B; Geer, K; Tsegaye, G; Shvartsbeyn, A; Gebregeorgis, E; Krol, M; Russell, D; Overton, L; Malek, JA; Holmes, M; Heaney, M; Shetty, J; Feldblyum, T; Nierman, WC; Catanese, JJ; Hubbard, T; Waterston, RH; Rogers, J; de Jong, PJ; Fraser, CM; Marra, M; McPherson, JD; Bentley, DR

    2002-01-01

    A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs w

  10. A physical map of the mouse genome

    NARCIS (Netherlands)

    Gregory, SG; Sekhon, M; Schein, J; Zhao, SY; Osoegawa, K; Scott, CE; Evans, RS; Burridge, PW; Cox, TV; Fox, CA; Hutton, RD; Mullenger, IR; Phillips, KJ; Smith, J; Stalker, J; Threadgold, GJ; Birney, E; Wylie, K; Chinwalla, A; Wallis, J; Hillier, L; Carter, J; Gaige, T; Jaeger, S; Kremitzki, C; Layman, D; McGrane, R; Mead, K; Walker, R; Jones, S; Smith, M; Asano, J; Bosdet, I; Chan, S; Chittaranjan, S; Chiu, R; Fjell, C; Fuhrmann, D; Girn, N; Gray, C; Guin, R; Hsiao, L; Krzywinski, M; Kutsche, R; Lee, SS; Mathewson, C; McLeavy, C; Messervier, S; Ness, S; Pandoh, P; Prabhu, AL; Saeedi, P; Smailus, D; Spence, L; Stott, J; Taylor, S; Terpstra, W; Tsai, M; Vardy, J; Wye, N; Yang, G; Shatsman, S; Ayodeji, B; Geer, K; Tsegaye, G; Shvartsbeyn, A; Gebregeorgis, E; Krol, M; Russell, D; Overton, L; Malek, JA; Holmes, M; Heaney, M; Shetty, J; Feldblyum, T; Nierman, WC; Catanese, JJ; Hubbard, T; Waterston, RH; Rogers, J; de Jong, PJ; Fraser, CM; Marra, M; McPherson, JD; Bentley, DR

    2002-01-01

    A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs w

  11. Using the NCBI Map Viewer to browse genomic sequence data.

    Science.gov (United States)

    Wolfsberg, Tyra G

    2011-04-01

    This unit includes a basic protocol with an introduction to the Map Viewer, describing how to perform a simple text-based search of genome annotations to view the genomic context of a gene, navigate along a chromosome, zoom in and out, and change the displayed maps to hide and show information. It also describes some of NCBI's sequence-analysis tools, which are provided as links from the Map Viewer. The alternate protocols describe different ways to query the genome sequence, and also illustrate additional features of the Map Viewer. Alternate Protocol 1 shows how to perform and interpret the results of a BLAST search against the human genome. Alternate Protocol 2 demonstrates how to retrieve a list of all genes between two STS markers. Finally, Alternate Protocol 3 shows how to find all annotated members of a gene family.

  12. Development of Permanent Mapping Populations RILs in Diploid A Genome

    Institute of Scientific and Technical Information of China (English)

    WAGHMARE VIJAY N; DONGRE A B; GOTMARE Vinita; PATIL P G; DESHPANDE L A; KHADI B M

    2008-01-01

    @@ Recombinant inbred lines (RILs) serve as powerful tools for genetic mapping.RILs are obtained by crossing two inbred lines followed by repeated selfing or sib-mating to create a set of new inbred lines.The resulting genome in the finally developed RILs is a mosaic of the parental genomes.The fixed variation in RILs is used of for fine mapping of complex traits.Cultivated diploid A genome species of cotton holds special significance to dissect complexity of a developing cotton fibers.We have evaluated the interspecifc population (Gossypium arboreum var.

  13. [Mapping and human genome sequence program].

    Science.gov (United States)

    Weissenbach, J

    1997-03-01

    Until recently, human genome programs focused primarily on establishing maps that would provide signposts to researchers seeking to identify genes responsible for inherited diseases, as well as a basis for genome sequencing studies. Preestablished gene mapping goals have been reached. The over 7,000 microsatellite markers identified to date provide a map of sufficient density to allow localization of the gene of a monogenic disease with a precision of 1 to 2 million base pairs. The physical map, based on systematically arranged overlapping sets of artificial yeast chromosomes (YACs), has also made considerable headway during the last few years. The most recently published map covers more than 90% of the genome. However, currently available physical maps cannot be used for sequencing studies because multiple rearrangements occur in YACs. The recently developed sets of radioinduced hybrids are extremely useful for incorporating genes into existing maps. A network of American and European laboratories has successfully used these radioinduced hybrids to map 15,000 gene tags from large-scale cDNA library sequencing programs. There are increasingly pressing reasons for initiating large scale human genome sequencing studies.

  14. BSMAP: whole genome bisulfite sequence MAPping program

    Directory of Open Access Journals (Sweden)

    Li Wei

    2009-07-01

    Full Text Available Abstract Background Bisulfite sequencing is a powerful technique to study DNA cytosine methylation. Bisulfite treatment followed by PCR amplification specifically converts unmethylated cytosines to thymine. Coupled with next generation sequencing technology, it is able to detect the methylation status of every cytosine in the genome. However, mapping high-throughput bisulfite reads to the reference genome remains a great challenge due to the increased searching space, reduced complexity of bisulfite sequence, asymmetric cytosine to thymine alignments, and multiple CpG heterogeneous methylation. Results We developed an efficient bisulfite reads mapping algorithm BSMAP to address the above issues. BSMAP combines genome hashing and bitwise masking to achieve fast and accurate bisulfite mapping. Compared with existing bisulfite mapping approaches, BSMAP is faster, more sensitive and more flexible. Conclusion BSMAP is the first general-purpose bisulfite mapping software. It is able to map high-throughput bisulfite reads at whole genome level with feasible memory and CPU usage. It is freely available under GPL v3 license at http://code.google.com/p/bsmap/.

  15. Mapping and Sequencing the Human Genome

    Science.gov (United States)

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  16. PICMI: mapping point mutations on genomes.

    KAUST Repository

    Le Pera, Loredana

    2010-10-12

    MOTIVATION: Several international collaborations and local projects are producing extensive catalogues of genomic variations that are supplementing existing collections such as the OMIM catalogue. The flood of this type of data will keep increasing and, especially, it will be relevant to a wider user base, including not only molecular biologists, geneticists and bioinformaticians, but also clinical researchers. Mapping the observed variations, sometimes only described at the amino acid level, on a genome, identifying whether they affect a gene and-if so-whether they also affect different isoforms of the same gene, is a time consuming and often frustrating task. RESULTS: The PICMI server is an easy to use tool for quickly mapping one or more amino acid or nucleotide variations on a genome and its products, including alternatively spliced isoforms. AVAILABILITY: The server is available at www.biocomputing.it/picmi.

  17. Mapping the space of genomic signatures.

    Directory of Open Access Journals (Sweden)

    Lila Kari

    Full Text Available We propose a computational method to measure and visualize interrelationships among any number of DNA sequences allowing, for example, the examination of hundreds or thousands of complete mitochondrial genomes. An "image distance" is computed for each pair of graphical representations of DNA sequences, and the distances are visualized as a Molecular Distance Map: Each point on the map represents a DNA sequence, and the spatial proximity between any two points reflects the degree of structural similarity between the corresponding sequences. The graphical representation of DNA sequences utilized, Chaos Game Representation (CGR, is genome- and species-specific and can thus act as a genomic signature. Consequently, Molecular Distance Maps could inform species identification, taxonomic classifications and, to a certain extent, evolutionary history. The image distance employed, Structural Dissimilarity Index (DSSIM, implicitly compares the occurrences of oligomers of length up to k (herein k = 9 in DNA sequences. We computed DSSIM distances for more than 5 million pairs of complete mitochondrial genomes, and used Multi-Dimensional Scaling (MDS to obtain Molecular Distance Maps that visually display the sequence relatedness in various subsets, at different taxonomic levels. This general-purpose method does not require DNA sequence alignment and can thus be used to compare similar or vastly different DNA sequences, genomic or computer-generated, of the same or different lengths. We illustrate potential uses of this approach by applying it to several taxonomic subsets: phylum Vertebrata, (superkingdom Protista, classes Amphibia-Insecta-Mammalia, class Amphibia, and order Primates. This analysis of an extensive dataset confirms that the oligomer composition of full mtDNA sequences can be a source of taxonomic information. This method also correctly finds the mtDNA sequences most closely related to that of the anatomically modern human (the Neanderthal

  18. Mapping the Space of Genomic Signatures

    Science.gov (United States)

    Kari, Lila; Hill, Kathleen A.; Sayem, Abu S.; Karamichalis, Rallis; Bryans, Nathaniel; Davis, Katelyn; Dattani, Nikesh S.

    2015-01-01

    We propose a computational method to measure and visualize interrelationships among any number of DNA sequences allowing, for example, the examination of hundreds or thousands of complete mitochondrial genomes. An "image distance" is computed for each pair of graphical representations of DNA sequences, and the distances are visualized as a Molecular Distance Map: Each point on the map represents a DNA sequence, and the spatial proximity between any two points reflects the degree of structural similarity between the corresponding sequences. The graphical representation of DNA sequences utilized, Chaos Game Representation (CGR), is genome- and species-specific and can thus act as a genomic signature. Consequently, Molecular Distance Maps could inform species identification, taxonomic classifications and, to a certain extent, evolutionary history. The image distance employed, Structural Dissimilarity Index (DSSIM), implicitly compares the occurrences of oligomers of length up to k (herein k = 9) in DNA sequences. We computed DSSIM distances for more than 5 million pairs of complete mitochondrial genomes, and used Multi-Dimensional Scaling (MDS) to obtain Molecular Distance Maps that visually display the sequence relatedness in various subsets, at different taxonomic levels. This general-purpose method does not require DNA sequence alignment and can thus be used to compare similar or vastly different DNA sequences, genomic or computer-generated, of the same or different lengths. We illustrate potential uses of this approach by applying it to several taxonomic subsets: phylum Vertebrata, (super)kingdom Protista, classes Amphibia-Insecta-Mammalia, class Amphibia, and order Primates. This analysis of an extensive dataset confirms that the oligomer composition of full mtDNA sequences can be a source of taxonomic information. This method also correctly finds the mtDNA sequences most closely related to that of the anatomically modern human (the Neanderthal, the Denisovan

  19. Micro satellite mapping of plant genomes

    Directory of Open Access Journals (Sweden)

    Prodanović Slaven

    2001-01-01

    Full Text Available Micro satellites are DNA markers, based on the repeated nucleotide sequences number polymorphism. They belong to a group of PCR markers and are mainly used as an addition to other types of markers. Their characteristics and technical aspects of their application are discussed in the present study. Furthermore, some results obtained by the use of the micro satellite DNA in genetic mapping of plant genomes are also presented. Although micro satellites provide the identification of genotypes within a species, inadequacy of comparative mapping of different species is their serious blemish. .

  20. Genetic linkage map of a wild genome: genomic structure, recombination and sexual dimorphism in bighorn sheep

    Directory of Open Access Journals (Sweden)

    Miller Joshua M

    2010-09-01

    Full Text Available Abstract Background The construction of genetic linkage maps in free-living populations is a promising tool for the study of evolution. However, such maps are rare because it is difficult to develop both wild pedigrees and corresponding sets of molecular markers that are sufficiently large. We took advantage of two long-term field studies of pedigreed individuals and genomic resources originally developed for domestic sheep (Ovis aries to construct a linkage map for bighorn sheep, Ovis canadensis. We then assessed variability in genomic structure and recombination rates between bighorn sheep populations and sheep species. Results Bighorn sheep population-specific maps differed slightly in contiguity but were otherwise very similar in terms of genomic structure and recombination rates. The joint analysis of the two pedigrees resulted in a highly contiguous map composed of 247 microsatellite markers distributed along all 26 autosomes and the X chromosome. The map is estimated to cover about 84% of the bighorn sheep genome and contains 240 unique positions spanning a sex-averaged distance of 3051 cM with an average inter-marker distance of 14.3 cM. Marker synteny, order, sex-averaged interval lengths and sex-averaged total map lengths were all very similar between sheep species. However, in contrast to domestic sheep, but consistent with the usual pattern for a placental mammal, recombination rates in bighorn sheep were significantly greater in females than in males (~12% difference, resulting in an autosomal female map of 3166 cM and an autosomal male map of 2831 cM. Despite differing genome-wide patterns of heterochiasmy between the sheep species, sexual dimorphism in recombination rates was correlated between orthologous intervals. Conclusions We have developed a first-generation bighorn sheep linkage map that will facilitate future studies of the genetic architecture of trait variation in this species. While domestication has been hypothesized

  1. Mapping the Materials Genome through Combinatorial Informatics

    Science.gov (United States)

    Rajan, Krishna

    2012-02-01

    The recently announced White House Materials Genome Initiative provides an exciting challenge to the materials science community. To meet that challenge one needs to address a critical question, namely what is the materials genome? Some guide on how to the answer this question can be gained by recognizing that a ``gene'' is a carrier of information. In the biological sciences, discovering how to manipulate these genes has generated exciting discoveries in fundamental molecular biology as well as significant advances in biotechnology. Scaling that up to molecular, cellular length scales and beyond, has spawned from genomics, fields such as proteomics, metabolomics and essentially systems biology. The ``omics'' approach requires that one needs to discover and track these ``carriers of information'' and then correlate that information to predict behavior. A similar challenge lies in materials science, where there is a diverse array of modalities of materials ``discovery'' ranging from new materials chemistries and molecular arrangements with novel properties, to the development and design of new micro- and mesoscale structures. Hence to meaningfully adapt the spirit of ``genomics'' style research in materials science, we need to first identify and map the ``genes'' across different materials science applications On the experimental side, combinatorial experiments have opened a new approach to generate data in a high throughput manner, but without a clear way to link that to models, the full value of that data is not realized. Hence along with experimental and computational materials science, we need to add a ``third leg'' to our toolkit to make the ``Materials Genome'' a reality, the science of Materials Informatics. In this presentation we provide an overview of how information science coupled to materials science can in fact achieve the goal of mapping the ``Materials Genome''.

  2. Toward mapping the biology of the genome.

    Science.gov (United States)

    Chanock, Stephen

    2012-09-01

    This issue of Genome Research presents new results, methods, and tools from The ENCODE Project (ENCyclopedia of DNA Elements), which collectively represents an important step in moving beyond a parts list of the genome and promises to shape the future of genomic research. This collection sheds light on basic biological questions and frames the current debate over the optimization of tools and methodological challenges necessary to compare and interpret large complex data sets focused on how the genome is organized and regulated. In a number of instances, the authors have highlighted the strengths and limitations of current computational and technical approaches, providing the community with useful standards, which should stimulate development of new tools. In many ways, these papers will ripple through the scientific community, as those in pursuit of understanding the "regulatory genome" will heavily traverse the maps and tools. Similarly, the work should have a substantive impact on how genetic variation contributes to specific diseases and traits by providing a compendium of functional elements for follow-up study. The success of these papers should not only be measured by the scope of the scientific insights and tools but also by their ability to attract new talent to mine existing and future data.

  3. GenoMap, a circular genome data viewer.

    Science.gov (United States)

    Sato, Naoki; Ehira, Shigeki

    2003-08-12

    A Tcl/Tk-based application called GenoMap is described, a viewer for genome-wide map of microarray expression data within a circular bacterial genome. An interactive interface facilitates easy identification of the expressed region. This software is also used for drawing genome-wide quantitative data.

  4. A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the Turkey and Chicken genomes

    Directory of Open Access Journals (Sweden)

    Vereijken Addie

    2010-11-01

    Full Text Available Abstract Background The turkey (Meleagris gallopavo is an important agricultural species that is the second largest contributor to the world's poultry meat production. The genomic resources of turkey provide turkey breeders with tools needed for the genetic improvement of commercial breeds of turkey for economically important traits. A linkage map of turkey is essential not only for the mapping of quantitative trait loci, but also as a framework to enable the assignment of sequence contigs to specific chromosomes. Comparative genomics with chicken provides insight into mechanisms of genome evolution and helps in identifying rare genomic events such as genomic rearrangements and duplications/deletions. Results Eighteen full sib families, comprising 1008 (35 F1 and 973 F2 birds, were genotyped for 775 single nucleotide polymorphisms (SNPs. Of the 775 SNPs, 570 were informative and used to construct a linkage map in turkey. The final map contains 531 markers in 28 linkage groups. The total genetic distance covered by these linkage groups is 2,324 centimorgans (cM with the largest linkage group (81 loci measuring 326 cM. Average marker interval for all markers across the 28 linkage groups is 4.6 cM. Comparative mapping of turkey and chicken revealed two inter-, and 57 intrachromosomal rearrangements between these two species. Conclusion Our turkey genetic map of 531 markers reveals a genome length of 2,324 cM. Our linkage map provides an improvement of previously published maps because of the more even distribution of the markers and because the map is completely based on SNP markers enabling easier and faster genotyping assays than the microsatellitemarkers used in previous linkage maps. Turkey and chicken are shown to have a highly conserved genomic structure with a relatively low number of inter-, and intrachromosomal rearrangements.

  5. Flow cytogenetics and plant genome mapping.

    Science.gov (United States)

    Dolezel, Jaroslav; Kubaláková, Marie; Bartos, Jan; Macas, Jirí

    2004-01-01

    The application of flow cytometry and sorting (flow cytogenetics) to plant chromosomes did not begin until the mid-1980s, having been delayed by difficulties in preparation of suspensions of intact chromosomes and discrimination of individual chromosome types. These problems have been overcome during the last ten years. So far, chromosome analysis and sorting has been reported in 17 species, including major legume and cereal crops. While chromosome classification by flow cytometry (flow karyotyping) may be used for quantitative detection of structural and numerical chromosome changes, chromosomes purified by flow sorting were found to be invaluable in a broad range of applications. These included physical mapping using PCR, high-resolution cytogenetic mapping using FISH and PRINS, production of recombinant DNA libraries, targeted isolation of markers, and protein analysis. A great potential is foreseen for the use of sorted chromosomes for construction of chromosome and chromosome-arm-specific BAC libraries, targeted isolation of low-copy (genic) sequences, high-throughput physical mapping of ESTs and other DNA sequences by hybridization to DNA arrays, and global characterization of chromosomal proteins using approaches of proteomics. This paper provides a comprehensive review of the methodology and application of flow cytogenetics, and assesses its potential for plant genome analysis.

  6. Mapping genomic library clones using oligonucleotide arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sapolsky, R.J.; Lipshutz, R.J. [Affymetrix, Santa Clara, CA (United States)

    1996-05-01

    We have developed a high-density DNA probe array and accompanying biochemical and informatic methods to order clones from genomic libraries. This approach involves a series of enzymatic steps for capturing a set of short dispersed sequence markers scattered throughout a high-molecular-weight DNA. By this process, all the ambiguous sequences lying adjacent to a given Type IIS restriction site are ligated between two DNA adaptors. These markers, once amplified and labeled by PCR, can be hybridized and detected on a high-density olligonucleotide array bearing probes complementary to all possible markers. The array is synthesized using light-directed combinatorial chemistry. For each clone in a genomic library, a characteristic set of sequence markers can be determined. On the basis of the similarity between the marker sets for each pair of clones, their relative overlap can be measured. The library can be sequentially ordered into a contig map using this overlap information. This new methodology does not require gel-based methods or prior sequence information and involves manipulations that should allow for easy adaptation to automated processing and data collection. 28 refs., 9 figs., 2 tabs.

  7. Data management for genomic mapping applications: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, V.M.; Lewis, S.; McCarthy, J.; Olken, F.; Zorn, M.

    1992-05-01

    In this paper we describe a new approach to the construction of data management systems for genomic mapping applications in molecular biology, genetics, and plant breeding. We discuss the architecture of such systems and propose an incremental approach to the development of such systems. We illustrate the proposed approach and architecture with a case study of a prototype data management system for genomic maps.

  8. Whole-genome shotgun optical mapping of Rhodospirillum rubrum

    Energy Technology Data Exchange (ETDEWEB)

    Reslewic, S. [Univ. Wisc.-Madison; Zhou, S. [Univ. Wisc.-Madison; Place, M. [Univ. Wisc.-Madison; Zhang, Y. [Univ. Wisc.-Madison; Briska, A. [Univ. Wisc.-Madison; Goldstein, S. [Univ. Wisc.-Madison; Churas, C. [Univ. Wisc.-Madison; Runnheim, R. [Univ. Wisc.-Madison; Forrest, D. [Univ. Wisc.-Madison; Lim, A. [Univ. Wisc.-Madison; Lapidus, A. [Univ. Wisc.-Madison; Han, C. S. [Univ. Wisc.-Madison; Roberts, G. P. [Univ. Wisc.-Madison; Schwartz, D. C. [Univ. Wisc.-Madison

    2005-09-01

    Rhodospirillum rubrum is a phototrophic purple nonsulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems and as a source of hydrogen and biodegradable plastic production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction endonuclease maps (XbaI, NheI, and HindIII) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction endonuclease maps from randomly sheared genomic DNA molecules extracted from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the HindIII map acted as a scaffold for high-resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and confirmation of genome sequence, this work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a "molecular cytogenetics" approach to solving problems in genomic analysis.

  9. Whole-genome shotgun optical mapping of rhodospirillumrubrum

    Energy Technology Data Exchange (ETDEWEB)

    Reslewic, Susan; Zhou, Shiguo; Place, Mike; Zhang, Yaoping; Briska, Adam; Goldstein, Steve; Churas, Chris; Runnheim, Rod; Forrest,Dan; Lim, Alex; Lapidus, Alla; Han, Cliff S.; Roberts, Gary P.; Schwartz,David C.

    2004-07-01

    Rhodospirillum rubrum is a phototrophic purple non-sulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems, and as a source of hydrogen and biodegradable plastics production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction maps (Xba I, Nhe I, and Hind III) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction maps from randomly sheared genomic DNA molecules extracted directly from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the Hind III map acted as a scaffold for high resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and validation of genome sequence, our work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a ''molecular cytogenetics'' approach to solving problems in genomic analysis.

  10. The History Of Genome Mapping In Fragaria Spp.

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel-Rahman Moustafa Abdel-Wahab

    2014-12-01

    Full Text Available This overview summarizes the research programs devoted to mapping the genomes within Fragaria genus. A few genetic linkage maps of diploid and octoploid Fragaria species as well as impressive physical map of F. vesca were developed in the last decade and resulted in the collection of data useful for further fundamental and applied studies. The information concerning the rules for proper preparation of mapping population, the choice of markers useful for generating linkage map, the saturation of existing maps with new markers linked to economically important traits, as well as problems faced during mapping process are presented in this paper.

  11. Whole Genome Fine Map of Rice Completed

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Rice is a staple crop for more than half of the world's population, and it was hoped that the availability of its genome sequence might enable scientists to develop more productive and environment friendly rice strains.Furthermore, the rice genome might provide the key to understanding the genetics of other major cereal crops,as all of them have much larger genomes.

  12. Chicken genome mapping - Constructing part of a road map for mining this bird's DNA

    NARCIS (Netherlands)

    Aerts, J.

    2005-01-01

    The aim of the research presented in this thesis was to aid in the international chicken genome mapping effort. To this purpose, a significant contribution was made to the construction of the chicken whole-genome BAC-based physical map (presented in Chapter A). An important aspect of this constructi

  13. County digital geologic mapping. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-12-31

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included.

  14. Association Mapping and the Genomic Consequences of Selection in Sunflower

    OpenAIRE

    Mandel, Jennifer R.; Savithri Nambeesan; Bowers, John E; Laura F Marek; Daniel Ebert; Loren H. Rieseberg; Knapp, Steven J.; Burke, John M.

    2013-01-01

    The combination of large-scale population genomic analyses and trait-based mapping approaches has the potential to provide novel insights into the evolutionary history and genome organization of crop plants. Here, we describe the detailed genotypic and phenotypic analysis of a sunflower (Helianthus annuus L.) association mapping population that captures nearly 90% of the allelic diversity present within the cultivated sunflower germplasm collection. We used these data to characterize overall ...

  15. GLAMM: Genome-Linked Application for Metabolic Maps

    Energy Technology Data Exchange (ETDEWEB)

    Bates, John; Chivian, Dylan; Arkin, Adam

    2011-05-29

    The Genome-Linked Application for Metabolic Maps (GLAMM) is a unified web interface for visualizing metabolic networks, reconstructing metabolic networks from annotated genome data, visualizing experimental data in the context of metabolic networks, and investigating the construction of novel, transgenic pathways. This simple, user-friendly interface is tightly integrated with the comparative genomics tools of MicrobesOnline. GLAMM is available for free to the scientific community at glamm.lbl.gov.

  16. GLAMM: Genome-Linked Application for Metabolic Maps

    Energy Technology Data Exchange (ETDEWEB)

    Bates, John; Chivian, Dylan; Arkin, Adam

    2011-05-29

    The Genome-Linked Application for Metabolic Maps (GLAMM) is a unified web interface for visualizing metabolic networks, reconstructing metabolic networks from annotated genome data, visualizing experimental data in the context of metabolic networks, and investigating the construction of novel, transgenic pathways. This simple, user-friendly interface is tightly integrated with the comparative genomics tools of MicrobesOnline. GLAMM is available for free to the scientific community at glamm.lbl.gov.

  17. The Physical Genome Mapping of Anopheles albimanus Corrected Scaffold Misassemblies and Identified Interarm Rearrangements in Genus Anopheles

    Directory of Open Access Journals (Sweden)

    Gleb N. Artemov

    2017-01-01

    Full Text Available The genome of the Neotropical malaria vector Anopheles albimanus was sequenced as part of the 16 Anopheles Genomes Project published in 2015. The draft assembly of this species consisted of 204 scaffolds with an N50 scaffold size of 18.1 Mb and a total assembly size of 170.5 Mb. It was among the smallest genomes with the longest scaffolds in the 16 Anopheles species cluster, making An. albimanus the logical choice for anchoring the genome assembly to chromosomes. In this study, we developed a high-resolution cytogenetic photomap with completely straightened polytene chromosomes from the salivary glands of the mosquito larvae. Based on this photomap, we constructed a chromosome-based genome assembly using fluorescent in situ hybridization of PCR-amplified DNA probes. Our physical mapping, assisted by an ortholog-based bioinformatics approach, identified and corrected nine misassemblies in five large genomic scaffolds. Misassemblies mostly occurred in junctions between contigs. Our comparative analysis of scaffolds with the An. gambiae genome detected multiple genetic exchanges between pericentromeric regions of chromosomal arms caused by partial-arm translocations. The final map consists of 40 ordered genomic scaffolds and corrected fragments of misassembled scaffolds. The An. albimanus physical map comprises 98.2% of the total genome assembly and represents the most complete genome map among mosquito species. This study demonstrates that physical mapping is a powerful tool for correcting errors in draft genome assemblies and for creating chromosome-anchored reference genomes.

  18. Host susceptibility to periodontitis: mapping murine genomic regions.

    Science.gov (United States)

    Shusterman, A; Durrant, C; Mott, R; Polak, D; Schaefer, A; Weiss, E I; Iraqi, F A; Houri-Haddad, Y

    2013-05-01

    Host susceptibility to periodontal infection is controlled by genetic factors. As a step toward identifying and cloning these factors, we generated an A/J x BALB/cJ F2 mouse resource population. A genome-wide search for Quantitative Trait Loci (QTL) associated with periodontitis was performed. We aimed to quantify the phenotypic response of the progenies to periodontitis by microCT analysis, to perform a genome-wide search for QTL associated with periodontitis, and, finally, to suggest candidate genes for periodontitis. We were able to produce 408 F2 mice. All mice were co-infected with Porphyromonas gingivalis and Fusobacterium nucleatum bacteria. Six weeks following infection, alveolar bone loss was quantified by computerized tomography (microCT) technology. We found normal distribution of the phenotype, with 2 highly significant QTL on chromosomes 5 and 3. A third significant QTL was found on chromosome 1. Candidate genes were suggested, such as Toll-like receptors (TLR) 1 and 6, chemokines, and bone-remodeling genes (enamelin, ameloblastin, and amelotin). This report shows that periodontitis in mice is a polygenic trait with highly significant mapped QTL.

  19. A map of recent positive selection in the human genome.

    Directory of Open Access Journals (Sweden)

    Benjamin F Voight

    2006-03-01

    Full Text Available The identification of signals of very recent positive selection provides information about the adaptation of modern humans to local conditions. We report here on a genome-wide scan for signals of very recent positive selection in favor of variants that have not yet reached fixation. We describe a new analytical method for scanning single nucleotide polymorphism (SNP data for signals of recent selection, and apply this to data from the International HapMap Project. In all three continental groups we find widespread signals of recent positive selection. Most signals are region-specific, though a significant excess are shared across groups. Contrary to some earlier low resolution studies that suggested a paucity of recent selection in sub-Saharan Africans, we find that by some measures our strongest signals of selection are from the Yoruba population. Finally, since these signals indicate the existence of genetic variants that have substantially different fitnesses, they must indicate loci that are the source of significant phenotypic variation. Though the relevant phenotypes are generally not known, such loci should be of particular interest in mapping studies of complex traits. For this purpose we have developed a set of SNPs that can be used to tag the strongest approximately 250 signals of recent selection in each population.

  20. DNA Break Mapping Reveals Topoisomerase II Activity Genome-Wide

    Directory of Open Access Journals (Sweden)

    Laura Baranello

    2014-07-01

    Full Text Available Genomic DNA is under constant assault by endogenous and exogenous DNA damaging agents. DNA breakage can represent a major threat to genome integrity but can also be necessary for genome function. Here we present approaches to map DNA double-strand breaks (DSBs and single-strand breaks (SSBs at the genome-wide scale by two methods called DSB- and SSB-Seq, respectively. We tested these methods in human colon cancer cells and validated the results using the Topoisomerase II (Top2-poisoning agent etoposide (ETO. Our results show that the combination of ETO treatment with break-mapping techniques is a powerful method to elaborate the pattern of Top2 enzymatic activity across the genome.

  1. Rice-Map: a new-generation rice genome browser

    Directory of Open Access Journals (Sweden)

    Luo Jingchu

    2011-03-01

    Full Text Available Abstract Background The concurrent release of rice genome sequences for two subspecies (Oryza sativa L. ssp. japonica and Oryza sativa L. ssp. indica facilitates rice studies at the whole genome level. Since the advent of high-throughput analysis, huge amounts of functional genomics data have been delivered rapidly, making an integrated online genome browser indispensable for scientists to visualize and analyze these data. Based on next-generation web technologies and high-throughput experimental data, we have developed Rice-Map, a novel genome browser for researchers to navigate, analyze and annotate rice genome interactively. Description More than one hundred annotation tracks (81 for japonica and 82 for indica have been compiled and loaded into Rice-Map. These pre-computed annotations cover gene models, transcript evidences, expression profiling, epigenetic modifications, inter-species and intra-species homologies, genetic markers and other genomic features. In addition to these pre-computed tracks, registered users can interactively add comments and research notes to Rice-Map as User-Defined Annotation entries. By smoothly scrolling, dragging and zooming, users can browse various genomic features simultaneously at multiple scales. On-the-fly analysis for selected entries could be performed through dedicated bioinformatic analysis platforms such as WebLab and Galaxy. Furthermore, a BioMart-powered data warehouse "Rice Mart" is offered for advanced users to fetch bulk datasets based on complex criteria. Conclusions Rice-Map delivers abundant up-to-date japonica and indica annotations, providing a valuable resource for both computational and bench biologists. Rice-Map is publicly accessible at http://www.ricemap.org/, with all data available for free downloading.

  2. An integrated genetic and cytogenetic map of the cucumber genome.

    Directory of Open Access Journals (Sweden)

    Yi Ren

    Full Text Available The Cucurbitaceae includes important crops such as cucumber, melon, watermelon, squash and pumpkin. However, few genetic and genomic resources are available for plant improvement. Some cucurbit species such as cucumber have a narrow genetic base, which impedes construction of saturated molecular linkage maps. We report herein the development of highly polymorphic simple sequence repeat (SSR markers originated from whole genome shotgun sequencing and the subsequent construction of a high-density genetic linkage map. This map includes 995 SSRs in seven linkage groups which spans in total 573 cM, and defines approximately 680 recombination breakpoints with an average of 0.58 cM between two markers. These linkage groups were then assigned to seven corresponding chromosomes using fluorescent in situ hybridization (FISH. FISH assays also revealed a chromosomal inversion between Cucumis subspecies [C. sativus var. sativus L. and var. hardwickii (R. Alef], which resulted in marker clustering on the genetic map. A quarter of the mapped markers showed relatively high polymorphism levels among 11 inbred lines of cucumber. Among the 995 markers, 49%, 26% and 22% were conserved in melon, watermelon and pumpkin, respectively. This map will facilitate whole genome sequencing, positional cloning, and molecular breeding in cucumber, and enable the integration of knowledge of gene and trait in cucurbits.

  3. Super-Resolution Genome Mapping in Silicon Nanochannels.

    Science.gov (United States)

    Jeffet, Jonathan; Kobo, Asaf; Su, Tianxiang; Grunwald, Assaf; Green, Ori; Nilsson, Adam N; Eisenberg, Eli; Ambjörnsson, Tobias; Westerlund, Fredrik; Weinhold, Elmar; Shabat, Doron; Purohit, Prashant K; Ebenstein, Yuval

    2016-11-22

    Optical genome mapping in nanochannels is a powerful genetic analysis method, complementary to deoxyribonucleic acid (DNA) sequencing. The method is based on detecting a pattern of fluorescent labels attached along individual DNA molecules. When such molecules are extended in nanochannels, the labels create a fluorescent genetic barcode that is used for mapping the DNA molecule to its genomic locus and identifying large-scale variation from the genome reference. Mapping resolution is currently limited by two main factors: the optical diffraction limit and the thermal fluctuations of DNA molecules suspended in the nanochannels. Here, we utilize single-molecule tracking and super-resolution localization in order to improve the mapping accuracy and resolving power of this genome mapping technique and achieve a 15-fold increase in resolving power compared to currently practiced methods. We took advantage of a naturally occurring genetic repeat array and labeled each repeat with custom-designed Trolox conjugated fluorophores for enhanced photostability. This model system allowed us to acquire extremely long image sequences of the equally spaced fluorescent markers along DNA molecules, enabling detailed characterization of nanoconfined DNA dynamics and quantitative comparison to the Odijk theory for confined polymer chains. We present a simple method to overcome the thermal fluctuations in the nanochannels and exploit single-step photobleaching to resolve subdiffraction spaced fluorescent markers along fluctuating DNA molecules with ∼100 bp resolution. In addition, we show how time-averaging over just ∼50 frames of 40 ms enhances mapping accuracy, improves mapping P-value scores by 3 orders of magnitude compared to nonaveraged alignment, and provides a significant advantage for analyzing structural variations between DNA molecules with similar sequence composition.

  4. A BAC-based physical map of the Drosophila buzzatii genome

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Josefa; Nefedov, Michael; Bosdet, Ian; Casals, Ferran; Calvete, Oriol; Delprat, Alejandra; Shin, Heesun; Chiu, Readman; Mathewson, Carrie; Wye, Natasja; Hoskins, Roger A.; Schein, JacquelineE.; de Jong, Pieter; Ruiz, Alfredo

    2005-03-18

    Large-insert genomic libraries facilitate cloning of large genomic regions, allow the construction of clone-based physical maps and provide useful resources for sequencing entire genomes. Drosophilabuzzatii is a representative species of the repleta group in the Drosophila subgenus, which is being widely used as a model in studies of genome evolution, ecological adaptation and speciation. We constructed a Bacterial Artificial Chromosome (BAC) genomic library of D. buzzatii using the shuttle vector pTARBAC2.1. The library comprises 18,353 clones with an average insert size of 152 kb and a {approx}18X expected representation of the D. buzzatii euchromatic genome. We screened the entire library with six euchromatic gene probes and estimated the actual genome representation to be {approx}23X. In addition, we fingerprinted by restriction digestion and agarose gel electrophoresis a sample of 9,555 clones, and assembled them using Finger Printed Contigs (FPC) software and manual editing into 345 contigs (mean of 26 clones per contig) and 670singletons. Finally, we anchored 181 large contigs (containing 7,788clones) to the D. buzzatii salivary gland polytene chromosomes by in situ hybridization of 427 representative clones. The BAC library and a database with all the information regarding the high coverage BAC-based physical map described in this paper are available to the research community.

  5. Mapping copy number variation by population-scale genome sequencing

    DEFF Research Database (Denmark)

    Mills, Ryan E.; Walter, Klaudia; Stewart, Chip;

    2011-01-01

    Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, ...

  6. Genome-wide mapping of DNA strand breaks.

    Directory of Open Access Journals (Sweden)

    Frédéric Leduc

    Full Text Available Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP, uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  7. Constructing a Cytogenetic Map of the Maize Genome

    Science.gov (United States)

    We are developing a pachytene cytogenetic FISH (Fluorescence in situ Hybridization) map of the maize (Zea mays L.) genome using maize marker-selected sorghum BACs (Bacterial Artificial Chromosome) as described by Koumbaris and Bass (2003, Plant J. 35:647). The two main projects are the production of...

  8. A genetic linkage map and comparative mapping of the prairie vole (Microtus ochrogaster genome

    Directory of Open Access Journals (Sweden)

    Young Larry J

    2011-07-01

    Full Text Available Abstract Background The prairie vole (Microtus ochrogaster is an emerging rodent model for investigating the genetics, evolution and molecular mechanisms of social behavior. Though a karyotype for the prairie vole has been reported and low-resolution comparative cytogenetic analyses have been done in this species, other basic genetic resources for this species, such as a genetic linkage map, are lacking. Results Here we report the construction of a genome-wide linkage map of the prairie vole. The linkage map consists of 406 markers that are spaced on average every 7 Mb and span an estimated ~90% of the genome. The sex average length of the linkage map is 1707 cM, which, like other Muroid rodent linkage maps, is on the lower end of the length distribution of linkage maps reported to date for placental mammals. Linkage groups were assigned to 19 out of the 26 prairie vole autosomes as well as the X chromosome. Comparative analyses of the prairie vole linkage map based on the location of 387 Type I markers identified 61 large blocks of synteny with the mouse genome. In addition, the results of the comparative analyses revealed a potential elevated rate of inversions in the prairie vole lineage compared to the laboratory mouse and rat. Conclusions A genetic linkage map of the prairie vole has been constructed and represents the fourth genome-wide high-resolution linkage map reported for Muroid rodents and the first for a member of the Arvicolinae sub-family. This resource will advance studies designed to dissect the genetic basis of a variety of social behaviors and other traits in the prairie vole as well as our understanding of genome evolution in the genus Microtus.

  9. High-resolution genome-wide mapping of histone modifications.

    Science.gov (United States)

    Roh, Tae-young; Ngau, Wing Chi; Cui, Kairong; Landsman, David; Zhao, Keji

    2004-08-01

    The expression patterns of eukaryotic genomes are controlled by their chromatin structure, consisting of nucleosome subunits in which DNA of approximately 146 bp is wrapped around a core of 8 histone molecules. Post-translational histone modifications play an essential role in modifying chromatin structure. Here we apply a combination of SAGE and chromatin immunoprecipitation (ChIP) protocols to determine the distribution of hyperacetylated histones H3 and H4 in the Saccharomyces cerevisiae genome. We call this approach genome-wide mapping technique (GMAT). Using GMAT, we find that the highest acetylation levels are detected in the 5' end of a gene's coding region, but not in the promoter. Furthermore, we show that the histone acetyltransferase, GCN5p, regulates H3 acetylation in the promoter and 5' end of the coding regions. These findings indicate that GMAT should find valuable applications in mapping target sites of chromatin-modifying enzymes.

  10. A Cis-Regulatory Map of the Drosophila Genome

    Science.gov (United States)

    Nègre, Nicolas; Brown, Christopher D.; Ma, Lijia; Bristow, Christopher Aaron; Miller, Steven W.; Wagner, Ulrich; Kheradpour, Pouya; Eaton, Matthew L.; Loriaux, Paul; Sealfon, Rachel; Li, Zirong; Ishii, Haruhiko; Spokony, Rebecca F.; Chen, Jia; Hwang, Lindsay; Cheng, Chao; Auburn, Richard P.; Davis, Melissa B.; Domanus, Marc; Shah, Parantu K.; Morrison, Carolyn A.; Zieba, Jennifer; Suchy, Sarah; Senderowicz, Lionel; Victorsen, Alec; Bild, Nicholas A.; Grundstad, A. Jason; Hanley, David; MacAlpine, David M.; Mannervik, Mattias; Venken, Koen; Bellen, Hugo; White, Robert; Russell, Steven; Grossman, Robert L.; Ren, Bing; Gerstein, Mark; Posakony, James W.; Kellis, Manolis; White, Kevin P.

    2011-01-01

    Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide 1,2 has successfully identified specific subtypes of regulatory elements 3. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb-Response Elements 4, chromatin states 5, transcription factor binding sites (TFBS) 6–9, PolII regulation 8, and insulator elements 10; however, comprehensive annotation of the regulatory genome remains a significant challenge. Here we describe results from the modENCODE cis-regulatory annotation project. We produced a map of the Drosophila melanogaster regulatory genome based on more than 300 chromatin immuno-precipitation (ChIP) datasets for eight chromatin features, five histone deacetylases (HDACs) and thirty-eight site-specific transcription factors (TFs) at different stages of development. Using these data we inferred more than 20,000 candidate regulatory elements and we validated a subset of predictions for promoters, enhancers, and insulators in vivo. We also identified nearly 2,000 genomic regions of dense TF binding associated with chromatin activity and accessibility. We discovered hundreds of new TF co-binding relationships and defined a TF network with over 800 potential regulatory relationships. PMID:21430782

  11. Simple sequence repeat map of the sunflower genome.

    Science.gov (United States)

    Tang, S.; Yu, J.-K.; Slabaugh, B.; Shintani, K.; Knapp, J.

    2002-12-01

    Several independent molecular genetic linkage maps of varying density and completeness have been constructed for cultivated sunflower ( Helianthus annuus L.). Because of the dearth of sequence and probe-specific DNA markers in the public domain, the various genetic maps of sunflower have not been integrated and a single reference map has not emerged. Moreover, comparisons between maps have been confounded by multiple linkage group nomenclatures and the lack of common DNA markers. The goal of the present research was to construct a dense molecular genetic linkage map for sunflower using simple sequence repeat (SSR) markers. First, 879 SSR markers were developed by identifying 1,093 unique SSR sequences in the DNA sequences of 2,033 clones isolated from genomic DNA libraries enriched for (AC)(n) or (AG)(n) and screening 1,000 SSR primer pairs; 579 of the newly developed SSR markers (65.9% of the total) were polymorphic among four elite inbred lines (RHA280, RHA801, PHA and PHB). The genetic map was constructed using 94 RHA280 x RHA801 F(7) recombinant inbred lines (RILs) and 408 polymorphic SSR markers (462 SSR marker loci segregated in the mapping population). Of the latter, 459 coalesced into 17 linkage groups presumably corresponding to the 17 chromosomes in the haploid sunflower genome ( x = 17). The map was 1,368.3-cM long and had a mean density of 3.1 cM per locus. The SSR markers described herein supply a critical mass of DNA markers for constructing genetic maps of sunflower and create the basis for unifying and cross-referencing the multitude of genetic maps developed for wild and cultivated sunflowers.

  12. Genome physical mapping of polyploids: a BIBAC physical map of cultivated tetraploid cotton, Gossypium hirsutum L.

    Science.gov (United States)

    Zhang, Meiping; Zhang, Yang; Huang, James J; Zhang, Xiaojun; Lee, Mi-Kyung; Stelly, David M; Zhang, Hong-Bin

    2012-01-01

    Polyploids account for approximately 70% of flowering plants, including many field, horticulture and forage crops. Cottons are a world-leading fiber and important oilseed crop, and a model species for study of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. This study has addressed the concerns of physical mapping of polyploids with BACs and/or BIBACs by constructing a physical map of the tetraploid cotton, Gossypium hirsutum L. The physical map consists of 3,450 BIBAC contigs with an N50 contig size of 863 kb, collectively spanning 2,244 Mb. We sorted the map contigs according to their origin of subgenome, showing that we assembled physical maps for the A- and D-subgenomes of the tetraploid cotton, separately. We also identified the BIBACs in the map minimal tilling path, which consists of 15,277 clones. Moreover, we have marked the physical map with nearly 10,000 BIBAC ends (BESs), making one BES in approximately 250 kb. This physical map provides a line of evidence and a strategy for physical mapping of polyploids, and a platform for advanced research of the tetraploid cotton genome, particularly fine mapping and cloning the cotton agronomic genes and QTLs, and sequencing and assembling the cotton genome using the modern next-generation sequencing technology.

  13. Physical mapping in highly heterozygous genomes: a physical contig map of the Pinot Noir grapevine cultivar

    Directory of Open Access Journals (Sweden)

    Jurman Irena

    2010-03-01

    Full Text Available Abstract Background Most of the grapevine (Vitis vinifera L. cultivars grown today are those selected centuries ago, even though grapevine is one of the most important fruit crops in the world. Grapevine has therefore not benefited from the advances in modern plant breeding nor more recently from those in molecular genetics and genomics: genes controlling important agronomic traits are practically unknown. A physical map is essential to positionally clone such genes and instrumental in a genome sequencing project. Results We report on the first whole genome physical map of grapevine built using high information content fingerprinting of 49,104 BAC clones from the cultivar Pinot Noir. Pinot Noir, as most grape varieties, is highly heterozygous at the sequence level. This resulted in the two allelic haplotypes sometimes assembling into separate contigs that had to be accommodated in the map framework or in local expansions of contig maps. We performed computer simulations to assess the effects of increasing levels of sequence heterozygosity on BAC fingerprint assembly and showed that the experimental assembly results are in full agreement with the theoretical expectations, given the heterozygosity levels reported for grape. The map is anchored to a dense linkage map consisting of 994 markers. 436 contigs are anchored to the genetic map, covering 342 of the 475 Mb that make up the grape haploid genome. Conclusions We have developed a resource that makes it possible to access the grapevine genome, opening the way to a new era both in grape genetics and breeding and in wine making. The effects of heterozygosity on the assembly have been analyzed and characterized by using several complementary approaches which could be easily transferred to the study of other genomes which present the same features.

  14. Comparative Whole-Genome Mapping To Determine Staphylococcus aureus Genome Size, Virulence Motifs, and Clonality

    Science.gov (United States)

    Pantrang, Madhulatha; Stahl, Buffy; Briska, Adam M.; Stemper, Mary E.; Wagner, Trevor K.; Zentz, Emily B.; Callister, Steven M.; Lovrich, Steven D.; Henkhaus, John K.; Dykes, Colin W.

    2012-01-01

    Despite being a clonal pathogen, Staphylococcus aureus continues to acquire virulence and antibiotic-resistant genes located on mobile genetic elements such as genomic islands, prophages, pathogenicity islands, and the staphylococcal chromosomal cassette mec (SCCmec) by horizontal gene transfer from other staphylococci. The potential virulence of a S. aureus strain is often determined by comparing its pulsed-field gel electrophoresis (PFGE) or multilocus sequence typing profiles to that of known epidemic or virulent clones and by PCR of the toxin genes. Whole-genome mapping (formerly optical mapping), which is a high-resolution ordered restriction mapping of a bacterial genome, is a relatively new genomic tool that allows comparative analysis across entire bacterial genomes to identify regions of genomic similarities and dissimilarities, including small and large insertions and deletions. We explored whether whole-genome maps (WGMs) of methicillin-resistant S. aureus (MRSA) could be used to predict the presence of methicillin resistance, SCCmec type, and Panton-Valentine leukocidin (PVL)-producing genes on an S. aureus genome. We determined the WGMs of 47 diverse clinical isolates of S. aureus, including well-characterized reference MRSA strains, and annotated the signature restriction pattern in SCCmec types, arginine catabolic mobile element (ACME), and PVL-carrying prophage, PhiSa2 or PhiSa2-like regions on the genome. WGMs of these isolates accurately characterized them as MRSA or methicillin-sensitive S. aureus based on the presence or absence of the SCCmec motif, ACME and the unique signature pattern for the prophage insertion that harbored the PVL genes. Susceptibility to methicillin resistance and the presence of mecA, SCCmec types, and PVL genes were confirmed by PCR. A WGM clustering approach was further able to discriminate isolates within the same PFGE clonal group. These results showed that WGMs could be used not only to genotype S. aureus but also to

  15. Complex multi-enhancer contacts captured by genome architecture mapping.

    Science.gov (United States)

    Beagrie, Robert A; Scialdone, Antonio; Schueler, Markus; Kraemer, Dorothee C A; Chotalia, Mita; Xie, Sheila Q; Barbieri, Mariano; de Santiago, Inês; Lavitas, Liron-Mark; Branco, Miguel R; Fraser, James; Dostie, Josée; Game, Laurence; Dillon, Niall; Edwards, Paul A W; Nicodemi, Mario; Pombo, Ana

    2017-03-23

    The organization of the genome in the nucleus and the interactions of genes with their regulatory elements are key features of transcriptional control and their disruption can cause disease. Here we report a genome-wide method, genome architecture mapping (GAM), for measuring chromatin contacts and other features of three-dimensional chromatin topology on the basis of sequencing DNA from a large collection of thin nuclear sections. We apply GAM to mouse embryonic stem cells and identify enrichment for specific interactions between active genes and enhancers across very large genomic distances using a mathematical model termed SLICE (statistical inference of co-segregation). GAM also reveals an abundance of three-way contacts across the genome, especially between regions that are highly transcribed or contain super-enhancers, providing a level of insight into genome architecture that, owing to the technical limitations of current technologies, has previously remained unattainable. Furthermore, GAM highlights a role for gene-expression-specific contacts in organizing the genome in mammalian nuclei.

  16. Genetic mapping and genomic selection using recombination breakpoint data.

    Science.gov (United States)

    Xu, Shizhong

    2013-11-01

    The correct models for quantitative trait locus mapping are the ones that simultaneously include all significant genetic effects. Such models are difficult to handle for high marker density. Improving statistical methods for high-dimensional data appears to have reached a plateau. Alternative approaches must be explored to break the bottleneck of genomic data analysis. The fact that all markers are located in a few chromosomes of the genome leads to linkage disequilibrium among markers. This suggests that dimension reduction can also be achieved through data manipulation. High-density markers are used to infer recombination breakpoints, which then facilitate construction of bins. The bins are treated as new synthetic markers. The number of bins is always a manageable number, on the order of a few thousand. Using the bin data of a recombinant inbred line population of rice, we demonstrated genetic mapping, using all bins in a simultaneous manner. To facilitate genomic selection, we developed a method to create user-defined (artificial) bins, in which breakpoints are allowed within bins. Using eight traits of rice, we showed that artificial bin data analysis often improves the predictability compared with natural bin data analysis. Of the eight traits, three showed high predictability, two had intermediate predictability, and two had low predictability. A binary trait with a known gene had predictability near perfect. Genetic mapping using bin data points to a new direction of genomic data analysis.

  17. Association mapping and the genomic consequences of selection in sunflower.

    Directory of Open Access Journals (Sweden)

    Jennifer R Mandel

    2013-03-01

    Full Text Available The combination of large-scale population genomic analyses and trait-based mapping approaches has the potential to provide novel insights into the evolutionary history and genome organization of crop plants. Here, we describe the detailed genotypic and phenotypic analysis of a sunflower (Helianthus annuus L. association mapping population that captures nearly 90% of the allelic diversity present within the cultivated sunflower germplasm collection. We used these data to characterize overall patterns of genomic diversity and to perform association analyses on plant architecture (i.e., branching and flowering time, successfully identifying numerous associations underlying these agronomically and evolutionarily important traits. Overall, we found variable levels of linkage disequilibrium (LD across the genome. In general, islands of elevated LD correspond to genomic regions underlying traits that are known to have been targeted by selection during the evolution of cultivated sunflower. In many cases, these regions also showed significantly elevated levels of differentiation between the two major sunflower breeding groups, consistent with the occurrence of divergence due to strong selection. One of these regions, which harbors a major branching locus, spans a surprisingly long genetic interval (ca. 25 cM, indicating the occurrence of an extended selective sweep in an otherwise recombinogenic interval.

  18. Association mapping and the genomic consequences of selection in sunflower.

    Science.gov (United States)

    Mandel, Jennifer R; Nambeesan, Savithri; Bowers, John E; Marek, Laura F; Ebert, Daniel; Rieseberg, Loren H; Knapp, Steven J; Burke, John M

    2013-03-01

    The combination of large-scale population genomic analyses and trait-based mapping approaches has the potential to provide novel insights into the evolutionary history and genome organization of crop plants. Here, we describe the detailed genotypic and phenotypic analysis of a sunflower (Helianthus annuus L.) association mapping population that captures nearly 90% of the allelic diversity present within the cultivated sunflower germplasm collection. We used these data to characterize overall patterns of genomic diversity and to perform association analyses on plant architecture (i.e., branching) and flowering time, successfully identifying numerous associations underlying these agronomically and evolutionarily important traits. Overall, we found variable levels of linkage disequilibrium (LD) across the genome. In general, islands of elevated LD correspond to genomic regions underlying traits that are known to have been targeted by selection during the evolution of cultivated sunflower. In many cases, these regions also showed significantly elevated levels of differentiation between the two major sunflower breeding groups, consistent with the occurrence of divergence due to strong selection. One of these regions, which harbors a major branching locus, spans a surprisingly long genetic interval (ca. 25 cM), indicating the occurrence of an extended selective sweep in an otherwise recombinogenic interval.

  19. An improved probability mapping approach to assess genome mosaicism

    Directory of Open Access Journals (Sweden)

    Gogarten J Peter

    2003-09-01

    Full Text Available Abstract Background Maximum likelihood and posterior probability mapping are useful visualization techniques that are used to ascertain the mosaic nature of prokaryotic genomes. However, posterior probabilities, especially when calculated for four-taxon cases, tend to overestimate the support for tree topologies. Furthermore, because of poor taxon sampling four-taxon analyses suffer from sensitivity to the long branch attraction artifact. Here we extend the probability mapping approach by improving taxon sampling of the analyzed datasets, and by using bootstrap support values, a more conservative tool to assess reliability. Results Quartets of orthologous proteins were complemented with homologs from selected reference genomes. The mapping of bootstrap support values from these extended datasets gives results similar to the original maximum likelihood and posterior probability mapping. The more conservative nature of the plotted support values allows to focus further analyses on those protein families that strongly disagree with the majority or plurality of genes present in the analyzed genomes. Conclusion Posterior probability is a non-conservative measure for support, and posterior probability mapping only provides a quick estimation of phylogenetic information content of four genomes. This approach can be utilized as a pre-screen to select genes that might have been horizontally transferred. Better taxon sampling combined with subtree analyses prevents the inconsistencies associated with four-taxon analyses, but retains the power of visual representation. Nevertheless, a case-by-case inspection of individual multi-taxon phylogenies remains necessary to differentiate unrecognized paralogy and shared phylogenetic reconstruction artifacts from horizontal gene transfer events.

  20. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan;

    2014-01-01

    than 1 kb. Excluding the 59 SVs (54 insertions/deletions, 5 inversions) that overlap with N-base gaps in the reference assembly hg19, 666 non-gap SVs remained, and 396 of them (60%) were verified by paired-end data from whole-genome sequencing-based re-sequencing or de novo assembly sequence from...... fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides...

  1. The human genome: Some assembly required. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Human Genome Project promises to be one of the most rewarding endeavors in modern biology. The cost and the ethical and social implications, however, have made this project the source of considerable debate both in the scientific community and in the public at large. The 1994 Graduate Student Symposium addresses the scientific merits of the project, the technical issues involved in accomplishing the task, as well as the medical and social issues which stem from the wealth of knowledge which the Human Genome Project will help create. To this end, speakers were brought together who represent the diverse areas of expertise characteristic of this multidisciplinary project. The keynote speaker addresses the project`s motivations and goals in the larger context of biological and medical sciences. The first two sessions address relevant technical issues, data collection with a focus on high-throughput sequencing methods and data analysis with an emphasis on identification of coding sequences. The third session explores recent advances in the understanding of genetic diseases and possible routes to treatment. Finally, the last session addresses some of the ethical, social and legal issues which will undoubtedly arise from having a detailed knowledge of the human genome.

  2. Genome-wide profiling of structural genomic variations in Korean HapMap individuals.

    Directory of Open Access Journals (Sweden)

    Joon Seol Bae

    Full Text Available BACKGROUND: Structural genomic variation study, along with microarray technology development has provided many genomic resources related with architecture of human genome, and led to the fact that human genome structure is a lot more complicated than previously thought. METHODOLOGY/PRINCIPAL FINDINGS: In the case of International HapMap Project, Epstein-Barr various immortalized cell lines were preferably used over blood in order to get a larger number of genomic DNA. However, genomic aberration stemming from immortalization process, biased representation of the donor tissue, and culture process may influence the accuracy of SNP genotypes. In order to identify chromosome aberrations including loss of heterozygosity (LOH, large-scale and small-scale copy number variations, we used Illumina HumanHap500 BeadChip (555,352 markers on Korean HapMap individuals (n = 90 to obtain Log R ratio and B allele frequency information, and then utilized the data with various programs including Illumina ChromoZone, cnvParition and PennCNV. As a result, we identified 28 LOHs (>3 mb and 35 large-scale CNVs (>1 mb, with 4 samples having completely duplicated chromosome. In addition, after checking the sample quality (standard deviation of log R ratio <0.30, we selected 79 samples and used both signal intensity and B allele frequency simultaneously for identification of small-scale CNVs (<1 mb to discover 4,989 small-scale CNVs. Identified CNVs in this study were successfully validated using visual examination of the genoplot images, overlapping analysis with previously reported CNVs in DGV, and quantitative PCR. CONCLUSION/SIGNIFICANCE: In this study, we describe the result of the identified chromosome aberrations in Korean HapMap individuals, and expect that these findings will provide more meaningful information on the human genome.

  3. Genome-wide mapping of DNA methylation in chicken.

    Directory of Open Access Journals (Sweden)

    Qinghe Li

    Full Text Available Cytosine DNA methylation is an important epigenetic modification termed as the fifth base that functions in diverse processes. Till now, the genome-wide DNA methylation maps of many organisms has been reported, such as human, Arabidopsis, rice and silkworm, but the methylation pattern of bird remains rarely studied. Here we show the genome-wide DNA methylation map of bird, using the chicken as a model organism and an immunocapturing approach followed by high-throughput sequencing. In both of the red jungle fowl and the avian broiler, DNA methylation was described separately for the liver and muscle tissue. Generally, chicken displays analogous methylation pattern with that of animals and plants. DNA methylation is enriched in the gene body regions and the repetitive sequences, and depleted in the transcription start site (TSS and the transcription termination site (TTS. Most of the CpG islands in the chicken genome are kept in unmethylated state. Promoter methylation is negatively correlated with the gene expression level, indicating its suppressive role in regulating gene transcription. This work contributes to our understanding of epigenetics in birds.

  4. Mapping-by-sequencing in complex polyploid genomes using genic sequence capture: a case study to map yellow rust resistance in hexaploid wheat.

    Science.gov (United States)

    Gardiner, Laura-Jayne; Bansept-Basler, Pauline; Olohan, Lisa; Joynson, Ryan; Brenchley, Rachel; Hall, Neil; O'Sullivan, Donal M; Hall, Anthony

    2016-08-01

    Previously we extended the utility of mapping-by-sequencing by combining it with sequence capture and mapping sequence data to pseudo-chromosomes that were organized using wheat-Brachypodium synteny. This, with a bespoke haplotyping algorithm, enabled us to map the flowering time locus in the diploid wheat Triticum monococcum L. identifying a set of deleted genes (Gardiner et al., 2014). Here, we develop this combination of gene enrichment and sliding window mapping-by-synteny analysis to map the Yr6 locus for yellow stripe rust resistance in hexaploid wheat. A 110 MB NimbleGen capture probe set was used to enrich and sequence a doubled haploid mapping population of hexaploid wheat derived from an Avalon and Cadenza cross. The Yr6 locus was identified by mapping to the POPSEQ chromosomal pseudomolecules using a bespoke pipeline and algorithm (Chapman et al., 2015). Furthermore the same locus was identified using newly developed pseudo-chromosome sequences as a mapping reference that are based on the genic sequence used for sequence enrichment. The pseudo-chromosomes allow us to demonstrate the application of mapping-by-sequencing to even poorly defined polyploidy genomes where chromosomes are incomplete and sub-genome assemblies are collapsed. This analysis uniquely enabled us to: compare wheat genome annotations; identify the Yr6 locus - defining a smaller genic region than was previously possible; associate the interval with one wheat sub-genome and increase the density of SNP markers associated. Finally, we built the pipeline in iPlant, making it a user-friendly community resource for phenotype mapping.

  5. [Human genomic project and human genomic haplotype map project: opportunitiy, challenge and strategy in stomatology].

    Science.gov (United States)

    Wu, Rui-qing; Zeng, Xin; Wang, Zhi

    2010-08-01

    The human genomic project and the international HapMap project were designed to create a genome-wide database of patterns of human genetic variation, with the expectation that these patterns would be useful for genetic association studies of common diseases, thus lead to molecular diagnosis and personnel therapy. The article briefly reviewed the creation, target and achievement of those two projects. Furthermore, the authors have given four suggestions in facing to the opportunities and challenges brought by the two projects, including cultivation improvement of elites, cross binding of multi-subjects, strengthening construction of research base and initiation of natural key scientific project.

  6. QTL map meets population genomics: an application to rice.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Fawcett

    Full Text Available Genes involved in the transition from wild to cultivated crop species should be of great agronomic importance. Population genomic approaches utilizing genome resequencing data have been recently applied for this purpose, although it only reports a large list of candidate genes with no biological information. Here, by resequencing more than 30 genomes altogether of wild rice Oryza rufipogon and cultivated rice O. sativa, we identified a number of regions with clear footprints of selection during the domestication process. We then focused on identifying candidate domestication genes in these regions by utilizing the wealth of QTL information in rice. We were able to identify a number of interesting candidates such as transcription factors that should control key domestication traits such as shattering, awn length, and seed dormancy. Other candidates include those that might have been related to the improvement of grain quality and those that might have been involved in the local adaptation to dry conditions and colder environments. Our study shows that population genomic approaches and QTL mapping information can be used together to identify genes that might be of agronomic importance.

  7. Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly

    DEFF Research Database (Denmark)

    Li, Yingrui; Zheng, Hancheng; Luo, Ruibang

    2011-01-01

    Here we use whole-genome de novo assembly of second-generation sequencing reads to map structural variation (SV) in an Asian genome and an African genome. Our approach identifies small- and intermediate-size homozygous variants (1-50 kb) including insertions, deletions, inversions and their precise...

  8. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed Missael Vargas;

    2014-01-01

    data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery...... of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues...

  9. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan

    2014-01-01

    mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost......BACKGROUND: Structural variants (SVs) are less common than single nucleotide polymorphisms and indels in the population, but collectively account for a significant fraction of genetic polymorphism and diseases. Base pair differences arising from SVs are on a much higher order (>100 fold) than point...... mapping technology as a comprehensive and cost-effective method for detecting structural variation and studying complex regions in the human genome, as well as deciphering viral integration into the host genome....

  10. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination.

    Science.gov (United States)

    Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J

    2016-06-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location.

  11. Integration of the cytogenetic, genetic, and physical maps of the human genome by FISH mapping of CEPH YAC clones

    Energy Technology Data Exchange (ETDEWEB)

    Bray-Ward, P.; Menninger, J.; Lieman, J. [Yale Univ. School of Medicine, New Haven, CT (United States)] [and others

    1996-02-15

    This article discusses the genetic mapping of over 950 yeast artificial chromosome (YAC) clones on human chromosomes. This integration of the cytogenetic, genetic and physical maps of the human genome was accomplished using fluorescence in situ hybridization (FISH) mapping and the CEPH library of YAC clones. 27 refs., 2 figs., 1 tab.

  12. PolyTB: A genomic variation map for Mycobacterium tuberculosis

    KAUST Repository

    Coll, Francesc

    2014-02-15

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the second major cause of death from an infectious disease worldwide. Recent advances in DNA sequencing are leading to the ability to generate whole genome information in clinical isolates of M. tuberculosis complex (MTBC). The identification of informative genetic variants such as phylogenetic markers and those associated with drug resistance or virulence will help barcode Mtb in the context of epidemiological, diagnostic and clinical studies. Mtb genomic datasets are increasingly available as raw sequences, which are potentially difficult and computer intensive to process, and compare across studies. Here we have processed the raw sequence data (>1500 isolates, eight studies) to compile a catalogue of SNPs (n = 74,039, 63% non-synonymous, 51.1% in more than one isolate, i.e. non-private), small indels (n = 4810) and larger structural variants (n = 800). We have developed the PolyTB web-based tool (http://pathogenseq.lshtm.ac.uk/polytb) to visualise the resulting variation and important meta-data (e.g. in silico inferred strain-types, location) within geographical map and phylogenetic views. This resource will allow researchers to identify polymorphisms within candidate genes of interest, as well as examine the genomic diversity and distribution of strains. PolyTB source code is freely available to researchers wishing to develop similar tools for their pathogen of interest. 2014 Elsevier Ltd. All rights reserved.

  13. Mapping strategies: Chromosome 16 workshop. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The following topics from a workshop on chromosome 16 are briefly discussed: genetic map of chromosome 16; chromosome breakpoint map of chromosome 16; integrated physical/genetic map of chromosome 16; pulsed field map of the 16p13.2--p13.3 region (3 sheets); and a report of the HGM10 chromosome 16 committee.

  14. Chromosome mapping by FISH to metaphase and interphase nuclei. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Trask, B.

    1997-08-01

    The overall specific aims of this project were: (1) to determine the large-scale structure of interphase and metaphase chromosomes, in order to establish new capabilities for genome mapping by fluorescence in situ hybridization (FISH); (2) to detect chromosome abnormalities associated with genetic disease and map DNA sequences relative to them in order to facilitate the identification of new genes with disease-causing mutations; (3) to establish medium resolution physical maps of selected chromosomal regions using a combined metaphase and interphase mapping strategy and to corroborate physical and genetic maps and integrate these maps with the cytogenetic map; (4) to analyze the polymorphism and sequence evolution of subtelomeric regions of human chromosomes; (5) to establish a state-of-the-art FISH and image processing facility in the Department of Molecular Biotechnology, University of Washington, in order to map DNA sequences rapidly and accurately to benefit the Human Genome Project.

  15. Single-molecule optical genome mapping of a human HapMap and a colorectal cancer cell line.

    Science.gov (United States)

    Teo, Audrey S M; Verzotto, Davide; Yao, Fei; Nagarajan, Niranjan; Hillmer, Axel M

    2015-01-01

    Next-generation sequencing (NGS) technologies have changed our understanding of the variability of the human genome. However, the identification of genome structural variations based on NGS approaches with read lengths of 35-300 bases remains a challenge. Single-molecule optical mapping technologies allow the analysis of DNA molecules of up to 2 Mb and as such are suitable for the identification of large-scale genome structural variations, and for de novo genome assemblies when combined with short-read NGS data. Here we present optical mapping data for two human genomes: the HapMap cell line GM12878 and the colorectal cancer cell line HCT116. High molecular weight DNA was obtained by embedding GM12878 and HCT116 cells, respectively, in agarose plugs, followed by DNA extraction under mild conditions. Genomic DNA was digested with KpnI and 310,000 and 296,000 DNA molecules (≥ 150 kb and 10 restriction fragments), respectively, were analyzed per cell line using the Argus optical mapping system. Maps were aligned to the human reference by OPTIMA, a new glocal alignment method. Genome coverage of 6.8× and 5.7× was obtained, respectively; 2.9× and 1.7× more than the coverage obtained with previously available software. Optical mapping allows the resolution of large-scale structural variations of the genome, and the scaffold extension of NGS-based de novo assemblies. OPTIMA is an efficient new alignment method; our optical mapping data provide a resource for genome structure analyses of the human HapMap reference cell line GM12878, and the colorectal cancer cell line HCT116.

  16. SynMap2 and SynMap3D: web-based whole-genome synteny browsers.

    Science.gov (United States)

    Haug-Baltzell, Asher; Stephens, Sean A; Davey, Sean; Scheidegger, Carlos E; Lyons, Eric

    2017-07-15

    Current synteny visualization tools either focus on small regions of sequence and do not illustrate genome-wide trends, or are complicated to use and create visualizations that are difficult to interpret. To address this challenge, The Comparative Genomics Platform (CoGe) has developed two web-based tools to visualize synteny across whole genomes. SynMap2 and SynMap3D allow researchers to explore whole genome synteny patterns (across two or three genomes, respectively) in responsive, web-based visualization and virtual reality environments. Both tools have access to the extensive CoGe genome database (containing over 30 000 genomes) as well as the option for users to upload their own data. By leveraging modern web technologies there is no installation required, making the tools widely accessible and easy to use. Both tools are open source (MIT license) and freely available for use online through CoGe ( https://genomevolution.org ). SynMap2 and SynMap3D can be accessed at http://genomevolution.org/coge/SynMap.pl and http://genomevolution.org/coge/SynMap3D.pl , respectively. Source code is available: https://github.com/LyonsLab/coge . ericlyons@email.arizona.edu. Supplementary data are available at Bioinformatics online.

  17. Genetic Mapping of Millions of SNPs in Safflower (Carthamus tinctorius L. via Whole-Genome Resequencing

    Directory of Open Access Journals (Sweden)

    John E. Bowers

    2016-07-01

    Full Text Available Accurate assembly of complete genomes is facilitated by very high density genetic maps. We performed low-coverage, whole-genome shotgun sequencing on 96 F6 recombinant inbred lines (RILs of a cross between safflower (Carthamus tinctorius L. and its wild progenitor (C. palaestinus Eig. We also produced a draft genome assembly of C. tinctorius covering 866 million bp (∼two-thirds of the expected 1.35 Gbp genome after sequencing a single, short insert library to ∼21 × depth. Sequence reads from the RILs were mapped to this genome assembly to facilitate SNP identification, and the resulting polymorphisms were used to construct a genetic map. The resulting map included 2,008,196 genetically located SNPs in 1178 unique positions. A total of 57,270 scaffolds, each containing five or more mapped SNPs, were anchored to the map. This resulted in the assignment of sequence covering 14% of the expected genome length to a genetic position. Comparison of this safflower map to genetic maps of sunflower and lettuce revealed numerous chromosomal rearrangements, and the resulting patterns were consistent with a whole-genome duplication event in the lineage leading to sunflower. This sequence-based genetic map provides a powerful tool for the assembly of a low-cost draft genome of safflower, and the same general approach is expected to work for other species.

  18. Genetic Mapping of Millions of SNPs in Safflower (Carthamus tinctorius L.) via Whole-Genome Resequencing.

    Science.gov (United States)

    Bowers, John E; Pearl, Stephanie A; Burke, John M

    2016-07-07

    Accurate assembly of complete genomes is facilitated by very high density genetic maps. We performed low-coverage, whole-genome shotgun sequencing on 96 F6 recombinant inbred lines (RILs) of a cross between safflower (Carthamus tinctorius L.) and its wild progenitor (C. palaestinus Eig). We also produced a draft genome assembly of C. tinctorius covering 866 million bp (∼two-thirds) of the expected 1.35 Gbp genome after sequencing a single, short insert library to ∼21 × depth. Sequence reads from the RILs were mapped to this genome assembly to facilitate SNP identification, and the resulting polymorphisms were used to construct a genetic map. The resulting map included 2,008,196 genetically located SNPs in 1178 unique positions. A total of 57,270 scaffolds, each containing five or more mapped SNPs, were anchored to the map. This resulted in the assignment of sequence covering 14% of the expected genome length to a genetic position. Comparison of this safflower map to genetic maps of sunflower and lettuce revealed numerous chromosomal rearrangements, and the resulting patterns were consistent with a whole-genome duplication event in the lineage leading to sunflower. This sequence-based genetic map provides a powerful tool for the assembly of a low-cost draft genome of safflower, and the same general approach is expected to work for other species.

  19. Automated integration of genomic physical mapping data via parallel simulated annealing

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T.

    1994-06-01

    The Human Genome Center at the Lawrence Livermore National Laboratory (LLNL) is nearing closure on a high-resolution physical map of human chromosome 19. We have build automated tools to assemble 15,000 fingerprinted cosmid clones into 800 contigs with minimal spanning paths identified. These islands are being ordered, oriented, and spanned by a variety of other techniques including: Fluorescence Insitu Hybridization (FISH) at 3 levels of resolution, ECO restriction fragment mapping across all contigs, and a multitude of different hybridization and PCR techniques to link cosmid, YAC, AC, PAC, and Pl clones. The FISH data provide us with partial order and distance data as well as orientation. We made the observation that map builders need a much rougher presentation of data than do map readers; the former wish to see raw data since these can expose errors or interesting biology. We further noted that by ignoring our length and distance data we could simplify our problem into one that could be readily attacked with optimization techniques. The data integration problem could then be seen as an M x N ordering of our N cosmid clones which ``intersect`` M larger objects by defining ``intersection`` to mean either contig/map membership or hybridization results. Clearly, the goal of making an integrated map is now to rearrange the N cosmid clone ``columns`` such that the number of gaps on the object ``rows`` are minimized. Our FISH partially-ordered cosmid clones provide us with a set of constraints that cannot be violated by the rearrangement process. We solved the optimization problem via simulated annealing performed on a network of 40+ Unix machines in parallel, using a server/client model built on explicit socket calls. For current maps we can create a map in about 4 hours on the parallel net versus 4+ days on a single workstation. Our biologists are now using this software on a daily basis to guide their efforts toward final closure.

  20. cDNA2Genome: A tool for mapping and annotating cDNAs

    Directory of Open Access Journals (Sweden)

    Suhai Sandor

    2003-09-01

    Full Text Available Abstract Background In the last years several high-throughput cDNA sequencing projects have been funded worldwide with the aim of identifying and characterizing the structure of complete novel human transcripts. However some of these cDNAs are error prone due to frameshifts and stop codon errors caused by low sequence quality, or to cloning of truncated inserts, among other reasons. Therefore, accurate CDS prediction from these sequences first require the identification of potentially problematic cDNAs in order to speed up the posterior annotation process. Results cDNA2Genome is an application for the automatic high-throughput mapping and characterization of cDNAs. It utilizes current annotation data and the most up to date databases, especially in the case of ESTs and mRNAs in conjunction with a vast number of approaches to gene prediction in order to perform a comprehensive assessment of the cDNA exon-intron structure. The final result of cDNA2Genome is an XML file containing all relevant information obtained in the process. This XML output can easily be used for further analysis such us program pipelines, or the integration of results into databases. The web interface to cDNA2Genome also presents this data in HTML, where the annotation is additionally shown in a graphical form. cDNA2Genome has been implemented under the W3H task framework which allows the combination of bioinformatics tools in tailor-made analysis task flows as well as the sequential or parallel computation of many sequences for large-scale analysis. Conclusions cDNA2Genome represents a new versatile and easily extensible approach to the automated mapping and annotation of human cDNAs. The underlying approach allows sequential or parallel computation of sequences for high-throughput analysis of cDNAs.

  1. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication.

    Science.gov (United States)

    Amores, Angel; Catchen, Julian; Ferrara, Allyse; Fontenot, Quenton; Postlethwait, John H

    2011-08-01

    Genomic resources for hundreds of species of evolutionary, agricultural, economic, and medical importance are unavailable due to the expense of well-assembled genome sequences and difficulties with multigenerational studies. Teleost fish provide many models for human disease but possess anciently duplicated genomes that sometimes obfuscate connectivity. Genomic information representing a fish lineage that diverged before the teleost genome duplication (TGD) would provide an outgroup for exploring the mechanisms of evolution after whole-genome duplication. We exploited massively parallel DNA sequencing to develop meiotic maps with thrift and speed by genotyping F(1) offspring of a single female and a single male spotted gar (Lepisosteus oculatus) collected directly from nature utilizing only polymorphisms existing in these two wild individuals. Using Stacks, software that automates the calling of genotypes from polymorphisms assayed by Illumina sequencing, we constructed a map containing 8406 markers. RNA-seq on two map-cross larvae provided a reference transcriptome that identified nearly 1000 mapped protein-coding markers and allowed genome-wide analysis of conserved synteny. Results showed that the gar lineage diverged from teleosts before the TGD and its genome is organized more similarly to that of humans than teleosts. Thus, spotted gar provides a critical link between medical models in teleost fish, to which gar is biologically similar, and humans, to which gar is genomically similar. Application of our F(1) dense mapping strategy to species with no prior genome information promises to facilitate comparative genomics and provide a scaffold for ordering the numerous contigs arising from next generation genome sequencing.

  2. The UK Human Genome Mapping Project online computing service.

    Science.gov (United States)

    Rysavy, F R; Bishop, M J; Gibbs, G P; Williams, G W

    1992-04-01

    This paper presents an overview of computing and networking facilities developed by the Medical Research Council to provide online computing support to the Human Genome Mapping Project (HGMP) in the UK. The facility is connected to a number of other computing facilities in various centres of genetics and molecular biology research excellence, either directly via high-speed links or through national and international wide-area networks. The paper describes the design and implementation of the current system, a 'client/server' network of Sun, IBM, DEC and Apple servers, gateways and workstations. A short outline of online computing services currently delivered by this system to the UK human genetics research community is also provided. More information about the services and their availability could be obtained by a direct approach to the UK HGMP-RC.

  3. Genome-wide maps of nuclear lamina interactions in single human cells

    Science.gov (United States)

    Kind, Jop; Pagie, Ludo; de Vries, Sandra S.; Nahidiazar, Leila; Dey, Siddharth S.; Bienko, Magda; Zhan, Ye; Lajoie, Bryan; de Graaf, Carolyn A.; Amendola, Mario; Fudenberg, Geoffrey; Imakaev, Maxim; Mirny, Leonid A.; Jalink, Kees; Dekker, Job; van Oudenaarden, Alexander; van Steensel, Bas

    2015-01-01

    Summary Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large Lamina Associated Domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, consistency of NL contacts is inversely linked to gene activity in single cells, and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single cell chromatin organization. PMID:26365489

  4. Genome to Phenome Mapping in Apple Using Historical Data

    Directory of Open Access Journals (Sweden)

    Zoë Migicovsky

    2016-07-01

    Full Text Available Apple ( X Borkh. is one of the world’s most valuable fruit crops. Its large size and long juvenile phase make it a particularly promising candidate for marker-assisted selection (MAS. However, advances in MAS in apple have been limited by a lack of phenotype and genotype data from sufficiently large samples. To establish genotype-phenotype relationships and advance MAS in apple, we extracted over 24,000 phenotype scores from the USDA-Germplasm Resources Information Network (GRIN database and linked them with over 8000 single nucleotide polymorphisms (SNPs from 689 apple accessions from the USDA apple germplasm collection clonally preserved in Geneva, NY. We find significant genetic differentiation between Old World and New World cultivars and demonstrate that the genetic structure of the domesticated apple also reflects the time required for ripening. A genome-wide association study (GWAS of 36 phenotypes confirms the association between fruit color and the MYB1 locus, and we also report a novel association between the transcription factor, NAC18.1, and harvest date and fruit firmness. We demonstrate that harvest time and fruit size can be predicted with relatively high accuracies ( > 0.46 using genomic prediction. Rapid decay of linkage disequilibrium (LD in apples means millions of SNPs may be required for well-powered GWAS. However, rapid LD decay also promises to enable extremely high resolution mapping of causal variants, which holds great potential for advancing MAS.

  5. Genomic Sequence Comparisons, 1987-2003 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    George M. Church

    2004-07-29

    This project was to develop new DNA sequencing and RNA and protein quantitation methods and related genome annotation tools. The project began in 1987 with the development of multiplex sequencing (published in Science in 1988), and one of the first automated sequencing methods. This lead to the first commercial genome sequence in 1994 and to the establishment of the main commercial participants (GTC then Agencourt) in the public DOE/NIH genome project. In collaboration with GTC we contributed to one of the first complete DOE genome sequences, in 1997, that of Methanobacterium thermoautotropicum, a species of great relevance to energy-rich gas production.

  6. Exploring a Nonmodel Teleost Genome Through RAD Sequencing—Linkage Mapping in Common Pandora, Pagellus erythrinus and Comparative Genomic Analysis

    OpenAIRE

    Tereza Manousaki; Alexandros Tsakogiannis; Taggart, John B.; Christos Palaiokostas; Dimitris Tsaparis; Jacques Lagnel; Dimitrios Chatziplis; Antonios Magoulas; Nikos Papandroulakis; Mylonas, Constantinos C.; Tsigenopoulos, Costas S

    2016-01-01

    Common pandora (Pagellus erythrinus) is a benthopelagic marine fish belonging to the teleost family Sparidae, and a newly recruited species in Mediterranean aquaculture. The paucity of genetic information relating to sparids, despite their growing economic value for aquaculture, provides the impetus for exploring the genomics of this fish group. Genomic tool development, such as genetic linkage maps provision, lays the groundwork for linking the genotype to phenotype allowing fine-mapping of ...

  7. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor

    Science.gov (United States)

    The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,70...

  8. A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome

    Directory of Open Access Journals (Sweden)

    de Boer Jan M

    2011-12-01

    Full Text Available Abstract Background Potato is the world's third most important food crop, yet cultivar improvement and genomic research in general remain difficult because of the heterozygous and tetraploid nature of its genome. The development of physical map resources that can facilitate genomic analyses in potato has so far been very limited. Here we present the methods of construction and the general statistics of the first two genome-wide BAC physical maps of potato, which were made from the heterozygous diploid clone RH89-039-16 (RH. Results First, a gel electrophoresis-based physical map was made by AFLP fingerprinting of 64478 BAC clones, which were aligned into 4150 contigs with an estimated total length of 1361 Mb. Screening of BAC pools, followed by the KeyMaps in silico anchoring procedure, identified 1725 AFLP markers in the physical map, and 1252 BAC contigs were anchored the ultradense potato genetic map. A second, sequence-tag-based physical map was constructed from 65919 whole genome profiling (WGP BAC fingerprints and these were aligned into 3601 BAC contigs spanning 1396 Mb. The 39733 BAC clones that overlap between both physical maps provided anchors to 1127 contigs in the WGP physical map, and reduced the number of contigs to around 2800 in each map separately. Both physical maps were 1.64 times longer than the 850 Mb potato genome. Genome heterozygosity and incomplete merging of BAC contigs are two factors that can explain this map inflation. The contig information of both physical maps was united in a single table that describes hybrid potato physical map. Conclusions The AFLP physical map has already been used by the Potato Genome Sequencing Consortium for sequencing 10% of the heterozygous genome of clone RH on a BAC-by-BAC basis. By layering a new WGP physical map on top of the AFLP physical map, a genetically anchored genome-wide framework of 322434 sequence tags has been created. This reference framework can be used for anchoring and

  9. Comparison and quantitative verification of mapping algorithms for whole genome bisulfite sequencing

    Science.gov (United States)

    Coupling bisulfite conversion with next-generation sequencing (Bisulfite-seq) enables genome-wide measurement of DNA methylation, but poses unique challenges for mapping. However, despite a proliferation of Bisulfite-seq mapping tools, no systematic comparison of their genomic coverage and quantitat...

  10. High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea

    Science.gov (United States)

    Gaur, Rashmi; Jeena, Ganga; Shah, Niraj; Gupta, Shefali; Pradhan, Seema; Tyagi, Akhilesh K; Jain, Mukesh; Chattopadhyay, Debasis; Bhatia, Sabhyata

    2015-01-01

    This study presents genome-wide discovery of SNPs through next generation sequencing of the genome of Cicer reticulatum. Mapping of the C. reticulatum sequenced reads onto the draft genome assembly of C. arietinum (desi chickpea) resulted in identification of 842,104 genomic SNPs which were utilized along with an additional 36,446 genic SNPs identified from transcriptome sequences of the aforementioned varieties. Two new chickpea Oligo Pool All (OPAs) each having 3,072 SNPs were designed and utilized for SNP genotyping of 129 Recombinant Inbred Lines (RILs). Using Illumina GoldenGate Technology genotyping data of 5,041 SNPs were generated and combined with the 1,673 marker data from previously published studies, to generate a high resolution linkage map. The map comprised of 6698 markers distributed on eight linkage groups spanning 1083.93 cM with an average inter-marker distance of 0.16 cM. Utility of the present map was demonstrated for improving the anchoring of the earlier reported draft genome sequence of desi chickpea by ~30% and that of kabuli chickpea by 18%. The genetic map reported in this study represents the most dense linkage map of chickpea , with the potential to facilitate efficient anchoring of the draft genome sequences of desi as well as kabuli chickpea varieties. PMID:26303721

  11. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study

    DEFF Research Database (Denmark)

    de Vries, Paul S; Sabater-Lleal, Maria; Chasman, Daniel I

    2017-01-01

    An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In...

  12. Comparison of HapMap and 1000 genomes reference panels in a large-scale genome-wide association study

    NARCIS (Netherlands)

    P.S. de Vries (Paul); M. Sabater-Lleal (Maria); D.I. Chasman (Daniel); S. Trompet (Stella); T.S. Ahluwalia (Tarunveer Singh); A. Teumer (Alexander); M.E. Kleber (Marcus); M.-H. Chen (Ming-Huei); J.J. Wang (Jie Jin); J. Attia (John); R.E. Marioni (Riccardo); M. Steri (Maristella); Weng, L.-C. (Lu-Chen); R. Pool (Reńe); V. Grossmann (Vera); J. Brody (Jennifer); C. Venturini (Cristina); T. Tanaka (Toshiko); L.M. Rose (Lynda); C. Oldmeadow (Christopher); J. Mazur (Johanna); S. Basu (Saonli); M. Frånberg (Mattias); Q. Yang (Qiong); S. Ligthart (Symen); J.J. Hottenga (Jouke Jan); A. Rumley (Ann); Mulas, A. (Antonella); A.J. de Craen (Anton); A. Grotevendt (Anne); K.D. Taylor (Kent D.); G. Delgado; A. Kifley (Annette); L.M. Lopez (Lorna); T.L. Berentzen (Tina L.); M. Mangino (Massimo); S. Bandinelli (Stefania); Morrison, A.C. (Alanna C.); A. Hamsten (Anders); G.H. Tofler (Geoffrey); M.P.M. de Maat (Moniek); G. Draisma (Gerrit); G.D. Lowe (Gordon D.); M. Zoledziewska (Magdalena); N. Sattar (Naveed); Lackner, K.J. (Karl J.); U. Völker (Uwe); McKnight, B. (Barbara); J. Huang (Jian); E.G. Holliday (Elizabeth); McEvoy, M.A. (Mark A.); J.M. Starr (John); P.G. Hysi (Pirro); D.G. Hernandez (Dena); W. Guan (Weihua); F. Rivadeneira Ramirez (Fernando); W.L. McArdle (Wendy); P.E. Slagboom (Eline); Zeller, T. (Tanja); B.M. Psaty (Bruce); A.G. Uitterlinden (André); E.J.C. de Geus (Eco); D.J. Stott (David J.); H. Binder (Harald); A. Hofman (Albert); O.H. Franco (Oscar); J.I. Rotter (Jerome I.); L. Ferrucci (Luigi); Spector, T.D. (Tim D.); I.J. Deary (Ian J.); W. März (Winfried); A. Greinacher (Andreas); P.S. Wild (Philipp S.); F. Cucca (Francesco); D.I. Boomsma (Dorret); Watkins, H. (Hugh); Tang, W. (Weihong); P.M. Ridker (Paul); J.W. Jukema; R.J. Scott (Rodney J.); P. Mitchell (Paul); T. Hansen (T.); O'Donnell, C.J. (Christopher J.); Smith, N.L. (Nicholas L.); D.P. Strachan (David P.); A. Dehghan (Abbas)

    2017-01-01

    textabstractAn increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imput

  13. A high-resolution radiation hybrid map of the human genome draft sequence.

    Science.gov (United States)

    Olivier, M; Aggarwal, A; Allen, J; Almendras, A A; Bajorek, E S; Beasley, E M; Brady, S D; Bushard, J M; Bustos, V I; Chu, A; Chung, T R; De Witte, A; Denys, M E; Dominguez, R; Fang, N Y; Foster, B D; Freudenberg, R W; Hadley, D; Hamilton, L R; Jeffrey, T J; Kelly, L; Lazzeroni, L; Levy, M R; Lewis, S C; Liu, X; Lopez, F J; Louie, B; Marquis, J P; Martinez, R A; Matsuura, M K; Misherghi, N S; Norton, J A; Olshen, A; Perkins, S M; Perou, A J; Piercy, C; Piercy, M; Qin, F; Reif, T; Sheppard, K; Shokoohi, V; Smick, G A; Sun, W L; Stewart, E A; Fernando, J; Tejeda; Tran, N M; Trejo, T; Vo, N T; Yan, S C; Zierten, D L; Zhao, S; Sachidanandam, R; Trask, B J; Myers, R M; Cox, D R

    2001-02-16

    We have constructed a physical map of the human genome by using a panel of 90 whole-genome radiation hybrids (the TNG panel) in conjunction with 40,322 sequence-tagged sites (STSs) derived from random genomic sequences as well as expressed sequences. Of 36,678 STSs on the TNG radiation hybrid map, only 3604 (9.8%) were absent from the unassembled draft sequence of the human genome. Of 20,030 STSs ordered on the TNG map as well as the assembled human genome draft sequence and the Celera assembled human genome sequence, 36% of the STSs had a discrepant order between the working draft sequence and the Celera sequence. The TNG map order was identical to one of the two sequence orders in 60% of these discrepant cases.

  14. Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii

    Directory of Open Access Journals (Sweden)

    Kumar Ajay

    2012-11-01

    Full Text Available Abstract Background Development of a high quality reference sequence is a daunting task in crops like wheat with large (~17Gb, highly repetitive (>80% and polyploid genome. To achieve complete sequence assembly of such genomes, development of a high quality physical map is a necessary first step. However, due to the lack of recombination in certain regions of the chromosomes, genetic mapping, which uses recombination frequency to map marker loci, alone is not sufficient to develop high quality marker scaffolds for a sequence ready physical map. Radiation hybrid (RH mapping, which uses radiation induced chromosomal breaks, has proven to be a successful approach for developing marker scaffolds for sequence assembly in animal systems. Here, the development and characterization of a RH panel for the mapping of D-genome of wheat progenitor Aegilops tauschii is reported. Results Radiation dosages of 350 and 450 Gy were optimized for seed irradiation of a synthetic hexaploid (AABBDD wheat with the D-genome of Ae. tauschii accession AL8/78. The surviving plants after irradiation were crossed to durum wheat (AABB, to produce pentaploid RH1s (AABBD, which allows the simultaneous mapping of the whole D-genome. A panel of 1,510 RH1 plants was obtained, of which 592 plants were generated from the mature RH1 seeds, and 918 plants were rescued through embryo culture due to poor germination (1 seeds. This panel showed a homogenous marker loss (2.1% after screening with SSR markers uniformly covering all the D-genome chromosomes. Different marker systems mostly detected different lines with deletions. Using markers covering known distances, the mapping resolution of this RH panel was estimated to be cM/cR ratio of 1:5.2 and 15 distinct bins. Additionally, with this small set of lines, almost all the tested ESTs could be mapped. A set of 399 most informative RH lines with an average deletion frequency of ~10% were identified for developing high density marker

  15. A draft physical map of a D-genome cotton species (Gossypium raimondii

    Directory of Open Access Journals (Sweden)

    Kudrna Dave

    2010-06-01

    Full Text Available Abstract Background Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, Gossypium hirsutum and G. barbadense, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago. Toward the long-term goal of characterizing the spectrum of diversity among cotton genomes, the worldwide cotton community has prioritized the D genome progenitor Gossypium raimondii for complete sequencing. Results A whole genome physical map of G. raimondii, the putative D genome ancestral species of tetraploid cottons was assembled, integrating genetically-anchored overgo hybridization probes, agarose based fingerprints and 'high information content fingerprinting' (HICF. A total of 13,662 BAC-end sequences and 2,828 DNA probes were used in genetically anchoring 1585 contigs to a cotton consensus genetic map, and 370 and 438 contigs, respectively to Arabidopsis thaliana (AT and Vitis vinifera (VV whole genome sequences. Conclusion Several lines of evidence suggest that the G. raimondii genome is comprised of two qualitatively different components. Much of the gene rich component is aligned to the Arabidopsis and Vitis vinifera genomes and shows promise for utilizing translational genomic approaches in understanding this important genome and its resident genes. The integrated genetic-physical map is of value both in assembling and validating a planned reference sequence.

  16. A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome

    NARCIS (Netherlands)

    Boer, de J.M.; Borm, T.J.A.; Jesse, T.; Brugmans, B.W.; Tang, X.; Bryan, G.J.; Bakker, J.; Eck, van H.J.; Visser, R.G.F.

    2011-01-01

    Background Potato is the world's third most important food crop, yet cultivar improvement and genomic research in general remain difficult because of the heterozygous and tetraploid nature of its genome. The development of physical map resources that can facilitate genomic analyses in potato has so

  17. A comparison of cataloged variation between International HapMap Consortium and 1000 Genomes Project data

    OpenAIRE

    2012-01-01

    Background Since publication of the human genome in 2003, geneticists have been interested in risk variant associations to resolve the etiology of traits and complex diseases. The International HapMap Consortium undertook an effort to catalog all common variation across the genome (variants with a minor allele frequency (MAF) of at least 5% in one or more ethnic groups). HapMap along with advances in genotyping technology led to genome-wide association studies which have identified common var...

  18. Genome-wide map of regulatory interactions in the human genome.

    Science.gov (United States)

    Heidari, Nastaran; Phanstiel, Douglas H; He, Chao; Grubert, Fabian; Jahanbani, Fereshteh; Kasowski, Maya; Zhang, Michael Q; Snyder, Michael P

    2014-12-01

    Increasing evidence suggests that interactions between regulatory genomic elements play an important role in regulating gene expression. We generated a genome-wide interaction map of regulatory elements in human cells (ENCODE tier 1 cells, K562, GM12878) using Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) experiments targeting six broadly distributed factors. Bound regions covered 80% of DNase I hypersensitive sites including 99.7% of TSS and 98% of enhancers. Correlating this map with ChIP-seq and RNA-seq data sets revealed cohesin, CTCF, and ZNF143 as key components of three-dimensional chromatin structure and revealed how the distal chromatin state affects gene transcription. Comparison of interactions between cell types revealed that enhancer-promoter interactions were highly cell-type-specific. Construction and comparison of distal and proximal regulatory networks revealed stark differences in structure and biological function. Proximal binding events are enriched at genes with housekeeping functions, while distal binding events interact with genes involved in dynamic biological processes including response to stimulus. This study reveals new mechanistic and functional insights into regulatory region organization in the nucleus. © 2014 Heidari et al.; Published by Cold Spring Harbor Laboratory Press.

  19. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis.

    Directory of Open Access Journals (Sweden)

    Xue-Feng Ma

    Full Text Available We have created a high-resolution linkage map of Miscanthus sinensis, using genotyping-by-sequencing (GBS, identifying all 19 linkage groups for the first time. The result is technically significant since Miscanthus has a very large and highly heterozygous genome, but has no or limited genomics information to date. The composite linkage map containing markers from both parental linkage maps is composed of 3,745 SNP markers spanning 2,396 cM on 19 linkage groups with a 0.64 cM average resolution. Comparative genomics analyses of the M. sinensis composite linkage map to the genomes of sorghum, maize, rice, and Brachypodium distachyon indicate that sorghum has the closest syntenic relationship to Miscanthus compared to other species. The comparative results revealed that each pair of the 19 M. sinensis linkages aligned to one sorghum chromosome, except for LG8, which mapped to two sorghum chromosomes (4 and 7, presumably due to a chromosome fusion event after genome duplication. The data also revealed several other chromosome rearrangements relative to sorghum, including two telomere-centromere inversions of the sorghum syntenic chromosome 7 in LG8 of M. sinensis and two paracentric inversions of sorghum syntenic chromosome 4 in LG7 and LG8 of M. sinensis. The results clearly demonstrate, for the first time, that the diploid M. sinensis is tetraploid origin consisting of two sub-genomes. This complete and high resolution composite linkage map will not only serve as a useful resource for novel QTL discoveries, but also enable informed deployment of the wealth of existing genomics resources of other species to the improvement of Miscanthus as a high biomass energy crop. In addition, it has utility as a reference for genome sequence assembly for the forthcoming whole genome sequencing of the Miscanthus genus.

  20. A second generation integrated map of the rainbow trout (Oncorhynchus mykiss) genome: analysis of synteny with model fish genomes

    Science.gov (United States)

    In this paper we generated DNA fingerprints and end sequences from bacterial artificial chromosomes (BACs) from two new libraries to improve the first generation integrated physical and genetic map of the rainbow trout (Oncorhynchus mykiss) genome. The current version of the physical map is compose...

  1. Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.).

    Science.gov (United States)

    Laidò, Giovanni; Marone, Daniela; Russo, Maria A; Colecchia, Salvatore A; Mastrangelo, Anna M; De Vita, Pasquale; Papa, Roberto

    2014-01-01

    Association mapping is a powerful tool for the identification of quantitative trait loci through the exploitation of the differential decay of linkage disequilibrium (LD) between marker loci and genes of interest in natural and domesticated populations. Using a sample of 230 tetraploid wheat lines (Triticum turgidum ssp), which included naked and hulled accessions, we analysed the pattern of LD considering 26 simple sequence repeats and 970 mostly mapped diversity array technology loci. In addition, to validate the potential for association mapping in durum wheat, we evaluated the same genotypes for plant height, heading date, protein content, and thousand-kernel weight. Molecular and phenotypic data were used to: (i) investigate the genetic and phenotypic diversity; (ii) study the dynamics of LD across the durum wheat genome, by investigating the patterns of LD decay; and (iii) test the potential of our panel to identify marker-trait associations through the analysis of four quantitative traits of major agronomic importance. Moreover, we compared and validated the association mapping results with outlier detection analysis based on population divergence. Overall, in tetraploid wheat, the pattern of LD is extremely population dependent and is related to the domestication and breeding history of durum wheat. Comparing our data with several other studies in wheat, we confirm the position of many major genes and quantitative trait loci for the traits considered. Finally, the analysis of the selection signature represents a very useful complement to validate marker-trait associations.

  2. Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.).

    Science.gov (United States)

    Fernandez-Silva, I; Eduardo, I; Blanca, J; Esteras, C; Picó, B; Nuez, F; Arús, P; Garcia-Mas, J; Monforte, Antonio José

    2008-12-01

    We report the development of 158 primer pairs flanking SSR motifs in genomic (gSSR) and EST (EST-SSR) melon sequences, all yielding polymorphic bands in melon germplasm, except one that was polymorphic only in Cucurbita species. A similar polymorphism level was found among EST-SSRs and gSSRs, between dimeric and trimeric EST-SSRs, and between EST-SSRs placed in the open reading frame or any of the 5'- or 3'-untranslated regions. Correlation between SSR length and polymorphism was only found for dinucleotide EST-SSRs located within the untranslated regions, but not for trinucleotide EST-SSRs. Transferability of EST-SSRs to Cucurbita species was assayed and 12.7% of the primer pairs amplified at least in one species, although only 5.4% were polymorphic. A set of 14 double haploid lines from the cross between the cultivar "Piel de Sapo" and the accession PI161375 were selected for the bin mapping approach in melon. One hundred and twenty-one SSR markers were newly mapped. The position of 46 SSR loci was also verified by genotyping the complete population. A final bin-map was constructed including 80 RFLPs, 212 SSRs, 3 SNPs and the Nsv locus, distributed in 122 bins with an average bin length of 10.2 cM and a maximum bin length of 33 cM. Map density was 4.2 cM/marker or 5.9 cM/SSR.

  3. Complete genome sequence of Shewanella putrefaciens. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Heidelberg, John F.

    2001-04-01

    Seventy percent of the costs for genome sequencing Shewanella putrefaciens (oneidensis) were requested. These funds were expected to allow completion of the low-pass (5-fold) random sequencing and complete closure and annotation of the 200 kbp plasmid. Because of cost reduction that occurred during the period of this grant, these goals have been far exceeded. Currently, the S. putrefaciens genome is very nearly completely closed, even though the genome was significantly larger than expected and extremely repetitive. The entire genome sequence has been made BLAST searchable on the TIGR web page, and an extensive effort has been made to make data and analyses available to all researchers working on S. putrefaciens (oneidensis).

  4. Generation of a BAC-based physical map of the melon genome

    Directory of Open Access Journals (Sweden)

    Puigdomènech Pere

    2010-05-01

    Full Text Available Abstract Background Cucumis melo (melon belongs to the Cucurbitaceae family, whose economic importance among horticulture crops is second only to Solanaceae. Melon has high intra-specific genetic variation, morphologic diversity and a small genome size (450 Mb, which make this species suitable for a great variety of molecular and genetic studies that can lead to the development of tools for breeding varieties of the species. A number of genetic and genomic resources have already been developed, such as several genetic maps and BAC genomic libraries. These tools are essential for the construction of a physical map, a valuable resource for map-based cloning, comparative genomics and assembly of whole genome sequencing data. However, no physical map of any Cucurbitaceae has yet been developed. A project has recently been started to sequence the complete melon genome following a whole-genome shotgun strategy, which makes use of massive sequencing data. A BAC-based melon physical map will be a useful tool to help assemble and refine the draft genome data that is being produced. Results A melon physical map was constructed using a 5.7 × BAC library and a genetic map previously developed in our laboratories. High-information-content fingerprinting (HICF was carried out on 23,040 BAC clones, digesting with five restriction enzymes and SNaPshot labeling, followed by contig assembly with FPC software. The physical map has 1,355 contigs and 441 singletons, with an estimated physical length of 407 Mb (0.9 × coverage of the genome and the longest contig being 3.2 Mb. The anchoring of 845 BAC clones to 178 genetic markers (100 RFLPs, 76 SNPs and 2 SSRs also allowed the genetic positioning of 183 physical map contigs/singletons, representing 55 Mb (12% of the melon genome, to individual chromosomal loci. The melon FPC database is available for download at http://melonomics.upv.es/static/files/public/physical_map/. Conclusions Here we report the construction

  5. A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure.

    Science.gov (United States)

    Zuccolo, Andrea; Bowers, John E; Estill, James C; Xiong, Zhiyong; Luo, Meizhong; Sebastian, Aswathy; Goicoechea, José Luis; Collura, Kristi; Yu, Yeisoo; Jiao, Yuannian; Duarte, Jill; Tang, Haibao; Ayyampalayam, Saravanaraj; Rounsley, Steve; Kudrna, Dave; Paterson, Andrew H; Pires, J Chris; Chanderbali, Andre; Soltis, Douglas E; Chamala, Srikar; Barbazuk, Brad; Soltis, Pamela S; Albert, Victor A; Ma, Hong; Mandoli, Dina; Banks, Jody; Carlson, John E; Tomkins, Jeffrey; dePamphilis, Claude W; Wing, Rod A; Leebens-Mack, Jim

    2011-01-01

    Recent phylogenetic analyses have identified Amborella trichopoda, an understory tree species endemic to the forests of New Caledonia, as sister to a clade including all other known flowering plant species. The Amborella genome is a unique reference for understanding the evolution of angiosperm genomes because it can serve as an outgroup to root comparative analyses. A physical map, BAC end sequences and sample shotgun sequences provide a first view of the 870 Mbp Amborella genome. Analysis of Amborella BAC ends sequenced from each contig suggests that the density of long terminal repeat retrotransposons is negatively correlated with that of protein coding genes. Syntenic, presumably ancestral, gene blocks were identified in comparisons of the Amborella BAC contigs and the sequenced Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa genomes. Parsimony mapping of the loss of synteny corroborates previous analyses suggesting that the rate of structural change has been more rapid on lineages leading to Arabidopsis and Oryza compared with lineages leading to Populus and Vitis. The gamma paleohexiploidy event identified in the Arabidopsis, Populus and Vitis genomes is shown to have occurred after the divergence of all other known angiosperms from the lineage leading to Amborella. When placed in the context of a physical map, BAC end sequences representing just 5.4% of the Amborella genome have facilitated reconstruction of gene blocks that existed in the last common ancestor of all flowering plants. The Amborella genome is an invaluable reference for inferences concerning the ancestral angiosperm and subsequent genome evolution.

  6. Generation of Physical Map Contig-Specific Sequences Useful for Whole Genome Sequence Scaffolding

    Science.gov (United States)

    Jiang, Yanliang; Ninwichian, Parichart; Liu, Shikai; Zhang, Jiaren; Kucuktas, Huseyin; Sun, Fanyue; Kaltenboeck, Ludmilla; Sun, Luyang; Bao, Lisui; Liu, Zhanjiang

    2013-01-01

    Along with the rapid advances of the nextgen sequencing technologies, more and more species are added to the list of organisms whose whole genomes are sequenced. However, the assembled draft genome of many organisms consists of numerous small contigs, due to the short length of the reads generated by nextgen sequencing platforms. In order to improve the assembly and bring the genome contigs together, more genome resources are needed. In this study, we developed a strategy to generate a valuable genome resource, physical map contig-specific sequences, which are randomly distributed genome sequences in each physical contig. Two-dimensional tagging method was used to create specific tags for 1,824 physical contigs, in which the cost was dramatically reduced. A total of 94,111,841 100-bp reads and 315,277 assembled contigs are identified containing physical map contig-specific tags. The physical map contig-specific sequences along with the currently available BAC end sequences were then used to anchor the catfish draft genome contigs. A total of 156,457 genome contigs (~79% of whole genome sequencing assembly) were anchored and grouped into 1,824 pools, in which 16,680 unique genes were annotated. The physical map contig-specific sequences are valuable resources to link physical map, genetic linkage map and draft whole genome sequences, consequently have the capability to improve the whole genome sequences assembly and scaffolding, and improve the genome-wide comparative analysis as well. The strategy developed in this study could also be adopted in other species whose whole genome assembly is still facing a challenge. PMID:24205335

  7. Generation of physical map contig-specific sequences useful for whole genome sequence scaffolding.

    Directory of Open Access Journals (Sweden)

    Yanliang Jiang

    Full Text Available Along with the rapid advances of the nextgen sequencing technologies, more and more species are added to the list of organisms whose whole genomes are sequenced. However, the assembled draft genome of many organisms consists of numerous small contigs, due to the short length of the reads generated by nextgen sequencing platforms. In order to improve the assembly and bring the genome contigs together, more genome resources are needed. In this study, we developed a strategy to generate a valuable genome resource, physical map contig-specific sequences, which are randomly distributed genome sequences in each physical contig. Two-dimensional tagging method was used to create specific tags for 1,824 physical contigs, in which the cost was dramatically reduced. A total of 94,111,841 100-bp reads and 315,277 assembled contigs are identified containing physical map contig-specific tags. The physical map contig-specific sequences along with the currently available BAC end sequences were then used to anchor the catfish draft genome contigs. A total of 156,457 genome contigs (~79% of whole genome sequencing assembly were anchored and grouped into 1,824 pools, in which 16,680 unique genes were annotated. The physical map contig-specific sequences are valuable resources to link physical map, genetic linkage map and draft whole genome sequences, consequently have the capability to improve the whole genome sequences assembly and scaffolding, and improve the genome-wide comparative analysis as well. The strategy developed in this study could also be adopted in other species whose whole genome assembly is still facing a challenge.

  8. FINAL DIGITAL FLOOD INSURANCE RATE MAP DATABASE, CHEROKEE COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  9. FINAL DIGITAL FLOOD INSURANCE RATE MAP DATABASE, INYO COUNTY, CA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  10. FINAL DIGITAL FLOOD INSURANCE RATE MAP DATABASE, TEXAS COUNTY, OK

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  11. FINAL DIGITAL FLOOD INSURANCE RATE MAP DATABASE, GREENWOOD COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  12. Integrated and sequence-ordered BAC- and YAC-based physical maps for the rat genome.

    Science.gov (United States)

    Krzywinski, Martin; Wallis, John; Gösele, Claudia; Bosdet, Ian; Chiu, Readman; Graves, Tina; Hummel, Oliver; Layman, Dan; Mathewson, Carrie; Wye, Natasja; Zhu, Baoli; Albracht, Derek; Asano, Jennifer; Barber, Sarah; Brown-John, Mabel; Chan, Susanna; Chand, Steve; Cloutier, Alison; Davito, Jonathon; Fjell, Chris; Gaige, Tony; Ganten, Detlev; Girn, Noreen; Guggenheimer, Kurtis; Himmelbauer, Heinz; Kreitler, Thomas; Leach, Stephen; Lee, Darlene; Lehrach, Hans; Mayo, Michael; Mead, Kelly; Olson, Teika; Pandoh, Pawan; Prabhu, Anna-Liisa; Shin, Heesun; Tänzer, Simone; Thompson, Jason; Tsai, Miranda; Walker, Jason; Yang, George; Sekhon, Mandeep; Hillier, LaDeana; Zimdahl, Heike; Marziali, Andre; Osoegawa, Kazutoyo; Zhao, Shaying; Siddiqui, Asim; de Jong, Pieter J; Warren, Wes; Mardis, Elaine; McPherson, John D; Wilson, Richard; Hübner, Norbert; Jones, Steven; Marra, Marco; Schein, Jacqueline

    2004-04-01

    As part of the effort to sequence the genome of Rattus norvegicus, we constructed a physical map comprised of fingerprinted bacterial artificial chromosome (BAC) clones from the CHORI-230 BAC library. These BAC clones provide approximately 13-fold redundant coverage of the genome and have been assembled into 376 fingerprint contigs. A yeast artificial chromosome (YAC) map was also constructed and aligned with the BAC map via fingerprinted BAC and P1 artificial chromosome clones (PACs) sharing interspersed repetitive sequence markers with the YAC-based physical map. We have annotated 95% of the fingerprint map clones in contigs with coordinates on the version 3.1 rat genome sequence assembly, using BAC-end sequences and in silico mapping methods. These coordinates have allowed anchoring 358 of the 376 fingerprint map contigs onto the sequence assembly. Of these, 324 contigs are anchored to rat genome sequences localized to chromosomes, and 34 contigs are anchored to unlocalized portions of the rat sequence assembly. The remaining 18 contigs, containing 54 clones, still require placement. The fingerprint map is a high-resolution integrative data resource that provides genome-ordered associations among BAC, YAC, and PAC clones and the assembled sequence of the rat genome.

  13. A genome-wide Asian genetic map and ethnic comparison: The GENDISCAN study

    Directory of Open Access Journals (Sweden)

    Sung Joohon

    2008-11-01

    Full Text Available Abstract Background Genetic maps provide specific positions of genetic markers, which are required for performing genetic studies. Linkage analyses of Asian families have been performed with Caucasian genetic maps, since appropriate genetic maps of Asians were not available. Different ethnic groups may have different recombination rates as a result of genomic variations, which would generate misspecification of the genetic map and reduce the power of linkage analyses. Results We constructed the genetic map of a Mongolian population in Asia with CRIMAP software. This new map, called the GENDISCAN map, is based on genotype data collected from 1026 individuals of 73 large Mongolian families, and includes 1790 total and 1500 observable meioses. The GENDISCAN map provides sex-averaged and sex-specific genetic positions of 1039 microsatellite markers in Kosambi centimorgans (cM with physical positions. We also determined 95% confidence intervals of genetic distances of the adjacent marker intervals. Genetic lengths of the whole genome, chromosomes and adjacent marker intervals are compared with those of Rutgers Map v.2, which was constructed based on Caucasian populations (Centre d'Etudes du Polymorphisme Humain (CEPH and Icelandic families by mapping methods identical to those of the GENDISCAN map, CRIMAP software and the Kosambi map function. Mongolians showed approximately 1.9 fewer recombinations per meiosis than Caucasians. As a result, genetic lengths of the whole genome and chromosomes of the GENDISCAN map are shorter than those of Rutgers Map v.2. Thirty-eight marker intervals differed significantly between the Mongolian and Caucasian genetic maps. Conclusion The new GENDISCAN map is applicable to the genetic study of Asian populations. Differences in the genetic distances between the GENDISCAN and Caucasian maps could facilitate elucidation of genomic variations between different ethnic groups.

  14. Advancing Trypanosoma brucei genome annotation through ribosome profiling and spliced leader mapping.

    Science.gov (United States)

    Parsons, Marilyn; Ramasamy, Gowthaman; Vasconcelos, Elton J R; Jensen, Bryan C; Myler, Peter J

    2015-08-01

    Since the initial publication of the trypanosomatid genomes, curation has been ongoing. Here we make use of existing Trypanosoma brucei ribosome profiling data to provide evidence of ribosome occupancy (and likely translation) of mRNAs from 225 currently unannotated coding sequences (CDSs). A small number of these putative genes correspond to extra copies of previously annotated genes, but 85% are novel. The median size of these novels CDSs is small (81 aa), indicating that past annotation work has excelled at detecting large CDSs. Of the unique CDSs confirmed here, over half have candidate orthologues in other trypanosomatid genomes, most of which were not yet annotated as protein-coding genes. Nonetheless, approximately one-third of the new CDSs were found only in T. brucei subspecies. Using ribosome footprints, RNA-Seq and spliced leader mapping data, we updated previous work to definitively revise the start sites for 414 CDSs as compared to the current gene models. The data pointed to several regions of the genome that had sequence errors that altered coding region boundaries. Finally, we consolidated this data with our previous work to propose elimination of 683 putative genes as protein-coding and arrive at a view of the translatome of slender bloodstream and procyclic culture form T. brucei.

  15. A first generation whole genome RH map of the river buffalo with comparison to domestic cattle

    Directory of Open Access Journals (Sweden)

    Tantia Madhu S

    2008-12-01

    Full Text Available Abstract Background The recently constructed river buffalo whole-genome radiation hybrid panel (BBURH5000 has already been used to generate preliminary radiation hybrid (RH maps for several chromosomes, and buffalo-bovine comparative chromosome maps have been constructed. Here, we present the first-generation whole genome RH map (WG-RH of the river buffalo generated from cattle-derived markers. The RH maps aligned to bovine genome sequence assembly Btau_4.0, providing valuable comparative mapping information for both species. Results A total of 3990 markers were typed on the BBURH5000 panel, of which 3072 were cattle derived SNPs. The remaining 918 were classified as cattle sequence tagged site (STS, including coding genes, ESTs, and microsatellites. Average retention frequency per chromosome was 27.3% calculated with 3093 scorable markers distributed in 43 linkage groups covering all autosomes (24 and the X chromosomes at a LOD ≥ 8. The estimated total length of the WG-RH map is 36,933 cR5000. Fewer than 15% of the markers (472 could not be placed within any linkage group at a LOD score ≥ 8. Linkage group order for each chromosome was determined by incorporation of markers previously assigned by FISH and by alignment with the bovine genome sequence assembly (Btau_4.0. Conclusion We obtained radiation hybrid chromosome maps for the entire river buffalo genome based on cattle-derived markers. The alignments of our RH maps to the current bovine genome sequence assembly (Btau_4.0 indicate regions of possible rearrangements between the chromosomes of both species. The river buffalo represents an important agricultural species whose genetic improvement has lagged behind other species due to limited prior genomic characterization. We present the first-generation RH map which provides a more extensive resource for positional candidate cloning of genes associated with complex traits and also for large-scale physical mapping of the river buffalo

  16. Exploring a Nonmodel Teleost Genome Through RAD Sequencing-Linkage Mapping in Common Pandora, Pagellus erythrinus and Comparative Genomic Analysis.

    Science.gov (United States)

    Manousaki, Tereza; Tsakogiannis, Alexandros; Taggart, John B; Palaiokostas, Christos; Tsaparis, Dimitris; Lagnel, Jacques; Chatziplis, Dimitrios; Magoulas, Antonios; Papandroulakis, Nikos; Mylonas, Constantinos C; Tsigenopoulos, Costas S

    2015-12-29

    Common pandora (Pagellus erythrinus) is a benthopelagic marine fish belonging to the teleost family Sparidae, and a newly recruited species in Mediterranean aquaculture. The paucity of genetic information relating to sparids, despite their growing economic value for aquaculture, provides the impetus for exploring the genomics of this fish group. Genomic tool development, such as genetic linkage maps provision, lays the groundwork for linking genotype to phenotype, allowing fine-mapping of loci responsible for beneficial traits. In this study, we applied ddRAD methodology to identify polymorphic markers in a full-sib family of common pandora. Employing the Illumina MiSeq platform, we sampled and sequenced a size-selected genomic fraction of 99 individuals, which led to the identification of 920 polymorphic loci. Downstream mapping analysis resulted in the construction of 24 robust linkage groups, corresponding to the karyotype of the species. The common pandora linkage map showed varying degrees of conserved synteny with four other teleost genomes, namely the European seabass (Dicentrarchus labrax), Nile tilapia (Oreochromis niloticus), stickleback (Gasterosteus aculeatus), and medaka (Oryzias latipes), suggesting a conserved genomic evolution in Sparidae. Our work exploits the possibilities of genotyping by sequencing to gain novel insights into genome structure and evolution. Such information will boost the study of cultured species and will set the foundation for a deeper understanding of the complex evolutionary history of teleosts.

  17. Exploring a Nonmodel Teleost Genome Through RAD Sequencing—Linkage Mapping in Common Pandora, Pagellus erythrinus and Comparative Genomic Analysis

    Directory of Open Access Journals (Sweden)

    Tereza Manousaki

    2016-03-01

    Full Text Available Common pandora (Pagellus erythrinus is a benthopelagic marine fish belonging to the teleost family Sparidae, and a newly recruited species in Mediterranean aquaculture. The paucity of genetic information relating to sparids, despite their growing economic value for aquaculture, provides the impetus for exploring the genomics of this fish group. Genomic tool development, such as genetic linkage maps provision, lays the groundwork for linking genotype to phenotype, allowing fine-mapping of loci responsible for beneficial traits. In this study, we applied ddRAD methodology to identify polymorphic markers in a full-sib family of common pandora. Employing the Illumina MiSeq platform, we sampled and sequenced a size-selected genomic fraction of 99 individuals, which led to the identification of 920 polymorphic loci. Downstream mapping analysis resulted in the construction of 24 robust linkage groups, corresponding to the karyotype of the species. The common pandora linkage map showed varying degrees of conserved synteny with four other teleost genomes, namely the European seabass (Dicentrarchus labrax, Nile tilapia (Oreochromis niloticus, stickleback (Gasterosteus aculeatus, and medaka (Oryzias latipes, suggesting a conserved genomic evolution in Sparidae. Our work exploits the possibilities of genotyping by sequencing to gain novel insights into genome structure and evolution. Such information will boost the study of cultured species and will set the foundation for a deeper understanding of the complex evolutionary history of teleosts.

  18. Exploring a Nonmodel Teleost Genome Through RAD Sequencing—Linkage Mapping in Common Pandora, Pagellus erythrinus and Comparative Genomic Analysis

    Science.gov (United States)

    Manousaki, Tereza; Tsakogiannis, Alexandros; Taggart, John B.; Palaiokostas, Christos; Tsaparis, Dimitris; Lagnel, Jacques; Chatziplis, Dimitrios; Magoulas, Antonios; Papandroulakis, Nikos; Mylonas, Constantinos C.; Tsigenopoulos, Costas S.

    2015-01-01

    Common pandora (Pagellus erythrinus) is a benthopelagic marine fish belonging to the teleost family Sparidae, and a newly recruited species in Mediterranean aquaculture. The paucity of genetic information relating to sparids, despite their growing economic value for aquaculture, provides the impetus for exploring the genomics of this fish group. Genomic tool development, such as genetic linkage maps provision, lays the groundwork for linking genotype to phenotype, allowing fine-mapping of loci responsible for beneficial traits. In this study, we applied ddRAD methodology to identify polymorphic markers in a full-sib family of common pandora. Employing the Illumina MiSeq platform, we sampled and sequenced a size-selected genomic fraction of 99 individuals, which led to the identification of 920 polymorphic loci. Downstream mapping analysis resulted in the construction of 24 robust linkage groups, corresponding to the karyotype of the species. The common pandora linkage map showed varying degrees of conserved synteny with four other teleost genomes, namely the European seabass (Dicentrarchus labrax), Nile tilapia (Oreochromis niloticus), stickleback (Gasterosteus aculeatus), and medaka (Oryzias latipes), suggesting a conserved genomic evolution in Sparidae. Our work exploits the possibilities of genotyping by sequencing to gain novel insights into genome structure and evolution. Such information will boost the study of cultured species and will set the foundation for a deeper understanding of the complex evolutionary history of teleosts. PMID:26715088

  19. Optical map of the genotype A1 WB C6 Giardia lamblia genome isolate.

    Science.gov (United States)

    Perry, D Alexander; Morrison, Hilary G; Adam, Rodney D

    2011-12-01

    The Giardia lamblia genome consists of 12 Mb divided among 5 chromosomes ranging in size from approximately 1 to 4 Mb. The assembled contigs of the genotype A1 isolate, WB, were previously mapped along the 5 chromosomes on the basis of hybridization of plasmid clones representing the contigs to chromosomes separated by PFGE. In the current report, we have generated an MluI optical map of the WB genome to improve the accuracy of the physical map. This has allowed us to correct several assembly errors and to better define the extent of the subtelomeric regions that are not included in the genome assembly.

  20. Building the sequence map of the human pan-genome

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Zheng, Hancheng

    2010-01-01

    Here we integrate the de novo assembly of an Asian and an African genome with the NCBI reference human genome, as a step toward constructing the human pan-genome. We identified approximately 5 Mb of novel sequences not present in the reference genome in each of these assemblies. Most novel...... analysis of predicted genes indicated that the novel sequences contain potentially functional coding regions. We estimate that a complete human pan-genome would contain approximately 19-40 Mb of novel sequence not present in the extant reference genome. The extensive amount of novel sequence contributing...... to the genetic variation of the pan-genome indicates the importance of using complete genome sequencing and de novo assembly....

  1. Radiation hybrid maps of D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes

    Science.gov (United States)

    The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high-resolution genome maps saturated with ordered markers to assist in anchoring and orienting BAC contigs/ sequence scaffolds for whole genome sequence assembly. Radiation hybrid (RH) mapping has proven to be an e...

  2. Definition of the zebrafish genome using flow cytometry and cytogenetic mapping.

    Science.gov (United States)

    Freeman, Jennifer L; Adeniyi, Adeola; Banerjee, Ruby; Dallaire, Stephanie; Maguire, Sean F; Chi, Jianxiang; Ng, Bee Ling; Zepeda, Cinthya; Scott, Carol E; Humphray, Sean; Rogers, Jane; Zhou, Yi; Zon, Leonard I; Carter, Nigel P; Yang, Fengtang; Lee, Charles

    2007-06-27

    The zebrafish (Danio rerio) is an important vertebrate model organism system for biomedical research. The syntenic conservation between the zebrafish and human genome allows one to investigate the function of human genes using the zebrafish model. To facilitate analysis of the zebrafish genome, genetic maps have been constructed and sequence annotation of a reference zebrafish genome is ongoing. However, the duplicative nature of teleost genomes, including the zebrafish, complicates accurate assembly and annotation of a representative genome sequence. Cytogenetic approaches provide "anchors" that can be integrated with accumulating genomic data. Here, we cytogenetically define the zebrafish genome by first estimating the size of each linkage group (LG) chromosome using flow cytometry, followed by the cytogenetic mapping of 575 bacterial artificial chromosome (BAC) clones onto metaphase chromosomes. Of the 575 BAC clones, 544 clones localized to apparently unique chromosomal locations. 93.8% of these clones were assigned to a specific LG chromosome location using fluorescence in situ hybridization (FISH) and compared to the LG chromosome assignment reported in the zebrafish genome databases. Thirty-one BAC clones localized to multiple chromosomal locations in several different hybridization patterns. From these data, a refined second generation probe panel for each LG chromosome was also constructed. The chromosomal mapping of the 575 large-insert DNA clones allows for these clones to be integrated into existing zebrafish mapping data. An accurately annotated zebrafish reference genome serves as a valuable resource for investigating the molecular basis of human diseases using zebrafish mutant models.

  3. Definition of the zebrafish genome using flow cytometry and cytogenetic mapping

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2007-06-01

    Full Text Available Abstract Background The zebrafish (Danio rerio is an important vertebrate model organism system for biomedical research. The syntenic conservation between the zebrafish and human genome allows one to investigate the function of human genes using the zebrafish model. To facilitate analysis of the zebrafish genome, genetic maps have been constructed and sequence annotation of a reference zebrafish genome is ongoing. However, the duplicative nature of teleost genomes, including the zebrafish, complicates accurate assembly and annotation of a representative genome sequence. Cytogenetic approaches provide "anchors" that can be integrated with accumulating genomic data. Results Here, we cytogenetically define the zebrafish genome by first estimating the size of each linkage group (LG chromosome using flow cytometry, followed by the cytogenetic mapping of 575 bacterial artificial chromosome (BAC clones onto metaphase chromosomes. Of the 575 BAC clones, 544 clones localized to apparently unique chromosomal locations. 93.8% of these clones were assigned to a specific LG chromosome location using fluorescence in situ hybridization (FISH and compared to the LG chromosome assignment reported in the zebrafish genome databases. Thirty-one BAC clones localized to multiple chromosomal locations in several different hybridization patterns. From these data, a refined second generation probe panel for each LG chromosome was also constructed. Conclusion The chromosomal mapping of the 575 large-insert DNA clones allows for these clones to be integrated into existing zebrafish mapping data. An accurately annotated zebrafish reference genome serves as a valuable resource for investigating the molecular basis of human diseases using zebrafish mutant models.

  4. Subsurface fracture mapping from geothermal wellbores. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hartenbaum, B.A.; Rawson, G.

    1983-08-01

    To advance the state-of-the-art in Hot Dry Rock technology, and evaluation is made of (1) the use of both electromagnetic and acoustic radar to map far-field fractures, (2) the use of more than twenty different conventional well logging tools to map borehole-fracture intercepts, (3) the use of magnetic dipole ranging to determine the relative positions of the injection well and the production well within the fractured zone, (4) the use of passive microseismic methods to determine the orientation and extent of hydraulic fractures, and (5) the application of signal processing techniques to fracture mapping including tomography, holography, synthetic aperture, image reconstruction, and the relative importance of phase and amplitude information. It is found that according to calculations, VHF backscatter radar has the potential for mapping fractures within a distance of 50 +- 20 meters from the wellbore. A new technique for improving fracture identification is presented. The range of acoustic radar is five to seven times greater than that of VHF radar when compared on the basis of equal resolution, i.e., equal wavelengths. Analyses of extant data indicate that when used synergistically the (1) caliper, (2) resistivity dipmeter, (3) televiewer, (4) television, (5) impression packer, and (6) acoustic transmission are useful for mapping borehole-fracture intercepts. A new model of hydraulic fracturing is presented which indicates that a hydraulic fracture is dynamically unstable; consequently, improvements in locating the crack tip may be possible. The importance of phase in signal processing is stressed and those techniques which employ phase data are emphasized for field use.

  5. A second generation radiation hybrid map to aid the assembly of the bovine genome sequence

    Directory of Open Access Journals (Sweden)

    Janitz Michal

    2006-11-01

    Full Text Available Abstract Background Several approaches can be used to determine the order of loci on chromosomes and hence develop maps of the genome. However, all mapping approaches are prone to errors either arising from technical deficiencies or lack of statistical support to distinguish between alternative orders of loci. The accuracy of the genome maps could be improved, in principle, if information from different sources was combined to produce integrated maps. The publicly available bovine genomic sequence assembly with 6× coverage (Btau_2.0 is based on whole genome shotgun sequence data and limited mapping data however, it is recognised that this assembly is a draft that contains errors. Correcting the sequence assembly requires extensive additional mapping information to improve the reliability of the ordering of sequence scaffolds on chromosomes. The radiation hybrid (RH map described here has been contributed to the international sequencing project to aid this process. Results An RH map for the 30 bovine chromosomes is presented. The map was built using the Roslin 3000-rad RH panel (BovGen RH map and contains 3966 markers including 2473 new loci in addition to 262 amplified fragment-length polymorphisms (AFLP and 1231 markers previously published with the first generation RH map. Sequences of the mapped loci were aligned with published bovine genome maps to identify inconsistencies. In addition to differences in the order of loci, several cases were observed where the chromosomal assignment of loci differed between maps. All the chromosome maps were aligned with the current 6× bovine assembly (Btau_2.0 and 2898 loci were unambiguously located in the bovine sequence. The order of loci on the RH map for BTA 5, 7, 16, 22, 25 and 29 differed substantially from the assembled bovine sequence. From the 2898 loci unambiguously identified in the bovine sequence assembly, 131 mapped to different chromosomes in the BovGen RH map. Conclusion Alignment of the

  6. Linkage maps of the Atlantic salmon (Salmo salar) genome derived from RAD sequencing.

    Science.gov (United States)

    Gonen, Serap; Lowe, Natalie R; Cezard, Timothé; Gharbi, Karim; Bishop, Stephen C; Houston, Ross D

    2014-02-27

    Genetic linkage maps are useful tools for mapping quantitative trait loci (QTL) influencing variation in traits of interest in a population. Genotyping-by-sequencing approaches such as Restriction-site Associated DNA sequencing (RAD-Seq) now enable the rapid discovery and genotyping of genome-wide SNP markers suitable for the development of dense SNP linkage maps, including in non-model organisms such as Atlantic salmon (Salmo salar). This paper describes the development and characterisation of a high density SNP linkage map based on SbfI RAD-Seq SNP markers from two Atlantic salmon reference families. Approximately 6,000 SNPs were assigned to 29 linkage groups, utilising markers from known genomic locations as anchors. Linkage maps were then constructed for the four mapping parents separately. Overall map lengths were comparable between male and female parents, but the distribution of the SNPs showed sex-specific patterns with a greater degree of clustering of sire-segregating SNPs to single chromosome regions. The maps were integrated with the Atlantic salmon draft reference genome contigs, allowing the unique assignment of ~4,000 contigs to a linkage group. 112 genome contigs mapped to two or more linkage groups, highlighting regions of putative homeology within the salmon genome. A comparative genomics analysis with the stickleback reference genome identified putative genes closely linked to approximately half of the ordered SNPs and demonstrated blocks of orthology between the Atlantic salmon and stickleback genomes. A subset of 47 RAD-Seq SNPs were successfully validated using a high-throughput genotyping assay, with a correspondence of 97% between the two assays. This Atlantic salmon RAD-Seq linkage map is a resource for salmonid genomics research as genotyping-by-sequencing becomes increasingly common. This is aided by the integration of the SbfI RAD-Seq SNPs with existing reference maps and the draft reference genome, as well as the identification of

  7. Genome-Wide Mapping of Furfural Tolerance Genes in Escherichia coli

    OpenAIRE

    Glebes, Tirzah Y.; Sandoval, Nicholas R.; Philippa J Reeder; Schilling, Katherine D.; Min ZHANG; Ryan T Gill

    2014-01-01

    Advances in genomics have improved the ability to map complex genotype-to-phenotype relationships, like those required for engineering chemical tolerance. Here, we have applied the multiSCale Analysis of Library Enrichments (SCALEs; Lynch et al. (2007) Nat. Method.) approach to map, in parallel, the effect of increased dosage for >105 different fragments of the Escherichia coli genome onto furfural tolerance (furfural is a key toxin of lignocellulosic hydrolysate). Only 268 of >4,000 E. coli ...

  8. Whole genome association mapping by incompatibilities and local perfect phylogenies

    Directory of Open Access Journals (Sweden)

    Besenbacher Søren

    2006-10-01

    Full Text Available Abstract Background With current technology, vast amounts of data can be cheaply and efficiently produced in association studies, and to prevent data analysis to become the bottleneck of studies, fast and efficient analysis methods that scale to such data set sizes must be developed. Results We present a fast method for accurate localisation of disease causing variants in high density case-control association mapping experiments with large numbers of cases and controls. The method searches for significant clustering of case chromosomes in the "perfect" phylogenetic tree defined by the largest region around each marker that is compatible with a single phylogenetic tree. This perfect phylogenetic tree is treated as a decision tree for determining disease status, and scored by its accuracy as a decision tree. The rationale for this is that the perfect phylogeny near a disease affecting mutation should provide more information about the affected/unaffected classification than random trees. If regions of compatibility contain few markers, due to e.g. large marker spacing, the algorithm can allow the inclusion of incompatibility markers in order to enlarge the regions prior to estimating their phylogeny. Haplotype data and phased genotype data can be analysed. The power and efficiency of the method is investigated on 1 simulated genotype data under different models of disease determination 2 artificial data sets created from the HapMap ressource, and 3 data sets used for testing of other methods in order to compare with these. Our method has the same accuracy as single marker association (SMA in the simplest case of a single disease causing mutation and a constant recombination rate. However, when it comes to more complex scenarios of mutation heterogeneity and more complex haplotype structure such as found in the HapMap data our method outperforms SMA as well as other fast, data mining approaches such as HapMiner and Haplotype Pattern Mining (HPM

  9. An extended anchored linkage map and virtual mapping for the american mink genome based on homology to human and dog

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Ansari, S.; Farid, A.;

    2009-01-01

    In this report we present an extended linkage map of the American mink (Neovison vison) consisting of 157 microsatellite markers and comprising at least one linkage group for each of the autosomes. Each linkage group has been assigned to a chromosome and oriented by fluorescence in situ hybridiza......In this report we present an extended linkage map of the American mink (Neovison vison) consisting of 157 microsatellite markers and comprising at least one linkage group for each of the autosomes. Each linkage group has been assigned to a chromosome and oriented by fluorescence in situ...... comparative human/dog/mink data, these assignments represent useful virtual maps for the American mink genome. Comparison of the current human/dog assembled sequential map with the existing Zoo-FISH-based human/dog/mink maps helped to refine the human/dog/mink comparative map. Furthermore, comparison...

  10. Mitotic-chromosome-based physical mapping of the Culex quinquefasciatus genome.

    Science.gov (United States)

    Naumenko, Anastasia N; Timoshevskiy, Vladimir A; Kinney, Nicholas A; Kokhanenko, Alina A; deBruyn, Becky S; Lovin, Diane D; Stegniy, Vladimir N; Severson, David W; Sharakhov, Igor V; Sharakhova, Maria V

    2015-01-01

    The genome assembly of southern house mosquito Cx. quinquefasciatus is represented by a high number of supercontigs with no order or orientation on the chromosomes. Although cytogenetic maps for the polytene chromosomes of this mosquito have been developed, their utilization for the genome mapping remains difficult because of the low number of high-quality spreads in chromosome preparations. Therefore, a simple and robust mitotic-chromosome-based approach for the genome mapping of Cx. quinquefasciatus still needs to be developed. In this study, we performed physical mapping of 37 genomic supercontigs using fluorescent in situ hybridization on mitotic chromosomes from imaginal discs of 4th instar larvae. The genetic linkage map nomenclature was adopted for the chromosome numbering based on the direct positioning of 58 markers that were previously genetically mapped. The smallest, largest, and intermediate chromosomes were numbered as 1, 2, and 3, respectively. For idiogram development, we analyzed and described in detail the morphology and proportions of the mitotic chromosomes. Chromosomes were subdivided into 19 divisions and 72 bands of four different intensities. These idiograms were used for mapping the genomic supercontigs/genetic markers. We also determined the presence of length polymorphism in the q arm of sex-determining chromosome 1 in Cx. quinquefasciatus related to the size of ribosomal locus. Our physical mapping and previous genetic linkage mapping resulted in the chromosomal assignment of 13% of the total genome assembly to the chromosome bands. We provided the first detailed description, nomenclature, and idiograms for the mitotic chromosomes of Cx. quinquefasciatus. Further application of the approach developed in this study will help to improve the quality of the southern house mosquito genome.

  11. Shot-gun sequencing strategy for long-range genome mapping: a pilot study.

    Science.gov (United States)

    Zabarovsky, E R; Kashuba, V I; Pettersson, B; Petrov, N; Zakharyev, V; Gizatullin, R; Lebedeva, T; Bannikov, V; Pokrovskaya, E S; Zabarovska, V I

    1994-06-01

    We have recently proposed a strategy for construction of long-range physical maps based on random sequencing of NotI linking and jumping clones. Here, we present results of sequence comparison between 168 NotI linking (100 of them were sequenced from both sides) and 81 chromosome 3-specific jumping clones. We were able to identify 14 NotI jumping clones (17%), each joined with two NotI linking clones. The average size of chromosomal jumps was about 650 kb. The assembled 42 NotI genomic fragments correspond to 12-15% of chromosome 3. These results demonstrate the value of random sequencing of NotI linking and jumping clones for genome mapping. This mapping proposal can be used for connecting physical and genetic maps of the human genome and will be a valuable supplement to YAC and cosmid library based mapping projects.

  12. San Clemente Island Baseline LiDAR Mapping Final Report

    Science.gov (United States)

    2016-12-01

    bands, wavelength and spectral width of each band, and Global Positioning System (GPS) start/stop times. • IGM folder - scene_radiance_IGM.txt IGM...indicating tile edge effects were eliminated during processing. 3.1.2.2 Quality Control of the DEMs Quality control of the initial DEMs showed... negative changes) and accretion (positive changes) were found. Sources of error in elevation change maps include the basic LiDAR observations, spatial

  13. Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant.

    Science.gov (United States)

    Wu, Pingzhi; Zhou, Changpin; Cheng, Shifeng; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Chen, Yanbo; Chen, Yan; Ni, Peixiang; Wang, Ying; Xu, Xun; Huang, Ying; Song, Chi; Wang, Zhiwen; Shi, Nan; Zhang, Xudong; Fang, Xiaohua; Yang, Qing; Jiang, Huawu; Chen, Yaping; Li, Meiru; Wang, Ying; Chen, Fan; Wang, Jun; Wu, Guojiang

    2015-03-01

    The family Euphorbiaceae includes some of the most efficient biomass accumulators. Whole genome sequencing and the development of genetic maps of these species are important components in molecular breeding and genetic improvement. Here we report the draft genome of physic nut (Jatropha curcas L.), a biodiesel plant. The assembled genome has a total length of 320.5 Mbp and contains 27,172 putative protein-coding genes. We established a linkage map containing 1208 markers and anchored the genome assembly (81.7%) to this map to produce 11 pseudochromosomes. After gene family clustering, 15,268 families were identified, of which 13,887 existed in the castor bean genome. Analysis of the genome highlighted specific expansion and contraction of a number of gene families during the evolution of this species, including the ribosome-inactivating proteins and oil biosynthesis pathway enzymes. The genomic sequence and linkage map provide a valuable resource not only for fundamental and applied research on physic nut but also for evolutionary and comparative genomics analysis, particularly in the Euphorbiaceae.

  14. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study

    OpenAIRE

    Amyotte, Beatrice; Bowen, Amy J.; Banks, Travis; Rajcan, Istvan; Somers, Daryl J.

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years thr...

  15. Methods for identifying and mapping recent segmental and gene duplications in eukaryotic genomes.

    Science.gov (United States)

    Khaja, Razi; MacDonald, Jeffrey R; Zhang, Junjun; Scherer, Stephen W

    2006-01-01

    The aim of this chapter is to provide instruction for analyzing and mapping recent segmental and gene duplications in eukaryotic genomes. We describe a bioinformatics-based approach utilizing computational tools to manage eukaryotic genome sequences to characterize and understand the evolutionary fates and trajectories of duplicated genes. An introduction to bioinformatics tools and programs such as BLAST, Perl, BioPerl, and the GFF specification provides the necessary background to complete this analysis for any eukaryotic genome of interest.

  16. High resolution physical map of porcine chromosome 7 QTL region and comparative mapping of this region among vertebrate genomes

    Directory of Open Access Journals (Sweden)

    Demeure Olivier

    2006-01-01

    Full Text Available Abstract Background On porcine chromosome 7, the region surrounding the Major Histocompatibility Complex (MHC contains several Quantitative Trait Loci (QTL influencing many traits including growth, back fat thickness and carcass composition. Previous studies highlighted that a fragment of ~3.7 Mb is located within the Swine Leucocyte Antigen (SLA complex. Internal rearrangements of this fragment were suggested, and partial contigs had been built, but further characterization of this region and identification of all human chromosomal fragments orthologous to this porcine fragment had to be carried out. Results A whole physical map of the region was constructed by integrating Radiation Hybrid (RH mapping, BAC fingerprinting data of the INRA BAC library and anchoring BAC end sequences on the human genome. 17 genes and 2 reference microsatellites were ordered on the high resolution IMNpRH212000rad Radiation Hybrid panel. A 1000:1 framework map covering 550 cR12000 was established and a complete contig of the region was developed. New micro rearrangements were highlighted between the porcine and human genomes. A bovine RH map was also developed in this region by mapping 16 genes. Comparison of the organization of this region in pig, cattle, human, mouse, dog and chicken genomes revealed that 1 the translocation of the fragment described previously is observed only on the bovine and porcine genomes and 2 the new internal micro rearrangements are specific of the porcine genome. Conclusion We estimate that the region contains several rearrangements and covers 5.2 Mb of the porcine genome. The study of this complete BAC contig showed that human chromosomal fragments homologs of this heavily rearranged QTL region are all located in the region of HSA6 that surrounds the centromere. This work allows us to define a list of all candidate genes that could explain these QTL effects.

  17. Reflections on the Value of Mapping the Final Theory Examination in a Molecular Biochemistry Unit †

    OpenAIRE

    Rajaraman Eri; Anthony Cook; Natalie Brown

    2014-01-01

    This article assesses the impact of examination mapping as a tool to enhancing assessment and teaching quality in a second-year biochemistry unit for undergraduates. Examination mapping is a process where all questions in a written examination paper are assessed for links to the unit’s intended learning outcomes. We describe how mapping a final written examination helped visualise the impact of the assessment task on intended learning outcomes and skills for that biochemistry unit. The method...

  18. An enhanced linkage map of the sheep genome comprising more than 1000 loci.

    Science.gov (United States)

    Maddox, J F; Davies, K P; Crawford, A M; Hulme, D J; Vaiman, D; Cribiu, E P; Freking, B A; Beh, K J; Cockett, N E; Kang, N; Riffkin, C D; Drinkwater, R; Moore, S S; Dodds, K G; Lumsden, J M; van Stijn, T C; Phua, S H; Adelson, D L; Burkin, H R; Broom, J E; Buitkamp, J; Cambridge, L; Cushwa, W T; Gerard, E; Galloway, S M; Harrison, B; Hawken, R J; Hiendleder, S; Henry, H M; Medrano, J F; Paterson, K A; Schibler, L; Stone, R T; van Hest, B

    2001-07-01

    A medium-density linkage map of the ovine genome has been developed. Marker data for 550 new loci were generated and merged with the previous sheep linkage map. The new map comprises 1093 markers representing 1062 unique loci (941 anonymous loci, 121 genes) and spans 3500 cM (sex-averaged) for the autosomes and 132 cM (female) on the X chromosome. There is an average spacing of 3.4 cM between autosomal loci and 8.3 cM between highly polymorphic [polymorphic information content (PIC) > or = 0.7] autosomal loci. The largest gap between markers is 32.5 cM, and the number of gaps of > 20 cM between loci, or regions where loci are missing from chromosome ends, has been reduced from 40 in the previous map to 6. Five hundred and seventy-three of the loci can be ordered on a framework map with odds of > 1000 : 1. The sheep linkage map contains strong links to both the cattle and goat maps. Five hundred and seventy-two of the loci positioned on the sheep linkage map have also been mapped by linkage analysis in cattle, and 209 of the loci mapped on the sheep linkage map have also been placed on the goat linkage map. Inspection of ruminant linkage maps indicates that the genomic coverage by the current sheep linkage map is comparable to that of the available cattle maps. The sheep map provides a valuable resource to the international sheep, cattle, and goat gene mapping community.

  19. Comparative genomics in chicken and Pekin duck using FISH mapping and microarray analysis

    Directory of Open Access Journals (Sweden)

    Fowler Katie E

    2009-08-01

    Full Text Available Abstract Background The availability of the complete chicken (Gallus gallus genome sequence as well as a large number of chicken probes for fluorescent in-situ hybridization (FISH and microarray resources facilitate comparative genomic studies between chicken and other bird species. In a previous study, we provided a comprehensive cytogenetic map for the turkey (Meleagris gallopavo and the first analysis of copy number variants (CNVs in birds. Here, we extend this approach to the Pekin duck (Anas platyrhynchos, an obvious target for comparative genomic studies due to its agricultural importance and resistance to avian flu. Results We provide a detailed molecular cytogenetic map of the duck genome through FISH assignment of 155 chicken clones. We identified one inter- and six intrachromosomal rearrangements between chicken and duck macrochromosomes and demonstrated conserved synteny among all microchromosomes analysed. Array comparative genomic hybridisation revealed 32 CNVs, of which 5 overlap previously designated "hotspot" regions between chicken and turkey. Conclusion Our results suggest extensive conservation of avian genomes across 90 million years of evolution in both macro- and microchromosomes. The data on CNVs between chicken and duck extends previous analyses in chicken and turkey and supports the hypotheses that avian genomes contain fewer CNVs than mammalian genomes and that genomes of evolutionarily distant species share regions of copy number variation ("CNV hotspots". Our results will expedite duck genomics, assist marker development and highlight areas of interest for future evolutionary and functional studies.

  20. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection.

    Science.gov (United States)

    Li, Zitong; Sillanpää, Mikko J

    2012-08-01

    Quantitative trait loci (QTL)/association mapping aims at finding genomic loci associated with the phenotypes, whereas genomic selection focuses on breeding value prediction based on genomic data. Variable selection is a key to both of these tasks as it allows to (1) detect clear mapping signals of QTL activity, and (2) predict the genome-enhanced breeding values accurately. In this paper, we provide an overview of a statistical method called least absolute shrinkage and selection operator (LASSO) and two of its generalizations named elastic net and adaptive LASSO in the contexts of QTL mapping and genomic breeding value prediction in plants (or animals). We also briefly summarize the Bayesian interpretation of LASSO, and the inspired hierarchical Bayesian models. We illustrate the implementation and examine the performance of methods using three public data sets: (1) North American barley data with 127 individuals and 145 markers, (2) a simulated QTLMAS XII data with 5,865 individuals and 6,000 markers for both QTL mapping and genomic selection, and (3) a wheat data with 599 individuals and 1,279 markers only for genomic selection.

  1. Advanced technologies for genomic analysis in farm animals and its application for QTL mapping.

    Science.gov (United States)

    Hu, Xiaoxiang; Gao, Yu; Feng, Chungang; Liu, Qiuyue; Wang, Xiaobo; Du, Zhuo; Wang, Qingsong; Li, Ning

    2009-06-01

    Rapid progress in farm animal breeding has been made in the last few decades. Advanced technologies for genomic analysis in molecular genetics have led to the identification of genes or markers associated with genes that affect economic traits. Molecular markers, large-insert libraries and RH panels have been used to build the genetic linkage maps, physical maps and comparative maps in different farm animals. Moreover, EST sequencing, genome sequencing and SNPs maps are helping us to understand how genomes function in various organisms and further areas will be studied by DNA microarray technologies and proteomics methods. Because most economically important traits in farm animals are controlled by multiple genes and the environment, the main goal of genome research in farm animals is to map and characterize genes determining QTL. There are two main strategies to identify trait loci, candidate gene association tests and genome scan approaches. In recent years, some new concepts, such as RNAi, miRNA and eQTL, have been introduced into farm animal research, especially for QTL mapping and finding QTN. Several genes that influence important traits have already been identified or are close to being identified, and some of them have been applied in farm animal breeding programs by marker-assisted selection.

  2. An integrated 4249 marker FISH/RH map of the canine genome

    Directory of Open Access Journals (Sweden)

    Mahairas Gregory G

    2004-09-01

    Full Text Available Abstract Background The 156 breeds of dog recognized by the American Kennel Club offer a unique opportunity to map genes important in genetic variation. Each breed features a defining constellation of morphological and behavioral traits, often generated by deliberate crossing of closely related individuals, leading to a high rate of genetic disease in many breeds. Understanding the genetic basis of both phenotypic variation and disease susceptibility in the dog provides new ways in which to dissect the genetics of human health and biology. Results To facilitate both genetic mapping and cloning efforts, we have constructed an integrated canine genome map that is both dense and accurate. The resulting resource encompasses 4249 markers, and was constructed using the RHDF5000-2 whole genome radiation hybrid panel. The radiation hybrid (RH map features a density of one marker every 900 Kb and contains 1760 bacterial artificial chromosome clones (BACs localized to 1423 unique positions, 851 of which have also been mapped by fluorescence in situ hybridization (FISH. The two data sets show excellent concordance. Excluding the Y chromosome, the map features an RH/FISH mapped BAC every 3.5 Mb and an RH mapped BAC-end, on average, every 2 Mb. For 2233 markers, the orthologous human genes have been established, allowing the identification of 79 conserved segments (CS between the dog and human genomes, dramatically extending the length of most previously described CS. Conclusions These results provide a necessary resource for the canine genome mapping community to undertake positional cloning experiments and provide new insights into the comparative canine-human genome maps.

  3. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome.

    Science.gov (United States)

    Shearer, Lindsay A; Anderson, Lorinda K; de Jong, Hans; Smit, Sandra; Goicoechea, José Luis; Roe, Bruce A; Hua, Axin; Giovannoni, James J; Stack, Stephen M

    2014-05-30

    The order and orientation (arrangement) of all 91 sequenced scaffolds in the 12 pseudomolecules of the recently published tomato (Solanum lycopersicum, 2n = 2x = 24) genome sequence were positioned based on marker order in a high-density linkage map. Here, we report the arrangement of these scaffolds determined by two independent physical methods, bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) and optical mapping. By localizing BACs at the ends of scaffolds to spreads of tomato synaptonemal complexes (pachytene chromosomes), we showed that 45 scaffolds, representing one-third of the tomato genome, were arranged differently than predicted by the linkage map. These scaffolds occur mostly in pericentric heterochromatin where 77% of the tomato genome is located and where linkage mapping is less accurate due to reduced crossing over. Although useful for only part of the genome, optical mapping results were in complete agreement with scaffold arrangement by FISH but often disagreed with scaffold arrangement based on the linkage map. The scaffold arrangement based on FISH and optical mapping changes the positions of hundreds of markers in the linkage map, especially in heterochromatin. These results suggest that similar errors exist in pseudomolecules from other large genomes that have been assembled using only linkage maps to predict scaffold arrangement, and these errors can be corrected using FISH and/or optical mapping. Of note, BAC-FISH also permits estimates of the sizes of gaps between scaffolds, and unanchored BACs are often visualized by FISH in gaps between scaffolds and thus represent starting points for filling these gaps.

  4. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study

    Science.gov (United States)

    de Vries, Paul S.; Sabater-Lleal, Maria; Chasman, Daniel I.; Trompet, Stella; Kleber, Marcus E.; Chen, Ming-Huei; Wang, Jie Jin; Attia, John R.; Marioni, Riccardo E.; Weng, Lu-Chen; Grossmann, Vera; Brody, Jennifer A.; Venturini, Cristina; Tanaka, Toshiko; Rose, Lynda M.; Oldmeadow, Christopher; Mazur, Johanna; Basu, Saonli; Yang, Qiong; Ligthart, Symen; Hottenga, Jouke J.; Rumley, Ann; Mulas, Antonella; de Craen, Anton J. M.; Grotevendt, Anne; Taylor, Kent D.; Delgado, Graciela E.; Kifley, Annette; Lopez, Lorna M.; Berentzen, Tina L.; Mangino, Massimo; Bandinelli, Stefania; Morrison, Alanna C.; Hamsten, Anders; Tofler, Geoffrey; de Maat, Moniek P. M.; Draisma, Harmen H. M.; Lowe, Gordon D.; Zoledziewska, Magdalena; Sattar, Naveed; Lackner, Karl J.; Völker, Uwe; McKnight, Barbara; Huang, Jie; Holliday, Elizabeth G.; McEvoy, Mark A.; Starr, John M.; Hysi, Pirro G.; Hernandez, Dena G.; Guan, Weihua; Rivadeneira, Fernando; McArdle, Wendy L.; Slagboom, P. Eline; Zeller, Tanja; Psaty, Bruce M.; Uitterlinden, André G.; de Geus, Eco J. C.; Stott, David J.; Binder, Harald; Hofman, Albert; Franco, Oscar H.; Rotter, Jerome I.; Ferrucci, Luigi; Spector, Tim D.; Deary, Ian J.; März, Winfried; Greinacher, Andreas; Wild, Philipp S.; Cucca, Francesco; Boomsma, Dorret I.; Watkins, Hugh; Tang, Weihong; Ridker, Paul M.; Jukema, Jan W.; Scott, Rodney J.; Mitchell, Paul; Hansen, Torben; O'Donnell, Christopher J.; Smith, Nicholas L.; Strachan, David P.

    2017-01-01

    An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5×10−8 is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5×10−8), the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development. PMID:28107422

  5. Genomic tools development for Aquilegia: construction of a BAC-based physical map

    Directory of Open Access Journals (Sweden)

    Hodges Scott A

    2010-11-01

    Full Text Available Abstract Background The genus Aquilegia, consisting of approximately 70 taxa, is a member of the basal eudicot lineage, Ranuculales, which is evolutionarily intermediate between monocots and core eudicots, and represents a relatively unstudied clade in the angiosperm phylogenetic tree that bridges the gap between these two major plant groups. Aquilegia species are closely related and their distribution covers highly diverse habitats. These provide rich resources to better understand the genetic basis of adaptation to different pollinators and habitats that in turn leads to rapid speciation. To gain insights into the genome structure and facilitate gene identification, comparative genomics and whole-genome shotgun sequencing assembly, BAC-based genomics resources are of crucial importance. Results BAC-based genomic resources, including two BAC libraries, a physical map with anchored markers and BAC end sequences, were established from A. formosa. The physical map was composed of a total of 50,155 BAC clones in 832 contigs and 3939 singletons, covering 21X genome equivalents. These contigs spanned a physical length of 689.8 Mb (~2.3X of the genome suggesting the complex heterozygosity of the genome. A set of 197 markers was developed from ESTs induced by drought-stress, or involved in anthocyanin biosynthesis or floral development, and was integrated into the physical map. Among these were 87 genetically mapped markers that anchored 54 contigs, spanning 76.4 Mb (25.5% across the genome. Analysis of a selection of 12,086 BAC end sequences (BESs from the minimal tiling path (MTP allowed a preview of the Aquilegia genome organization, including identification of transposable elements, simple sequence repeats and gene content. Common repetitive elements previously reported in both monocots and core eudicots were identified in Aquilegia suggesting the value of this genome in connecting the two major plant clades. Comparison with sequenced plant genomes

  6. Metabolomic Functional Analysis of Bacterial Genomes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Arp, Daniel J; Sayavedra-Soto, Luis A

    2008-01-01

    The availability of the complete DNA sequence of the bacterial genome of Nitrosomonas europaea offered the opportunity for unprecedented and detailed investigations of function. We studied the function of genes involved in carbohydrate and Fe metabolism. N. europaea has genes for the synthesis and degradation of glycogen and sucrose but cannot grow on substrates other than ammonia and CO2. Granules of glycogen were detected in whole cells by electron microscopy and quantified in cell-free extracts by enzymatic methods. The cellular glycogen and sucrose content varied depending on the composition of the growth medium and cellular growth stage. N. europaea also depends heavily on iron for metabolism of ammonia, is particularly interesting since it lacks genes for siderophore production, and has genes with only low similarity to known iron reductases, yet grows relatively well in medium containing low Fe. By comparing the transcriptomes of cells grown in iron-replete medium versus iron-limited medium, 247 genes were identified as differentially expressed. Mutant strains deficient in genes for sucrose, glycogen and iron metabolism were created and are being used to further our understanding of ammonia oxidizing bacteria.

  7. Final report. Human artificial episomal chromosome (HAEC) for building large genomic libraries

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Michael H. Vos

    1999-12-09

    Collections of human DNA fragments are maintained for research purposes as clones in bacterial host cells. However for unknown reasons, some regions of the human genome appear to be unclonable or unstable in bacteria. Their team has developed a system using episomes (extrachromosomal, autonomously replication DNA) that maintains large DNA fragments in human cells. This human artificial episomal chromosomal (HAEC) system may prove useful for coverage of these especially difficult regions. In the broader biomedical community, the HAEC system also shows promise for use in functional genomics and gene therapy. Recent improvements to the HAEC system and its application to mapping, sequencing, and functionally studying human and mouse DNA are summarized. Mapping and sequencing the human genome and model organisms are only the first steps in determining the function of various genetic units critical for gene regulation, DNA replication, chromatin packaging, chromosomal stability, and chromatid segregation. Such studies will require the ability to transfer and manipulate entire functional units into mammalian cells.

  8. Palaeohexaploid ancestry for Caryophyllales inferred from extensive gene-based physical and genetic mapping of the sugar beet genome (Beta vulgaris).

    Science.gov (United States)

    Dohm, Juliane C; Lange, Cornelia; Holtgräwe, Daniela; Sörensen, Thomas Rosleff; Borchardt, Dietrich; Schulz, Britta; Lehrach, Hans; Weisshaar, Bernd; Himmelbauer, Heinz

    2012-05-01

    Sugar beet (Beta vulgaris) is an important crop plant that accounts for 30% of the world's sugar production annually. The genus Beta is a distant relative of currently sequenced taxa within the core eudicotyledons; the genomic characterization of sugar beet is essential to make its genome accessible to molecular dissection. Here, we present comprehensive genomic information in genetic and physical maps that cover all nine chromosomes. Based on this information we identified the proposed ancestral linkage groups of rosids and asterids within the sugar beet genome. We generated an extended genetic map that comprises 1127 single nucleotide polymorphism markers prepared from expressed sequence tags and bacterial artificial chromosome (BAC) end sequences. To construct a genome-wide physical map, we hybridized gene-derived oligomer probes against two BAC libraries with 9.5-fold cumulative coverage of the 758 Mbp genome. More than 2500 probes and clones were integrated both in genetic maps and the physical data. The final physical map encompasses 535 chromosomally anchored contigs that contains 8361 probes and 22 815 BAC clones. By using the gene order established with the physical map, we detected regions of synteny between sugar beet (order Caryophyllales) and rosid species that involves 1400-2700 genes in the sequenced genomes of Arabidopsis, poplar, grapevine, and cacao. The data suggest that Caryophyllales share the palaeohexaploid ancestor proposed for rosids and asterids. Taken together, we here provide extensive molecular resources for sugar beet and enable future high-resolution trait mapping, gene identification, and cross-referencing to regions sequenced in other plant species.

  9. Rapid genome-scale mapping of chromatin accessibility in tissue

    DEFF Research Database (Denmark)

    Grøntved, Lars; Bandle, Russell; John, Sam;

    2012-01-01

    BACKGROUND: The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant...

  10. Interpopulation hybrid breakdown maps to the mitochondrial genome.

    Science.gov (United States)

    Ellison, Christopher K; Burton, Ronald S

    2008-03-01

    Hybrid breakdown, or outbreeding depression, is the loss of fitness observed in crosses between genetically divergent populations. The role of maternally inherited mitochondrial genomes in hybrid breakdown has not been widely examined. Using laboratory crosses of the marine copepod Tigriopus californicus, we report that the low fitness of F(3) hybrids is completely restored in the offspring of maternal backcrosses, where parental mitochondrial and nuclear genomic combinations are reassembled. Paternal backcrosses, which result in mismatched mitochondrial and nuclear genomes, fail to restore hybrid fitness. These results suggest that fitness loss in T. californicus hybrids is completely attributable to nuclear-mitochondrial genomic interactions. Analyses of ATP synthetic capacity in isolated mitochondria from hybrid and backcross animals found that reduced ATP synthesis in hybrids was also largely restored in backcrosses, again with maternal backcrosses outperforming paternal backcrosses. The strong fitness consequences of nuclear-mitochondrial interactions have important, and often overlooked, implications for evolutionary and conservation biology.

  11. Genetic Mapping of Millions of SNPs in Safflower (Carthamus tinctorius L.) via Whole-Genome Resequencing

    OpenAIRE

    Bowers, John E.; Pearl, Stephanie A; Burke, John M.

    2016-01-01

    Accurate assembly of complete genomes is facilitated by very high density genetic maps. We performed low-coverage, whole-genome shotgun sequencing on 96 F6 recombinant inbred lines (RILs) of a cross between safflower (Carthamus tinctorius L.) and its wild progenitor (C. palaestinus Eig). We also produced a draft genome assembly of C. tinctorius covering 866 million bp (∼two-thirds) of the expected 1.35 Gbp genome after sequencing a single, short insert library to ∼21 × depth. Sequence reads f...

  12. A consensus linkage map of the chicken genome

    NARCIS (Netherlands)

    Groenen, M.A.M.; Cheng, H.H.; Bumstead, N.; Benkel, B.; Briles, E.; Burt, D.W.; Burke, T.; Dodgson, J.; Hillel, J.; Lamont, S.; Ponce, de F.A.; Soller, M.

    2000-01-01

    A consensus linkage map has been developed in the chicken that combines all of the genotyping data from the three available chicken mapping populations. Genotyping data were contributed by the laboratories that have been using the East Lansing and Compton reference populations and from the Animal Br

  13. A consensus linkage map of the chicken genome

    NARCIS (Netherlands)

    Groenen, M.A.M.; Cheng, H.H.; Bumstead, N.; Benkel, B.; Briles, E.; Burt, D.W.; Burke, T.; Dodgson, J.; Hillel, J.; Lamont, S.; Ponce, de F.A.; Soller, M.

    2000-01-01

    A consensus linkage map has been developed in the chicken that combines all of the genotyping data from the three available chicken mapping populations. Genotyping data were contributed by the laboratories that have been using the East Lansing and Compton reference populations and from the Animal

  14. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation

    Directory of Open Access Journals (Sweden)

    Ward Judson A

    2013-01-01

    Full Text Available Abstract Background Rapid development of highly saturated genetic maps aids molecular breeding, which can accelerate gain per breeding cycle in woody perennial plants such as Rubus idaeus (red raspberry. Recently, robust genotyping methods based on high-throughput sequencing were developed, which provide high marker density, but result in some genotype errors and a large number of missing genotype values. Imputation can reduce the number of missing values and can correct genotyping errors, but current methods of imputation require a reference genome and thus are not an option for most species. Results Genotyping by Sequencing (GBS was used to produce highly saturated maps for a R. idaeus pseudo-testcross progeny. While low coverage and high variance in sequencing resulted in a large number of missing values for some individuals, a novel method of imputation based on maximum likelihood marker ordering from initial marker segregation overcame the challenge of missing values, and made map construction computationally tractable. The two resulting parental maps contained 4521 and 2391 molecular markers spanning 462.7 and 376.6 cM respectively over seven linkage groups. Detection of precise genomic regions with segregation distortion was possible because of map saturation. Microsatellites (SSRs linked these results to published maps for cross-validation and map comparison. Conclusions GBS together with genome-independent imputation provides a rapid method for genetic map construction in any pseudo-testcross progeny. Our method of imputation estimates the correct genotype call of missing values and corrects genotyping errors that lead to inflated map size and reduced precision in marker placement. Comparison of SSRs to published R. idaeus maps showed that the linkage maps constructed with GBS and our method of imputation were robust, and marker positioning reliable. The high marker density allowed identification of genomic regions with segregation

  15. Enterobacter asburiae Strain L1: Complete Genome and Whole Genome Optical Mapping Analysis of a Quorum Sensing Bacterium

    Directory of Open Access Journals (Sweden)

    Yin Yin Lau

    2014-07-01

    Full Text Available Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII and the whole genome sequence was verified by using optical genome mapping (OpGen technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae.

  16. Unidimensional nonnegative scaling for genome-wide linkage disequilibrium maps.

    Science.gov (United States)

    Liao, Haiyong; Ng, Michael; Fung, Eric; Sham, Pak C

    2008-01-01

    The main aim of this paper is to propose and develop a unidimensional nonnegative scaling model to construct Linkage Disequilibrium (LD) maps. The proposed constrained scaling model can be efficiently solved by transforming it to an unconstrained model. The method is implemented in PC Clusters at Hong Kong Baptist University. The LD maps are constructed for four populations from Hapmap data sets with chromosomes of several ten thousand Single Nucleotide Polymorphisms (SNPs). The similarities and dissimilarities of the LD maps are studied and analysed. Computational results are also reported to show the effectiveness of the method using parallel computation.

  17. Development and Initial Characterization of a HAPPY Panel for Mapping the X. Tropicalis Genome

    Directory of Open Access Journals (Sweden)

    Zhihua Jiang, Jennifer J. Michal, Kenneth B. Beckman, Jessica B. Lyons, Ming Zhang, Zengxiang Pan, Daniel S. Rokhsar, Richard M. Harland

    2011-01-01

    Full Text Available HAPPY mapping was designed to pursue the analysis of approximately random HAPloid DNA breakage samples using the PolYmerase chain reaction for mapping genomes. In the present study, we improved the method and integrated two other molecular techniques into the process: whole genome amplification and the Sequenom SNP (single nucleotide polymorphism genotyping assay in order to facilitate whole genome mapping of X. tropicalis. The former technique amplified enough DNA materials to genotype a large number of markers, while the latter allowed for relatively high throughput marker genotyping with multiplex assays on the HAPPY lines. A total of 58 X. tropicalis genes were genotyped on an initial panel of 383 HAPPY lines, which contributed to formation of a working panel of 146 lines. Further genotyping of 29 markers on the working panel led to construction of a HAPPY map for the X. tropicalis genome. We believe that our improved HAPPY method described in the present study has paved the way for the community to map different genomes with a simple, but powerful approach.

  18. Genomic composition and evolution of Aedes aegypti chromosomes revealed by the analysis of physically mapped supercontigs

    Science.gov (United States)

    2014-01-01

    Background An initial comparative genomic study of the malaria vector Anopheles gambiae and the yellow fever mosquito Aedes aegypti revealed striking differences in the genome assembly size and in the abundance of transposable elements between the two species. However, the chromosome arms homology between An. gambiae and Ae. aegypti, as well as the distribution of genes and repetitive elements in chromosomes of Ae. aegypti, remained largely unexplored because of the lack of a detailed physical genome map for the yellow fever mosquito. Results Using a molecular landmark-guided fluorescent in situ hybridization approach, we mapped 624 Mb of the Ae. aegypti genome to mitotic chromosomes. We used this map to analyze the distribution of genes, tandem repeats and transposable elements along the chromosomes and to explore the patterns of chromosome homology and rearrangements between Ae. aegypti and An. gambiae. The study demonstrated that the q arm of the sex-determining chromosome 1 had the lowest gene content and the highest density of minisatellites. A comparative genomic analysis with An. gambiae determined that the previously proposed whole-arm synteny is not fully preserved; a number of pericentric inversions have occurred between the two species. The sex-determining chromosome 1 had a higher rate of genome rearrangements than observed in autosomes 2 and 3 of Ae. aegypti. Conclusions The study developed a physical map of 45% of the Ae. aegypti genome and provided new insights into genomic composition and evolution of Ae. aegypti chromosomes. Our data suggest that minisatellites rather than transposable elements played a major role in rapid evolution of chromosome 1 in the Aedes lineage. The research tools and information generated by this study contribute to a more complete understanding of the genome organization and evolution in mosquitoes. PMID:24731704

  19. A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome.

    Science.gov (United States)

    Ren, Yi; Zhao, Hong; Kou, Qinghe; Jiang, Jiao; Guo, Shaogui; Zhang, Haiying; Hou, Wenju; Zou, Xiaohua; Sun, Honghe; Gong, Guoyi; Levi, Amnon; Xu, Yong

    2012-01-01

    As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F(8) population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ∼800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits.

  20. Single-molecule approach to bacterial genomic comparisons via optical mapping.

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shiguo [Univ. Wisc.-Madison; Kile, A. [Univ. Wisc.-Madison; Bechner, M. [Univ. Wisc.-Madison; Kvikstad, E. [Univ. Wisc.-Madison; Deng, W. [Univ. Wisc.-Madison; Wei, J. [Univ. Wisc.-Madison; Severin, J. [Univ. Wisc.-Madison; Runnheim, R. [Univ. Wisc.-Madison; Churas, C. [Univ. Wisc.-Madison; Forrest, D. [Univ. Wisc.-Madison; Dimalanta, E. [Univ. Wisc.-Madison; Lamers, C. [Univ. Wisc.-Madison; Burland, V. [Univ. Wisc.-Madison; Blattner, F. R. [Univ. Wisc.-Madison; Schwartz, David C. [Univ. Wisc.-Madison

    2004-01-01

    Modern comparative genomics has been established, in part, by the sequencing and annotation of a broad range of microbial species. To gain further insights, new sequencing efforts are now dealing with the variety of strains or isolates that gives a species definition and range; however, this number vastly outstrips our ability to sequence them. Given the availability of a large number of microbial species, new whole genome approaches must be developed to fully leverage this information at the level of strain diversity that maximize discovery. Here, we describe how optical mapping, a single-molecule system, was used to identify and annotate chromosomal alterations between bacterial strains represented by several species. Since whole-genome optical maps are ordered restriction maps, sequenced strains of Shigella flexneri serotype 2a (2457T and 301), Yersinia pestis (CO 92 and KIM), and Escherichia coli were aligned as maps to identify regions of homology and to further characterize them as possible insertions, deletions, inversions, or translocations. Importantly, an unsequenced Shigella flexneri strain (serotype Y strain AMC[328Y]) was optically mapped and aligned with two sequenced ones to reveal one novel locus implicated in serotype conversion and several other loci containing insertion sequence elements or phage-related gene insertions. Our results suggest that genomic rearrangements and chromosomal breakpoints are readily identified and annotated against a prototypic sequenced strain by using the tools of optical mapping.

  1. Simple Sequence Repeat Genetic Linkage Maps of A-genome Diploid Cotton (Gossypium arboreum)

    Institute of Scientific and Technical Information of China (English)

    Xue-Xia Ma; Bao-Liang Zhou; Yan-Hui Lü; Wang-Zhen Guo; Tian-Zhen Zhang

    2008-01-01

    This study introduces the construction of the first intraspacific genetic linkage map of the A-genome diploid cotton with newly developed simple sequence repeat (SSR) markers using 189 F2 plants derived from the cross of two Asiatic parents were detected using 6 092 pairs of SSR primers. Two-hundred and sixty-eight pairs of SSR pdmers with better polymorphisms were picked out to analyze the F2 population. In total, 320 polymorphic bands were generated and used to construct a linkage map with JoinMap3.0. Two-hundred and sixty-seven loci, Including three phenotypic traits were mapped at a logarithms of odds ratio (LOD) ≥ 3.0 on 13 linkage groups. The total length of the map was 2 508.71 cM, and the average distance between adjacent markers was 9.40 cM. Chromosome assignments were according to the association of linkages with our backbone tetraploid specific map using the 89 similar SSR loci. Comparisons among the 13 suites of orthologous linkage groups revealed that the A-genome chromosomes are largely collinear with the At and Dt sub-genome chromosomes. Chromosomes associated with inversions suggested that allopolyploidization was accompanied by homologous chromosomal rearrangement. The inter-chromosomal duplicated loci supply molecular evidence that the A-genome diploid Asiatic cotton is paleopolyploid.

  2. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Yu, Yang; Zhang, Xiaojun; Yuan, Jianbo; Li, Fuhua; Chen, Xiaohan; Zhao, Yongzhen; Huang, Long; Zheng, Hongkun; Xiang, Jianhai

    2015-10-27

    The Pacific white shrimp Litopenaeus vannamei is the dominant crustacean species in global seafood mariculture. Understanding the genome and genetic architecture is useful for deciphering complex traits and accelerating the breeding program in shrimp. In this study, a genome survey was conducted and a high-density linkage map was constructed using a next-generation sequencing approach. The genome survey was used to identify preliminary genome characteristics and to generate a rough reference for linkage map construction. De novo SNP discovery resulted in 25,140 polymorphic markers. A total of 6,359 high-quality markers were selected for linkage map construction based on marker coverage among individuals and read depths. For the linkage map, a total of 6,146 markers spanning 4,271.43 cM were mapped to 44 sex-averaged linkage groups, with an average marker distance of 0.7 cM. An integration analysis linked 5,885 genome scaffolds and 1,504 BAC clones to the linkage map. Based on the high-density linkage map, several QTLs for body weight and body length were detected. This high-density genetic linkage map reveals basic genomic architecture and will be useful for comparative genomics research, genome assembly and genetic improvement of L. vannamei and other penaeid shrimp species.

  3. Inter-simple sequence repeat (ISSR) loci mapping in the genome of perennial ryegrass

    DEFF Research Database (Denmark)

    Pivorienė, O; Pašakinskienė, I; Brazauskas, G;

    2008-01-01

    The aim of this study was to identify and characterize new ISSR markers and their loci in the genome of perennial ryegrass. A subsample of the VrnA F2 mapping family of perennial ryegrass comprising 92 individuals was used to develop a linkage map including inter-simple sequence repeat markers...... demonstrated a 70% similarity to the Hordeum vulgare germin gene GerA. Inter-SSR mapping will provide useful information for gene targeting, quantitative trait loci mapping and marker-assisted selection in perennial ryegrass....

  4. Annual genome conference. Final report, September 1, 1994--August 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, K.

    1995-11-01

    Tremendous progress has been made in the construction of physical and genetic maps of the human chromosomes. The next step in the solving of disease related problems, and in understanding the human genome as a whole, is the systematic isolation of transcribed sequences. Many investigators have already embarked upon comprehensive gene searches, and many more are considering the best strategies for undertaking such searches. Because these are likely to be costly and time consuming endeavors, it is important to determine the most efficient approaches. As a result, it is critical that investigators involved in the construction of transcriptional maps have the opportunity to discuss their experiences and their successes with both old and new technologies. This document contains the proceedings of the Fourth Annual Workshop on the Identification of Transcribed Sequences, held in Montreal, Quebec, October 16-18, 1994. Included are the workshop notebook, containing the agenda, abstracts presented and list of attendees. Topics included: Progress in the application of the hybridization based approaches and exon trapping; Progress in transcriptional map construction of selected genomic regions; Computer assisted analysis of genomic and protein coding sequences and additional new approaches; and, Sequencing and mapping of random cDNAs.

  5. LD-Spline: Mapping SNPs on genotyping platforms to genomic regions using patterns of linkage disequilibrium

    Directory of Open Access Journals (Sweden)

    Bush William S

    2009-12-01

    Full Text Available Abstract Background Gene-centric analysis tools for genome-wide association study data are being developed both to annotate single locus statistics and to prioritize or group single nucleotide polymorphisms (SNPs prior to analysis. These approaches require knowledge about the relationships between SNPs on a genotyping platform and genes in the human genome. SNPs in the genome can represent broader genomic regions via linkage disequilibrium (LD, and population-specific patterns of LD can be exploited to generate a data-driven map of SNPs to genes. Methods In this study, we implemented LD-Spline, a database routine that defines the genomic boundaries a particular SNP represents using linkage disequilibrium statistics from the International HapMap Project. We compared the LD-Spline haplotype block partitioning approach to that of the four gamete rule and the Gabriel et al. approach using simulated data; in addition, we processed two commonly used genome-wide association study platforms. Results We illustrate that LD-Spline performs comparably to the four-gamete rule and the Gabriel et al. approach; however as a SNP-centric approach LD-Spline has the added benefit of systematically identifying a genomic boundary for each SNP, where the global block partitioning approaches may falter due to sampling variation in LD statistics. Conclusion LD-Spline is an integrated database routine that quickly and effectively defines the genomic region marked by a SNP using linkage disequilibrium, with a SNP-centric block definition algorithm.

  6. Mapping our genes: The genome projects: How big, how fast

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1988-04-01

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for /open quotes/writing the rules/close quotes/ of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. OTA prepared this report with the assistance of several hundred experts throughout the world. 342 refs., 26 figs., 11 tabs.

  7. Mapping Our Genes: The Genome Projects: How Big, How Fast

    Science.gov (United States)

    1988-04-01

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for �writing the rules� of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. The Office of Technology Assessment (OTA) prepared this report with the assistance of several hundred experts throughout the world.

  8. The Human Genome Project: Information access, management, and regulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.D.; Micikas, L.B.

    1996-08-31

    The Human Genome Project is a large, internationally coordinated effort in biological research directed at creating a detailed map of human DNA. This report describes the access of information, management, and regulation of the project. The project led to the development of an instructional module titled The Human Genome Project: Biology, Computers, and Privacy, designed for use in high school biology classes. The module consists of print materials and both Macintosh and Windows versions of related computer software-Appendix A contains a copy of the print materials and discs containing the two versions of the software.

  9. A first generation BAC-based physical map of the channel catfish genome

    Directory of Open Access Journals (Sweden)

    Waldbieser Geoffrey C

    2007-02-01

    Full Text Available Abstract Background Channel catfish, Ictalurus punctatus, is the leading species in North American aquaculture. Genetic improvement of catfish is performed through selective breeding, and genomic tools will help improve selection efficiency. A physical map is needed to integrate the genetic map with the karyotype and to support fine mapping of phenotypic trait alleles such as Quantitative Trait Loci (QTL and the effective positional cloning of genes. Results A genome-wide physical map of the channel catfish was constructed by High-Information-Content Fingerprinting (HICF of 46,548 Bacterial Artificial Chromosomes (BAC clones using the SNaPshot technique. The clones were assembled into contigs with FPC software. The resulting assembly contained 1,782 contigs and covered an estimated physical length of 0.93 Gb. The validity of the assembly was demonstrated by 1 anchoring 19 of the largest contigs to the microsatellite linkage map 2 comparing the assembly of a multi-gene family to Restriction Fragment Length Polymorphism (RFLP patterns seen in Southern blots, and 3 contig sequencing. Conclusion This is the first physical map for channel catfish. The HICF technique allowed the project to be finished with a limited amount of human resource in a high throughput manner. This physical map will greatly facilitate the detailed study of many different genomic regions in channel catfish, and the positional cloning of genes controlling economically important production traits.

  10. QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments

    Directory of Open Access Journals (Sweden)

    Meirmans Patrick G

    2011-03-01

    Full Text Available Abstract Background The genomic architecture of bud phenology and height growth remains poorly known in most forest trees. In non model species, QTL studies have shown limited application because most often QTL data could not be validated from one experiment to another. The aim of our study was to overcome this limitation by basing QTL detection on the construction of genetic maps highly-enriched in gene markers, and by assessing QTLs across pedigrees, years, and environments. Results Four saturated individual linkage maps representing two unrelated mapping populations of 260 and 500 clonally replicated progeny were assembled from 471 to 570 markers, including from 283 to 451 gene SNPs obtained using a multiplexed genotyping assay. Thence, a composite linkage map was assembled with 836 gene markers. For individual linkage maps, a total of 33 distinct quantitative trait loci (QTLs were observed for bud flush, 52 for bud set, and 52 for height growth. For the composite map, the corresponding numbers of QTL clusters were 11, 13, and 10. About 20% of QTLs were replicated between the two mapping populations and nearly 50% revealed spatial and/or temporal stability. Three to four occurrences of overlapping QTLs between characters were noted, indicating regions with potential pleiotropic effects. Moreover, some of the genes involved in the QTLs were also underlined by recent genome scans or expression profile studies. Overall, the proportion of phenotypic variance explained by each QTL ranged from 3.0 to 16.4% for bud flush, from 2.7 to 22.2% for bud set, and from 2.5 to 10.5% for height growth. Up to 70% of the total character variance could be accounted for by QTLs for bud flush or bud set, and up to 59% for height growth. Conclusions This study provides a basic understanding of the genomic architecture related to bud flush, bud set, and height growth in a conifer species, and a useful indicator to compare with Angiosperms. It will serve as a basic

  11. High-resolution, genome-wide mapping of chromatin modifications by GMAT.

    Science.gov (United States)

    Roh, Tae-Young; Zhao, Keji

    2008-01-01

    One major postgenomic challenge is to characterize the epigenomes that control genome functions. The epigenomes are mainly defined by the specific association of nonhistone proteins with chromatin and the covalent modifications of chromatin, including DNA methylation and posttranslational histone modifications. The in vivo protein-binding and chromatin-modification patterns can be revealed by the chromatin immunoprecipitation assay (ChIP). By combining the ChIP assays and the serial analysis of gene expression (SAGE) protocols, we have developed an unbiased and high-resolution genome-wide mapping technique (GMAT) to determine the genome-wide protein-targeting and chromatin-modification patterns. GMAT has been successfully applied to mapping the target sites of the histone acetyltransferase, Gcn5p, in yeast and to the discovery of the histone acetylation islands as an epigenetic mark for functional regulatory elements in the human genome.

  12. Integration of the Rat Recombination and EST Maps in the Rat Genomic Sequence and Comparative Mapping Analysis With the Mouse Genome

    OpenAIRE

    Wilder, Steven P.; Bihoreau, Marie-Thérèse; Argoud, Karène; Watanabe, Takeshi K.; Lathrop, Mark; Gauguier, Dominique

    2004-01-01

    Inbred strains of the laboratory rat are widely used for identifying genetic regions involved in the control of complex quantitative phenotypes of biomedical importance. The draft genomic sequence of the rat now provides essential information for annotating rat quantitative trait locus (QTL) maps. Following the survey of unique rat microsatellite (11,585 including 1648 new markers) and EST (10,067) markers currently available, we have incorporated a selection of 7952 rat EST sequences in an i...

  13. Scanning the landscape of genome architecture of non-O1 and non-O139 Vibrio cholerae by whole genome mapping reveals extensive population genetic diversity.

    Directory of Open Access Journals (Sweden)

    Carol Chapman

    Full Text Available Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping based bar coding produces a high resolution, ordered restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.

  14. Scanning the landscape of genome architecture of non-O1 and non-O139 Vibrio cholerae by whole genome mapping reveals extensive population genetic diversity.

    Science.gov (United States)

    Chapman, Carol; Henry, Matthew; Bishop-Lilly, Kimberly A; Awosika, Joy; Briska, Adam; Ptashkin, Ryan N; Wagner, Trevor; Rajanna, Chythanya; Tsang, Hsinyi; Johnson, Shannon L; Mokashi, Vishwesh P; Chain, Patrick S G; Sozhamannan, Shanmuga

    2015-01-01

    Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping) based bar coding produces a high resolution, ordered restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.

  15. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation.

    Science.gov (United States)

    Fitzpatrick, Matthew C; Keller, Stephen R

    2015-01-01

    Local adaptation is a central feature of most species occupying spatially heterogeneous environments, and may factor critically in responses to environmental change. However, most efforts to model the response of species to climate change ignore intraspecific variation due to local adaptation. Here, we present a new perspective on spatial modelling of organism-environment relationships that combines genomic data and community-level modelling to develop scenarios regarding the geographic distribution of genomic variation in response to environmental change. Rather than modelling species within communities, we use these techniques to model large numbers of loci across genomes. Using balsam poplar (Populus balsamifera) as a case study, we demonstrate how our framework can accommodate nonlinear responses of loci to environmental gradients. We identify a threshold response to temperature in the circadian clock gene GIGANTEA-5 (GI5), suggesting that this gene has experienced strong local adaptation to temperature. We also demonstrate how these methods can map ecological adaptation from genomic data, including the identification of predicted differences in the genetic composition of populations under current and future climates. Community-level modelling of genomic variation represents an important advance in landscape genomics and spatial modelling of biodiversity that moves beyond species-level assessments of climate change vulnerability.

  16. Toward a physical map of the genome of the nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Coulson, A.; Sulston, J.; Brenner, S.; Karn, J.

    1986-10-01

    A technique for digital characterization and comparison of DNA fragments, using restriction enzymes, is described. The technique is being applied to fragments from the nematode Caenorhabditis elegans (i) to facilitate cross-indexing of clones emanating from different laboratories and (ii) to construct a physical map of the genome. Eight hundred sixty clusters of clones, from 35 to 350 kilobases long and totaling about 60% of the genome, have been characterized.

  17. CREST maps somatic structural variation in cancer genomes with base-pair resolution.

    Science.gov (United States)

    Wang, Jianmin; Mullighan, Charles G; Easton, John; Roberts, Stefan; Heatley, Sue L; Ma, Jing; Rusch, Michael C; Chen, Ken; Harris, Christopher C; Ding, Li; Holmfeldt, Linda; Payne-Turner, Debbie; Fan, Xian; Wei, Lei; Zhao, David; Obenauer, John C; Naeve, Clayton; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Zhang, Jinghui

    2011-06-12

    We developed 'clipping reveals structure' (CREST), an algorithm that uses next-generation sequencing reads with partial alignments to a reference genome to directly map structural variations at the nucleotide level of resolution. Application of CREST to whole-genome sequencing data from five pediatric T-lineage acute lymphoblastic leukemias (T-ALLs) and a human melanoma cell line, COLO-829, identified 160 somatic structural variations. Experimental validation exceeded 80%, demonstrating that CREST had a high predictive accuracy.

  18. CREST maps somatic structural variation in cancer genomes with base-pair resolution

    OpenAIRE

    2011-01-01

    We developed CREST (Clipping REveals STructure), an algorithm that uses next-generation sequencing reads with partial alignments to a reference genome to directly map structural variations at the nucleotide level of resolution. Application of CREST to whole-genome sequencing data from five pediatric T-lineage acute lymphoblastic leukemias (T-ALLs) and a human melanoma cell line, COLO-829, identified 160 somatic structural variations. Experimental validation exceeded 80% demonstrating that CRE...

  19. TreeQA: quantitative genome wide association mapping using local perfect phylogeny trees.

    Science.gov (United States)

    Pan, Feng; McMillan, Leonard; Pardo-Manuel De Villena, Fernando; Threadgill, David; Wang, Wei

    2009-01-01

    The goal of genome wide association (GWA) mapping in modern genetics is to identify genes or narrow regions in the genome that contribute to genetically complex phenotypes such as morphology or disease. Among the existing methods, tree-based association mapping methods show obvious advantages over single marker-based and haplotype-based methods because they incorporate information about the evolutionary history of the genome into the analysis. However, existing tree-based methods are designed primarily for binary phenotypes derived from case/control studies or fail to scale genome-wide. In this paper, we introduce TreeQA, a quantitative GWA mapping algorithm. TreeQA utilizes local perfect phylogenies constructed in genomic regions exhibiting no evidence of historical recombination. By efficient algorithm design and implementation, TreeQA can efficiently conduct quantitative genom-wide association analysis and is more effective than the previous methods. We conducted extensive experiments on both simulated datasets and mouse inbred lines to demonstrate the efficiency and effectiveness of TreeQA.

  20. Human cDNA mapping using fluorescence in situ hybridization. Final progress report, April 1, 1994--July 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1997-12-31

    The ultimate goal of this research is to generate and apply novel technologies to speed completion and integration of the human genome map and sequence with biomedical problems. To do this, techniques were developed and genome-wide resources generated. This includes a genome-wide Mapped and Integrated BAC/PAC Resource that has been used for gene finding, map completion and anchoring, breakpoint definition and sequencing. In the last period of the grant, the Human Mapped BAC/PAC Resource was also applied to determine regions of human variation and to develop a novel paradigm of primate evolution through to humans. Further, in order to more rapidly evaluate animal models of human disease, a BAC Map of the mouse was generated in collaboration with the MTI Genome Center, Dr. Bruce Birren.

  1. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M Vargas

    2014-01-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence ...

  2. Defining a Cancer Dependency Map | Office of Cancer Genomics

    Science.gov (United States)

    Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed DEMETER, an analytical framework that segregates on- from off-target effects of RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six SDs from the mean.

  3. Genome-Wide Mapping of in Vivo Protein-DNA Interactions

    OpenAIRE

    Johnson, David S.; Mortazavi, Ali; Myers, Richard M.; Wold, Barbara

    2007-01-01

    In vivo protein-DNA interactions connect each transcription factor with its direct targets to form a gene network scaffold. To map these protein-DNA interactions comprehensively across entire mammalian genomes, we developed a large-scale chromatin immunoprecipitation assay (ChIPSeq) based on direct ultrahigh-throughput DNA sequencing. This sequence census method was then used to map in vivo binding of the neuron-restrictive silencer factor (NRSF; also known as REST, for repressor element–1 si...

  4. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Directory of Open Access Journals (Sweden)

    McGuire Patrick E

    2010-12-01

    Full Text Available Abstract Background A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. Results Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. Conclusions In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large

  5. A genomic scale map of genetic diversity in Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Ackermann Alejandro A

    2012-12-01

    Full Text Available Abstract Background Trypanosoma cruzi, the causal agent of Chagas Disease, affects more than 16 million people in Latin America. The clinical outcome of the disease results from a complex interplay between environmental factors and the genetic background of both the human host and the parasite. However, knowledge of the genetic diversity of the parasite, is currently limited to a number of highly studied loci. The availability of a number of genomes from different evolutionary lineages of T. cruzi provides an unprecedented opportunity to look at the genetic diversity of the parasite at a genomic scale. Results Using a bioinformatic strategy, we have clustered T. cruzi sequence data available in the public domain and obtained multiple sequence alignments in which one or two alleles from the reference CL-Brener were included. These data covers 4 major evolutionary lineages (DTUs: TcI, TcII, TcIII, and the hybrid TcVI. Using these set of alignments we have identified 288,957 high quality single nucleotide polymorphisms and 1,480 indels. In a reduced re-sequencing study we were able to validate ~ 97% of high-quality SNPs identified in 47 loci. Analysis of how these changes affect encoded protein products showed a 0.77 ratio of synonymous to non-synonymous changes in the T. cruzi genome. We observed 113 changes that introduce or remove a stop codon, some causing significant functional changes, and a number of tri-allelic and tetra-allelic SNPs that could be exploited in strain typing assays. Based on an analysis of the observed nucleotide diversity we show that the T. cruzi genome contains a core set of genes that are under apparent purifying selection. Interestingly, orthologs of known druggable targets show statistically significant lower nucleotide diversity values. Conclusions This study provides the first look at the genetic diversity of T. cruzi at a genomic scale. The analysis covers an estimated ~ 60% of the genetic diversity present in the

  6. Construction of an E. Coli genome-scale atom mapping model for MFA calculations.

    Science.gov (United States)

    Ravikirthi, Prabhasa; Suthers, Patrick F; Maranas, Costas D

    2011-06-01

    Metabolic flux analysis (MFA) has so far been restricted to lumped networks lacking many important pathways, partly due to the difficulty in automatically generating isotope mapping matrices for genome-scale metabolic networks. Here we introduce a procedure that uses a compound matching algorithm based on the graph theoretical concept of pattern recognition along with relevant reaction information to automatically generate genome-scale atom mappings which trace the path of atoms from reactants to products for every reaction. The procedure is applied to the iAF1260 metabolic reconstruction of Escherichia coli yielding the genome-scale isotope mapping model imPR90068. This model maps 90,068 non-hydrogen atoms that span all 2,077 reactions present in iAF1260 (previous largest mapping model included 238 reactions). The expanded scope of the isotope mapping model allows the complete tracking of labeled atoms through pathways such as cofactor and prosthetic group biosynthesis and histidine metabolism. An EMU representation of imPR90068 is also constructed and made available.

  7. Evaluation of preprocessing, mapping and postprocessing algorithms for analyzing whole genome bisulfite sequencing data.

    Science.gov (United States)

    Tsuji, Junko; Weng, Zhiping

    2016-11-01

    Cytosine methylation regulates many biological processes such as gene expression, chromatin structure and chromosome stability. The whole genome bisulfite sequencing (WGBS) technique measures the methylation level at each cytosine throughout the genome. There are an increasing number of publicly available pipelines for analyzing WGBS data, reflecting many choices of read mapping algorithms as well as preprocessing and postprocessing methods. We simulated single-end and paired-end reads based on three experimental data sets, and comprehensively evaluated 192 combinations of three preprocessing, five postprocessing and five widely used read mapping algorithms. We also compared paired-end data with single-end data at the same sequencing depth for performance of read mapping and methylation level estimation. Bismark and LAST were the most robust mapping algorithms. We found that Mott trimming and quality filtering individually improved the performance of both read mapping and methylation level estimation, but combining them did not lead to further improvement. Furthermore, we confirmed that paired-end sequencing reduced error rate and enhanced sensitivity for both read mapping and methylation level estimation, especially for short reads and in repetitive regions of the human genome.

  8. Whole genome association mapping by incompatibilities and local perfect phylogenies

    DEFF Research Database (Denmark)

    Mailund, Thomas; Besenbacher, Søren; Schierup, Mikkel Heide

    2006-01-01

    Background: With current technology, vast amounts of data can be cheaply and efficiently produced in association studies, and to prevent data analysis to become the bottleneck of studies, fast and efficient analysis methods that scale to such data set sizes must be developed. Results: We present...... a fast method for accurate localisation of disease causing variants in high density case-control association mapping experiments with large numbers of cases and controls. The method searches for significant clustering of case chromosomes in the "perfect" phylogenetic tree defined by the largest region....... Haplotype data and phased genotype data can be analysed. The power and efficiency of the method is investigated on 1) simulated genotype data under different models of disease determination 2) artificial data sets created from the HapMap ressource, and 3) data sets used for testing of other methods in order...

  9. Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses

    Directory of Open Access Journals (Sweden)

    Gogarten J Peter

    2002-02-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT played an important role in shaping microbial genomes. In addition to genes under sporadic selection, HGT also affects housekeeping genes and those involved in information processing, even ribosomal RNA encoding genes. Here we describe tools that provide an assessment and graphic illustration of the mosaic nature of microbial genomes. Results We adapted the Maximum Likelihood (ML mapping to the analyses of all detected quartets of orthologous genes found in four genomes. We have automated the assembly and analyses of these quartets of orthologs given the selection of four genomes. We compared the ML-mapping approach to more rigorous Bayesian probability and Bootstrap mapping techniques. The latter two approaches appear to be more conservative than the ML-mapping approach, but qualitatively all three approaches give equivalent results. All three tools were tested on mitochondrial genomes, which presumably were inherited as a single linkage group. Conclusions In some instances of interphylum relationships we find nearly equal numbers of quartets strongly supporting the three possible topologies. In contrast, our analyses of genome quartets containing the cyanobacterium Synechocystis sp. indicate that a large part of the cyanobacterial genome is related to that of low GC Gram positives. Other groups that had been suggested as sister groups to the cyanobacteria contain many fewer genes that group with the Synechocystis orthologs. Interdomain comparisons of genome quartets containing the archaeon Halobacterium sp. revealed that Halobacterium sp. shares more genes with Bacteria that live in the same environment than with Bacteria that are more closely related based on rRNA phylogeny . Many of these genes encode proteins involved in substrate transport and metabolism and in information storage and processing. The performed analyses demonstrate that relationships among prokaryotes cannot be accurately

  10. Optically Mapping Multiple Bacterial Genomes Simultaneously in a Single Run

    Science.gov (United States)

    2011-11-21

    but many clinical strains of Acinetobacter baumannii , distinguished by a few insertions, are too closely related to be mapped independently on the...0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing ...instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

  11. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L. genome

    Directory of Open Access Journals (Sweden)

    Li Shaoxiong

    2010-01-01

    Full Text Available Abstract Background The construction of genetic linkage maps for cultivated peanut (Arachis hypogaea L. has and continues to be an important research goal to facilitate quantitative trait locus (QTL analysis and gene tagging for use in a marker-assisted selection in breeding. Even though a few maps have been developed, they were constructed using diploid or interspecific tetraploid populations. The most recently published intra-specific map was constructed from the cross of cultivated peanuts, in which only 135 simple sequence repeat (SSR markers were sparsely populated in 22 linkage groups. The more detailed linkage map with sufficient markers is necessary to be feasible for QTL identification and marker-assisted selection. The objective of this study was to construct a genetic linkage map of cultivated peanut using simple sequence repeat (SSR markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs, and by "data mining" sequences released in GenBank. Results Three recombinant inbred lines (RILs populations were constructed from three crosses with one common female parental line Yueyou 13, a high yielding Spanish market type. The four parents were screened with 1044 primer pairs designed to amplify SSRs and 901 primer pairs produced clear PCR products. Of the 901 primer pairs, 146, 124 and 64 primer pairs (markers were polymorphic in these populations, respectively, and used in genotyping these RIL populations. Individual linkage maps were constructed from each of the three populations and a composite map based on 93 common loci were created using JoinMap. The composite linkage maps consist of 22 composite linkage groups (LG with 175 SSR markers (including 47 SSRs on the published AA genome maps, representing the 20 chromosomes of A. hypogaea. The total composite map length is 885.4 cM, with an average marker density of 5.8 cM. Segregation distortion in the 3 populations was 23.0%, 13.5% and 7.8% of the markers

  12. Comparative genetic mapping between clementine, pummelo and sweet orange and the interspecicic structure of the Clementine genome

    Science.gov (United States)

    Comparative genetic mapping between clementine, pummelo and sweet orange and the interspecicic structure of the Clementine genome The availability of a saturated genetic map of Clementine was identified by the International Citrus Genome Consortium as an essential prerequisite to assist the assembly...

  13. The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications.

    Science.gov (United States)

    Smith, Jeramiah J; Keinath, Melissa C

    2015-08-01

    It is generally accepted that many genes present in vertebrate genomes owe their origin to two whole-genome duplications that occurred deep in the ancestry of the vertebrate lineage. However, details regarding the timing and outcome of these duplications are not well resolved. We present high-density meiotic and comparative genomic maps for the sea lamprey (Petromyzon marinus), a representative of an ancient lineage that diverged from all other vertebrates ∼550 million years ago. Linkage analyses yielded a total of 95 linkage groups, similar to the estimated number of germline chromosomes (1n ∼ 99), spanning a total of 5570.25 cM. Comparative mapping data yield strong support for the hypothesis that a single whole-genome duplication occurred in the basal vertebrate lineage, but do not strongly support a hypothetical second event. Rather, these comparative maps reveal several evolutionarily independent segmental duplications occurring over the last 600+ million years of chordate evolution. This refined history of vertebrate genome duplication should permit more precise investigations of vertebrate evolution.

  14. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes.

    Directory of Open Access Journals (Sweden)

    María José Aranzana

    2005-11-01

    Full Text Available There is currently tremendous interest in the possibility of using genome-wide association mapping to identify genes responsible for natural variation, particularly for human disease susceptibility. The model plant Arabidopsis thaliana is in many ways an ideal candidate for such studies, because it is a highly selfing hermaphrodite. As a result, the species largely exists as a collection of naturally occurring inbred lines, or accessions, which can be genotyped once and phenotyped repeatedly. Furthermore, linkage disequilibrium in such a species will be much more extensive than in a comparable outcrossing species. We tested the feasibility of genome-wide association mapping in A. thaliana by searching for associations with flowering time and pathogen resistance in a sample of 95 accessions for which genome-wide polymorphism data were available. In spite of an extremely high rate of false positives due to population structure, we were able to identify known major genes for all phenotypes tested, thus demonstrating the potential of genome-wide association mapping in A. thaliana and other species with similar patterns of variation. The rate of false positives differed strongly between traits, with more clinal traits showing the highest rate. However, the false positive rates were always substantial regardless of the trait, highlighting the necessity of an appropriate genomic control in association studies.

  15. Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations.

    Science.gov (United States)

    Teo, Yik-Ying; Sim, Xueling; Ong, Rick T H; Tan, Adrian K S; Chen, Jieming; Tantoso, Erwin; Small, Kerrin S; Ku, Chee-Seng; Lee, Edmund J D; Seielstad, Mark; Chia, Kee-Seng

    2009-11-01

    The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser.

  16. Enhanced de novo assembly of high throughput pyrosequencing data using whole genome mapping.

    Science.gov (United States)

    Onmus-Leone, Fatma; Hang, Jun; Clifford, Robert J; Yang, Yu; Riley, Matthew C; Kuschner, Robert A; Waterman, Paige E; Lesho, Emil P

    2013-01-01

    Despite major advances in next-generation sequencing, assembly of sequencing data, especially data from novel microorganisms or re-emerging pathogens, remains constrained by the lack of suitable reference sequences. De novo assembly is the best approach to achieve an accurate finished sequence, but multiple sequencing platforms or paired-end libraries are often required to achieve full genome coverage. In this study, we demonstrated a method to assemble complete bacterial genome sequences by integrating shotgun Roche 454 pyrosequencing with optical whole genome mapping (WGM). The whole genome restriction map (WGRM) was used as the reference to scaffold de novo assembled sequence contigs through a stepwise process. Large de novo contigs were placed in the correct order and orientation through alignment to the WGRM. De novo contigs that were not aligned to WGRM were merged into scaffolds using contig branching structure information. These extended scaffolds were then aligned to the WGRM to identify the overlaps to be eliminated and the gaps and mismatches to be resolved with unused contigs. The process was repeated until a sequence with full coverage and alignment with the whole genome map was achieved. Using this method we were able to achieved 100% WGRM coverage without a paired-end library. We assembled complete sequences for three distinct genetic components of a clinical isolate of Providencia stuartii: a bacterial chromosome, a novel bla NDM-1 plasmid, and a novel bacteriophage, without separately purifying them to homogeneity.

  17. Mapping Epistatic Quantitative Trait Loci With One-Dimensional Genome Searches

    NARCIS (Netherlands)

    Jannink, Jean-Luc; Jansen, Ritsert

    2001-01-01

    The discovery of epistatically interacting QTL is hampered by the intractability and low power to detect QTL in multidimensional genome searches. We describe a new method that maps epistatic QTL by identifying loci of high QTL by genetic background interaction. This approach allows detection of QTL

  18. Prediction of total genetic value using genome-wide dense marker maps

    NARCIS (Netherlands)

    Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E.

    2001-01-01

    Recent advances in molecular genetic techniques will make dense marker maps available and genotyping many individuals for these markers feasible. Here we attempted to estimate the effects of ∼50,000 marker haplotypes simultaneously from a limited number of phenotypic records. A genome of 1000 cM was

  19. Mapping Epistatic Quantitative Trait Loci With One-Dimensional Genome Searches

    NARCIS (Netherlands)

    Jannink, Jean-Luc; Jansen, Ritsert

    2001-01-01

    The discovery of epistatically interacting QTL is hampered by the intractability and low power to detect QTL in multidimensional genome searches. We describe a new method that maps epistatic QTL by identifying loci of high QTL by genetic background interaction. This approach allows detection of QTL

  20. Using the chicken genome sequence in the development and mapping of genetic markers in the turkey (Meleagris gallopavo).

    Science.gov (United States)

    Chaves, L D; Knutson, T P; Krueth, S B; Reed, K M

    2006-04-01

    The efficacy of employing the chicken genome sequence in developing genetic markers and in mapping the turkey genome was studied. Eighty previously uncharacterized microsatellite markers were identified for the turkey using BLAST alignment to the chicken genome. The chicken sequence was then used to develop primers for polymerase chain reaction where the turkey sequence was either unavailable or insufficient. A total of 78 primer sets were tested for amplification and polymorphism in the turkey, and informative markers were genetically mapped. Sixty-five (83%) amplified turkey genomic DNA, and 33 (42%) were polymorphic in the University of Minnesota/Nicholas Turkey Breeding Farms mapping families. All but one marker genetically mapped to the position predicted from the chicken genome sequence. These results demonstrate the usefulness of the chicken sequence for the development of genomic resources in other avian species.

  1. Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii

    Science.gov (United States)

    Khan, Asis; Taylor, Sonya; Su, Chunlei; Mackey, Aaron J.; Boyle, Jon; Cole, Robert; Glover, Darius; Tang, Keliang; Paulsen, Ian T.; Berriman, Matt; Boothroyd, John C.; Pfefferkorn, Elmer R.; Dubey, J. P.; Ajioka, James W.; Roos, David S.; Wootton, John C.; Sibley, L. David

    2005-01-01

    Toxoplasma gondii is a highly successful protozoan parasite in the phylum Apicomplexa, which contains numerous animal and human pathogens. T.gondii is amenable to cellular, biochemical, molecular and genetic studies, making it a model for the biology of this important group of parasites. To facilitate forward genetic analysis, we have developed a high-resolution genetic linkage map for T.gondii. The genetic map was used to assemble the scaffolds from a 10X shotgun whole genome sequence, thus defining 14 chromosomes with markers spaced at ∼300 kb intervals across the genome. Fourteen chromosomes were identified comprising a total genetic size of ∼592 cM and an average map unit of ∼104 kb/cM. Analysis of the genetic parameters in T.gondii revealed a high frequency of closely adjacent, apparent double crossover events that may represent gene conversions. In addition, we detected large regions of genetic homogeneity among the archetypal clonal lineages, reflecting the relatively few genetic outbreeding events that have occurred since their recent origin. Despite these unusual features, linkage analysis proved to be effective in mapping the loci determining several drug resistances. The resulting genome map provides a framework for analysis of complex traits such as virulence and transmission, and for comparative population genetic studies. PMID:15911631

  2. Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii.

    Science.gov (United States)

    Khan, Asis; Taylor, Sonya; Su, Chunlei; Mackey, Aaron J; Boyle, Jon; Cole, Robert; Glover, Darius; Tang, Keliang; Paulsen, Ian T; Berriman, Matt; Boothroyd, John C; Pfefferkorn, Elmer R; Dubey, J P; Ajioka, James W; Roos, David S; Wootton, John C; Sibley, L David

    2005-01-01

    Toxoplasma gondii is a highly successful protozoan parasite in the phylum Apicomplexa, which contains numerous animal and human pathogens. T.gondii is amenable to cellular, biochemical, molecular and genetic studies, making it a model for the biology of this important group of parasites. To facilitate forward genetic analysis, we have developed a high-resolution genetic linkage map for T.gondii. The genetic map was used to assemble the scaffolds from a 10X shotgun whole genome sequence, thus defining 14 chromosomes with markers spaced at approximately 300 kb intervals across the genome. Fourteen chromosomes were identified comprising a total genetic size of approximately 592 cM and an average map unit of approximately 104 kb/cM. Analysis of the genetic parameters in T.gondii revealed a high frequency of closely adjacent, apparent double crossover events that may represent gene conversions. In addition, we detected large regions of genetic homogeneity among the archetypal clonal lineages, reflecting the relatively few genetic outbreeding events that have occurred since their recent origin. Despite these unusual features, linkage analysis proved to be effective in mapping the loci determining several drug resistances. The resulting genome map provides a framework for analysis of complex traits such as virulence and transmission, and for comparative population genetic studies.

  3. Whole-genome shotgun optical mapping of Rhodobacter sphaeroides strain 2.4. 1 and its use for whole-genome shotgun sequence assembly

    Energy Technology Data Exchange (ETDEWEB)

    Shou, S. [Univ. Wisc.-Madison; Kvikstad, E. [Univ. Wisc.-Madison; Kile, A. [Univ. Wisc.-Madison; Severin, J. [Whole-genome shotgun optical mapping of Rhodobacter sphaeroides strain 2.4. 1 and its use for whole-genome shotgun sequence assembly; Forrest, D. [Univ. Wisc.-Madison; Runnheim, R. [Univ. Wisc.-Madison; Churas, C. [Univ. Wisc.-Madison; Hickman, J. W. [Univ. Wisc.-Madison; Mackenzie, C. [University of Texas–Houston Medical School; Choudhary, M. [University of Texas–Houston Medical School; Donohue, T. [Univ. Wisc.-Madison; Kaplan, S. [University of Texas–Houston Medical School; Schwartz, D. C. [Univ. Wisc.-Madison

    2003-09-01

    Rhodobacter sphaeroides 2.4.1 is a facultative photoheterotrophic bacterium with tremendous metabolic diversity, which has significantly contributed to our understanding of the molecular genetics of photosynthesis, photoheterotrophy, nitrogen fixation, hydrogen metabolism, carbon dioxide fixation, taxis, and tetrapyrrole biosynthesis. To further understand this remarkable bacterium, and to accelerate an ongoing sequencing project, two whole-genome restriction maps (EcoRI and HindIII) of R. sphaeroides strain 2.4.1 were constructed using shotgun optical mapping. The approach directly mapped genomic DNA by the random mapping of single molecules. The two maps were used to facilitate sequence assembly by providing an optical scaffold for high-resolution alignment and verification of sequence contigs. Our results show that such maps facilitated the closure of sequence gaps by the early detection of nascent sequence contigs during the course of the whole-genome shotgun sequencing process.

  4. Genomic Position Mapping Discrepancies of Commercial SNP Chips

    DEFF Research Database (Denmark)

    Fadista, João; Bendixen, Christian

    2012-01-01

    The field of genetics has come to rely heavily on commercial genotyping arrays and accompanying annotations for insights into genotype-phenotype associations. However, in order to avoid errors and false leads, it is imperative that the annotation of SNP chromosomal positions is accurate and unamb......The field of genetics has come to rely heavily on commercial genotyping arrays and accompanying annotations for insights into genotype-phenotype associations. However, in order to avoid errors and false leads, it is imperative that the annotation of SNP chromosomal positions is accurate...... and unambiguous. We report on genomic positional discrepancies of various SNP chips for human, cattle and mouse species, and discuss their causes and consequences....

  5. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study.

    Science.gov (United States)

    Amyotte, Beatrice; Bowen, Amy J; Banks, Travis; Rajcan, Istvan; Somers, Daryl J

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants.

  6. Mapping reads on a genomic sequence: an algorithmic overview and a practical comparative analysis.

    Science.gov (United States)

    Schbath, Sophie; Martin, Véronique; Zytnicki, Matthias; Fayolle, Julien; Loux, Valentin; Gibrat, Jean-François

    2012-06-01

    Mapping short reads against a reference genome is classically the first step of many next-generation sequencing data analyses, and it should be as accurate as possible. Because of the large number of reads to handle, numerous sophisticated algorithms have been developped in the last 3 years to tackle this problem. In this article, we first review the underlying algorithms used in most of the existing mapping tools, and then we compare the performance of nine of these tools on a well controled benchmark built for this purpose. We built a set of reads that exist in single or multiple copies in a reference genome and for which there is no mismatch, and a set of reads with three mismatches. We considered as reference genome both the human genome and a concatenation of all complete bacterial genomes. On each dataset, we quantified the capacity of the different tools to retrieve all the occurrences of the reads in the reference genome. Special attention was paid to reads uniquely reported and to reads with multiple hits.

  7. Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Varshney, Rajeev K; Mir, Reyazul Rouf; Bhatia, Sabhyata; Thudi, Mahendar; Hu, Yuqin; Azam, Sarwar; Zhang, Yong; Jaganathan, Deepa; You, Frank M; Gao, Jinliang; Riera-Lizarazu, Oscar; Luo, Ming-Cheng

    2014-03-01

    Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance "QTL-hotspot" region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement.

  8. An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae.

    Science.gov (United States)

    Shirasawa, Kenta; Oyama, Maki; Hirakawa, Hideki; Sato, Shusei; Tabata, Satoshi; Fujioka, Takashi; Kimizuka-Takagi, Chiaki; Sasamoto, Shigemi; Watanabe, Akiko; Kato, Midori; Kishida, Yoshie; Kohara, Mitsuyo; Takahashi, Chika; Tsuruoka, Hisano; Wada, Tsuyuko; Sakai, Takako; Isobe, Sachiko

    2011-08-01

    Raphanus sativus (2n = 2x = 18) is a widely cultivated member of the family Brassicaceae, for which genomic resources are available only to a limited extent in comparison to many other members of the family. To promote more genetic and genomic studies and to enhance breeding programmes of R. sativus, we have prepared genetic resources such as complementary DNA libraries, expressed sequences tags (ESTs), simple sequence repeat (SSR) markers and a genetic linkage map. A total of 26 606 ESTs have been collected from seedlings, roots, leaves, and flowers, and clustered into 10 381 unigenes. Similarities were observed between the expression patterns of transcripts from R. sativus and those from representative members of the genera Arabidopsis and Brassica, indicating their functional relatedness. The EST sequence data were used to design 3800 SSR markers and consequently 630 polymorphic SSR loci and 213 reported marker loci have been mapped onto nine linkage groups, covering 1129.2 cM with an average distance of 1.3 cM between loci. Comparison of the mapped EST-SSR marker positions in R. sativus with the genome sequence of A. thaliana indicated that the Brassicaceae members have evolved from a common ancestor. It appears that genomic fragments corresponding to those of A. thaliana have been doubled and tripled in R. sativus. The genetic map developed here is expected to provide a standard map for the genetics, genomics, and molecular breeding of R. sativus as well as of related species. The resources are available at http://marker.kazusa.or.jp/Daikon.

  9. A RAD-based linkage map and comparative genomics in the gudgeons (genus Gnathopogon, Cyprinidae

    Directory of Open Access Journals (Sweden)

    Kakioka Ryo

    2013-01-01

    Full Text Available Abstract Background The construction of linkage maps is a first step in exploring the genetic basis for adaptive phenotypic divergence in closely related species by quantitative trait locus (QTL analysis. Linkage maps are also useful for comparative genomics in non-model organisms. Advances in genomics technologies make it more feasible than ever to study the genetics of adaptation in natural populations. Restriction-site associated DNA (RAD sequencing in next-generation sequencers facilitates the development of many genetic markers and genotyping. We aimed to construct a linkage map of the gudgeons of the genus Gnathopogon (Cyprinidae for comparative genomics with the zebrafish Danio rerio (a member of the same family as gudgeons and for the future QTL analysis of the genetic architecture underlying adaptive phenotypic evolution of Gnathopogon. Results We constructed the first genetic linkage map of Gnathopogon using a 198 F2 interspecific cross between two closely related species in Japan: river-dwelling Gnathopogon elongatus and lake-dwelling Gnathopogon caerulescens. Based on 1,622 RAD-tag markers, a linkage map spanning 1,390.9 cM with 25 linkage groups and an average marker interval of 0.87 cM was constructed. We also identified a region involving female-specific transmission ratio distortion (TRD. Synteny and collinearity were extensively conserved between Gnathopogon and zebrafish. Conclusions The dense SNP-based linkage map presented here provides a basis for future QTL analysis. It will also be useful for transferring genomic information from a “traditional” model fish species, zebrafish, to screen candidate genes underlying ecologically important traits of the gudgeons.

  10. A RAD-based linkage map and comparative genomics in the gudgeons (genus Gnathopogon, Cyprinidae)

    Science.gov (United States)

    2013-01-01

    Background The construction of linkage maps is a first step in exploring the genetic basis for adaptive phenotypic divergence in closely related species by quantitative trait locus (QTL) analysis. Linkage maps are also useful for comparative genomics in non-model organisms. Advances in genomics technologies make it more feasible than ever to study the genetics of adaptation in natural populations. Restriction-site associated DNA (RAD) sequencing in next-generation sequencers facilitates the development of many genetic markers and genotyping. We aimed to construct a linkage map of the gudgeons of the genus Gnathopogon (Cyprinidae) for comparative genomics with the zebrafish Danio rerio (a member of the same family as gudgeons) and for the future QTL analysis of the genetic architecture underlying adaptive phenotypic evolution of Gnathopogon. Results We constructed the first genetic linkage map of Gnathopogon using a 198 F2 interspecific cross between two closely related species in Japan: river-dwelling Gnathopogon elongatus and lake-dwelling Gnathopogon caerulescens. Based on 1,622 RAD-tag markers, a linkage map spanning 1,390.9 cM with 25 linkage groups and an average marker interval of 0.87 cM was constructed. We also identified a region involving female-specific transmission ratio distortion (TRD). Synteny and collinearity were extensively conserved between Gnathopogon and zebrafish. Conclusions The dense SNP-based linkage map presented here provides a basis for future QTL analysis. It will also be useful for transferring genomic information from a “traditional” model fish species, zebrafish, to screen candidate genes underlying ecologically important traits of the gudgeons. PMID:23324215

  11. Genomics of a Metamorphic Timing QTL: met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription

    Science.gov (United States)

    Page, Robert B.; Boley, Meredith A.; Kump, David K.; Voss, Stephen R.

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation. PMID:23946331

  12. Genomics of a metamorphic timing QTL: met1 maps to a unique genomic position and regulates morph and species-specific patterns of brain transcription.

    Science.gov (United States)

    Page, Robert B; Boley, Meredith A; Kump, David K; Voss, Stephen R

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation.

  13. A first generation physical map of the medaka genome in BACs essential for positional cloning and clone-by-clone based genomic sequencing.

    Science.gov (United States)

    Khorasani, Maryam Zadeh; Hennig, Steffen; Imre, Gabriele; Asakawa, Shuichi; Palczewski, Stefanie; Berger, Anja; Hori, Hiroshi; Naruse, Kiyoshi; Mitani, Hiroshi; Shima, Akihiro; Lehrach, Hans; Wittbrodt, Jochen; Kondoh, Hisato; Shimizu, Nobuyoshi; Himmelbauer, Heinz

    2004-07-01

    In order to realize the full potential of the medaka as a model system for developmental biology and genetics, characterized genomic resources need to be established, culminating in the sequence of the medaka genome. To facilitate the map-based cloning of genes underlying induced mutations and to provide templates for clone-based genomic sequencing, we have created a first-generation physical map of the medaka genome in bacterial artificial chromosome (BAC) clones. In particular, we exploited the synteny to the closely related genome of the pufferfish, Takifugu rubripes, by marker content mapping. As a first step, we clustered 103,144 public medaka EST sequences to obtain a set of 21,121 non-redundant sequence entities. Avoiding oversampling of gene-dense regions, 11,254 of EST clusters were successfully matched against the draft sequence of the fugu genome, and 2363 genes were selected for the BAC map project. We designed 35mer oligonucleotide probes from the selected genes and hybridized them against 64,500 BAC clones of strains Cab and Hd-rR, representing 14-fold coverage of the medaka genome. Our data set is further supplemented with 437 results generated from PCR-amplified inserts of medaka cDNA clones and BAC end-fragment markers. Our current, edited, first generation medaka BAC map consists of 902 map segments that cover about 74% of the medaka genome. The map contains 2721 markers. Of these, 2534 are from expressed sequences, equivalent to a non-redundant set of 2328 loci. The 934 markers (724 different) are anchored to the medaka genetic map. Thus, genetic map assignments provide immediate access to underlying clones and contigs, simplifying molecular access to candidate gene regions and their characterization.

  14. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits.

    Science.gov (United States)

    Biazzi, Elisa; Nazzicari, Nelson; Pecetti, Luciano; Brummer, E Charles; Palmonari, Alberto; Tava, Aldo; Annicchiarico, Paolo

    2017-01-01

    Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3-0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits

  15. A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas

    Directory of Open Access Journals (Sweden)

    Matsumoto Takashi

    2010-04-01

    Full Text Available Abstract Background The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents. Results An F1 progeny of 180 individuals was obtained from a cross between two genetically distant accessions of M. acuminata, 'Borneo' and 'Pisang Lilin' (P. Lilin. Based on the gametic recombination of each parent, two parental maps composed of SSR and DArT markers were established. A significant proportion of the markers (21.7% deviated (p Conclusions We propose a synthetic map with 11 linkage groups containing 489 markers (167 SSRs and 322 DArTs covering 1197 cM. This first saturated map is proposed as a "reference Musa map" for further analyses. We also propose two complete parental maps with interpretations of structural rearrangements localized on the linkage groups. The structural heterozygosity in P. Lilin is hypothesized to result from a duplication likely accompanied by an inversion on another chromosome. This paper also illustrates a methodological approach, transferable to other species, to investigate the mapping of structural rearrangements and determine their consequences on marker

  16. Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome.

    Science.gov (United States)

    Hastie, Alex R; Dong, Lingli; Smith, Alexis; Finklestein, Jeff; Lam, Ernest T; Huo, Naxin; Cao, Han; Kwok, Pui-Yan; Deal, Karin R; Dvorak, Jan; Luo, Ming-Cheng; Gu, Yong; Xiao, Ming

    2013-01-01

    Next-generation sequencing (NGS) technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences and to facilitate unambiguous assembly. Plant genomes are notorious for containing high quantities of repetitive elements, which combined with huge genome sizes, makes accurate assembly of these large and complex genomes intractable thus far. Using two-color genome mapping of tiling bacterial artificial chromosomes (BAC) clones on nanochannel arrays, we completed high-confidence assembly of a 2.1-Mb, highly repetitive region in the large and complex genome of Aegilops tauschii, the D-genome donor of hexaploid wheat (Triticum aestivum). Genome mapping is based on direct visualization of sequence motifs on single DNA molecules hundreds of kilobases in length. With the genome map as a scaffold, we anchored unplaced sequence contigs, validated the initial draft assembly, and resolved instances of misassembly, some involving contigs assembly from 75% to 95% complete.

  17. Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome.

    Directory of Open Access Journals (Sweden)

    Alex R Hastie

    Full Text Available Next-generation sequencing (NGS technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences and to facilitate unambiguous assembly. Plant genomes are notorious for containing high quantities of repetitive elements, which combined with huge genome sizes, makes accurate assembly of these large and complex genomes intractable thus far. Using two-color genome mapping of tiling bacterial artificial chromosomes (BAC clones on nanochannel arrays, we completed high-confidence assembly of a 2.1-Mb, highly repetitive region in the large and complex genome of Aegilops tauschii, the D-genome donor of hexaploid wheat (Triticum aestivum. Genome mapping is based on direct visualization of sequence motifs on single DNA molecules hundreds of kilobases in length. With the genome map as a scaffold, we anchored unplaced sequence contigs, validated the initial draft assembly, and resolved instances of misassembly, some involving contigs <2 kb long, to dramatically improve the assembly from 75% to 95% complete.

  18. Mapping and annotating obesity-related genes in pig and human genomes.

    Science.gov (United States)

    Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita

    2014-01-01

    Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.

  19. Rapid genome-scale mapping of chromatin accessibility in tissue

    Science.gov (United States)

    2012-01-01

    Background The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on large amounts of purified nuclei as starting material. This complicates analysis of trace clinical tissue samples that are often stored frozen. We have developed an alternative nuclease based procedure to bypass nuclear preparation to interrogate nuclease accessible regions in frozen tissue samples. Results Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh). The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh. Conclusion The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied across a broad range of

  20. Rapid genome-scale mapping of chromatin accessibility in tissue

    Directory of Open Access Journals (Sweden)

    Grøntved Lars

    2012-06-01

    Full Text Available Abstract Background The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on large amounts of purified nuclei as starting material. This complicates analysis of trace clinical tissue samples that are often stored frozen. We have developed an alternative nuclease based procedure to bypass nuclear preparation to interrogate nuclease accessible regions in frozen tissue samples. Results Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh. The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh. Conclusion The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied

  1. QTL mapping of leafy heads by genome resequencing in the RIL population of Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xiang Yu

    Full Text Available Leaf heads of cabbage (Brassica oleracea, Chinese cabbage (B. rapa, and lettuce (Lactuca sativa are important vegetables that supply mineral nutrients, crude fiber and vitamins in the human diet. Head size, head shape, head weight, and heading time contribute to yield and quality. In an attempt to investigate genetic basis of leafy head in Chinese cabbage (B. rapa, we took advantage of recent technical advances of genome resequencing to perform quantitative trait locus (QTL mapping using 150 recombinant inbred lines (RILs derived from the cross between heading and non-heading Chinese cabbage. The resequenced genomes of the parents uncovered more than 1 million SNPs. Genotyping of RILs using the high-quality SNPs assisted by Hidden Markov Model (HMM generated a recombination map. The raw genetic map revealed some physical assembly error and missing fragments in the reference genome that reduced the quality of SNP genotyping. By deletion of the genetic markers in which recombination rates higher than 20%, we have obtained a high-quality genetic map with 2209 markers and detected 18 QTLs for 6 head traits, from which 3 candidate genes were selected. These QTLs provide the foundation for study of genetic basis of leafy heads and the other complex traits.

  2. QTL mapping of leafy heads by genome resequencing in the RIL population of Brassica rapa.

    Science.gov (United States)

    Yu, Xiang; Wang, Han; Zhong, Weili; Bai, Jinjuan; Liu, Pinglin; He, Yuke

    2013-01-01

    Leaf heads of cabbage (Brassica oleracea), Chinese cabbage (B. rapa), and lettuce (Lactuca sativa) are important vegetables that supply mineral nutrients, crude fiber and vitamins in the human diet. Head size, head shape, head weight, and heading time contribute to yield and quality. In an attempt to investigate genetic basis of leafy head in Chinese cabbage (B. rapa), we took advantage of recent technical advances of genome resequencing to perform quantitative trait locus (QTL) mapping using 150 recombinant inbred lines (RILs) derived from the cross between heading and non-heading Chinese cabbage. The resequenced genomes of the parents uncovered more than 1 million SNPs. Genotyping of RILs using the high-quality SNPs assisted by Hidden Markov Model (HMM) generated a recombination map. The raw genetic map revealed some physical assembly error and missing fragments in the reference genome that reduced the quality of SNP genotyping. By deletion of the genetic markers in which recombination rates higher than 20%, we have obtained a high-quality genetic map with 2209 markers and detected 18 QTLs for 6 head traits, from which 3 candidate genes were selected. These QTLs provide the foundation for study of genetic basis of leafy heads and the other complex traits.

  3. Report of the first international workshop on human chromosome 8 mapping. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, S.; Ben Othmane, K.; Bergerheim, U.S.R. [and others

    1993-12-31

    The first international chromosome 8 workshop was held in Vancouver, Canada May 2--4, 1993. The conference was attended by 23 participants from Australia, Canada, Germany, the Netherlands, Sweden, the United Kingdom and the US. Twenty three abstracts are included from this workshop. The workshop was supported by CGAT/CTAG (Canadian Genome Analysis & Technology Program/Programme Canadien de Technologie & D`Analyse du Genome) as well as by travel funds allocated by the National Institutes of Health and the Department of Energy of the United States and by agencies within the countries of overseas participants. The goals of the workshop were to evaluate new locus assignments, review new data obtained for previously assigned loci, develop a consensus marker order for chromosome 8, assess and integrate physical mapping information, identify resources and foster collaboration.

  4. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Development of Advanced Classification Algorithm for Genome-Wide Single Nucleotide Polymorphism (SNP) Data Analysis

    Science.gov (United States)

    2011-04-01

    al. (2007) “Efficient mapping of mendelian traits in dogs through genome-wide association.” Nat Genet 39:1321-1328. 12 Distribution A...collected data to genetically map superior intelligence in the military working dog. A behavioral testing regimen was developed by canine cognitive expert Dr...TERMS Military working dog genome-wide association study genetic marker intelligence 16

  5. Genomic shotgun array: a procedure linking large-scale DNA sequencing with regional transcript mapping.

    Science.gov (United States)

    Li, Ling-Hui; Li, Jian-Chiuan; Lin, Yung-Feng; Lin, Chung-Yen; Chen, Chung-Yung; Tsai, Shih-Feng

    2004-02-11

    To facilitate transcript mapping and to investigate alterations in genomic structure and gene expression in a defined genomic target, we developed a novel microarray-based method to detect transcriptional activity of the human chromosome 4q22-24 region. Loss of heterozygosity of human 4q22-24 is frequently observed in hepatocellular carcinoma (HCC). One hundred and eighteen well-characterized genes have been identified from this region. We took previously sequenced shotgun subclones as templates to amplify overlapping sequences for the genomic segment and constructed a chromosome-region-specific microarray. Using genomic DNA fragments as probes, we detected transcriptional activity from within this region among five different tissues. The hybridization results indicate that there are new transcripts that have not yet been identified by other methods. The existence of new transcripts encoded by genes in this region was confirmed by PCR cloning or cDNA library screening. The procedure reported here allows coupling of shotgun sequencing with transcript mapping and, potentially, detailed analysis of gene expression and chromosomal copy of the genomic sequence for the putative HCC tumor suppressor gene(s) in the 4q candidate region.

  6. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes.

    Science.gov (United States)

    Rauscher, Gilda; Simko, Ivan

    2013-01-22

    Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly available. We have employed the method of enriched microsatellite libraries to develop 97 genomic SSR markers. Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L. serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions. Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among horticultural types. The newly developed genomic SSR markers were added to the pool of previously developed EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting, development of integrated molecular linkage maps, and mapping of genes.

  7. Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme.

    Science.gov (United States)

    Ranc, Nicolas; Muños, Stephane; Xu, Jiaxin; Le Paslier, Marie-Christine; Chauveau, Aurélie; Bounon, Rémi; Rolland, Sophie; Bouchet, Jean-Paul; Brunel, Dominique; Causse, Mathilde

    2012-08-01

    Genome-wide association mapping is an efficient way to identify quantitative trait loci controlling the variation of phenotypes, but the approach suffers severe limitations when one is studying inbred crops like cultivated tomato (Solanum lycopersicum). Such crops exhibit low rates of molecular polymorphism and high linkage disequilibrium, which reduces mapping resolution. The cherry type tomato (S. lycopersicum var. cerasiforme) genome has been described as an admixture between the cultivated tomato and its wild ancestor, S. pimpinellifolium. We have thus taken advantage of the properties of this admixture to improve the resolution of association mapping in tomato. As a proof of concept, we sequenced 81 DNA fragments distributed on chromosome 2 at different distances in a core collection of 90 tomato accessions, including mostly cherry type tomato accessions. The 81 Sequence Tag Sites revealed 352 SNPs and indels. Molecular diversity was greatest for S. pimpinellifolium accessions, intermediate for S. l. cerasiforme accessions, and lowest for the cultivated group. We assessed the structure of molecular polymorphism and the extent of linkage disequilibrium over genetic and physical distances. Linkage disequilibrium decreased under r(2) = 0.3 within 1 cM, and minimal estimated value (r(2) = 0.13) was reached within 20 kb over the physical regions studied. Associations between polymorphisms and fruit weight, locule number, and soluble solid content were detected. Several candidate genes and quantitative trait loci previously identified were validated and new associations detected. This study shows the advantages of using a collection of S. l. cerasiforme accessions to overcome the low resolution of association mapping in tomato.

  8. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits

    Science.gov (United States)

    Pecetti, Luciano; Brummer, E. Charles; Palmonari, Alberto; Tava, Aldo

    2017-01-01

    Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3–0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits

  9. Unexpected observations after mapping LongSAGE tags to the human genome

    Directory of Open Access Journals (Sweden)

    Duret Laurent

    2007-05-01

    Full Text Available Abstract Background SAGE has been used widely to study the expression of known transcripts, but much less to annotate new transcribed regions. LongSAGE produces tags that are sufficiently long to be reliably mapped to a whole-genome sequence. Here we used this property to study the position of human LongSAGE tags obtained from all public libraries. We focused mainly on tags that do not map to known transcripts. Results Using a published error rate in SAGE libraries, we first removed the tags likely to result from sequencing errors. We then observed that an unexpectedly large number of the remaining tags still did not match the genome sequence. Some of these correspond to parts of human mRNAs, such as polyA tails, junctions between two exons and polymorphic regions of transcripts. Another non-negligible proportion can be attributed to contamination by murine transcripts and to residual sequencing errors. After filtering out our data with these screens to ensure that our dataset is highly reliable, we studied the tags that map once to the genome. 31% of these tags correspond to unannotated transcripts. The others map to known transcribed regions, but many of them (nearly half are located either in antisense or in new variants of these known transcripts. Conclusion We performed a comprehensive study of all publicly available human LongSAGE tags, and carefully verified the reliability of these data. We found the potential origin of many tags that did not match the human genome sequence. The properties of the remaining tags imply that the level of sequencing error may have been under-estimated. The frequency of tags matching once the genome sequence but not in an annotated exon suggests that the human transcriptome is much more complex than shown by the current human genome annotations, with many new splicing variants and antisense transcripts. SAGE data is appropriate to map new transcripts to the genome, as demonstrated by the high rate of cross

  10. Utilizing linkage disequilibrium information from Indian Genome Variation Database for mapping mutations: SCA12 case study

    Indian Academy of Sciences (India)

    Samira Bahl; Ikhlak Ahmed; The Indian Genome Variation Consortium; Mitali Mukerji

    2009-04-01

    Stratification in heterogeneous populations poses an enormous challenge in linkage disequilibrium (LD) based identification of causal loci using surrogate markers. In this study, we demonstrate the enormous potential of endogamous Indian populations for mapping mutations in candidate genes using minimal SNPs, mainly due to larger regions of LD. We show this by a case study of the PPP2R2B gene (∼400 kb) that harbours a CAG repeat, expansion of which has been implicated in spinocerebellar ataxia type 12 (SCA12). Using LD information derived from Indian Genome Variation database (IGVdb) on populations which share similar ethnic and linguistic backgrounds as the SCA12 study population, we could map the causal loci using a minimal set of three SNPs, without the generation of additional basal data from the ethnically matched population. We could also demonstrate transferability of tagSNPs from a related HapMap population for mapping the mutation.

  11. Rapid identification and mapping of insertion sequences in Escherichia coli genomes using vectorette PCR

    Directory of Open Access Journals (Sweden)

    Dean Antony M

    2004-07-01

    Full Text Available Abstract Background Insertion sequences (IS are small DNA segments capable of transposing within and between prokaryotic genomes, often causing insertional mutations and chromosomal rearrangements. Although several methods are available for locating ISs in microbial genomes, they are either labor-intensive or inefficient. Here, we use vectorette PCR to identify and map the genomic positions of the eight insertion sequences (IS1, 2, 3, 4, 5, 30, 150, and 186 found in E. coli strain CGSC6300, a close relative of MG1655 whose genome has been sequenced. Results Genomic DNA from strain CGSC6300 was digested with a four-base cutter Rsa I and the resulting restriction fragments ligated onto vectorette units. Using IS-specific primers directed outward from the extreme ends of each IS and a vectorette primer, flanking DNA fragments were amplified from all but one of the 37 IS elements identified in the genomic sequence of MG1655. Purification and sequencing of the PCR products confirmed that they are IS-associated flanking DNA fragments corresponding to the known IS locations in the MG1655 genome. Seven additional insertions were found in strain CGSC6300 indicating that very closely related isolates of the same laboratory strain (the K12 isolate may differ in their IS complement. Two other E. coli K12 derivatives, TD2 and TD10, were also analyzed by vectorette PCR. They share 36 of the MG1655 IS sites as well as having 16 and 18 additional insertions, respectively. Conclusion This study shows that vectorette PCR is a swift, efficient, reliable method for typing microbial strains and identifying and mapping IS insertion sites present in microbial genomes. Unlike Southern hybridization and inverse PCR, our approach involves only one genomic digest and one ligation step. Vectorette PCR is then used to simultaneously amplify all IS elements of a given type, making it a rapid and sensitive means to survey IS elements in genomes. The ability to rapidly

  12. Genetic Resources, Genome Mapping and Evolutionary Genomics of the Pig (Sus scrofa)

    OpenAIRE

    Chen, K.; Baxter, T.; Muir, W. M.; Groenen, M.A.M.; Schook, L B

    2007-01-01

    The pig, a representative of the artiodactyla clade, is one of the first animals domesticated, and has become an important agriculture animal as one of the major human nutritional sources of animal based protein. The pig is also a valuable biomedical model organism for human health. The pig's importance to human health and nutrition is reflected in the decision to sequence its genome (3X). As an animal species with its wild ancestors present in the world, the pig provides a unique opportunity...

  13. High resolution radiation hybrid maps of bovine chromosomes 19 and 29: comparison with the bovine genome sequence assembly

    Directory of Open Access Journals (Sweden)

    Womack James E

    2007-09-01

    Full Text Available Abstract Background High resolution radiation hybrid (RH maps can facilitate genome sequence assembly by correctly ordering genes and genetic markers along chromosomes. The objective of the present study was to generate high resolution RH maps of bovine chromosomes 19 (BTA19 and 29 (BTA29, and compare them with the current 7.1X bovine genome sequence assembly (bovine build 3.1. We have chosen BTA19 and 29 as candidate chromosomes for mapping, since many Quantitative Trait Loci (QTL for the traits of carcass merit and residual feed intake have been identified on these chromosomes. Results We have constructed high resolution maps of BTA19 and BTA29 consisting of 555 and 253 Single Nucleotide Polymorphism (SNP markers respectively using a 12,000 rad whole genome RH panel. With these markers, the RH map of BTA19 and BTA29 extended to 4591.4 cR and 2884.1 cR in length respectively. When aligned with the current bovine build 3.1, the order of markers on the RH map for BTA19 and 29 showed inconsistencies with respect to the genome assembly. Maps of both the chromosomes show that there is a significant internal rearrangement of the markers involving displacement, inversion and flips within the scaffolds with some scaffolds being misplaced in the genome assembly. We also constructed cattle-human comparative maps of these chromosomes which showed an overall agreement with the comparative maps published previously. However, minor discrepancies in the orientation of few homologous synteny blocks were observed. Conclusion The high resolution maps of BTA19 (average 1 locus/139 kb and BTA29 (average 1 locus/208 kb presented in this study suggest that by the incorporation of RH mapping information, the current bovine genome sequence assembly can be significantly improved. Furthermore, these maps can serve as a potential resource for fine mapping QTL and identification of causative mutations underlying QTL for economically important traits.

  14. An autotetraploid linkage map of rose (Rosa hybrida) validated using the strawberry (Fragaria vesca) genome sequence.

    Science.gov (United States)

    Gar, Oron; Sargent, Daniel J; Tsai, Ching-Jung; Pleban, Tzili; Shalev, Gil; Byrne, David H; Zamir, Dani

    2011-01-01

    Polyploidy is a pivotal process in plant evolution as it increase gene redundancy and morphological intricacy but due to the complexity of polysomic inheritance we have only few genetic maps of autopolyploid organisms. A robust mapping framework is particularly important in polyploid crop species, rose included (2n = 4x = 28), where the objective is to study multiallelic interactions that control traits of value for plant breeding. From a cross between the garden, peach red and fragrant cultivar Fragrant Cloud (FC) and a cut-rose yellow cultivar Golden Gate (GG), we generated an autotetraploid GGFC mapping population consisting of 132 individuals. For the map we used 128 sequence-based markers, 141 AFLP, 86 SSR and three morphological markers. Seven linkage groups were resolved for FC (Total 632 cM) and GG (616 cM) which were validated by markers that segregated in both parents as well as the diploid integrated consensus map.The release of the Fragaria vesca genome, which also belongs to the Rosoideae, allowed us to place 70 rose sequenced markers on the seven strawberry pseudo-chromosomes. Synteny between Rosa and Fragaria was high with an estimated four major translocations and six inversions required to place the 17 non-collinear markers in the same order. Based on a verified linear order of the rose markers, we could further partition each of the parents into its four homologous groups, thus providing an essential framework to aid the sequencing of an autotetraploid genome.

  15. Rapid High Resolution Single Nucleotide Polymorphism–Comparative Genome Hybridization Mapping in Caenorhabditis elegans

    Science.gov (United States)

    Flibotte, Stephane; Edgley, Mark L.; Maydan, Jason; Taylor, Jon; Zapf, Rick; Waterston, Robert; Moerman, Donald G.

    2009-01-01

    We have developed a significantly improved and simplified method for high-resolution mapping of phenotypic traits in Caenorhabditis elegans using a combination of single nucleotide polymorphisms (SNPs) and oligo array comparative genome hybridization (array CGH). We designed a custom oligonucleotide array using a subset of confirmed SNPs between the canonical wild-type Bristol strain N2 and the Hawaiian isolate CB4856, populated with densely overlapping 50-mer probes corresponding to both N2 and CB4856 SNP sequences. Using this method a mutation can be mapped to a resolution of ∼200 kb in a single genetic cross. Six mutations representing each of the C. elegans chromosomes were detected unambiguously and at high resolution using genomic DNA from populations derived from as few as 100 homozygous mutant segregants of mutant N2/CB4856 heterozygotes. Our method completely dispenses with the PCR, restriction digest, and gel analysis of standard SNP mapping and should be easy to extend to any organism with interbreeding strains. This method will be particularly powerful when applied to difficult or hard-to-map low-penetrance phenotypes. It should also be possible to map polygenic traits using this method. PMID:18957702

  16. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis.

    Science.gov (United States)

    Shao, Changwei; Niu, Yongchao; Rastas, Pasi; Liu, Yang; Xie, Zhiyuan; Li, Hengde; Wang, Lei; Jiang, Yong; Tai, Shuaishuai; Tian, Yongsheng; Sakamoto, Takashi; Chen, Songlin

    2015-04-01

    High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1-8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species.

  17. Gitools: analysis and visualisation of genomic data using interactive heat-maps.

    Directory of Open Access Journals (Sweden)

    Christian Perez-Llamas

    Full Text Available Intuitive visualization of data and results is very important in genomics, especially when many conditions are to be analyzed and compared. Heat-maps have proven very useful for the representation of biological data. Here we present Gitools (http://www.gitools.org, an open-source tool to perform analyses and visualize data and results as interactive heat-maps. Gitools contains data import systems from several sources (i.e. IntOGen, Biomart, KEGG, Gene Ontology, which facilitate the integration of novel data with previous knowledge.

  18. Impact of genome assembly status on ChIP-Seq and ChIP-PET data mapping

    Directory of Open Access Journals (Sweden)

    Sachs Laurent

    2009-12-01

    Full Text Available Abstract Background ChIP-Seq and ChIP-PET can potentially be used with any genome for genome wide profiling of protein-DNA interaction sites. Unfortunately, it is probable that most genome assemblies will never reach the quality of the human genome assembly. Therefore, it remains to be determined whether ChIP-Seq and ChIP-PET are practicable with genome sequences other than a few (e.g. human and mouse. Findings Here, we used in silico simulations to assess the impact of completeness or fragmentation of genome assemblies on ChIP-Seq and ChIP-PET data mapping. Conclusions Most currently published genome assemblies are suitable for mapping the short sequence tags produced by ChIP-Seq or ChIP-PET.

  19. Cowichan Valley energy mapping and modelling. Report 6 - Findings and recommendations. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    This report is the final report in a series of six reports detailing the findings from the Cowichan Valley Energy Mapping and Modelling project that was carried out from April of 2011 to March of 2012 by Ea Energy Analyses in conjunction with Geographic Resource Analysis and Science (GRAS). The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. The present report is the final report and presents a summary of the findings of project tasks 1-5 and provides a set of recommendations to the CVRD based on the work done and with an eye towards the next steps in the energy planning process of the CVRD. (LN)

  20. The HapMap and genome-wide association studies in diagnosis and therapy.

    Science.gov (United States)

    Manolio, Teri A; Collins, Francis S

    2009-01-01

    The International HapMap Project produced a genome-wide database of human genetic variation for use in genetic association studies of common diseases. The initial output of these studies has been overwhelming, with over 150 risk loci identified in studies of more than 60 common diseases and traits. These associations have suggested previously unsuspected etiologic pathways for common diseases that will be of use in identifying new therapeutic targets and developing targeted interventions based on genetically defined risk. Here we examine the development and application of the HapMap to genome-wide association (GWA) studies; present and future technologies for GWA research; current major efforts in GWA studies; successes and limitations of the GWA approach in identifying polymorphisms related to complex diseases; data release and privacy polices; use of these findings by clinicians, the public, and academic physicians; and sources of ongoing authoritative information on this rapidly evolving field.

  1. Construction of an integrated consensus map of the Apple genome based on four mapping populations

    NARCIS (Netherlands)

    N'Diaye, A.; Weg, van de W.E.; Kodde, L.P.; Koller, B.; Dunemann, F.; Thiermann, M.; Tartarini, S.; Gennari, F.; Durel, C.E.

    2008-01-01

    An integrated consensus genetic map for apple was constructed on the basis of segregation data from four genetically connected crosses (C1¿=¿Discovery × TN10-8, C2¿=¿Fiesta × Discovery, C3¿=¿Discovery × Prima, C4¿=¿Durello di Forli × Fiesta) with a total of 676 individuals using CarthaGene®

  2. QTL Mapping of Leafy Heads by Genome Resequencing in the RIL Population of Brassica rapa

    OpenAIRE

    Xiang Yu; Han Wang; Weili Zhong; Jinjuan Bai; Pinglin Liu; Yuke He

    2013-01-01

    Leaf heads of cabbage (Brassica oleracea), Chinese cabbage (B. rapa), and lettuce (Lactuca sativa) are important vegetables that supply mineral nutrients, crude fiber and vitamins in the human diet. Head size, head shape, head weight, and heading time contribute to yield and quality. In an attempt to investigate genetic basis of leafy head in Chinese cabbage (B. rapa), we took advantage of recent technical advances of genome resequencing to perform quantitative trait locus (QTL) mapping using...

  3. A genome-wide screen and linkage mapping for a large pedigree with episodic ataxia.

    Science.gov (United States)

    Cader, M Z; Steckley, J L; Dyment, D A; McLachlan, R S; Ebers, G C

    2005-07-12

    Episodic ataxias are ion channel disorders characterized by attacks of incoordination. The authors performed a genome-wide screen in a large pedigree segregating a novel episodic ataxia and found significant linkage on 1q42 with a multipoint lod score of 3.65. Haplotype analysis and fine mapping yielded a peak 2-point lod score of 4.14 and indicated a 4-cM region on 1q42 that is likely to harbor an episodic ataxia gene.

  4. Localising loci underlying complex trait variation using Regional Genomic Relationship Mapping.

    Directory of Open Access Journals (Sweden)

    Yoshitaka Nagamine

    Full Text Available The limited proportion of complex trait variance identified in genome-wide association studies may reflect the limited power of single SNP analyses to detect either rare causative alleles or those of small effect. Motivated by studies that demonstrate that loci contributing to trait variation may contain a number of different alleles, we have developed an analytical approach termed Regional Genomic Relationship Mapping that, like linkage-based family methods, integrates variance contributed by founder gametes within a pedigree. This approach takes advantage of very distant (and unrecorded relationships, and this greatly increases the power of the method, compared with traditional pedigree-based linkage analyses. By integrating variance contributed by founder gametes in the population, our approach provides an estimate of the Regional Heritability attributable to a small genomic region (e.g. 100 SNP window covering ca. 1 Mb of DNA in a 300000 SNP GWAS and has the power to detect regions containing multiple alleles that individually contribute too little variance to be detectable by GWAS as well as regions with single common GWAS-detectable SNPs. We use genome-wide SNP array data to obtain both a genome-wide relationship matrix and regional relationship ("identity by state" or IBS matrices for sequential regions across the genome. We then estimate a heritability for each region sequentially in our genome-wide scan. We demonstrate by simulation and with real data that, when compared to traditional ("individual SNP" GWAS, our method uncovers new loci that explain additional trait variation. We analysed data from three Southern European populations and from Orkney for exemplar traits - serum uric acid concentration and height. We show that regional heritability estimates are correlated with results from genome-wide association analysis but can capture more of the genetic variance segregating in the population and identify additional trait loci.

  5. Comparative analysis of physical maps of four Bacillus subtilis (natto) genomes.

    Science.gov (United States)

    Qiu, Dongru; Fujita, Kyoko; Sakuma, Yuko; Tanaka, Teruo; Ohashi, Yoshiaki; Ohshima, Hideyuki; Tomita, Masaru; Itaya, Mitsuhiro

    2004-10-01

    The complete SfiI and I-CeuI physical maps of four Bacillus subtilis (natto) strains, which were previously isolated as natto (fermented soybean) starters, were constructed to elucidate the genome structure. Not only the similarity in genome size and organization but also the microheterogeneity of the gene context was revealed. No large-scale genome rearrangements among the four strains were indicated by mapping of the genes, including 10 rRNA operons (rrn) and relevant genes required for natto production, to the loci corresponding to those of the B. subtilis strain Marburg 168. However, restriction fragment length polymorphism and the presence or absence of strain-specific DNA sequences, such as the prophages SP beta, skin element, and PBSX, as well as the insertion element IS4Bsu1, could be used to identify one of these strains as a Marburg type and the other three strains as natto types. The genome structure and gene heterogeneity were also consistent with the type of indigenous plasmids harbored by the strains.

  6. Genomics and introgression: discovery and mapping of thousands of species-diagnostic SNPs using RAD sequencing

    Science.gov (United States)

    Hand, Brian K; Hether, Tyler D; Kovach, Ryan P.; Muhlfeld, Clint C.; Amish, Stephen J.; Boyer, Matthew C.; O’Rourke, Sean M.; Miller, Michael R.; Lowe, Winsor H.; Hohenlohe, Paul A.; Luikart, Gordon

    2015-01-01

    Invasive hybridization and introgression pose a serious threat to the persistence of many native species. Understanding the effects of hybridization on native populations (e.g., fitness consequences) requires numerous species-diagnostic loci distributed genome-wide. Here we used RAD sequencing to discover thousands of single-nucleotide polymorphisms (SNPs) that are diagnostic between rainbow trout (RBT, Oncorhynchus mykiss), the world’s most widely introduced fish, and native westslope cutthroat trout (WCT, O. clarkii lewisi) in the northern Rocky Mountains, USA. We advanced previous work that identified 4,914 species-diagnostic loci by using longer sequence reads (100 bp vs. 60 bp) and a larger set of individuals (n = 84). We sequenced RAD libraries for individuals from diverse sampling sources, including native populations of WCT and hatchery broodstocks of WCT and RBT. We also took advantage of a newly released reference genome assembly for RBT to align our RAD loci. In total, we discovered 16,788 putatively diagnostic SNPs, 10,267 of which we mapped to anchored chromosome locations on the RBT genome. A small portion of previously discovered putative diagnostic loci (325 of 4,914) were no longer diagnostic (i.e., fixed between species) based on our wider survey of non-hybridized RBT and WCT individuals. Our study suggests that RAD loci mapped to a draft genome assembly could provide the marker density required to identify genes and chromosomal regions influencing selection in admixed populations of conservation concern and evolutionary interest.

  7. Map and analysis of microsatellites in the genome of Populus: The first sequenced perennial plant

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We mapped and analyzed the microsatellites throughout 284295605 base pairs of the unambiguously assembled sequence scaffolds along 19 chromosomes of the haploid poplar genome. Totally, we found 150985 SSRs with repeat unit lengths between 2 and 5 bp. The established microsatellite physical map demonstrated trat SSRs were distributed relatively evenly across the genome of Populus. On average, These SSRs occurred every 1883 bp within the poplar genome and the SSR densities in intergenic regions, introns, exons and UTRs were 85.4%, 10.7%, 2.7% and 1.2%, respectively. We took di-, tri-, tetra-and pentamers as the four classes of repeat units and found that the density of each class of SSRs decreased with the repeat unit lengths except for the tetranucleotide repeats. It was noteworthy that the length diversification of microsatellite sequences was negatively correlated with their repeat unit length and the SSRs with shorter repeat units gained repeats faster than the SSRs with longer repeat units. We also found that the GC content of poplar sequence significantly correlated with densities of SSRs with uneven repeat unit lengths (tri- and penta-), but had no significant correlation with densities of SSRs with even repeat unit lengths (di- and tetra-). In poplar genome, there were evidences that the occurrence of different microsatellites was under selection and the GC content in SSR sequences was found to significantly relate to the functional importance of microsatellites.

  8. Topological Data Analysis Generates High-Resolution, Genome-wide Maps of Human Recombination.

    Science.gov (United States)

    Camara, Pablo G; Rosenbloom, Daniel I S; Emmett, Kevin J; Levine, Arnold J; Rabadan, Raul

    2016-07-01

    Meiotic recombination is a fundamental evolutionary process driving diversity in eukaryotes. In mammals, recombination is known to occur preferentially at specific genomic regions. Using topological data analysis (TDA), a branch of applied topology that extracts global features from large data sets, we developed an efficient method for mapping recombination at fine scales. When compared to standard linkage-based methods, TDA can deal with a larger number of SNPs and genomes without incurring prohibitive computational costs. We applied TDA to 1,000 Genomes Project data and constructed high-resolution whole-genome recombination maps of seven human populations. Our analysis shows that recombination is generally under-represented within transcription start sites. However, the binding sites of specific transcription factors are enriched for sites of recombination. These include transcription factors that regulate the expression of meiosis- and gametogenesis-specific genes, cell cycle progression, and differentiation blockage. Additionally, our analysis identifies an enrichment for sites of recombination at repeat-derived loci matched by piwi-interacting RNAs.

  9. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation.

    Science.gov (United States)

    Clausen, Anders R; Lujan, Scott A; Burkholder, Adam B; Orebaugh, Clinton D; Williams, Jessica S; Clausen, Maryam F; Malc, Ewa P; Mieczkowski, Piotr A; Fargo, David C; Smith, Duncan J; Kunkel, Thomas A

    2015-03-01

    Ribonucleotides are frequently incorporated into DNA during replication in eukaryotes. Here we map genome-wide distribution of these ribonucleotides as markers of replication enzymology in budding yeast, using a new 5' DNA end-mapping method, hydrolytic end sequencing (HydEn-seq). HydEn-seq of DNA from ribonucleotide excision repair-deficient strains reveals replicase- and strand-specific patterns of ribonucleotides in the nuclear genome. These patterns support the roles of DNA polymerases α and δ in lagging-strand replication and of DNA polymerase ɛ in leading-strand replication. They identify replication origins, termination zones and variations in ribonucleotide incorporation frequency across the genome that exceed three orders of magnitude. HydEn-seq also reveals strand-specific 5' DNA ends at mitochondrial replication origins, thus suggesting unidirectional replication of a circular genome. Given the conservation of enzymes that incorporate and process ribonucleotides in DNA, HydEn-seq can be used to track replication enzymology in other organisms.

  10. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.

    Science.gov (United States)

    Khajuria, Yash Paul; Saxena, Maneesha S; Gaur, Rashmi; Chattopadhyay, Debasis; Jain, Mukesh; Parida, Swarup K; Bhatia, Sabhyata

    2015-01-01

    The identification of informative in silico polymorphic genomic and genic microsatellite markers by comparing the genome and transcriptome sequences of crop genotypes is a rapid, cost-effective and non-laborious approach for large-scale marker validation and genotyping applications, including construction of high-density genetic maps. We designed 1494 markers, including 1016 genomic and 478 transcript-derived microsatellite markers showing in-silico fragment length polymorphism between two parental genotypes (Cicer arietinum ICC4958 and C. reticulatum PI489777) of an inter-specific reference mapping population. High amplification efficiency (87%), experimental validation success rate (81%) and polymorphic potential (55%) of these microsatellite markers suggest their effective use in various applications of chickpea genetics and breeding. Intra-specific polymorphic potential (48%) detected by microsatellite markers in 22 desi and kabuli chickpea genotypes was lower than inter-specific polymorphic potential (59%). An advanced, high-density, integrated and inter-specific chickpea genetic map (ICC4958 x PI489777) having 1697 map positions spanning 1061.16 cM with an average inter-marker distance of 0.625 cM was constructed by assigning 634 novel informative transcript-derived and genomic microsatellite markers on eight linkage groups (LGs) of our prior documented, 1063 marker-based genetic map. The constructed genome map identified 88, including four major (7-23 cM) longest high-resolution genomic regions on LGs 3, 5 and 8, where the maximum number of novel genomic and genic microsatellite markers were specifically clustered within 1 cM genetic distance. It was for the first time in chickpea that in silico FLP analysis at genome-wide level was carried out and such a large number of microsatellite markers were identified, experimentally validated and further used in genetic mapping. To best of our knowledge, in the presently constructed genetic map, we mapped highest

  11. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.

    Directory of Open Access Journals (Sweden)

    Yash Paul Khajuria

    Full Text Available The identification of informative in silico polymorphic genomic and genic microsatellite markers by comparing the genome and transcriptome sequences of crop genotypes is a rapid, cost-effective and non-laborious approach for large-scale marker validation and genotyping applications, including construction of high-density genetic maps. We designed 1494 markers, including 1016 genomic and 478 transcript-derived microsatellite markers showing in-silico fragment length polymorphism between two parental genotypes (Cicer arietinum ICC4958 and C. reticulatum PI489777 of an inter-specific reference mapping population. High amplification efficiency (87%, experimental validation success rate (81% and polymorphic potential (55% of these microsatellite markers suggest their effective use in various applications of chickpea genetics and breeding. Intra-specific polymorphic potential (48% detected by microsatellite markers in 22 desi and kabuli chickpea genotypes was lower than inter-specific polymorphic potential (59%. An advanced, high-density, integrated and inter-specific chickpea genetic map (ICC4958 x PI489777 having 1697 map positions spanning 1061.16 cM with an average inter-marker distance of 0.625 cM was constructed by assigning 634 novel informative transcript-derived and genomic microsatellite markers on eight linkage groups (LGs of our prior documented, 1063 marker-based genetic map. The constructed genome map identified 88, including four major (7-23 cM longest high-resolution genomic regions on LGs 3, 5 and 8, where the maximum number of novel genomic and genic microsatellite markers were specifically clustered within 1 cM genetic distance. It was for the first time in chickpea that in silico FLP analysis at genome-wide level was carried out and such a large number of microsatellite markers were identified, experimentally validated and further used in genetic mapping. To best of our knowledge, in the presently constructed genetic map, we mapped

  12. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea

    Science.gov (United States)

    Gaur, Rashmi; Chattopadhyay, Debasis; Jain, Mukesh; Parida, Swarup K.; Bhatia, Sabhyata

    2015-01-01

    The identification of informative in silico polymorphic genomic and genic microsatellite markers by comparing the genome and transcriptome sequences of crop genotypes is a rapid, cost-effective and non-laborious approach for large-scale marker validation and genotyping applications, including construction of high-density genetic maps. We designed 1494 markers, including 1016 genomic and 478 transcript-derived microsatellite markers showing in-silico fragment length polymorphism between two parental genotypes (Cicer arietinum ICC4958 and C. reticulatum PI489777) of an inter-specific reference mapping population. High amplification efficiency (87%), experimental validation success rate (81%) and polymorphic potential (55%) of these microsatellite markers suggest their effective use in various applications of chickpea genetics and breeding. Intra-specific polymorphic potential (48%) detected by microsatellite markers in 22 desi and kabuli chickpea genotypes was lower than inter-specific polymorphic potential (59%). An advanced, high-density, integrated and inter-specific chickpea genetic map (ICC4958 x PI489777) having 1697 map positions spanning 1061.16 cM with an average inter-marker distance of 0.625 cM was constructed by assigning 634 novel informative transcript-derived and genomic microsatellite markers on eight linkage groups (LGs) of our prior documented, 1063 marker-based genetic map. The constructed genome map identified 88, including four major (7–23 cM) longest high-resolution genomic regions on LGs 3, 5 and 8, where the maximum number of novel genomic and genic microsatellite markers were specifically clustered within 1 cM genetic distance. It was for the first time in chickpea that in silico FLP analysis at genome-wide level was carried out and such a large number of microsatellite markers were identified, experimentally validated and further used in genetic mapping. To best of our knowledge, in the presently constructed genetic map, we mapped highest

  13. Genotype Imputation for Latinos Using the HapMap and 1000 Genomes Project Reference Panels

    Directory of Open Access Journals (Sweden)

    Xiaoyi eGao

    2012-06-01

    Full Text Available Genotype imputation is a vital tool in genome-wide association studies (GWAS and meta-analyses of multiple GWAS results. Imputation enables researchers to increase genomic coverage and to pool data generated using different genotyping platforms. HapMap samples are often employed as the reference panel. More recently, the 1000 Genomes Project resource is becoming the primary source for reference panels. Multiple GWAS and meta-analyses are targeting Latinos, the most populous and fastest growing minority group in the US. However, genotype imputation resources for Latinos are rather limited compared to individuals of European ancestry at present, largely because of the lack of good reference data. One choice of reference panel for Latinos is one derived from the population of Mexican individuals in Los Angeles contained in the HapMap Phase 3 project and the 1000 Genomes Project. However, a detailed evaluation of the quality of the imputed genotypes derived from the public reference panels has not yet been reported. Using simulation studies, the Illumina OmniExpress GWAS data from the Los Angles Latino Eye Study and the MACH software package, we evaluated the accuracy of genotype imputation in Latinos. Our results show that the 1000 Genomes Project AMR+CEU+YRI reference panel provides the highest imputation accuracy for Latinos, and that also including Asian samples in the panel can reduce imputation accuracy. We also provide the imputation accuracy for each autosomal chromosome using the 1000 Genomes Project panel for Latinos. Our results serve as a guide to future imputation-based analysis in Latinos.

  14. Genotype Imputation for Latinos Using the HapMap and 1000 Genomes Project Reference Panels.

    Science.gov (United States)

    Gao, Xiaoyi; Haritunians, Talin; Marjoram, Paul; McKean-Cowdin, Roberta; Torres, Mina; Taylor, Kent D; Rotter, Jerome I; Gauderman, William J; Varma, Rohit

    2012-01-01

    Genotype imputation is a vital tool in genome-wide association studies (GWAS) and meta-analyses of multiple GWAS results. Imputation enables researchers to increase genomic coverage and to pool data generated using different genotyping platforms. HapMap samples are often employed as the reference panel. More recently, the 1000 Genomes Project resource is becoming the primary source for reference panels. Multiple GWAS and meta-analyses are targeting Latinos, the most populous, and fastest growing minority group in the US. However, genotype imputation resources for Latinos are rather limited compared to individuals of European ancestry at present, largely because of the lack of good reference data. One choice of reference panel for Latinos is one derived from the population of Mexican individuals in Los Angeles contained in the HapMap Phase 3 project and the 1000 Genomes Project. However, a detailed evaluation of the quality of the imputed genotypes derived from the public reference panels has not yet been reported. Using simulation studies, the Illumina OmniExpress GWAS data from the Los Angles Latino Eye Study and the MACH software package, we evaluated the accuracy of genotype imputation in Latinos. Our results show that the 1000 Genomes Project AMR + CEU + YRI reference panel provides the highest imputation accuracy for Latinos, and that also including Asian samples in the panel can reduce imputation accuracy. We also provide the imputation accuracy for each autosomal chromosome using the 1000 Genomes Project panel for Latinos. Our results serve as a guide to future imputation based analysis in Latinos.

  15. An initial comparative map of copy number variations in the goat (Capra hircus genome

    Directory of Open Access Journals (Sweden)

    Casadio Rita

    2010-11-01

    Full Text Available Abstract Background The goat (Capra hircus represents one of the most important farm animal species. It is reared in all continents with an estimated world population of about 800 million of animals. Despite its importance, studies on the goat genome are still in their infancy compared to those in other farm animal species. Comparative mapping between cattle and goat showed only a few rearrangements in agreement with the similarity of chromosome banding. We carried out a cross species cattle-goat array comparative genome hybridization (aCGH experiment in order to identify copy number variations (CNVs in the goat genome analysing animals of different breeds (Saanen, Camosciata delle Alpi, Girgentana, and Murciano-Granadina using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. Results We identified a total of 161 CNVs (an average of 17.9 CNVs per goat, with the largest number in the Saanen breed and the lowest in the Camosciata delle Alpi goat. By aggregating overlapping CNVs identified in different animals we determined CNV regions (CNVRs: on the whole, we identified 127 CNVRs covering about 11.47 Mb of the virtual goat genome referred to the bovine genome (0.435% of the latter genome. These 127 CNVRs included 86 loss and 41 gain and ranged from about 24 kb to about 1.07 Mb with a mean and median equal to 90,292 bp and 49,530 bp, respectively. To evaluate whether the identified goat CNVRs overlap with those reported in the cattle genome, we compared our results with those obtained in four independent cattle experiments. Overlapping between goat and cattle CNVRs was highly significant (P Conclusions We describe a first map of goat CNVRs. This provides information on a comparative basis with the cattle genome by identifying putative recurrent interspecies CNVs between these two ruminant species. Several goat CNVs affect genes with important biological functions. Further studies are needed to evaluate the

  16. A genome-wide SNP panel for mapping and association studies in the rat

    Directory of Open Access Journals (Sweden)

    Guryev Victor

    2008-02-01

    Full Text Available Abstract Background The laboratory rat (Rattus norvegicus is an important model for human disease, and is extensively used for studying complex traits for example in the physiological and pharmacological fields. To facilitate genetic studies like QTL mapping, genetic makers that can be easily typed, like SNPs, are essential. Results A genome-wide set of 820 SNP assays was designed for the KASPar genotyping platform, which uses a technique based on allele specific oligo extension and energy transfer-based detection. SNPs were chosen to be equally spread along all chromosomes except Y and to be polymorphic between Brown Norway and SS or Wistar rat strains based on data from the rat HapMap EU project. This panel was tested on 38 rats of 34 different strains and 3 wild rats to determine the level of polymorphism and to generate a phylogenetic network to show their genetic relationships. As a proof of principle we used this panel to map an obesity trait in Zucker rats and confirmed significant linkage (LOD 122 to chromosome 5: 119–129 Mb, where the leptin receptor gene (Lepr is located (chr5: 122 Mb. Conclusion We provide a fast and cost-effective platform for genome-wide SNP typing, which can be used for first-pass genetic mapping and association studies in a wide variety of rat strains.

  17. Whole-Genome Mapping as a Novel High-Resolution Typing Tool for Legionella pneumophila.

    Science.gov (United States)

    Bosch, Thijs; Euser, Sjoerd M; Landman, Fabian; Bruin, Jacob P; IJzerman, Ed P; den Boer, Jeroen W; Schouls, Leo M

    2015-10-01

    Legionella is the causative agent for Legionnaires' disease (LD) and is responsible for several large outbreaks in the world. More than 90% of LD cases are caused by Legionella pneumophila, and studies on the origin and transmission routes of this pathogen rely on adequate molecular characterization of isolates. Current typing of L. pneumophila mainly depends on sequence-based typing (SBT). However, studies have shown that in some outbreak situations, SBT does not have sufficient discriminatory power to distinguish between related and nonrelated L. pneumophila isolates. In this study, we used a novel high-resolution typing technique, called whole-genome mapping (WGM), to differentiate between epidemiologically related and nonrelated L. pneumophila isolates. Assessment of the method by various validation experiments showed highly reproducible results, and WGM was able to confirm two well-documented Dutch L. pneumophila outbreaks. Comparison of whole-genome maps of the two outbreaks together with WGMs of epidemiologically nonrelated L. pneumophila isolates showed major differences between the maps, and WGM yielded a higher discriminatory power than SBT. In conclusion, WGM can be a valuable alternative to perform outbreak investigations of L. pneumophila in real time since the turnaround time from culture to comparison of the L. pneumophila maps is less than 24 h.

  18. Scanning genomic areas under selection sweep and association mapping as tools to identify horticultural important genes in watermelon

    Science.gov (United States)

    Watermelon (Citrullus lanatus var. lanatus) contains 88% water, sugars, and several important health-related compounds, including lycopene, citrulline, arginine, and glutathione. The current genetic diversity study uses microsatellites with known map positions to identify genomic regions that under...

  19. G-MAPSEQ – a new method for mapping reads to a reference genome

    Directory of Open Access Journals (Sweden)

    Wojciechowski Pawel

    2016-06-01

    Full Text Available The problem of reads mapping to a reference genome is one of the most essential problems in modern computational biology. The most popular algorithms used to solve this problem are based on the Burrows-Wheeler transform and the FM-index. However, this causes some issues with highly mutated sequences due to a limited number of mutations allowed. G-MAPSEQ is a novel, hybrid algorithm combining two interesting methods: alignment-free sequence comparison and an ultra fast sequence alignment. The former is a fast heuristic algorithm which uses k-mer characteristics of nucleotide sequences to find potential mapping places. The latter is a very fast GPU implementation of sequence alignment used to verify the correctness of these mapping positions. The source code of G-MAPSEQ along with other bioinformatic software is available at: http://gpualign.cs.put.poznan.pl.

  20. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  1. Positioning Genomics in Biology Education: Content Mapping of Undergraduate Biology Textbooks

    Directory of Open Access Journals (Sweden)

    Naomi L. B. Wernick

    2014-07-01

    Full Text Available Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science.

  2. Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses.

    Science.gov (United States)

    Bowers, John E; Bachlava, Eleni; Brunick, Robert L; Rieseberg, Loren H; Knapp, Steven J; Burke, John M

    2012-07-01

    Genetic linkage maps have the potential to facilitate the genetic dissection of complex traits and comparative analyses of genome structure, as well as molecular breeding efforts in species of agronomic importance. Until recently, the majority of such maps was based on relatively low-throughput marker technologies, which limited marker density across the genome. The availability of high-throughput genotyping technologies has, however, made possible the efficient development of high-density genetic maps. Here, we describe the analysis and integration of genotypic data from four sunflower (Helianthus annuus L.) mapping populations to produce a consensus linkage map of the sunflower genome. Although the individual maps (which contained 3500-5500 loci each) were highly colinear, we observed localized variation in recombination rates in several genomic regions. We also observed several gaps up to 26 cM in length that completely lacked mappable markers in individual crosses, presumably due to regions of identity by descent in the mapping parents. Because these regions differed by cross, the consensus map of 10,080 loci contained no such gaps, clearly illustrating the value of simultaneously analyzing multiple mapping populations.

  3. A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates.

    Science.gov (United States)

    Everts-van der Wind, Annelie; Kata, Srinivas R; Band, Mark R; Rebeiz, Mark; Larkin, Denis M; Everts, Robin E; Green, Cheryl A; Liu, Lei; Natarajan, Shreedhar; Goldammer, Tom; Lee, Jun Heon; McKay, Stephanie; Womack, James E; Lewin, Harris A

    2004-07-01

    A second-generation 5000 rad radiation hybrid (RH) map of the cattle genome was constructed primarily using cattle ESTs that were targeted to gaps in the existing cattle-human comparative map, as well as to sparsely populated map intervals. A total of 870 targeted markers were added, bringing the number of markers mapped on the RH(5000) panel to 1913. Of these, 1463 have significant BLASTN hits (E genes) were identified between the cattle and human genomes, of which 31 are newly discovered and 34 were extended singletons on the first-generation map. The new map represents an improvement of 20% genome-wide comparative coverage compared with the first-generation map. Analysis of gene content within human genome regions where there are gaps in the comparative map revealed gaps with both significantly greater and significantly lower gene content. The new, more detailed cattle-human comparative map provides an improved resource for the analysis of mammalian chromosome evolution, the identification of candidate genes for economically important traits, and for proper alignment of sequence contigs on cattle chromosomes. Copyright 2004 Cold Spring Harbor Laboratory Press ISSN

  4. A comparative physical map reveals the pattern of chromosomal evolution between the turkey (Meleagris gallopavo and chicken (Gallus gallus genomes

    Directory of Open Access Journals (Sweden)

    Delany Mary E

    2011-09-01

    Full Text Available Abstract Background A robust bacterial artificial chromosome (BAC-based physical map is essential for many aspects of genomics research, including an understanding of chromosome evolution, high-resolution genome mapping, marker-assisted breeding, positional cloning of genes, and quantitative trait analysis. To facilitate turkey genetics research and better understand avian genome evolution, a BAC-based integrated physical, genetic, and comparative map was developed for this important agricultural species. Results The turkey genome physical map was constructed based on 74,013 BAC fingerprints (11.9 × coverage from two independent libraries, and it was integrated with the turkey genetic map and chicken genome sequence using over 41,400 BAC assignments identified by 3,499 overgo hybridization probes along with > 43,000 BAC end sequences. The physical-comparative map consists of 74 BAC contigs, with an average contig size of 13.6 Mb. All but four of the turkey chromosomes were spanned on this map by three or fewer contigs, with 14 chromosomes spanned by a single contig and nine chromosomes spanned by two contigs. This map predicts 20 to 27 major rearrangements distinguishing turkey and chicken chromosomes, despite up to 40 million years of separate evolution between the two species. These data elucidate the chromosomal evolutionary pattern within the Phasianidae that led to the modern turkey and chicken karyotypes. The predominant rearrangement mode involves intra-chromosomal inversions, and there is a clear bias for these to result in centromere locations at or near telomeres in turkey chromosomes, in comparison to interstitial centromeres in the orthologous chicken chromosomes. Conclusion The BAC-based turkey-chicken comparative map provides novel insights into the evolution of avian genomes, a framework for assembly of turkey whole genome shotgun sequencing data, and tools for enhanced genetic improvement of these important agricultural and

  5. Development of an ultra-dense genetic map of the sunflower genome based on single-feature polymorphisms.

    Directory of Open Access Journals (Sweden)

    John E Bowers

    Full Text Available The development of ultra-dense genetic maps has the potential to facilitate detailed comparative genomic analyses and whole genome sequence assemblies. Here we describe the use of a custom Affymetrix GeneChip containing nearly 2.4 million features (25 bp sequences targeting 86,023 unigenes from sunflower (Helianthus annuus L. and related species to test for single-feature polymorphisms (SFPs in a recombinant inbred line (RIL mapping population derived from a cross between confectionery and oilseed sunflower lines (RHA280×RHA801. We then employed an existing genetic map derived from this same population to rigorously filter out low quality data and place 67,486 features corresponding to 22,481 unigenes on the sunflower genetic map. The resulting map contains a substantial fraction of all sunflower genes and will thus facilitate a number of downstream applications, including genome assembly and the identification of candidate genes underlying QTL or traits of interest.

  6. NotI jumping and linking clones as a tool for genome mapping and analysis of chromosome rearrangements in different tumors.

    Science.gov (United States)

    Zabarovsky, E R; Kashuba, V I; Gizatullin, R Z; Winberg, G; Zabarovska, V I; Erlandsson, R; Domninsky, D A; Bannikov, V M; Pokrovskaya, E; Kholodnyuk, I; Petrov, N; Zakharyev, V M; Kisselev, L L; Klein, G

    1996-01-01

    Long-range restriction site maps are of central importance for mapping the human genome. The use of clones from linking and jumping libraries for genome mapping offers a promising alternative to the laborious procedures used up until now. In the present review, this research field is analyzed with particular emphasis on the implementation of a shot-gun sequencing strategy for genome mapping and the use of NotI linking clones for analysis of rearrangements in tumors and tumor cell lines.

  7. Mapping the Ethics of Translational Genomics: Situating Return of Results and Navigating the Research-Clinical Divide.

    Science.gov (United States)

    Wolf, Susan M; Burke, Wylie; Koenig, Barbara A

    2015-01-01

    Both bioethics and law have governed human genomics by distinguishing research from clinical practice. Yet the rise of translational genomics now makes this traditional dichotomy inadequate. This paper pioneers a new approach to the ethics of translational genomics. It maps the full range of ethical approaches needed, proposes a "layered" approach to determining the ethics framework for projects combining research and clinical care, and clarifies the key role that return of results can play in advancing translation.

  8. The mouse QTL map helps interpret human genome-wide association studies for HDL cholesterol.

    Science.gov (United States)

    Leduc, Magalie S; Lyons, Malcolm; Darvishi, Katayoon; Walsh, Kenneth; Sheehan, Susan; Amend, Sarah; Cox, Allison; Orho-Melander, Marju; Kathiresan, Sekar; Paigen, Beverly; Korstanje, Ron

    2011-06-01

    Genome-wide association (GWA) studies represent a powerful strategy for identifying susceptibility genes for complex diseases in human populations but results must be confirmed and replicated. Because of the close homology between mouse and human genomes, the mouse can be used to add evidence to genes suggested by human studies. We used the mouse quantitative trait loci (QTL) map to interpret results from a GWA study for genes associated with plasma HDL cholesterol levels. We first positioned single nucleotide polymorphisms (SNPs) from a human GWA study on the genomic map for mouse HDL QTL. We then used mouse bioinformatics, sequencing, and expression studies to add evidence for one well-known HDL gene (Abca1) and three newly identified genes (Galnt2, Wwox, and Cdh13), thus supporting the results of the human study. For GWA peaks that occur in human haplotype blocks with multiple genes, we examined the homologous regions in the mouse to prioritize the genes using expression, sequencing, and bioinformatics from the mouse model, showing that some genes were unlikely candidates and adding evidence for candidate genes Mvk and Mmab in one haplotype block and Fads1 and Fads2 in the second haplotype block. Our study highlights the value of mouse genetics for evaluating genes found in human GWA studies.

  9. Information on a Major New Initiative: Mapping and Sequencing the Human Genome (1986 DOE Memorandum)

    Science.gov (United States)

    DeLisi, Charles (Associate Director, Health and Environmental Research, DOE Office of Energy Research)

    1986-05-06

    In the history of the Human Genome Program, Dr. Charles DeLisi and Dr. Alvin Trivelpiece of the Department of Energy (DOE) were instrumental in moving the seeds of the program forward. This May 1986 memo from DeLisi to Trivelpiece, Director of DOE's Office of Energy Research, documents this fact. Following the March 1986 Santa Fe workshop on the subject of mapping and sequencing the human genome, DeLisi's memo outlines workshop conclusions, explains the relevance of this project to DOE and the importance of the Department's laboratories and capabilities, notes the critical experience of DOE in managing projects of this scale and potential magnitude, and recognizes the fact that the project will impact biomedical science in ways which could not be fully anticipated at the time. Subsequently, program guidance was further sought from the DOE Health Effects Research Advisory Committee (HERAC) and the April 1987 HERAC report recommended that DOE and the nation commit to a large, multidisciplinary, scientific and technological undertaking to map and sequence the human genome.

  10. MapMaker and PathTracer for tracking carbon in genome-scale metabolic models.

    Science.gov (United States)

    Tervo, Christopher J; Reed, Jennifer L

    2016-05-01

    Constraint-based reconstruction and analysis (COBRA) modeling results can be difficult to interpret given the large numbers of reactions in genome-scale models. While paths in metabolic networks can be found, existing methods are not easily combined with constraint-based approaches. To address this limitation, two tools (MapMaker and PathTracer) were developed to find paths (including cycles) between metabolites, where each step transfers carbon from reactant to product. MapMaker predicts carbon transfer maps (CTMs) between metabolites using only information on molecular formulae and reaction stoichiometry, effectively determining which reactants and products share carbon atoms. MapMaker correctly assigned CTMs for over 97% of the 2,251 reactions in an Escherichia coli metabolic model (iJO1366). Using CTMs as inputs, PathTracer finds paths between two metabolites. PathTracer was applied to iJO1366 to investigate the importance of using CTMs and COBRA constraints when enumerating paths, to find active and high flux paths in flux balance analysis (FBA) solutions, to identify paths for putrescine utilization, and to elucidate a potential CO2 fixation pathway in E. coli. These results illustrate how MapMaker and PathTracer can be used in combination with constraint-based models to identify feasible, active, and high flux paths between metabolites.

  11. An autotetraploid linkage map of rose (Rosa hybrida validated using the strawberry (Fragaria vesca genome sequence.

    Directory of Open Access Journals (Sweden)

    Oron Gar

    Full Text Available Polyploidy is a pivotal process in plant evolution as it increase gene redundancy and morphological intricacy but due to the complexity of polysomic inheritance we have only few genetic maps of autopolyploid organisms. A robust mapping framework is particularly important in polyploid crop species, rose included (2n = 4x = 28, where the objective is to study multiallelic interactions that control traits of value for plant breeding. From a cross between the garden, peach red and fragrant cultivar Fragrant Cloud (FC and a cut-rose yellow cultivar Golden Gate (GG, we generated an autotetraploid GGFC mapping population consisting of 132 individuals. For the map we used 128 sequence-based markers, 141 AFLP, 86 SSR and three morphological markers. Seven linkage groups were resolved for FC (Total 632 cM and GG (616 cM which were validated by markers that segregated in both parents as well as the diploid integrated consensus map.The release of the Fragaria vesca genome, which also belongs to the Rosoideae, allowed us to place 70 rose sequenced markers on the seven strawberry pseudo-chromosomes. Synteny between Rosa and Fragaria was high with an estimated four major translocations and six inversions required to place the 17 non-collinear markers in the same order. Based on a verified linear order of the rose markers, we could further partition each of the parents into its four homologous groups, thus providing an essential framework to aid the sequencing of an autotetraploid genome.

  12. Chromosomal mapping of specific DNA gains and losses in solid tumors using comparative genomic hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, E.; Manoir, S. du; Speicher, M. [National Center for Human Genome Research, Bethesda, MD (United States)] [and others

    1994-09-01

    Comparative genomic hybridization (CGH) is a new molecular cytogenetic technique that is based on two color FISH and quantitative digital imaging microscopy. CGH is used to comprehensively survey tumor genomes for copy number changes and to determine the map position of amplification sites on normal reference chromosomes. CGH was used to analyze 107 different solid tumors, including 16 low grade astrocytomas, 15 recurrent astrocytic tumors, 13 high grade astrocytomas, 13 small cell lung cancers (SCLC), 14 breast cancer samples (7 diploid and 7 aneupoid tumors), 18 chromophobe renal cell carcinomas and 5 seminomas. Tumor DNA was extracted from frozen tissue, autopic material and formalin fixed, paraffin-embedded tissue samples. Our results revealed tumor specific gains and losses of certain chromosomes or chromosomal subregions (e.g., chromosomes 7 and 10 in glioblastomas, chromosomes 3 and 5 in SCLC). Numerous DNA-amplifications were mapped on reference metaphase and prometaphase chromosomes. The frequent amplification of the EGFR gene (malignant gliomas), protooncogenes of the myc family (SCLC) and of c-myc, int-2 and c-erbB2 (breast cancer) was confirmed. Many additional amplification sites, however, were mapped that were not described before. The results of CGH analysis were independently confirmed by means of cytogenetic banding analysis, interphase cytogenetics with region specific DNA-clones, Southern-Blot analysis, DNA-cytometry and studies of loss of heterozygosity.

  13. On the Mapping of Epistatic Genetic Interactions in Natural Isolates: Combining Classical Genetics and Genomics.

    Science.gov (United States)

    Hou, Jing; Schacherer, Joseph

    2016-01-01

    Genetic variation within species is the substrate of evolution. Epistasis, which designates the non-additive interaction between loci affecting a specific phenotype, could be one of the possible outcomes of genetic diversity. Dissecting the basis of such interactions is of current interest in different fields of biology, from exploring the gene regulatory network, to complex disease genetics, to the onset of reproductive isolation and speciation. We present here a general workflow to identify epistatic interactions between independently evolving loci in natural populations of the yeast Saccharomyces cerevisiae. The idea is to exploit the genetic diversity present in the species by evaluating a large number of crosses and analyzing the phenotypic distribution in the offspring. For a cross of interest, both parental strains would have a similar phenotypic value, whereas the resulting offspring would have a bimodal distribution of the phenotype, possibly indicating the presence of epistasis. Classical segregation analysis of the tetrads uncovers the penetrance and complexity of the interaction. In addition, this segregation could serve as the guidelines for choosing appropriate mapping strategies to narrow down the genomic regions involved. Depending on the segregation patterns observed, we propose different mapping strategies based on bulk segregant analysis or consecutive backcrosses followed by high-throughput genome sequencing. Our method is generally applicable to all systems with a haplodiplobiontic life cycle and allows high resolution mapping of interacting loci that govern various DNA polymorphisms from single nucleotide mutations to large-scale structural variations.

  14. QTL mapping of genome regions controlling temephos resistance in larvae of the mosquito Aedes aegypti.

    Science.gov (United States)

    Reyes-Solis, Guadalupe Del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C

    2014-10-01

    The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome.

  15. The European sea bass Dicentrarchus labrax genome puzzle: comparative BAC-mapping and low coverage shotgun sequencing

    Directory of Open Access Journals (Sweden)

    Volckaert Filip AM

    2010-01-01

    Full Text Available Abstract Background Food supply from the ocean is constrained by the shortage of domesticated and selected fish. Development of genomic models of economically important fishes should assist with the removal of this bottleneck. European sea bass Dicentrarchus labrax L. (Moronidae, Perciformes, Teleostei is one of the most important fishes in European marine aquaculture; growing genomic resources put it on its way to serve as an economic model. Results End sequencing of a sea bass genomic BAC-library enabled the comparative mapping of the sea bass genome using the three-spined stickleback Gasterosteus aculeatus genome as a reference. BAC-end sequences (102,690 were aligned to the stickleback genome. The number of mappable BACs was improved using a two-fold coverage WGS dataset of sea bass resulting in a comparative BAC-map covering 87% of stickleback chromosomes with 588 BAC-contigs. The minimum size of 83 contigs covering 50% of the reference was 1.2 Mbp; the largest BAC-contig comprised 8.86 Mbp. More than 22,000 BAC-clones aligned with both ends to the reference genome. Intra-chromosomal rearrangements between sea bass and stickleback were identified. Size distributions of mapped BACs were used to calculate that the genome of sea bass may be only 1.3 fold larger than the 460 Mbp stickleback genome. Conclusions The BAC map is used for sequencing single BACs or BAC-pools covering defined genomic entities by second generation sequencing technologies. Together with the WGS dataset it initiates a sea bass genome sequencing project. This will allow the quantification of polymorphisms through resequencing, which is important for selecting highly performing domesticated fish.

  16. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Héloïse Bastide

    2013-06-01

    Full Text Available Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome.

  17. Taenia hydatigena: isolation of mitochondrial DNA, molecular cloning, and physical mitochondrial genome mapping.

    Science.gov (United States)

    Yap, K W; Thompson, R C; Rood, J I; Pawlowski, I D

    1987-06-01

    Mitochondrial DNA was isolated from Taenia hydatigena, T. crassiceps, and Echinococcus granulosus using a cetyltrimethylammonium bromide precipitation technique. The technique is simple, rapid, reproducible, and does not require extensive high speed ultracentrifugation. The advantage of using mitochondrial DNA from taeniid cestodes for comparative restriction analysis was demonstrated. Mitochondrial DNA of T. hydatigena was isolated as covalently closed circular molecules. These were linearized by single digestion with BamHI and the molecular weight was estimated from the linear form of 17.6 kb. The mitochondrial DNA of T. hydatigena is therefore similar in size and structure to that of many other animal species. The entire mitochondrial genome was cloned into pBR322 in Escherichia coli and a restriction map of the recombinant molecule was constructed. The potential of using the cloned mitochondrial genome as a probe in speciation studies as well as for providing functional information on the role of the cestode mitochondrion is discussed.

  18. SyntenyTracker: a tool for defining homologous synteny blocks using radiation hybrid maps and whole-genome sequence

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2009-07-01

    Full Text Available Abstract Background The recent availability of genomic sequences and BAC libraries for a large number of mammals provides an excellent opportunity for identifying comparatively-anchored markers that are useful for creating high-resolution radiation-hybrid (RH and BAC-based comparative maps. To use these maps for multispecies genome comparison and evolutionary inference, robust bioinformatic tools are required for the identification of chromosomal regions shared between genomes and to localize the positions of evolutionary breakpoints that are the signatures of chromosomal rearrangements. Here we report an automated tool for the identification of homologous synteny blocks (HSBs between genomes that tolerates errors common in RH comparative maps and can be used for automated whole-genome analysis of chromosome rearrangements that occur during evolution. Findings We developed an algorithm and software tool (SyntenyTracker that can be used for automated definition of HSBs using pair-wise RH or gene-based comparative maps as input. To verify correct implementation of the underlying algorithm, SyntenyTracker was used to identify HSBs in the cattle and human genomes. Results demonstrated 96% agreement with HSBs defined manually using the same set of rules. A comparison of SyntenyTracker with the AutoGRAPH synteny tool was performed using identical datasets containing 14,380 genes with 1:1 orthology in human and mouse. Discrepancies between the results using the two tools and advantages of SyntenyTracker are reported. Conclusion SyntenyTracker was shown to be an efficient and accurate automated tool for defining HSBs using datasets that may contain minor errors resulting from limitations in map construction methodologies. The utility of SyntenyTracker will become more important for comparative genomics as the number of mapped and sequenced genomes increases.

  19. SyntenyTracker: a tool for defining homologous synteny blocks using radiation hybrid maps and whole-genome sequence.

    Science.gov (United States)

    Donthu, Ravikiran; Lewin, Harris A; Larkin, Denis M

    2009-07-23

    The recent availability of genomic sequences and BAC libraries for a large number of mammals provides an excellent opportunity for identifying comparatively-anchored markers that are useful for creating high-resolution radiation-hybrid (RH) and BAC-based comparative maps. To use these maps for multispecies genome comparison and evolutionary inference, robust bioinformatic tools are required for the identification of chromosomal regions shared between genomes and to localize the positions of evolutionary breakpoints that are the signatures of chromosomal rearrangements. Here we report an automated tool for the identification of homologous synteny blocks (HSBs) between genomes that tolerates errors common in RH comparative maps and can be used for automated whole-genome analysis of chromosome rearrangements that occur during evolution. We developed an algorithm and software tool (SyntenyTracker) that can be used for automated definition of HSBs using pair-wise RH or gene-based comparative maps as input. To verify correct implementation of the underlying algorithm, SyntenyTracker was used to identify HSBs in the cattle and human genomes. Results demonstrated 96% agreement with HSBs defined manually using the same set of rules. A comparison of SyntenyTracker with the AutoGRAPH synteny tool was performed using identical datasets containing 14,380 genes with 1:1 orthology in human and mouse. Discrepancies between the results using the two tools and advantages of SyntenyTracker are reported. SyntenyTracker was shown to be an efficient and accurate automated tool for defining HSBs using datasets that may contain minor errors resulting from limitations in map construction methodologies. The utility of SyntenyTracker will become more important for comparative genomics as the number of mapped and sequenced genomes increases.

  20. Small genomes: New initiatives in mapping and sequencing. Workshop summary report

    Energy Technology Data Exchange (ETDEWEB)

    McKenney, K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Biotechnology Div.; Robb, F. [Univ. of Maryland Biotechnology Inst., Baltimore, MD (United States). Center of Marine Biotechnology

    1993-12-31

    The workshop was held 5--7 July 1993 at the Center for Advanced Research in Biotechnology (CARB) and hosted by the University of Maryland Biotechnology Institute (UMBI) and the National Institute of Standards and Technology (NIST). The objective of this workshop was to bring together individuals interested in DNA technologies and to determine the impact of these current and potential improvements of the speed and cost-effectiveness of mapping and sequencing on the planning of future small genome projects. A major goal of the workshop was to spur the collaboration of more diverse groups of scientists working on this topic, and to minimize competitiveness as an inhibitory factor to progress.

  1. A dense linkage map for Chinook salmon (Oncorhynchus tshawytscha) reveals variable chromosomal divergence after an ancestral whole genome duplication event.

    Science.gov (United States)

    Brieuc, Marine S O; Waters, Charles D; Seeb, James E; Naish, Kerry A

    2014-03-20

    Comparisons between the genomes of salmon species reveal that they underwent extensive chromosomal rearrangements following whole genome duplication that occurred in their lineage 58-63 million years ago. Extant salmonids are diploid, but occasional pairing between homeologous chromosomes exists in males. The consequences of re-diploidization can be characterized by mapping the position of duplicated loci in such species. Linkage maps are also a valuable tool for genome-wide applications such as genome-wide association studies, quantitative trait loci mapping or genome scans. Here, we investigated chromosomal evolution in Chinook salmon (Oncorhynchus tshawytscha) after genome duplication by mapping 7146 restriction-site associated DNA loci in gynogenetic haploid, gynogenetic diploid, and diploid crosses. In the process, we developed a reference database of restriction-site associated DNA loci for Chinook salmon comprising 48528 non-duplicated loci and 6409 known duplicated loci, which will facilitate locus identification and data sharing. We created a very dense linkage map anchored to all 34 chromosomes for the species, and all arms were identified through centromere mapping. The map positions of 799 duplicated loci revealed that homeologous pairs have diverged at different rates following whole genome duplication, and that degree of differentiation along arms was variable. Many of the homeologous pairs with high numbers of duplicated markers appear conserved with other salmon species, suggesting that retention of conserved homeologous pairing in some arms preceded species divergence. As chromosome arms are highly conserved across species, the major resources developed for Chinook salmon in this study are also relevant for other related species.

  2. Genomic restructuring in the Tasmanian devil facial tumour: chromosome painting and gene mapping provide clues to evolution of a transmissible tumour.

    Directory of Open Access Journals (Sweden)

    Janine E Deakin

    Full Text Available Devil facial tumour disease (DFTD is a fatal, transmissible malignancy that threatens the world's largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD.

  3. Genome-wide characterization and linkage mapping of simple sequence repeats in mei (Prunus mume Sieb. et Zucc..

    Directory of Open Access Journals (Sweden)

    Lidan Sun

    Full Text Available Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc. has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca, and apple (Malus×domestica genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb and almost twice as high as that of apple (398 SSR/Mb. Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs, with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species.

  4. Assembly of the Genome of the Disease Vector Aedes aegypti onto a Genetic Linkage Map Allows Mapping of Genes Affecting Disease Transmission

    KAUST Repository

    Juneja, Punita

    2014-01-30

    The mosquito Aedes aegypti transmits some of the most important human arboviruses, including dengue, yellow fever and chikungunya viruses. It has a large genome containing many repetitive sequences, which has resulted in the genome being poorly assembled - there are 4,758 scaffolds, few of which have been assigned to a chromosome. To allow the mapping of genes affecting disease transmission, we have improved the genome assembly by scoring a large number of SNPs in recombinant progeny from a cross between two strains of Ae. aegypti, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were corrected, we were able to assign 60% of the genome sequence to chromosomes and approximately order the scaffolds along the chromosome. We found that there are very large regions of suppressed recombination around the centromeres, which can extend to as much as 47% of the chromosome. To illustrate the utility of this new genome assembly, we mapped a gene that makes Ae. aegypti resistant to the human parasite Brugia malayi, and generated a list of candidate genes that could be affecting the trait. © 2014 Juneja et al.

  5. Genomic structure and mapping of precerebellin and a precerebellin-related gene.

    Science.gov (United States)

    Kavety, B; Jenkins, N A; Fletcher, C F; Copeland, N G; Morgan, J I

    1994-11-01

    The cerebellum-specific hexadecapeptide, cerebellin, is derived from a larger precursor, precerebellin, that has sequence homology to the complement component C1qB. We report the cloning of the murine homolog of precerebellin, Cbln1, and a closely related gene, Cbln2. Amino acid comparison of Cbln1 with Cbln2 revealed that Cbln2 is 88% identical to the carboxy terminal region of Cbln1. That these are independent genes was confirmed by Southern analysis and genome mapping. Cbln1 was positioned to the central region of mouse chromosome 8, 2.3 cM distal of JunB and 6.0 cM proximal of Mt1, while Cbln2 mapped to the distal end of mouse chromosome 18, 1.7 cM telomeric of Mbp.

  6. Construction of whole genome radiation hybrid panels and map of chromosome 5A of wheat using asymmetric somatic hybridization.

    Directory of Open Access Journals (Sweden)

    Chuanen Zhou

    Full Text Available To explore the feasibility of constructing a whole genome radiation hybrid (WGRH map in plant species with large genomes, asymmetric somatic hybridization between wheat (Triticum aestivum L. and Bupleurum scorzonerifolium Willd. was performed. The protoplasts of wheat were irradiated with ultraviolet light (UV and gamma-ray and rescued by protoplast fusion using B. scorzonerifolium as the recipient. Assessment of SSR markers showed that the radiation hybrids have the average marker retention frequency of 15.5%. Two RH panels (RHPWI and RHPWII that contained 92 and 184 radiation hybrids, respectively, were developed and used for mapping of 68 SSR markers in chromosome 5A of wheat. A total of 1557 and 2034 breaks were detected in each panel. The RH map of chromosome 5A based on RHPWII was constructed. The distance of the comprehensive map was 2103 cR and the approximate resolution was estimated to be ∼501.6 kb/break. The RH panels evaluated in this study enabled us to order the ESTs in a single deletion bin or in the multiple bins cross the chromosome. These results demonstrated that RH mapping via protoplast fusion is feasible at the whole genome level for mapping purposes in wheat and the potential value of this mapping approach for the plant species with large genomes.

  7. Chromosome mapping of dragline silk genes in the genomes of widow spiders (Araneae, Theridiidae.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhao

    Full Text Available With its incredible strength and toughness, spider dragline silk is widely lauded for its impressive material properties. Dragline silk is composed of two structural proteins, MaSp1 and MaSp2, which are encoded by members of the spidroin gene family. While previous studies have characterized the genes that encode the constituent proteins of spider silks, nothing is known about the physical location of these genes. We determined karyotypes and sex chromosome organization for the widow spiders, Latrodectus hesperus and L. geometricus (Araneae, Theridiidae. We then used fluorescence in situ hybridization to map the genomic locations of the genes for the silk proteins that compose the remarkable spider dragline. These genes included three loci for the MaSp1 protein and the single locus for the MaSp2 protein. In addition, we mapped a MaSp1 pseudogene. All the MaSp1 gene copies and pseudogene localized to a single chromosomal region while MaSp2 was located on a different chromosome of L. hesperus. Using probes derived from L. hesperus, we comparatively mapped all three MaSp1 loci to a single region of a L. geometricus chromosome. As with L. hesperus, MaSp2 was found on a separate L. geometricus chromosome, thus again unlinked to the MaSp1 loci. These results indicate orthology of the corresponding chromosomal regions in the two widow genomes. Moreover, the occurrence of multiple MaSp1 loci in a conserved gene cluster across species suggests that MaSp1 proliferated by tandem duplication in a common ancestor of L. geometricus and L. hesperus. Unequal crossover events during recombination could have given rise to the gene copies and could also maintain sequence similarity among gene copies over time. Further comparative mapping with taxa of increasing divergence from Latrodectus will pinpoint when the MaSp1 duplication events occurred and the phylogenetic distribution of silk gene linkage patterns.

  8. DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome.

    Science.gov (United States)

    Joshi, Ricky S; Garg, Paras; Zaitlen, Noah; Lappalainen, Tuuli; Watson, Corey T; Azam, Nidha; Ho, Daniel; Li, Xin; Antonarakis, Stylianos E; Brunner, Han G; Buiting, Karin; Cheung, Sau Wai; Coffee, Bradford; Eggermann, Thomas; Francis, David; Geraedts, Joep P; Gimelli, Giorgio; Jacobson, Samuel G; Le Caignec, Cedric; de Leeuw, Nicole; Liehr, Thomas; Mackay, Deborah J; Montgomery, Stephen B; Pagnamenta, Alistair T; Papenhausen, Peter; Robinson, David O; Ruivenkamp, Claudia; Schwartz, Charles; Steiner, Bernhard; Stevenson, David A; Surti, Urvashi; Wassink, Thomas; Sharp, Andrew J

    2016-09-01

    Genomic imprinting is a mechanism in which gene expression varies depending on parental origin. Imprinting occurs through differential epigenetic marks on the two parental alleles, with most imprinted loci marked by the presence of differentially methylated regions (DMRs). To identify sites of parental epigenetic bias, here we have profiled DNA methylation patterns in a cohort of 57 individuals with uniparental disomy (UPD) for 19 different chromosomes, defining imprinted DMRs as sites where the maternal and paternal methylation levels diverge significantly from the biparental mean. Using this approach we identified 77 DMRs, including nearly all those described in previous studies, in addition to 34 DMRs not previously reported. These include a DMR at TUBGCP5 within the recurrent 15q11.2 microdeletion region, suggesting potential parent-of-origin effects associated with this genomic disorder. We also observed a modest parental bias in DNA methylation levels at every CpG analyzed across ∼1.9 Mb of the 15q11-q13 Prader-Willi/Angelman syndrome region, demonstrating that the influence of imprinting is not limited to individual regulatory elements such as CpG islands, but can extend across entire chromosomal domains. Using RNA-seq data, we detected signatures consistent with imprinted expression associated with nine novel DMRs. Finally, using a population sample of 4,004 blood methylomes, we define patterns of epigenetic variation at DMRs, identifying rare individuals with global gain or loss of methylation across multiple imprinted loci. Our data provide a detailed map of parental epigenetic bias in the human genome, providing insights into potential parent-of-origin effects.

  9. Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    Science.gov (United States)

    Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Goncalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Borringer, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex SF; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian’an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Perry, John RB; Platou, Carl GP; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth JF; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin NA; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O’Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine-mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in/near KCNQ1. “Credible sets” of variants most likely to drive each distinct signal mapped predominantly to non-coding sequence, implying that T2D association is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine-mapping implicated rs10830963 as driving T2D association. We confirmed that this T2D-risk allele increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D-risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease. PMID:26551672

  10. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

    Science.gov (United States)

    Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji; Raimondo, Anne; Mägi, Reedik; Reschen, Michael E; Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Gonçalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Bottinger, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kao, Wen-Hong L; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian'an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Peltonen, Leena; Perry, John R B; Platou, Carl G P; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wiltshire, Steven; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth J F; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöcke, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin N A; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O'Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-12-01

    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.

  11. Development of INDEL Markers for Genetic Mapping Based on Whole Genome Resequencing in Soybean.

    Science.gov (United States)

    Song, Xiaofeng; Wei, Haichao; Cheng, Wen; Yang, Suxin; Zhao, Yanxiu; Li, Xuan; Luo, Da; Zhang, Hui; Feng, Xianzhong

    2015-10-19

    Soybean [Glycine max (L.) Merrill] is an important crop worldwide. In this study, a Chinese local soybean cultivar, Hedou 12, was resequenced by next generation sequencing technology to develop INsertion/DELetion (INDEL) markers for genetic mapping. 49,276 INDEL polymorphisms and 242,059 single nucleotide polymorphisms were detected between Hedou 12 and the Williams 82 reference sequence. Of these, 243 candidate INDEL markers ranging from 5-50 bp in length were chosen for validation, and 165 (68%) of them revealed polymorphisms between Hedou 12 and Williams 82. The validated INDEL markers were also tested in 12 other soybean cultivars. The number of polymorphisms in the pairwise comparisons of 14 soybean cultivars varied from 27 to 165. To test the utility of these INDEL markers, they were used to perform genetic mapping of a crinkly leaf mutant, and the CRINKLY LEAF locus was successfully mapped to a 360 kb region on chromosome 7. This research shows that high-throughput sequencing technologies can facilitate the development of genome-wide molecular markers for genetic mapping in soybean.

  12. A comprehensive expressed sequence tag linkage map for tiger salamander and Mexican axolotl: enabling gene mapping and comparative genomics in Ambystoma.

    Science.gov (United States)

    Smith, J J; Kump, D K; Walker, J A; Parichy, D M; Voss, S R

    2005-11-01

    Expressed sequence tag (EST) markers were developed for Ambystoma tigrinum tigrinum (Eastern tiger salamander) and for A. mexicanum (Mexican axolotl) to generate the first comprehensive linkage map for these model amphibians. We identified 14 large linkage groups (125.5-836.7 cM) that presumably correspond to the 14 haploid chromosomes in the Ambystoma genome. The extent of genome coverage for these linkage groups is apparently high because the total map size (5251 cM) falls within the range of theoretical estimates and is consistent with independent empirical estimates. Unlike most vertebrate species, linkage map size in Ambystoma is not strongly correlated with chromosome arm number. Presumably, the large physical genome size ( approximately 30 Gbp) is a major determinant of map size in Ambystoma. To demonstrate the utility of this resource, we mapped the position of two historically significant A. mexicanum mutants, white and melanoid, and also met, a quantitative trait locus (QTL) that contributes to variation in metamorphic timing. This new collection of EST-based PCR markers will better enable the Ambystoma system by facilitating development of new molecular probes, and the linkage map will allow comparative studies of this important vertebrate group.

  13. Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L. genome

    Directory of Open Access Journals (Sweden)

    Cloutier Sylvie

    2011-05-01

    Full Text Available Abstract Background Flax (Linum usitatissimum L. is an important source of oil rich in omega-3 fatty acids, which have proven health benefits and utility as an industrial raw material. Flax seeds also contain lignans which are associated with reducing the risk of certain types of cancer. Its bast fibres have broad industrial applications. However, genomic tools needed for molecular breeding were non existent. Hence a project, Total Utilization Flax GENomics (TUFGEN was initiated. We report here the first genome-wide physical map of flax and the generation and analysis of BAC-end sequences (BES from 43,776 clones, providing initial insights into the genome. Results The physical map consists of 416 contigs spanning ~368 Mb, assembled from 32,025 fingerprints, representing roughly 54.5% to 99.4% of the estimated haploid genome (370-675 Mb. The N50 size of the contigs was estimated to be ~1,494 kb. The longest contig was ~5,562 kb comprising 437 clones. There were 96 contigs containing more than 100 clones. Approximately 54.6 Mb representing 8-14.8% of the genome was obtained from 80,337 BES. Annotation revealed that a large part of the genome consists of ribosomal DNA (~13.8%, followed by known transposable elements at 6.1%. Furthermore, ~7.4% of sequence was identified to harbour novel repeat elements. Homology searches against flax-ESTs and NCBI-ESTs suggested that ~5.6% of the transcriptome is unique to flax. A total of 4064 putative genomic SSRs were identified and are being developed as novel markers for their use in molecular breeding. Conclusion The first genome-wide physical map of flax constructed with BAC clones provides a framework for accessing target loci with economic importance for marker development and positional cloning. Analysis of the BES has provided insights into the uniqueness of the flax genome. Compared to other plant genomes, the proportion of rDNA was found to be very high whereas the proportion of known transposable

  14. Construction of Reference Chromosome-Scale Pseudomolecules for Potato: Integrating the Potato Genome with Genetic and Physical Maps

    Science.gov (United States)

    Sharma, Sanjeev Kumar; Bolser, Daniel; de Boer, Jan; Sønderkær, Mads; Amoros, Walter; Carboni, Martin Federico; D’Ambrosio, Juan Martín; de la Cruz, German; Di Genova, Alex; Douches, David S.; Eguiluz, Maria; Guo, Xiao; Guzman, Frank; Hackett, Christine A.; Hamilton, John P.; Li, Guangcun; Li, Ying; Lozano, Roberto; Maass, Alejandro; Marshall, David; Martinez, Diana; McLean, Karen; Mejía, Nilo; Milne, Linda; Munive, Susan; Nagy, Istvan; Ponce, Olga; Ramirez, Manuel; Simon, Reinhard; Thomson, Susan J.; Torres, Yerisf; Waugh, Robbie; Zhang, Zhonghua; Huang, Sanwen; Visser, Richard G. F.; Bachem, Christian W. B.; Sagredo, Boris; Feingold, Sergio E.; Orjeda, Gisella; Veilleux, Richard E.; Bonierbale, Merideth; Jacobs, Jeanne M. E.; Milbourne, Dan; Martin, David Michael Alan; Bryan, Glenn J.

    2013-01-01

    The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker−based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (~93%) of the 723 Mb genome assembly and 37,482 (~96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal “pseudomolecules”. PMID:24062527

  15. Mapping of the genomic regions controlling seed storability in soybean (Glycine max L.)

    Indian Academy of Sciences (India)

    Hamidreza Dargahi; Patcharin Tanya; Peerasak Srinives

    2014-08-01

    Seed storability is especially important in the tropics due to high temperature and relative humidity of storage environment that cause rapid deterioration of seeds in storage. The objective of this study was to use SSR markers to identify genomic regions associated with quantitative trait loci (QTLs) controlling seed storability based on relative germination rate in the F2:3 population derived from a cross between vegetable soybean line (MJ0004-6) with poor longevity and landrace cultivar from Myanmar (R18500) with good longevity. The F2:4 seeds harvested in 2011 and 2012 were used to investigate seed storability. The F2 population was genotyped with 148 markers and the genetic map consisted of 128 SSR loci which converged into 38 linkage groups covering 1664.3 cM of soybean genome. Single marker analysis revealed that 13 markers from six linkage groups (C1, D2, E, F, J and L) were associated with seed storability. Composite interval mapping identified a total of three QTLs on linkage groups C1, F and L with phenotypic variance explained ranging from 8.79 to 13.43%. The R18500 alleles increased seed storability at all of the detected QTLs. No common QTLs were found for storability of seeds harvested in 2011 and 2012. This study agreed with previous reports in other crops that genotype by environment interaction plays an important role in expression of seed storability.

  16. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping.

    Science.gov (United States)

    Roh, Tae-Young; Cuddapah, Suresh; Zhao, Keji

    2005-03-01

    The identity and developmental potential of a human cell is specified by its epigenome that is largely defined by patterns of chromatin modifications including histone acetylation. Here we report high-resolution genome-wide mapping of diacetylation of histone H3 at Lys 9 and Lys 14 in resting and activated human T cells by genome-wide mapping technique (GMAT). Our data show that high levels of the H3 acetylation are detected in gene-rich regions. The chromatin accessibility and gene expression of a genetic domain is correlated with hyperacetylation of promoters and other regulatory elements but not with generally elevated acetylation of the entire domain. Islands of acetylation are identified in the intergenic and transcribed regions. The locations of the 46,813 acetylation islands identified in this study are significantly correlated with conserved noncoding sequences (CNSs) and many of them are colocalized with known regulatory elements in T cells. TCR signaling induces 4045 new acetylation loci that may mediate the global chromatin remodeling and gene activation. We propose that the acetylation islands are epigenetic marks that allow prediction of functional regulatory elements.

  17. Genome-wide mapping of furfural tolerance genes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Tirzah Y Glebes

    Full Text Available Advances in genomics have improved the ability to map complex genotype-to-phenotype relationships, like those required for engineering chemical tolerance. Here, we have applied the multiSCale Analysis of Library Enrichments (SCALEs; Lynch et al. (2007 Nat. Method. approach to map, in parallel, the effect of increased dosage for >10(5 different fragments of the Escherichia coli genome onto furfural tolerance (furfural is a key toxin of lignocellulosic hydrolysate. Only 268 of >4,000 E. coli genes (∼ 6% were enriched after growth selections in the presence of furfural. Several of the enriched genes were cloned and tested individually for their effect on furfural tolerance. Overexpression of thyA, lpcA, or groESL individually increased growth in the presence of furfural. Overexpression of lpcA, but not groESL or thyA, resulted in increased furfural reduction rate, a previously identified mechanism underlying furfural tolerance. We additionally show that plasmid-based expression of functional LpcA or GroESL is required to confer furfural tolerance. This study identifies new furfural tolerant genes, which can be applied in future strain design efforts focused on the production of fuels and chemicals from lignocellulosic hydrolysate.

  18. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Partha Talukdar

    Full Text Available Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population and a genome wide association (GWA study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity. However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed.

  19. Genome-wide mapping of in vivo protein-DNA interactions.

    Science.gov (United States)

    Johnson, David S; Mortazavi, Ali; Myers, Richard M; Wold, Barbara

    2007-06-08

    In vivo protein-DNA interactions connect each transcription factor with its direct targets to form a gene network scaffold. To map these protein-DNA interactions comprehensively across entire mammalian genomes, we developed a large-scale chromatin immunoprecipitation assay (ChIPSeq) based on direct ultrahigh-throughput DNA sequencing. This sequence census method was then used to map in vivo binding of the neuron-restrictive silencer factor (NRSF; also known as REST, for repressor element-1 silencing transcription factor) to 1946 locations in the human genome. The data display sharp resolution of binding position [+/-50 base pairs (bp)], which facilitated our finding motifs and allowed us to identify noncanonical NRSF-binding motifs. These ChIPSeq data also have high sensitivity and specificity [ROC (receiver operator characteristic) area >/= 0.96] and statistical confidence (P <10(-4)), properties that were important for inferring new candidate interactions. These include key transcription factors in the gene network that regulates pancreatic islet cell development.

  20. Genome-wide mapping of furfural tolerance genes in Escherichia coli.

    Science.gov (United States)

    Glebes, Tirzah Y; Sandoval, Nicholas R; Reeder, Philippa J; Schilling, Katherine D; Zhang, Min; Gill, Ryan T

    2014-01-01

    Advances in genomics have improved the ability to map complex genotype-to-phenotype relationships, like those required for engineering chemical tolerance. Here, we have applied the multiSCale Analysis of Library Enrichments (SCALEs; Lynch et al. (2007) Nat. Method.) approach to map, in parallel, the effect of increased dosage for >10(5) different fragments of the Escherichia coli genome onto furfural tolerance (furfural is a key toxin of lignocellulosic hydrolysate). Only 268 of >4,000 E. coli genes (∼ 6%) were enriched after growth selections in the presence of furfural. Several of the enriched genes were cloned and tested individually for their effect on furfural tolerance. Overexpression of thyA, lpcA, or groESL individually increased growth in the presence of furfural. Overexpression of lpcA, but not groESL or thyA, resulted in increased furfural reduction rate, a previously identified mechanism underlying furfural tolerance. We additionally show that plasmid-based expression of functional LpcA or GroESL is required to confer furfural tolerance. This study identifies new furfural tolerant genes, which can be applied in future strain design efforts focused on the production of fuels and chemicals from lignocellulosic hydrolysate.

  1. Genetic linkage maps for Asian and American lotus constructed using novel SSR markers derived from the genome of sequenced cultivar

    Directory of Open Access Journals (Sweden)

    Yang Mei

    2012-11-01

    Full Text Available Abstract Background The genus Nelumbo Adans. comprises two living species, N. nucifera Gaertan. (Asian lotus and N. lutea Pers. (American lotus. A genetic linkage map is an essential resource for plant genetic studies and crop improvement but has not been generated for Nelumbo. We aimed to develop genomic simple sequence repeat (SSR markers from the genome sequence and construct two genetic maps for Nelumbo to assist genome assembly and integration of a genetic map with the genome sequence. Results A total of 86,089 SSR motifs were identified from the genome sequences. Di- and tri-nucleotide repeat motifs were the most abundant, and accounted for 60.73% and 31.66% of all SSRs, respectively. AG/GA repeats constituted 51.17% of dinucleotide repeat motifs, followed by AT/TA (44.29%. Of 500 SSR primers tested, 386 (77.20% produced scorable alleles with an average of 2.59 per primer, and 185 (37.00% showed polymorphism among two parental genotypes, N. nucifera ‘Chinese Antique’ and N. lutea ‘AL1’, and six progenies of their F1 population. The normally segregating markers, which comprised 268 newly developed SSRs, 37 previously published SSRs and 53 sequence-related amplified polymorphism markers, were used for genetic map construction. The map for Asian lotus was 365.67 cM with 47 markers distributed in seven linkage groups. The map for American lotus was 524.51 cM, and contained 177 markers distributed in 11 genetic linkage groups. The number of markers per linkage group ranged from three to 34 with an average genetic distance of 3.97 cM between adjacent markers. Moreover, 171 SSR markers contained in linkage groups were anchored to 97 genomic DNA sequence contigs of ‘Chinese Antique’. The 97 contigs were merged into 60 scaffolds. Conclusion Genetic mapping of SSR markers derived from sequenced contigs in Nelumbo enabled the associated contigs to be anchored in the linkage map and facilitated assembly of the genome sequences of

  2. Genomic Characterization of the Vaccinal Strain of Mycobacterium Avium Subspecies Paratuberculosis (MAP 316F by MIRU-VNTR

    Directory of Open Access Journals (Sweden)

    Zahra Ebrahim (MSc

    2015-10-01

    Full Text Available Background and Objective: Paratuberculosis is a chronic granulomatous enteritis of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP. this study aimed to characterize the genome of the MAP 316F strain. Methods: The MAP 316F strain was subjected to the PCR-F57 and PCR-IS900 experiments in order to ensure its identity as MAP. This was followed by application of the Thibault genotyping system consisting of eight loci including 292, x3, 25, 47, 3, 7, 10 and 32. Required genomic material for all experiments was prepared using the simple method of boiling. Gel electrophoresis findings related to the typing PCRs were backed by sequencing of amplification products. Results: In PCR amplification, eight products with the size of 300, 298, 350, 217, 208, 203, 803 and 649 bp were detected at 292, X3, 25, 47, 3, 7, 10 and 32 loci, holding 3, 2, 3, 3, 2, 2, 2 and 8 copies of TRs at these loci, respectively. Conclusion: This genomic pattern is matched with that of the MAP 316F vaccine strain from the French Merial company and also the MAP K10 fully-sequenced strain. Keywords: Mycobacterium avium subsp. paratuberculosis, Genomics, Genotyping techniques, Strain

  3. Mapping cis-Regulatory Domains in the Human Genome UsingMulti-Species Conservation of Synteny

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Prabhakar, Shyam; Poulin, Francis; Rubin, EdwardM.; Couronne, Olivier

    2005-06-13

    Our inability to associate distant regulatory elements with the genes that they regulate has largely precluded their examination for sequence alterations contributing to human disease. One major obstacle is the large genomic space surrounding targeted genes in which such elements could potentially reside. In order to delineate gene regulatory boundaries we used whole-genome human-mouse-chicken (HMC) and human-mouse-frog (HMF) multiple alignments to compile conserved blocks of synteny (CBS), under the hypothesis that these blocks have been kept intact throughout evolution at least in part by the requirement of regulatory elements to stay linked to the genes that they regulate. A total of 2,116 and 1,942 CBS>200 kb were assembled for HMC and HMF respectively, encompassing 1.53 and 0.86 Gb of human sequence. To support the existence of complex long-range regulatory domains within these CBS we analyzed the prevalence and distribution of chromosomal aberrations leading to position effects (disruption of a genes regulatory environment), observing a clear bias not only for mapping onto CBS but also for longer CBS size. Our results provide a genome wide data set characterizing the regulatory domains of genes and the conserved regulatory elements within them.

  4. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome.

    Science.gov (United States)

    Schmitt, Anthony D; Hu, Ming; Jung, Inkyung; Xu, Zheng; Qiu, Yunjiang; Tan, Catherine L; Li, Yun; Lin, Shin; Lin, Yiing; Barr, Cathy L; Ren, Bing

    2016-11-15

    The three-dimensional configuration of DNA is integral to all nuclear processes in eukaryotes, yet our knowledge of the chromosome architecture is still limited. Genome-wide chromosome conformation capture studies have uncovered features of chromatin organization in cultured cells, but genome architecture in human tissues has yet to be explored. Here, we report the most comprehensive survey to date of chromatin organization in human tissues. Through integrative analysis of chromatin contact maps in 21 primary human tissues and cell types, we find topologically associating domains highly conserved in different tissues. We also discover genomic regions that exhibit unusually high levels of local chromatin interactions. These frequently interacting regions (FIREs) are enriched for super-enhancers and are near tissue-specifically expressed genes. They display strong tissue-specificity in local chromatin interactions. Additionally, FIRE formation is partially dependent on CTCF and the Cohesin complex. We further show that FIREs can help annotate the function of non-coding sequence variants. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. A gene expression map for the euchromatic genome of Drosophila melanogaster.

    Science.gov (United States)

    Stolc, Viktor; Gauhar, Zareen; Mason, Christopher; Halasz, Gabor; van Batenburg, Marinus F; Rifkin, Scott A; Hua, Sujun; Herreman, Tine; Tongprasit, Waraporn; Barbano, Paolo Emilio; Bussemaker, Harmen J; White, Kevin P

    2004-10-22

    We used a maskless photolithography method to produce DNA oligonucleotide microarrays with unique probe sequences tiled throughout the genome of Drosophila melanogaster and across predicted splice junctions. RNA expression of protein coding and nonprotein coding sequences was determined for each major stage of the life cycle, including adult males and females. We detected transcriptional activity for 93% of annotated genes and RNA expression for 41% of the probes in intronic and intergenic sequences. Comparison to genome-wide RNA interference data and to gene annotations revealed distinguishable levels of expression for different classes of genes and higher levels of expression for genes with essential cellular functions. Differential splicing was observed in about 40% of predicted genes, and 5440 previously unknown splice forms were detected. Genes within conserved regions of synteny with D. pseudoobscura had highly correlated expression; these regions ranged in length from 10 to 900 kilobase pairs. The expressed intergenic and intronic sequences are more likely to be evolutionarily conserved than nonexpressed ones, and about 15% of them appear to be developmentally regulated. Our results provide a draft expression map for the entire nonrepetitive genome, which reveals a much more extensive and diverse set of expressed sequences than was previously predicted.

  6. Mapping mutations in plant genomes with the user-friendly web application CandiSNP.

    Science.gov (United States)

    Etherington, Graham J; Monaghan, Jacqueline; Zipfel, Cyril; MacLean, Dan

    2014-01-01

    Analysis of mutants isolated from forward-genetic screens has revealed key components of several plant signalling pathways. Mapping mutations by position, either using classical methods or whole genome high-throughput sequencing (HTS), largely relies on the analysis of genome-wide polymorphisms in F2 recombinant populations. Combining bulk segregant analysis with HTS has accelerated the identification of causative mutations and has been widely adopted in many research programmes. A major advantage of HTS is the ability to perform bulk segregant analysis after back-crossing to the parental line rather than out-crossing to a polymorphic ecotype, which reduces genetic complexity and avoids issues with phenotype penetrance in different ecotypes. Plotting the positions of homozygous polymorphisms in a mutant genome identifies areas of low recombination and is an effective way to detect molecular linkage to a phenotype of interest. We describe the use of single nucleotide polymorphism (SNP) density plots as a mapping strategy to identify and refine chromosomal positions of causative mutations from screened plant populations. We developed a web application called CandiSNP that generates density plots from user-provided SNP data obtained from HTS. Candidate causative mutations, defined as SNPs causing non-synonymous changes in annotated coding regions are highlighted on the plots and listed in a table. We use data generated from a recent mutant screen in the model plant Arabidopsis thaliana as proof-of-concept for the validity of our tool. CandiSNP is a user-friendly application that will aid in novel discoveries from forward-genetic mutant screens. It is particularly useful for analysing HTS data from bulked back-crossed mutants, which contain fewer polymorphisms than data generated from out-crosses. The web-application is freely available online at http://candisnp.tsl.ac.uk.

  7. Optimizing read mapping to reference genomes to determine composition and species prevalence in microbial communities.

    Directory of Open Access Journals (Sweden)

    John Martin

    Full Text Available The Human Microbiome Project (HMP aims to characterize the microbial communities of 18 body sites from healthy individuals. To accomplish this, the HMP generated two types of shotgun data: reference shotgun sequences isolated from different anatomical sites on the human body and shotgun metagenomic sequences from the microbial communities of each site. The alignment strategy for characterizing these metagenomic communities using available reference sequence is important to the success of HMP data analysis. Six next-generation aligners were used to align a community of known composition against a database comprising reference organisms known to be present in that community. All aligners report nearly complete genome coverage (>97% for strains with over 6X depth of coverage, however they differ in speed, memory requirement and ease of use issues such as database size limitations and supported mapping strategies. The selected aligner was tested across a range of parameters to maximize sensitivity while maintaining a low false positive rate. We found that constraining alignment length had more impact on sensitivity than does constraining similarity in all cases tested. However, when reference species were replaced with phylogenetic neighbors, similarity begins to play a larger role in detection. We also show that choosing the top hit randomly when multiple, equally strong mappings are available increases overall sensitivity at the expense of taxonomic resolution. The results of this study identified a strategy that was used to map over 3 tera-bases of microbial sequence against a database of more than 5,000 reference genomes in just over a month.

  8. Genome wide association mapping for grain shape traits in indica rice.

    Science.gov (United States)

    Feng, Yue; Lu, Qing; Zhai, Rongrong; Zhang, Mengchen; Xu, Qun; Yang, Yaolong; Wang, Shan; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wei, Xinghua

    2016-10-01

    Using genome-wide association mapping, 47 SNPs within 27 significant loci were identified for four grain shape traits, and 424 candidate genes were predicted from public database. Grain shape is a key determinant of grain yield and quality in rice (Oryza sativa L.). However, our knowledge of genes controlling rice grain shape remains limited. Genome-wide association mapping based on linkage disequilibrium (LD) has recently emerged as an effective approach for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, association mapping based on 5291 single nucleotide polymorphisms (SNPs) was conducted to identify significant loci associated with grain shape traits in a global collection of 469 diverse rice accessions. A total of 47 SNPs were located in 27 significant loci for four grain traits, and explained ~44.93-65.90 % of the phenotypic variation for each trait. In total, 424 candidate genes within a 200 kb extension region (±100 kb of each locus) of these loci were predicted. Of them, the cloned genes GS3 and qSW5 showed very strong effects on grain length and grain width in our study. Comparing with previously reported QTLs for grain shape traits, we found 11 novel loci, including 3, 3, 2 and 3 loci for grain length, grain width, grain length-width ratio and thousand grain weight, respectively. Validation of these new loci would be performed in the future studies. These results revealed that besides GS3 and qSW5, multiple novel loci and mechanisms were involved in determining rice grain shape. These findings provided valuable information for understanding of the genetic control of grain shape and molecular marker assistant selection (MAS) breeding in rice.

  9. Mapping critical levels/loads for the Slovak Republic. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Zavodsky, D.; Babiakova, G.; Mitosinkova, M. [and others

    1996-08-01

    As a part of the Agreement on Environmental Cooperation between Norway and Slovakia a project ``Mapping Critical Levels/Loads for Slovakia`` was established. This report presents the final project results. Critical loads for forest, surface and ground waters and their exceedances were calculated by means of the steady-state mass balance model PROFILE for soils, and the steady-state water chemistry method for waters. A grid distance of 10 km was used. Because the sulphur deposition has been decreasing, the exceedances of critical load of acidity and critical sulphur deposition of forest soils have decreased from 1990 to 1995. Practically no acidity exceedances for surface water or ground water were found in 1995. The critical level of forest ozone was exceeded all over Slovakia. In the Tatra mountains the exceedance was over 25000 ppb.h. 23 refs., 3 figs., 3 tabs.

  10. Cytogenetic maps of homoeologous chromosomes A h01 and D h01 and their integration with the genome assembly in Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    Yuling Liu

    2017-06-01

    Full Text Available Cytogenetic maps of Gossypium hirsutum (Linnaeus, 1753 homoeologous chromosomes Ah01 and Dh01 were constructed by fluorescence in situ hybridization (FISH, using eleven homoeologous-chromosomes-shared bacterial artificial chromosomes (BACs clones and one chromosome-specific BAC clone respectively. We compared the cytogenetic maps with the genetic linkage and draft genome assembly maps based on a standardized map unit, relative map position (RMP, which allowed a global view of the relationship of genetic and physical distances along each chromosome, and assembly quality of the draft genome assembly map. By integration of cytogenetic maps with sequence maps of the two chromosomes (Ah01 and Dh01, we inferred the locations of two scaffolds and speculated that some homologous sequences belonging to homoeologous chromosomes were removed as repetitiveness during the sequence assembly. The result offers molecular tools for cotton genomics research and also provides valuable information for the improvement of the draft genome assembly.

  11. Identification of mesoderm development (mesd) candidate genes by comparative mapping and genome sequence analysis.

    Science.gov (United States)

    Wines, M E; Lee, L; Katari, M S; Zhang, L; DeRossi, C; Shi, Y; Perkins, S; Feldman, M; McCombie, W R; Holdener, B C

    2001-02-15

    The proximal albino deletions identify several functional regions on mouse Chromosome 7 critical for differentiation of mesoderm (mesd), development of the hypothalamus neuroendocrine lineage (nelg), and function of the liver (hsdr1). Using comparative mapping and genomic sequence analysis, we have identified four novel genes and Il16 in the mesd deletion interval. Two of the novel genes, mesdc1 and mesdc2, are located within the mesd critical region defined by BAC transgenic rescue. We have investigated the fetal role of genes located outside the mesd critical region using BAC transgenic complementation of the mesd early embryonic lethality. Using human radiation hybrid mapping and BAC contig construction, we have identified a conserved region of human chromosome 15 homologous to the mesd, nelg, and hsdr1 functional regions. Three human diseases cosegregate with microsatellite markers used in construction of the human BAC/YAC physical map, including autosomal dominant nocturnal frontal lobe epilepsy (ENFL2; also known as ADNFLE), a syndrome of mental retardation, spasticity, and tapetoretinal degeneration (MRST); and a pyogenic arthritis, pyoderma gangrenosum, and acne syndrome (PAPA).

  12. Physical Mapping and Refinement of the Painted Turtle Genome (Chrysemys picta) Inform Amniote Genome Evolution and Challenge Turtle-Bird Chromosomal Conservation.

    Science.gov (United States)

    Badenhorst, Daleen; Hillier, LaDeana W; Literman, Robert; Montiel, Eugenia Elisabet; Radhakrishnan, Srihari; Shen, Yingjia; Minx, Patrick; Janes, Daniel E; Warren, Wesley C; Edwards, Scott V; Valenzuela, Nicole

    2015-06-24

    Comparative genomics continues illuminating amniote genome evolution, but for many lineages our understanding remains incomplete. Here, we refine the assembly (CPI 3.0.3 NCBI AHGY00000000.2) and develop a cytogenetic map of the painted turtle (Chrysemys picta-CPI) genome, the first in turtles and in vertebrates with temperature-dependent sex determination. A comparison of turtle genomes with those of chicken, selected nonavian reptiles, and human revealed shared and novel genomic features, such as numerous chromosomal rearrangements. The largest conserved syntenic blocks between birds and turtles exist in four macrochromosomes, whereas rearrangements were evident in these and other chromosomes, disproving that turtles and birds retain fully conserved macrochromosomes for greater than 300 Myr. C-banding revealed large heterochromatic blocks in the centromeric region of only few chromosomes. The nucleolar-organizing region (NOR) mapped to a single CPI microchromosome, whereas in some turtles and lizards the NOR maps to nonhomologous sex-chromosomes, thus revealing independent translocations of the NOR in various reptilian lineages. There was no evidence for recent chromosomal fusions as interstitial telomeric-DNA was absent. Some repeat elements (CR1-like, Gypsy) were enriched in the centromeres of five chromosomes, whereas others were widespread in the CPI genome. Bacterial artificial chromosome (BAC) clones were hybridized to 18 of the 25 CPI chromosomes and anchored to a G-banded ideogram. Several CPI sex-determining genes mapped to five chromosomes, and homology was detected between yet other CPI autosomes and the globally nonhomologous sex chromosomes of chicken, other turtles, and squamates, underscoring the independent evolution of vertebrate sex-determining mechanisms.

  13. Structure, evolution, and comparative genomics of tetraploid cotton based on a high-density genetic linkage map.

    Science.gov (United States)

    Li, Ximei; Jin, Xin; Wang, Hantao; Zhang, Xianlong; Lin, Zhongxu

    2016-06-01

    A high-density linkage map was constructed using 1,885 newly obtained loci and 3,747 previously published loci, which included 5,152 loci with 4696.03 cM in total length and 0.91 cM in mean distance. Homology analysis in the cotton genome further confirmed the 13 expected homologous chromosome pairs and revealed an obvious inversion on Chr10 or Chr20 and repeated inversions on Chr07 or Chr16. In addition, two reciprocal translocations between Chr02 and Chr03 and between Chr04 and Chr05 were confirmed. Comparative genomics between the tetraploid cotton and the diploid cottons showed that no major structural changes exist between DT and D chromosomes but rather between AT and A chromosomes. Blast analysis between the tetraploid cotton genome and the mixed genome of two diploid cottons showed that most AD chromosomes, regardless of whether it is from the AT or DT genome, preferentially matched with the corresponding homologous chromosome in the diploid A genome, and then the corresponding homologous chromosome in the diploid D genome, indicating that the diploid D genome underwent converted evolution by the diploid A genome to form the DT genome during polyploidization. In addition, the results reflected that a series of chromosomal translocations occurred among Chr01/Chr15, Chr02/Chr14, Chr03/Chr17, Chr04/Chr22, and Chr05/Chr19.

  14. Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza.

    Science.gov (United States)

    Kim, HyeRan; Hurwitz, Bonnie; Yu, Yeisoo; Collura, Kristi; Gill, Navdeep; SanMiguel, Phillip; Mullikin, James C; Maher, Christopher; Nelson, William; Wissotski, Marina; Braidotti, Michele; Kudrna, David; Goicoechea, José Luis; Stein, Lincoln; Ware, Doreen; Jackson, Scott A; Soderlund, Carol; Wing, Rod A

    2008-01-01

    We describe the establishment and analysis of a genus-wide comparative framework composed of 12 bacterial artificial chromosome fingerprint and end-sequenced physical maps representing the 10 genome types of Oryza aligned to the O. sativa ssp. japonica reference genome sequence. Over 932 Mb of end sequence was analyzed for repeats, simple sequence repeats, miRNA and single nucleotide variations, providing the most extensive analysis of Oryza sequence to date.

  15. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C. L.; Larson, D.; Weiland, J. L. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States); Jarosik, N.; Page, L. [Department of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544-0708 (United States); Hinshaw, G.; Halpern, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Odegard, N.; Hill, R. S. [ADNET Systems, Inc., 7515 Mission Drive, Suite A100, Lanham, MD 20706 (United States); Smith, K. M. [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Gold, B. [School of Physics and Astronomy, University of Minnesota, 116 Church Street S.E., Minneapolis, MN 55455 (United States); Komatsu, E. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str. 1, D-85741 Garching (Germany); Nolta, M. R. [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada); Spergel, D. N. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544-1001 (United States); Wollack, E.; Kogut, A. [Code 665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Dunkley, J. [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Limon, M. [Columbia Astrophysics Laboratory, 550 West 120th Street, Mail Code 5247, New York, NY 10027-6902 (United States); Meyer, S. S. [Departments of Astrophysics and Physics, KICP and EFI, University of Chicago, Chicago, IL 60637 (United States); Tucker, G. S., E-mail: cbennett@jhu.edu [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912-1843 (United States); and others

    2013-10-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail. We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground-reduced CMB maps are presented. We now implement an optimal C {sup –1} weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained ΛCDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N {sub eff} = 3.84 ± 0.40). The model fit also implies that the age of the universe is t {sub 0} = 13.772 ± 0.059 Gyr, and the fit Hubble constant is H {sub 0} = 69.32 ± 0.80 km s{sup –1} Mpc{sup –1}. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n{sub s} = 0.9608 ± 0.0080); and the universe is close to flat/Euclidean (Ω{sub k} = -0.0027{sup +0.0039}{sub -0.0038}). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor

  16. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results

    Science.gov (United States)

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K. M.; Hill, R. S.; Gold, B.; Halpern, M.; Komatsu, E.; Nolta, M. R.; Page, L.; Spergel, D. N.; Wollack, E.; Dunkley, J.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wright, E. L.

    2013-10-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail. We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground-reduced CMB maps are presented. We now implement an optimal C -1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained ΛCDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N eff = 3.84 ± 0.40). The model fit also implies that the age of the universe is t 0 = 13.772 ± 0.059 Gyr, and the fit Hubble constant is H 0 = 69.32 ± 0.80 km s-1 Mpc-1. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (ns = 0.9608 ± 0.0080); and the universe is close to flat/Euclidean (\\Omega _k = -0.0027^{+ 0.0039}_{-0.0038}). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter ΛCDM model

  17. Amplified fragment length polymorphism: an adept technique for genome mapping, genetic differentiation, and intraspecific variation in protozoan parasites.

    Science.gov (United States)

    Kumar, Awanish; Misra, Pragya; Dube, Anuradha

    2013-02-01

    With the advent of polymerase chain reaction (PCR), genetic markers are now accessible for all organisms, including parasites. Amplified fragment length polymorphism (AFLP) is a PCR-based marker for the rapid screening of genetic diversity and intraspecific variation. It is a potent fingerprinting technique for genomic DNAs of any origin or complexity and rapidly generates a number of highly replicable markers that allow high-resolution genotyping. AFLPs are convenient and reliable in comparison to other markers like random amplified polymorphic DNA, restriction fragment length polymorphism, and simple sequence repeat in terms of time and cost efficiency, reproducibility, and resolution as it does not require template DNA sequencing. In addition, AFLP essentially probes the entire genome at random, without prior sequence knowledge. So, AFLP markers have emerged as an advance type of genetic marker with broad application in genomic mapping, population genetics, and DNA fingerprinting and are ideally suited as screening tool for molecular markers linked with biological and clinical traits. This review describes the AFLP procedure and its applications and overview in the fingerprinting of a genome, which has been currently used in parasite genome research. We outline the AFLP procedure adapted for Leishmania genome study and discuss the benefits of AFLPs for assessing genetic variation and genome mapping over other existing molecular techniques. We highlight the possible use of AFLPs as genetic markers with its broad application in parasitological research because it allows random screening of the entire genome for linkage with genetic and clinical properties of the parasite. In this review, we have taken a pragmatic approach on the study of AFLP for genome mapping and polymorphism in protozoan parasites and conclude that AFLP is a very useful tool.

  18. Development of a 690 K SNP array in catfish and its application for genetic mapping and validation of the reference genome sequence

    Science.gov (United States)

    Zeng, Qifan; Fu, Qiang; Li, Yun; Waldbieser, Geoff; Bosworth, Brian; Liu, Shikai; Yang, Yujia; Bao, Lisui; Yuan, Zihao; Li, Ning; Liu, Zhanjiang

    2017-01-01

    Single nucleotide polymorphisms (SNPs) are capable of providing the highest level of genome coverage for genomic and genetic analysis because of their abundance and relatively even distribution in the genome. Such a capacity, however, cannot be achieved without an efficient genotyping platform such as SNP arrays. In this work, we developed a high-density SNP array with 690,662 unique SNPs (herein 690 K array) that were relatively evenly distributed across the entire genome, and covered 98.6% of the reference genome sequence. Here we also report linkage mapping using the 690 K array, which allowed mapping of over 250,000 SNPs on the linkage map, the highest marker density among all the constructed linkage maps. These markers were mapped to 29 linkage groups (LGs) with 30,591 unique marker positions. This linkage map anchored 1,602 scaffolds of the reference genome sequence to LGs, accounting for over 97% of the total genome assembly. A total of 1,007 previously unmapped scaffolds were placed to LGs, allowing validation and in few instances correction of the reference genome sequence assembly. This linkage map should serve as a valuable resource for various genetic and genomic analyses, especially for GWAS and QTL mapping for genes associated with economically important traits. PMID:28079141

  19. A high-resolution whole-genome cattle-human comparative map reveals details of mammalian chromosome evolution.

    Science.gov (United States)

    Everts-van der Wind, Annelie; Larkin, Denis M; Green, Cheryl A; Elliott, Janice S; Olmstead, Colleen A; Chiu, Readman; Schein, Jacqueline E; Marra, Marco A; Womack, James E; Lewin, Harris A

    2005-12-20

    Approximately 3,000 cattle bacterial artificial chromosome (BAC)-end sequences were added to the Illinois-Texas 5,000-rad RH (RH, radiation hybrid) map. The BAC-end sequences selected for mapping are approximately 1 Mbp apart on the human chromosomes as determined by blastn analysis. The map has 3,484 ordered markers, of which 3,204 are anchored in the human genome. Two hundred-and-one homologous synteny blocks (HSBs) were identified, of which 27 are previously undiscovered, 79 are extended, 26 were formed by previously unrecognized breakpoints in 18 previously defined HSBs, and 23 are the result of fusions. The comparative coverage relative to the human genome is approximately 91%, or 97% of the theoretical maximum. The positions of 64% of all cattle centromeres and telomeres were reassigned relative to their positions on the previous map, thus facilitating a more detailed comparative analysis of centromere and telomere evolution. As an example of the utility of the high-resolution map, 22 cattle BAC fingerprint contigs were directly anchored to cattle chromosome 19 [Bos taurus, (BTA) 19]. The order of markers on the cattle RH and fingerprint maps of BTA19 and the sequence-based map of human chromosome 17 [Homo sapiens, (HSA) 17] were found to be highly consistent, with only two minor ordering discrepancies between the RH map and fingerprint contigs. The high-resolution Illinois-Texas 5,000-rad RH and comparative maps will facilitate identification of candidate genes for economically important traits, the phylogenomic analysis of mammalian chromosomes, proofing of the BAC fingerprint map and, ultimately, aid the assembly of cattle whole-genome sequence.

  20. A gene-based high-resolution comparative radiation hybrid map as a framework for genome sequence assembly of a bovine chromosome 6 region associated with QTL for growth, body composition, and milk performance traits

    Directory of Open Access Journals (Sweden)

    Laurent Pascal

    2006-03-01

    annotation of the currently existing bovine genome sequence draft to establish the final architecture of BTA6. Hence, a sequence-based map will provide a key resource to facilitate prospective continued efforts for the selection and validation of relevant positional and functional candidates underlying QTL for milk production and growth-related traits mapped on BTA6 and on similar chromosomal regions from evolutionary closely related species like sheep and goat. Furthermore, the high-resolution sequence-referenced BTA6 map will enable precise identification of multi-species conserved chromosome segments and evolutionary breakpoints in mammalian phylogenetic studies.

  1. Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa

    Directory of Open Access Journals (Sweden)

    King Graham J

    2010-10-01

    Full Text Available Abstract Background The Multinational Brassica rapa Genome Sequencing Project (BrGSP has developed valuable genomic resources, including BAC libraries, BAC-end sequences, genetic and physical maps, and seed BAC sequences for Brassica rapa. An integrated linkage map between the amphidiploid B. napus and diploid B. rapa will facilitate the rapid transfer of these valuable resources from B. rapa to B. napus (Oilseed rape, Canola. Results In this study, we identified over 23,000 simple sequence repeats (SSRs from 536 sequenced BACs. 890 SSR markers (designated as BrGMS were developed and used for the construction of an integrated linkage map for the A genome in B. rapa and B. napus. Two hundred and nineteen BrGMS markers were integrated to an existing B. napus linkage map (BnaNZDH. Among these mapped BrGMS markers, 168 were only distributed on the A genome linkage groups (LGs, 18 distrubuted both on the A and C genome LGs, and 33 only distributed on the C genome LGs. Most of the A genome LGs in B. napus were collinear with the homoeologous LGs in B. rapa, although minor inversions or rearrangements occurred on A2 and A9. The mapping of these BAC-specific SSR markers enabled assignment of 161 sequenced B. rapa BACs, as well as the associated BAC contigs to the A genome LGs of B. napus. Conclusion The genetic mapping of SSR markers derived from sequenced BACs in B. rapa enabled direct links to be established between the B. napus linkage map and a B. rapa physical map, and thus the assignment of B. rapa BACs and the associated BAC contigs to the B. napus linkage map. This integrated genetic linkage map will facilitate exploitation of the B. rapa annotated genomic resources for gene tagging and map-based cloning in B. napus, and for comparative analysis of the A genome within Brassica species.

  2. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of chromera velia

    KAUST Repository

    Janouškovec, Jan

    2013-08-22

    The canonical photosynthetic plastid genomes consist of a single circular-mapping chromosome that encodes a highly conserved protein core, involved in photosynthesis and ATP generation. Here, we demonstrate that the plastid genome of the photosynthetic relative of apicomplexans, Chromera velia, departs from this view in several unique ways. Core photosynthesis proteins PsaA and AtpB have been broken into two fragments, which we show are independently transcribed, oligoU-tailed, translated, and assembled into functional photosystem I and ATP synthase complexes. Genome-wide transcription profiles support expression of many other highly modified proteins, including several that contain extensions amounting to hundreds of amino acids in length. Canonical gene clusters and operons have been fragmented and reshuffled into novel putative transcriptional units. Massive genomic coverage by paired-end reads, coupled with pulsed-field gel electrophoresis and polymerase chain reaction, consistently indicate that the C. velia plastid genome is linear-mapping, a unique state among all plastids. Abundant intragenomic duplication probably mediated by recombination can explain protein splits, extensions, and genome linearization and is perhaps the key driving force behind the many features that defy the conventional ways of plastid genome architecture and function. © The Author 2013.

  3. MaxSSmap: a GPU program for mapping divergent short reads to genomes with the maximum scoring subsequence.

    Science.gov (United States)

    Turki, Turki; Roshan, Usman

    2014-11-15

    Programs based on hash tables and Burrows-Wheeler are very fast for mapping short reads to genomes but have low accuracy in the presence of mismatches and gaps. Such reads can be aligned accurately with the Smith-Waterman algorithm but it can take hours and days to map millions of reads even for bacteria genomes. We introduce a GPU program called MaxSSmap with the aim of achieving comparable accuracy to Smith-Waterman but with faster runtimes. Similar to most programs MaxSSmap identifies a local region of the genome followed by exact alignment. Instead of using hash tables or Burrows-Wheeler in the first part, MaxSSmap calculates maximum scoring subsequence score between the read and disjoint fragments of the genome in parallel on a GPU and selects the highest scoring fragment for exact alignment. We evaluate MaxSSmap's accuracy and runtime when mapping simulated Illumina E.coli and human chromosome one reads of different lengths and 10% to 30% mismatches with gaps to the E.coli genome and human chromosome one. We also demonstrate applications on real data by mapping ancient horse DNA reads to modern genomes and unmapped paired reads from NA12878 in 1000 genomes. We show that MaxSSmap attains comparable high accuracy and low error to fast Smith-Waterman programs yet has much lower runtimes. We show that MaxSSmap can map reads rejected by BWA and NextGenMap with high accuracy and low error much faster than if Smith-Waterman were used. On short read lengths of 36 and 51 both MaxSSmap and Smith-Waterman have lower accuracy compared to at higher lengths. On real data MaxSSmap produces many alignments with high score and mapping quality that are not given by NextGenMap and BWA. The MaxSSmap source code in CUDA and OpenCL is freely available from http://www.cs.njit.edu/usman/MaxSSmap.

  4. Genome-wide mapping of IBD segments in an Ashkenazi PD cohort identifies associated haplotypes.

    Science.gov (United States)

    Vacic, Vladimir; Ozelius, Laurie J; Clark, Lorraine N; Bar-Shira, Anat; Gana-Weisz, Mali; Gurevich, Tanya; Gusev, Alexander; Kedmi, Merav; Kenny, Eimear E; Liu, Xinmin; Mejia-Santana, Helen; Mirelman, Anat; Raymond, Deborah; Saunders-Pullman, Rachel; Desnick, Robert J; Atzmon, Gil; Burns, Edward R; Ostrer, Harry; Hakonarson, Hakon; Bergman, Aviv; Barzilai, Nir; Darvasi, Ariel; Peter, Inga; Guha, Saurav; Lencz, Todd; Giladi, Nir; Marder, Karen; Pe'er, Itsik; Bressman, Susan B; Orr-Urtreger, Avi

    2014-09-01

    The recent series of large genome-wide association studies in European and Japanese cohorts established that Parkinson disease (PD) has a substantial genetic component. To further investigate the genetic landscape of PD, we performed a genome-wide scan in the largest to date Ashkenazi Jewish cohort of 1130 Parkinson patients and 2611 pooled controls. Motivated by the reduced disease allele heterogeneity and a high degree of identical-by-descent (IBD) haplotype sharing in this founder population, we conducted a haplotype association study based on mapping of shared IBD segments. We observed significant haplotype association signals at three previously implicated Parkinson loci: LRRK2 (OR = 12.05, P = 1.23 × 10(-56)), MAPT (OR = 0.62, P = 1.78 × 10(-11)) and GBA (multiple distinct haplotypes, OR > 8.28, P = 1.13 × 10(-11) and OR = 2.50, P = 1.22 × 10(-9)). In addition, we identified a novel association signal on chr2q14.3 coming from a rare haplotype (OR = 22.58, P = 1.21 × 10(-10)) and replicated it in a secondary cohort of 306 Ashkenazi PD cases and 2583 controls. Our results highlight the power of our haplotype association method, particularly useful in studies of founder populations, and reaffirm the benefits of studying complex diseases in Ashkenazi Jewish cohorts.

  5. SBH and the integration of complementary approaches in the mapping, sequencing, and understanding of complex genomes

    Energy Technology Data Exchange (ETDEWEB)

    Drmanac, R.; Drmanac, S.; Labat, I.; Vicentic, A.; Gemmell, A.; Stavropoulos, N.; Jarvis, J.

    1992-12-01

    A variant of sequencing by hybridization (SBH) is being developed with a potential to inexpensively determine up to 100 million base pairs per year. The method comprises (1) arraying short clones in 864-well plates; (2) growth of the M13 clones or PCR of the inserts; (3) automated spotting of DNAs by corresponding pin-arrays; (4) hybridization of dotted samples with 200-3000 {sup 32}P- or {sup 33}P-labeled 6- to 8-mer probes; and (5) scoring hybridization signals using storage phosphor plates. Some 200 7- to 8-mers can provide an inventory of the genes if CDNA clones are hybridized, or can define the order of 2-kb genomic clones, creating physical and structural maps with 100-bp resolution; the distribution of G+C, LINEs, SINEs, and gene families would be revealed. cDNAs that represent new genes and genomic clones in regions of interest selected by SBH can be sequenced by a gel method. Uniformly distributed clones from the previous step will be hybridized with 2000--3000 6- to 8-mers. As a result, approximately 50--60% of the genomic regions containing members of large repetitive and gene families and those families represented in GenBank would be completely sequenced. In the less redundant regions, every base pair is expected to be read with 3-4 probes, but the complete sequence can not be reconstructed. Such partial sequences allow the inference of similarity and the recognition of coding, regulatory, and repetitive sequences, as well as study of the evolutionary processes all the way up to the species delineation.

  6. SBH and the integration of complementary approaches in the mapping, sequencing, and understanding of complex genomes

    Energy Technology Data Exchange (ETDEWEB)

    Drmanac, R.; Drmanac, S.; Labat, I.; Vicentic, A.; Gemmell, A.; Stavropoulos, N.; Jarvis, J.

    1992-01-01

    A variant of sequencing by hybridization (SBH) is being developed with a potential to inexpensively determine up to 100 million base pairs per year. The method comprises (1) arraying short clones in 864-well plates; (2) growth of the M13 clones or PCR of the inserts; (3) automated spotting of DNAs by corresponding pin-arrays; (4) hybridization of dotted samples with 200-3000 [sup 32]P- or [sup 33]P-labeled 6- to 8-mer probes; and (5) scoring hybridization signals using storage phosphor plates. Some 200 7- to 8-mers can provide an inventory of the genes if CDNA clones are hybridized, or can define the order of 2-kb genomic clones, creating physical and structural maps with 100-bp resolution; the distribution of G+C, LINEs, SINEs, and gene families would be revealed. cDNAs that represent new genes and genomic clones in regions of interest selected by SBH can be sequenced by a gel method. Uniformly distributed clones from the previous step will be hybridized with 2000--3000 6- to 8-mers. As a result, approximately 50--60% of the genomic regions containing members of large repetitive and gene families and those families represented in GenBank would be completely sequenced. In the less redundant regions, every base pair is expected to be read with 3-4 probes, but the complete sequence can not be reconstructed. Such partial sequences allow the inference of similarity and the recognition of coding, regulatory, and repetitive sequences, as well as study of the evolutionary processes all the way up to the species delineation.

  7. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results

    Science.gov (United States)

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Jaorsik, N.; Hinshaw, G.; Odegard, N.; Smith, K. M.; Hill, R. S.; Gold, B.; Halpern, M; Komatsu, E.; Nolta, M. R.; Page, L.; Spergel, D. N.; Wollack, E.; Dunkley, J.; Kogut, A.; Limon,, M.; Meyer, S. S.; Tucker, G. S.; Wright, E. L.

    2013-01-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail.We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground reduced are presented.We nowimplement an optimal C(exp -1)1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained Lambda-CDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N(sub eff) = 3.84 +/- 0.40). The model fit also implies that the age of the universe is (sub 0) = 13.772 +/- 0.059 Gyr, and the fit Hubble constant is H(sub 0) = 69.32 +/- 0.80 km/s/ Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n(sub s) = 0.9608+/-0.0080); and the universe is close to flat/Euclidean (Omega = -0.0027+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six

  8. Transcribed sequences in the human genome to be held in San Francisco, November 7 and 8, 1992. Final report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, K.

    1993-11-01

    The Second International Workshop on the Identification of Transcribed Sequences was held in San Francisco on November 7--8, 1992. The purpose of the workshop was to discuss and evaluate techniques for developing a complete transcriptional map of the human genome. Such a map requires the positions, sequences, and expression patterns of all genes. This goal is being approached from two different directions, each with strengths and weaknesses. One method is to identify the transcribed sequences from genomic DNA of a given region; the other is to systematically sequence and map cDNAs. The cDNA approach yields sequence information rapidly, but mapping each cDNA is a technical challenge. In the first approach, the map locations of genomic sequences are known at the outset, and the challenge is to identify exons. The efficient construction of a transcriptional map will require a diverse array of techniques.

  9. Cowichan Valley energy mapping and modelling. Report 5 - Energy density mapping projections. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. Task 5 focused on energy projection mapping to estimate and visualise the energy consumption density and GHG emissions under different scenarios. The scenarios from task 4 were built around the energy consumption density of the residential sector under future land use patterns and rely on different energy source combinations (the suite of pathways). In task 5 the energy usage under the different scenarios were fed back into GIS, thereby giving a visual representation of forecasted residential energy consumption per unit area. The methodology is identical to that used in task 2 where current usage was mapped, whereas the mapping in this task is for future forecasts. These results are documented in this report. In addition, GHG mapping under the various scenarios was also undertaken. (LN)

  10. Physical and genetic mapping of the genomes of five Mycoplasma hominis strains by pulsed-field gel electrophoresis

    DEFF Research Database (Denmark)

    Ladefoged, Søren; Christiansen, Gunna

    1992-01-01

    We present the complete maps of five Mycoplasma hominis genomes, including a detailed restriction map and the locations of a number of genetic loci. The restriction fragments were resolved by field inversion gel electrophoresis or by the contour-clamped homogeneous-electric-field system of pulsed...... was inverted. The numbers and order of mapped restriction sites were only partly conserved, and this conservation was restricted to certain regions. The gene order was compared with the gene order established for other bacteria and was found to be identical to that of the phylogenetically related Clostridium...

  11. Whole genome QTL mapping for growth, meat quality and breast meat yield traits in turkey

    Directory of Open Access Journals (Sweden)

    Vereijken Addie

    2011-07-01

    Full Text Available Abstract Background The turkey (Meleagris gallopavo is an important agricultural species and is the second largest contributor to the world's poultry meat production. Demand of turkey meat is increasing very rapidly. Genetic markers linked to genes affecting quantitative traits can increase the selection response of animal breeding programs. The use of these molecular markers for the identification of quantitative trait loci, and subsequently fine-mapping of quantitative trait loci regions, allows for pinpointing of genes that underlie such economically important traits. Results The quantitative trait loci analyses of the growth curve, body weight, breast yield and the meat quality traits showed putative quantitative trait loci on 21 of the 27 turkey chromosomes covered by the linkage map. Forty-five quantitative trait loci were detected across all traits and these were found in 29 different regions on 21 chromosomes. Out of the 45 quantitative trait loci, twelve showed significant (p Conclusion A large number of quantitative trait loci were detected across the turkey genome, which affected growth, breast yield and meat quality traits. Pleiotropic effects or close linkages between quantitative trait loci were suggested for several of the chromosomal regions. The comparative analysis regarding the location of quantitative trait loci on different turkey, and on the syntenic chicken chromosomes, along with their phenotypic associations, revealed signs of functional conservation between these species.

  12. Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Gaur, Rashmi; Sethy, Niroj K; Choudhary, Shalu; Shokeen, Bhumika; Gupta, Varsha; Bhatia, Sabhyata

    2011-02-17

    Chickpea (Cicer arietinum L.) is an economically important cool season grain legume crop that is valued for its nutritive seeds having high protein content. However, several biotic and abiotic stresses and the low genetic variability in the chickpea genome have continuously hindered the chickpea molecular breeding programs. STMS (Sequence Tagged Microsatellite Sites) markers which are preferred for the construction of saturated linkage maps in several crop species, have also emerged as the most efficient and reliable source for detecting allelic diversity in chickpea. However, the number of STMS markers reported in chickpea is still limited and moreover exhibit low rates of both inter and intraspecific polymorphism, thereby limiting the positions of the SSR markers especially on the intraspecific linkage maps of chickpea. Hence, this study was undertaken with the aim of developing additional STMS markers and utilizing them for advancing the genetic linkage map of chickpea which would have applications in QTL identification, MAS and for de novo assembly of high throughput whole genome sequence data. A microsatellite enriched library of chickpea (enriched for (GT/CA)n and (GA/CT)n repeats) was constructed from which 387 putative microsatellite containing clones were identified. From these, 254 STMS primers were designed of which 181 were developed as functional markers. An intraspecific mapping population of chickpea, [ICCV-2 (single podded) × JG-62 (double podded)] and comprising of 126 RILs, was genotyped for mapping. Of the 522 chickpea STMS markers (including the double-podding trait, screened for parental polymorphism, 226 (43.3%) were polymorphic in the parents and were used to genotype the RILs. At a LOD score of 3.5, eight linkage groups defining the position of 138 markers were obtained that spanned 630.9 cM with an average marker density of 4.57 cM. Further, based on the common loci present between the current map and the previously published chickpea

  13. Mapping the double-strand breaks at the mating-type locus in fission yeast by genomic sequencing

    DEFF Research Database (Denmark)

    Nielsen, O; Egel, R; Nielsen, Olaf

    1989-01-01

    In fission yeast mating-type switching is initiated by the formation of a double-strand DNA break at the mating-type locus. A prerequisite for generation of the break is some 'imprinting' of the DNA in the previous cell cycle. We have used the technique of genomic sequencing to map the position o...

  14. Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber

    NARCIS (Netherlands)

    Zhang, Z.; Mao, L.; Chen, Junshi; Bu, F.; Li, G.; Sun, J.; Li, S.; Sun, H.; Jiao, C.; Blakely, R.; Pan, J.; Cai, R.; Luo, R.; Peer, Van de Y.; Jacobsen, E.; Fei, Z.; Huang, S.

    2015-01-01

    Structural variations (SVs) represent a major source of genetic diversity. However, the functional impact and formation mechanisms of SVs in plant genomes remain largely unexplored. Here, we report a nucleotide-resolution SV map of cucumber (Cucumis sativas) that comprises 26,788 SVs based on deep r

  15. Genome mapping data table of Drosophila GAL4 enhancer trap lines (Clone List) - GETDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available GETDB Genome mapping data table of Drosophila GAL4 enhancer trap lines (Clone List) Data detail Data name Ge...nome mapping data table of Drosophila GAL4 enhancer trap lines (Clone List) Description of data contents A t...able showing the insert position of the Drosophila GAL4 enhancer trap element and...iption Clone Name Name of the clone of the genome sequence adjacent to the 5'-end of the Drosophila GAL4 enhancer trap...date History of This Database Site Policy | Contact Us Genome mapping data table of Drosophila GAL4 enhancer trap lines (Clone List) - GETDB | LSDB Archive ...

  16. Genome-wide association mapping of root traits in a japonica rice panel.

    Directory of Open Access Journals (Sweden)

    Brigitte Courtois

    Full Text Available Rice is a crop prone to drought stress in upland and rainfed lowland ecosystems. A deep root system is recognized as the best drought avoidance mechanism. Genome-wide association mapping offers higher resolution for locating quantitative trait loci (QTLs than QTL mapping in biparental populations. We performed an association mapping study for root traits using a panel of 167 japonica accessions, mostly of tropical origin. The panel was genotyped at an average density of one marker per 22.5 kb using genotyping by sequencing technology. The linkage disequilibrium in the panel was high (r(2>0.6, on average, for 20 kb mean distances between markers. The plants were grown in transparent 50 cm × 20 cm × 2 cm Plexiglas nailboard sandwiches filled with 1.5 mm glass beads through which a nutrient solution was circulated. Root system architecture and biomass traits were measured in 30-day-old plants. The panel showed a moderate to high diversity in the various traits, particularly for deep (below 30 cm depth root mass and the number of deep roots. Association analyses were conducted using a mixed model involving both population structure and kinship to control for false positives. Nineteen associations were significant at P<1e-05, and 78 were significant at P<1e-04. The greatest numbers of significant associations were detected for deep root mass and the number of deep roots, whereas no significant associations were found for total root biomass or deep root proportion. Because several QTLs for different traits were co-localized, 51 unique loci were detected; several co-localized with meta-QTLs for root traits, but none co-localized with rice genes known to be involved in root growth. Several likely candidate genes were found in close proximity to these loci. Additional work is necessary to assess whether these markers are relevant in other backgrounds and whether the genes identified are robust candidates.

  17. Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms.

    Directory of Open Access Journals (Sweden)

    Rajini R Haraksingh

    Full Text Available Accurate and efficient genome-wide detection of copy number variants (CNVs is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH, Single Nucleotide Polymorphism (SNP genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications.

  18. Comparative BAC-based mapping in the white-throated sparrow, a novel behavioral genomics model, using interspecies overgo hybridization

    Directory of Open Access Journals (Sweden)

    Gonser Rusty A

    2011-06-01

    Full Text Available Abstract Background The genomics era has produced an arsenal of resources from sequenced organisms allowing researchers to target species that do not have comparable mapping and sequence information. These new "non-model" organisms offer unique opportunities to examine environmental effects on genomic patterns and processes. Here we use comparative mapping as a first step in characterizing the genome organization of a novel animal model, the white-throated sparrow (Zonotrichia albicollis, which occurs as white or tan morphs that exhibit alternative behaviors and physiology. Morph is determined by the presence or absence of a complex chromosomal rearrangement. This species is an ideal model for behavioral genomics because the association between genotype and phenotype is absolute, making it possible to identify the genomic bases of phenotypic variation. Findings We initiated a genomic study in this species by characterizing the white-throated sparrow BAC library via filter hybridization with overgo probes designed for the chicken, turkey, and zebra finch. Cross-species hybridization resulted in 640 positive sparrow BACs assigned to 77 chicken loci across almost all macro-and microchromosomes, with a focus on the chromosomes associated with morph. Out of 216 overgos, 36% of the probes hybridized successfully, with an average number of 3.0 positive sparrow BACs per overgo. Conclusions These data will be utilized for determining chromosomal architecture and for fine-scale mapping of candidate genes associated with phenotypic differences. Our research confirms the utility of interspecies hybridization for developing comparative maps in other non-model organisms.

  19. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism.

    Directory of Open Access Journals (Sweden)

    Simon W Baxter

    Full Text Available Restriction-site associated DNA (RAD sequencing is a powerful new method for targeted sequencing across the genomes of many individuals. This approach has broad potential for genetic analysis of non-model organisms including genotype-phenotype association mapping, phylogeography, population genetics and scaffolding genome assemblies through linkage mapping. We constructed a RAD library using genomic DNA from a Plutella xylostella (diamondback moth backcross that segregated for resistance to the insecticide spinosad. Sequencing of 24 individuals was performed on a single Illumina GAIIx lane (51 base paired-end reads. Taking advantage of the lack of crossing over in homologous chromosomes in female Lepidoptera, 3,177 maternally inherited RAD alleles were assigned to the 31 chromosomes, enabling identification of the spinosad resistance and W/Z sex chromosomes. Paired-end reads for each RAD allele were assembled into contigs and compared to the genome of Bombyx mori (n = 28 using BLAST, revealing 28 homologous matches plus 3 expected fusion/breakage events which account for the difference in chromosome number. A genome-wide linkage map (1292 cM was inferred with 2,878 segregating RAD alleles inherited from the backcross father, producing chromosome and location specific sequenced RAD markers. Here we have used RAD sequencing to construct a genetic linkage map de novo for an organism that has no previous genome data. Comparative analysis of P. xyloxtella linkage groups with B. mori chromosomes shows for the first time, genetic synteny appears common beyond the Macrolepidoptera. RAD sequencing is a powerful system capable of rapidly generating chromosome specific data for non-model organisms.

  20. Algorithms and software tools for ordering clone libraries: application to the mapping of the genome of Schizosaccharomyces pombe.

    Science.gov (United States)

    Mott, R; Grigoriev, A; Maier, E; Hoheisel, J; Lehrach, H

    1993-04-25

    A complete set of software tools to aid the physical mapping of a genome has been developed and successfully applied to the genomic mapping of the fission yeast Schizosaccharomyces pombe. Two approaches were used for ordering single-copy hybridisation probes: one was based on the simulated annealing algorithm to order all probes, and another on inferring the minimum-spanning subset of the probes using a heuristic filtering procedure. Both algorithms produced almost identical maps, with minor differences in the order of repetitive probes and those having identical hybridisation patterns. A separate algorithm fitted the clones to the established probe order. Approaches for handling experimental noise and repetitive elements are discussed. In addition to these programs and the database management software, tools for visualizing and editing the data are described. The issues of combining the information from different libraries are addressed. Also, ways of handling multiple-copy probes and non-hybridisation data are discussed.

  1. Analysis of genome-wide structure, diversity and fine mapping of Mendelian traits in traditional and village chickens

    Science.gov (United States)

    Wragg, D; Mwacharo, J M; Alcalde, J A; Hocking, P M; Hanotte, O

    2012-01-01

    Extensive phenotypic variation is a common feature among village chickens found throughout much of the developing world, and in traditional chicken breeds that have been artificially selected for traits such as plumage variety. We present here an assessment of traditional and village chicken populations, for fine mapping of Mendelian traits using genome-wide single-nucleotide polymorphism (SNP) genotyping while providing information on their genetic structure and diversity. Bayesian clustering analysis reveals two main genetic backgrounds in traditional breeds, Kenyan, Ethiopian and Chilean village chickens. Analysis of linkage disequilibrium (LD) reveals useful LD (r2⩾0.3) in both traditional and village chickens at pairwise marker distances of ∼10 Kb; while haplotype block analysis indicates a median block size of 11–12 Kb. Association mapping yielded refined mapping intervals for duplex comb (Gga 2:38.55–38.89 Mb) and rose comb (Gga 7:18.41–22.09 Mb) phenotypes in traditional breeds. Combined mapping information from traditional breeds and Chilean village chicken allows the oocyan phenotype to be fine mapped to two small regions (Gga 1:67.25–67.28 Mb, Gga 1:67.28–67.32 Mb) totalling ∼75 Kb. Mapping the unmapped earlobe pigmentation phenotype supports previous findings that the trait is sex-linked and polygenic. A critical assessment of the number of SNPs required to map simple traits indicate that between 90 and 110K SNPs are required for full genome-wide analysis of haplotype block structure/ancestry, and for association mapping in both traditional and village chickens. Our results demonstrate the importance and uniqueness of phenotypic diversity and genetic structure of traditional chicken breeds for fine-scale mapping of Mendelian traits in the species, with village chicken populations providing further opportunities to enhance mapping resolutions. PMID:22395157

  2. Cowichan Valley energy mapping and modelling. Report 2 - Energy consumption and density mapping. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. The second task in the overall project was the mapping of regional energy consumption density. Combined with the findings from task one, this enables comparison of energy consumption density per area unit with the renewable energy resource availability. In addition, it provides an energy baseline against which future energy planning activities can be evaluated. The mapping of the energy consumption density was divided into categories to correspond with local British Columbia Assessment Authority (BCAA) reporting. The residential sub-categories were comprised of single family detached dwellings, single family attached dwellings, apartments, and moveable dwellings. For commercial and industrial end-users the 14 sub-categories are also in line with BCAA as well as the on-going provincial TaNDM project of which the CVRD is a partner. The results of task two are documented in this report. (LN)

  3. A SNP Based Linkage Map of the Arctic Charr (Salvelinus alpinus Genome Provides Insights into the Diploidization Process After Whole Genome Duplication

    Directory of Open Access Journals (Sweden)

    Cameron M. Nugent

    2017-02-01

    Full Text Available Diploidization, which follows whole genome duplication events, does not occur evenly across the genome. In salmonid fishes, certain pairs of homeologous chromosomes preserve tetraploid loci in higher frequencies toward the telomeres due to residual tetrasomic inheritance. Research suggests this occurs only in homeologous pairs where one chromosome arm has undergone a fusion event. We present a linkage map for Arctic charr (Salvelinus alpinus, a salmonid species with relatively fewer chromosome fusions. Genotype by sequencing identified 19,418 SNPs, and a linkage map consisting of 4508 markers was constructed from a subset of high quality SNPs and microsatellite markers that were used to anchor the new map to previous versions. Both male- and female-specific linkage maps contained the expected number of 39 linkage groups. The chromosome type associated with each linkage group was determined, and 10 stable metacentric chromosomes were identified, along with a chromosome polymorphism involving the sex chromosome AC04. Two instances of a weak form of pseudolinkage were detected in the telomeric regions of homeologous chromosome arms in both female and male linkage maps. Chromosome arm homologies within the Atlantic salmon (Salmo salar and rainbow trout (Oncorhynchus mykiss genomes were determined. Paralogous sequence variants (PSVs were identified, and their comparative BLASTn hit locations showed that duplicate markers exist in higher numbers on seven pairs of homeologous arms, previously identified as preserving tetrasomy in salmonid species. Homeologous arm pairs where neither arm has been part of a fusion event in Arctic charr had fewer PSVs, suggesting faster diploidization rates in these regions.

  4. Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Thudi, Mahendar; Khan, Aamir W; Kumar, Vinay; Gaur, Pooran M; Katta, Krishnamohan; Garg, Vanika; Roorkiwal, Manish; Samineni, Srinivasan; Varshney, Rajeev K

    2016-01-27

    Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in South Asia and Sub-Saharan Africa. In order to harness the untapped genetic potential available for chickpea improvement, we re-sequenced 35 chickpea genotypes representing parental lines of 16 mapping populations segregating for abiotic (drought, heat, salinity), biotic stresses (Fusarium wilt, Ascochyta blight, Botrytis grey mould, Helicoverpa armigera) and nutritionally important (protein content) traits using whole genome re-sequencing approach. A total of 192.19 Gb data, generated on 35 genotypes of chickpea, comprising 973.13 million reads, with an average sequencing depth of ~10 X for each line. On an average 92.18 % reads from each genotype were aligned to the chickpea reference genome with 82.17 % coverage. A total of 2,058,566 unique single nucleotide polymorphisms (SNPs) and 292,588 Indels were detected while comparing with the reference chickpea genome. Highest number of SNPs were identified on the Ca4 pseudomolecule. In addition, copy number variations (CNVs) such as gene deletions and duplications were identified across the chickpea parental genotypes, which were minimum in PI 489777 (1 gene deletion) and maximum in JG 74 (1,497). A total of 164,856 line specific variations (144,888 SNPs and 19,968 Indels) with the highest percentage were identified in coding regions in ICC 1496 (21 %) followed by ICCV 97105 (12 %). Of 539 miscellaneous variations, 339, 138 and 62 were inter-chromosomal variations (CTX), intra-chromosomal variations (ITX) and inversions (INV) respectively. Genome-wide SNPs, Indels, CNVs, PAVs, and miscellaneous variations identified in different mapping populations are a valuable resource in genetic research and helpful in locating genes/genomic segments responsible for economically important traits. Further, the genome-wide variations identified in the present study can be used for developing high density SNP arrays for

  5. Sexagesimal scale for mapping human genome Escala sexagesimal para mapear el genoma humano

    Directory of Open Access Journals (Sweden)

    RICARDO CRUZ-COKE

    2001-03-01

    Full Text Available In a previous work I designed a diagram of the human genome based on a circular ideogram of the haploid set of chromosomes, using a low resolution scale of Megabase units. The purpose of this work is to draft a new scale to measure the physical map of the human genome at the highest resolution level. The entire length of the haploid genome of males is deployed in a circumference, marked with a sexagesimal scale with 360 degrees and 1296000 arc seconds. The radio of this circunference displays a semilogaritmic metric scale from 1 m up to the nanometer level. The base pair level of DNA sequences, 10-9 of this circunsference, is measured in milliarsec unit (mas, equivalent to a thousand of arcsecond. The "mas" unit, correspond to 1.27 nanometers (nm or 0.427 base pair (bp and it is the framework for measure DNA sequences. Thus the three billion base pairs of the human genome may be identified by 1296000000 "mas" units in continous correlation from number 1 to number 1296000000. This sexagesimal scale covers all the levels of the nuclear genetic material, from nucleotides to chromosomes. The locations of every codon and every gene may be numbered in the physical map of chomosome regions according to this new scale, instead of the partial kilobase and Megabase scales used today. The advantage of the new scale is the unification of the set of chromosomes under a continous scale of measurement at the DNA level, facilitating the correlation with the phenotypes of man and other speciesEn un trabajo anterior yo diseñé un diagrama del genoma humano basado en un ideograma circular del conjunto haploide de cromosomas, usando una escala de baja resolución en megabases. El propósito de este trabajo es el de diseñar una nueva escala para medir el mapa físico del genoma humano al más alto nivel de resolución. La longitud completa del genoma haploide del varon es extendido en una circunsferencia, marcada con una escala sexagesimal de 360 grados y 1296000

  6. Genomic Scans of Zygotic Disequilibrium and Epistatic SNPs in HapMap Phase III Populations.

    Directory of Open Access Journals (Sweden)

    Xin-Sheng Hu

    Full Text Available Previous theory indicates that zygotic linkage disequilibrium (LD is more informative than gametic or composite digenic LD in revealing natural population history. Further, the difference between the composite digenic and maximum zygotic LDs can be used to detect epistatic selection for fitness. Here we corroborate the theory by investigating genome-wide zygotic LDs in HapMap phase III human populations. Results show that non-Africa populations have much more significant zygotic LDs than do Africa populations. Africa populations (ASW, LWK, MKK, and YRI possess more significant zygotic LDs for the double-homozygotes (DAABB than any other significant zygotic LDs (DAABb, DAaBB, and DAaBb, while non-Africa populations generally have more significant DAaBb's than any other significant zygotic LDs (DAABB, DAABb, and DAaBB. Average r-squares for any significant zygotic LDs increase generally in an order of populations YRI, MKK, CEU, CHB, LWK, JPT, CHD, TSI, GIH, ASW, and MEX. Average r-squares are greater for DAABB and DAaBb than for DAaBB and DAABb in each population. YRI and MKK can be separated from LWK and ASW in terms of the pattern of average r-squares. All population divergences in zygotic LDs can be interpreted with the model of Out of Africa for modern human origins. We have also detected 19735-95921 SNP pairs exhibiting strong signals of epistatic selection in different populations. Gene-gene interactions for some epistatic SNP pairs are evident from empirical findings, but many more epistatic SNP pairs await evidence. Common epistatic SNP pairs rarely exist among all populations, but exist in distinct regions (Africa, Europe, and East Asia, which helps to understand geographical genomic medicine.

  7. Projector 2 : contig mapping for efficient gap-closure of prokaryotic genome sequence assemblies

    NARCIS (Netherlands)

    van Hijum, SAFT; Zomer, AL; Kuipers, OP; Kok, J

    2005-01-01

    With genome sequencing efforts increasing exponentially, valuable information accumulates on genomic content of the various organisms sequenced. Projector 2 uses (un) finished genomic sequences of an organism as a template to infer linkage information for a genome sequence assembly of a related orga

  8. High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon.

    Science.gov (United States)

    Reddy, Umesh K; Nimmakayala, Padma; Levi, Amnon; Abburi, Venkata Lakshmi; Saminathan, Thangasamy; Tomason, Yan R; Vajja, Gopinath; Reddy, Rishi; Abburi, Lavanya; Wehner, Todd C; Ronin, Yefim; Karol, Abraham

    2014-09-15

    We used genotyping by sequencing to identify a set of 10,480 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1096 cM for watermelon. We assessed the genome-wide variation in recombination rate (GWRR) across the map and found an association between GWRR and genome-wide nucleotide diversity. Collinearity between the map and the genome-wide reference sequence for watermelon was studied to identify inconsistency and chromosome rearrangements. We assessed genome-wide nucleotide diversity, linkage disequilibrium (LD), and selective sweep for wild, semi-wild, and domesticated accessions of Citrullus lanatus var. lanatus to track signals of domestication. Principal component analysis combined with chromosome-wide phylogenetic study based on 1563 SNPs obtained after LD pruning with minor allele frequency of 0.05 resolved the differences between semi-wild and wild accessions as well as relationships among worldwide sweet watermelon. Population structure analysis revealed predominant ancestries for wild, semi-wild, and domesticated watermelons as well as admixture of various ancestries that were important for domestication. Sliding window analysis of Tajima's D across various chromosomes was used to resolve selective sweep. LD decay was estimated for various chromosomes. We identified a strong selective sweep on chromosome 3 consisting of important genes that might have had a role in sweet watermelon domestication. Copyright © 2014 Reddy et al.

  9. Rapid and inexpensive whole-genome genotyping-by-sequencing for crossover localization and fine-scale genetic mapping.

    Science.gov (United States)

    Rowan, Beth A; Patel, Vipul; Weigel, Detlef; Schneeberger, Korbinian

    2015-01-13

    The reshuffling of existing genetic variation during meiosis is important both during evolution and in breeding. The reassortment of genetic variants relies on the formation of crossovers (COs) between homologous chromosomes. The pattern of genome-wide CO distributions can be rapidly and precisely established by the short-read sequencing of individuals from F2 populations, which in turn are useful for quantitative trait locus (QTL) mapping. Although sequencing costs have decreased precipitously in recent years, the costs of library preparation for hundreds of individuals have remained high. To enable rapid and inexpensive CO detection and QTL mapping using low-coverage whole-genome sequencing of large mapping populations, we have developed a new method for library preparation along with Trained Individual GenomE Reconstruction, a probabilistic method for genotype and CO predictions for recombinant individuals. In an example case with hundreds of F2 individuals from two Arabidopsis thaliana accessions, we resolved most CO breakpoints to within 2 kb and reduced a major flowering time QTL to a 9-kb interval. In addition, an extended region of unusually low recombination revealed a 1.8-Mb inversion polymorphism on the long arm of chromosome 4. We observed no significant differences in the frequency and distribution of COs between F2 individuals with and without a functional copy of the DNA helicase gene RECQ4A. In summary, we present a new, cost-efficient method for large-scale, high-precision genotyping-by-sequencing.

  10. Site-conditions map for Portugal based on VS measurements: methodology and final model

    Science.gov (United States)

    Vilanova, Susana; Narciso, João; Carvalho, João; Lopes, Isabel; Quinta Ferreira, Mario; Moura, Rui; Borges, José; Nemser, Eliza; Pinto, carlos

    2017-04-01

    In this paper we present a statistically significant site-condition model for Portugal based on shear-wave velocity (VS) data and surface geology. We also evaluate the performance of commonly used Vs30 proxies based on exogenous data and analyze the implications of using those proxies for calculating site amplification in seismic hazard assessment. The dataset contains 161 Vs profiles acquired in Portugal in the context of research projects, technical reports, academic thesis and academic papers. The methodologies involved in characterizing the Vs structure at the sites in the database include seismic refraction, multichannel analysis of seismic waves and refraction microtremor. Invasive measurements were performed in selected locations in order to compare the Vs profiles obtained from both invasive and non-invasive techniques. In general there was good agreement in the subsurface structure of Vs30 obtained from the different methodologies. The database flat-file includes information on Vs30, surface geology at 1:50.000 and 1:500.000 scales, elevation and topographic slope and based on SRTM30 topographic dataset. The procedure used to develop the site-conditions map is based on a three-step process that includes defining a preliminary set of geological units based on the literature, performing statistical tests to assess whether or not the differences in the distributions of Vs30 are statistically significant, and merging of the geological units accordingly. The dataset was, to some extent, affected by clustering and/or preferential sampling and therefore a declustering algorithm was applied. The final model includes three geological units: 1) Igneous, metamorphic and old (Paleogene and Mesozoic) sedimentary rocks; 2) Neogene and Pleistocene formations, and 3) Holocene formations. The evaluation of proxies indicates that although geological analogues and topographic slope are in general unbiased, the latter shows significant bias for particular geological units and

  11. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    Science.gov (United States)

    2011-09-01

    Almasy, L, Blangero, J. (2009) Human QTL linkage mapping. Genetica 136:333-340. Amos, CI. (2007) Successful design and conduct of genome-wide...quantitative trait loci. Genetica 136:237-243. Skol AD, Scott LJ, Abecasis GR, Boehnke M. (2006) Joint analysis is more efficient than replication

  12. Transferability and Fine Mapping of genome-wide associated loci for lipids in African Americans

    Directory of Open Access Journals (Sweden)

    Adeyemo Adebowale

    2012-09-01

    Full Text Available Abstract Background A recent, large genome-wide association study (GWAS of European ancestry individuals has identified multiple genetic variants influencing serum lipids. Studies of the transferability of these associations to African Americans remain few, an important limitation given interethnic differences in serum lipids and the disproportionate burden of lipid-associated metabolic diseases among African Americans. Methods We attempted to evaluate the transferability of 95 lipid-associated loci recently identified in European ancestry individuals to 887 non-diabetic, unrelated African Americans from a population-based sample in the Washington, DC area. Additionally, we took advantage of the generally reduced linkage disequilibrium among African ancestry populations in comparison to European ancestry populations to fine-map replicated GWAS signals. Results We successfully replicated reported associations for 10 loci (CILP2/SF4, STARD3, LPL, CYP7A1, DOCK7/ANGPTL3, APOE, SORT1, IRS1, CETP, and UBASH3B. Through trans-ethnic fine-mapping, we were able to reduce associated regions around 75% of the loci that replicated. Conclusions Between this study and previous work in African Americans, 40 of the 95 loci reported in a large GWAS of European ancestry individuals also influence lipid levels in African Americans. While there is now evidence that the lipid-influencing role of a number of genetic variants is observed in both European and African ancestry populations, the still considerable lack of concordance highlights the importance of continued ancestry-specific studies to elucidate the genetic underpinnings of these traits.

  13. GLIDERS - A web-based search engine for genome-wide linkage disequilibrium between HapMap SNPs

    Directory of Open Access Journals (Sweden)

    Broxholme John

    2009-10-01

    Full Text Available Abstract Background A number of tools for the examination of linkage disequilibrium (LD patterns between nearby alleles exist, but none are available for quickly and easily investigating LD at longer ranges (>500 kb. We have developed a web-based query tool (GLIDERS: Genome-wide LInkage DisEquilibrium Repository and Search engine that enables the retrieval of pairwise associations with r2 ≥ 0.3 across the human genome for any SNP genotyped within HapMap phase 2 and 3, regardless of distance between the markers. Description GLIDERS is an easy to use web tool that only requires the user to enter rs numbers of SNPs they want to retrieve genome-wide LD for (both nearby and long-range. The intuitive web interface handles both manual entry of SNP IDs as well as allowing users to upload files of SNP IDs. The user can limit the resulting inter SNP associations with easy to use menu options. These include MAF limit (5-45%, distance limits between SNPs (minimum and maximum, r2 (0.3 to 1, HapMap population sample (CEU, YRI and JPT+CHB combined and HapMap build/release. All resulting genome-wide inter-SNP associations are displayed on a single output page, which has a link to a downloadable tab delimited text file. Conclusion GLIDERS is a quick and easy way to retrieve genome-wide inter-SNP associations and to explore LD patterns for any number of SNPs of interest. GLIDERS can be useful in identifying SNPs with long-range LD. This can highlight mis-mapping or other potential association signal localisation problems.

  14. Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait.

    Science.gov (United States)

    Yu, Xiaona; Choi, Su Ryun; Ramchiary, Nirala; Miao, Xinyang; Lee, Su Hee; Sun, Hae Jeong; Kim, Sunggil; Ahn, Chun Hee; Lim, Yong Pyo

    2013-10-01

    Fusarium wilt (FW), caused by the soil-borne fungal pathogen Fusarium oxysporum is a serious disease in cruciferous plants, including the radish (Raphanus sativus). To identify quantitative trait loci (QTL) or gene(s) conferring resistance to FW, we constructed a genetic map of R. sativus using an F2 mapping population derived by crossing the inbred lines '835' (susceptible) and 'B2' (resistant). A total of 220 markers distributed in 9 linkage groups (LGs) were mapped in the Raphanus genome, covering a distance of 1,041.5 cM with an average distance between adjacent markers of 4.7 cM. Comparative analysis of the R. sativus genome with that of Arabidopsis thaliana and Brassica rapa revealed 21 and 22 conserved syntenic regions, respectively. QTL mapping detected a total of 8 loci conferring FW resistance that were distributed on 4 LGs, namely, 2, 3, 6, and 7 of the Raphanus genome. Of the detected QTL, 3 QTLs (2 on LG 3 and 1 on LG 7) were constitutively detected throughout the 2-year experiment. QTL analysis of LG 3, flanked by ACMP0609 and cnu_mBRPGM0085, showed a comparatively higher logarithm of the odds (LOD) value and percentage of phenotypic variation. Synteny analysis using the linked markers to this QTL showed homology to A. thaliana chromosome 3, which contains disease-resistance gene clusters, suggesting conservation of resistance genes between them.

  15. Novel methods for physical mapping of the human genome applied to the long arm of chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, M.

    1991-12-01

    The object of our current grant is to develop novel methods for mapping of the human genome. The techniques to be assessed were: (1) three methods for the production of unique sequence clones from the region of interest; (2) novel methods for the production and separation of multi-megabase DNA fragments; (3) methods for the production of physical linking clones'' that contain rare restriction sites; (4) application of these methods and available resources to map the region of interest. Progress includes: In the first two years methods were developed for physical mapping and the production of arrayed clones; We have concentrated on developing rare- cleavage tools based or restriction endonucleases and methylases; We studied the effect of methylation on enzymes used for PFE mapping of the human genome; we characterized two new isoschizomers of rare cutting endonucleases; we developed a reliable way to produce partial digests of DNA in agarose plugs and applied it to the human genome; and we applied a method to double the apparent specificity of the rare-cutter'' endonucleases.

  16. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations.

    Science.gov (United States)

    2014-12-11

    Cassava (Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400-500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculenta Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480 meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. We used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selection-enhanced breeding of this important crop.

  17. A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs

    Directory of Open Access Journals (Sweden)

    Guyon Richard

    2012-06-01

    Full Text Available Abstract Background The Nile tilapia (Oreochromis niloticus is the second most farmed fish species worldwide. It is also an important model for studies of fish physiology, particularly because of its broad tolerance to an array of environments. It is a good model to study evolutionary mechanisms in vertebrates, because of its close relationship to haplochromine cichlids, which have undergone rapid speciation in East Africa. The existing genomic resources for Nile tilapia include a genetic map, BAC end sequences and ESTs, but comparative genome analysis and maps of quantitative trait loci (QTL are still limited. Results We have constructed a high-resolution radiation hybrid (RH panel for the Nile tilapia and genotyped 1358 markers consisting of 850 genes, 82 markers corresponding to BAC end sequences, 154 microsatellites and 272 single nucleotide polymorphisms (SNPs. From these, 1296 markers could be associated in 81 RH groups, while 62 were not linked. The total size of the RH map is 34,084 cR3500 and 937,310 kb. It covers 88% of the entire genome with an estimated inter-marker distance of 742 Kb. Mapping of microsatellites enabled integration to the genetic map. We have merged LG8 and LG24 into a single linkage group, and confirmed that LG16-LG21 are also merged. The orientation and association of RH groups to each chromosome and LG was confirmed by chromosomal in situ hybridizations (FISH of 55 BACs. Fifty RH groups were localized on the 22 chromosomes while 31 remained small orphan groups. Synteny relationships were determined between Nile tilapia, stickleback, medaka and pufferfish. Conclusion The RH map and associated FISH map provide a valuable gene-ordered resource for gene mapping and QTL studies. All genetic linkage groups with their corresponding RH groups now have a corresponding chromosome which can be identified in the karyotype. Placement of conserved segments indicated that multiple inter-chromosomal rearrangements have occurred

  18. Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map.

    Science.gov (United States)

    Wang, Linhai; Xia, Qiuju; Zhang, Yanxin; Zhu, Xiaodong; Zhu, Xiaofeng; Li, Donghua; Ni, Xuemei; Gao, Yuan; Xiang, Haitao; Wei, Xin; Yu, Jingyin; Quan, Zhiwu; Zhang, Xiurong

    2016-01-05

    Sesame is an important high-quality oil seed crop. The sesame genome was de novo sequenced and assembled in 2014 (version 1.0); however, the number of anchored pseudomolecules was higher than the chromosome number (2n = 2x = 26) due to the lack of a high-density genetic map with 13 linkage groups. We resequenced a permanent population consisting of 430 recombinant inbred lines and constructed a genetic map to improve the sesame genome assembly. We successfully anchored 327 scaffolds onto 13 pseudomolecules. The new genome assembly (version 2.0) included 97.5 % of the scaffolds greater than 150 kb in size present in assembly version 1.0 and increased the total pseudomolecule length from 233.7 to 258.4 Mb with 94.3 % of the genome assembled and 97.2 % of the predicted gene models anchored. Based on the new genome assembly, a bin map including 1,522 bins spanning 1090.99 cM was generated and used to identified 41 quantitative trait loci (QTLs) for sesame plant height and 9 for seed coat color. The plant height-related QTLs explained 3-24 % the phenotypic variation (mean value, 8 %), and 29 of them were detected in at least two field trials. Two major loci (qPH-8.2 and qPH-3.3) that contributed 23 and 18 % of the plant height were located in 350 and 928-kb spaces on Chr8 and Chr3, respectively. qPH-3.3, is predicted to be responsible for the semi-dwarf sesame plant phenotype and contains 102 candidate genes. This is the first report of a sesame semi-dwarf locus and provides an interesting opportunity for a plant architecture study of the sesame. For the sesame seed coat color, the QTLs of the color spaces L*, a*, and b* were detected with contribution rates of 3-46 %. qSCb-4.1 contributed approximately 39 % of the b* value and was located on Chr4 in a 199.9-kb space. A list of 32 candidate genes for the locus, including a predicted black seed coat-related gene, was determined by screening the newly anchored genome. This study offers a high

  19. Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar

    Directory of Open Access Journals (Sweden)

    Fabbrini Francesco

    2012-04-01

    Full Text Available Abstract Background The genetic control of important adaptive traits, such as bud set, is still poorly understood in most forest trees species. Poplar is an ideal model tree to study bud set because of its indeterminate shoot growth. Thus, a full-sib family derived from an intraspecific cross of P. nigra with 162 clonally replicated progeny was used to assess the phenotypic plasticity and genetic variation of bud set in two sites of contrasting environmental conditions. Results Six crucial phenological stages of bud set were scored. Night length appeared to be the most important signal triggering the onset of growth cessation. Nevertheless, the effect of other environmental factors, such as temperature, increased during the process. Moreover, a considerable role of genotype × environment (G × E interaction was found in all phenological stages with the lowest temperature appearing to influence the sensitivity of the most plastic genotypes. Descriptors of growth cessation and bud onset explained the largest part of phenotypic variation of the entire process. Quantitative trait loci (QTL for these traits were detected. For the four selected traits (the onset of growth cessation (date2.5, the transition from shoot to bud (date1.5, the duration of bud formation (subproc1 and bud maturation (subproc2 eight and sixteen QTL were mapped on the maternal and paternal map, respectively. The identified QTL, each one characterized by small or modest effect, highlighted the complex nature of traits involved in bud set process. Comparison between map location of QTL and P. trichocarpa genome sequence allowed the identification of 13 gene models, 67 bud set-related expressional and six functional candidate genes (CGs. These CGs are functionally related to relevant biological processes, environmental sensing, signaling, and cell growth and development. Some strong QTL had no obvious CGs, and hold great promise to identify unknown genes that affect bud set

  20. Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kostadin Evgeniev eAtanasov

    2016-04-01

    Full Text Available Guazatine is a potent inhibitor of polyamine oxidase (PAO activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines. Here we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1 within this locus was studied as candidate gene, together with its paralog (CLH2. The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2 and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine.

  1. A high-resolution map of synteny disruptions in gibbon and human genomes.

    Directory of Open Access Journals (Sweden)

    Lucia Carbone

    2006-12-01

    Full Text Available Gibbons are part of the same superfamily (Hominoidea as humans and great apes, but their karyotype has diverged faster from the common hominoid ancestor. At least 24 major chromosome rearrangements are required to convert the presumed ancestral karyotype of gibbons into that of the hominoid ancestor. Up to 28 additional rearrangements distinguish the various living species from the common gibbon ancestor. Using the northern white-cheeked gibbon (2n = 52 (Nomascus leucogenys leucogenys as a model, we created a high-resolution map of the homologous regions between the gibbon and human. The positions of 100 synteny breakpoints relative to the assembled human genome were determined at a resolution of about 200 kb. Interestingly, 46% of the gibbon-human synteny breakpoints occur in regions that correspond to segmental duplications in the human lineage, indicating a common source of plasticity leading to a different outcome in the two species. Additionally, the full sequences of 11 gibbon BACs spanning evolutionary breakpoints reveal either segmental duplications or interspersed repeats at the exact breakpoint locations. No specific sequence element appears to be common among independent rearrangements. We speculate that the extraordinarily high level of rearrangements seen in gibbons may be due to factors that increase the incidence of chromosome breakage or fixation of the derivative chromosomes in a homozygous state.

  2. Genome-wide mapping of histone H4 serine-1 phosphorylation during sporulation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Govin, Jérôme; Schug, Jonathan; Krishnamoorthy, Thanuja; Dorsey, Jean; Khochbin, Saadi; Berger, Shelley L

    2010-08-01

    We previously showed that histone H4 serine-1 phosphorylation (H4S1ph) is evolutionarily conserved during gametogenesis, and contributes to post-meiotic nuclear compaction and to full completion of sporulation in the yeast Saccharomyces cerevisiae. Previous studies showed that H4S1ph and another modification of the same histone, H4 acetylation (H4ac), do not occur together and have opposing roles during DNA double-strand break (DSB) repair. In this study, we investigated the relationship between these marks during yeast sporulation. H4S1ph and H4ac co-exist globally during later stages of sporulation, in contrast to DSB repair. Genome-wide mapping during sporulation reveals accumulation of both marks over promoters of genes. Prevention of H4S1ph deposition delays the decline in transcription that normally occurs during spore maturation. Taken together, our results indicate that H4S1ph deposition reinforces reduced transcription that coincides with full spore compaction, without disrupting the local acetylation signature. These studies indicate distinctive features of a histone H4 modification marking system during sporulation compared with DSB repair.

  3. Genome-Scale Mapping of Escherichia coli σ54 Reveals Widespread, Conserved Intragenic Binding.

    Directory of Open Access Journals (Sweden)

    Richard P Bonocora

    2015-10-01

    Full Text Available Bacterial RNA polymerases must associate with a σ factor to bind promoter DNA and initiate transcription. There are two families of σ factor: the σ70 family and the σ54 family. Members of the σ54 family are distinct in their ability to bind promoter DNA sequences, in the context of RNA polymerase holoenzyme, in a transcriptionally inactive state. Here, we map the genome-wide association of Escherichia coli σ54, the archetypal member of the σ54 family. Thus, we vastly expand the list of known σ54 binding sites to 135. Moreover, we estimate that there are more than 250 σ54 sites in total. Strikingly, the majority of σ54 binding sites are located inside genes. The location and orientation of intragenic σ54 binding sites is non-random, and many intragenic σ54 binding sites are conserved. We conclude that many intragenic σ54 binding sites are likely to be functional. Consistent with this assertion, we identify three conserved, intragenic σ54 promoters that drive transcription of mRNAs with unusually long 5' UTRs.

  4. Human Genome Teacher Networking Project, Final Report, April 1, 1992 - March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Debra

    1999-10-01

    Project to provide education regarding ethical legal and social implications of Human Genome Project to high school science teachers through two consecutive summer workshops, in class activities, and peer teaching workshops.

  5. Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance.

    Science.gov (United States)

    Jing, Shengli; Zhang, Lei; Ma, Yinhua; Liu, Bingfang; Zhao, Yan; Yu, Hangjin; Zhou, Xi; Qin, Rui; Zhu, Lili; He, Guangcun

    2014-01-01

    Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens) is the most destructive rice (Oryza sativa) pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5) and 14 (Qgr14). This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for controlling this most

  6. Identification and Mapping of Simple Sequence Repeat Markers from Common Bean (Phaseolus vulgaris L. Bacterial Artificial Chromosome End Sequences for Genome Characterization and Genetic–Physical Map Integration

    Directory of Open Access Journals (Sweden)

    Juana M. Córdoba

    2010-11-01

    Full Text Available Microsatellite markers or simple sequence repeat (SSR loci are useful for diversity characterization and genetic–physical mapping. Different in silico microsatellite search methods have been developed for mining bacterial artificial chromosome (BAC end sequences for SSRs. The overall goal of this study was genome characterization based on SSRs in 89,017 BAC end sequences (BESs from the G19833 common bean ( L. library. Another objective was to identify new SSR taking into account three tandem motif identification programs (Automated Microsatellite Marker Development [AMMD], Tandem Repeats Finder [TRF], and SSRLocator [SSRL]. Among the microsatellite search engines, SSRL identified the highest number of SSRs; however, when primer design was attempted, the number dropped due to poor primer design regions. Automated Microsatellite Marker Development software identified many SSRs with valuable AT/TA or AG/TC motifs, while TRF found fewer SSRs and produced no primers. A subgroup of 323 AT-rich, di-, and trinucleotide SSRs were selected from the AMMD results and used in a parental survey with DOR364 and G19833, of which 75 could be mapped in the corresponding population; these represented 4052 BAC clones. Together with 92 previously mapped BES- and 114 non-BES-derived markers, a total of 280 SSRs were included in the polymerase chain reaction (PCR-based map, integrating a total of 8232 BAC clones in 162 contigs from the physical map.

  7. Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS

    Directory of Open Access Journals (Sweden)

    You Frank M

    2010-06-01

    Full Text Available Abstract Background Physical maps employing libraries of bacterial artificial chromosome (BAC clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of the D-genome of hexaploid wheat (Triticum aestivum, Aegilops tauschii, is used as a resource for wheat genomics. The barley diploid genome also provides a good model for the Triticeae and T. aestivum since it is only slightly larger than the ancestor wheat D genome. Gene co-linearity between the grasses can be exploited by extrapolating from rice and Brachypodium distachyon to Ae. tauschii or barley, and then to wheat. Results We report the use of Ae. tauschii for the construction of the physical map of a large distal region of chromosome arm 3DS. A physical map of 25.4 Mb was constructed by anchoring BAC clones of Ae. tauschii with 85 EST on the Ae. tauschii and barley genetic maps. The 24 contigs were aligned to the rice and B. distachyon genomic sequences and a high density SNP genetic map of barley. As expected, the mapped region is highly collinear to the orthologous chromosome 1 in rice, chromosome 2 in B. distachyon and chromosome 3H in barley. However, the chromosome scale of the comparative maps presented provides new insights into grass genome organization. The disruptions of the Ae. tauschii-rice and Ae. tauschii-Brachypodium syntenies were identical. We observed chromosomal rearrangements between Ae. tauschii and barley. The comparison of Ae. tauschii physical and genetic maps showed that the recombination rate across the region dropped from 2.19 cM/Mb in the distal region to 0.09 cM/Mb in the proximal region. The size of the gaps between contigs was evaluated by comparing the recombination rate along the map with the local recombination rates calculated on single contigs. Conclusions The physical map reported here is the first physical map using fingerprinting of a complete

  8. QTL mapping in A-genome diploid Asiatic cotton and their congruence analysis with AD-genome tetraploid cotton in genus Gossypium.

    Science.gov (United States)

    Ma, Xuexia; Ding, Yezhang; Zhou, Baoliang; Guo, Wangzhen; Lv, Yanhui; Zhu, Xiefei; Zhang, Tianzhen

    2008-12-01

    Asiatic cotton (Gossypium arboreum L.) is an Old World cultivated cotton species. The sinense race was planted extensively in China. Due to the advances in spinning technology during the last century, the species was replaced by the New World allotetraploid cotton G. hirsutum L. Gossypium arboreum is still grown in India and Pakistan and also used as an elite in current cotton breeding programs. In addition, G. arboreum serves as a model for genomic research in Gossypium. In the present study, we generated an A-genome diploid cotton intraspecific genetic map including 264 SSR loci with three morphological markers mapped to 13 linkage groups. The map spans 2,508.71 cM with an average distance of 9.4 cM between adjacent loci. A population containing 176 F(2:3) families was used to perform quantitative trait loci (QTL) mapping for 17 phenotypes using Multiple QTL Model (MQM) of MapQTL ver 5.0. Overall, 108 QTLs were detected on 13 chromosomes. Thirty-one QTLs for yield and its components were detected in the F2 population. Forty-one QTLs for yield and its components were detected in the F(2:3) families with a total of 43 QTLs for fiber qualities. Two QTLs for seed cotton weight/plant and lint index and three QTLs for seed index were consistently detected both in F2 and F(2:3). Most QTLs for fiber qualities and yields were located at the same interval or neighboring intervals. These results indicated that the negative correlation between fiber qualities and yield traits may result from either pleiotropic effect of one gene or linkage effects of multiple closely linked genes.

  9. Construction of genome-wide physical BAC contigs using mapped cDNA as probes: Toward an integrated BAC library resource for genome sequencing and analysis. Annual report, July 1995--January 1997

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, S.C.; Bocskai, D.; Cao, Y. [and others

    1997-12-31

    The goal of human genome project is to characterize and sequence entire genomes of human and several model organisms, thus providing complete sets of information on the entire structure of transcribed, regulatory and other functional regions for these organisms. In the past years, a number of useful genetic and physical markers on human and mouse genomes have been made available along with the advent of BAC library resources for these organisms. The advances in technology and resource development made it feasible to efficiently construct genome-wide physical BAC contigs for human and other genomes. Currently, over 30,000 mapped STSs and 27,000 mapped Unigenes are available for human genome mapping. ESTs and cDNAs are excellent resources for building contig maps for two reasons. Firstly, they exist in two alternative forms--as both sequence information for PCR primer pairs, and cDoreen genomic libraries efficiently for large number of DNA probes by combining over 100 cDNA probes in each hybridization. Second, the linkage and order of genes are rather conserved among human, mouse and other model organisms. Therefore, gene markers have advantages over random anonymous STSs in building maps for comparative genomic studies.

  10. Genome-wide mapping of hot spots of DNA double-strand breaks in human cells as a tool for epigenetic studies and cancer genomics

    Directory of Open Access Journals (Sweden)

    N.A. Tchurikov

    2015-09-01

    Full Text Available Hot spots of DNA double-strand breaks (DSBs are associated with coordinated expression of genes in chromosomal domains (Tchurikov et al., 2011 [1]; 2013. These 50–150-kb DNA domains (denoted “forum domains” can be visualized by separation of undigested chromosomal DNA in pulsed-field agarose gels (Tchurikov et al., 1988; 1992 and used for genome-wide mapping of the DSBs that produce them. Recently, we described nine hot spots of DSBs in human rDNA genes and observed that, in rDNA units, the hot spots coincide with CTCF binding sites and H3K4me3 marks (Tchurikov et al., 2014, suggesting a role for DSBs in active transcription. Here we have used Illumina sequencing to map DSBs in chromosomes of human HEK293T cells, and describe in detail the experimental design and bioinformatics analysis of the data deposited in the Gene Expression Omnibus with accession number GSE53811 and associated with the study published in DNA Research (Kravatsky et al., 2015. Our data indicate that H3K4me3 marks often coincide with hot spots of DSBs in HEK293T cells and that the mapping of these hot spots is important for cancer genomic studies.

  11. Genome-wide gene expression surveys and a transcriptome map in chicken

    NARCIS (Netherlands)

    Nie, H.

    2010-01-01

    The chicken (Gallus gallus) is an important model organism in genetics, developmental biology, immunology, evolutionary research, and agricultural science. The completeness of the draft chicken genome sequence provided new possibilities to study genomic changes during evolution by comparing the chic

  12. A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs

    OpenAIRE

    Guyon, Richard; Rakotomanga, Michaelle; Azzouzi, Naoual; Coutanceau, Jean Pierre; Bonillo, Celine; D’Cotta, Helena; Pepey, Elodie; Soler, Lucile; Rodier-Goud, Marguerite; D’Hont, Angelique; Conte, Matthew A; van Bers, Nikkie EM; Penman, David J.; Hitte, Christophe; Crooijmans, Richard Pma

    2012-01-01

    Background The Nile tilapia (Oreochromis niloticus) is the second most farmed fish species worldwide. It is also an important model for studies of fish physiology, particularly because of its broad tolerance to an array of environments. It is a good model to study evolutionary mechanisms in vertebrates, because of its close relationship to haplochromine cichlids, which have undergone rapid speciation in East Africa. The existing genomic resources for Nile tilapia include a genetic map, BAC en...

  13. A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs

    OpenAIRE

    Guyon, Richard; Rakotomanga, Michaëlle; Azzouzi, Naoual; Coutanceau, Jean-Pierre; Bonillo, Celine; D'Cotta, Helena; Pepey, Elodie; Soler, Lucile; Rodier-Goud, Marguerite; D'Hont, Angélique; Conte, Matthew,; Van Bers, Nikkie; Penman, David,; Hitte, Christophe; Crooijmans, Richard P M A

    2012-01-01

    BACKGROUND: The Nile tilapia (Oreochromis niloticus) is the second most farmed fish species worldwide. Itis also an important model for studies of fish physiology, particularly because of its broadtolerance to an array of environments. It is a good model to study evolutionary mechanismsin vertebrates, because of its close relationship to haplochromine cichlids, which haveundergone rapid speciation in East Africa. The existing genomic resources for Nile tilapiainclude a genetic map, BAC end se...

  14. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome

    Science.gov (United States)

    Modern biological analyses are often assisted by recent technologies making the sequencing of complex genomes both technically possible and feasible. We recently sequenced the tomato genome that, like many eukaryotic genomes, is large and complex. Current sequencing technologies allow the developmen...

  15. FINAL DIGITAL FLOOD INSURANCE RATE MAP DATABASE, LOGAN COUNTY, OK USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  16. FINAL DIGITAL FLOOD INSURANCE RATE MAP DATABASE, CLEVELAND COUNTY, OKLAHOMA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  17. FINAL DIGITAL FLOOD INSURANCE RATE MAP DATABASE, SAN DIEGO COUNTY, CALIFORNIA (AND INCORPORATED AREAS)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  18. Final DIGITAL FLOOD INSURANCE RATE MAP DATABASE, McLean County, ILLINOIS USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  19. FINAL DIGITAL FLOOD INSURANCE RATE MAP DATABASE, POTTAWATOMIE COUNTY, OK, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  20. FINAL DIGITAL FLOOD INSURANCE RATE MAP DATABASE, CLEVELAND COUNTY, OKLAHOMA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  1. FINAL DIGITAL FLOOD INSURANCE RATE MAP DATABASE, PONTOTOC COUNTY, OKLAHOMA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  2. FINAL DIGITAL FLOOD INSURANCE RATE MAP DATABASE, TULSA COUNTY, OKLAHOMA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  3. SNP identification from RNA sequencing and linkage map construction of rubber tree for anchoring the draft genome.

    Directory of Open Access Journals (Sweden)

    Jeremy R Shearman

    Full Text Available Hevea brasiliensis, or rubber tree, is an important crop species that accounts for the majority of natural latex production. The rubber tree nuclear genome consists of 18 chromosomes and is roughly 2.15 Gb. The current rubber tree reference genome assembly consists of 1,150,326 scaffolds ranging from 200 to 531,465 bp and totalling 1.1 Gb. Only 143 scaffolds, totalling 7.6 Mb, have been placed into linkage groups. We have performed RNA-seq on 6 varieties of rubber tree to identify SNPs and InDels and used this information to perform target sequence enrichment and high throughput sequencing to genotype a set of SNPs in 149 rubber tree offspring from a cross between RRIM 600 and RRII 105 rubber tree varieties. We used this information to generate a linkage map allowing for the anchoring of 24,424 contigs from 3,009 scaffolds, totalling 115 Mb or 10.4% of the published sequence, into 18 linkage groups. Each linkage group contains between 319 and 1367 SNPs, or 60 to 194 non-redundant marker positions, and ranges from 156 to 336 cM in length. This linkage map includes 20,143 of the 69,300 predicted genes from rubber tree and will be useful for mapping studies and improving the reference genome assembly.

  4. SNP identification from RNA sequencing and linkage map construction of rubber tree for anchoring the draft genome.

    Science.gov (United States)

    Shearman, Jeremy R; Sangsrakru, Duangjai; Jomchai, Nukoon; Ruang-Areerate, Panthita; Sonthirod, Chutima; Naktang, Chaiwat; Theerawattanasuk, Kanikar; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2015-01-01

    Hevea brasiliensis, or rubber tree, is an important crop species that accounts for the majority of natural latex production. The rubber tree nuclear genome consists of 18 chromosomes and is roughly 2.15 Gb. The current rubber tree reference genome assembly consists of 1,150,326 scaffolds ranging from 200 to 531,465 bp and totalling 1.1 Gb. Only 143 scaffolds, totalling 7.6 Mb, have been placed into linkage groups. We have performed RNA-seq on 6 varieties of rubber tree to identify SNPs and InDels and used this information to perform target sequence enrichment and high throughput sequencing to genotype a set of SNPs in 149 rubber tree offspring from a cross between RRIM 600 and RRII 105 rubber tree varieties. We used this information to generate a linkage map allowing for the anchoring of 24,424 contigs from 3,009 scaffolds, totalling 115 Mb or 10.4% of the published sequence, into 18 linkage groups. Each linkage group contains between 319 and 1367 SNPs, or 60 to 194 non-redundant marker positions, and ranges from 156 to 336 cM in length. This linkage map includes 20,143 of the 69,300 predicted genes from rubber tree and will be useful for mapping studies and improving the reference genome assembly.

  5. Lessons from a Phenotyping Center Revealed by the Genome-Guided Mapping of Powdery Mildew Resistance Loci.

    Science.gov (United States)

    Cadle-Davidson, Lance; Gadoury, David; Fresnedo-Ramírez, Jonathan; Yang, Shanshan; Barba, Paola; Sun, Qi; Demmings, Elizabeth M; Seem, Robert; Schaub, Michelle; Nowogrodzki, Anna; Kasinathan, Hema; Ledbetter, Craig; Reisch, Bruce I

    2016-10-01

    The genomics era brought unprecedented opportunities for genetic analysis of host resistance, but it came with the challenge that accurate and reproducible phenotypes are needed so that genomic results appropriately reflect biology. Phenotyping host resistance by natural infection in the field can produce variable results due to the uncontrolled environment, uneven distribution and genetics of the pathogen, and developmentally regulated resistance among other factors. To address these challenges, we developed highly controlled, standardized methodologies for phenotyping powdery mildew resistance in the context of a phenotyping center, receiving samples of up to 140 grapevine progeny per F1 family. We applied these methodologies to F1 families segregating for REN1- or REN2-mediated resistance and validated that some but not all bioassays identified the REN1 or REN2 locus. A point-intercept method (hyphal transects) to quantify colony density objectively at 8 or 9 days postinoculation proved to be the phenotypic response most reproducibly predicted by these resistance loci. Quantitative trait locus (QTL) mapping with genotyping-by-sequencing maps defined the REN1 and REN2 loci at relatively high resolution. In the reference PN40024 genome under each QTL, nucleotide-binding site-leucine-rich repeat candidate resistance genes were identified-one gene for REN1 and two genes for REN2. The methods described here for centralized resistance phenotyping and high-resolution genetic mapping can inform strategies for breeding resistance to powdery mildews and other pathogens on diverse, highly heterozygous hosts.

  6. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    Science.gov (United States)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  7. Evaluation of genome-wide power of genetic association studies based on empirical data from the HapMap project.

    Science.gov (United States)

    Nannya, Yasuhito; Taura, Kenjiro; Kurokawa, Mineo; Chiba, Shigeru; Ogawa, Seishi

    2007-10-15

    With recent advances in high-throughput single nucleotide polymorphism (SNP) typing technologies, genome-wide association studies have become a realistic approach to identify the causative genes that are responsible for common diseases of complex genetic traits. In this strategy, a trade-off between the increased genome coverage and a chance of finding SNPs incidentally showing a large statistics becomes serious due to extreme multiple-hypothesis testing. We investigated the extent to which this trade-off limits the genome-wide power with this approach by simulating a large number of case-control panels based on the empirical data from the HapMap Project. In our simulations, statistical costs of multiple hypothesis testing were evaluated by empirically calculating distributions of the maximum value of the chi(2) statistics for a series of marker sets having increasing numbers of SNPs, which were used to determine a genome-wide threshold in the following power simulations. With a practical study size, the cost of multiple testing largely offsets the potential benefits from increased genome coverage given modest genetic effects and/or low frequencies of causal alleles. In most realistic scenarios, increasing genome coverage becomes less influential on the power, while sample size is the predominant determinant of the feasibility of genome-wide association tests. Increasing genome coverage without corresponding increase in sample size will only consume resources without little gain in power. For common causal alleles with relatively large effect sizes [genotype relative risk > or =1.7], we can expect satisfactory power with currently available large-scale genotyping platforms using realistic sample size ( approximately 1000 per arm).

  8. Final Report: Transport and its regulation in Marine Microorganisms: A Genomic Based Approach

    Energy Technology Data Exchange (ETDEWEB)

    Brian Palenik; Bianca Brahamsha; Ian Paulsen

    2009-09-03

    This grant funded the analysis and annotation of the genomes of Synechococcus and Ostreococcus, major marine primary producers. Particular attention was paid to the analysis of transporters using state of the art bioinformatics analyses. During the analysis of the Synechococcus genome, some of the components of the unique bacterial swimming apparatus of one species of Synechococcus (Clade III, strain WH8102) were determined and these included transporters, novel giant proteins and glycosyltransferases. This grant funded the analysis of gene expression in Synechococcus using whole genome microarrays. These analyses revealed the strategies by which marine cyanobacteria respond to environmental conditions such as the absence of phosphorus, a common limiting nutrient, and the interaction of Synechococcus with other microbes. These analyses will help develop models of gene regulation in cyanobacteria and thus help predict their responses to changes in environmental conditions.

  9. Genome wide nucleosome mapping for HSV-1 shows nucleosomes are deposited at preferred positions during lytic infection.

    Science.gov (United States)

    Oh, Jaewook; Sanders, Iryna F; Chen, Eric Z; Li, Hongzhe; Tobias, John W; Isett, R Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A; Fraser, Nigel W

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200 bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6 hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152 kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes.

  10. A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the Turkey and Chicken genomes

    NARCIS (Netherlands)

    Aslam, M.L.; Bastiaansen, J.W.M.; Crooijmans, R.P.M.A.; Vereijken, A.; Groenen, M.A.M.; Megens, H.J.W.C.

    2010-01-01

    Background The turkey (Meleagris gallopavo) is an important agricultural species that is the second largest contributor to the world's poultry meat production. The genomic resources of turkey provide turkey breeders with tools needed for the genetic improvement of commercial breeds of turkey for eco

  11. Deciphering Genomic Regions for High Grain Iron and Zinc Content Using Association Mapping in Pearl Millet

    Science.gov (United States)

    Anuradha, N.; Satyavathi, C. Tara; Bharadwaj, C.; Nepolean, T.; Sankar, S. Mukesh; Singh, Sumer P.; Meena, Mahesh C.; Singhal, Tripti; Srivastava, Rakesh K.

    2017-01-01

    Micronutrient malnutrition, especially deficiency of two mineral elements, iron [Fe] and zinc [Zn] in the developing world needs urgent attention. Pearl millet is one of the best crops with many nutritional properties and is accessible to the poor. We report findings of the first attempt to mine favorable alleles for grain iron and zinc content through association mapping in pearl millet. An association mapping panel of 130 diverse lines was evaluated at Delhi, Jodhpur and Dharwad, representing all the three pearl millet growing agro-climatic zones of India, during 2014 and 2015. Wide range of variation was observed for grain iron (32.3–111.9 ppm) and zinc (26.6–73.7 ppm) content. Genotyping with 114 representative polymorphic SSRs revealed 0.35 mean gene diversity. STRUCTURE analysis revealed presence of three sub-populations which was further supported by Neighbor-Joining method of clustering and principal coordinate analysis (PCoA). Marker-trait associations (MTAs) were analyzed with 267 markers (250 SSRs and 17 genic markers) in both general linear model (GLM) and mixed linear model (MLM), however, MTAs resulting from MLM were considered for more robustness of the associations. After appropriate Bonferroni correction, Xpsmp 2261 (13.34% R2-value), Xipes 0180 (R2-value of 11.40%) and Xipes 0096 (R2-value of 11.38%) were consistently associated with grain iron and zinc content for all the three locations. Favorable alleles and promising lines were identified for across and specific environments. PPMI 1102 had highest number (7) of favorable alleles, followed by four each for PPMFeZMP 199 and PPMI 708 for across the environment performance for both grain Fe and Zn content, while PPMI 1104 had alleles specific to Dharwad for grain Fe and Zn content. When compared with the reference genome Tift 23D2B1-P1-P5, Xpsmp 2261 amplicon was identified in intergenic region on pseudomolecule 5, while the other marker, Xipes 0810 was observed to be overlapping with aspartic

  12. Reconstructing Genome-Wide Protein–Protein Interaction Networks Using Multiple Strategies with Homologous Mapping

    Science.gov (United States)

    Lo, Yu-Shu; Huang, Sing-Han; Luo, Yong-Chun; Lin, Chun-Yu; Yang, Jinn-Moon

    2015-01-01

    Background One of the crucial steps toward understanding the biological functions of a cellular system is to investigate protein–protein interaction (PPI) networks. As an increasing number of reliable PPIs become available, there is a growing need for discovering PPIs to reconstruct PPI networks of interesting organisms. Some interolog-based methods and homologous PPI families have been proposed for predicting PPIs from the known PPIs of source organisms. Results Here, we propose a multiple-strategy scoring method to identify reliable PPIs for reconstructing the mouse PPI network from two well-known organisms: human and fly. We firstly identified the PPI candidates of target organisms based on homologous PPIs, sharing significant sequence similarities (joint E-value ≤ 1 × 10−40), from source organisms using generalized interolog mapping. These PPI candidates were evaluated by our multiple-strategy scoring method, combining sequence similarities, normalized ranks, and conservation scores across multiple organisms. According to 106,825 PPI candidates in yeast derived from human and fly, our scoring method can achieve high prediction accuracy and outperform generalized interolog mapping. Experiment results show that our multiple-strategy score can avoid the influence of the protein family size and length to significantly improve PPI prediction accuracy and reflect the biological functions. In addition, the top-ranked and conserved PPIs are often orthologous/essential interactions and share the functional similarity. Based on these reliable predicted PPIs, we reconstructed a comprehensive mouse PPI network, which is a scale-free network and can reflect the biological functions and high connectivity of 292 KEGG modules, including 216 pathways and 76 structural complexes. Conclusions Experimental results show that our scoring method can improve the predicting accuracy based on the normalized rank and evolutionary conservation from multiple organisms. Our predicted

  13. Virulence potential and genomic mapping of the worldwide clone Escherichia coli ST131.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Lavigne

    Full Text Available Recently, the worldwide propagation of clonal CTX-M-15-producing Escherichia coli isolates, namely ST131 and O25b:H4, has been reported. Like the majority of extra-intestinal pathogenic E. coli isolates, the pandemic clone ST131 belongs to phylogenetic group B2, and has recently been shown to be highly virulent in a mouse model, even though it lacks several genes encoding key virulence factors (Pap, Cnf1 and HlyA. Using two animal models, Caenorhabditis elegans and zebrafish embryos, we assessed the virulence of three E. coli ST131 strains (2 CTX-M-15- producing urine and 1 non-ESBL-producing faecal isolate, comparing them with five non-ST131 B2 and a group A uropathogenic E. coli (UPEC. In C. elegans, the three ST131 strains showed intermediate virulence between the non virulent group A isolate and the virulent non-ST131 B2 strains. In zebrafish, the CTX-M-15-producing ST131 UPEC isolates were also less virulent than the non-ST131 B2 strains, suggesting that the production of CTX-M-15 is not correlated with enhanced virulence. Amongst the non-ST131 B2 group isolates, variation in pathogenic potential in zebrafish embryos was observed ranging from intermediate to highly virulent. Interestingly, the ST131 strains were equally persistent in surviving embryos as the non-ST131-group B2 strains, suggesting similar mechanisms may account for development of persistent infection. Optical maps of the genome of the ST131 strains were compared with those of 24 reference E. coli strains. Although small differences were seen within the ST131 strains, the tree built on the optical maps showed that these strains belonged to a specific cluster (86% similarity with only 45% similarity with the other group B2 strains and 25% with strains of group A and D. Thus, the ST131 clone has a genetic composition that differs from other group B2 strains, and appears to be less virulent than previously suspected.

  14. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Christine D Zanke

    Full Text Available The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs were observed for plant height and the SSR markers (-log10 (P-value ≥ 4.82 and 280 (-log10 (P-value ≥ 5.89 for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, ent-kaurenoic acid oxidase orthologous to wheat chromosome 7A, ent-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes Rht-B1 and Rht-D1 there is a wide spectrum of loci available that could be used for modulating plant height in variety development.

  15. NotI linking clones as a tool for joining physical and genetic maps of the human genome.

    Science.gov (United States)

    Allikmets, R L; Kashuba, V I; Pettersson, B; Gizatullin, R; Lebedeva, T; Kholodnyuk, I D; Bannikov, V M; Petrov, N; Zakharyev, V M; Winberg, G

    1994-01-15

    To study the connection among NotI linking clones, CpG islands, and genes, the sequence surrounding 143 NotI sites was determined. These NotI linking clones were isolated from human chromosome 3-specific libraries and contain an average C + G content of 65%. These clones represent sequence-tagged sites that can be positioned onto chromosome maps and used for generating a long-range NotI map of the human genome. A majority (about 90%) of these clones contain transcribed sequences, as detected by Northern blot hybridization, providing an efficient link between physical and functional (genetic) maps. The GenBank nucleotide database was searched with sequences from these NotI linking clones. For many clones, homology was found to human and other vertebrate genes. About 20 clones contained various repeats in their sequences and may represent microsatellite loci. Most of these NotI linking clones therefore represent evolutionarily conserved DNA fragments and also can be used for comparative genome mapping of other mammalian species. In addition, approximately 20% of all sequenced human CpG island-containing genes and more than 12% of all well-characterized human genes were found to possess NotI restriction sites. This is at least 2-5 times more than has been previously estimated and suggests that NotI sites have a much stronger association with genes.

  16. NotL linking clones as a tool for joining physical and genetic maps of the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Allikmets, R.L.; Dean, M.; Modi, W. (DynCorp National Cancer Institute, Frederick, MD (United States)); Kholodnyuk, I.D.; Winberg, G.; Klein, G. (Karolinska Institutet, Stockholm (Sweden)); Pettersson, B.; Uhlen, M. (Royal Institute of Technology, Stockholm (Sweden)); Gizatullin, R.; Bannikov, V.M. (and others)

    1994-01-15

    To study the connection among NotI linking clones, CpG islands, and genes, the sequence surrounding 143 NotI sites was determined. These NotI linking clones were isolated from human chromosome 3-specific libraries and contain an average C + G content of 65%. These clones represent sequence-tagged sites that can be positioned onto chromosome maps and used for generating a long-range NotI map of the human genome. A majority (about 90%) of these clones contain transcribed sequences, as detected by Northern blot hybridization, providing an efficient link between physical and functional (genetic) maps. The GenBank nucleotide database was searched with sequences from these NotI linking clones. For many clones, homology was found to human and other vertebrate genes. About 20 clones contained various repeats in their sequences and may represent microsatellite loci. Most of these NotI linking clones therefore represent evolutionarily conserved DNA fragments and also can be used for comparative genome mapping of other mammalian species. In addition, approximately 20% of all sequenced human CpG island-containing genes and more than 12% of all well-characterized human genes were found to possess NotI restriction sites. This is at least 2-5 times more than has been previously estimated and suggests that NotI sites have a much stronger association with genes. 41 refs., 3 figs., 2 tabs.

  17. Facile mutant identification via a single parental backcross method and application of whole genome sequencing based mapping pipelines

    Directory of Open Access Journals (Sweden)

    Robert Silas Allen

    2013-09-01

    Full Text Available Forward genetic screens have identified numerous genes involved in development and metabolism, and remain a cornerstone of biological research. However to locate a causal mutation, the practice of crossing to a polymorphic background to generate a mapping population can be problematic if the mutant phenotype is difficult to recognise in the hybrid F2 progeny, or dependent on parental specific traits. Here in a screen for leaf hyponasty mutants, we have performed a single backcross of an Ethane Methyl Sulphonate (EMS generated hyponastic mutant to its parent. Whole genome deep sequencing of a bulked homozygous F2 population and analysis via the Next Generation EMS mutation mapping pipeline (NGM unambiguously determined the causal mutation to be a single nucleotide polymorphisim (SNP residing in HASTY, a previously characterised gene involved in microRNA biogenesis. We have evaluated the feasibility of this backcross approach using three additional SNP mapping pipelines; SHOREmap, the GATK pipeline, and the samtools pipeline. Although there was variance in the identification of EMS SNPs, all returned the same outcome in clearly identifying the causal mutation in HASTY. The simplicity of performing a single parental backcross and genome sequencing a small pool of segregating mutants has great promise for identifying mutations that may be difficult to map using conventional approaches.

  18. Nested chromosomal fragmentation in yeast using the meganuclease I-Sce I: a new method for physical mapping of eukaryotic genomes.

    Science.gov (United States)

    Thierry, A; Dujon, B

    1992-11-11

    We have developed a new method for the physical mapping of genomes and the rapid sorting of genomic libraries which is based on chromosome fragmentation by the meganuclease I-Sce I, the first available member of a new class of endonucleases with very long recognition sequences. I-Sce I allows complete cleavage at a single artificially inserted site in an entire genome. Sites can be inserted by homologous recombination using specific cassettes containing selectable markers or, at random, using transposons. This method has been applied to the physical mapping of chromosome XI (620 kb) of Saccharomyces cerevisi and to the sorting of a cosmid library. Our strategy has potential applications to various genome mapping projects. A set of transgenic yeast strains carrying the I-Sce I sites at various locations along a chromosome defines physical intervals against which new genes, DNA fragments or clones can be mapped directly by simple hybridizations.

  19. A microsatellite linkage map for the cultivated strawberry (Fragaria × ananassa) suggests extensive regions of homozygosity in the genome that may have resulted from breeding and selection.

    Science.gov (United States)

    Sargent, D J; Passey, T; Surbanovski, N; Lopez Girona, E; Kuchta, P; Davik, J; Harrison, R; Passey, A; Whitehouse, A B; Simpson, D W

    2012-05-01

    The linkage maps of the cultivated strawberry, Fragaria × ananassa (2n = 8x = 56) that have been reported to date have been developed predominantly from AFLPs, along with supplementation with transferrable microsatellite (SSR) markers. For the investigation of the inheritance of morphological characters in the cultivated strawberry and for the development of tools for marker-assisted breeding and selection, it is desirable to populate maps of the genome with an abundance of transferrable molecular markers such as microsatellites (SSRs) and gene-specific markers. Exploiting the recent release of the genome sequence of the diploid F. vesca, and the publication of an extensive number of polymorphic SSR markers for the genus Fragaria, we have extended the linkage map of the 'Redgauntlet' × 'Hapil' (RG × H) mapping population to include a further 330 loci, generated from 160 primer pairs, to create a linkage map for F. × ananassa containing 549 loci, 490 of which are transferrable SSR or gene-specific markers. The map covers 2140.3 cM in the expected 28 linkage groups for an integrated map (where one group is composed of two separate male and female maps), which represents an estimated 91% of the cultivated strawberry genome. Despite the relative saturation of the linkage map on the majority of linkage groups, regions of apparent extensive homozygosity were identified in the genomes of 'Redgauntlet' and 'Hapil' which may be indicative of allele fixation during the breeding and selection of modern F. × ananassa cultivars. The genomes of the octoploid and diploid Fragaria are largely collinear, but through comparison of mapped markers on the RG × H linkage map to their positions on the genome sequence of F. vesca, a number of inversions were identified that may have occurred before the polyploidisation event that led to the evolution of the modern octoploid strawberry species.

  20. A second generation genetic map of the bumblebee Bombus terrestris (Linnaeus, 1758 reveals slow genome and chromosome evolution in the Apidae

    Directory of Open Access Journals (Sweden)

    Kube Michael

    2011-01-01

    Full Text Available Abstract Background The bumblebee Bombus terrestris is an ecologically and economically important pollinator and has become an important biological model system. To study fundamental evolutionary questions at the genomic level, a high resolution genetic linkage map is an essential tool for analyses ranging from quantitative trait loci (QTL mapping to genome assembly and comparative genomics. We here present a saturated linkage map and match it with the Apis mellifera genome using homologous markers. This genome-wide comparison allows insights into structural conservations and rearrangements and thus the evolution on a chromosomal level. Results The high density linkage map covers ~ 93% of the B. terrestris genome on 18 linkage groups (LGs and has a length of 2'047 cM with an average marker distance of 4.02 cM. Based on a genome size of ~ 430 Mb, the recombination rate estimate is 4.76 cM/Mb. Sequence homologies of 242 homologous markers allowed to match 15 B. terrestris with A. mellifera LGs, five of them as composites. Comparing marker orders between both genomes we detect over 14% of the genome to be organized in synteny and 21% in rearranged blocks on the same homologous LG. Conclusions This study demonstrates that, despite the very high recombination rates of both A. mellifera and B. terrestris and a long divergence time of about 100 million years, the genomes' genetic architecture is highly conserved. This reflects a slow genome evolution in these bees. We show that data on genome organization and conserved molecular markers can be used as a powerful tool for comparative genomics and evolutionary studies, opening up new avenues of research in the Apidae.

  1. Human genome libraries. Final progress report, February 1, 1994--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Fa-Ten

    1998-01-01

    The goal of this program is to use a novel technology of chromosome microdissection and microcloning to construct chromosome region-specific libraries as resources for various human genome program studies. Region specific libraries have been constructed for the entire human chromosomes 2 and 18.

  2. Comparing genetic variants detected in the 1000 genomes project with SNPs determined by the International HapMap Consortium

    Indian Academy of Sciences (India)

    Wenqian Zhang; Hui Wen Ng; Mao Shu; Heng Luo; Zhenqiang Su; Weigong Ge; Roger Perkins; Weida Tong; Huixiao Hong

    2015-12-01

    Single-nucleotide polymorphisms (SNPs) determined based on SNP arrays from the international HapMap consortium (HapMap) and the genetic variants detected in the 1000 genomes project (1KGP) can serve as two references for genomewide association studies (GWAS). We conducted comparative analyses to provide a means for assessing concerns regarding SNP array-based GWAS findings as well as for realistically bounding expectations for next generation sequencing (NGS)-based GWAS. We calculated and compared base composition, transitions to transversions ratio, minor allele frequency and heterozygous rate for SNPs from HapMap and 1KGP for the 622 common individuals. We analysed the genotype discordance between HapMap and 1KGP to assess consistency in the SNPs from the two references. In 1KGP, 90.58% of 36,817,799 SNPs detected were not measured in HapMap. More SNPs with minor allele frequencies less than 0.01 were found in 1KGP than HapMap. The two references have low discordance (generally smaller than 0.02) in genotypes of common SNPs, with most discordance from heterozygous SNPs. Our study demonstrated that SNP array-based GWAS findings were reliable and useful, although only a small portion of genetic variances were explained. NGS can detect not only common but also rare variants, supporting the expectation that NGS-based GWAS will be able to incorporate a much larger portion of genetic variance than SNP arrays-based GWAS.

  3. Comparing genetic variants detected in the 1000 genomes project with SNPs determined by the International HapMap Consortium.

    Science.gov (United States)

    Zhang, Wenqian; Ng, Hui Wen; Shu, Mao; Luo, Heng; Su, ZhenQiang; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2015-12-01

    Single-nucleotide polymorphisms (SNPs) determined based on SNP arrays from the international HapMap consortium (HapMap) and the genetic variants detected in the 1000 genomes project (1KGP) can serve as two references for genomewide association studies (GWAS). We conducted comparative analyses to provide a means for assessing concerns regarding SNP array-based GWAS findings as well as for realistically bounding expectations for next generation sequencing (NGS)-based GWAS. We calculated and compared base composition, transitions to transversions ratio, minor allele frequency and heterozygous rate for SNPs from HapMap and 1KGP for the 622 common individuals. We analysed the genotype discordance between HapMap and 1KGP to assess consistency in the SNPs from the two references. In 1KGP, 90.58% of 36,817,799 SNPs detected were not measured in HapMap. More SNPs with minor allele frequencies less than 0.01 were found in 1KGP than HapMap. The two references have low disc ordance (generally smaller than 0.02) in genotypes of common SNPs, with most discordance from heterozygous SNPs. Our study demonstrated that SNP array-based GWAS findings were reliable and useful, although only a small portion of genetic variances were explained. NGS can detect not only common but also rare variants, supporting the expectation that NGS-based GWAS will be able to incorporate a much larger portion of genetic variance than SNP arrays-based GWAS.

  4. A Bac Library and Paired-PCR Approach to Mapping and Completing the Genome Sequence of Sulfolobus Solfataricus P2

    DEFF Research Database (Denmark)

    She, Qunxin; Confalonieri, F.; Zivanovic, Y.;

    2000-01-01

    -productive because there was a high sequence bias in the cosmid and lambda libraries. Therefore, a new approach was devised for linking the sequenced regions which may be generally applicable. BAC libraries were constructed and terminal sequences of the clones were determined and used for both end mapping and PCR...... screening. The PCR approaches included a novel chromosome walking method termed “paired-PCR”. 21 gaps were filled by BAC end sequence analyses and 6 gaps were filled by PCR including three large ones by paired-PCR. The complete map revealed that 0.9 Mb remained to be sequenced and 34 BAC clones were...... selected for walking over small gaps and preparing template libraries for larger ones. It is concluded that an optimal strategy for sequencing microorganism genomes involves construction of a high-resolution physical map by BAC end analyses, PCR screening and paired-PCR chromosome walking after about half...

  5. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions.

    Science.gov (United States)

    Turner, Leslie M; Harr, Bettina

    2014-12-09

    Mapping hybrid defects in contact zones between incipient species can identify genomic regions contributing to reproductive isolation and reveal genetic mechanisms of speciation. The house mouse features a rare combination of sophisticated genetic tools and natural hybrid zones between subspecies. Male hybrids often show reduced fertility, a common reproductive barrier between incipient species. Laboratory crosses have identified sterility loci, but each encompasses hundreds of genes. We map genetic determinants of testis weight and testis gene expression using offspring of mice captured in a hybrid zone between M. musculus musculus and M. m. domesticus. Many generations of admixture enables high-resolution mapping of loci contributing to these sterility-related phenotypes. We identify complex interactions among sterility loci, suggesting multiple, non-independent genetic incompatibilities contribute to barriers to gene flow in the hybrid zone.

  6. Construction of a genome-wide human BAC-Unigene resource. Final progress report, 1989--1996

    Energy Technology Data Exchange (ETDEWEB)

    Lim, C.S.; Xu, R.X.; Wang, M. [and others

    1996-12-31

    Currently, over 30,000 mapped STSs and 27,000 mapped Unigenes (non-redundant, unigene sets of cDNA representing EST clusters) are available for human alone. A total of 44,000 Unigene cDNA clones have been supplied by Research Genetics. Unigenes, or cDNAs are excellent resource for map building for two reasons. Firstly, they exist in two alternative forms -- as both sequence information for PCR primer pairs, and cDNA clones -- thus making library screening by colony hybridization as well as pooled library PCR possible. The authors have developed an efficient and robust procedure to screen genomic libraries with large number of DNA probes. Secondly, the linkage and order of expressed sequences, or genes are highly conserved among human, mouse and other mammalian species. Therefore, mapping with cDNA markers rather than random anonymous STSs will greatly facilitate comparative, evolutionary studies as well as physical map building. They have currently deconvoluted over 10,000 Unigene probes against a 4X coverage human BAC clones from the approved library D by high density colony hybridization method. 10,000 batches of Unigenes are arrayed in an imaginary 100 X 100 matrix from which 100 row pools and 100 column pools are obtained. Library filters are hybridized with pooled probes, thus reducing the number of hybridization required for addressing the positives for each Unigene from 10,000 to 200. Details on the experimental scheme as well as daily progress report is posted on the Web site (http://www.tree.caltech.edu).

  7. Comparative effectiveness of sugar beet microsatellite markers isolated from genomic libraries and GenBank ESTs to map the sugar beet genome.

    Science.gov (United States)

    Laurent, V; Devaux, P; Thiel, T; Viard, F; Mielordt, S; Touzet, P; Quillet, M C

    2007-10-01

    Sugar beet (Beta vulgaris) is an important root crop for sucrose production. A study was conducted to find a new abundant source of microsatellite (SSR) markers in order to develop marker assistance for breeding. Different sources of existing microsatellites were used and new ones were developed to compare their efficiency to reveal diversity in mapping population and mapping coverage. Forty-one microsatellite markers were isolated from a B. vulgaris ssp maritima genomic library and 201 SSRs were extracted from a B. vulgaris ssp vulgaris library. Data mining was applied on GenBank B. vulgaris expressed sequence tags (ESTs), 803 EST-SSRs were identified over 19,709 ESTs. Characteristics, polymorphism and cross-species transferability of these microsatellites were compared. Based on these markers, a high density genetic map was constructed using 92 F(2) individuals from a cross between a sugar and a table beet. The map contains 284 markers, spans over 555 cM and covers the nine chromosomes of the species with an average markers density of one marker every 2.2 cM. A set of markers for assignation to the nine chromosomes of sugar beet is provided.

  8. Integration of the Draft Sequence and Physical Map as a Framework for Genomic Research in Soybean (Glycine max (L.) Merr.) and Wild Soybean (Glycine soja Sieb. and Zucc.).

    Science.gov (United States)

    Ha, Jungmin; Abernathy, Brian; Nelson, William; Grant, David; Wu, Xiaolei; Nguyen, Henry T; Stacey, Gary; Yu, Yeisoo; Wing, Rod A; Shoemaker, Randy C; Jackson, Scott A

    2012-03-01

    Soybean is a model for the legume research community because of its importance as a crop, densely populated genetic maps, and the availability of a genome sequence. Even though a whole-genome shotgun sequence and bacterial artificial chromosome (BAC) libraries are available, a high-resolution, chromosome-based physical map linked to the sequence assemblies is still needed for whole-genome alignments and to facilitate map-based gene cloning. Three independent G. max BAC libraries combined with genetic and gene-based markers were used to construct a minimum tiling path (MTP) of BAC clones. A total of 107,214 clones were assembled into 1355 FPC (FingerPrinted Contigs) contigs, incorporating 4628 markers and aligned to the G. max reference genome sequence using BAC end-sequence information. Four different MTPs were made for G. max that covered from 92.6% to 95.0% of the soybean draft genome sequence (gmax1.01). Because our purpose was to pick the most reliable and complete MTP, and not the MTP with the minimal number of clones, the FPC map and draft sequence were integrated and clones with unpaired BES were added to build a high-quality physical map with the fewest gaps possible (http://soybase.org). A physical map was also constructed for the undomesticated ancestor (G. soja) of soybean to explore genome variation between G. max and G. soja. 66,028 G. soja clones were assembled into 1053 FPC contigs covering approximately 547 Mbp of the G. max genome sequence. These physical maps for G. max and its undomesticated ancestor, G. soja, will serve as a framework for ordering sequence fragments, comparative genomics, cloning genes, and evolutionary analyses of legume genomes.

  9. A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome.

    Directory of Open Access Journals (Sweden)

    Patrícia Beldade

    2009-02-01

    Full Text Available Lepidopterans (butterflies and moths are a rich and diverse order of insects, which, despite their economic impact and unusual biological properties, are relatively underrepresented in terms of genomic resources. The genome of the silkworm Bombyx mori has been fully sequenced, but comparative lepidopteran genomics has been hampered by the scarcity of information for other species. This is especially striking for butterflies, even though they have diverse and derived phenotypes (such as color vision and wing color patterns and are considered prime models for the evolutionary and developmental analysis of ecologically relevant, complex traits. We focus on Bicyclus anynana butterflies, a laboratory system for studying the diversification of novelties and serially repeated traits. With a panel of 12 small families and a biphasic mapping approach, we first assigned 508 expressed genes to segregation groups and then ordered 297 of them within individual linkage groups. We also coarsely mapped seven color pattern loci. This is the richest gene-based map available for any butterfly species and allowed for a broad-coverage analysis of synteny with the lepidopteran reference genome. Based on 462 pairs of mapped orthologous markers in Bi. anynana and Bo. mori, we observed strong conservation of gene assignment to chromosomes, but also evidence for numerous large- and small-scale chromosomal rearrangements. With gene collections growing for a variety of target organisms, the ability to place those genes in their proper genomic context is paramount. Methods to map expressed genes and to compare maps with relevant model systems are crucial to extend genomic-level analysis outside classical model species. Maps with gene-based markers are useful for comparative genomics and to resolve mapped genomic regions to a tractable number of candidate genes, especially if there is synteny with related model species. This is discussed in relation to the identification of

  10. 棉花遗传锚定的基因组物理图谱%Toward a Genetically-anchored Physical Map of the Cotton Genomes

    Institute of Scientific and Technical Information of China (English)

    Andrew H. PATERSON; James C. ESTILL; Jun-kang RONG; Dawn T. WILLIAMS-COPLIN; Barry S. MARLER

    2002-01-01

    @@ We are using a high-density (1-cM) molecular map of the cotton genome based on RFLP, SSR,and EST markers as a foundation for development of a robust BAC based physical map. The 'overgo' approach is providing an efficient means by which to accomplish hybridization-based anchoring of geneticallymapped cotton sequences, and also heterologous sequences from other genomes that are useful for comparative biology.

  11. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.

    Science.gov (United States)

    McKenna, Aaron; Hanna, Matthew; Banks, Eric; Sivachenko, Andrey; Cibulskis, Kristian; Kernytsky, Andrew; Garimella, Kiran; Altshuler, David; Gabriel, Stacey; Daly, Mark; DePristo, Mark A

    2010-09-01

    Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS--the 1000 Genome pilot alone includes nearly five terabases--make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

  12. Electron microscopic comparison of the sequences of single-stranded genomes of mammalian parvoviruses by heteroduplex mapping

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, P.T.; Olson, W.H.; Allison, D.P.; Bates, R.C.; Snyder, C.E.; Mitra, S.

    1983-01-01

    The sequence homologies among the linear single-stranded genomes of several mammalian parvoviruses have been studied by electron microscopic analysis of tthe heteroduplexes produced by reannealing the complementary strands of their DNAs. The genomes of Kilham rat virus, H-1, minute virus of ice and LuIII, which are antigenically distinct non-defective parvoviruses, have considerable homology: about 70% of their sequences are conserved. The homologous regions map at similar locations in the left halves (from the 3' ends) of the genomes. No sequence homology, however, is observed between the DNAs of these nondefective parvoviruses and that of bovine parvovirus, another non-defective virus, or that of defective adenoassociated virus, nor between the genomes of bovine parvovirus and adenoassociated virus. This suggests that only very short, if any, homologous regions are present. From these results, an evolutionary relationship among Kilham rat virus, H-1, minute virus of mice and LuIII is predicted. It is interesting to note that, although LuIII was originally isolated from a human cell line and is specific for human cells in vitro, its genome has sequences in common only with the rodent viruses Kilham rat virus, minute virus of mice and H-1, and not with the other two mammalian parvoviruses tested.

  13. [Multiplexing mapping of human cDNAs]. Final report, September 1, 1991--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    Using PCR with automated product analysis, 329 human brain cDNA sequences have been assigned to individual human chromosomes. Primers were designed from single-pass cDNA sequences expressed sequence tags (ESTs). Primers were used in PCR reactions with DNA from somatic cell hybrid mapping panels as templates, often with multiplexing. Many ESTs mapped match sequence database records. To evaluate of these matches, the position of the primers relative to the matching region (In), the BLAST scores and the Poisson probability values of the EST/sequence record match were determined. In cases where the gene product was stringently identified by the sequence match had already been mapped, the gene locus determined by EST was consistent with the previous position which strongly supports the validity of assigning unknown genes to human chromosomes based on the EST sequence matches. In the present cases mapping the ESTs to a chromosome can also be considered to have mapped the known gene product: rolipram-sensitive cAMP phosphodiesterase, chromosome 1; protein phosphatase 2A{beta}, chromosome 4; alpha-catenin, chromosome 5; the ELE1 oncogene, chromosome 10q11.2 or q2.1-q23; MXII protein, chromosome l0q24-qter; ribosomal protein L18a homologue, chromosome 14; ribosomal protein L3, chromosome 17; and moesin, Xp11-cen. There were also ESTs mapped that were closely related to non-human sequence records. These matches therefore can be considered to identify human counterparts of known gene products, or members of known gene families. Examples of these include membrane proteins, translation-associated proteins, structural proteins, and enzymes. These data then demonstrate that single pass sequence information is sufficient to design PCR primers useful for assigning cDNA sequences to human chromosomes. When the EST sequence matches previous sequence database records, the chromosome assignments of the EST can be used to make preliminary assignments of the human gene to a chromosome.

  14. High-density interspecific genetic linkage mapping provides insights into genomic incompatibility between channel catfish and blue catfish.

    Science.gov (United States)

    Liu, S; Li, Y; Qin, Z; Geng, X; Bao, L; Kaltenboeck, L; Kucuktas, H; Dunham, R; Liu, Z

    2016-02-01

    Catfish is the leading aquaculture species in the United States. The interspecific hybrid catfish produced by mating female channel catfish with male blue catfish outperform both of their parent species in a number of traits. However, mass production of the hybrids has been difficult because of reproductive isolation. Investigations of genome structure and organization of the hybrids provide insights into the genetic basis for maintenance of species divergence in the face of gene flow, thereby helping develop strategies for introgression and efficient production of the hybrids for aquaculture. In this study, we constructed a high-density genetic linkage map using the hybrid catfish system with the catfish 250K SNP array. A total of 26,238 SNPs were mapped to 29 linkage groups, with 12,776 unique marker positions. The linkage map spans approximately 3240 cM with an average intermarker distance of 0.25 cM. A fraction of markers (986 of 12,776) exhibited significant deviation from the expected Mendelian ratio of segregation, and they were clustered in major genomic blocks across 15 LGs, most notably LG9 and LG15. The distorted markers exhibited significant bias for maternal alleles among the backcross progenies, suggesting strong selection against the blue catfish alleles. The clustering of distorted markers within genomic blocks should lend insights into speciation as marked by incompatibilities between the two species. Such findings should also have profound implications for understanding the genomic evolution of closely related species as well as the introgression of hybrid production programs in aquaculture.

  15. A unified SNP map of sunflower (Helianthus annuus L.) derived from current genomic resources

    Science.gov (United States)

    Dense genetic maps are critical tools for plant breeders and geneticists. While many maps have been developed for sunflower in the last few decades, most have been based on low-throughput technologies and include markers numbers in the hundreds. However, two maps with reasonably dense coverage of a...

  16. Integration of the draft sequence and physical map as a framework for genomic research in soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. and Zucc.)

    Science.gov (United States)

    Soybean is a model for the legume research community due to its importance as a crop, a well populated genetic map, and the availability of a genome sequence. Even though a whole genome shotgun sequence and Bacterial Artificial Chromosome (BAC) libraries are available, a high-resolution chromosome-b...

  17. A DNA minor groove electronegative potential genome map based on photo-chemical probing

    DEFF Research Database (Denmark)

    Lindemose, Søren; Nielsen, Peter Eigil; Hansen, Morten

    2011-01-01

    The double-stranded DNA of the genome contains both sequence information directly relating to the protein and RNA coding as well as functional and structural information relating to protein recognition. Only recently is the importance of DNA shape in this recognition process being fully appreciated...... resolution of any genome, and it is illustrated how such detailed studies of this sequence dependent, inherent property of the DNA may reflect on genome organization, gene expression and chromosomal condensation....

  18. Mapping the future of CIC Division, Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report summarizes three scenario-based strategic planning workshops run for the CIC Division of the Los Alamos National Laboratory during November and December, 1995. Each of the two-day meetings was facilitated by Northeast Consulting Resources, Inc. (NCRI) of Boston, MA. using the Future Mapping{reg_sign} methodology.

  19. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nakhleh, Luay

    2014-03-12

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbial genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.

  20. Development of genomic resources for the prairie vole (Microtus ochrogaster: construction of a BAC library and vole-mouse comparative cytogenetic map

    Directory of Open Access Journals (Sweden)

    Young Larry J

    2010-01-01

    Full Text Available Abstract Background The prairie vole (Microtus ochrogaster is a premier animal model for understanding the genetic and neurological basis of social behaviors. Unlike other biomedical models, prairie voles display a rich repertoire of social behaviors including the formation of long-term pair bonds and biparental care. However, due to a lack of genomic resources for this species, studies have been limited to a handful of candidate genes. To provide a substrate for future development of genomic resources for this unique model organism, we report the construction and characterization of a bacterial artificial chromosome (BAC library from a single male prairie vole and a prairie vole-mouse (Mus musculus comparative cytogenetic map. Results We constructed a prairie vole BAC library (CHORI-232 consisting of 194,267 recombinant clones with an average insert size of 139 kb. Hybridization-based screening of the gridded library at 19 loci established that the library has an average depth of coverage of ~10×. To obtain a small-scale sampling of the prairie vole genome, we generated 3884 BAC end-sequences totaling ~2.8 Mb. One-third of these BAC-end sequences could be mapped to unique locations in the mouse genome, thereby anchoring 1003 prairie vole BAC clones to an orthologous position in the mouse genome. Fluorescence in situ hybridization (FISH mapping of 62 prairie vole clones with BAC-end sequences mapping to orthologous positions in the mouse genome was used to develop a first-generation genome-wide prairie vole-mouse comparative cytogenetic map. While conserved synteny was observed between this pair of rodent genomes, rearrangements between the prairie vole and mouse genomes were detected, including a minimum of five inversions and 16 inter-chromosomal rearrangements. Conclusions The construction of the prairie vole BAC library and the vole-mouse comparative cytogenetic map represent the first genome-wide modern genomic resources developed for this

  1. An Expressed Sequence Tag (EST-enriched genetic map of turbot (Scophthalmus maximus: a useful framework for comparative genomics across model and farmed teleosts

    Directory of Open Access Journals (Sweden)

    Bouza Carmen

    2012-07-01

    Full Text Available Abstract Background The turbot (Scophthalmus maximus is a relevant species in European aquaculture. The small turbot genome provides a source for genomics strategies to use in order to understand the genetic basis of productive traits, particularly those related to sex, growth and pathogen resistance. Genetic maps represent essential genomic screening tools allowing to localize quantitative trait loci (QTL and to identify candidate genes through comparative mapping. This information is the backbone to develop marker-assisted selection (MAS programs in aquaculture. Expressed sequenced tag (EST resources have largely increased in turbot, thus supplying numerous type I markers suitable for extending the previous linkage map, which was mostly based on anonymous loci. The aim of this study was to construct a higher-resolution turbot genetic map using EST-linked markers, which will turn out to be useful for comparative mapping studies. Results A consensus gene-enriched genetic map of the turbot was constructed using 463 SNP and microsatellite markers in nine reference families. This map contains 438 markers, 180 EST-linked, clustered at 24 linkage groups. Linkage and comparative genomics evidences suggested additional linkage group fusions toward the consolidation of turbot map according to karyotype information. The linkage map showed a total length of 1402.7 cM with low average intermarker distance (3.7 cM; ~2 Mb. A global 1.6:1 female-to-male recombination frequency (RF ratio was observed, although largely variable among linkage groups and chromosome regions. Comparative sequence analysis revealed large macrosyntenic patterns against model teleost genomes, significant hits decreasing from stickleback (54% to zebrafish (20%. Comparative mapping supported particular chromosome rearrangements within Acanthopterygii and aided to assign unallocated markers to specific turbot linkage groups. Conclusions The new gene-enriched high-resolution turbot

  2. Identifying genomic regions for fine-mapping using genome scan meta-analysis (GSMA to identify the minimum regions of maximum significance (MRMS across populations

    Directory of Open Access Journals (Sweden)

    Maher Brion S

    2005-12-01

    Full Text Available Abstract In order to detect linkage of the simulated complex disease Kofendrerd Personality Disorder across studies from multiple populations, we performed a genome scan meta-analysis (GSMA. Using the 7-cM microsatellite map, nonparametric multipoint linkage analyses were performed separately on each of the four simulated populations independently to determine p-values. The genome of each population was divided into 20-cM bin regions, and each bin was rank-ordered based on the most significant linkage p-value for that population in that region. The bin ranks were then averaged across all four studies to determine the most significant 20-cM regions over all studies. Statistical significance of the averaged bin ranks was determined from a normal distribution of randomly assigned rank averages. To narrow the region of interest for fine-mapping, the meta-analysis was repeated two additional times, with each of the 20-cM bins offset by 7 cM and 13 cM, respectively, creating regions of overlap with the original method. The 6–7 cM shared regions, where the highest averaged 20-cM bins from each of the three offsets overlap, designated the minimum region of maximum significance (MRMS. Application of the GSMA-MRMS method revealed genome wide significance (p-values refer to the average rank assigned to the bin at regions including or adjacent to all of the simulated disease loci: chromosome 1 (p p-value p-value p-value

  3. Identifying genomic regions for fine-mapping using genome scan meta-analysis (GSMA) to identify the minimum regions of maximum significance (MRMS) across populations.

    Science.gov (United States)

    Cooper, Margaret E; Goldstein, Toby H; Maher, Brion S; Marazita, Mary L

    2005-12-30

    In order to detect linkage of the simulated complex disease Kofendrerd Personality Disorder across studies from multiple populations, we performed a genome scan meta-analysis (GSMA). Using the 7-cM microsatellite map, nonparametric multipoint linkage analyses were performed separately on each of the four simulated populations independently to determine p-values. The genome of each population was divided into 20-cM bin regions, and each bin was rank-ordered based on the most significant linkage p-value for that population in that region. The bin ranks were then averaged across all four studies to determine the most significant 20-cM regions over all studies. Statistical significance of the averaged bin ranks was determined from a normal distribution of randomly assigned rank averages. To narrow the region of interest for fine-mapping, the meta-analysis was repeated two additional times, with each of the 20-cM bins offset by 7 cM and 13 cM, respectively, creating regions of overlap with the original method. The 6-7 cM shared regions, where the highest averaged 20-cM bins from each of the three offsets overlap, designated the minimum region of maximum significance (MRMS). Application of the GSMA-MRMS method revealed genome wide significance (p-values refer to the average rank assigned to the bin) at regions including or adjacent to all of the simulated disease loci: chromosome 1 (p value value value < 0.05 for 7-14 cM, the region adjacent to D4). This GSMA analysis approach demonstrates the power of linkage meta-analysis to detect multiple genes simultaneously for a complex disorder. The MRMS method enhances this powerful tool to focus on more localized regions of linkage.

  4. Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yi Yin

    2013-10-01

    Full Text Available In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs. Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH. In this study, LOH events induced by ultraviolet (UV light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP microarrays. UV doses that have little effect on the viability of diploid cells stimulate crossovers more than 1000-fold in wild-type cells. In addition, UV stimulates recombination in G1-synchronized cells about 10-fold more efficiently than in G2-synchronized cells. Importantly, at high doses of UV, most conversion events reflect the repair of two sister chromatids that are broken at approximately the same position whereas at low doses, most conversion events reflect the repair of a single broken chromatid. Genome-wide mapping of about 380 unselected crossovers, break-induced replication (BIR events, and gene conversions shows that UV-induced recombination events occur throughout the genome without pronounced hotspots, although the ribosomal RNA gene cluster has a significantly lower frequency of crossovers.

  5. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes

    Directory of Open Access Journals (Sweden)

    Feuillet Catherine

    2010-11-01

    Full Text Available Abstract Background Physical maps are the substrate of genome sequencing and map-based cloning and their construction relies on the accurate assembly of BAC clones into large contigs that are then anchored to genetic maps with molecular markers. High Information Content Fingerprinting has become the method of choice for large and repetitive genomes such as those of maize, barley, and wheat. However, the high level of repeated DNA present in these genomes requires the application of very stringent criteria to ensure a reliable assembly with the FingerPrinted Contig (FPC software, which often results in short contig lengths (of 3-5 clones before merging as well as an unreliable assembly in some difficult regions. Difficulties can originate from a non-linear topological structure of clone overlaps, low power of clone ordering algorithms, and the absence of tools to identify sources of gaps in Minimal Tiling Paths (MTPs. Results To address these problems, we propose a novel approach that: (i reduces the rate of false connections and Q-clones by using a new cutoff calculation method; (ii obtains reliable clusters robust to the exclusion of single clone or clone overlap; (iii explores the topological contig structure by considering contigs as networks of clones connected by significant overlaps; (iv performs iterative clone clustering combined with ordering and order verification using re-sampling methods; and (v uses global optimization methods for clone ordering and Band Map construction. The elements of this new analytical framework called Linear Topological Contig (LTC were applied on datasets used previously for the construction of the physical map of wheat chromosome 3B with FPC. The performance of LTC vs. FPC was compared also on the simulated BAC libraries based on the known genome sequences for chromosome 1 of rice and chromosome 1 of maize. Conclusions The results show that compared to other methods, LTC enables the construction of highly

  6. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding

    Science.gov (United States)

    Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 datasets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum...

  7. Comparative genomics in chicken and Pekin duck using FISH mapping and microarray analysis

    NARCIS (Netherlands)

    Skinner, M.; Robertson, L.B.; Tempest, H.G.; Langley, E.J.; Ioannou, D.; Fowler, K.E.; Crooijmans, R.P.M.A.

    2009-01-01

    Background: The availability of the complete chicken (Gallus gallus) genome sequence as well as a large number of chicken probes for fluorescent in-situ hybridization (FISH) and microarray resources facilitate comparative genomic studies between chicken and other bird species. In a previous study, w

  8. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle

    DEFF Research Database (Denmark)

    Daetwyler, Hans D; Capitan, Aurélien; Pausch, Hubert

    2014-01-01

    The 1000 bull genomes project supports the goal of accelerating the rates of genetic gain in domestic cattle while at the same time considering animal health and welfare by providing the annotated sequence variants and genotypes of key ancestor bulls. In the first phase of the 1000 bull genomes p...

  9. A comparative, BAC end sequence enabled map of the genome of the American mink (Neovison vison)

    DEFF Research Database (Denmark)

    Benkel, Bernhard F.; Smith, Amanda; Christensen, Knud;

    2012-01-01

    In this report we present the results of the analysis of approximately 2.7 Mb of genomic information for the American mink (Neovison vison) derived through BAC end sequencing. Our study, which encompasses approximately 1/1000th of the mink genome, suggests that simple sequence repeats (SSRs...

  10. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane.

    Science.gov (United States)

    Racedo, Josefina; Gutiérrez, Lucía; Perera, María Francisca; Ostengo, Santiago; Pardo, Esteban Mariano; Cuenya, María Inés; Welin, Bjorn; Castagnaro, Atilio Pedro

    2016-06-24

    Molecular markers associated with relevant agronomic traits could significantly reduce the time and cost involved in developing new sugarcane varieties. Previous sugarcane genome-wide association analyses (GWAS) have found few molecular markers associated with relevant traits at plant-cane stage. The aim of this study was to establish an appropriate GWAS to find molecular markers associated with yield related traits consistent across harvesting seasons in a breeding population. Sugarcane clones were genotyped with DArT (Diversity Array Technology) and TRAP (Target Region Amplified Polymorphism) markers, and evaluated for cane yield (CY) and sugar content (SC) at two locations during three successive crop cycles. GWAS mapping was applied within a novel mixed-model framework accounting for population structure with Principal Component Analysis scores as random component. A total of 43 markers significantly associated with CY in plant-cane, 42 in first ratoon, and 41 in second ratoon were detected. Out of these markers, 20 were associated with CY in 2 years. Additionally, 38 significant associations for SC were detected in plant-cane, 34 in first ratoon, and 47 in second ratoon. For SC, one marker-trait association was found significant for the 3 years of the study, while twelve markers presented association for 2 years. In the multi-QTL model several markers with large allelic substitution effect were found. Sequences of four DArT markers showed high similitude and e-value with coding sequences of Sorghum bicolor, confirming the high gene microlinearity between sorghum and sugarcane. In contrast with other sugarcane GWAS studies reported earlier, the novel methodology to analyze multi-QTLs through successive crop cycles used in the present study allowed us to find several markers associated with relevant traits. Combining existing phenotypic trial data and genotypic DArT and TRAP marker characterizations within a GWAS approach including population structure as

  11. Genome-wide mapping of transcription factor binding reveals developmental process integration and a fresh look at evolutionary dynamics.

    Science.gov (United States)

    Yant, Levi

    2012-02-01

    How does evolution forge adaptive responses? Are many changes required or few? Just how complex are the transcriptional networks that control development? Diverse questions like these are being newly addressed by next-generation sequencing-based techniques. Facilitating a mechanistic understanding, these approaches reveal the direct in vivo interactions between transcription factors and their physical targets, combined with genome-scale readouts to comprehensively map adaptive gene regulatory networks (GRNs). Here I focus on pioneering work from the last 3 years that has leveraged these data to investigate diverse aspects of GRN circuitry controlling the reproductive transition in plants. These approaches have revealed surprising new functions for long-investigated key players in developmental programs and laid bare the basis for pleiotropy in many others, suggesting widespread process integration at the transcriptional level. Evolutionary questions begged by the recent deluge of GRN mapping data are being assessed anew, both by emerging work outside Arabidopsis thaliana and novel analyses within. These studies have swiftly exposed the distinctive power and adaptability of genome-wide GRN mapping and illustrate that this unique data type holds tremendous promise for plant biology.

  12. Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A- and B-genome diploid species of peanut

    Directory of Open Access Journals (Sweden)

    Guo Yufang

    2012-11-01

    Full Text Available Abstract Background Cultivated peanut or groundnut (Arachis hypogaea L. is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40. Both the low level of genetic variation within the cultivated gene pool and its polyploid nature limit the utilization of molecular markers to explore genome structure and facilitate genetic improvement. Nevertheless, a wealth of genetic diversity exists in diploid Arachis species (2n = 2x = 20, which represent a valuable gene pool for cultivated peanut improvement. Interspecific populations have been used widely for genetic mapping in diploid species of Arachis. However, an intraspecific mapping strategy was essential to detect chromosomal rearrangements among species that could be obscured by mapping in interspecific populations. To develop intraspecific reference linkage maps and gain insights into karyotypic evolution within the genus, we comparatively mapped the A- and B-genome diploid species using intraspecific F2 populations. Exploring genome organization among diploid peanut species by comparative mapping will enhance our understanding of the cultivated tetraploid peanut genome. Moreover, new sources of molecular markers that are highly transferable between species and developed from expressed genes will be required to construct saturated genetic maps for peanut. Results A total of 2,138 EST-SSR (expressed sequence tag-simple sequence repeat markers were developed by mining a tetraploid peanut EST assembly including 101,132 unigenes (37,916 contigs and 63,216 singletons derived from 70,771 long-read (Sanger and 270,957 short-read (454 sequences. A set of 97 SSR markers were also developed by mining 9,517 genomic survey sequences of Arachis. An SSR-based intraspecific linkage map was constructed using an F2 population derived from a cross between K 9484 (PI 298639 and GKBSPSc 30081 (PI 468327 in the B-genome species A. batizocoi. A high degree of macrosynteny was observed

  13. The Human Genome Project and Mental Retardation: An Educational Program. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Sharon

    1999-05-03

    The Arc, a national organization on mental retardation, conducted an educational program for members, many of whom have a family member with a genetic condition causing mental retardation. The project informed members about the Human Genome scientific efforts, conducted training regarding ethical, legal and social implications and involved members in issue discussions. Short reports and fact sheets on genetic and ELSI topics were disseminated to 2,200 of the Arc's leaders across the country and to other interested individuals. Materials produced by the project can e found on the Arc's web site, TheArc.org.

  14. A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula genome.

    Science.gov (United States)

    Li, Xuehui; Wei, Yanling; Acharya, Ananta; Jiang, Qingzhen; Kang, Junmei; Brummer, E Charles

    2014-08-21

    A genetic linkage map is a valuable tool for quantitative trait locus mapping, map-based gene cloning, comparative mapping, and whole-genome assembly. Alfalfa, one of the most important forage crops in the world, is autotetraploid, allogamous, and highly heterozygous, characteristics that have impeded the construction of a high-density linkage map using traditional genetic marker systems. Using genotyping-by-sequencing (GBS), we constructed low-cost, reasonably high-density linkage maps for both maternal and paternal parental genomes of an autotetraploid alfalfa F1 population. The resulting maps contain 3591 single-nucleotide polymorphism markers on 64 linkage groups across both parents, with an average density of one marker per 1.5 and 1.0 cM for the maternal and paternal haplotype maps, respectively. Chromosome assignments were made based on homology of markers to the M. truncatula genome. Four linkage groups representing the four haplotypes of each alfalfa chromosome were assigned to each of the eight Medicago chromosomes in both the maternal and paternal parents. The alfalfa linkage groups were highly syntenous with M. truncatula, and clearly identified the known translocation between Chromosomes 4 and 8. In addition, a small inversion on Chromosome 1 was identified between M. truncatula and M. sativa. GBS enabled us to develop a saturated linkage map for alfalfa that greatly improved genome coverage relative to previous maps and that will facilitate investigation of genome structure. GBS could be used in breeding populations to accelerate molecular breeding in alfalfa. Copyright © 2014 Li et al.

  15. Genetic linkage map and comparative genome analysis for the estuarine Atlantic killifish (Fundulus heteroclitus)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Genetic linkage maps are valuable tools in evolutionary biology; however, their availability for wild populations is extremely limited. Fundulus heteroclitus...

  16. Chromosome region-specific libraries for human genome analysis. Final progress report, 1 March 1991--28 February 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kao, F.T.

    1994-04-01

    The objectives of this grant proposal include (1) development of a chromosome microdissection and PCR-mediated microcloning technology, (2) application of this microtechnology to the construction of region-specific libraries for human genome analysis. During this grant period, the authors have successfully developed this microtechnology and have applied it to the construction of microdissection libraries for the following chromosome regions: a whole chromosome 21 (21E), 2 region-specific libraries for the long arm of chromosome 2, 2q35-q37 (2Q1) and 2q33-q35 (2Q2), and 4 region-specific libraries for the entire short arm of chromosome 2, 2p23-p25 (2P1), 2p21-p23 (2P2), 2p14-p16 (wP3) and 2p11-p13 (2P4). In addition, 20--40 unique sequence microclones have been isolated and characterized for genomic studies. These region-specific libraries and the single-copy microclones from the library have been used as valuable resources for (1) isolating microsatellite probes in linkage analysis to further refine the disease locus; (2) isolating corresponding clones with large inserts, e.g. YAC, BAC, P1, cosmid and phage, to facilitate construction of contigs for high resolution physical mapping; and (3) isolating region-specific cDNA clones for use as candidate genes. These libraries are being deposited in the American Type Culture Collection (ATCC) for general distribution.

  17. De novo assembly of a genome-wide transcriptome map of Vicia faba (L.) for transfer cell research.

    Science.gov (United States)

    Arun-Chinnappa, Kiruba S; McCurdy, David W

    2015-01-01

    Vicia faba (L.) is an important cool-season grain legume species used widely in agriculture but also in plant physiology research, particularly as an experimental model to study transfer cell (TC) development. TCs are specialized nutrient transport cells in plants, characterized by invaginated wall ingrowths with amplified plasma membrane surface area enriched with transporter proteins that facilitate nutrient transfer. Many TCs are formed by trans-differentiation from differentiated cells at apoplasmic/symplasmic boundaries in nutrient transport. Adaxial epidermal cells of isolated cotyledons can be induced to form functional TCs, thus providing a valuable experimental system to investigate genetic regulation of TC trans-differentiation. The genome of V. faba is exceedingly large (ca. 13 Gb), however, and limited genomic information is available for this species. To provide a resource for future transcript profiling of epidermal TC differentiation, we have undertaken de novo assembly of a genome-wide transcriptome map for V. faba. Illumina paired-end sequencing of total RNA pooled from different tissues and different stages, including isolated cotyledons induced to form epidermal TCs, generated 69.5 M reads, of which 65.8 M were used for assembly following trimming and quality control. Assembly using a De-Bruijn graph-based approach generated 21,297 contigs, of which 80.6% were successfully annotated against GO terms. The assembly was validated against known V. faba cDNAs held in GenBank, including transcripts previously identified as being specifically expressed in epidermal cells across TC trans-differentiation. This genome-wide transcriptome map therefore provides a valuable tool for future transcript profiling of epidermal TC trans-differentiation, and also enriches the genetic resources available for this important legume crop species.

  18. Fast Genome-Wide QTL Association Mapping on Pedigree and Population Data.

    Science.gov (United States)

    Zhou, Hua; Blangero, John; Dyer, Thomas D; Chan, Kei-Hang K; Lange, Kenneth; Sobel, Eric M

    2017-04-01

    Since most analysis software for genome-wide association studies (GWAS) currently exploit only unrelated individuals, there is a need for efficient applications that can handle general pedigree data or mixtures of both population and pedigree data. Even datasets thought to consist of only unrelated individuals may include cryptic relationships that can lead to false positives if not discovered and controlled for. In addition, family designs possess compelling advantages. They are better equipped to detect rare variants, control for population stratification, and facilitate the study of parent-of-origin effects. Pedigrees selected for extreme trait values often segregate a single gene with strong effect. Finally, many pedigrees are available as an important legacy from the era of linkage analysis. Unfortunately, pedigree likelihoods are notoriously hard to compute. In this paper, we reexamine the computational bottlenecks and implement ultra-fast pedigree-based GWAS analysis. Kinship coefficients can either be based on explicitly provided pedigrees or automatically estimated from dense markers. Our strategy (a) works for random sample data, pedigree data, or a mix of both; (b) entails no loss of power; (c) allows for any number of covariate adjustments, including correction for population stratification; (d) allows for testing SNPs under additive, dominant, and recessive models; and (e) accommodates both univariate and multivariate quantitative traits. On a typical personal computer (six CPU cores at 2.67 GHz), analyzing a univariate HDL (high-density lipoprotein) trait from the San Antonio Family Heart Study (935,392 SNPs on 1,388 individuals in 124 pedigrees) takes less than 2 min and 1.5 GB of memory. Complete multivariate QTL analysis of the three time-points of the longitudinal HDL multivariate trait takes less than 5 min and 1.5 GB of memory. The algorithm is implemented as the Ped-GWAS Analysis (Option 29) in the Mendel statistical genetics package, which is

  19. Linkage mapping reveals strong chiasma interference in Sockeye salmon: Implications for interpreting genomic data

    DEFF Research Database (Denmark)

    Limborg, Morten; Waples, Ryan K; Allendorf, Fred W

    2015-01-01

    Meiotic recombination is fundamental for generating new genetic variation and for securing proper disjunction. Further, recombination plays an essential role during the rediploidization process of polyploid-origin genomes because crossovers between pairs of homeologous chromosomes retain duplicat...

  20. Identification of transcribed sequences in the human genome. Final report, September 15, 1991--September 14, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, K.

    1992-12-01

    The workshop was held at the National Institutes of Mental Health, Bethesda, Maryland, on October 4 and 5, 1991. Twenty-four investigators attended from England, Germany and the United States. The topics discussed included: Genome sequence analysis using computer assisted detection of open reading frames, splice sites and hexamer patterns, direct exon identification using trapping of internal and 3` exons, and a recombination based system, cDNA library construction and screening, including the use of normalization and subtraction procedures, Alu and splice donor site PCR from hybrid cell lines, and microdissection clones as probes, use of labeled CDNAS as probes to screen lambda and cosmid libraries, and sequencing of random cDNAs.

  1. Aerial radiometric and magnetic survey, San Angelo National Topographic Map: Texas, West Texas Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the San Angelo National Topographic Map NH14-1 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium, and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included.

  2. Aerial radiometric and magnetic survey: Perryton National Topographic Map, Texas/Oklahoma/Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Perryton National Topographic Map NJ14-10 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  3. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    NARCIS (Netherlands)

    K. Gaulton (Kyle); T. Ferreira (Teresa); Y. Lee (Yeji); A. Raimondo (Anne); R. Mägi (Reedik); M.E. Reschen (Michael E.); A. Mahajan (Anubha); A. Locke (Adam); N.W. Rayner (Nigel William); N.R. Robertson (Neil); R.A. Scott (Robert); I. Prokopenko (Inga); L.J. Scott (Laura); T. Green (Todd); T. Sparsø (Thomas); D. Thuillier (Dorothee); L. Yengo (Loic); H. Grallert (Harald); S. Wahl (Simone); M. Frånberg (Mattias); R.J. Strawbridge (Rona); H. Kestler (Hans); H. Chheda (Himanshu); L. Eisele (Lewin); S. Gustafsson (Stefan); V. Steinthorsdottir (Valgerdur); G. Thorleifsson (Gudmar); L. Qi (Lu); L.C. Karssen (Lennart); E.M. van Leeuwen (Elisa); S.M. Willems (Sara); M. Li (Man); H. Chen (Han); C. Fuchsberger (Christian); P. Kwan (Phoenix); C. Ma (Clement); M. Linderman (Michael); Y. Lu (Yingchang); S.K. Thomsen (Soren K.); J.K. Rundle (Jana K.); N.L. Beer (Nicola L.); M. van de Bunt (Martijn); A. Chalisey (Anil); H.M. Kang (Hyun Min); B.F. Voight (Benjamin); G.R. Abecasis (Gonçalo); P. Almgren (Peter); D. Baldassarre (Damiano); B. Balkau (Beverley); R. Benediktsson (Rafn); M. Blüher (Matthias); H. Boeing (Heiner); L.L. Bonnycastle (Lori); E.P. Bottinger (Erwin P.); N.P. Burtt (Noël); J. Carey (Jason); G. Charpentier (Guillaume); P.S. Chines (Peter); M. Cornelis (Marilyn); D.J. Couper (David J.); A. Crenshaw (Andrew); R.M. van Dam (Rob); A.S.F. Doney (Alex); M. Dorkhan (Mozhgan); T. Edkins (Ted); J.G. Eriksson (Johan G.); T. Esko (Tõnu); E. Eury (Elodie); J. Fadista (João); J. Flannick (Jason); P. Fontanillas (Pierre); C.S. Fox (Caroline); P.W. Franks (Paul W.); K. Gertow (Karl); C. Gieger (Christian); B. Gigante (Bruna); R.F. Gottesman (Rebecca); G.B. Grant (George); N. Grarup (Niels); C.J. Groves (Christopher J.); M. Hassinen (Maija); C.T. Have (Christian T.); C. Herder (Christian); O.L. Holmen (Oddgeir); A.B. Hreidarsson (Astradur); S.E. Humphries (Steve E.); D.J. Hunter (David J.); A.U. Jackson (Anne); A. Jonsson (Anna); M.E. Jørgensen (Marit E.); T. Jørgensen (Torben); W.H.L. Kao (Wen); N.D. Kerrison (Nicola D.); L. Kinnunen (Leena); N. Klopp (Norman); A. Kong (Augustine); P. Kovacs (Peter); P. Kraft (Peter); J. Kravic (Jasmina); C. Langford (Cordelia); K. Leander (Karin); L. Liang (Liming); P. Lichtner (Peter); C.M. Lindgren (Cecilia M.); B. Lindholm (Bengt); A. Linneberg (Allan); C.-T. Liu (Ching-Ti); S. Lobbens (Stéphane); J. Luan (Jian'fan); V. Lyssenko (Valeriya); S. Männistö (Satu); O. McLeod (Olga); J. Meyer (Jobst); E. Mihailov (Evelin); G. Mirza (Ghazala); T.W. Mühleisen (Thomas); M. Müller-Nurasyid (Martina); C. Navarro (Carmen); M.M. Nöthen (Markus); N.N. Oskolkov (Nikolay N.); K.R. Owen (Katharine); D. Palli (Domenico); S. Pechlivanis (Sonali); L. Peltonen (Leena Johanna); J.R.B. Perry (John); C.P. Platou (Carl); M. Roden (Michael); D. Ruderfer (Douglas); D. Rybin (Denis); Y.T. Van Der Schouw (Yvonne T.); B. Sennblad (Bengt); G. Sigurosson (Gunnar); A. Stancáková (Alena); D. Steinbach; P. Storm (Petter); K. Strauch (Konstantin); H.M. Stringham (Heather); Q. Sun; B. Thorand (Barbara); E. Tikkanen (Emmi); A. Tönjes (Anke); J. Trakalo (Joseph); E. Tremoli (Elena); T. Tuomi (Tiinamaija); R. Wennauer (Roman); S. Wiltshire (Steven); A.R. Wood (Andrew); E. Zeggini (Eleftheria); I. Dunham (Ian); E. Birney (Ewan); L. Pasquali (Lorenzo); J. Ferrer (Jorge); R.J.F. Loos (Ruth); J. Dupuis (Josée); J.C. Florez (Jose); E.A. Boerwinkle (Eric); J.S. Pankow (James); C.M. van Duijn (Cock); E.J.G. Sijbrands (Eric); J.B. Meigs (James B.); F.B. Hu (Frank B.); U. Thorsteinsdottir (Unnur); J-A. Zwart (John-Anker); T.A. Lakka (Timo); R. Rauramaa (Rainer); M. Stumvoll (Michael); N.L. Pedersen (Nancy L.); L. Lind (Lars); S. Keinanen-Kiukaanniemi (Sirkka); E. Korpi-Hyövälti (Eeva); T. Saaristo (Timo); J. Saltevo (Juha); J. Kuusisto (Johanna); M. Laakso (Markku); A. Metspalu (Andres); R. Erbel (Raimund); K.-H. Jöckel (Karl-Heinz); S. Moebus (Susanne); S. Ripatti (Samuli); V. Salomaa (Veikko); E. Ingelsson (Erik); B.O. Boehm (Bernhard); R.N. Bergman (Richard N.); F.S. Collins (Francis S.); K.L. Mohlke (Karen L.); H. Koistinen (Heikki); J. Tuomilehto (Jaakko); K. Hveem (Kristian); I. Njølstad (Inger); P. Deloukas (Panagiotis); P.J. Donnelly (Peter J.); T.M. Frayling (Timothy); A.T. Hattersley (Andrew); U. de Faire (Ulf); A. Hamsten (Anders); T. Illig (Thomas); A. Peters (Annette); S. Cauchi (Stephane); R. Sladek (Rob); P. Froguel (Philippe); T. Hansen (Torben); O. Pedersen (Oluf); A.D. Morris (Andrew); C.N.A. Palmer (Collin N. A.); S. Kathiresan (Sekar); O. Melander (Olle); P.M. Nilsson (Peter M.); L. Groop (Leif); I. Barroso (Inês); C. Langenberg (Claudia); N.J. Wareham (Nicholas J.); C.A. O'Callaghan (Christopher A.); A.L. Gloyn (Anna); D. Altshuler (David); M. Boehnke (Michael); T.M. Teslovich (Tanya M.); M.I. McCarthy (Mark); A.P. Morris (Andrew)

    2015-01-01

    textabstractWe performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each

  4. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    NARCIS (Netherlands)

    Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji; Raimondo, Anne; Mägi, Reedik; Reschen, Michael E; Mahajan, Anubha; Locke, Adam; William Rayner, N; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Gonçalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Bottinger, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kao, Wen-Hong L; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian'an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Peltonen, Leena; Perry, John R B; Platou, Carl G P; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T|info:eu-repo/dai/nl/073449253; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wiltshire, Steven; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth J F; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöcke, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin N A; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O'Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct si

  5. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    NARCIS (Netherlands)

    K. Gaulton (Kyle); T. Ferreira (Teresa); Y. Lee (Yeji); A. Raimondo (Anne); R. Mägi (Reedik); M.E. Reschen (Michael E.); A. Mahajan (Anubha); A. Locke (Adam); N.W. Rayner (Nigel William); N.R. Robertson (Neil); R.A. Scott (Robert); I. Prokopenko (Inga); L.J. Scott (Laura); T. Green (Todd); T. Sparsø (Thomas); D. Thuillier (Dorothee); L. Yengo (Loic); H. Grallert (Harald); S. Wahl (Simone); M. Frånberg (Mattias); R.J. Strawbridge (Rona); H. Kestler (Hans); H. Chheda (Himanshu); L. Eisele (Lewin); S. Gustafsson (Stefan); V. Steinthorsdottir (Valgerdur); G. Thorleifsson (Gudmar); L. Qi (Lu); L.C. Karssen (Lennart); E.M. van Leeuwen (Elisa); S.M. Willems (Sara); M. Li (Man); H. Chen (Han); C. Fuchsberger (Christian); P. Kwan (Phoenix); C. Ma (Clement); M. Linderman (Michael); Y. Lu (Yingchang); S.K. Thomsen (Soren K.); J.K. Rundle (Jana K.); N.L. Beer (Nicola L.); M. van de Bunt (Martijn); A. Chalisey (Anil); H.M. Kang (Hyun Min); B.F. Voight (Benjamin); G.R. Abecasis (Gonçalo); P. Almgren (Peter); D. Baldassarre (Damiano); B. Balkau (Beverley); R. Benediktsson (Rafn); M. Blüher (Matthias); H. Boeing (Heiner); L.L. Bonnycastle (Lori); E.P. Bottinger (Erwin P.); N.P. Burtt (Noël); J. Carey (Jason); G. Charpentier (Guillaume); P.S. Chines (Peter); M. Cornelis (Marilyn); D.J. Couper (David J.); A. Crenshaw (Andrew); R.M. van Dam (Rob); A.S.F. Doney (Alex); M. Dorkhan (Mozhgan); T. Edkins (Ted); J.G. Eriksson (Johan G.); T. Esko (Tõnu); E. Eury (Elodie); J. Fadista (João); J. Flannick (Jason); P. Fontanillas (Pierre); C.S. Fox (Caroline); P.W. Franks (Paul W.); K. Gertow (Karl); C. Gieger (Christian); B. Gigante (Bruna); R.F. Gottesman (Rebecca); G.B. Grant (George); N. Grarup (Niels); C.J. Groves (Christopher J.); M. Hassinen (Maija); C.T. Have (Christian T.); C. Herder (Christian); O.L. Holmen (Oddgeir); A.B. Hreidarsson (Astradur); S.E. Humphries (Steve E.); D.J. Hunter (David J.); A.U. Jackson (Anne); A. Jonsson (Anna); M.E. Jørgensen (Marit E.); T. Jørgensen (Torben); W.H.L. Kao (Wen); N.D. Kerrison (Nicola D.); L. Kinnunen (Leena); N. Klopp (Norman); A. Kong (Augustine); P. Kovacs (Peter); P. Kraft (Peter); J. Kravic (Jasmina); C. Langford (Cordelia); K. Leander (Karin); L. Liang (Liming); P. Lichtner (Peter); C.M. Lindgren (Cecilia M.); B. Lindholm (Bengt); A. Linneberg (Allan); C.-T. Liu (Ching-Ti); S. Lobbens (Stéphane); J. Luan (Jian'fan); V. Lyssenko (Valeriya); S. Männistö (Satu); O. McLeod (Olga); J. Meyer (Jobst); E. Mihailov (Evelin); G. Mirza (Ghazala); T.W. Mühleisen (Thomas); M. Müller-Nurasyid (Martina); C. Navarro (Carmen); M.M. Nöthen (Markus); N.N. Oskolkov (Nikolay N.); K.R. Owen (Katharine); D. Palli (Domenico); S. Pechlivanis (Sonali); L. Peltonen (Leena Johanna); J.R.B. Perry (John); C.P. Platou (Carl); M. Roden (Michael); D. Ruderfer (Douglas); D. Rybin (Denis); Y.T. Van Der Schouw (Yvonne T.); B. Sennblad (Bengt); G. Sigurosson (Gunnar); A. Stancáková (Alena); D. Steinbach; P. Storm (Petter); K. Strauch (Konstantin); H.M. Stringham (Heather); Q. Sun; B. Thorand (Barbara); E. Tikkanen (Emmi); A. Tönjes (Anke); J. Trakalo (Joseph); E. Tremoli (Elena); T. Tuomi (Tiinamaija); R. Wennauer (Roman); S. Wiltshire (Steven); A.R. Wood (Andrew); E. Zeggini (Eleftheria); I. Dunham (Ian); E. Birney (Ewan); L. Pasquali (Lorenzo); J. Ferrer (Jorge); R.J.F. Loos (Ruth); J. Dupuis (Josée); J.C. Florez (Jose); E.A. Boerwinkle (Eric); J.S. Pankow (James); C.M. van Duijn (Cock); E.J.G. Sijbrands (Eric); J.B. Meigs (James B.); F.B. Hu (Frank B.); U. Thorsteinsdottir (Unnur); J-A. Zwart (John-Anker); T.A. Lakka (Timo); R. Rauramaa (Rainer); M. Stumvoll (Michael); N.L. Pedersen (Nancy L.); L. Lind (Lars); S. Keinanen-Kiukaanniemi (Sirkka); E. Korpi-Hyövälti (Eeva); T. Saaristo (Timo); J. Saltevo (Juha); J. Kuusisto (Johanna); M. Laakso (Markku); A. Metspalu (Andres); R. Erbel (Raimund); K.-H. Jöckel (Karl-Heinz); S. Moebus (Susanne); S. Ripatti (Samuli); V. Salomaa (Veikko); E. Ingelsson (Erik); B.O. Boehm (Bernhard); R.N. Bergman (Richard N.); F.S. Collins (Francis S.); K.L. Mohlke (Karen L.); H. Koistinen (Heikki); J. Tuomilehto (Jaakko); K. Hveem (Kristian); I. Njølstad (Inger); P. Deloukas (Panagiotis); P.J. Donnelly (Peter J.); T.M. Frayling (Timothy); A.T. Hattersley (Andrew); U. de Faire (Ulf); A. Hamsten (Anders); T. Illig (Thomas); A. Peters (Annette); S. Cauchi (Stephane); R. Sladek (Rob); P. Froguel (Philippe); T. Hansen (Torben); O. Pedersen (Oluf); A.D. Morris (Andrew); C.N.A. Palmer (Collin N. A.); S. Kathiresan (Sekar); O. Melander (Olle); P.M. Nilsson (Peter M.); L. Groop (Leif); I. Barroso (Inês); C. Langenberg (Claudia); N.J. Wareham (Nicholas J.); C.A. O'Callaghan (Christopher A.); A.L. Gloyn (Anna); D. Altshuler (David); M. Boehnke (Michael); T.M. Teslovich (Tanya M.); M.I. McCarthy (Mark); A.P. Morris (Andrew)

    2015-01-01

    textabstractWe performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each

  6. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    NARCIS (Netherlands)

    Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji; Raimondo, Anne; Mägi, Reedik; Reschen, Michael E; Mahajan, Anubha; Locke, Adam; William Rayner, N; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Gonçalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Bottinger, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kao, Wen-Hong L; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian'an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Peltonen, Leena; Perry, John R B; Platou, Carl G P; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wiltshire, Steven; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth J F; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöcke, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin N A; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O'Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct si

  7. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes

    Science.gov (United States)

    Sahoo, Dipak K.; Abeysekara, Nilwala S.; Cianzio, Silvia R.; Robertson, Alison E.

    2017-01-01

    Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs) (F7 families) were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR)-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance. PMID:28081566

  8. Microsatellite isolation and marker development in carrot - genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae

    Directory of Open Access Journals (Sweden)

    Yildiz Mehtap

    2011-08-01

    selected loci, with an average of 19 alleles/locus and 0.84 expected heterozygosity. Conclusions The addition of 55 SSRs to the carrot map, together with marker characterizations in six other mapping populations, will facilitate future comparative mapping studies and integration of carrot maps. The markers developed herein will be a valuable resource for assisting breeding, genetic, diversity, and genomic studies of carrot and other Apiaceae.

  9. Developing Association Mapping in Polyploid Perennial Biofuel Grasses: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Buckler, Edward S; Casler, Michael D; Cherney, Jerome H

    2012-01-20

    This project had six objectives, four of which have been completed: 1) Association panels of diverse populations and linkage populations for switchgrass and reed canarygrass (~1,000 clones each) were assembled and planted in two sites (Ithaca, NY and Arlington, WI); 2) Key biofeedstock characteristics were evaluated in these panels for three field seasons; 3) High density SNP markers were developed in switchgrass; and 4) Switchgrass association panels and linkage populations were genotyped. The remaining two original objectives will be met in the next year, as the analyses are completed and papers published: 5) Switchgrass population structure and germplasm diversity will be evaluated; and 6) Association mapping will be established and marker based breeding values estimated in switchgrass. We also completed a study of the chromosome-number variation found in switchgrass.

  10. Mapping medical careers: Questionnaire assessment of career preferences in medical school applicants and final-year students

    Directory of Open Access Journals (Sweden)

    McManus IC

    2004-10-01

    Full Text Available Abstract Background The medical specialities chosen by doctors for their careers play an important part in the workforce planning of health-care services. However, there is little theoretical understanding of how different medical specialities are perceived or how choices are made, despite there being much work in general on this topic in occupational psychology, which is influenced by Holland's RIASEC (Realistic-Investigative-Artistic-Social-Enterprising-Conventional typology of careers, and Gottfredson's model of circumscription and compromise. In this study, we use three large-scale cohorts of medical students to produce maps of medical careers. Methods Information on between 24 and 28 specialities was collected in three UK cohorts of medical students (1981, 1986 and 1991 entry, in applicants (1981 and 1986 cohorts, N = 1135 and 2032 or entrants (1991 cohort, N = 2973 and in final-year students (N = 330, 376, and 1437. Mapping used Individual Differences Scaling (INDSCAL on sub-groups broken down by age and sex. The method was validated in a population sample using a full range of careers, and demonstrating that the RIASEC structure could be extracted. Results Medical specialities in each cohort, at application and in the final-year, were well represented by a two-dimensional space. The representations showed a close similarity to Holland's RIASEC typology, with the main orthogonal dimensions appearing similar to Prediger's derived orthogonal dimensions of 'Things-People' and 'Data-Ideas'. Conclusions There are close parallels between Holland's general typology of careers, and the structure we have found in medical careers.