WorldWideScience

Sample records for genome fragments based

  1. Post-Fragmentation Whole Genome Amplification-Based Method

    Science.gov (United States)

    Benardini, James; LaDuc, Myron T.; Langmore, John

    2011-01-01

    This innovation is derived from a proprietary amplification scheme that is based upon random fragmentation of the genome into a series of short, overlapping templates. The resulting shorter DNA strands (fragments with defined 3 and 5 termini. Specific primers to these termini are then used to isothermally amplify this library into potentially unlimited quantities that can be used immediately for multiple downstream applications including gel eletrophoresis, quantitative polymerase chain reaction (QPCR), comparative genomic hybridization microarray, SNP analysis, and sequencing. The standard reaction can be performed with minimal hands-on time, and can produce amplified DNA in as little as three hours. Post-fragmentation whole genome amplification-based technology provides a robust and accurate method of amplifying femtogram levels of starting material into microgram yields with no detectable allele bias. The amplified DNA also facilitates the preservation of samples (spacecraft samples) by amplifying scarce amounts of template DNA into microgram concentrations in just a few hours. Based on further optimization of this technology, this could be a feasible technology to use in sample preservation for potential future sample return missions. The research and technology development described here can be pivotal in dealing with backward/forward biological contamination from planetary missions. Such efforts rely heavily on an increasing understanding of the burden and diversity of microorganisms present on spacecraft surfaces throughout assembly and testing. The development and implementation of these technologies could significantly improve the comprehensiveness and resolving power of spacecraft-associated microbial population censuses, and are important to the continued evolution and advancement of planetary protection capabilities. Current molecular procedures for assaying spacecraft-associated microbial burden and diversity have inherent sample loss issues at

  2. Fragment-based cocktail crystallography by the Medical Structural Genomics of Pathogenic Protozoa Consortium

    Science.gov (United States)

    Verlinde, Christophe L.M.J.; Fan, Erkang; Shibata, Sayaka; Zhang, Zongsheng; Sun, Zhihua; Deng, Wei; Ross, Jennifer; Kim, Jessica; Xiao, Liren; Arakaki, Tracy L.; Bosch, Jürgen; Caruthers, Jonathan M.; Larson, Eric T.; LeTrong, Isolde; Napuli, Alberto; Kelly, Angela; Mueller, Natasha; Zucker, Frank; Van Voorhis, Wesley C.; Buckner, Frederick S.; Merritt, Ethan A.; Hol, Wim G.J.

    2010-01-01

    The history of fragment-based drug discovery, with an emphasis on crystallographic methods, is sketched, illuminating various contributions, including our own, which preceded the industrial development of the method. Subsequently, the creation of the BMSC fragment cocktails library is described. The BMSC collection currently comprises 68 cocktails of 10 compounds that are shape-wise diverse. The utility of these cocktails for initiating lead discovery in structure-based drug design has been explored by soaking numerous protein crystals obtained by our MSGPP (Medical Structural Genomics of Pathogenic Protozoa) consortium. Details of the fragment selection and cocktail design procedures, as well as examples of the successes obtained are given. The BMSC Fragment Cocktail recipes are available free of charge and are in use in over 20 academic labs. PMID:19929835

  3. Prediction of Protein-Protein Interactions by NanoLuc-Based Protein-Fragment Complementation Assay | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory has developed a new NanoLuc®-based protein-fragment complementation assay (NanoPCA) which allows the detection of novel protein-protein interactions (PPI). NanoPCA allows the study of PPI dynamics with reversible interactions.  Read the abstract. Experimental Approaches Read the detailed Experimetnal Approaches. 

  4. ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts.

    Science.gov (United States)

    Wei, Guifang; Pan, Li; Du, Huimin; Chen, Junyi; Zhao, Liping

    2004-10-01

    Bacterial populations common to healthy human guts may play important roles in human health. A new strategy for discovering genomic sequences as markers for these bacteria was developed using Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR fingerprinting. Structural features within microbial communities are compared with ERIC-PCR followed by DNA hybridization to identify genomic fragments shared by samples from healthy human individuals. ERIC-PCR profiles of fecal samples from 12 diseased or healthy human and piglet subjects demonstrated stable, unique banding patterns for each individual tested. Sequence homology of DNA fragments in bands of identical size was examined between samples by hybridization under high stringency conditions with DIG-labeled ERIC-PCR products derived from the fecal sample of one healthy child. Comparative analysis of the hybridization profiles with the original agarose fingerprints identified three predominant bands as signatures for populations associated with healthy human guts with sizes of 500, 800 and 1000 bp. Clone library profiling of the three bands produced 17 genome fragments, three of which showed high similarity only with regions of the Bacteroides thetaiotaomicron genome, while the remainder were orphan sequences. Association of these sequences with healthy guts was validated by sequence-selective PCR experiments, which showed that a single fragment was present in all 32 healthy humans and 13 healthy piglets tested. Two fragments were present in the healthy human group and in 18 children with non-infectious diarrhea but not in eight children with infectious diarrhea. Genome fragments identified with this novel strategy may be used as genome-specific markers for dynamic monitoring and sequence-guided isolation of functionally important bacterial populations in complex communities such as human gut microflora.

  5. Optimizing restriction fragment fingerprinting methods for ordering large genomic libraries.

    Science.gov (United States)

    Branscomb, E; Slezak, T; Pae, R; Galas, D; Carrano, A V; Waterman, M

    1990-10-01

    We present a statistical analysis of the problem of ordering large genomic cloned libraries through overlap detection based on restriction fingerprinting. Such ordering projects involve a large investment of effort involving many repetitious experiments. Our primary purpose here is to provide methods of maximizing the efficiency of such efforts. To this end, we adopt a statistical approach that uses the likelihood ratio as a statistic to detect overlap. The main advantages of this approach are that (1) it allows the relatively straightforward incorporation of the observed statistical properties of the data; (2) it permits the efficiency of a particular experimental method for detecting overlap to be quantitatively defined so that alternative experimental designs may be compared and optimized; and (3) it yields a direct estimate of the probability that any two library members overlap. This estimate is a critical tool for the accurate, automatic assembly of overlapping sets of fragments into islands called "contigs." These contigs must subsequently be connected by other methods to provide an ordered set of overlapping fragments covering the entire genome.

  6. Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments

    Directory of Open Access Journals (Sweden)

    Arun S. Seetharam

    2013-12-01

    Full Text Available Type IIB restriction endonucleases are site-specific endonucleases that cut both strands of double-stranded DNA upstream and downstream of their recognition sequences. These restriction enzymes have recognition sequences that are generally interrupted and range from 5 to 7 bases long. They produce DNA fragments which are uniformly small, ranging from 21 to 33 base pairs in length (without cohesive ends. The fragments are generated from throughout the entire length of a genomic DNA providing an excellent fractional representation of the genome. In this study we simulated restriction enzyme digestions on 21 sequenced genomes of various Drosophila species using the predicted targets of 16 Type IIB restriction enzymes to effectively produce a large and arbitrary selection of loci from these genomes. The fragments were then used to compare organisms and to calculate the distance between genomes in pair-wise combination by counting the number of shared fragments between the two genomes. Phylogenetic trees were then generated for each enzyme using this distance measure and the consensus was calculated. The consensus tree obtained agrees well with the currently accepted tree for the Drosophila species. We conclude that multi-locus sub-genomic representation combined with next generation sequencing, especially for individuals and species without previous genome characterization, can accelerate studies of comparative genomics and the building of accurate phylogenetic trees.

  7. Microfluidic DNA fragmentation for on-chip genomic analysis

    NARCIS (Netherlands)

    Shui, Lingling; Bomer, Johan G.; Jin, Mingliang; Carlen, Edwin T.; Berg, van den Albert

    2011-01-01

    We report a high-throughput clog-free microfluidic deoxyribonucleic acid (DNA) fragmentation chip that is based on hydrodynamic shearing. Salmon sperm DNA has been reproducibly fragmented down to ∼5k bp fragment lengths by applying low hydraulic pressures (≤1 bar) across micromachined constrictions

  8. Microfluidic DNA fragmentation for on-chip genomic analysis

    NARCIS (Netherlands)

    Shui, Lingling; Bomer, Johan G.; Jin, Mingliang; Carlen, Edwin; van den Berg, Albert

    2011-01-01

    We report a high-throughput clog-free microfluidic deoxyribonucleic acid (DNA) fragmentation chip that is based on hydrodynamic shearing. Salmon sperm DNA has been reproducibly fragmented down to ∼5k bp fragment lengths by applying low hydraulic pressures (≤1 bar) across micromachined constrictions

  9. Mind the gap; seven reasons to close fragmented genome assemblies.

    Science.gov (United States)

    Thomma, Bart P H J; Seidl, Michael F; Shi-Kunne, Xiaoqian; Cook, David E; Bolton, Melvin D; van Kan, Jan A L; Faino, Luigi

    2016-05-01

    Like other domains of life, research into the biology of filamentous microbes has greatly benefited from the advent of whole-genome sequencing. Next-generation sequencing (NGS) technologies have revolutionized sequencing, making genomic sciences accessible to many academic laboratories including those that study non-model organisms. Thus, hundreds of fungal genomes have been sequenced and are publically available today, although these initiatives have typically yielded considerably fragmented genome assemblies that often lack large contiguous genomic regions. Many important genomic features are contained in intergenic DNA that is often missing in current genome assemblies, and recent studies underscore the significance of non-coding regions and repetitive elements for the life style, adaptability and evolution of many organisms. The study of particular types of genetic elements, such as telomeres, centromeres, repetitive elements, effectors, and clusters of co-regulated genes, but also of phenomena such as structural rearrangements, genome compartmentalization and epigenetics, greatly benefits from having a contiguous and high-quality, preferably even complete and gapless, genome assembly. Here we discuss a number of important reasons to produce gapless, finished, genome assemblies to help answer important biological questions.

  10. An Efficient Genome Fragment Assembling Using GA with Neighborhood Aware Fitness Function

    Directory of Open Access Journals (Sweden)

    Satoko Kikuchi

    2012-01-01

    Full Text Available To decode a long genome sequence, shotgun sequencing is the state-of-the-art technique. It needs to properly sequence a very large number, sometimes as large as millions, of short partially readable strings (fragments. Arranging those fragments in correct sequence is known as fragment assembling, which is an NP-problem. Presently used methods require enormous computational cost. In this work, we have shown how our modified genetic algorithm (GA could solve this problem efficiently. In the proposed GA, the length of the chromosome, which represents the volume of the search space, is reduced with advancing generations, and thereby improves search efficiency. We also introduced a greedy mutation, by swapping nearby fragments using some heuristics, to improve the fitness of chromosomes. We compared results with Parsons’ algorithm which is based on GA too. We used fragments with partial reads on both sides, mimicking fragments in real genome assembling process. In Parsons’ work base-pair array of the whole fragment is known. Even then, we could obtain much better results, and we succeeded in restructuring contigs covering 100% of the genome sequences.

  11. Microfluidic DNA fragmentation for on-chip genomic analysis.

    Science.gov (United States)

    Shui, Lingling; Bomer, Johan G; Jin, Mingliang; Carlen, Edwin T; van den Berg, Albert

    2011-12-09

    We report a high-throughput clog-free microfluidic deoxyribonucleic acid (DNA) fragmentation chip that is based on hydrodynamic shearing. Salmon sperm DNA has been reproducibly fragmented down to ∼ 5k bp fragment lengths by applying low hydraulic pressures (≤1 bar) across micromachined constrictions positioned in larger microfluidic channels that create point-sink flow with large velocity gradients near the constriction entrance. Long constrictions (100 µm) produce shorter fragment lengths compared to shorter constrictions (10 µm), while increasing the hydrodynamic pressure requirement. Sample recirculation (10 ×) in short constrictions reduces the mean fragment length and fragment length variation, and improves yield compared to single-pass experiments without increasing the hydrodynamic pressure.

  12. Low pressure microfluidic-based DNA fragmentation

    NARCIS (Netherlands)

    Shui, Lingling; Sparreboom, Wouter; Bomer, Johan G.; Jin, Mingliang; Carlen, Edwin; van den Berg, Albert

    2011-01-01

    We report a low-pressure microfluidic deoxyribonucleic acid (DNA) fragmentation device based on a combination of me-chanical hydrodynamic shearing and low temperature sample heating. Conventional DNA fragmentation based on hydrody-namic shearing is capable of achieving fragment lengths (FL) < 10k bp

  13. AKT1, LKB1, and YAP1 revealed as MYC interactors with NanoLuc-based protein-fragment complementation assay. | Office of Cancer Genomics

    Science.gov (United States)

    The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. Here we report the development of a NanoLuc®-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells.

  14. High-resolution genomic fingerprinting of Campylobacter jejuni and Campylobacter coli by analysis of amplified fragment length polymorphisms

    DEFF Research Database (Denmark)

    Kokotovic, Branko; On, Stephen L.W.

    1999-01-01

    A method for high-resolution genomic fingerprinting of the enteric pathogens Campylobacter jejuni and Campylobacter coli, based on the determination of amplified fragment length polymorphism, is described. The potential of this method for molecular epidemiological studies of these species...

  15. Sequencing and Analysis of a Genomic Fragment Provide an Insight into the Dunaliella viridis Genomic Sequence

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ming SUN; Yuan-Ping TANG; Xiang-Zong MENG; Wen-Wen ZHANG; Shan LI; Zhi-Rui DENG; Zheng-Kai XU; Ren-Tao SONG

    2006-01-01

    Dunaliella is a genus of wall-less unicellular eukaryotic green alga. Its exceptional resistances to salt and various other stresses have made it an ideal model for stress tolerance study. However, very little is known about its genome and genomic sequences. In this study, we sequenced and analyzed a 29,268 bp genomic fragment from Dunaliella viridis. The fragment showed low sequence homology to the GenBank database. At the nucleotide level, only a segment with significant sequence homology to 18S rRNA was found. The fragment contained six putative genes, but only one gene showed significant homology at the protein level to GenBank database. The average GC content of this sequence was 51.1%, which was much lower than that of close related green algae Chlamydomonas (65.7%). Significant segmental duplications were found within this fragment. The duplicated sequences accounted for about 35.7% of the entire region. Large amounts of simple sequence repeats (microsatellites) were found, with strong bias towards (AC)n type (76%). Analysis of other Dunaliella genomic sequences in the GenBank database (total 25,749 bp) was in agreement with these findings. These sequence features made it difficult to sequence Dunaliella genomic sequences. Further investigation should be made to reveal the biological significance of these unique sequence features.

  16. CLP-based protein fragment assembly

    CERN Document Server

    Palu', Alessandro Dal; Fogolari, Federico; Pontelli, Enrico; 10.1017/S1471068410000372

    2010-01-01

    The paper investigates a novel approach, based on Constraint Logic Programming (CLP), to predict the 3D conformation of a protein via fragments assembly. The fragments are extracted by a preprocessor-also developed for this work- from a database of known protein structures that clusters and classifies the fragments according to similarity and frequency. The problem of assembling fragments into a complete conformation is mapped to a constraint solving problem and solved using CLP. The constraint-based model uses a medium discretization degree Ca-side chain centroid protein model that offers efficiency and a good approximation for space filling. The approach adapts existing energy models to the protein representation used and applies a large neighboring search strategy. The results shows the feasibility and efficiency of the method. The declarative nature of the solution allows to include future extensions, e.g., different size fragments for better accuracy.

  17. Combination of native and denaturing PAGE for the detection of protein binding regions in long fragments of genomic DNA

    Directory of Open Access Journals (Sweden)

    Metsis Madis

    2008-06-01

    Full Text Available Abstract Background In a traditional electrophoresis mobility shift assay (EMSA a 32P-labeled double-stranded DNA oligonucleotide or a restriction fragment bound to a protein is separated from the unbound DNA by polyacrylamide gel electrophoresis (PAGE in nondenaturing conditions. An extension of this method uses the large population of fragments derived from long genomic regions (approximately 600 kb for the identification of fragments containing protein binding regions. With this method, genomic DNA is fragmented by restriction enzymes, fragments are amplified by PCR, radiolabeled, incubated with nuclear proteins and the resulting DNA-protein complexes are separated by two-dimensional PAGE. Shifted DNA fragments containing protein binding sites are identified by using additional procedures, i. e. gel elution, PCR amplification, cloning and sequencing. Although the method allows simultaneous analysis of a large population of fragments, it is relatively laborious and can be used to detect only high affinity protein binding sites. Here we propose an alternative and straightforward strategy which is based on a combination of native and denaturing PAGE. This strategy allows the identification of DNA fragments containing low as well as high affinity protein binding regions, derived from genomic DNA ( Results We have combined an EMSA-based selection step with subsequent denaturing PAGE for the localization of protein binding regions in long (up to10 kb fragments of genomic DNA. Our strategy consists of the following steps: digestion of genomic DNA with a 4-cutter restriction enzyme (AluI, BsuRI, TruI, etc, separation of low and high molecular weight fractions of resultant DNA fragments, 32P-labeling with Klenow polymerase, traditional EMSA, gel elution and identification of the shifted bands (or smear by denaturing PAGE. The identification of DNA fragments containing protein binding sites is carried out by running the gel-eluted fragments alongside

  18. Systematically fragmented genes in a multipartite mitochondrial genome

    Science.gov (United States)

    Vlcek, Cestmir; Marande, William; Teijeiro, Shona; Lukeš, Julius; Burger, Gertraud

    2011-01-01

    Arguably, the most bizarre mitochondrial DNA (mtDNA) is that of the euglenozoan eukaryote Diplonema papillatum. The genome consists of numerous small circular chromosomes none of which appears to encode a complete gene. For instance, the cox1 coding sequence is spread out over nine different chromosomes in non-overlapping pieces (modules), which are transcribed separately and joined to a contiguous mRNA by trans-splicing. Here, we examine how many genes are encoded by Diplonema mtDNA and whether all are fragmented and their transcripts trans-spliced. Module identification is challenging due to the sequence divergence of Diplonema mitochondrial genes. By employing most sensitive protein profile search algorithms and comparing genomic with cDNA sequence, we recognize a total of 11 typical mitochondrial genes. The 10 protein-coding genes are systematically chopped up into three to 12 modules of 60–350 bp length. The corresponding mRNAs are all trans-spliced. Identification of ribosomal RNAs is most difficult. So far, we only detect the 3′-module of the large subunit ribosomal RNA (rRNA); it does not trans-splice with other pieces. The small subunit rRNA gene remains elusive. Our results open new intriguing questions about the biochemistry and evolution of mitochondrial trans-splicing in Diplonema. PMID:20935050

  19. Size-selected genomic libraries: the distribution and size-fractionation of restricted genomic DNA fragments by gel electrophoresis.

    Science.gov (United States)

    Gondo, Y

    1995-02-01

    By using one-dimensional genome scanning, it is possible to directly identify the restricted genomic DNA fragment that reflects the site of genetic change. The subsequent strategies to obtain the molecular clones of the corresponding restriction fragment are usually as follows: (i) the restriction of a mass quantity of an appropriate genomic DNA, (ii) the size-fractionation of the restricted DNA on a preparative electrophoresis gel in order to enrich the corresponding restriction fragment, (iii) the construction of the size-selected libraries from the fractionated genomic DNA, and (iv) the screening of the library to obtain an objective clone which is identified on the analytical genome scanning gel. A knowledge of the size distribution pattern of restriction fragments of the genomic DNA makes it possible to calculate the heterogeneity or complexity of the restriction fragment in each size-fraction. This manuscript first describes the distribution of the restriction fragments with respect to their length. Some examples of the practical application of this theory to genome scanning is then discussed using presumptive genome scanning gels. The way to calculate such DNA complexities in the prepared size-fractionated samples is also demonstrated. Such information should greatly facilitate the design of experimental strategies for the cloning of a certain size of genomic DNA after digestion with restriction enzyme(s) as is the case with genome scanning.

  20. Fragment-based approaches to enzyme inhibition

    OpenAIRE

    Ciulli, Alessio; Abell, Chris

    2007-01-01

    Fragment-based approaches have provided a new paradigm for small-molecule drug discovery. The methodology is complementary to high-throughput screening approaches, starting from fragments of low molecular complexity and high ligand efficiency, and building up to more potent inhibitors. The approach, which depends heavily on a number of biophysical techniques, is now being taken up by more groups in both industry and academia. This article describes key aspects of the process and highlights re...

  1. A fragmented metazoan organellar genome: the two mitochondrial chromosomes of Hydra magnipapillata

    Directory of Open Access Journals (Sweden)

    Wörheide Gert

    2008-07-01

    Full Text Available Abstract Background Animal mitochondrial (mt genomes are characteristically circular molecules of ~16–20 kb. Medusozoa (Cnidaria excluding Anthozoa are exceptional in that their mt genomes are linear and sometimes subdivided into two to presumably four different molecules. In the genus Hydra, the mt genome comprises one or two mt chromosomes. Here, we present the whole mt genome sequence from the hydrozoan Hydra magnipapillata, comprising the first sequence of a fragmented metazoan mt genome encoded on two linear mt chromosomes (mt1 and mt2. Results The H. magnipapillata mt chromosomes contain the typical metazoan set of 13 genes for respiratory proteins, the two rRNA genes and two tRNA genes. All genes are unidirectionally oriented on mt1 and mt2, and several genes overlap. The gene arrangement suggests that the two mt chromosomes originated from one linear molecule that separated between nd5 and rns. Strong correlations between the AT content of rRNA genes (rns and rnl and the AT content of protein-coding genes among 24 cnidarian genomes imply that base composition is mainly determined by mt genome-wide constraints. We show that identical inverted terminal repeats (ITR occur on both chromosomes; these ITR contain a partial copy or part of the 3' end of cox1 (54 bp. Additionally, both mt chromosomes possess identical oriented sequences (IOS at the 5' and 3' ends (5' and 3' IOS adjacent to the ITR. The 5' IOS contains trnM and non-coding sequences (119 bp, whereas the 3' IOS comprises a larger part (mt2 with a larger partial copy of cox1 (243 bp. Conclusion ITR are also documented in the two other available medusozoan mt genomes (Aurelia aurita and Hydra oligactis. In H. magnipapillata, the arrangement of ITR and 5' IOS and 3' IOS suggest that these regions are crucial for mt DNA replication and/or transcription initiation. An analogous organization occurs in a highly fragmented ichthyosporean mt genome. With our data, we can reject a model of

  2. Invariant Object Recognition Based on Extended Fragments

    Directory of Open Access Journals (Sweden)

    Evgeniy eBart

    2012-08-01

    Full Text Available Visual appearance of natural objects is profoundly affected by viewing conditions such as viewpoint and illumination. Human subjects can nevertheless compensate well for variations in these viewing conditions. The strategies that the visual system uses to accomplish this are largely unclear. Previous computational studies have suggested that in principle, certain types of object fragments (rather than whole objects can be used for invariant recognition. However, whether the human visual system is actually capable of using this strategy remains unknown. Here, we show that human observers can achieve illumination invariance by using object fragments that carry the relevant information. To determine this, we have used novel, but naturalistic, 3-D visual objects called ‘digital embryos’. Using novel instances of whole embryos, not fragments, we trained subjects to recognize individual embryos across illuminations. We then tested the illumination-invariant object recognition performance of subjects using fragments. We found that the performance was strongly correlated with the mutual information (MI of the fragments, provided that MI value took variations in illumination into consideration. This correlation was not attributable to any systematic differences in task difficulty between different fragments. These results reveal two important principles of invariant object recognition. First, the subjects can achieve invariance at least in part by compensating for the changes in the appearance of small local features, rather than of whole objects. Second, the subjects do not always rely on generic or pre-existing invariance of features (i.e., features whose appearance remains largely unchanged by variations in illumination, and are capable of using learning to compensate for appearance changes when necessary. These psychophysical results closely fit the predictions of earlier computational studies of fragment-based invariant object recognition.

  3. Invariant object recognition based on extended fragments.

    Science.gov (United States)

    Bart, Evgeniy; Hegdé, Jay

    2012-01-01

    Visual appearance of natural objects is profoundly affected by viewing conditions such as viewpoint and illumination. Human subjects can nevertheless compensate well for variations in these viewing conditions. The strategies that the visual system uses to accomplish this are largely unclear. Previous computational studies have suggested that in principle, certain types of object fragments (rather than whole objects) can be used for invariant recognition. However, whether the human visual system is actually capable of using this strategy remains unknown. Here, we show that human observers can achieve illumination invariance by using object fragments that carry the relevant information. To determine this, we have used novel, but naturalistic, 3-D visual objects called "digital embryos." Using novel instances of whole embryos, not fragments, we trained subjects to recognize individual embryos across illuminations. We then tested the illumination-invariant object recognition performance of subjects using fragments. We found that the performance was strongly correlated with the mutual information (MI) of the fragments, provided that MI value took variations in illumination into consideration. This correlation was not attributable to any systematic differences in task difficulty between different fragments. These results reveal two important principles of invariant object recognition. First, the subjects can achieve invariance at least in part by compensating for the changes in the appearance of small local features, rather than of whole objects. Second, the subjects do not always rely on generic or pre-existing invariance of features (i.e., features whose appearance remains largely unchanged by variations in illumination), and are capable of using learning to compensate for appearance changes when necessary. These psychophysical results closely fit the predictions of earlier computational studies of fragment-based invariant object recognition.

  4. A specific DNA fragment of Gahai parthenogenesis Artemia genome%尕海孤雌生殖卤虫基因组的特异DNA片段

    Institute of Scientific and Technical Information of China (English)

    曾辉; 陈成彬; 刘凤岐; 宋文芹; 陈瑞阳

    2004-01-01

    Artemia is not only valuable for aquaculture but also exhibits unique biological characters. In this study, based on the silkworm Bmdsx gene, a pair of primers was designed. After amplification with these primers, a DNA fragment Apdsx900 from parthenogenesis Artemia genomic DNA was obtained. The following Southern blotting and FISH analysis also proved the fragment was specific for Gahai parthenogenesis Artemia genome. To our knowledge, this is the first report of parthenogenesis genome specific DNA fragments. Apdsxg00 shares little similarity with the silkworm Bmdsx gene. [Acta Zoologica Sinica 50 (3): 470-474, 2004].

  5. Sequence Determination from Overlapping Fragments: A Simple Model of Whole-Genome Shotgun Sequencing

    Science.gov (United States)

    Derrida, Bernard; Fink, Thomas M.

    2002-02-01

    Assembling fragments randomly sampled from along a sequence is the basis of whole-genome shotgun sequencing, a technique used to map the DNA of the human and other genomes. We calculate the probability that a random sequence can be recovered from a collection of overlapping fragments. We provide an exact solution for an infinite alphabet and in the case of constant overlaps. For the general problem we apply two assembly strategies and give the probability that the assembly puzzle can be solved in the limit of infinitely many fragments.

  6. Mind the gap; seven reasons to close fragmented genome assemblies

    Science.gov (United States)

    Like other domains of life, research into the biology of filamentous microbes has greatly benefited from the advent of whole-genome sequencing. Next-generation sequencing (NGS) technologies have revolutionized sequencing, making genomic sciences accessible to many academic laboratories including tho...

  7. Improved chemical shift based fragment selection for CS-Rosetta using Rosetta3 fragment picker

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Robert [Hospital for Sick Children, Program in Molecular Structure and Function (Canada); Shen, Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Baker, David [University of Washington, Department of Biochemistry (United States); Lange, Oliver F., E-mail: oliver.lange@tum.de [Technische Universitaet Muenchen, Department Chemie, Biomolecular NMR and Munich Center for Integrated Protein Science (Germany)

    2013-10-15

    A new fragment picker has been developed for CS-Rosetta that combines beneficial features of the original fragment picker, MFR, used with CS-Rosetta, and the fragment picker, NNMake, that was used for purely sequence based fragment selection in the context of ROSETTA de-novo structure prediction. Additionally, the new fragment picker has reduced sensitivity to outliers and other difficult to match data points rendering the protocol more robust and less likely to introduce bias towards wrong conformations in cases where data is bad, missing or inconclusive. The fragment picker protocol gives significant improvements on 6 of 23 CS-Rosetta targets. An independent benchmark on 39 protein targets, whose NMR data sets were published only after protocol optimization had been finished, also show significantly improved performance for the new fragment picker (van der Schot et al. in J Biomol NMR, 2013)

  8. Large fragment Bst DNA polymerase for whole genome amplification of DNA from formalin-fixed paraffin-embedded tissues

    Directory of Open Access Journals (Sweden)

    Watson Spencer K

    2006-12-01

    Full Text Available Abstract Background Formalin-fixed paraffin-embedded (FFPE tissues represent the largest source of archival biological material available for genomic studies of human cancer. Therefore, it is desirable to develop methods that enable whole genome amplification (WGA using DNA extracted from FFPE tissues. Multiple-strand Displacement Amplification (MDA is an isothermal method for WGA that uses the large fragment of Bst DNA polymerase. To date, MDA has been feasible only for genomic DNA isolated from fresh or snap-frozen tissue, and yields a representational distortion of less than threefold. Results We amplified genomic DNA of five FFPE samples of normal human lung tissue with the large fragment of Bst DNA polymerase. Using quantitative PCR, the copy number of 7 genes was evaluated in both amplified and original DNA samples. Four neuroblastoma xenograft samples derived from cell lines with known N-myc gene copy number were also evaluated, as were 7 samples of non-small cell lung cancer (NSCLC tumors with known Skp2 gene amplification. In addition, we compared the array comparative genomic hybridization (CGH-based genome profiles of two NSCLC samples before and after Bst MDA. A median 990-fold amplification of DNA was achieved. The DNA amplification products had a very high molecular weight (> 23 Kb. When the gene content of the amplified samples was compared to that of the original samples, the representational distortion was limited to threefold. Array CGH genome profiles of amplified and non-amplified FFPE DNA were similar. Conclusion Large fragment Bst DNA polymerase is suitable for WGA of DNA extracted from FFPE tissues, with an expected maximal representational distortion of threefold. Amplified DNA may be used for the detection of gene copy number changes by quantitative realtime PCR and genome profiling by array CGH.

  9. Accurate phylogenetic classification of DNA fragments based onsequence composition

    Energy Technology Data Exchange (ETDEWEB)

    McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis; Hugenholtz, Philip; Rigoutsos, Isidore

    2006-05-01

    Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequence characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.

  10. Human tyrosine hydroxylase (TH) genomic fragment (pHGTH4) identifies a PstI polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Kelsoe, J.R.; Stubblefield, B.K.; Ginns, E.I. (National Institute of Mental Health, Bethesda, MD (USA))

    1988-08-11

    pHGTH4 is a 2.3 kb Bam HI genomic fragment of tyrosine hydroxylase isolated from a lambda EMBL3 Sau3A partial digest human genomic library prepared from lymphoblasts. The fragment was subcloned into the Bam HI site of pBLUESCRIPT. The absence of a polymorphic Pst I site results in the 1.3 kb fragment, A1; whereas its presence results in a 0.7 kb and a 0.6 kb fragment, A2, as shown in the figure. It was located at 11p15 by in situ hybridization. Mendelian inheritance was demonstrated in a 23 member family with 12 children. Pst I was not polymorphic (all homoallelic for A2) in a panel of 6 subjects from Amish pedigree 110 (IMR 884), in which two other chromosome 11 RFLP's have been reported to be linked to manic-depressive illness.

  11. Implications of promiscuous Pim-1 kinase fragment inhibitor hydrophobic interactions for fragment-based drug design.

    Science.gov (United States)

    Good, Andrew C; Liu, Jinyu; Hirth, Bradford; Asmussen, Gary; Xiang, Yibin; Biemann, Hans-Peter; Bishop, Kimberly A; Fremgen, Trisha; Fitzgerald, Maria; Gladysheva, Tatiana; Jain, Annuradha; Jancsics, Katherine; Metz, Markus; Papoulis, Andrew; Skerlj, Renato; Stepp, J David; Wei, Ronnie R

    2012-03-22

    We have studied the subtleties of fragment docking and binding using data generated in a Pim-1 kinase inhibitor program. Crystallographic and docking data analyses have been undertaken using inhibitor complexes derived from an in-house surface plasmon resonance (SPR) fragment screen, a virtual needle screen, and a de novo designed fragment inhibitor hybrid. These investigations highlight that fragments that do not fill their binding pocket can exhibit promiscuous hydrophobic interactions due to the lack of steric constraints imposed on them by the boundaries of said pocket. As a result, docking modes that disagree with an observed crystal structure but maintain key crystallographically observed hydrogen bonds still have potential value in ligand design and optimization. This observation runs counter to the lore in fragment-based drug design that all fragment elaboration must be based on the parent crystal structure alone.

  12. Non PCR-amplified Transcripts and AFLP fragments as reduced representations of the quail genome for 454 Titanium sequencing

    Directory of Open Access Journals (Sweden)

    Leterrier Christine

    2010-07-01

    Full Text Available Abstract Background SNP (Single Nucleotide Polymorphism discovery is now routinely performed using high-throughput sequencing of reduced representation libraries. Our objective was to adapt 454 GS FLX based sequencing methodologies in order to obtain the largest possible dataset from two reduced representations libraries, produced by AFLP (Amplified Fragment Length Polymorphism for genomic DNA, and EST (Expressed Sequence Tag for the transcribed fraction of the genome. Findings The expressed fraction was obtained by preparing cDNA libraries without PCR amplification from quail embryo and brain. To optimize the information content for SNP analyses, libraries were prepared from individuals selected in three quail lines and each individual in the AFLP library was tagged. Sequencing runs produced 399,189 sequence reads from cDNA and 373,484 from genomic fragments, covering close to 250 Mb of sequence in total. Conclusions Both methods used to obtain reduced representations for high-throughput sequencing were successful after several improvements. The protocols may be used for several sequencing applications, such as de novo sequencing, tagged PCR fragments or long fragment sequencing of cDNA.

  13. A fragment of chloroplast DNA was transferred horizontally, probably from non-eudicots, to mitochondrial genome of Phaseolus.

    Science.gov (United States)

    Woloszynska, Magdalena; Bocer, Tomasz; Mackiewicz, Pawel; Janska, Hanna

    2004-11-01

    The mitochondrial genomes of some Phaseolus species contain a fragment of chloroplast trnA gene intron, named pvs-trnA for its location within the Phaseolus vulgaris sterility sequence (pvs). The purpose of this study was to determine the type of transfer (intracellular or horizontal) that gave rise to pvs-trnA. Using a PCR approach we could not find the respective portion of the trnA gene as a part of pvs outside the Phaseolus genus. However, a BLAST search revealed longer fragments of trnA present in the mitochondrial genomes of some Citrus species, Helianthus annuus and Zea mays. Basing on the identity or near-identity between these mitochondrial sequences and their chloroplast counterparts we concluded that they had relocated from chloroplasts to mitochondria via recent, independent, intracellular DNA transfers. In contrast, pvs-trnA displayed a relatively higher sequence divergence when compared with its chloroplast counterpart from Phaseolus vulgaris. Alignment of pvs-trnA with corresponding trnA fragments from 35 plant species as well as phylogenetic analysis revealed that pvs-trnA grouped with non-eudicot sequences and was well separated from all Fabales sequences. In conclusion, we propose that pvs-trnA arose via horizontal transfer of a trnA intron fragment from chloroplast of a non-eudicot plant to Phaseolus mitochondria. This is the first example of horizontal transfer of a chloroplast sequence to the mitochondrial genome in higher plants.

  14. Amplified fragment length polymorphism: an adept technique for genome mapping, genetic differentiation, and intraspecific variation in protozoan parasites.

    Science.gov (United States)

    Kumar, Awanish; Misra, Pragya; Dube, Anuradha

    2013-02-01

    With the advent of polymerase chain reaction (PCR), genetic markers are now accessible for all organisms, including parasites. Amplified fragment length polymorphism (AFLP) is a PCR-based marker for the rapid screening of genetic diversity and intraspecific variation. It is a potent fingerprinting technique for genomic DNAs of any origin or complexity and rapidly generates a number of highly replicable markers that allow high-resolution genotyping. AFLPs are convenient and reliable in comparison to other markers like random amplified polymorphic DNA, restriction fragment length polymorphism, and simple sequence repeat in terms of time and cost efficiency, reproducibility, and resolution as it does not require template DNA sequencing. In addition, AFLP essentially probes the entire genome at random, without prior sequence knowledge. So, AFLP markers have emerged as an advance type of genetic marker with broad application in genomic mapping, population genetics, and DNA fingerprinting and are ideally suited as screening tool for molecular markers linked with biological and clinical traits. This review describes the AFLP procedure and its applications and overview in the fingerprinting of a genome, which has been currently used in parasite genome research. We outline the AFLP procedure adapted for Leishmania genome study and discuss the benefits of AFLPs for assessing genetic variation and genome mapping over other existing molecular techniques. We highlight the possible use of AFLPs as genetic markers with its broad application in parasitological research because it allows random screening of the entire genome for linkage with genetic and clinical properties of the parasite. In this review, we have taken a pragmatic approach on the study of AFLP for genome mapping and polymorphism in protozoan parasites and conclude that AFLP is a very useful tool.

  15. Isolation of recombinant field strains of Marek's disease virus integrated with reticuloendotheliosis virus genome fragments

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Zhi; CUI; Zhizhong

    2005-01-01

    Two Marek's disease virus (MDV) field strains were isolated from chickens with tumors independently from Guangdong and Guangxi provinces, and it was confirmed that there were no co-infections with reticuloendotheliosis viruses (REV) in chicken embryo fibroblast cells (CEF) in indirect fluorescence antibody test (IFA) with REV-specific monoclonal antibodies. By dot blot hybridization and PCR of genomic DNA of MDV-infected CEF, it was indicated that LTR fragments of REV genome were integrated into genome of these two MDV field strains. To amplify and clone the integrated REV LTR with MDV sequence at the junction, 4 primers from REV LTR and 7 primers from MDV genome fragment with REV LTR insertion hot points were synthesized and 28 (4x7) pairs of primers (one from REV and another from MDV for each pair) were used in PCR while using the genomic DNA of both strains as the templates. The sequence data demonstrated that both recombinant field strains contained the same REV LTR inserted into MDV at the identical sites in US fragment of the genomes. From the above, it was speculated that both recombinant field MDVs were originated from a same recombinant virus and spread among chicken flocks in two provinces.

  16. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    Science.gov (United States)

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  17. Rapid phylogenetic and functional classification of short genomic fragments with signature peptides

    Directory of Open Access Journals (Sweden)

    Berendzen Joel

    2012-08-01

    Full Text Available Abstract Background Classification is difficult for shotgun metagenomics data from environments such as soils, where the diversity of sequences is high and where reference sequences from close relatives may not exist. Approaches based on sequence-similarity scores must deal with the confounding effects that inheritance and functional pressures exert on the relation between scores and phylogenetic distance, while approaches based on sequence alignment and tree-building are typically limited to a small fraction of gene families. We describe an approach based on finding one or more exact matches between a read and a precomputed set of peptide 10-mers. Results At even the largest phylogenetic distances, thousands of 10-mer peptide exact matches can be found between pairs of bacterial genomes. Genes that share one or more peptide 10-mers typically have high reciprocal BLAST scores. Among a set of 403 representative bacterial genomes, some 20 million 10-mer peptides were found to be shared. We assign each of these peptides as a signature of a particular node in a phylogenetic reference tree based on the RNA polymerase genes. We classify the phylogeny of a genomic fragment (e.g., read at the most specific node on the reference tree that is consistent with the phylogeny of observed signature peptides it contains. Using both synthetic data from four newly-sequenced soil-bacterium genomes and ten real soil metagenomics data sets, we demonstrate a sensitivity and specificity comparable to that of the MEGAN metagenomics analysis package using BLASTX against the NR database. Phylogenetic and functional similarity metrics applied to real metagenomics data indicates a signal-to-noise ratio of approximately 400 for distinguishing among environments. Our method assigns ~6.6 Gbp/hr on a single CPU, compared with 25 kbp/hr for methods based on BLASTX against the NR database. Conclusions Classification by exact matching against a precomputed list of signature

  18. Efficient exploration of chemical space by fragment-based screening.

    Science.gov (United States)

    Hall, Richard J; Mortenson, Paul N; Murray, Christopher W

    2014-01-01

    Screening methods seek to sample a vast chemical space in order to identify starting points for further chemical optimisation. Fragment based drug discovery exploits the superior sampling of chemical space that can be achieved when the molecular weight is restricted. Here we show that commercially available fragment space is still relatively poorly sampled and argue for highly sensitive screening methods to allow the detection of smaller fragments. We analyse the properties of our fragment library versus the properties of X-ray hits derived from the library. We particularly consider properties related to the degree of planarity of the fragments.

  19. Cloning of open reading frames and promoters from the Saccharomyces cerevisiae genome: construction of genomic libraries of random small fragments.

    Science.gov (United States)

    Santangelo, G M; Tornow, J; Moldave, K

    1986-01-01

    We have developed a novel efficient method, carrier-facilitated insertion, to insert small (150-600 bp) DNA fragments into plasmid vectors. This method employs a carrier segment of vector DNA to circumvent the difficulties in ligating two fragments together to generate a recombinant circle efficiently. We have used carrier-facilitated insertion to construct three genomic libraries of random (DNase I-generated) fragments from the Saccharomyces cerevisiae genome. One of these was an expression library, and the other two were promoter-cloning libraries. 87-90% of the Escherichia coli colonies in each library contained recombinant plasmids, and less than 3% of the recombinants contained more than one insert. Detection of open reading frames among the inserts in the expression library was accomplished by testing for beta-galactosidase activity. This methodology, unencumbered by the intrinsic disproportionality of cDNA libraries, can be used to identify and clone DNA that codes for a specific antigenic determinant. When used in combination with a method to detect and isolate random constitutive, repressible and inducible yeast promoters, these libraries should permit a comprehensive analysis of the yeast genome and its expression.

  20. Reference Based Genome Compression

    CERN Document Server

    Chern, Bobbie; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy

    2012-01-01

    DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target genome, and then compresses this mapping with an entropy coder. As an illustration of the performance: applying our algorithm to James Watson's genome with hg18 as a reference, we are able to reduce the 2991 megabyte (MB) genome down to 6.99 MB, while Gzip compresses it to 834.8 MB.

  1. Reference Based Genome Compression

    OpenAIRE

    Chern, Bobbie; Ochoa, Idoia; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy

    2012-01-01

    DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target gen...

  2. Genome fragmentation is not confined to the peridinin plastid in dinoflagellates.

    Science.gov (United States)

    Espelund, Mari; Minge, Marianne A; Gabrielsen, Tove M; Nederbragt, Alexander J; Shalchian-Tabrizi, Kamran; Otis, Christian; Turmel, Monique; Lemieux, Claude; Jakobsen, Kjetill S

    2012-01-01

    When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454 pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 3'-terminal portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K. veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates.

  3. Data Mining-based Fragmentation of XML Data Warehouses

    CERN Document Server

    Mahboubi, Hadj

    2008-01-01

    With the multiplication of XML data sources, many XML data warehouse models have been proposed to handle data heterogeneity and complexity in a way relational data warehouses fail to achieve. However, XML-native database systems currently suffer from limited performances, both in terms of manageable data volume and response time. Fragmentation helps address both these issues. Derived horizontal fragmentation is typically used in relational data warehouses and can definitely be adapted to the XML context. However, the number of fragments produced by classical algorithms is difficult to control. In this paper, we propose the use of a k-means-based fragmentation approach that allows to master the number of fragments through its $k$ parameter. We experimentally compare its efficiency to classical derived horizontal fragmentation algorithms adapted to XML data warehouses and show its superiority.

  4. Fragment-based activity space: smaller is better.

    Science.gov (United States)

    Hesterkamp, Thomas; Whittaker, Mark

    2008-06-01

    Fragment-based drug discovery has the potential to supersede traditional high throughput screening based drug discovery for molecular targets amenable to structure determination. This is because the chemical diversity coverage is better accomplished by a fragment collection of reasonable size than by larger HTS collections. Furthermore, fragments have the potential to be efficient target binders with higher probability than more elaborated drug-like compounds. The selection of the fragment screening technique is driven by sensitivity and throughput considerations, and we advocate in the present article the use of high concentration bioassays in conjunction with NMR-based hit confirmation. Subsequent ligand X-ray structure determination of the fragment ligand in complex with the target protein by co-crystallisation or crystal soaking can focus on confirmed binders.

  5. Unraveling the sperm proteome and post-genomic pathways associated with sperm nuclear DNA fragmentation.

    Science.gov (United States)

    Intasqui, Paula; Camargo, Mariana; Del Giudice, Paula T; Spaine, Deborah M; Carvalho, Valdemir M; Cardozo, Karina H M; Cedenho, Agnaldo P; Bertolla, Ricardo P

    2013-09-01

    Sperm DNA fragmentation has been suggested as a marker for infertility diagnosis and prognosis. Hence, understanding its impact on male physiology and post-genomic pathways would be clinically important. We performed the proteomics and functional enrichment analyses of viable spermatozoa from ejaculates with low and high sperm DNA fragmentation to identify protein expression and pathways altered in association with sperm DNA fragmentation. Sperm DNA fragmentation using the Comet assay and the Komet 6.0.1 software was assessed in raw samples from 89 subjects from a human reproduction service. The Low and High sperm DNA fragmentation groups were formed according to the Olive Tail Moment variable. Spermatozoa proteins from these groups were pooled and analyzed by a shotgun proteomic approach (2D nanoUPLC-ESI-MS(E)). Differentially expressed proteins were used for a functional enrichment study. Two hundred and fifty-seven proteins were identified or quantified in sperm from the Low and High sperm DNA fragmentation groups. Of these, seventy-one proteins were exclusively or overexpressed in the Low group, whereas twenty-three proteins were exclusively or overexpressed in the High group. One hundred and sixty-three proteins were conserved between these groups. We also functionally related the differentially expressed proteins in viable spermatozoa from the groups. Processes such as triacylglycerol metabolism, energy production, protein folding, response to unfolded proteins, and cellular detoxification were found to be altered in these cells. Sperm DNA fragmentation is associated with differential protein expression in viable spermatozoa. These proteins may potentially be used as biomarkers for sperm DNA integrity.

  6. Nested chromosomal fragmentation in yeast using the meganuclease I-Sce I: a new method for physical mapping of eukaryotic genomes.

    Science.gov (United States)

    Thierry, A; Dujon, B

    1992-11-11

    We have developed a new method for the physical mapping of genomes and the rapid sorting of genomic libraries which is based on chromosome fragmentation by the meganuclease I-Sce I, the first available member of a new class of endonucleases with very long recognition sequences. I-Sce I allows complete cleavage at a single artificially inserted site in an entire genome. Sites can be inserted by homologous recombination using specific cassettes containing selectable markers or, at random, using transposons. This method has been applied to the physical mapping of chromosome XI (620 kb) of Saccharomyces cerevisi and to the sorting of a cosmid library. Our strategy has potential applications to various genome mapping projects. A set of transgenic yeast strains carrying the I-Sce I sites at various locations along a chromosome defines physical intervals against which new genes, DNA fragments or clones can be mapped directly by simple hybridizations.

  7. Fenton fragmentation for faster electrophoretic on chip purification of amplifiable genomic DNA.

    Science.gov (United States)

    Hakenberg, S; Hügle, M; Meyer, P; Behrmann, O; Dame, G; Urban, G A

    2015-05-15

    With a rapid and simple actuation protocol electrophoretic nucleic acid extraction is easy automatable, requires no moving parts, is easy to miniaturize and furthermore possesses a size dependent cut-off filter adjustable by the pore size of the hydrogel. However electrophoretic nucleic acid extraction from bacteria has so far been applied mainly for short RNA targets. One of the reasons is that electrophoretic processing of unfragmented genomic DNA strands is time-consuming, because of the length. Here DNA fragmentation would accelerate extraction and isolation. We introduce on-chip lysis and non-enzymatic DNA cleavage directly followed by a purifying step for receiving amplifiable DNA fragments from bacteria in less than 25 min. In contrast to restriction enzymes the Fenton reaction is known to cleave DNA without nucleotide specificity. The reaction mix contains iron(II) EDTA, sodium ascorbate, hydrogen peroxide and lysozyme. The degree of fragmentation can be adjusted by the concentration of reagents. The results enable electrophoretic extraction methods to unspecifically process long genomic DNA in a short time frame, e.g. for pathogen detection in a lab-on-a-chip format. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fragment approaches in structure-based drug discovery

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Roderick E., E-mail: rod@ysbl.york.ac.uk [Vernalis R& D Ltd and University of York (United Kingdom)

    2008-05-01

    Fragment-based methods are successfully generating novel and selective drug-like inhibitors of protein targets, with a number of groups reporting compounds entering clinical trials. This paper summarizes the key features of the approach as one of the tools in structure-guided drug discovery. There has been considerable interest recently in what is known as 'fragment-based lead discovery'. The novel feature of the approach is to begin with small low-affinity compounds. The main advantage is that a larger potential chemical diversity can be sampled with fewer compounds, which is particularly important for new target classes. The approach relies on careful design of the fragment library, a method that can detect binding of the fragment to the protein target, determination of the structure of the fragment bound to the target, and the conventional use of structural information to guide compound optimization. In this article the methods are reviewed, and experiences in fragment-based discovery of lead series of compounds against kinases such as PDK1 and ATPases such as Hsp90 are discussed. The examples illustrate some of the key benefits and issues of the approach and also provide anecdotal examples of the patterns seen in selectivity and the binding mode of fragments across different protein targets.

  9. Multi-antigenic DNA immunization using herpes simplex virus type 2 genomic fragments.

    Science.gov (United States)

    Braun, Ralph P; Dong, Lichun; Jerome, Sarah; Herber, Renee; Roberts, Lee K; Payne, Lendon G

    2008-01-01

    A novel DNA vaccine was generated using genomic fragments of a pathogen as the source of both the antigen coding and regulatory regions. The constructs, termed subgenomic vaccines (SGVs), incorporated genomic DNA sequences up to 45 kbp that encompass 15-20 different genes. The SGVs were developed to generate vaccines capable of expressing multiple genes from a single construct, which could be of great benefit for commercialization. The unique feature of the SGVs is that genes are expressed from their native promoters rather than heterologous promoters typical of DNA vaccines. SGVs composed of genomic fragments from the DS-DNA virus Herpes Simplex Virus Type 2 (HSV-2) induced HSV-2 specific immune responses following particle-mediated epidermal delivery (PMED) in mice and these responses protected animals from lethal infectious challenge. A second generation SGV (SGV-H2), intended as an HSV-2 therapeutic vaccine, was generated that had five HSV-2 genes and was capable of generating multi-antigenic responses in naïve mice, and enhancing responses in infected animals. When compared with standard single plasmid vaccines, immunization with the SGV-H2 was found to be at least as effective as single plasmids or plasmid mixtures. The activity of the SGV-H2 could be greatly enhanced by co-delivering plasmids expressing E. coli heat labile toxin (LT) or cholera toxin CT as adjuvants as has been found previously for standard single-gene DNA vaccines.

  10. Isolation of restriction fragments containing origins of replication from complex genomes.

    Science.gov (United States)

    Mesner, Larry D; Hamlin, Joyce L

    2015-01-01

    The identification and isolation of origins of replication from mammalian genomes has been a demanding task owing to the great complexity of these genomes. However, two methods have been refined in recent years each of which allows significant enrichment of recently activated origins of replication from asynchronous cell cultures. In one of these, nascent strands are melted from the long template DNA, and the small, origin-centered strands are isolated on sucrose gradients. The second method involves the selective entrapment of bubble-containing fragments in gelling agarose and their subsequent recovery and isolation by molecular cloning. Libraries prepared by this method from Chinese hamster and human cells have been shown to be extremely pure, and provide a renewable resource of origins that can be used as probes on microarrays or sequenced by high-throughput techniques to localize them within the genomic source. The bubble-trapping method is described here for asynchronous mammalian cells that grow with reasonable doubling times and from which nuclear matrices can be reliably prepared. The method for nuclear matrix preparation and enrichment of replication intermediates is described in an accompanying chapter entitled "Purification of restriction fragments containing replication intermediates from mammalian cells for 2-D gel analysis" (Chapter 16 ).

  11. Small-fragment genomic libraries for the display of putative epitopes from clinically significant pathogens.

    Science.gov (United States)

    Henics, T; Winkler, B; Pfeifer, U; Gill, S R; Buschle, M; von Gabain, A; Meinke, A L

    2003-07-01

    Taking advantage of whole genome sequences of bacterial pathogens in many thriving diseases with global impact, we developed a comprehensive screening procedure for the identification of putative vaccine candidate antigens. Importantly, this procedure relies on highly representative small-fragment genomic libraries that are expressed to display frame-selected epitope-size peptides on a bacterial cell surface and to interact directly with carefully selected disease-relevant high-titer sera. Here we describe the generation of small-fragment genomic libraries of Gram-positive and Gram-negative clinically significant pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus agalactiae, and Streptococcus pneumoniae, Enterococcus faecalis, Helicobacter pylori, Chlamydia pneumoniae, the enterotoxigenic Escherichia coli, and Campylobacter jejuni. Large-scale sequencing revealed that the libraries, which provide an average of 20-fold coverage, were random and, as demonstrated with two S. aureus libraries, highly representative. Consistent with the comprehensive nature of this approach is the identification of epitopes that reside in both annotated and putatively novel open reading frames. The use of these libraries therefore allows for the rapid and direct identification of immunogenic epitopes with no apparent bias or difficulty that often associate with conventional expression methods.

  12. Fragrep: An Efficient Search Tool for Fragmented Patterns in Genomic Sequences

    Institute of Scientific and Technical Information of China (English)

    Axel Mosig; Katrin Sameith; Peter Stadler

    2006-01-01

    Many classes of non-coding RNAs (ncRNAs; including Y RNAs, vault RNAs,RNase P RNAs, and MRP RNAs, as well as a novel class recently discovered in Dictyostelium discoideum) can be characterized by a pattern of short but wellconserved sequence elements that are separated by poorly conserved regions of sometimes highly variable lengths. Local alignment algorithms such as BLAST are therefore ill-suited for the discovery of new homologs of such ncRNAs in genomic sequences. The Fragrep tool instead implements an efficient algorithm for detecting the pattern fragments that occur in a given order. For each pattern fragment,the mismatch tolerance and bounds on the length of the intervening sequences can be specified separately. Furthermore, matches can be ranked by a statistically well-motivated scoring scheme.

  13. Fragment-based lead discovery: leads by design.

    Science.gov (United States)

    Carr, Robin A E; Congreve, Miles; Murray, Christopher W; Rees, David C

    2005-07-15

    Fragment-based lead discovery (also referred to as needles, shapes, binding elements, seed templates or scaffolds) is a new lead discovery approach in which much lower molecular weight (120-250 Da) compounds are screened relative to HTS campaigns. Fragment-based hits are typically weak inhibitors (10 microM-mM), and therefore need to be screened at higher concentration using very sensitive biophysical detection techniques such as protein crystallography and NMR as the primary screening techniques, rather than bioassays. Compared with HTS hits, these fragments are simpler, less functionalized compounds with correspondingly lower affinity. However, fragment hits typically possess high 'ligand efficiency' (binding affinity per heavy atom) and so are highly suitable for optimization into clinical candidates with good drug-like properties.

  14. Selective binding of specific mouse genomic DNA fragments by mouse vimentin filaments in vitro.

    Science.gov (United States)

    Wang, X; Tolstonog, G; Shoeman, R L; Traub, P

    1996-03-01

    Mouse vimentin intermediate filaments (IFs) reconstituted in vitro were analyzed for their capacity to select certain DNA sequences from a mixture of about 500-bp-long fragments of total mouse genomic DNA. The fragments preferentially bound by the IFs and enriched by several cycles of affinity binding and polymerase chain reaction (PCR) amplification were cloned and sequenced. In general, they were G-rich and highly repetitive in that they often contained Gn, (GT)n, and (GA)n repeat elements. Other, more complex repeat sequences were identified as well. Apart from the capacity to adopt a Z-DNA and triple helix configuration under superhelical tension, many fragments were potentially able to form cruciform structures and contained consensus binding sites for various transcription factors. All of these sequence elements are known to occur in introns and 5'/3'-flanking regions of genes and to play roles in DNA transcription, recombination and replication. A FASTA search of the EMBL data bank indeed revealed that sequences homologous to the mouse repetitive DNA fragments are commonly associated with gene-regulatory elements. Unexpectedly, vimentin IFs also bound a large number of apparently overlapping, AT-rich DNA fragments that could be aligned into a composite sequence highly homologous to the 234-bp consensus centromere repeat sequence of gamma-satellite DNA. Previous experiments have shown a high affinity of vimentin for G-rich, repetitive telomere DNA sequences, superhelical DNA, and core histones. Taken together, these data support the hypothesis that, after penetration of the double nuclear membrane via an as yet unidentified mechanism, vimentin IFs cooperatively fix repetitive DNA sequence elements in a differentiation-specific manner in the nuclear periphery subjacent to the nuclear lamina and thus participate in the organization of chromatin and in the control of transcription, replication, and recombination processes. This includes aspects of global

  15. Characteristics of the tomato nuclear genome as determined by sequencing undermethylated EcoRI digested fragments

    DEFF Research Database (Denmark)

    Wang, Y.; van der Hoeven, R. S.; Nielsen, Rasmus

    2005-01-01

    A collection of 9,990 single-pass nuclear genomic sequences, corresponding to 5 Mb of tomato DNA, were obtained using methylation filtration (MF) strategy and reduced to 7,053 unique undermethylated genomic islands (UGIs) distributed as follows: (1) 59% non-coding sequences, (2) 28% coding...... sequences, (3) 12% transposons-96% of which are class I retroelements, and (4) 1% organellar sequences integrated into the nuclear genome over the past approximately 100 million years. A more detailed analysis of coding UGIs indicates that the unmethylated portion of tomato genes extends as far as 676 bp...... upstream and 766 bp downstream of coding regions with an average of 174 and 171 bp, respectively. Based on the analysis of the UGI copy distribution, the undermethylated portion of the tomato genome is determined to account for the majority of the unmethylated genes in the genome and is estimated...

  16. Automatic color based reassembly of fragmented images and paintings.

    Science.gov (United States)

    Tsamoura, Efthymia; Pitas, Ioannis

    2010-03-01

    The problem of reassembling image fragments arises in many scientific fields, such as forensics and archaeology. In the field of archaeology, the pictorial excavation findings are almost always in the form of painting fragments. The manual execution of this task is very difficult, as it requires great amount of time, skill and effort. Thus, the automation of such a work is very important and can lead to faster, more efficient, painting reassembly and to a significant reduction in the human effort involved. In this paper, an integrated method for automatic color based 2-D image fragment reassembly is presented. The proposed 2-D reassembly technique is divided into four steps. Initially, the image fragments which are probably spatially adjacent, are identified utilizing techniques employed in content based image retrieval systems. The second operation is to identify the matching contour segments for every retained couple of image fragments, via a dynamic programming technique. The next step is to identify the optimal transformation in order to align the matching contour segments. Many registration techniques have been evaluated to this end. Finally, the overall image is reassembled from its properly aligned fragments. This is achieved via a novel algorithm, which exploits the alignment angles found during the previous step. In each stage, the most robust algorithms having the best performance are investigated and their results are fed to the next step. We have experimented with the proposed method using digitally scanned images of actual torn pieces of paper image prints and we produced very satisfactory reassembly results.

  17. Heterogeneity in the methylation status of genomic DNA fragments demonstrating similar elution profiles in methyl-CpG binding domain column chromatography

    National Research Council Canada - National Science Library

    SHIRAISHI, Masahiko; SEKIGUCHI, Azumi; OATES, Adam; TERRY, Michael; MIYAMOTO, Yuji; SEKIYA, Takao

    2001-01-01

    .... However, the exact elution profile of a specific DNA fragment is unpredictable. In order to address this problem, we have investigated the methylation status of genomic DNA fragments having similar elution profiles...

  18. Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism.

    Science.gov (United States)

    Thompson, F L; Hoste, B; Vandemeulebroecke, K; Swings, J

    2001-12-01

    The genomic diversity among 506 strains of the family Vibrionaceae was analysed using Fluorescent Amplified Fragments Length Polymorphisms (FAFLP). Isolates were from different sources (e.g. fish, mollusc, shrimp, rotifers, artemia, and their culture water) in different countries, mainly from the aquacultural environment. Clustering of the FAFLP band patterns resulted in 69 clusters. A majority of the actually known species of the family Vibrionaceae formed separate clusters. Certain species e.g. V. alginolyticus, V. cholerae, V. cincinnatiensis, V. diabolicus, V. diazotrophicus, V. harveyi, V. logei, V. natriegens, V. nereis, V. splendidus and V. tubiashii were found to be ubiquitous, whereas V. halioticoli, V. ichthyoenteri, V. pectenicida and V. wodanis appear to be exclusively associated with a particular host or geographical region. Three main categories of isolates could be distinguished: (1) isolates with genomes related (i.e. with > or =45% FAFLP pattern similarity) to one of the known type strains; (2) isolates clustering (> or =45% pattern similarity) with more than one type strain; (3) isolates with genomes unrelated (<45% pattern similarity) to any of the type strains. The latter group consisted of 236 isolates distributed in 31 clusters indicating that many culturable taxa of the Vibrionaceae remain as yet to be described.

  19. Symmetry-based design of fragment separator optics.

    Energy Technology Data Exchange (ETDEWEB)

    Erdelyi, B.; Maloney, J.; Nolen, J.; Physics; Northern Illinois Univ.

    2007-06-01

    Next-generation high-intensity large acceptance fragment separators require a careful design due to the large high order aberrations induced by the large aperture superconducting magnets needed to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In this paper we propose a fragment separator layout based on various symmetries that satisfies the baseline requirements. Analytical calculations based on symmetry theories simplify the design to numerical optimization of a basic cell with only a few magnetic elements. The insight provided by these calculations resulted in the specification of a simple layout with large acceptance, transmission, and resolution. The design method may be easily adapted to project-specific needs. The important effects of energy degraders necessary for full fragment separator design will be addressed in a future publication.

  20. Symmetry-based design of fragment separator optics

    Directory of Open Access Journals (Sweden)

    B. Erdelyi

    2007-06-01

    Full Text Available Next-generation high-intensity large acceptance fragment separators require a careful design due to the large high order aberrations induced by the large aperture superconducting magnets needed to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In this paper we propose a fragment separator layout based on various symmetries that satisfies the baseline requirements. Analytical calculations based on symmetry theories simplify the design to numerical optimization of a basic cell with only a few magnetic elements. The insight provided by these calculations resulted in the specification of a simple layout with large acceptance, transmission, and resolution. The design method may be easily adapted to project-specific needs. The important effects of energy degraders necessary for full fragment separator design will be addressed in a future publication.

  1. Targeting metalloproteins by fragment-based lead discovery.

    Science.gov (United States)

    Johnson, Sherida; Barile, Elisa; Farina, Biancamaria; Purves, Angela; Wei, Jun; Chen, Li-Hsing; Shiryaev, Sergey; Zhang, Ziming; Rodionova, Irina; Agrawal, Arpita; Cohen, Seth M; Osterman, Andrei; Strongin, Alex; Pellecchia, Maurizio

    2011-08-01

    It has been estimated that nearly one-third of functional proteins contain a metal ion. These constitute a wide variety of possible drug targets including metalloproteinases, dehydrogenases, oxidoreductases, hydrolases, deacetylases, or many others in which the metal ion is either of catalytic or of structural nature. Despite the predominant role of a metal ion in so many classes of drug targets, current high-throughput screening techniques do not usually produce viable hits against these proteins, likely due to the lack of proper metal-binding pharmacophores in the current screening libraries. Herein, we describe a novel fragment-based drug discovery approach using a metal-targeting fragment library that is based on a variety of distinct classes of metal-binding groups designed to reliably anchor the fragments at the target's metal ions. We show that the approach can effectively identify novel, potent and selective agents that can be readily developed into metalloprotein-targeted therapeutics.

  2. The next generation of target capture technologies - large DNA fragment enrichment and sequencing determines regional genomic variation of high complexity.

    Science.gov (United States)

    Dapprich, Johannes; Ferriola, Deborah; Mackiewicz, Kate; Clark, Peter M; Rappaport, Eric; D'Arcy, Monica; Sasson, Ariella; Gai, Xiaowu; Schug, Jonathan; Kaestner, Klaus H; Monos, Dimitri

    2016-07-09

    The ability to capture and sequence large contiguous DNA fragments represents a significant advancement towards the comprehensive characterization of complex genomic regions. While emerging sequencing platforms are capable of producing several kilobases-long reads, the fragment sizes generated by current DNA target enrichment technologies remain a limiting factor, producing DNA fragments generally shorter than 1 kbp. The DNA enrichment methodology described herein, Region-Specific Extraction (RSE), produces DNA segments in excess of 20 kbp in length. Coupling this enrichment method to appropriate sequencing platforms will significantly enhance the ability to generate complete and accurate sequence characterization of any genomic region without the need for reference-based assembly. RSE is a long-range DNA target capture methodology that relies on the specific hybridization of short (20-25 base) oligonucleotide primers to selected sequence motifs within the DNA target region. These capture primers are then enzymatically extended on the 3'-end, incorporating biotinylated nucleotides into the DNA. Streptavidin-coated beads are subsequently used to pull-down the original, long DNA template molecules via the newly synthesized, biotinylated DNA that is bound to them. We demonstrate the accuracy, simplicity and utility of the RSE method by capturing and sequencing a 4 Mbp stretch of the major histocompatibility complex (MHC). Our results show an average depth of coverage of 164X for the entire MHC. This depth of coverage contributes significantly to a 99.94 % total coverage of the targeted region and to an accuracy that is over 99.99 %. RSE represents a cost-effective target enrichment method capable of producing sequencing templates in excess of 20 kbp in length. The utility of our method has been proven to generate superior coverage across the MHC as compared to other commercially available methodologies, with the added advantage of producing longer sequencing

  3. The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes.

    Science.gov (United States)

    Slamovits, Claudio H; Saldarriaga, Juan F; Larocque, Allen; Keeling, Patrick J

    2007-09-14

    The mitochondrial genome and the expression of the genes within it have evolved to be highly unusual in several lineages. Within alveolates, apicomplexans and dinoflagellates share the most reduced mitochondrial gene content on record, but differ from one another in organisation and function. To clarify how these characteristics originated, we examined mitochondrial genome form and expression in a key lineage that arose close to the divergence of apicomplexans and dinoflagellates, Oxyrrhis marina. We show that Oxyrrhis is a basal member of the dinoflagellate lineage whose mitochondrial genome has some unique characteristics while sharing others with apicomplexans or dinoflagellates. Specifically, Oxyrrhis has the smallest gene complement known, with several rRNA fragments and only two protein coding genes, cox1 and a cob-cox3 fusion. The genome appears to be highly fragmented, like that of dinoflagellates, but genes are frequently arranged as tandem copies, reminiscent of the repeating nature of the Plasmodium genome. In dinoflagellates and Oxyrrhis, genes are found in many arrangements, but the Oxyrrhis genome appears to be more structured, since neighbouring genes or gene fragments are invariably the same: cox1 and the cob-cox3 fusion were never found on the same genomic fragment. Analysing hundreds of cDNAs for both genes and circularized mRNAs from cob-cox3 showed that neither uses canonical start or stop codons, although a UAA terminator is created in the cob-cox3 fusion mRNA by post-transcriptional oligoadenylation. mRNAs from both genes also use a novel 5' oligo(U) cap. Extensive RNA editing is characteristic of dinoflagellates, but we find no editing in Oxyrrhis. Overall, the combination of characteristics found in the Oxyrrhis genome allows us to plot the sequence of many events that led to the extreme organisation of apicomplexan and dinoflalgellate mitochondrial genomes.

  4. Considerations of Protein Subpockets in Fragment-Based Drug Design.

    Science.gov (United States)

    Bartolowits, Matthew; Davisson, V Jo

    2016-01-01

    While the fragment-based drug design approach continues to gain importance, gaps in the tools and methods available in the identification and accurate utilization of protein subpockets have limited the scope. The importance of these features of small molecule-protein recognition is highlighted with several examples. A generalized solution for the identification of subpockets and corresponding chemical fragments remains elusive, but there are numerous advancements in methods that can be used in combination to address subpockets. Finally, additional examples of approaches that consider the relative importance of small-molecule co-dependence of protein conformations are highlighted to emphasize an increased significance of subpockets, especially at protein interfaces.

  5. GTP-specific fab fragment-based GTPase activity assay.

    Science.gov (United States)

    Kopra, Kari; Rozwandowicz-Jansen, Anita; Syrjänpää, Markku; Blaževitš, Olga; Ligabue, Alessio; Veltel, Stefan; Lamminmäki, Urpo; Abankwa, Daniel; Härmä, Harri

    2015-03-17

    GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.

  6. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9.

    Directory of Open Access Journals (Sweden)

    Luqing Zhang

    Full Text Available ZFN, TALENs and CRISPR/Cas9 system have been used to generate point mutations and large fragment deletions and insertions in genomic modifications. CRISPR/Cas9 system is the most flexible and fast developing technology that has been extensively used to make mutations in all kinds of organisms. However, the most mutations reported up to date are small insertions and deletions. In this report, CRISPR/Cas9 system was used to make large DNA fragment deletions and insertions, including entire Dip2a gene deletion, about 65kb in size, and β-galactosidase (lacZ reporter gene insertion of larger than 5kb in mouse. About 11.8% (11/93 are positive for 65kb deletion from transfected and diluted ES clones. High targeting efficiencies in ES cells were also achieved with G418 selection, 46.2% (12/26 and 73.1% (19/26 for left and right arms respectively. Targeted large fragment deletion efficiency is about 21.4% of live pups or 6.0% of injected embryos. Targeted insertion of lacZ reporter with NEO cassette showed 27.1% (13/48 of targeting rate by ES cell transfection and 11.1% (2/18 by direct zygote injection. The procedures have bypassed in vitro transcription by directly co-injection of zygotes or co-transfection of embryonic stem cells with circular plasmid DNA. The methods are technically easy, time saving, and cost effective in generating mouse models and will certainly facilitate gene function studies.

  7. Genomic variations of Mycoplasma capricolum subsp capripneumoniae detected by amplified fragment length polymorphism (AFLP) analysis

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Bolske, G.; Ahrens, Peter;

    2000-01-01

    The genetic diversity of Mycoplasma capricolum subsp. capripneumoniae strains based on determination of amplified fragment length polymorphisms (AFLP) is described. AFLP fingerprints of 38 strains derived from different countries in Africa and the Middle East consisted of over 100 bands in the size...... found by 16S rDNA analysis. The present data support previous observations regarding genetic homogeneity of M. capricolum subsp. capripneumoniae, and confirm the two evolutionary lines of descent found by analysis of 16S rRNA genes....

  8. DNA fragments assembly based on nicking enzyme system.

    Directory of Open Access Journals (Sweden)

    Rui-Yan Wang

    Full Text Available A couple of DNA ligation-independent cloning (LIC methods have been reported to meet various requirements in metabolic engineering and synthetic biology. The principle of LIC is the assembly of multiple overlapping DNA fragments by single-stranded (ss DNA overlaps annealing. Here we present a method to generate single-stranded DNA overlaps based on Nicking Endonucleases (NEases for LIC, the method was termed NE-LIC. Factors related to cloning efficiency were optimized in this study. This NE-LIC allows generating 3'-end or 5'-end ss DNA overlaps of various lengths for fragments assembly. We demonstrated that the 10 bp/15 bp overlaps had the highest DNA fragments assembling efficiency, while 5 bp/10 bp overlaps showed the highest efficiency when T4 DNA ligase was added. Its advantage over Sequence and Ligation Independent Cloning (SLIC and Uracil-Specific Excision Reagent (USER was obvious. The mechanism can be applied to many other LIC strategies. Finally, the NEases based LIC (NE-LIC was successfully applied to assemble a pathway of six gene fragments responsible for synthesizing microbial poly-3-hydroxybutyrate (PHB.

  9. Fragment-based prediction of skin sensitization using recursive partitioning.

    Science.gov (United States)

    Lu, Jing; Zheng, Mingyue; Wang, Yong; Shen, Qiancheng; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian

    2011-09-01

    Skin sensitization is an important toxic endpoint in the risk assessment of chemicals. In this paper, structure-activity relationships analysis was performed on the skin sensitization potential of 357 compounds with local lymph node assay data. Structural fragments were extracted by GASTON (GrAph/Sequence/Tree extractiON) from the training set. Eight fragments with accuracy significantly higher than 0.73 (precursive partitioning tree (RP tree) for classification. The balanced accuracy of the training set, test set I, and test set II in the leave-one-out model were 0.846, 0.800, and 0.809, respectively. The results highlight that fragment-based RP tree is a preferable method for identifying skin sensitizers. Moreover, the selected fragments provide useful structural information for exploring sensitization mechanisms, and RP tree creates a graphic tree to identify the most important properties associated with skin sensitization. They can provide some guidance for designing of drugs with lower sensitization level.

  10. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery.

    Science.gov (United States)

    Williams, Glyn; Ferenczy, György G; Ulander, Johan; Keserű, György M

    2016-12-01

    Small is beautiful - reducing the size and complexity of chemical starting points for drug design allows better sampling of chemical space, reveals the most energetically important interactions within protein-binding sites and can lead to improvements in the physicochemical properties of the final drug. The impact of fragment-based drug discovery (FBDD) on recent drug discovery projects and our improved knowledge of the structural and thermodynamic details of ligand binding has prompted us to explore the relationships between ligand-binding thermodynamics and FBDD. Information on binding thermodynamics can give insights into the contributions to protein-ligand interactions and could therefore be used to prioritise compounds with a high degree of specificity in forming key interactions.

  11. Genome-wide macrosynteny among Fusarium species in the Gibberella fujikuroi complex revealed by amplified fragment length polymorphisms.

    Science.gov (United States)

    De Vos, Lieschen; Steenkamp, Emma T; Martin, Simon H; Santana, Quentin C; Fourie, Gerda; van der Merwe, Nicolaas A; Wingfield, Michael J; Wingfield, Brenda D

    2014-01-01

    The Gibberella fujikuroi complex includes many Fusarium species that cause significant losses in yield and quality of agricultural and forestry crops. Due to their economic importance, whole-genome sequence information has rapidly become available for species including Fusarium circinatum, Fusarium fujikuroi and Fusarium verticillioides, each of which represent one of the three main clades known in this complex. However, no previous studies have explored the genomic commonalities and differences among these fungi. In this study, a previously completed genetic linkage map for an interspecific cross between Fusarium temperatum and F. circinatum, together with genomic sequence data, was utilized to consider the level of synteny between the three Fusarium genomes. Regions that are homologous amongst the Fusarium genomes examined were identified using in silico and pyrosequenced amplified fragment length polymorphism (AFLP) fragment analyses. Homology was determined using BLAST analysis of the sequences, with 777 homologous regions aligned to F. fujikuroi and F. verticillioides. This also made it possible to assign the linkage groups from the interspecific cross to their corresponding chromosomes in F. verticillioides and F. fujikuroi, as well as to assign two previously unmapped supercontigs of F. verticillioides to probable chromosomal locations. We further found evidence of a reciprocal translocation between the distal ends of chromosome 8 and 11, which apparently originated before the divergence of F. circinatum and F. temperatum. Overall, a remarkable level of macrosynteny was observed among the three Fusarium genomes, when comparing AFLP fragments. This study not only demonstrates how in silico AFLPs can aid in the integration of a genetic linkage map to the physical genome, but it also highlights the benefits of using this tool to study genomic synteny and architecture.

  12. Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers

    KAUST Repository

    Zhou, Jian

    2017-01-17

    The development of strain sensors featuring both ultra high sensitivity and high stretchability is still a challenge. We demonstrate that strain sensors based on fragmented single-walled carbon nanotube (SWCNT) paper embedded in poly(dimethylsiloxane) (PDMS) can sustain their sensitivity even at very high strain levels (with a gauge factor of over 10(7) at 50% strain). This record sensitivity is ascribed to the low initial electrical resistance (5-28 Omega) of the SWCNT paper and the wide change in resistance (up to 10(6) Omega) governed by the percolated network of SWCNT in the cracked region. The sensor response remains nearly unchanged after 10 000 strain cycles at 20% proving the robustness of this technology. This fragmentation based sensing system brings opportunities to engineer highly sensitive stretchable sensors.

  13. A fragment-based approach to the SAMPL3 Challenge

    Science.gov (United States)

    Kulp, John L.; Blumenthal, Seth N.; Wang, Qiang; Bryan, Richard L.; Guarnieri, Frank

    2012-05-01

    The success of molecular fragment-based design depends critically on the ability to make predictions of binding poses and of affinity ranking for compounds assembled by linking fragments. The SAMPL3 Challenge provides a unique opportunity to evaluate the performance of a state-of-the-art fragment-based design methodology with respect to these requirements. In this article, we present results derived from linking fragments to predict affinity and pose in the SAMPL3 Challenge. The goal is to demonstrate how incorporating different aspects of modeling protein-ligand interactions impact the accuracy of the predictions, including protein dielectric models, charged versus neutral ligands, ΔΔGs solvation energies, and induced conformational stress. The core method is based on annealing of chemical potential in a Grand Canonical Monte Carlo (GC/MC) simulation. By imposing an initially very high chemical potential and then automatically running a sequence of simulations at successively decreasing chemical potentials, the GC/MC simulation efficiently discovers statistical distributions of bound fragment locations and orientations not found reliably without the annealing. This method accounts for configurational entropy, the role of bound water molecules, and results in a prediction of all the locations on the protein that have any affinity for the fragment. Disregarding any of these factors in affinity-rank prediction leads to significantly worse correlation with experimentally-determined free energies of binding. We relate three important conclusions from this challenge as applied to GC/MC: (1) modeling neutral ligands—regardless of the charged state in the active site—produced better affinity ranking than using charged ligands, although, in both cases, the poses were almost exactly overlaid; (2) simulating explicit water molecules in the GC/MC gave better affinity and pose predictions; and (3) applying a ΔΔGs solvation correction further improved the ranking of the

  14. Restriction site extension PCR: a novel method for high-throughput characterization of tagged DNA fragments and genome walking.

    Directory of Open Access Journals (Sweden)

    Jiabing Ji

    Full Text Available BACKGROUND: Insertion mutant isolation and characterization are extremely valuable for linking genes to physiological function. Once an insertion mutant phenotype is identified, the challenge is to isolate the responsible gene. Multiple strategies have been employed to isolate unknown genomic DNA that flanks mutagenic insertions, however, all these methods suffer from limitations due to inefficient ligation steps, inclusion of restriction sites within the target DNA, and non-specific product generation. These limitations become close to insurmountable when the goal is to identify insertion sites in a high throughput manner. METHODOLOGY/PRINCIPAL FINDINGS: We designed a novel strategy called Restriction Site Extension PCR (RSE-PCR to efficiently conduct large-scale isolation of unknown genomic DNA fragments linked to DNA insertions. The strategy is a modified adaptor-mediated PCR without ligation. An adapter, with complementarity to the 3' overhang of the endonuclease (KpnI, NsiI, PstI, or SacI restricted DNA fragments, extends the 3' end of the DNA fragments in the first cycle of the primary RSE-PCR. During subsequent PCR cycles and a second semi-nested PCR (secondary RSE-PCR, touchdown and two-step PCR are combined to increase the amplification specificity of target fragments. The efficiency and specificity was demonstrated in our characterization of 37 tex mutants of Arabidopsis. All the steps of RSE-PCR can be executed in a 96 well PCR plate. Finally, RSE-PCR serves as a successful alternative to Genome Walker as demonstrated by gene isolation from maize, a plant with a more complex genome than Arabidopsis. CONCLUSIONS/SIGNIFICANCE: RSE-PCR has high potential application in identifying tagged (T-DNA or transposon sequence or walking from known DNA toward unknown regions in large-genome plants, with likely application in other organisms as well.

  15. Fragmentation characteristics analysis of sandstone fragments based on impact rockburst test

    Directory of Open Access Journals (Sweden)

    Dongqiao Liu

    2014-06-01

    Full Text Available Impact rockburst test on sandstone samples with a central hole is carried out under true triaxial static loads and vertical dynamic load conditions, and rock fragments after the test are collected. The fragments of sandstone generated from strain rockburst test and uniaxial compression test are also collected. The fragments are weighed and the length, width and thickness of each piece of fragments are measured respectively. The fragment quantities with coarse, medium, fine and micro grains in different size ranges, mass and particles distributions are also analyzed. Then, the fractal dimension of fragments is calculated by the methods of size-frequency, mass-frequency and length-to-thickness ratio-frequency. It is found that the crushing degree of impact rockburst fragments is higher, accompanied with blocky characteristics observably. The mass percentage of small grains, including fine and micro grains, in impact rockburst test is higher than those in strain rockburst test and uniaxial compression test. Energy dissipation from rockburst tests is more than that from uniaxial compression test, as the quantity of micro grains generated does.

  16. Fragmentation characteristics analysis of sandstone fragments based on impact rockburst test

    Institute of Scientific and Technical Information of China (English)

    Dongqiao Liu; Dejian Li; Fei Zhao; Chengchao Wang

    2014-01-01

    Impact rockburst test on sandstone samples with a central hole is carried out under true triaxial static loads and vertical dynamic load conditions, and rock fragments after the test are collected. The fragments of sandstone generated from strain rockburst test and uniaxial compression test are also collected. The fragments are weighed and the length, width and thickness of each piece of fragments are measured respectively. The fragment quantities with coarse, medium, fine and micro grains in different size ranges, mass and particles distributions are also analyzed. Then, the fractal dimension of fragments is calculated by the methods of size-frequency, mass-frequency and length-to-thickness ratio-frequency. It is found that the crushing degree of impact rockburst fragments is higher, accompanied with blocky character-istics observably. The mass percentage of small grains, including fine and micro grains, in impact rock-burst test is higher than those in strain rockburst test and uniaxial compression test. Energy dissipation from rockburst tests is more than that from uniaxial compression test, as the quantity of micro grains generated does.

  17. Identification and cloning of a new category of DNA fragments which are poorly represented in human genomic libraries.

    Science.gov (United States)

    Wong, P; Myal, Y; Shui, R; Tenniswood, M

    1993-01-29

    We have developed an alternative strategy for the preparation of genomic libraries that ensures better representation of genomic sequences commonly underrepresented in genomic libraries constructed using standard protocols. To overcome the apparent bias against genomic sequences containing clusters of restriction sites we have used nonoptimized restriction digestions to generate a mixture of DNA fragments which have been cloned into the EMBL3 vector. To validate this protocol we have screened the EMBL3 library to identify a full length genomic clone of the prolactin-inducible gene (PIP). Screening 4 other, commercially available, genomic libraries prepared using standard protocols for restriction digestion of the genomic DNA failed to identify any full length clones. We show that this increase in the representation of the full length PIP gene in the EMBL3 genomic library is attributable to the method of insert preparation used and suggests that an additional subset of sequences that may be poorly represented in, or absent from, established libraries may be cloned using this modified protocol.

  18. PREFIX-BASED LABELING ANNOTATION FOR EFFECTIVE XML FRAGMENTATION

    Directory of Open Access Journals (Sweden)

    Kok-Leong Koong

    2015-05-01

    Full Text Available XML is gradually employed as a standard of data exchange in web environment since its inception in the 90s until present. It serves as a data exchange between systems and other applications. Meanwhile the data volume has grown substantially in the web and thus effective methods of storing and retrieving these data is essential. One recommended way is physically or virtually fragments the large chunk of data and distributes the fragments into different nodes. Fragmentation design of XML document contains of two parts: fragmentation operation and fragmentation method. The three fragmentation operations are Horizontal, Vertical and Hybrid. It determines how the XML should be fragmented. This paper aims to give an overview on the fragmentation design consideration and subsequently, propose a fragmentation technique using number addressing.

  19. BrucellaBase: Genome information resource.

    Science.gov (United States)

    Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Khader, L K M Abdul; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-09-01

    Brucella sp. causes a major zoonotic disease, brucellosis. Brucella belongs to the family Brucellaceae under the order Rhizobiales of Alphaproteobacteria. We present BrucellaBase, a web-based platform, providing features of a genome database together with unique analysis tools. We have developed a web version of the multilocus sequence typing (MLST) (Whatmore et al., 2007) and phylogenetic analysis of Brucella spp. BrucellaBase currently contains genome data of 510 Brucella strains along with the user interfaces for BLAST, VFDB, CARD, pairwise genome alignment and MLST typing. Availability of these tools will enable the researchers interested in Brucella to get meaningful information from Brucella genome sequences. BrucellaBase will regularly be updated with new genome sequences, new features along with improvements in genome annotations. BrucellaBase is available online at http://www.dbtbrucellosis.in/brucellabase.html or http://59.99.226.203/brucellabase/homepage.html.

  20. Global genomic diversity of human papillomavirus 6 based on 724 isolates and 190 complete genome sequences.

    Science.gov (United States)

    Jelen, Mateja M; Chen, Zigui; Kocjan, Boštjan J; Burt, Felicity J; Chan, Paul K S; Chouhy, Diego; Combrinck, Catharina E; Coutlée, François; Estrade, Christine; Ferenczy, Alex; Fiander, Alison; Franco, Eduardo L; Garland, Suzanne M; Giri, Adriana A; González, Joaquín Víctor; Gröning, Arndt; Heidrich, Kerstin; Hibbitts, Sam; Hošnjak, Lea; Luk, Tommy N M; Marinic, Karina; Matsukura, Toshihiko; Neumann, Anna; Oštrbenk, Anja; Picconi, Maria Alejandra; Richardson, Harriet; Sagadin, Martin; Sahli, Roland; Seedat, Riaz Y; Seme, Katja; Severini, Alberto; Sinchi, Jessica L; Smahelova, Jana; Tabrizi, Sepehr N; Tachezy, Ruth; Tohme, Sarah; Uloza, Virgilijus; Vitkauskiene, Astra; Wong, Yong Wee; Zidovec Lepej, Snježana; Burk, Robert D; Poljak, Mario

    2014-07-01

    Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.8%) HPV6-positive samples collected for this study. Among them, 130 exhibited at least one single nucleotide polymorphism (SNP), indel, or amino acid change in the E5a-E5b-L1-LCR fragment and were sequenced in full. A global alignment and maximum likelihood tree of 190 complete HPV6 genomes (130 fully sequenced in this study and 60 obtained from sequence repositories) revealed two variant lineages, A and B, and five B sublineages: B1, B2, B3, B4, and B5. HPV6 (sub)lineage-specific SNPs and a 960-bp representative region for whole-genome-based phylogenetic clustering within the L2 open reading frame were identified. Multivariate logistic regression analysis revealed that lineage B predominated globally. Sublineage B3 was more common in Africa and North and South America, and lineage A was more common in Asia. Sublineages B1 and B3 were associated with anogenital infections, indicating a potential lesion-specific predilection of some HPV6 sublineages. Females had higher odds for infection with sublineage B3 than males. In conclusion, a global HPV6 phylogenetic analysis revealed the existence of two variant lineages and five sublineages, showing some degree of ethnogeographic, gender, and/or disease predilection in their distribution. This study established the largest database of globally circulating HPV6 genomic variants and contributed a total of 130 new, complete HPV6 genome sequences to available sequence repositories. Two HPV6 variant lineages

  1. Density functional theory based generalized effective fragment potential method

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Kiet A., E-mail: kiet.nguyen@wpafb.af.mil, E-mail: ruth.pachter@wpafb.af.mil [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); UES, Inc., Dayton, Ohio 45432 (United States); Pachter, Ruth, E-mail: kiet.nguyen@wpafb.af.mil, E-mail: ruth.pachter@wpafb.af.mil [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); Day, Paul N. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Inc., Dayton, Ohio 45431 (United States)

    2014-06-28

    We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.

  2. Fragment-Based Screening for Enzyme Inhibitors Using Calorimetry.

    Science.gov (United States)

    Recht, Michael I; Nienaber, Vicki; Torres, Francisco E

    2016-01-01

    Isothermal titration calorimetry (ITC) provides a sensitive and accurate means by which to study the thermodynamics of binding reactions. In addition, it enables label-free measurement of enzymatic reactions. The advent of extremely sensitive microcalorimeters have made it increasingly valuable as a tool for hit validation and characterization, but its use in primary screening is hampered by requiring large quantities of reagents and long measurement times. Nanocalorimeters can overcome these limitations of conventional ITC, particularly for screening libraries of 500-1000 compounds such as those encountered in fragment-based lead discovery. This chapter describes how nanocalorimetry and conventional microcalorimetry can be used to screen compound libraries for enzyme inhibitors. © 2016 Elsevier Inc. All rights reserved.

  3. Native Mass Spectrometry in Fragment-Based Drug Discovery

    Directory of Open Access Journals (Sweden)

    Liliana Pedro

    2016-07-01

    Full Text Available The advent of native mass spectrometry (MS in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein–ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD. Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  4. Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation

    Directory of Open Access Journals (Sweden)

    Takashi Kubota

    2015-08-01

    Full Text Available The sliding clamp PCNA is a crucial component of the DNA replication machinery. Timely PCNA loading and unloading are central for genome integrity and must be strictly coordinated with other DNA processing steps during replication. Here, we show that the S. cerevisiae Elg1 replication factor C-like complex (Elg1-RLC unloads PCNA genome-wide following Okazaki fragment ligation. In the absence of Elg1, PCNA is retained on chromosomes in the wake of replication forks, rather than at specific sites. Degradation of the Okazaki fragment ligase Cdc9 leads to PCNA accumulation on chromatin, similar to the accumulation caused by lack of Elg1. We demonstrate that Okazaki fragment ligation is the critical prerequisite for PCNA unloading, since Chlorella virus DNA ligase can substitute for Cdc9 in yeast and simultaneously promotes PCNA unloading. Our results suggest that Elg1-RLC acts as a general PCNA unloader and is dependent upon DNA ligation during chromosome replication.

  5. Fragment-based learning of visual object categories.

    Science.gov (United States)

    Hegdé, Jay; Bart, Evgeniy; Kersten, Daniel

    2008-04-22

    When we perceive a visual object, we implicitly or explicitly associate it with a category we know. It is known that the visual system can use local, informative image fragments of a given object, rather than the whole object, to classify it into a familiar category. How we acquire informative fragments has remained unclear. Here, we show that human observers acquire informative fragments during the initial learning of categories. We created new, but naturalistic, classes of visual objects by using a novel "virtual phylogenesis" (VP) algorithm that simulates key aspects of how biological categories evolve. Subjects were trained to distinguish two of these classes by using whole exemplar objects, not fragments. We hypothesized that if the visual system learns informative object fragments during category learning, then subjects must be able to perform the newly learned categorization by using only the fragments as opposed to whole objects. We found that subjects were able to successfully perform the classification task by using each of the informative fragments by itself, but not by using any of the comparable, but uninformative, fragments. Our results not only reveal that novel categories can be learned by discovering informative fragments but also introduce and illustrate the use of VP as a versatile tool for category-learning research.

  6. Novel extraction method of genomic DNA suitable for long-fragment amplification from small amounts of milk.

    Science.gov (United States)

    Liu, Y F; Gao, J L; Yang, Y F; Ku, T; Zan, L S

    2014-11-01

    Isolation of genomic DNA is a prerequisite for assessment of milk quality. As a source of genomic DNA, milk somatic cells from milking ruminants are practical, animal friendly, and cost-effective sources. Extracting DNA from milk can avoid the stress response caused by blood and tissue sampling of cows. In this study, we optimized a novel DNA extraction method for amplifying long (>1,000 bp) DNA fragments and used it to evaluate the isolation of DNA from small amounts of milk. The techniques used for the separation of milk somatic cell were explored and combined with a sodium dodecyl sulfate (SDS)-phenol method for optimizing DNA extraction from milk. Spectrophotometry was used to determine the concentration and purity of the extracted DNA. Gel electrophoresis and DNA amplification technologies were used for to determine DNA size and quality. The DNA of 112 cows was obtained from milk (samples of 13 ± 1 mL) and the corresponding optical density ratios at 260:280 nm were between 1.65 and 1.75. Concentrations were between 12 and 45 μg/μL and DNA size and quality were acceptable. The specific PCR amplification of 1,019- and 729-bp bovine DNA fragments was successfully carried out. This novel method can be used as a practical, fast, and economical mean for long genomic DNA extraction from a small amount of milk. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Fragment-Based Discovery of 5-Arylisatin-Based Inhibitors of Matrix Metalloproteinases 2 and 13.

    Science.gov (United States)

    Agamennone, Mariangela; Belov, Dmitry S; Laghezza, Antonio; Ivanov, Vladimir N; Novoselov, Anton M; Andreev, Ivan A; Ratmanova, Nina K; Altieri, Andrea; Tortorella, Paolo; Kurkin, Alexander V

    2016-09-06

    Matrix metalloproteinases (MMPs) are well-established targets for several pathologies. In particular, MMP-2 and MMP-13 play a prominent role in cancer progression. In this study, a structure-based screening campaign was applied to prioritize metalloproteinase-oriented fragments. This computational model was applied to a representative fragment set from the publically available EDASA Scientific compound library. These fragments were prioritized, and the top-ranking hits were tested in a biological assay to validate the model. Two scaffolds showed consistent activity in the assay, and the isatin-based compounds were the most interesting. These latter fragments have significant potential as tools for the design and realization of novel MMP inhibitors. In addition to their micromolar activity, the chemical synthesis affords flexible and creative access to their analogues.

  8. Bootstrap embedding: An internally consistent fragment-based method

    Science.gov (United States)

    Welborn, Matthew; Tsuchimochi, Takashi; Van Voorhis, Troy

    2016-08-01

    Strong correlation poses a difficult problem for electronic structure theory, with computational cost scaling quickly with system size. Fragment embedding is an attractive approach to this problem. By dividing a large complicated system into smaller manageable fragments "embedded" in an approximate description of the rest of the system, we can hope to ameliorate the steep cost of correlated calculations. While appealing, these methods often converge slowly with fragment size because of small errors at the boundary between fragment and bath. We describe a new electronic embedding method, dubbed "Bootstrap Embedding," a self-consistent wavefunction-in-wavefunction embedding theory that uses overlapping fragments to improve the description of fragment edges. We apply this method to the one dimensional Hubbard model and a translationally asymmetric variant, and find that it performs very well for energies and populations. We find Bootstrap Embedding converges rapidly with embedded fragment size, overcoming the surface-area-to-volume-ratio error typical of many embedding methods. We anticipate that this method may lead to a low-scaling, high accuracy treatment of electron correlation in large molecular systems.

  9. Fragmentation of the large subunit ribosomal RNA gene in oyster mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Milbury Coren A

    2010-09-01

    Full Text Available Abstract Background Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters. Results In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters C. virginica, C. gigas, and C. hongkongensis. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes. Conclusions Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.

  10. [Conformational polymorphysm of G-rich fragments of DNA Alu-repeats. II. the putative role of G-quadruplex structures in genomic rearrangements].

    Science.gov (United States)

    Varizhuk, A M; Sekridova, A V; Tankevich, M V; Podgorsky, V S; Smirnov, I P; Pozmogova, G E

    2016-11-01

    Three evolutionary conserved sites of Alu repeats (PQS2, PQS3 and PQS4) were shown to form stable inter- and intramolecular G-quadruplexes (GQs) in vitro. Structures and topologies of these GQs were elucidated using spectral methods. Self-association of G-rich Alu fragments was studied. Dimeric GQ formation from two distal identical or different putative quadruplex sites - (PQS2)2, (PQS3)2 or PQS2-PQS3 - within one lengthy DNA strand was demonstrated by a FRET-based method. Oligomer PQS4 (folded into a parallel intramolecular GQ) was shown to form stacks of quadruplexes that are stabilized by stacking interactions of external G-tetrads (this was confirmed by DOSY NMR, AFM microscopy and differential CD spectroscopy). Comparative analysis of the properties of various GQs allowed us to put forward a hypothesis of two general mechanisms of intermolecular GQ-dependant genomic rearrangements: 1) formation of a dimeric GQs; 2) association of pre-folded intramolecular parallel GQs from different strands into GQ-stacks. Thus, the observed co-localization of G-rich motifs of Alu elements with double-strand break hotspots and rearrangement hotspots may be accounted for by the specific secondary structure of these motifs. At the same time, this is likely primarily due to high abundance of such G-rich Alu fragments in the genome.

  11. A binding hotspot in Trypanosoma cruzi histidyl-tRNA synthetase revealed by fragment-based crystallographic cocktail screens.

    Science.gov (United States)

    Koh, Cho Yeow; Siddaramaiah, Latha Kallur; Ranade, Ranae M; Nguyen, Jasmine; Jian, Tengyue; Zhang, Zhongsheng; Gillespie, J Robert; Buckner, Frederick S; Verlinde, Christophe L M J; Fan, Erkang; Hol, Wim G J

    2015-08-01

    American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallographically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS.

  12. Monoclonal antibody-based, selective isolation of DNA fragments containing an alkylated base to be quantified in defined gene sequences.

    Science.gov (United States)

    Hochleitner, K; Thomale, J; Nikitin AYu; Rajewsky, M F

    1991-08-25

    We have established a sensitive, monoclonal antibody (Mab)-based procedure permitting the selective enrichment of sequences containing the miscoding alkylation product O6-ethylguanine (O6-EtGua) from mammalian DNA. H5 rat hepatoma cells were reacted with the N-nitroso carcinogen N-ethyl-N-nitrosourea in vitro, to give overall levels of greater than or equal to 25 O6-EtGua residues per diploid genome (corresponding to O6-EtGua/guanine molar ratios of greater than or equal to 10(-8). For analysis, enzymatically restricted DNA from these cells is incubated with an antibody specific for O6-ethyl-2'-deoxyguanosine, the resulting Mab-DNA complexes are separated from (O6-EtGua)-free fragments by filtration through a nitrocellulose (NC) membrane, and the DNA is recovered from the filter-bound complexes quantitatively. The efficiency of Mab binding to DNA fragments containing O6-EtGua is constant over a range of O6-EtGua/guanine molar ratios between 10(-5) and 10(-8). (O6-EtGua)-containing restriction fragments encompassing known gene sequences (e.g., the immunoglobulin E heavy chain gene of H5 rat hepatoma cells used as a model in this study) are subsequently amplified by PCR and quantified by slot-blot hybridisation. The content and distribution of a specific carcinogen-DNA adduct in defined sequences of genomic DNA can thus be analyzed as well as the kinetics of intragenomic (toposelective) repair of any DNA lesion for which a suitable Mab is available.

  13. A Survey of 6,300 Genomic Fragments for cis-Regulatory Activity in the Imaginal Discs of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Aurélie Jory

    2012-10-01

    Full Text Available Over 6,000 fragments from the genome of Drosophila melanogaster were analyzed for their ability to drive expression of GAL4 reporter genes in the third-instar larval imaginal discs. About 1,200 reporter genes drove expression in the eye, antenna, leg, wing, haltere, or genital imaginal discs. The patterns ranged from large regions to individual cells. About 75% of the active fragments drove expression in multiple discs; 20% were expressed in ventral, but not dorsal, discs (legs, genital, and antenna, whereas ∼23% were expressed in dorsal but not ventral discs (wing, haltere, and eye. Several patterns, for example, within the leg chordotonal organ, appeared a surprisingly large number of times. Unbiased searches for DNA sequence motifs suggest candidate transcription factors that may regulate enhancers with shared activities. Together, these expression patterns provide a valuable resource to the community and offer a broad overview of how transcriptional regulatory information is distributed in the Drosophila genome.

  14. A combined sequence-based and fragment-based characterization of microbial eukaryote assemblages provides taxonomic context for the Terminal Restriction Fragment Length Polymorphism (T-RFLP) method.

    Science.gov (United States)

    Kim, Diane Y; Countway, Peter D; Yamashita, Warren; Caron, David A

    2012-12-01

    Microbial eukaryotes in seawater samples collected from two depths (5 m and 500 m) at the USC Microbial Observatory off the coast of Southern California, USA, were characterized by cloning and sequencing of 18S rRNA genes, as well as DNA fragment analysis of these genes. The sequenced genes were assigned to operational taxonomic units (OTUs), and taxonomic information for the sequence-based OTUs was obtained by comparison to public sequence databases. The sequences were then subjected to in silico digestion to predict fragment sizes, and that information was compared to the results of the T-RFLP method applied to the same samples in order to provide taxonomic context for the environmental T-RFLP fragments. A total of 663 and 678 sequences were analyzed for the 5m and 500 m samples, respectively, which clustered into 157 OTUs and 183 OTUs. The sequences yielded substantially fewer taxonomic units as in silico fragment lengths (i.e., following in silico digestion), and the environmental T-RFLP resulted in the fewest unique OTUs (unique fragments). Bray-Curtis similarity analysis of protistan assemblages was greater using the T-RFLP dataset compared to the sequence-based OTU dataset, presumably due to the inability of the fragment method to differentiate some taxa and an inability to detect many rare taxa relative to the sequence-based approach. Nonetheless, fragments in our analysis generally represented the dominant sequence-based OTUs and putative identifications could be assigned to a majority of the fragments in the environmental T-RFLP results. Our empirical examination of the T-RFLP method identified limitations relative to sequence-based community analysis, but the relative ease and low cost of fragment analysis make this method a useful approach for characterizing the dominant taxa within complex assemblages of microbial eukaryotes in large datasets.

  15. RESTRICTION FRAGMENT LENGTH POLYMORPHISM (RFLP) ANALYSIS OF GENOMIC DNA OF 5 STRAINS OF TRICHINELLA SPIRALIS IN CHINA

    Institute of Scientific and Technical Information of China (English)

    王虹; 张月清; 劳为德; 吴赵永

    1995-01-01

    Five restriction endonucleases were used to digest genomic DNA from 5 isolates of Trichinella spiralis obtained from Changchun,Tianjin,Xian,Henan and Yunnan.All the isolates were secured from pigs ex-cept the Changchun strain which came from dog.The DNA fragments digested by endonuclease were sepa-mted by agarose gel electrophoesis.The DNA fragments digested by endonuclease were sepa-rated by agarose gel electrophoresis.The Changchun is olate had a EcoRI band at 1.12kb and a Dral band at 1.97kb which were unique to this isolate.A cloned specific repetitive DNA sequence(1.12kb) from the Changchun strain was selected to prepare a probe for the Southern blotting of EcoRI restriction DNA frag-ments for the 5 isolates.The 1.12kb hybridizing band did not appear except in the Changchun isolate.These results seem to indicate that there are differences between the isolates obtained from hosts in differ-ent geographical regions.

  16. Co-barcoded sequence reads from long DNA fragments: A cost-effective solution for Perfect Genome sequencing

    Directory of Open Access Journals (Sweden)

    Brock A Peters

    2015-01-01

    Full Text Available Next generation sequencing (NGS technologies, primarily based on massively parallel sequencing (MPS, have touched and radically changed almost all aspects of research worldwide. These technologies have allowed for the rapid analysis, to date, of the genomes of more than 2,000 different species. In humans, NGS has arguably had the largest impact. Over 100,000 genomes of individual humans (based on various estimates have been sequenced allowing for deep insights into what makes individuals and families unique and what causes disease in each of us. Despite all of this progress, the current state of the art in sequence technology is far from generating a perfect genome sequence and much remains to be understood in the biology of human and other organisms’ genomes. In the article that follows we outline, why the perfect genome in humans is important, what is lacking from current human whole genome sequences, and a potential strategy for achieving the perfect genome in a cost effective manner.

  17. An improved model for fragment-based lead generation at AstraZeneca.

    Science.gov (United States)

    Fuller, Nathan; Spadola, Loredana; Cowen, Scott; Patel, Joe; Schönherr, Heike; Cao, Qing; McKenzie, Andrew; Edfeldt, Fredrik; Rabow, Al; Goodnow, Robert

    2016-08-01

    Modest success rates in fragment-based lead generation (FBLG) projects at AstraZeneca (AZ) prompted operational changes to improve performance. In this review, we summarize these changes, emphasizing the construction and composition of the AZ fragment library, screening practices and working model. We describe the profiles of the screening method for specific fragment subsets and statistically assess our ability to follow up on fragment hits through near-neighbor selection. Performance analysis of our second-generation fragment library (FL2) in screening campaigns illustrates the complementary nature of flat and 3D fragments in exploring protein-binding pockets and highlights our ability to deliver fragment hits using multiple screening techniques for various target classes. The new model has had profound impact on the successful delivery of lead series to drug discovery projects.

  18. Multiplex amplification enabled by selective circularization of large sets of genomic DNA fragments

    Science.gov (United States)

    Dahl, Fredrik; Gullberg, Mats; Stenberg, Johan; Landegren, Ulf; Nilsson, Mats

    2005-01-01

    We present a method to specifically select large sets of DNA sequences for parallel amplification by PCR using target-specific oligonucleotide constructs, so-called selectors. The selectors are oligonucleotide duplexes with single-stranded target-complementary end-sequences that are linked by a general sequence motif. In the selection process, a pool of selectors is combined with denatured restriction digested DNA. Each selector hybridizes to its respective target, forming individual circular complexes that are covalently closed by enzymatic ligation. Non-circularized fragments are removed by exonucleolysis, enriching for the selected fragments. The general sequence that is introduced into the circularized fragments allows them to be amplified in parallel using a universal primer pair. The procedure avoids amplification artifacts associated with conventional multiplex PCR where two primers are used for each target, thereby reducing the number of amplification reactions needed for investigating large sets of DNA sequences. We demonstrate the specificity, reproducibility and flexibility of this process by performing a 96-plex amplification of an arbitrary set of specific DNA sequences, followed by hybridization to a cDNA microarray. Eighty-nine percent of the selectors generated PCR products that hybridized to the expected positions on the array, while little or no amplification artifacts were observed. PMID:15860768

  19. Comparative analysis of acidobacterial genomic fragments from terrestrial and aquatic metagenomic libraries, with emphasis on acidobacteria subdivision 6.

    Science.gov (United States)

    Kielak, Anna M; van Veen, Johannes A; Kowalchuk, George A

    2010-10-01

    The bacterial phylum Acidobacteria has a widespread distribution and is one of the most common and diverse phyla in soil habitats. However, members of this phylum have often been recalcitrant to cultivation methods, hampering the study of this presumably important bacterial group. In this study, we used a cultivation-independent metagenomic approach to recover genomic information from soilborne members of this phylum. A soil metagenomic fosmid library was screened by PCR targeting acidobacterial 16S rRNA genes, facilitating the recovery of 17 positive clones. Recovered inserts appeared to originate from a range of Acidobacteria subdivisions, with dominance of subdivision 6 (10 clones). Upon full-length insert sequencing, gene annotation identified a total of 350 open reading frames (ORFs), representing a broad range of functions. Remarkably, six inserts from subdivision 6 contained a region of gene synteny, containing genes involved in purine de novo biosynthesis and encoding tRNA synthetase and conserved hypothetical proteins. Similar genomic regions had previously been observed in several environmental clones recovered from soil and marine sediments, facilitating comparisons with respect to gene organization and evolution. Comparative analyses revealed a general dichotomy between marine and terrestrial genes in both phylogeny and G+C content. Although the significance of this homologous gene cluster across subdivision 6 members is not known, it appears to be a common feature within a large percentage of all acidobacterial genomic fragments recovered from both of these environments.

  20. Recent Advances in Fragment-Based QSAR and Multi-Dimensional QSAR Methods

    Directory of Open Access Journals (Sweden)

    Kyaw Zeyar Myint

    2010-10-01

    Full Text Available This paper provides an overview of recently developed two dimensional (2D fragment-based QSAR methods as well as other multi-dimensional approaches. In particular, we present recent fragment-based QSAR methods such as fragment-similarity-based QSAR (FS-QSAR, fragment-based QSAR (FB-QSAR, Hologram QSAR (HQSAR, and top priority fragment QSAR in addition to 3D- and nD-QSAR methods such as comparative molecular field analysis (CoMFA, comparative molecular similarity analysis (CoMSIA, Topomer CoMFA, self-organizing molecular field analysis (SOMFA, comparative molecular moment analysis (COMMA, autocorrelation of molecular surfaces properties (AMSP, weighted holistic invariant molecular (WHIM descriptor-based QSAR (WHIM, grid-independent descriptors (GRIND-based QSAR, 4D-QSAR, 5D-QSAR and 6D-QSAR methods.

  1. Genomic diversity among Danish field strains of Mycoplasma hyosynoviae assessed by amplified fragment length polymorphism analysis

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Friis, Niels F.; Nielsen, Elisabeth O.;

    2002-01-01

    ) were concurrently examined for variance in BglII-MfeI and EcoRI-Csp6I-A AFLP markers. A total of 56 different genomic fingerprints having an overall similarity between 77 and 96% were detected. No correlation between AFLP variability and period of isolation or anatomical site of isolation could...

  2. Hot spot analysis for driving the development of hits into leads in fragment based drug discovery

    OpenAIRE

    Hall, David R.; Ngan, Chi Ho; Zerbe, Brandon S.; Kozakov, Dima; Vajda, Sandor

    2011-01-01

    Fragment based drug design (FBDD) starts with finding fragment-sized compounds that are highly ligand efficient and can serve as a core moiety for developing high affinity leads. Although the core-bound structure of a protein facilitates the construction of leads, effective design is far from straightforward. We show that protein mapping, a computational method developed to find binding hot spots and implemented as the FTMap server, provides information that complements the fragment screening...

  3. Fragment-based structure-guided drug discovery: strategy, process, and lessons from human protein kinases

    Energy Technology Data Exchange (ETDEWEB)

    Burley, Stephen K.; Hirst, Gavin; Sprengeler, Paul; Reich, Siegfried

    2012-04-24

    The experimental roots of fragment-based drug discovery can be found in the work of Petsko, Ringe, and coworkers, who were the first to report flooding of protein crystals with small organic solutes (e.g., compounds such as benzene with ten or fewer nonhydrogen atoms) to identify bound functional groups that might ultimately be transformed into targeted ligands. The concept of linking fragments together to increase binding affinity was described as early as 1992 by Verlinde et al. Computational screening of fragments, using tools such as DOCK or MCSS, was also described in the early 1990s. Pharmaceutical industry application of fragment screening began at Abbott Laboratories, where Fesik and coworkers pioneered 'SAR by NMR' (structure/activity relationship by nuclear magnetic resonance). In this spectroscopic approach, bound fragments are detected by NMR screening and subsequently linked together to increase affinity, as envisaged by Verlinde and coworkers. Application of x-ray crystallography to detect and identify fragment hits was also pursued at Abbott. Fragment-based drug discovery has now been under way for more than a decade. Although Fesik and coworkers popularized the notion of linking fragments (as in their highly successful BCL-2 program), tactical emphasis appears to have largely shifted from fragment condensation to fragment engineering (or growing the fragment) to increase binding affinity and selectivity. Various biotechnology companies, including SGX Pharmaceuticals, Astex, and Plexxikon, have recently demonstrated that fragment-based approaches can indeed produce development candidates suitable for Phase I studies of safety and tolerability in patients (www.clinicaltrials.gov).

  4. CCQM-K86/P113.1: Relative quantification of genomic DNA fragments extracted from a biological tissue

    Science.gov (United States)

    Corbisier, P.; Vincent, S.; Schimmel, H.; Kortekaas, A.-M.; Trapmann, S.; Burns, M.; Bushell, C.; Akgoz, M.; Akyürek, S.; Dong, L.; Fu, B.; Zhang, L.; Wang, J.; Pérez Urquiza, M.; Bautista, J. L.; Garibay, A.; Fuller, B.; Baoutina, A.; Partis, L.; Emslie, K.; Holden, M.; Chum, W. Y.; Kim, H.-H.; Phunbua, N.; Milavec, M.; Zel, J.; Vonsky, M.; Konopelko, L. A.; Lau, T. L. T.; Yang, B.; Hui, M. H. K.; Yu, A. C. H.; Viroonudomphol, D.; Prawettongsopon, C.; Wiangnon, K.; Takabatake, R.; Kitta, K.; Kawaharasaki, M.; Parkes, H.

    2012-01-01

    Key comparison CCQM-K86 was performed to demonstrate and document the capacity of interested national metrology institutes (NMIs) and designated institutes (DIs) in the determination of the relative quantity of two specific genomic DNA fragments present in a biological tissue. The study provides the support for the following measurement claim: "Quantification of the ratio of the number of copies of specified intact sequence fragments of a length in the range of 70 to 100 nucleotides in a single genomic DNA extract from ground maize seed materials". The study was carried out under the auspices of the Bioanalysis Working Group (BAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) and was piloted by the Institute for Reference Materials and Methods (IRMM) in Geel (Belgium). The following laboratories (in alphabetical order) participated in this key comparison: AIST (Japan), CENAM (Mexico), DMSc (Thailand), GLHK (Hong Kong), IRMM (European Union), KRISS (Republic of Korea), LGC (United Kingdom), MIRS/NIB (Slovenia), NIM (PR China), NIST (USA), NMIA (Australia), TÜBITAK UME (Turkey) and VNIIM (Russian Federation). The following laboratories (in alphabetical order) participated in a pilot study that was organized in parallel: LGC (United Kingdom), PKU (PR China), NFRI (Japan) and NIMT (Thailand). Good agreement was observed between the reported results of eleven participants. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  5. A Rayleigh number based dendrite fragmentation criterion for detachment of solid crystals during solidification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arvind; Dutta, Pradip [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 (India)], E-mail: pradip@mecheng.iisc.ernet.in

    2008-08-07

    Movement of solid crystals in the form of dendrite fragments causes severe macro-segregation in solidified products. Dendrite fragmentation in the developing mushy zone occurs as a result of remelting (causing dissolution) and subsequent breakage of dendritic side arms from the dendritic stalks. An understanding of the mechanisms of dendrite fragmentation is essential for predicting the transport of fragmented solid crystals for possible control of macro-segregation. In this work, a Rayleigh number based fragmentation criterion is developed for detachment of dendrites from the developing mushy zone, which determines the conditions favourable for fragmentation of dendrites. The Rayleigh number, defined in this paper, measures the ratio of the driving buoyancy force for the flow in the mushy zone to the retarding frictional force associated with the permeability of the mush. The criterion developed is a function of the concentration difference, liquid fraction, permeability, growth rate of mushy layer and thermophysical properties of the material.

  6. Estimation of the initial shape of meteoroids based on statistical distributions of fragment masses

    Science.gov (United States)

    Vinnikov, V. V.; Gritsevich, M. I.; Kuznetsova, D. V.; Turchak, L. I.

    2016-06-01

    An approach to the estimation of the initial shape of a meteoroid based on the statistical distributions of masses of its recovered fragments is presented. The fragment distribution function is used to determine the corresponding scaling index of the power law with exponential cutoff. The scaling index is related empirically to the shape parameter of a fragmenting body by a quadratic equation, and the shape parameter is expressed through the proportions of the initial object. This technique is used to study a representative set of fragments of the Bassikounou meteorite and compare the obtained data with the results of statistical analysis of other meteorites.

  7. Fragment-based discovery of hepatitis C virus NS5b RNA polymerase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Antonysamy, Stephen S.; Aubol, Brandon; Blaney, Jeff; Browner, Michelle F.; Giannetti, Anthony M.; Harris, Seth F.; Hébert, Normand; Hendle, Jörg; Hopkins, Stephanie; Jefferson, Elizabeth; Kissinger, Charles; Leveque, Vincent; Marciano, David; McGee, Ethel; Nájera, Isabel; Nolan, Brian; Tomimoto, Masaki; Torres, Eduardo; Wright, Tobi (SGX); (Roche)

    2009-07-22

    Non-nucleoside inhibitors of HCV NS5b RNA polymerase were discovered by a fragment-based lead discovery approach, beginning with crystallographic fragment screening. The NS5b binding affinity and biochemical activity of fragment hits and inhibitors was determined by surface plasmon resonance (Biacore) and an enzyme inhibition assay, respectively. Crystallographic fragment screening hits with {approx}1-10 mM binding affinity (K{sub D}) were iteratively optimized to give leads with {approx}200 nM biochemical activity and low {micro}M cellular activity in a Replicon assay.

  8. Genomic Fingerprinting of the Vaccine Strain of Clostridium Tetani by Restriction Fragment Length Polymorphism Technique

    Directory of Open Access Journals (Sweden)

    Naser Harzandi

    2013-05-01

    Full Text Available Background: Clostridium tetani or Nicolaier’s bacillus is an obligatory anaerobic, Gram-positive, movable with terminal or sub terminal spore. The chromosome of C. tetani contains 2,799,250 bp with a G+C content of 28.6%. The aim of this study was identification and genomic fingerprinting of the vaccine strain of C. tetani.Materials and Methods: The vaccine strain of C. tetani was provided by Razi Vaccine and Serum Research Institute. The seeds were inoculated into Columbia blood agar and grown for 72 h and transferred to the thioglycolate broth medium for further 36 h culturing. The cultures were incubated at 35ºC in anaerobic conditions. DNA extraction with phenol/ chloroform method was performed. After extraction, the consistency of DNA was assayed. Next, the vaccine strain was digested using pvuII enzyme and incubated at 37ºC for overnight. The digested DNA was gel-electrophoresed by 1% agarose for a short time. Then, the gel was studied with Gel Doc system and transferred to Hybond N+membrane using standard DNA blotting techniques.Results: The vaccine strain of C. tetani genome was fingerprinted by RFLP technique. Our preliminary results showed no divergence exists in the vaccine strain used for the production tetanus toxoid during the periods of 1990-2011.Conclusion: Observation suggests that there is lack of significant changes in RFLP genomic fingerprinting profile of the vaccine strain. Therefore, this strain did not lose its efficiency in tetanus vaccine production. RFLP analysis is worthwhile in investigating the nature of the vaccine strain C. tetani.

  9. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Gallati, Sabina, E-mail: sabina.gallati@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Schaller, Andre, E-mail: andre.schaller@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in

  10. Genome-based Taxonomic Classification of Bacteroidetes

    Directory of Open Access Journals (Sweden)

    Richard L. Hahnke

    2016-12-01

    Full Text Available The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogenetic analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved.

  11. Genome-Based Taxonomic Classification of Bacteroidetes.

    Science.gov (United States)

    Hahnke, Richard L; Meier-Kolthoff, Jan P; García-López, Marina; Mukherjee, Supratim; Huntemann, Marcel; Ivanova, Natalia N; Woyke, Tanja; Kyrpides, Nikos C; Klenk, Hans-Peter; Göker, Markus

    2016-01-01

    The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogenetic analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved.

  12. High-throughput on-chip DNA fragmentation

    NARCIS (Netherlands)

    Shui, Lingling; Jin, Mingliang; Bomer, Johan G.; Carlen, Edwin; van den Berg, Albert; Abelmann, Leon; Abelmann, L.; Groenland, J.P.J.; van Honschoten, J.W.

    2010-01-01

    free microfluidic deoxyribonucleic acid (DNA) fragmentation chip that is based on hydrodynamic shearing. Genomic DNA has been reproducibly fragmented with 2-10 kbp fragment lengths by applying hydraulic pressure ΔP across micromachined constrictions in the microfluidic channels. The utilization of a

  13. Affinity chromatography—dependent selection (ACDS) of genomic DNA fragments bound specifically to bacterial synthesized Myc/Myn proteins

    Institute of Scientific and Technical Information of China (English)

    SHICAN; PEIWANG; 等

    1995-01-01

    This paper describes an approach to seek for mouse c-Myc/Myn proteins-bound specific sequences among genomic DNA.cDNA fragment of myn gene was obtained through RT-PCR technique from RNA of NIH3T3 cells.DNA fragments encoding BR/HLH/LZ structure of Myc and Myn proteins were cloned in frame into pGEX-2T vector respectively.Fusion GST-Myc and GST-Myn synthesized in E.coli hosts showed affinity to CACGTG E-box DNA and subsequently interacted with genomic fragments prepared through whole-genome-PCR.A PCR-assisted procedure which combines protein-DNA interaction and affinity chromatography was designed to enrich Myc/Myn bound DNA.At least two genomic DNA fragments obtained exhibit specifical binding capacity to Myc/Myn complex but not to GST alone.Significance of the work and of the technique itself as well asidentification of the DNAs are discussed.

  14. Target Immobilization as a Strategy for NMR-Based Fragment Screening: Comparison of TINS, STD, and SPR for Fragment Hit Identification

    NARCIS (Netherlands)

    Kobayashi, M.; Retra, K.; Figaroa, F.; Hollander, J.G.; Ab, E.; Heetebrij, R.J.; Irth, H.; Siegal, G.

    2010-01-01

    Fragment-based drug discovery (FBDD) has become a widely accepted tool that is complementary to high-throughput screening (HTS) in developing small-molecule inhibitors of pharmaceutical targets. Because a fragment campaign can only be as successful as the hit matter found, it is critical that the fi

  15. Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz Ram model

    Science.gov (United States)

    Morin, Mario A.; Ficarazzo, Francesco

    2006-04-01

    Rock fragmentation is considered the most important aspect of production blasting because of its direct effects on the costs of drilling and blasting and on the economics of the subsequent operations of loading, hauling and crushing. Over the past three decades, significant progress has been made in the development of new technologies for blasting applications. These technologies include increasingly sophisticated computer models for blast design and blast performance prediction. Rock fragmentation depends on many variables such as rock mass properties, site geology, in situ fracturing and blasting parameters and as such has no complete theoretical solution for its prediction. However, empirical models for the estimation of size distribution of rock fragments have been developed. In this study, a blast fragmentation Monte Carlo-based simulator, based on the Kuz-Ram fragmentation model, has been developed to predict the entire fragmentation size distribution, taking into account intact and joints rock properties, the type and properties of explosives and the drilling pattern. Results produced by this simulator were quite favorable when compared with real fragmentation data obtained from a blast quarry. It is anticipated that the use of Monte Carlo simulation will increase our understanding of the effects of rock mass and explosive properties on the rock fragmentation by blasting, as well as increase our confidence in these empirical models. This understanding will translate into improvements in blasting operations, its corresponding costs and the overall economics of open pit mines and rock quarries.

  16. Fragment virtual screening based on Bayesian categorization for discovering novel VEGFR-2 scaffolds.

    Science.gov (United States)

    Zhang, Yanmin; Jiao, Yu; Xiong, Xiao; Liu, Haichun; Ran, Ting; Xu, Jinxing; Lu, Shuai; Xu, Anyang; Pan, Jing; Qiao, Xin; Shi, Zhihao; Lu, Tao; Chen, Yadong

    2015-11-01

    The discovery of novel scaffolds against a specific target has long been one of the most significant but challengeable goals in discovering lead compounds. A scaffold that binds in important regions of the active pocket is more favorable as a starting point because scaffolds generally possess greater optimization possibilities. However, due to the lack of sufficient chemical space diversity of the databases and the ineffectiveness of the screening methods, it still remains a great challenge to discover novel active scaffolds. Since the strengths and weaknesses of both fragment-based drug design and traditional virtual screening (VS), we proposed a fragment VS concept based on Bayesian categorization for the discovery of novel scaffolds. This work investigated the proposal through an application on VEGFR-2 target. Firstly, scaffold and structural diversity of chemical space for 10 compound databases were explicitly evaluated. Simultaneously, a robust Bayesian classification model was constructed for screening not only compound databases but also their corresponding fragment databases. Although analysis of the scaffold diversity demonstrated a very unevenly distribution of scaffolds over molecules, results showed that our Bayesian model behaved better in screening fragments than molecules. Through a literature retrospective research, several generated fragments with relatively high Bayesian scores indeed exhibit VEGFR-2 biological activity, which strongly proved the effectiveness of fragment VS based on Bayesian categorization models. This investigation of Bayesian-based fragment VS can further emphasize the necessity for enrichment of compound databases employed in lead discovery by amplifying the diversity of databases with novel structures.

  17. GO4genome: A Prokaryotic Phylogeny Based on Genome Organization

    OpenAIRE

    Merkl, Rainer; Wiezer, Arnim

    2009-01-01

    Determining the phylogeny of closely related prokaryotes may fail in an analysis of rRNA or a small set of sequences. Whole-genome phylogeny utilizes the maximally available sample space. For a precise determination of genome similarity, two aspects have to be considered when developing an algorithm of whole-genome phylogeny: (1) gene order conservation is a more precise signal than gene content; and (2) when using sequence similarity, failures in identifying orthologues or the in situ replac...

  18. Fragment-based discovery of 6-azaindazoles as inhibitors of bacterial DNA ligase.

    Science.gov (United States)

    Howard, Steven; Amin, Nader; Benowitz, Andrew B; Chiarparin, Elisabetta; Cui, Haifeng; Deng, Xiaodong; Heightman, Tom D; Holmes, David J; Hopkins, Anna; Huang, Jianzhong; Jin, Qi; Kreatsoulas, Constantine; Martin, Agnes C L; Massey, Frances; McCloskey, Lynn; Mortenson, Paul N; Pathuri, Puja; Tisi, Dominic; Williams, Pamela A

    2013-12-12

    Herein we describe the application of fragment-based drug design to bacterial DNA ligase. X-ray crystallography was used to guide structure-based optimization of a fragment-screening hit to give novel, nanomolar, AMP-competitive inhibitors. The lead compound 13 showed antibacterial activity across a range of pathogens. Data to demonstrate mode of action was provided using a strain of S. aureus, engineered to overexpress DNA ligase.

  19. StellaBase: The Nematostella vectensis Genomics Database

    OpenAIRE

    James C Sullivan; Ryan, Joseph F; Watson, James A.; Webb, Jeramy; Mullikin, James C; Rokhsar, Daniel; Finnerty, John R

    2005-01-01

    StellaBase, the Nematostella vectensis Genomics Database, is a web-based resource that will facilitate desktop and bench-top studies of the starlet sea anemone. Nematostella is an emerging model organism that has already proven useful for addressing fundamental questions in developmental evolution and evolutionary genomics. StellaBase allows users to query the assembled Nematostella genome, a confirmed gene library, and a predicted genome using both keyword and homology based search functions...

  20. Characterization of the genome of molluscum contagiosum virus type 1 between the genome coordinates 0.045 and 0.075 by DNA nucleotide sequence analysis of a 5.6-kb HindIII/MluI DNA fragment.

    Science.gov (United States)

    Hadasch, R P; Bugert, J J; Janssen, W; Darai, G

    1993-01-01

    The complete DNA nucleotide sequence of a HindIII/MluI genomic DNA fragment (0.045-0.075 viral map units) from molluscum contagiosum virus type 1 (MCV-1) was determined. The HindIII/MluI DNA fragment comprises 5,646 bp with a base composition of 64.4% G + C and 35.6% A + T. The DNA sequence contains many perfect direct repeats. A cluster of three repetitive DNA elements R1, R2 and R3, with a complex structural arrangement was detected between nucleotide positions 1802 and 2107. The unit length (box) of the repetitive DNA sequences was found to be 6 bp (15 boxes) and 9 bp (24 boxes) for R1 and R2, respectively. The repetitive DNA element R3 is organized in fifteen boxes (15 bp) in which a unit length of R1 is combined with a unit length of R2. The arrangement of the repetition R3 within the DNA sequences of this particular region of the MCV-1 genome was found to be (5 x R3) + (2 x R2) + (1 x R3) + (6 x R2) + (1 x R3) + (1 x R2) + (8 x R3). Twenty-three open reading frames (ORFs) of 60-1,175 amino acid (AA) residues were detected. The largest ORF (number 17) comprises 1,175 AA with a predicted molecular weight of 126 kD. This ORF harbors a promoter signal which is located 21 nucleotides upstream from the start codon and is very similar to the early promoter signals known for vaccinia virus. This putative protein contains glutamine-enriched regions between AA residues 427 and 682 which show homologies to the corresponding glutamine-enriched regions of a variety of cellular genes like human transcriptional initiation factor (TFIID: TATA box factor).

  1. Influence of different liquid-drop-based bindings on lighter mass fragments and entropy production

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rohit; Shivani; Gautam, Sakshi [Panjab University, Department of Physics, Chandigarh (India)

    2016-04-15

    We study the production of lighter fragments and associated phenomena within the Quantum Molecular Dynamics (QMD) model. The Minimum Spanning Tree (MST) method is used to identify the pre-clusters. The final stable fragments were identified by imposing binding energy criteria on the fragments formed using the MST method. The effect of different binding energy criteria was investigated by employing various liquid-drop-based binding energy formulae. Though light clusters show significant effect of different binding energies, their associated phenomenon, i.e. entropy production is insensitive towards different binding energy criteria. (orig.)

  2. Fragment-Based Discovery of a Small Molecule Inhibitor of Bruton's Tyrosine Kinase.

    Science.gov (United States)

    Smith, Christopher R; Dougan, Douglas R; Komandla, Mallareddy; Kanouni, Toufike; Knight, Beverly; Lawson, J David; Sabat, Mark; Taylor, Ewan R; Vu, Phong; Wyrick, Corey

    2015-07-23

    The discovery and optimization of a series of 4-aminocinnoline-3-carboxamide inhibitors of Bruton's tyrosine kinase are reported. A fragment-based screening approach incorporating X-ray co-crystallography was used to identify a cinnoline fragment and characterize its binding mode in the ATP binding site of Btk. Optimization of the fragment hit resulted in the identification of a lead compound which reduced paw swelling in a dose- and exposure-dependent fashion in a rat model of collagen-induced arthritis.

  3. A new crystal structure fragment-based pharmacophore method for G protein-coupled receptors

    DEFF Research Database (Denmark)

    Fidom, Kimberley; Isberg, Vignir; Hauser, Alexander Sebastian;

    2015-01-01

    We have developed a new method for the building of pharmacophores for G protein-coupled receptors, a major drug target family. The method is a combination of the ligand- and target-based pharmacophore methods and founded on the extraction of structural fragments, interacting ligand moiety...... for new targets. A validating retrospective virtual screening of histamine H1 and H3 receptor pharmacophores yielded area-under-the-curves of 0.88 and 0.82, respectively. The fragment-based method has the unique advantage that it can be applied to targets for which no (homologous) crystal structures...... or ligands are known. 47% of the class A G protein-coupled receptors can be targeted with at least four-element pharmacophores. The fragment libraries can also be used to grow known ligands or for rotamer refinement of homology models. Researchers can download the complete fragment library or a subset...

  4. Clustering-based fragmentation and data replication for flexible query answering in distributed databases

    OpenAIRE

    Wiese, Lena

    2014-01-01

    One feature of cloud storage systems is data fragmentation (or sharding) so that data can be distributed over multiple servers and subqueries can be run in parallel on the fragments. On the other hand, flexible query answering can enable a database system to find related information for a user whose original query cannot be answered exactly. Query generalization is a way to implement flexible query answering on the syntax level. In this paper we study a clustering-based fragmentat...

  5. The multiple roles of computational chemistry in fragment-based drug design.

    Science.gov (United States)

    Law, Richard; Barker, Oliver; Barker, John J; Hesterkamp, Thomas; Godemann, Robert; Andersen, Ole; Fryatt, Tara; Courtney, Steve; Hallett, Dave; Whittaker, Mark

    2009-08-01

    Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.

  6. The multiple roles of computational chemistry in fragment-based drug design

    Science.gov (United States)

    Law, Richard; Barker, Oliver; Barker, John J.; Hesterkamp, Thomas; Godemann, Robert; Andersen, Ole; Fryatt, Tara; Courtney, Steve; Hallett, Dave; Whittaker, Mark

    2009-06-01

    Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.

  7. Computer-aided design of fragment mixtures for NMR-based screening.

    Directory of Open Access Journals (Sweden)

    Xavier Arroyo

    Full Text Available Fragment-based drug discovery is widely applied both in industrial and in academic screening programs. Several screening techniques rely on NMR to detect binding of a fragment to a target. NMR-based methods are among the most sensitive techniques and have the further advantage of yielding a low rate of false positives and negatives. However, NMR is intrinsically slower than other screening techniques; thus, to increase throughput in NMR-based screening, researchers often assay mixtures of fragments, rather than single fragments. Herein we present a fast and straightforward computer-aided method to design mixtures of fragments taken from a library that have minimized NMR signal overlap. This approach enables direct identification of one or several active fragments without the need for deconvolution. Our approach entails encoding of NMR spectra into a computer-readable format that we call a fingerprint, and minimizing the global signal overlap through a Monte Carlo algorithm. The scoring function used favors a homogenous distribution of the global signal overlap. The method does not require additional experimental work: the only data required are NMR spectra, which are generally recorded for each compound as a quality control measure before its insertion into the library.

  8. Genomics-based plant germplasm research (GPGR

    Directory of Open Access Journals (Sweden)

    Jizeng Jia

    2017-04-01

    Full Text Available Plant germplasm underpins much of crop genetic improvement. Millions of germplasm accessions have been collected and conserved ex situ and/or in situ, and the major challenge is now how to exploit and utilize this abundant resource. Genomics-based plant germplasm research (GPGR or “Genoplasmics” is a novel cross-disciplinary research field that seeks to apply the principles and techniques of genomics to germplasm research. We describe in this paper the concept, strategy, and approach behind GPGR, and summarize current progress in the areas of the definition and construction of core collections, enhancement of germplasm with core collections, and gene discovery from core collections. GPGR is opening a new era in germplasm research. The contribution, progress and achievements of GPGR in the future are predicted.

  9. PromBase: a web resource for various genomic features and predicted promoters in prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Bansal Manju

    2011-07-01

    Full Text Available Abstract Background As more and more genomes are being sequenced, an overview of their genomic features and annotation of their functional elements, which control the expression of each gene or transcription unit of the genome, is a fundamental challenge in genomics and bioinformatics. Findings Relative stability of DNA sequence has been used to predict promoter regions in 913 microbial genomic sequences with GC-content ranging from 16.6% to 74.9%. Irrespective of the genome GC-content the relative stability based promoter prediction method has already been proven to be robust in terms of recall and precision. The predicted promoter regions for the 913 microbial genomes have been accumulated in a database called PromBase. Promoter search can be carried out in PromBase either by specifying the gene name or the genomic position. Each predicted promoter region has been assigned to a reliability class (low, medium, high, very high and highest based on the difference between its average free energy and the downstream region. The recall and precision values for each class are shown graphically in PromBase. In addition, PromBase provides detailed information about base composition, CDS and CG/TA skews for each genome and various DNA sequence dependent structural properties (average free energy, curvature and bendability in the vicinity of all annotated translation start sites (TLS. Conclusion PromBase is a database, which contains predicted promoter regions and detailed analysis of various genomic features for 913 microbial genomes. PromBase can serve as a valuable resource for comparative genomics study and help the experimentalist to rapidly access detailed information on various genomic features and putative promoter regions in any given genome. This database is freely accessible for academic and non- academic users via the worldwide web http://nucleix.mbu.iisc.ernet.in/prombase/.

  10. FragIt: A Tool to Prepare Input Files for Fragment Based Quantum Chemical Calculations

    CERN Document Server

    Steinmann, Casper; Hansen, Anne S; Jensen, Jan H

    2012-01-01

    Near linear scaling fragment based quantum chemical calculations are becoming increasingly popular for treating large systems with high accuracy and is an active field of research. However, it remains difficult to set up these calculations without expert knowledge. To facilitate the use of such methods, software tools need to be available for support, setup and lower the barrier of entry for usage by non-experts. We present a fragmentation methodology and accompanying tools called FragIt to help setup these calculations. It uses the SMARTS language to find chemically appropriate substructures in structures and is used to prepare input files for the fragment molecular orbital method in the GAMESS program package. We present patterns of fragmentation for proteins and polysaccharides, specifically D-galactopyranose for use in cyclodextrins.

  11. An Automated Microscale Thermophoresis Screening Approach for Fragment-Based Lead Discovery.

    Science.gov (United States)

    Linke, Pawel; Amaning, Kwame; Maschberger, Melanie; Vallee, Francois; Steier, Valerie; Baaske, Philipp; Duhr, Stefan; Breitsprecher, Dennis; Rak, Alexey

    2016-04-01

    Fragment-based lead discovery has proved to be an effective alternative to high-throughput screenings in identifying chemical matter that can be developed into robust lead compounds. The search for optimal combinations of biophysical techniques that can correctly and efficiently identify and quantify binding can be challenging due to the physicochemical properties of fragments. In order to minimize the time and costs of screening, optimal combinations of biophysical techniques with maximal information content, sensitivity, and robustness are needed. Here we describe an approach utilizing automated microscale thermophoresis (MST) affinity screening to identify fragments active against MEK1 kinase. MST identified multiple hits that were confirmed by X-ray crystallography but not detected by orthogonal methods. Furthermore, MST also provided information about ligand-induced aggregation and protein denaturation. The technique delivered a large number of binders while reducing experimentation time and sample consumption, demonstrating the potential of MST to execute and maximize the efficacy of fragment screening campaigns.

  12. Fragment-based discovery of DNA gyrase inhibitors targeting the ATPase subunit of GyrB.

    Science.gov (United States)

    Mesleh, Michael F; Cross, Jason B; Zhang, Jing; Kahmann, Jan; Andersen, Ole A; Barker, John; Cheng, Robert K; Felicetti, Brunella; Wood, Michael; Hadfield, Andrea T; Scheich, Christoph; Moy, Terence I; Yang, Qingyi; Shotwell, Joseph; Nguyen, Kien; Lippa, Blaise; Dolle, Roland; Ryan, M Dominic

    2016-02-15

    Inhibitors of the ATPase function of bacterial DNA gyrase, located in the GyrB subunit and its related ParE subunit in topoisomerase IV, have demonstrated antibacterial activity. In this study we describe an NMR fragment-based screening effort targeting Staphylococcus aureus GyrB that identified several attractive and novel starting points with good ligand efficiency. Fragment hits were further characterized using NMR binding studies against full-length S. aureus GyrB and Escherichia coli ParE. X-ray co-crystal structures of select fragment hits confirmed binding and suggested a path for medicinal chemistry optimization. The identification, characterization, and elaboration of one of these fragment series to a 0.265 μM inhibitor is described herein.

  13. [Isolation and characteristics of DNA fragments for the region of the tissue plasminogen activator genes and areas adjacent to it in the human genome].

    Science.gov (United States)

    Sarafanov, A G; Timofeeva, M Ia; Aleshkov, S B; Kupriianova, N S; Bannikov, V M; Zakhar'ev, V M; Baev, A A

    1994-01-01

    Fragments overlapping the tPA gene and its 5'- and 3'-flanking regions were isolated from human liver DNA library cloned in lambda Charon4A vector. A BglII fragment comprising the 3' end and the adjacent genomic region (total length 3.7 kb) was subcloned in plasmid pUC19 and its restriction map was determined. The nucleotide sequence of the 5' region of this fragment was compared with the 3' end region of the tPA gene and the corresponding regions of five published variants of tPA mRNA cDNA from different tissues; discrepancies in seven positions were revealed, which might be caused by intragenomic polymorphism.

  14. GenColors-based comparative genome databases for small eukaryotic genomes.

    Science.gov (United States)

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.

  15. Mass Spectrometry Based Ultrasensitive DNA Methylation Profiling Using Target Fragmentation Assay.

    Science.gov (United States)

    Lin, Xiang-Cheng; Zhang, Ting; Liu, Lan; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-01-19

    Efficient tools for profiling DNA methylation in specific genes are essential for epigenetics and clinical diagnostics. Current DNA methylation profiling techniques have been limited by inconvenient implementation, requirements of specific reagents, and inferior accuracy in quantifying methylation degree. We develop a novel mass spectrometry method, target fragmentation assay (TFA), which enable to profile methylation in specific sequences. This method combines selective capture of DNA target from restricted cleavage of genomic DNA using magnetic separation with MS detection of the nonenzymatic hydrolysates of target DNA. This method is shown to be highly sensitive with a detection limit as low as 0.056 amol, allowing direct profiling of methylation using genome DNA without preamplification. Moreover, this method offers a unique advantage in accurately determining DNA methylation level. The clinical applicability was demonstrated by DNA methylation analysis using prostate tissue samples, implying the potential of this method as a useful tool for DNA methylation profiling in early detection of related diseases.

  16. Computational medicinal chemistry in fragment-based drug discovery: what, how and when.

    Science.gov (United States)

    Rabal, Obdulia; Urbano-Cuadrado, Manuel; Oyarzabal, Julen

    2011-01-01

    The use of fragment-based drug discovery (FBDD) has increased in the last decade due to the encouraging results obtained to date. In this scenario, computational approaches, together with experimental information, play an important role to guide and speed up the process. By default, FBDD is generally considered as a constructive approach. However, such additive behavior is not always present, therefore, simple fragment maturation will not always deliver the expected results. In this review, computational approaches utilized in FBDD are reported together with real case studies, where applicability domains are exemplified, in order to analyze them, and then, maximize their performance and reliability. Thus, a proper use of these computational tools can minimize misleading conclusions, keeping the credit on FBDD strategy, as well as achieve higher impact in the drug-discovery process. FBDD goes one step beyond a simple constructive approach. A broad set of computational tools: docking, R group quantitative structure-activity relationship, fragmentation tools, fragments management tools, patents analysis and fragment-hopping, for example, can be utilized in FBDD, providing a clear positive impact if they are utilized in the proper scenario - what, how and when. An initial assessment of additive/non-additive behavior is a critical point to define the most convenient approach for fragments elaboration.

  17. Anti-fouling properties of Fab' fragments immobilized on silane-based adlayers

    Science.gov (United States)

    Crivianu-Gaita, Victor; Romaschin, Alexander; Thompson, Michael

    2015-12-01

    Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a difficult task. The last decade has seen an increase in the use of immobilized antigen-binding antibody fragments (Fab') in biosensors. One Fab' linker compound S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) and three spacers were used to create the silane-based adlayers. The ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS) was used to gauge the fouling properties of the various surfaces using bovine serum albumin (BSA), goat IgG, and mouse serum. X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) were employed to characterize the surfaces. It was discovered that immobilized oriented Fab' fragments reduced the fouling levels of surfaces up to 80% compared to the surfaces without fragments. An explanation for this phenomenon is that the antibody fragments increase the hydration of the surfaces and aid in the formation of an anti-fouling water barrier. The anti-fouling effect of the Fab' fragments is at its maximum when there is an even distribution of fragments across the surfaces. Finally, using Fab'-covered surfaces, a cancer biomarker was detected from serum, showing the applicability of this work to the field of biodetection.

  18. 基于线粒体基因片段核苷酸多态性的亚洲栽培稻起源进化研究%Study on the Origin and Evolution of Asian Cultivated Rice Based on Gene Fragment Nucleotides Diversity of Mitochondrial Genome

    Institute of Scientific and Technical Information of China (English)

    曹立荣; 魏鑫; 黄娟; 乔卫华; 张万霞; 杨庆文

    2013-01-01

    亚洲栽培稻的祖先是普通野生稻,已成为世界公认的观点,然而亚洲栽培稻的2个亚种:粳稻和籼稻是一次起源还是二次起源仍存在很大争议,其起源地是国内还是国外依然是国际学者间争论的焦点.本文通过对184份亚洲栽培稻和203份普通野生稻3段基因序列cox3、cox1、orf 224和2段基因间序列ssv-39/178、rps2-trnfM的多样性研究,验证了以下观点:1)粳稻起源于中国,籼稻起源于中国和国外;2)亚洲栽培稻的起源为二次起源,即普通野生稻存在偏籼和偏粳2种类型,亚洲栽培稻的2个亚种籼稻和粳稻在进化过程中分别由偏籼型的普通野生稻和偏粳型的普通野生稻进化而来.%Wild rice ( Oryza rufipogon ) has been recognized as the ancestor of Asian cultivated rice ( Oryza sati-va). However, where and how cultivated rice originated from wild rice has been debated for a long time in the world. Moreover,whether the two subspecies of Asian cultivated rice, indica and japonica, were domesticated with the ways of single origin or multiple origins was still considerably controversial, and whether they originated from China or aboard was still the focus of debate among international scholars. In this study, 184 accessions of Asian cultivated rice and 203 accessions of Oryza rufipogon to be sequenced with 3 gene fragments (cox3 ,coxl, orf 224) and two inter gene regions( ssv-39/178 ,rps2-trnfM) in mitochondrial genome of rice were collected. Through the study of gene diversity of the five fragments, the following propositions were verified. First,the origin of japonica was in China, and the origin of indica was not only in China but also in foreign countries. Second,the subspecies of Asian cultivated rice were domesticated with two origins. In other words,common wild rice contained the indica-like and japonica-like types, and the two subspecies were evolved from the indica -like wild rice and the japonica-like wild rice respectively.

  19. Site Identification by Ligand Competitive Saturation (SILCS) Simulations for Fragment-Based Drug Design

    Science.gov (United States)

    Faller, Christina E.; Raman, E. Prabhu; MacKerell, Alexander D.; Guvench, Olgun

    2015-01-01

    Fragment-based drug design (FBDD) involves screening low molecular weight molecules (“fragments”) that correspond to functional groups found in larger drug-like molecules to determine their binding to target proteins or nucleic acids. Based on the principle of thermodynamic additivity, two fragments that bind non-overlapping nearby sites on the target can be combined to yield a new molecule whose binding free energy is the sum of those of the fragments. Experimental FBDD approaches, like NMR and X-ray crystallography, have proven very useful but can be expensive in terms of time, materials, and labor. Accordingly, a variety of computational FBDD approaches have been developed that provide different levels of detail and accuracy. The Site Identification by Ligand Competitive Saturation (SILCS) method of computational FBDD uses all-atom explicit-solvent molecular dynamics (MD) simulations to identify fragment binding. The target is “soaked” in an aqueous solution with multiple fragments having different identities. The resulting computational competition assay reveals what small molecule types are most likely to bind which regions of the target. From SILCS simulations, 3D probability maps of fragment binding called “FragMaps” can be produced. Based on the probabilities relative to bulk, SILCS FragMaps can be used to determine “Grid Free Energies (GFEs),” which provide per-atom contributions to fragment binding affinities. For essentially no additional computational overhead relative to the production of the FragMaps, GFEs can be used to compute Ligand Grid Free Energies (LGFEs) for arbitrarily complex molecules, and these LGFEs can be used to rank-order the molecules in accordance with binding affinities. PMID:25709034

  20. Anti-fouling properties of Fab’ fragments immobilized on silane-based adlayers

    Energy Technology Data Exchange (ETDEWEB)

    Crivianu-Gaita, Victor [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada); Romaschin, Alexander [Clinical Biochemistry, St. Michael' s Hospital, Toronto, ON M5B 1W8 (Canada); Thompson, Michael, E-mail: mikethom@chem.utoronto.ca [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada)

    2015-12-30

    Highlights: • Simple and mixed adlayers formed with Fab’ linker and/or spacers. • Binding of Fab’ fragments through TUBTS linker resulted in oriented immobilization. • Immobilized Fab’ fragments have inherent anti-fouling character. • Up to 80% fouling reduction when Fab’ fragments introduced to surfaces. • Used the minimally fouling surfaces to detect a cancer biomarker (PTHrP) in serum. - Graphical abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a difficult task. The last decade has seen an increase in the use of immobilized antigen-binding antibody fragments (Fab’) in biosensors. One Fab’ linker compound S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) and three spacers were used to create the silane-based adlayers. The ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS) was used to gauge the fouling properties of the various surfaces using bovine serum albumin (BSA), goat IgG, and mouse serum. X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) were employed to characterize the surfaces. It was discovered that immobilized oriented Fab’ fragments reduced the fouling levels of surfaces up to 80% compared to the surfaces without fragments. An explanation for this phenomenon is that the antibody fragments increase the hydration of the surfaces and aid in the formation of an anti-fouling water barrier. The anti-fouling effect of the Fab’ fragments is at its maximum when there is an even distribution of fragments across the surfaces. Finally, using Fab’-covered surfaces, a cancer biomarker was detected from serum, showing the applicability of this work to the field of biodetection. - Abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a

  1. Targeting tuberculosis using structure-guided fragment-based drug design.

    Science.gov (United States)

    Mendes, Vitor; Blundell, Tom L

    2016-10-11

    Fragment-based drug discovery is now widely used in academia and industry to obtain small molecule inhibitors for a given target and is established for many fields of research including antimicrobials and oncology. Many molecules derived from fragment-based approaches are already in clinical trials and two - vemurafenib and venetoclax - are on the market, but the approach has been used sparsely in the tuberculosis field. Here, we describe the progress of our group and others, and examine the most recent successes and challenges in developing compounds with antimycobacterial activity.

  2. Creating novel activated factor XI inhibitors through fragment based lead generation and structure aided drug design.

    Directory of Open Access Journals (Sweden)

    Ola Fjellström

    Full Text Available Activated factor XI (FXIa inhibitors are anticipated to combine anticoagulant and profibrinolytic effects with a low bleeding risk. This motivated a structure aided fragment based lead generation campaign to create novel FXIa inhibitor leads. A virtual screen, based on docking experiments, was performed to generate a FXIa targeted fragment library for an NMR screen that resulted in the identification of fragments binding in the FXIa S1 binding pocket. The neutral 6-chloro-3,4-dihydro-1H-quinolin-2-one and the weakly basic quinolin-2-amine structures are novel FXIa P1 fragments. The expansion of these fragments towards the FXIa prime side binding sites was aided by solving the X-ray structures of reported FXIa inhibitors that we found to bind in the S1-S1'-S2' FXIa binding pockets. Combining the X-ray structure information from the identified S1 binding 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment and the S1-S1'-S2' binding reference compounds enabled structure guided linking and expansion work to achieve one of the most potent and selective FXIa inhibitors reported to date, compound 13, with a FXIa IC50 of 1.0 nM. The hydrophilicity and large polar surface area of the potent S1-S1'-S2' binding FXIa inhibitors compromised permeability. Initial work to expand the 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment towards the prime side to yield molecules with less hydrophilicity shows promise to afford potent, selective and orally bioavailable compounds.

  3. Three- and four-body corrected fragment molecular orbital calculations with a novel subdividing fragmentation method applicable to structure-based drug design.

    Science.gov (United States)

    Watanabe, Chiduru; Fukuzawa, Kaori; Okiyama, Yoshio; Tsukamoto, Takayuki; Kato, Akifumi; Tanaka, Shigenori; Mochizuki, Yuji; Nakano, Tatsuya

    2013-04-01

    We develop an inter-fragment interaction energy (IFIE) analysis based on the three- and four-body corrected fragment molecular orbital (FMO3 and FMO4) method to evaluate the interactions of functional group units in structure-based drug design context. The novel subdividing fragmentation method for a ligand (in units of their functional groups) and amino acid residues (in units of their main and side chains) enables us to understand the ligand-binding mechanism in more detail without sacrificing chemical accuracy of the total energy and IFIEs by using the FMO4 method. We perform FMO4 calculations with the second order Møller-Plesset perturbation theory for an estrogen receptor (ER) and the 17β-estradiol (EST) complex using the proposed fragmentation method and assess the interaction for each ligand-binding site by the FMO4-IFIE analysis. When the steroidal EST is divided into two functional units including "A ring" and "D ring", respectively, the FMO4-IFIE analysis reveals their binding affinity with surrounding fragments of the amino acid residues; the "A ring" of EST has polarization interaction with the main chain of Thr347 and two hydrogen bonds with the side chains of Glu353 and Arg394; the "D ring" of EST has a hydrogen bond with the side chain of His524. In particular, the CH/π interactions of the "A ring" of EST with the side chains of Leu387 and Phe404 are easily identified in cooperation with the CHPI program. The FMO4-IFIE analysis using our novel subdividing fragmentation method, which provides higher resolution than the conventional IFIE analysis in units of ligand and each amino acid reside in the framework of two-body approximation, is a useful tool for revealing ligand-binding mechanism and would be applicable to rational drug design such as structure-based drug design and fragment-based drug design.

  4. Genomics and public health: development of Web-based training tools for increasing genomic awareness.

    Science.gov (United States)

    Bodzin, Jennifer; Kardia, Sharon L R; Goldenberg, Aaron; Raup, Sarah F; Bach, Janice V; Citrin, Toby

    2005-04-01

    In 2001, the Centers for Disease Control and Prevention funded three Centers for Genomics and Public Health to develop training tools for increasing genomic awareness. Over the past three years, the centers, working together with the Centers for Disease Control and Prevention's Office of Genomics and Disease Prevention, have developed tools to increase awareness of the impact genomics will have on public health practice, to provide a foundation for understanding basic genomic advances, and to translate the relevance of that information to public health practitioners' own work. These training tools serve to communicate genomic advances and their potential for integration into public heath practice. This paper highlights two of these training tools: 1) Genomics for Public Health Practitioners: The Practical Application of Genomics in Public Health Practice, a Web-based introduction to genomics, and 2) Six Weeks to Genomic Awareness, an in-depth training module on public health genomics. This paper focuses on the processes and collaborative efforts by which these live presentations were developed and delivered as Web-based training sessions.

  5. CyanoBase: the cyanobacteria genome database update 2010.

    Science.gov (United States)

    Nakao, Mitsuteru; Okamoto, Shinobu; Kohara, Mitsuyo; Fujishiro, Tsunakazu; Fujisawa, Takatomo; Sato, Shusei; Tabata, Satoshi; Kaneko, Takakazu; Nakamura, Yasukazu

    2010-01-01

    CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in various formats with other tools, seamlessly.

  6. Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch): insights from in silico analysis of nuclear and organellar genomes.

    Science.gov (United States)

    Ranade, Sonali Sachin; García-Gil, María Rosario; Rosselló, Josep A

    2016-04-01

    Many genes have been lost from the prokaryote plastidial genome during the early events of endosymbiosis in eukaryotes. Some of them were definitively lost, but others were relocated and functionally integrated to the host nuclear genomes through serial events of gene transfer during plant evolution. In gymnosperms, plastid genome sequencing has revealed the loss of ndh genes from several species of Gnetales and Pinaceae, including Norway spruce (Picea abies). This study aims to trace the ndh genes in the nuclear and organellar Norway spruce genomes. The plastid genomes of higher plants contain 11 ndh genes which are homologues of mitochondrial genes encoding subunits of the proton-pumping NADH-dehydrogenase (nicotinamide adenine dinucleotide dehydrogenase) or complex I (electron transport chain). Ndh genes encode 11 NDH polypeptides forming the Ndh complex (analogous to complex I) which seems to be primarily involved in chloro-respiration processes. We considered ndh genes from the plastidial genome of four gymnosperms (Cryptomeria japonica, Cycas revoluta, Ginkgo biloba, Podocarpus totara) and a single angiosperm species (Arabidopsis thaliana) to trace putative homologs in the nuclear and organellar Norway spruce genomes using tBLASTn to assess the evolutionary fate of ndh genes in Norway spruce and to address their genomic location(s), structure, integrity and functionality. The results obtained from tBLASTn were subsequently analyzed by performing homology search for finding ndh specific conserved domains using conserved domain search. We report the presence of non-functional plastid ndh gene fragments, excepting ndhE and ndhG genes, in the nuclear genome of Norway spruce. Regulatory transcriptional elements like promoters, TATA boxes and enhancers were detected in the upstream regions of some ndh fragments. We also found transposable elements in the flanking regions of few ndh fragments suggesting nuclear rearrangements in those regions. These evidences

  7. Structure-guided fragment-based in silico drug design of dengue protease inhibitors.

    Science.gov (United States)

    Knehans, Tim; Schüller, Andreas; Doan, Danny N; Nacro, Kassoum; Hill, Jeffrey; Güntert, Peter; Madhusudhan, M S; Weil, Tanja; Vasudevan, Subhash G

    2011-03-01

    An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC(50) = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC(50) = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.

  8. Fragment-based whole cell screen delivers hits against M. tuberculosis and non-tuberculous mycobacteria

    Directory of Open Access Journals (Sweden)

    Wilfried Moreira

    2016-09-01

    Full Text Available Reactive multi-target ‘fragment drugs’ represent critical components of current tuberculosis regimens. These compounds, such as pyrazinamide, are old synthetic antimycobacterials that are activated inside Mycobacterium tuberculosis bacilli and are smaller than the usual drug-like, single-target molecules. Based on the success of small ‘dirty’ drugs in the chemotherapy of tuberculosis, we suggested previously that fragment-based whole cell screens should be introduced in our current antimycobacterial drug discovery efforts. Here, we carried out such a screen and characterized bactericidal activity, selectivity and spectrum of hits we obtained. A library of 1725 fragments was tested at a single concentration for growth inhibitory activity against M. bovis BCG as screening strain and 38 of 116 primary hits were confirmed in dose response analyses to be active against virulent M. tuberculosis. Bacterial kill experiments showed that most hits displayed bactericidal activity at their minimal inhibitory concentration. Cytotoxicity assays established that a large proportion of hits displayed a favorable selectivity index for mammalian cells. Importantly, one third of M. tuberculosis active fragments were also active against M. abscessus and M. avium, two emerging non-tuberculous mycobacterial pathogens, opening the opportunity to develop broad spectrum antimycobacterials. Activity determination against Gram positive (Staphylococcus aureus and Gram negative (Escherichia coli, Klebsiella pneumonia, Acinetobacter baumanii, Pseudomonas aeruginosa bacteria, as well as fungi (Candida albicans, Cryptococcus neoformans showed only a small overlap indicating a generally narrow spectrum of these novel antimicrobial hits for mycobacteria. In conclusion, we carried out the first fragment-based whole cell screen against bacteria and identified a substantial number of hits with excellent physicochemical properties and dual activity against M. tuberculosis and

  9. Efficient sampling in fragment-based protein structure prediction using an estimation of distribution algorithm.

    Directory of Open Access Journals (Sweden)

    David Simoncini

    Full Text Available Fragment assembly is a powerful method of protein structure prediction that builds protein models from a pool of candidate fragments taken from known structures. Stochastic sampling is subsequently used to refine the models. The structures are first represented as coarse-grained models and then as all-atom models for computational efficiency. Many models have to be generated independently due to the stochastic nature of the sampling methods used to search for the global minimum in a complex energy landscape. In this paper we present EdaFold(AA, a fragment-based approach which shares information between the generated models and steers the search towards native-like regions. A distribution over fragments is estimated from a pool of low energy all-atom models. This iteratively-refined distribution is used to guide the selection of fragments during the building of models for subsequent rounds of structure prediction. The use of an estimation of distribution algorithm enabled EdaFold(AA to reach lower energy levels and to generate a higher percentage of near-native models. [Formula: see text] uses an all-atom energy function and produces models with atomic resolution. We observed an improvement in energy-driven blind selection of models on a benchmark of EdaFold(AA in comparison with the [Formula: see text] AbInitioRelax protocol.

  10. Diffusion mediated coagulation and fragmentation based study of domain formation in lipid bilayer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Laxminarsimha V., E-mail: laxman@iitk.ac.in [Mechanics and Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Roy, Subhradeep [Department of Biomedical Engineering and Mechanics (MC 0219), Virginia Tech, 495 Old Turner Street, Blacksburg, VA 24061 (United States); Das, Sovan Lal [Mechanics and Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2017-01-15

    We estimate the equilibrium size distribution of cholesterol rich micro-domains on a lipid bilayer by solving Smoluchowski equation for coagulation and fragmentation. Towards this aim, we first derive the coagulation kernels based on the diffusion behaviour of domains moving in a two dimensional membrane sheet, as this represents the reality better. We incorporate three different diffusion scenarios of domain diffusion into our coagulation kernel. Subsequently, we investigate the influence of the parameters in our model on the coagulation and fragmentation behaviour. The observed behaviours of the coagulation and fragmentation kernels are also manifested in the equilibrium domain size distribution and its first moment. Finally, considering the liquid domains diffusing in a supported lipid bilayer, we fit the equilibrium domain size distribution to a benchmark solution.

  11. Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches

    Directory of Open Access Journals (Sweden)

    Pathan AAK

    2016-05-01

    Full Text Available Akbar Ali Khan Pathan,1,2,* Bhavana Panthi,3,* Zahid Khan,1 Purushotham Reddy Koppula,4–6 Mohammed Saud Alanazi,1 Sachchidanand,3 Narasimha Reddy Parine,1 Mukesh Chourasia3,* 1Genome Research Chair (GRC, Department of Biochemistry, College of Science, King Saud University, 2Integrated Gulf Biosystems, Riyadh, Kingdom of Saudi Arabia; 3Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hajipur, India; 4Department of Internal Medicine, School of Medicine, 5Harry S. Truman Memorial Veterans Affairs Hospital, 6Department of Radiology, School of Medicine, Columbia, MO, USA *These authors contributed equally to this work Objective: Kirsten rat sarcoma (K-Ras protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods: In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results: Interestingly, the designed compounds exhibit a binding preference for the

  12. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing.

    Science.gov (United States)

    Urich, Mark A; Nery, Joseph R; Lister, Ryan; Schmitz, Robert J; Ecker, Joseph R

    2015-03-01

    Current high-throughput DNA sequencing technologies enable acquisition of billions of data points through which myriad biological processes can be interrogated, including genetic variation, chromatin structure, gene expression patterns, small RNAs and protein-DNA interactions. Here we describe the MethylC-sequencing (MethylC-seq) library preparation method, a 2-d protocol that enables the genome-wide identification of cytosine DNA methylation states at single-base resolution. The technique involves fragmentation of genomic DNA followed by adapter ligation, bisulfite conversion and limited amplification using adapter-specific PCR primers in preparation for sequencing. To date, this protocol has been successfully applied to genomic DNA isolated from primary cell culture, sorted cells and fresh tissue from over a thousand plant and animal samples.

  13. A new assay based on terminal restriction fragment length polymorphism of homocitrate synthase gene fragments for Candida species identification.

    Science.gov (United States)

    Szemiako, Kasjan; Śledzińska, Anna; Krawczyk, Beata

    2017-08-01

    Candida sp. have been responsible for an increasing number of infections, especially in patients with immunodeficiency. Species-specific differentiation of Candida sp. is difficult in routine diagnosis. This identification can have a highly significant association in therapy and prophylaxis. This work has shown a new application of the terminal restriction fragment length polymorphism (t-RFLP) method in the molecular identification of six species of Candida, which are the most common causes of fungal infections. Specific for fungi homocitrate synthase gene was chosen as a molecular target for amplification. The use of three restriction enzymes, DraI, RsaI, and BglII, for amplicon digestion can generate species-specific fluorescence labeled DNA fragment profiles, which can be used to determine the diagnostic algorithm. The designed method can be a cost-efficient high-throughput molecular technique for the identification of six clinically important Candida species.

  14. Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia.

    Science.gov (United States)

    Keserű, György M; Erlanson, Daniel A; Ferenczy, György G; Hann, Michael M; Murray, Christopher W; Pickett, Stephen D

    2016-09-22

    Fragment-based drug discovery (FBDD) is well suited for discovering both drug leads and chemical probes of protein function; it can cover broad swaths of chemical space and allows the use of creative chemistry. FBDD is widely implemented for lead discovery in industry but is sometimes used less systematically in academia. Design principles and implementation approaches for fragment libraries are continually evolving, and the lack of up-to-date guidance may prevent more effective application of FBDD in academia. This Perspective explores many of the theoretical, practical, and strategic considerations that occur within FBDD programs, including the optimal size, complexity, physicochemical profile, and shape profile of fragments in FBDD libraries, as well as compound storage, evaluation, and screening technologies. This compilation of industry experience in FBDD will hopefully be useful for those pursuing FBDD in academia.

  15. A fragment-based approach towards $\\it{ab-initio}$ treatment of polymeric materials

    Indian Academy of Sciences (India)

    RESHMA S PINGALE; SUBHASH S PINGALE; ANJALI KSHIRSAGAR

    2017-07-01

    The broad range of applications of $\\pi$-conjugated polymeric materials in industries such as automobiles, textiles, packaging, medical etc. have led to their extensive studies in both academic and industrial fields. Predicting the structure of these polymers is important for the study of their properties. The present work uses a ‘divide and conquer’-type approach for the $\\it{ab-initio}$ studies of these polymeric systems. The method employs a fragmentation technique with independent fragment optimization for obtaining optimized geometries of the oligomers of various polymeric materials such as polyfuran, polypyrrole, polythiophene and other such $\\pi$-conjugated polymers. A few test calculations performed in the study provide fair concurrence between the energies and the HOMO–LUMO energy gaps obtained using the fragmentation-based approach with those obtained using the full optimization of the whole oligomer. Also, a significant reduction in time complexity occurs for the present fragment-based approach compared to the parent system optimization. The results are encouraging and prompt for studies of large polymeric materials.

  16. Evaluation of genetic diversity in jackfruit (Artocarpus heterophyllus Lam.) based on amplified fragment length polymorphism markers.

    Science.gov (United States)

    Shyamalamma, S; Chandra, S B C; Hegde, M; Naryanswamy, P

    2008-07-22

    Artocarpus heterophyllus Lam., commonly called jackfruit, is a medium-sized evergreen tree that bears high yields of the largest known edible fruit. Yet, it has been little explored commercially due to wide variation in fruit quality. The genetic diversity and genetic relatedness of 50 jackfruit accessions were studied using amplified fragment length polymorphism markers. Of 16 primer pairs evaluated, eight were selected for screening of genotypes based on the number and quality of polymorphic fragments produced. These primer combinations produced 5976 bands, 1267 (22%) of which were polymorphic. Among the jackfruit accessions, the similarity coefficient ranged from 0.137 to 0.978; the accessions also shared a large number of monomorphic fragments (78%). Cluster analysis and principal component analysis grouped all jackfruit genotypes into three major clusters. Cluster I included the genotypes grown in a jackfruit region of Karnataka, called Tamaka, with very dry conditions; cluster II contained the genotypes collected from locations having medium to heavy rainfall in Karnataka; cluster III grouped the genotypes in distant locations with different environmental conditions. Strong coincidence of these amplified fragment length polymorphism-based groupings with geographical localities as well as morphological characters was observed. We found moderate genetic diversity in these jackfruit accessions. This information should be useful for tree breeding programs, as part of our effort to popularize jackfruit as a commercial crop.

  17. Computational fragment-based binding site identification by ligand competitive saturation.

    Directory of Open Access Journals (Sweden)

    Olgun Guvench

    2009-07-01

    Full Text Available Fragment-based drug discovery using NMR and x-ray crystallographic methods has proven utility but also non-trivial time, materials, and labor costs. Current computational fragment-based approaches circumvent these issues but suffer from limited representations of protein flexibility and solvation effects, leading to difficulties with rigorous ranking of fragment affinities. To overcome these limitations we describe an explicit solvent all-atom molecular dynamics methodology (SILCS: Site Identification by Ligand Competitive Saturation that uses small aliphatic and aromatic molecules plus water molecules to map the affinity pattern of a protein for hydrophobic groups, aromatic groups, hydrogen bond donors, and hydrogen bond acceptors. By simultaneously incorporating ligands representative of all these functionalities, the method is an in silico free energy-based competition assay that generates three-dimensional probability maps of fragment binding (FragMaps indicating favorable fragment:protein interactions. Applied to the two-fold symmetric oncoprotein BCL-6, the SILCS method yields two-fold symmetric FragMaps that recapitulate the crystallographic binding modes of the SMRT and BCOR peptides. These FragMaps account both for important sequence and structure differences in the C-terminal halves of the two peptides and also the high mobility of the BCL-6 His116 sidechain in the peptide-binding groove. Such SILCS FragMaps can be used to qualitatively inform the design of small-molecule inhibitors or as scoring grids for high-throughput in silico docking that incorporate both an atomic-level description of solvation and protein flexibility.

  18. Coordinates and intervals in graph-based reference genomes.

    Science.gov (United States)

    Rand, Knut D; Grytten, Ivar; Nederbragt, Alexander J; Storvik, Geir O; Glad, Ingrid K; Sandve, Geir K

    2017-05-18

    It has been proposed that future reference genomes should be graph structures in order to better represent the sequence diversity present in a species. However, there is currently no standard method to represent genomic intervals, such as the positions of genes or transcription factor binding sites, on graph-based reference genomes. We formalize offset-based coordinate systems on graph-based reference genomes and introduce methods for representing intervals on these reference structures. We show the advantage of our methods by representing genes on a graph-based representation of the newest assembly of the human genome (GRCh38) and its alternative loci for regions that are highly variable. More complex reference genomes, containing alternative loci, require methods to represent genomic data on these structures. Our proposed notation for genomic intervals makes it possible to fully utilize the alternative loci of the GRCh38 assembly and potential future graph-based reference genomes. We have made a Python package for representing such intervals on offset-based coordinate systems, available at https://github.com/uio-cels/offsetbasedgraph . An interactive web-tool using this Python package to visualize genes on a graph created from GRCh38 is available at https://github.com/uio-cels/genomicgraphcoords .

  19. Amplification of a 500-Base-Pair Fragment from Cultured Isolates of Mycobacterium bovis

    Science.gov (United States)

    Rodríguez, Juan Germán; Fissanoti, Juan Carlos; Del Portillo, Patricia; Patarroyo, Manuel Elkin; Romano, María Isabel; Cataldi, Angel

    1999-01-01

    The presence of a 500-bp fragment which amplifies a region from the genome of Mycobacterium bovis (J. G. Rodriguez, G. A. Meija, P. Del Portillo, M. E. Patarroyo, and L. A. Murillo, Microbiology 141:2131–2138, 1995) was evaluated by carrying out PCR on 121 M. bovis isolates. The M. bovis strains, previously characterized by culture and biochemical tests, were isolated from cattle in different regions of Argentina, Mexico, and Colombia. Four additional strains isolated from sea lions that belong to the M. tuberculosis complex were also included in the study. All of the isolates tested were PCR positive, rendering the expected 500-bp band and giving a correlation of 100% with previous microbiological characterization. Southern blot analysis revealed a common band of 1,800 bp and a polymorphic high-molecular-mass hybridization pattern. The results show that this assay may be useful for diagnosis and identification of M. bovis in cattle. PMID:10364607

  20. The successful merger of theoretical thermochemistry with fragment-based methods in quantum chemistry.

    Science.gov (United States)

    Ramabhadran, Raghunath O; Raghavachari, Krishnan

    2014-12-16

    CONSPECTUS: Quantum chemistry and electronic structure theory have proven to be essential tools to the experimental chemist, in terms of both a priori predictions that pave the way for designing new experiments and rationalizing experimental observations a posteriori. Translating the well-established success of electronic structure theory in obtaining the structures and energies of small chemical systems to increasingly larger molecules is an exciting and ongoing central theme of research in quantum chemistry. However, the prohibitive computational scaling of highly accurate ab initio electronic structure methods poses a fundamental challenge to this research endeavor. This scenario necessitates an indirect fragment-based approach wherein a large molecule is divided into small fragments and is subsequently reassembled to compute its energy accurately. In our quest to further reduce the computational expense associated with the fragment-based methods and overall enhance the applicability of electronic structure methods to large molecules, we realized that the broad ideas involved in a different area, theoretical thermochemistry, are transferable to the area of fragment-based methods. This Account focuses on the effective merger of these two disparate frontiers in quantum chemistry and how new concepts inspired by theoretical thermochemistry significantly reduce the total number of electronic structure calculations needed to be performed as part of a fragment-based method without any appreciable loss of accuracy. Throughout, the generalized connectivity based hierarchy (CBH), which we developed to solve a long-standing problem in theoretical thermochemistry, serves as the linchpin in this merger. The accuracy of our method is based on two strong foundations: (a) the apt utilization of systematic and sophisticated error-canceling schemes via CBH that result in an optimal cutting scheme at any given level of fragmentation and (b) the use of a less expensive second

  1. Ontology-Based Search of Genomic Metadata.

    Science.gov (United States)

    Fernandez, Javier D; Lenzerini, Maurizio; Masseroli, Marco; Venco, Francesco; Ceri, Stefano

    2016-01-01

    The Encyclopedia of DNA Elements (ENCODE) is a huge and still expanding public repository of more than 4,000 experiments and 25,000 data files, assembled by a large international consortium since 2007; unknown biological knowledge can be extracted from these huge and largely unexplored data, leading to data-driven genomic, transcriptomic, and epigenomic discoveries. Yet, search of relevant datasets for knowledge discovery is limitedly supported: metadata describing ENCODE datasets are quite simple and incomplete, and not described by a coherent underlying ontology. Here, we show how to overcome this limitation, by adopting an ENCODE metadata searching approach which uses high-quality ontological knowledge and state-of-the-art indexing technologies. Specifically, we developed S.O.S. GeM (http://www.bioinformatics.deib.polimi.it/SOSGeM/), a system supporting effective semantic search and retrieval of ENCODE datasets. First, we constructed a Semantic Knowledge Base by starting with concepts extracted from ENCODE metadata, matched to and expanded on biomedical ontologies integrated in the well-established Unified Medical Language System. We prove that this inference method is sound and complete. Then, we leveraged the Semantic Knowledge Base to semantically search ENCODE data from arbitrary biologists' queries. This allows correctly finding more datasets than those extracted by a purely syntactic search, as supported by the other available systems. We empirically show the relevance of found datasets to the biologists' queries.

  2. CRISPR/Cas9 based genome editing of Penicillium chrysogenum

    NARCIS (Netherlands)

    Pohl, Carsten; Kiel, Jan A K W; Driessen, Arnold J M; Bovenberg, Roel A L; Nygård, Yvonne

    2016-01-01

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially rel

  3. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.

    Science.gov (United States)

    Wang, Bo; Yang, Ke R; Xu, Xuefei; Isegawa, Miho; Leverentz, Hannah R; Truhlar, Donald G

    2014-09-16

    atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy. Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an anchor points reactive potential. Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.

  4. Tropical Forest Fragmentation Affects Floral Visitors but Not the Structure of Individual-Based Palm-Pollinator Networks

    Science.gov (United States)

    Dáttilo, Wesley; Aguirre, Armando; Quesada, Mauricio; Dirzo, Rodolfo

    2015-01-01

    Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests

  5. Tropical forest fragmentation affects floral visitors but not the structure of individual-based palm-pollinator networks.

    Science.gov (United States)

    Dáttilo, Wesley; Aguirre, Armando; Quesada, Mauricio; Dirzo, Rodolfo

    2015-01-01

    Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.

  6. Tropical forest fragmentation affects floral visitors but not the structure of individual-based palm-pollinator networks.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae and its floral visitors (including both effective and non-effective pollinators at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i Does fragment size affect the structure of individual-based plant-pollinator networks? (ii Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in

  7. Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments

    Science.gov (United States)

    Manning, Ted A.; Lawrence, Scott L.

    2014-01-01

    As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.

  8. Hellbender genome sequences shed light on genomic expansion at the base of crown salamanders.

    Science.gov (United States)

    Sun, Cheng; Mueller, Rachel Lockridge

    2014-07-01

    Among animals, genome sizes range from 20 Mb to 130 Gb, with 380-fold variation across vertebrates. Most of the largest vertebrate genomes are found in salamanders, an amphibian clade of 660 species. Thus, salamanders are an important system for studying causes and consequences of genomic gigantism. Previously, we showed that plethodontid salamander genomes accumulate higher levels of long terminal repeat (LTR) retrotransposons than do other vertebrates, although the evolutionary origins of such sequences remained unexplored. We also showed that some salamanders in the family Plethodontidae have relatively slow rates of DNA loss through small insertions and deletions. Here, we present new data from Cryptobranchus alleganiensis, the hellbender. Cryptobranchus and Plethodontidae span the basal phylogenetic split within salamanders; thus, analyses incorporating these taxa can shed light on the genome of the ancestral crown salamander lineage, which underwent expansion. We show that high levels of LTR retrotransposons likely characterize all crown salamanders, suggesting that disproportionate expansion of this transposable element (TE) class contributed to genomic expansion. Phylogenetic and age distribution analyses of salamander LTR retrotransposons indicate that salamanders' high TE levels reflect persistence and diversification of ancestral TEs rather than horizontal transfer events. Finally, we show that relatively slow DNA loss rates through small indels likely characterize all crown salamanders, suggesting that a decreased DNA loss rate contributed to genomic expansion at the clade's base. Our identification of shared genomic features across phylogenetically distant salamanders is a first step toward identifying the evolutionary processes underlying accumulation and persistence of high levels of repetitive sequence in salamander genomes.

  9. Identification of DNA primase inhibitors via a combined fragment-based and virtual screening

    Science.gov (United States)

    Ilic, Stefan; Akabayov, Sabine R.; Arthanari, Haribabu; Wagner, Gerhard; Richardson, Charles C.; Akabayov, Barak

    2016-11-01

    The structural differences between bacterial and human primases render the former an excellent target for drug design. Here we describe a technique for selecting small molecule inhibitors of the activity of T7 DNA primase, an ideal model for bacterial primases due to their common structural and functional features. Using NMR screening, fragment molecules that bind T7 primase were identified and then exploited in virtual filtration to select larger molecules from the ZINC database. The molecules were docked to the primase active site using the available primase crystal structure and ranked based on their predicted binding energies to identify the best candidates for functional and structural investigations. Biochemical assays revealed that some of the molecules inhibit T7 primase-dependent DNA replication. The binding mechanism was delineated via NMR spectroscopy. Our approach, which combines fragment based and virtual screening, is rapid and cost effective and can be applied to other targets.

  10. StellaBase: the Nematostella vectensis Genomics Database.

    Science.gov (United States)

    Sullivan, James C; Ryan, Joseph F; Watson, James A; Webb, Jeramy; Mullikin, James C; Rokhsar, Daniel; Finnerty, John R

    2006-01-01

    StellaBase, the Nematostella vectensis Genomics Database, is a web-based resource that will facilitate desktop and bench-top studies of the starlet sea anemone. Nematostella is an emerging model organism that has already proven useful for addressing fundamental questions in developmental evolution and evolutionary genomics. StellaBase allows users to query the assembled Nematostella genome, a confirmed gene library, and a predicted genome using both keyword and homology based search functions. Data provided by these searches will elucidate gene family evolution in early animals. Unique research tools, including a Nematostella genetic stock library, a primer library, a literature repository and a gene expression library will provide support to the burgeoning Nematostella research community. The development of StellaBase accompanies significant upgrades to CnidBase, the Cnidarian Evolutionary Genomics Database. With the completion of the first sequenced cnidarian genome, genome comparison tools have been added to CnidBase. In addition, StellaBase provides a framework for the integration of additional species-specific databases into CnidBase. StellaBase is available at http://www.stellabase.org.

  11. Next-Generation Sequencing of Genomic DNA Fragments Bound to a Transcription Factor in Vitro Reveals Its Regulatory Potential

    Directory of Open Access Journals (Sweden)

    Yukio Kurihara

    2014-12-01

    Full Text Available Several transcription factors (TFs coordinate to regulate expression of specific genes at the transcriptional level. In Arabidopsis thaliana it is estimated that approximately 10% of all genes encode TFs or TF-like proteins. It is important to identify target genes that are directly regulated by TFs in order to understand the complete picture of a plant’s transcriptome profile. Here, we investigate the role of the LONG HYPOCOTYL5 (HY5 transcription factor that acts as a regulator of photomorphogenesis. We used an in vitro genomic DNA binding assay coupled with immunoprecipitation and next-generation sequencing (gDB-seq instead of the in vivo chromatin immunoprecipitation (ChIP-based methods. The results demonstrate that the HY5-binding motif predicted here was similar to the motif reported previously and that in vitro HY5-binding loci largely overlapped with the HY5-targeted candidate genes identified in previous ChIP-chip analysis. By combining these results with microarray analysis, we identified hundreds of HY5-binding genes that were differentially expressed in hy5. We also observed delayed induction of some transcripts of HY5-binding genes in hy5 mutants in response to blue-light exposure after dark treatment. Thus, an in vitro gDNA-binding assay coupled with sequencing is a convenient and powerful method to bridge the gap between identifying TF binding potential and establishing function.

  12. Novel isoquinolone PDK1 inhibitors discovered through fragment-based lead discovery

    Science.gov (United States)

    Johnson, M. Catherine; Hu, Qiyue; Lingardo, Laura; Ferre, Rose Ann; Greasley, Samantha; Yan, Jiangli; Kath, John; Chen, Ping; Ermolieff, Jacques; Alton, Gordon

    2011-07-01

    Phosphoinositide-dependent kinase-1 (PDK1) is a critical enzyme in the PI3K/AKT pathway and to the activation of AGC family protein kinases, including S6K, SGK, and PKC. Dysregulation of this pathway plays a key role in cancer cell growth, survival and tumor angiogenesis. As such, inhibitors of PDK1 offer the promise of a new therapeutic modality for cancer treatment. Fragment based drug screening has recently become a viable entry point for hit identification. In this work, NMR spectroscopy fragment screening of PDK1 afforded novel chemotypes as orthogonal starting points from HTS screening hits. Compounds identified as hits by NMR spectroscopy were tested in a biochemical assay, and fragments with activity in both assays were clustered. The Pfizer compound file was mined via substructure and 2D similarity search, and the chemotypes were prioritized by ligand efficiency (LE), SAR mining, chemical attractiveness, and chemical enablement of promising vectors. From this effort, an isoquinolone fragment hit, 5 (IC50 870 μM, LE = 0.39), was identified as a novel, ligand efficient inhibitor of PDK1 and a suitable scaffold for further optimization. Initially in the absence of crystallographic data, a fragment growing approach efficiently explored four vectors of the isoquinolone scaffold via parallel synthesis to afford a compound with crystallographic data, 16 (IC50 41.4 μM, LE = 0.33). Subsequent lead optimization efforts provided 24 (IC50 1.8 μM, LE = 0.42), with greater than fivefold selectivity against other key pathway kinases.

  13. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan;

    2014-01-01

    than 1 kb. Excluding the 59 SVs (54 insertions/deletions, 5 inversions) that overlap with N-base gaps in the reference assembly hg19, 666 non-gap SVs remained, and 396 of them (60%) were verified by paired-end data from whole-genome sequencing-based re-sequencing or de novo assembly sequence from...... fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides...

  14. Crystallographic analysis of TPP riboswitch binding by small-molecule ligands discovered through fragment-based drug discovery approaches.

    Science.gov (United States)

    Warner, Katherine Deigan; Ferré-D'Amaré, Adrian R

    2014-01-01

    Riboswitches are structured mRNA elements that regulate gene expression in response to metabolite or second-messenger binding and are promising targets for drug discovery. Fragment-based drug discovery methods have identified weakly binding small molecule "fragments" that bind a thiamine pyrophosphate (TPP) riboswitch. However, these fragments require substantial chemical elaboration into more potent, drug-like molecules. Structure determination of the fragments bound to the riboswitch is the necessary next step. In this chapter, we describe the methods for co-crystallization and structure determination of fragment-bound TPP riboswitch structures. We focus on considerations for screening crystallization conditions across multiple crystal forms and provide guidance for building the fragment into the refined crystallographic model. These methods are broadly applicable for crystallographic analyses of any small molecules that bind structured RNAs.

  15. Are fragment-based quantum chemistry methods applicable to medium-sized water clusters?

    Science.gov (United States)

    Yuan, Dandan; Shen, Xiaoling; Li, Wei; Li, Shuhua

    2016-06-28

    Fragment-based quantum chemistry methods are either based on the many-body expansion or the inclusion-exclusion principle. To compare the applicability of these two categories of methods, we have systematically evaluated the performance of the generalized energy based fragmentation (GEBF) method (J. Phys. Chem. A, 2007, 111, 2193) and the electrostatically embedded many-body (EE-MB) method (J. Chem. Theory Comput., 2007, 3, 46) for medium-sized water clusters (H2O)n (n = 10, 20, 30). Our calculations demonstrate that the GEBF method provides uniformly accurate ground-state energies for 10 low-energy isomers of three water clusters under study at a series of theory levels, while the EE-MB method (with one water molecule as a fragment and without using the cutoff distance) shows a poor convergence for (H2O)20 and (H2O)30 when the basis set contains diffuse functions. Our analysis shows that the neglect of the basis set superposition error for each subsystem has little effect on the accuracy of the GEBF method, but leads to much less accurate results for the EE-MB method. The accuracy of the EE-MB method can be dramatically improved by using an appropriate cutoff distance and using two water molecules as a fragment. For (H2O)30, the average deviation of the EE-MB method truncated up to the three-body level calculated using this strategy (relative to the conventional energies) is about 0.003 hartree at the M06-2X/6-311++G** level, while the deviation of the GEBF method with a similar computational cost is less than 0.001 hartree. The GEBF method is demonstrated to be applicable for electronic structure calculations of water clusters at any basis set.

  16. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    CERN Document Server

    Assamagan, Ketevi A; Bayatyan, G L; Carlini, R; Danagulyan, S; Eden, T; Egiyan, K; Ent, R; Fenker, H; Gan, L; Gasparian, A; Grigoryan, N K; Greenwood, Z; Gueye, P; Hashimoto, O; Johnston, K; Keppel, C; Knyazyan, S; Majewski, S; Margaryan, A; Margaryan, Yu L; Marikian, G G; Martoff, J; Mkrtchyan, H G; Parlakyan, L; Sato, Y; Sawafta, R; Simicevic, N; Tadevosyan, V; Takahashi, T; Tang, L; Vartanian, G S; Vulcan, W; Wells, S; Wood, S

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a sup 2 sup 5 sup 2 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm sup 2 was achieved.

  17. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein.

    Science.gov (United States)

    Petros, Andrew M; Swann, Steven L; Song, Danying; Swinger, Kerren; Park, Chang; Zhang, Haichao; Wendt, Michael D; Kunzer, Aaron R; Souers, Andrew J; Sun, Chaohong

    2014-03-15

    Apoptosis is regulated by the BCL-2 family of proteins, which is comprised of both pro-death and pro-survival members. Evasion of apoptosis is a hallmark of malignant cells. One way in which cancer cells achieve this evasion is thru overexpression of the pro-survival members of the BCL-2 family. Overexpression of MCL-1, a pro-survival protein, has been shown to be a resistance factor for Navitoclax, a potent inhibitor of BCL-2 and BCL-XL. Here we describe the use of fragment screening methods and structural biology to drive the discovery of novel MCL-1 inhibitors from two distinct structural classes. Specifically, cores derived from a biphenyl sulfonamide and salicylic acid were uncovered in an NMR-based fragment screen and elaborated using high throughput analog synthesis. This culminated in the discovery of selective and potent inhibitors of MCL-1 that may serve as promising leads for medicinal chemistry optimization efforts.

  18. An open source GIS-based tool to integrate the fragmentation mechanism in rockfall propagation

    Science.gov (United States)

    Matas, Gerard; Lantada, Nieves; Gili, Josep A.; Corominas, Jordi

    2015-04-01

    Rockfalls are frequent instability processes in road cuts, open pit mines and quarries, steep slopes and cliffs. Even though the stability of rock slopes can be determined using analytical approaches, the assessment of large rock cliffs require simplifying assumptions due to the difficulty of working with a large amount of joints, the scattering of both the orientations and strength parameters. The attitude and persistency of joints within the rock mass define the size of kinematically unstable rock volumes. Furthermore the rock block will eventually split in several fragments during its propagation downhill due its impact with the ground surface. Knowledge of the size, energy, trajectory… of each block resulting from fragmentation is critical in determining the vulnerability of buildings and protection structures. The objective of this contribution is to present a simple and open source tool to simulate the fragmentation mechanism in rockfall propagation models and in the calculation of impact energies. This tool includes common modes of motion for falling boulders based on the previous literature. The final tool is being implemented in a GIS (Geographic Information Systems) using open source Python programming. The tool under development will be simple, modular, compatible with any GIS environment, open source, able to model rockfalls phenomena correctly. It could be used in any area susceptible to rockfalls with a previous adjustment of the parameters. After the adjustment of the model parameters to a given area, a simulation could be performed to obtain maps of kinetic energy, frequency, stopping density and passing heights. This GIS-based tool and the analysis of the fragmentation laws using data collected from recent rockfall have being developed within the RockRisk Project (2014-2016). This project is funded by the Spanish Ministerio de Economía y Competitividad and entitled "Rockfalls in cliffs: risk quantification and its prevention"(BIA2013-42582-P).

  19. SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties

    Energy Technology Data Exchange (ETDEWEB)

    Panebianco, Stefano; Lemaître, Jean-Francois; Sida, Jean-Luc [CEA Centre de Saclay, Gif-sur-Ivette (France); Dubray, Noëel [CEA, DAM, DIF, Arpajon (France); Goriely, Stephane [Institut d' Astronomie et d' Astrophisique, Universite Libre de Bruxelles, Brussels (Belgium)

    2014-07-01

    Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed. (author)

  20. SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties

    Science.gov (United States)

    Panebianco, Stefano; Dubray, Nöel; Goriely, Stéphane; Hilaire, Stéphane; Lemaître, Jean-François; Sida, Jean-Luc

    2014-04-01

    Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed.

  1. SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties

    Directory of Open Access Journals (Sweden)

    Panebianco Stefano

    2014-04-01

    Full Text Available Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed.

  2. Framing Fragmentation

    DEFF Research Database (Denmark)

    Bundgaard, Charlotte

    2009-01-01

    , contain distinctive architectural traits, not only based on rational repetition, but also supporting composition and montage as dynamic concepts. Prefab architecture is an architecture of fragmentation, individualization and changeability, and this sets up new challenges for the architect. This paper...... into separate parts or systems: skeleton, skin, services, internal cladding, etc. Each building part/system is being conceived, produced, delivered and maintained by different construction companies. Basically the building is being fragmented into separate parts living their separate lives. The architect has...... to create architectural meaning and give character to an architecture of fragmentation. Layers are both seen as conceptual as well as material frames which define certain strong properties or meanings in the architectural work. Defining layers is a way of separating and organizing; it both defines...

  3. A High-Density Genetic Map for Cucumber (Cucumis Sativus L. Based on Specific Length Amplified Fragment (SLAF Sequencing and QTL Analysis of Fruit Traits in Cucumber

    Directory of Open Access Journals (Sweden)

    Wenying eZhu

    2016-04-01

    Full Text Available High-density genetic linkage map plays an important role in genome assembly and QTL fine mapping. Since the coming of next-generation sequencing (NGS, makes the structure of high-density linkage maps much more convenient and practical, which simplifies SNP discovery and high-throughput genotyping. In this research, a high-density linkage map of cucumber was structured using specific length amplified fragment sequencing, using 153 F2 populations of S1000×S1002. The high-density genetic map composed 3,057 SLAFs, including 4,475 SNP markers on 7 chromosomes, and spanned 1061.19cM. The average genetic distance is 0.35cM. Based on this high-density genome map, QTL analysis was performed on two cucumber fruit traits, fruit length and fruit diameter. There are 15 QTLs for the two fruit traits were detected.

  4. Fragment-Based Drug Discovery in Academia: Experiences From a Tuberculosis Programme

    Science.gov (United States)

    Heikkila, Timo J.; Surade, Sachin; Silvestre, Hernani L.; Dias, Marcio V. B.; Ciulli, Alessio; Bromfield, Karen; Scott, Duncan; Howard, Nigel; Wen, Shijun; Wei, Alvin Hung; Osborne, David; Abell, Chris; Blundell, Tom L.

    The problems associated with neglected diseases are often compounded by increasing incidence of antibiotic resistance. Patient negligence and abuse of antibiotics has lead to explosive growth in cases of tuberculosis, with some M. tuberculosis strains becoming virtually untreatable. Structure-based drug development is viewed as cost-effective and time-consuming method for discovery and development of hits to lead compounds. In this review we will discuss the suitability of fragment-based methods for developing new chemotherapeutics against neglected diseases, providing examples from our tuberculosis programme.

  5. Raman Optical Activity Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.

    Science.gov (United States)

    Jovan Jose, K V; Raghavachari, Krishnan

    2016-02-09

    We present an efficient method for the calculation of the Raman optical activity (ROA) spectra for large molecules through the molecules-in-molecules (MIM) fragment-based method. The relevant higher energy derivatives from smaller fragments are used to build the property tensors of the parent molecule to enable the extension of the MIM method for evaluating ROA spectra (MIM-ROA). Two factors were found to be particularly important in yielding accurate results. First, the link-atom tensor components are projected back onto the corresponding host and supporting atoms through the Jacobian projection method, yielding a mathematically rigorous method. Second, the long-range interactions between fragments are taken into account by using a less computationally expensive lower level of theory. The performance of the MIM-ROA model is calibrated on the enantiomeric pairs of 10 carbohydrate benchmark molecules, with strong intramolecular interactions. The vibrational frequencies and ROA intensities are accurately reproduced relative to the full, unfragmented, results for these systems. In addition, the MIM-ROA method is employed to predict the ROA spectra of d-maltose, α-D-cyclodextrin, and cryptophane-A, yielding spectra in excellent agreement with experiment. The accuracy and performance of the benchmark systems validate the MIM-ROA model for exploring ROA spectra of large molecules.

  6. wFleaBase: the Daphnia genome database

    Directory of Open Access Journals (Sweden)

    Singan Vasanth R

    2005-03-01

    Full Text Available Abstract Background wFleaBase is a database with the necessary infrastructure to curate, archive and share genetic, molecular and functional genomic data and protocols for an emerging model organism, the microcrustacean Daphnia. Commonly known as the water-flea, Daphnia's ecological merit is unequaled among metazoans, largely because of its sentinel role within freshwater ecosystems and over 200 years of biological investigations. By consequence, the Daphnia Genomics Consortium (DGC has launched an interdisciplinary research program to create the resources needed to study genes that affect ecological and evolutionary success in natural environments. Discussion These tools include the genome database wFleaBase, which currently contains functions to search and extract information from expressed sequenced tags, genome survey sequences and full genome sequencing projects. This new database is built primarily from core components of the Generic Model Organism Database project, and related bioinformatics tools. Summary Over the coming year, preliminary genetic maps and the nearly complete genomic sequence of Daphnia pulex will be integrated into wFleaBase, including gene predictions and ortholog assignments based on sequence similarities with eukaryote genes of known function. wFleaBase aims to serve a large ecological and evolutionary research community. Our challenge is to rapidly expand its content and to ultimately integrate genetic and functional genomic information with population-level responses to environmental challenges. URL: http://wfleabase.org/.

  7. A first generation physical map of the medaka genome in BACs essential for positional cloning and clone-by-clone based genomic sequencing.

    Science.gov (United States)

    Khorasani, Maryam Zadeh; Hennig, Steffen; Imre, Gabriele; Asakawa, Shuichi; Palczewski, Stefanie; Berger, Anja; Hori, Hiroshi; Naruse, Kiyoshi; Mitani, Hiroshi; Shima, Akihiro; Lehrach, Hans; Wittbrodt, Jochen; Kondoh, Hisato; Shimizu, Nobuyoshi; Himmelbauer, Heinz

    2004-07-01

    In order to realize the full potential of the medaka as a model system for developmental biology and genetics, characterized genomic resources need to be established, culminating in the sequence of the medaka genome. To facilitate the map-based cloning of genes underlying induced mutations and to provide templates for clone-based genomic sequencing, we have created a first-generation physical map of the medaka genome in bacterial artificial chromosome (BAC) clones. In particular, we exploited the synteny to the closely related genome of the pufferfish, Takifugu rubripes, by marker content mapping. As a first step, we clustered 103,144 public medaka EST sequences to obtain a set of 21,121 non-redundant sequence entities. Avoiding oversampling of gene-dense regions, 11,254 of EST clusters were successfully matched against the draft sequence of the fugu genome, and 2363 genes were selected for the BAC map project. We designed 35mer oligonucleotide probes from the selected genes and hybridized them against 64,500 BAC clones of strains Cab and Hd-rR, representing 14-fold coverage of the medaka genome. Our data set is further supplemented with 437 results generated from PCR-amplified inserts of medaka cDNA clones and BAC end-fragment markers. Our current, edited, first generation medaka BAC map consists of 902 map segments that cover about 74% of the medaka genome. The map contains 2721 markers. Of these, 2534 are from expressed sequences, equivalent to a non-redundant set of 2328 loci. The 934 markers (724 different) are anchored to the medaka genetic map. Thus, genetic map assignments provide immediate access to underlying clones and contigs, simplifying molecular access to candidate gene regions and their characterization.

  8. Ab initio Path Integral Molecular Dynamics Based on Fragment Molecular Orbital Method

    Science.gov (United States)

    Fujita, Takatoshi; Watanabe, Hirofumi; Tanaka, Shigenori

    2009-10-01

    We have developed an ab initio path integral molecular dynamics method based on the fragment molecular orbital method. This “FMO-PIMD” method can treat both nuclei and electrons quantum mechanically, and is useful to simulate large hydrogen-bonded systems with high accuracy. After a benchmark calculation for water monomer, water trimer and glycine pentamer have been studied using the FMO-PIMD method to investigate nuclear quantum effects on structure and molecular interactions. The applicability of the present approach is demonstrated through a number of test calculations.

  9. A Web-Based Comparative Genomics Tutorial for Investigating Microbial Genomes

    Directory of Open Access Journals (Sweden)

    Michael Strong

    2009-12-01

    Full Text Available As the number of completely sequenced microbial genomes continues to rise at an impressive rate, it is important to prepare students with the skills necessary to investigate microorganisms at the genomic level. As a part of the core curriculum for first-year graduate students in the biological sciences, we have implemented a web-based tutorial to introduce students to the fields of comparative and functional genomics. The tutorial focuses on recent computational methods for identifying functionally linked genes and proteins on a genome-wide scale and was used to introduce students to the Rosetta Stone, Phylogenetic Profile, conserved Gene Neighbor, and Operon computational methods. Students learned to use a number of publicly available web servers and databases to identify functionally linked genes in the Escherichia coli genome, with emphasis on genome organization and operon structure. The overall effectiveness of the tutorial was assessed based on student evaluations and homework assignments. The tutorial is available to other educators at http://www.doe-mbi.ucla.edu/~strong/m253.php.

  10. Genome Transfer Prevents Fragmentation and Restores Developmental Potential of Developmentally Compromised Postovulatory Aged Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    Mitsutoshi Yamada

    2017-03-01

    Full Text Available Changes in oocyte quality can have great impact on the developmental potential of early embryos. Here we test whether nuclear genome transfer from a developmentally incompetent to a developmentally competent oocyte can restore developmental potential. Using in vitro oocyte aging as a model system we performed nuclear transfer in mouse oocytes at metaphase II or at the first interphase, and observed that development to the blastocyst stage and to term was as efficient as in control embryos. The increased developmental potential is explained primarily by correction of abnormal cytokinesis at anaphase of meiosis and mitosis, by a reduction in chromosome segregation errors, and by normalization of the localization of chromosome passenger complex components survivin and cyclin B1. These observations demonstrate that developmental decline is primarily due to abnormal function of cytoplasmic factors involved in cytokinesis, while the genome remains developmentally fully competent.

  11. AgBase: a functional genomics resource for agriculture

    Directory of Open Access Journals (Sweden)

    Hill David P

    2006-09-01

    Full Text Available Abstract Background Many agricultural species and their pathogens have sequenced genomes and more are in progress. Agricultural species provide food, fiber, xenotransplant tissues, biopharmaceuticals and biomedical models. Moreover, many agricultural microorganisms are human zoonoses. However, systems biology from functional genomics data is hindered in agricultural species because agricultural genome sequences have relatively poor structural and functional annotation and agricultural research communities are smaller with limited funding compared to many model organism communities. Description To facilitate systems biology in these traditionally agricultural species we have established "AgBase", a curated, web-accessible, public resource http://www.agbase.msstate.edu for structural and functional annotation of agricultural genomes. The AgBase database includes a suite of computational tools to use GO annotations. We use standardized nomenclature following the Human Genome Organization Gene Nomenclature guidelines and are currently functionally annotating chicken, cow and sheep gene products using the Gene Ontology (GO. The computational tools we have developed accept and batch process data derived from different public databases (with different accession codes, return all existing GO annotations, provide a list of products without GO annotation, identify potential orthologs, model functional genomics data using GO and assist proteomics analysis of ESTs and EST assemblies. Our journal database helps prevent redundant manual GO curation. We encourage and publicly acknowledge GO annotations from researchers and provide a service for researchers interested in GO and analysis of functional genomics data. Conclusion The AgBase database is the first database dedicated to functional genomics and systems biology analysis for agriculturally important species and their pathogens. We use experimental data to improve structural annotation of genomes and to

  12. A new fragment-based approach for calculating electronic excitation energies of large systems.

    Science.gov (United States)

    Ma, Yingjin; Liu, Yang; Ma, Haibo

    2012-01-14

    We present a new fragment-based scheme to calculate the excited states of large systems without necessity of a Hartree-Fock (HF) solution of the whole system. This method is based on the implementation of the renormalized excitonic method [M. A. Hajj et al., Phys. Rev. B 72, 224412 (2005)] at ab initio level, which assumes that the excitation of the whole system can be expressed by a linear combination of various local excitations. We decomposed the whole system into several blocks and then constructed the effective Hamiltonians for the intra- and inter-block interactions with block canonical molecular orbitals instead of widely used localized molecular orbitals. Accordingly, we avoided the prerequisite HF solution and the localization procedure of the molecular orbitals in the popular local correlation methods. Test calculations were implemented for hydrogen molecule chains at the full configuration interaction, symmetry adapted cluster/symmetry adapted cluster configuration interaction, HF/configuration interaction singles (CIS) levels and more realistic polyene systems at the HF/CIS level. The calculated vertical excitation energies for lowest excited states are in reasonable accordance with those determined by the calculations of the whole systems with traditional methods, showing that our new fragment-based method can give good estimates for low-lying energy spectra of both weak and moderate interaction systems with economic computational costs.

  13. Fragment Based Strategies for Discovery of Novel HIV-1 Reverse Transcriptase and Integrase Inhibitors.

    Science.gov (United States)

    Latham, Catherine F; La, Jennifer; Tinetti, Ricky N; Chalmers, David K; Tachedjian, Gilda

    2016-01-01

    Human immunodeficiency virus (HIV) remains a global health problem. While combined antiretroviral therapy has been successful in controlling the virus in patients, HIV can develop resistance to drugs used for treatment, rendering available drugs less effective and limiting treatment options. Initiatives to find novel drugs for HIV treatment are ongoing, although traditional drug design approaches often focus on known binding sites for inhibition of established drug targets like reverse transcriptase and integrase. These approaches tend towards generating more inhibitors in the same drug classes already used in the clinic. Lack of diversity in antiretroviral drug classes can result in limited treatment options, as cross-resistance can emerge to a whole drug class in patients treated with only one drug from that class. A fresh approach in the search for new HIV-1 drugs is fragment-based drug discovery (FBDD), a validated strategy for drug discovery based on using smaller libraries of low molecular weight molecules (<300 Da) screened using primarily biophysical assays. FBDD is aimed at not only finding novel drug scaffolds, but also probing the target protein to find new, often allosteric, inhibitory binding sites. Several fragment-based strategies have been successful in identifying novel inhibitory sites or scaffolds for two proven drug targets for HIV-1, reverse transcriptase and integrase. While any FBDD-generated HIV-1 drugs have yet to enter the clinic, recent FBDD initiatives against these two well-characterised HIV-1 targets have reinvigorated antiretroviral drug discovery and the search for novel classes of HIV-1 drugs.

  14. Constructing virtual combinatorial fragment libraries based upon MDL Drug Data Report database

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; SHENG ChunQuan; XU Hui; SONG YunLong; ZHANG WanNian

    2007-01-01

    Structural analysis of known drugs or drug-like compounds provides important information for drug design. The 142553 drug molecules in the MDL Drug Data Report database were analyzed, and then the common structural features were extracted. According to the common structural features, drug molecules were segmented into 32017 fragments, including 13642 ring fragments, 10076 linker fragments,and 8299 side chain fragments. These fragments were further used to establish three types of virtual combinatorial fragment libraries: a basic framework library containing 13574 rings; a linker library of 8051 linkers and a pharmacophore library of 34244 fragments combined by rings and side chains. After energy minimization, all fragments in the above three libraries maintain reasonable geometrical features and spatial conformations, and would be useful for building a virtual combinatorial database and de novo drug design.

  15. Constructing virtual combinatorial fragment libraries based upon MDL Drug Data Report database

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Structural analysis of known drugs or drug-like compounds provides important information for drug design. The 142553 drug molecules in the MDL Drug Data Report database were analyzed, and then the common structural features were extracted. According to the common structural features, drug molecules were segmented into 32017 fragments, including 13642 ring fragments, 10076 linker fragments, and 8299 side chain fragments. These fragments were further used to establish three types of virtual combinatorial fragment libraries: a basic framework library containing 13574 rings; a linker library of 8051 linkers and a pharmacophore library of 34244 fragments combined by rings and side chains. After energy minimization, all fragments in the above three libraries maintain reasonable geometrical features and spatial conformations, and would be useful for building a virtual combinatorial database and de novo drug design.

  16. Herbarium genomics

    DEFF Research Database (Denmark)

    Bakker, Freek T.; Lei, Di; Yu, Jiaying

    2016-01-01

    Herbarium genomics is proving promising as next-generation sequencing approaches are well suited to deal with the usually fragmented nature of archival DNA. We show that routine assembly of partial plastome sequences from herbarium specimens is feasible, from total DNA extracts and with specimens...... up to 146 years old. We use genome skimming and an automated assembly pipeline, Iterative Organelle Genome Assembly, that assembles paired-end reads into a series of candidate assemblies, the best one of which is selected based on likelihood estimation. We used 93 specimens from 12 different...... correlation between plastome coverage and nuclear genome size (C value) in our samples, but the range of C values included is limited. Finally, we conclude that routine plastome sequencing from herbarium specimens is feasible and cost-effective (compared with Sanger sequencing or plastome...

  17. incaRNAfbinv: a web server for the fragment-based design of RNA sequences.

    Science.gov (United States)

    Drory Retwitzer, Matan; Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme; Barash, Danny

    2016-07-08

    In recent years, new methods for computational RNA design have been developed and applied to various problems in synthetic biology and nanotechnology. Lately, there is considerable interest in incorporating essential biological information when solving the inverse RNA folding problem. Correspondingly, RNAfbinv aims at including biologically meaningful constraints and is the only program to-date that performs a fragment-based design of RNA sequences. In doing so it allows the design of sequences that do not necessarily exactly fold into the target, as long as the overall coarse-grained tree graph shape is preserved. Augmented by the weighted sampling algorithm of incaRNAtion, our web server called incaRNAfbinv implements the method devised in RNAfbinv and offers an interactive environment for the inverse folding of RNA using a fragment-based design approach. It takes as input: a target RNA secondary structure; optional sequence and motif constraints; optional target minimum free energy, neutrality and GC content. In addition to the design of synthetic regulatory sequences, it can be used as a pre-processing step for the detection of novel natural occurring RNAs. The two complementary methodologies RNAfbinv and incaRNAtion are merged together and fully implemented in our web server incaRNAfbinv, available at http://www.cs.bgu.ac.il/incaRNAfbinv.

  18. Ionization and fragmentation of complex molecules studied with a density functional theory based approach

    Science.gov (United States)

    Kirchner, Tom

    2013-05-01

    Ion-impact induced ionization and fragmentation of complex molecules have important applications in many branches of science. If the molecule is H2O an obvious topic to address is the radiobiological relevance of these processes, e.g. in the context of hadron therapy, to name just one example. From a more fundamental physics viewpoint ion-molecule collision systems constitute interesting many-body systems, whose analysis poses challenges to both experimentalists and theorists. This talk will describe a theoretical approach to ion-molecule collisions, which is based on density functional theory to describe the nonperturbative electron dynamics. The basis generator method applied in the past successfully to ion-atom collisions is adapted to deal with the multi-center problem one faces when one considers molecular targets. Cross sections for single- and multiple-electron processes (capture and transfer to the continuum) are obtained directly from solving time-dependent Kohn-Sham-type orbital equations and using a Slater determinant based analysis. Fragmentation yields are predicted on the basis of a semi-phenomenological model which uses the calculated cross sections as input. Results will be presented for various ions impacting on water molecules in the energy range of 10-5000 keV/amu and compared with experimental data and previous theoretical calculations where available. First applications of the model to collisions involving CH4 molecules will also be discussed. This work has been supported by SHARCNET and NSERC Canada.

  19. Contributions of computational chemistry and biophysical techniques to fragment-based drug discovery.

    Science.gov (United States)

    Gozalbes, Rafael; Carbajo, Rodrigo J; Pineda-Lucena, Antonio

    2010-01-01

    In the last decade, fragment-based drug discovery (FBDD) has evolved from a novel approach in the search of new hits to a valuable alternative to the high-throughput screening (HTS) campaigns of many pharmaceutical companies. The increasing relevance of FBDD in the drug discovery universe has been concomitant with an implementation of the biophysical techniques used for the detection of weak inhibitors, e.g. NMR, X-ray crystallography or surface plasmon resonance (SPR). At the same time, computational approaches have also been progressively incorporated into the FBDD process and nowadays several computational tools are available. These stretch from the filtering of huge chemical databases in order to build fragment-focused libraries comprising compounds with adequate physicochemical properties, to more evolved models based on different in silico methods such as docking, pharmacophore modelling, QSAR and virtual screening. In this paper we will review the parallel evolution and complementarities of biophysical techniques and computational methods, providing some representative examples of drug discovery success stories by using FBDD.

  20. Discovery of Potent Myeloid Cell Leukemia 1 (Mcl-1) Inhibitors Using Fragment-Based Methods and Structure-Based Design

    Energy Technology Data Exchange (ETDEWEB)

    Friberg, Anders [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Vigil, Dominico [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Zhao, Bin [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Daniels, R. Nathan [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Burke, Jason P. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Garcia-Barrantes, Pedro M. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Camper, DeMarco [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Chauder, Brian A. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Lee, Taekyu [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Olejniczak, Edward T. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States); Fesik, Stephen W. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States)

    2012-12-17

    Myeloid cell leukemia 1 (Mcl-1), a member of the Bcl-2 family of proteins, is overexpressed and amplified in various cancers and promotes the aberrant survival of tumor cells that otherwise would undergo apoptosis. Here we describe the discovery of potent and selective Mcl-1 inhibitors using fragment-based methods and structure-based design. NMR-based screening of a large fragment library identified two chemically distinct hit series that bind to different sites on Mcl-1. Members of the two fragment classes were merged together to produce lead compounds that bind to Mcl-1 with a dissociation constant of <100 nM with selectivity for Mcl-1 over Bcl-xL and Bcl-2. Structures of merged compounds when complexed to Mcl-1 were obtained by X-ray crystallography and provide detailed information about the molecular recognition of small-molecule ligands binding Mcl-1. The compounds represent starting points for the discovery of clinically useful Mcl-1 inhibitors for the treatment of a wide variety of cancers.

  1. Fragment-Based Drug Design Facilitated by Protein-Templated Click Chemistry: Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin.

    Science.gov (United States)

    Mondal, Milon; Unver, M Yagiz; Pal, Asish; Bakker, Matthijs; Berrier, Stephan P; Hirsch, Anna K H

    2016-10-10

    There is an urgent need for the development of efficient methodologies that accelerate drug discovery. We demonstrate that the strategic combination of fragment linking/optimization and protein-templated click chemistry is an efficient and powerful method that accelerates the hit-identification process for the aspartic protease endothiapepsin. The best binder, which inhibits endothiapepsin with an IC50 value of 43 μm, represents the first example of triazole-based inhibitors of endothiapepsin. Our strategy could find application on a whole range of drug targets.

  2. Network Based Prediction Model for Genomics Data Analysis*

    OpenAIRE

    Huang, Ying; Wang, Pei

    2012-01-01

    Biological networks, such as genetic regulatory networks and protein interaction networks, provide important information for studying gene/protein activities. In this paper, we propose a new method, NetBoosting, for incorporating a priori biological network information in analyzing high dimensional genomics data. Specially, we are interested in constructing prediction models for disease phenotypes of interest based on genomics data, and at the same time identifying disease susceptible genes. ...

  3. In silico enhanced restriction enzyme based methylation analysis of the human glioblastoma genome using Agilent 244K CpG Island microarrays

    Directory of Open Access Journals (Sweden)

    Anh Tran

    2010-01-01

    Full Text Available Genome wide methylation profiling of gliomas is likely to provide important clues to improving treatment outcomes. Restriction enzyme based approaches have been widely utilized for methylation profiling of cancer genomes and will continue to have importance in combination with higher density microarrays. With the availability of the human genome sequence and microarray probe sequences, these approaches can be readily characterized and optimized via in silico modeling. We adapted the previously described HpaII/MspI based Methylation Sensitive Restriction Enzyme (MSRE assay for use with two-color Agilent 244K CpG island microarrays. In this assay, fragmented genomic DNA is digested in separate reactions with isoschizomeric HpaII (methylation-sensitive and MspI (methylation-insensitive restriction enzymes. Using in silico hybridization, we found that genomic fragmentation with BfaI was superior to MseI, providing a maximum effective coverage of 22,362 CpG islands in the human genome. In addition, we confirmed the presence of an internal control group of fragments lacking HpaII/MspI sites which enable separation of methylated and unmethylated fragments. We used this method on genomic DNA isolated from normal brain, U87MG cells, and a glioblastoma patient tumor sample and confirmed selected differentially methylated CpG islands using bisulfite sequencing. Along with additional validation points, we performed a receiver operating characteristics (ROC analysis to determine the optimal threshold (p ≤ 0.001. Based on this threshold, we identified ~2400 CpG islands common to all three samples and 145 CpG islands unique to glioblastoma. These data provide more general guidance to individuals seeking to maximize effective coverage using restriction enzyme based methylation profiling approaches.

  4. A role for fragment-based drug design in developing novel lead compounds for central nervous system targets

    Directory of Open Access Journals (Sweden)

    Michael J. Wasko

    2015-09-01

    Full Text Available Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacologic screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening, which employs computer models of the target protein to narrow the search for possible leads. A variant of virtual screening is fragment-based drug design, an emerging in silico lead discovery method that introduces low molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for growing the lead candidate. Current efforts in virtual fragment-based drug design within central nervous system (CNS targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor binding pocket using the fragment as a scaffold. This process places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies.

  5. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments

    Energy Technology Data Exchange (ETDEWEB)

    Cotmore, S.F.; McKie, V.C.; Anderson, L.J.; Astell, C.R.; Tattersall, P.

    1986-11-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights for 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus.

  6. Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII H genome fragment.

    Science.gov (United States)

    Rosel, J L; Earl, P L; Weir, J P; Moss, B

    1986-11-01

    The sequence of the 8,600-base-pair HindIII H fragment, located at the center of the vaccinia virus genome, was determined to analyze several late genes. Seven major complete open reading frames (ORFs) and two that started from or continued into adjacent DNA segments were identified. ORFs were closely spaced and present on both DNA strands. Some adjacent ORFs had oppositely oriented overlapping termination codons or contiguous stop and start codons. Nucleotide compositional analysis indicated that the A-T frequency was consistently lowest in the first codon position. The sizes of the polypeptides predicted from the DNA sequence were compared with those determined by polyacrylamide gel electrophoresis of cell-free translation products of mRNAs selected by hybridization to cloned single-stranded DNA segments or synthesized in vitro by bacteriophage T7 RNA polymerase. Six transcripts that initiated within the HindIII H DNA fragment were detected, and of these, four were synthesized only at late times, one was synthesized only early, and one was synthesized early and late. The sites on the genome corresponding to the 5' ends of the transcripts were located by high-resolution nuclease S1 analysis. For late genes, the transcriptional and translational initiation sites mapped within a few nucleotides of each other, and in each case the sequence TAAATGG occurred at the start of the ORF. The extremely short leader and the absence of A or G in the -3 position, relative to the first nucleotide of the initiation codon, distinguishes the majority of vaccinia virus late genes from eucaryotic and vaccinia virus early genes.

  7. Ontology aided modeling of organic reaction mechanisms with flexible and fragment based XML markup procedures.

    Science.gov (United States)

    Sankar, Punnaivanam; Aghila, Gnanasekaran

    2007-01-01

    The mechanism models for primary organic reactions encoding the structural fragments undergoing substitution, addition, elimination, and rearrangements are developed. In the proposed models, each and every structural component of mechanistic pathways is represented with flexible and fragment based markup technique in XML syntax. A significant feature of the system is the encoding of the electron movements along with the other components like charges, partial charges, half bonded species, lone pair electrons, free radicals, reaction arrows, etc. needed for a complete representation of reaction mechanism. The rendering of reaction schemes described with the proposed methodology is achieved with a concise XML extension language interoperating with the structure markup. The reaction scheme is visualized as 2D graphics in a browser by converting them into SVG documents enabling the desired layouts normally perceived by the chemists conventionally. An automatic representation of the complex patterns of the reaction mechanism is achieved by reusing the knowledge in chemical ontologies and developing artificial intelligence components in terms of axioms.

  8. Fragment-based designing for the generation of novel leads against BACE1.

    Science.gov (United States)

    Das, Sucharita; Chakraborty, Sandipan; Basu, Soumalee

    2015-01-01

    BACE1, the aspartate protease that generates amyloid-β peptide (Aβ) in the brain of AD (Alzheimer's disease) patients, has emerged as a pharmaceutically relevant target. Here, a fragment-based in silico approach has been adopted to design novel compounds with increased ligand efficiency for BACE1, before screening for brain permeability and toxicity. Fragments docked to the active site of BACE1 and sorted into two groups using binding energy cut-off, were joined to create novel ligands with binding energy lying in the range between -11.36 kcal/mol and -8.56 kcal/mol. Interestingly, QIN, a known inhibitor of BACE1 with an IC50 of 11nM, when docked to BACE1, shows a binding energy (-9.43 kcal/mol) lying within the range of the novel ligand-BACE1 complexes. The present strategy thus enabled the design of four novel inhibitors of BACE1 with favourable binding energy, brain permeability and no toxicity that might show promise as leads in future.

  9. Array-based comparative genomic hybridization for genome-wide screening of DNA copy number in bladder tumors.

    NARCIS (Netherlands)

    Veltman, J.A.; Fridlyand, J.; Pejavar, S.; Olshen, A.B.; Korkola, J.E.; Vries, S. de; Carroll, P.; Kuo, W.L.; Pinkel, D.; Albertson, D.; Cordon-Cardo, C.; Jain, A.N.; Waldman, F.M.

    2003-01-01

    Genome-wide copy number profiles were characterized in 41 primary bladder tumors using array-based comparative genomic hybridization (array CGH). In addition to previously identified alterations in large chromosomal regions, alterations were identified in many small genomic regions, some with high-l

  10. Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods

    DEFF Research Database (Denmark)

    Bohlin, Jon; Snipen, Lars; Cloeckaert, Axel

    2010-01-01

    , genomic codon and amino acid frequencies based comparisons) and proteomes (all-against-all BLAST protein comparisons and pan-genomic analyses). RESULTS: We found that the oligonucleotide based methods gave different results compared to that of the proteome based methods. Differences were also found...... than proteome comparisons between species in genus Brucella and genus Ochrobactrum. Pan-genomic analyses indicated that uptake of DNA from outside genus Brucella appears to be limited. CONCLUSIONS: While both the proteome based methods and the Markov chain based genomic signatures were able to reflect...

  11. The Armc10/SVH gene: genome context, regulation of mitochondrial dynamics and protection against Aβ-induced mitochondrial fragmentation

    Science.gov (United States)

    Serrat, R; Mirra, S; Figueiro-Silva, J; Navas-Pérez, E; Quevedo, M; López-Doménech, G; Podlesniy, P; Ulloa, F; Garcia-Fernàndez, J; Trullas, R; Soriano, E

    2014-01-01

    Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1–6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents Aβ-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against Aβ-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals. PMID:24722288

  12. Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination.

    Science.gov (United States)

    Pines, Gur; Freed, Emily F; Winkler, James D; Gill, Ryan T

    2015-11-20

    The ability to specifically modify bacterial genomes in a precise and efficient manner is highly desired in various fields, ranging from molecular genetics to metabolic engineering and synthetic biology. Much has changed from the initial realization that phage-derived genes may be employed for such tasks to today, where recombineering enables complex genetic edits within a genome or a population. Here, we review the major developments leading to recombineering becoming the method of choice for in situ bacterial genome editing while highlighting the various applications of recombineering in pushing the boundaries of synthetic biology. We also present the current understanding of the mechanism of recombineering. Finally, we discuss in detail issues surrounding recombineering efficiency and future directions for recombineering-based genome editing.

  13. Characterizing some gossypol and gossypolone Schiff's bases by studying their fragmentation patterns with electrospray ionization tandem mass spectra

    Institute of Scientific and Technical Information of China (English)

    Long Zhang; Xing Xin Cao; Hai Xia Jiang; Biao Jiang; Yu Xin Cui

    2009-01-01

    To investigate the structural form of gossypol and gossypolone Schiff's bases, seven relevant Schiff's bases were synthesized and the eleetrospray ionization-tandem mass spectrometry (ESI-MS/MS) with low-energy collision-induced dissociation was used to analyze their fragmentations. A common fragmentation pathway with the loss of RNH2 from those schiff's bases quasi-molecular ions was observed and proposed on the basis of their MS/MS spectra data. This common pathway indicated that those Schiff's bases existed mainly as the enamine form not the imine form previously showed in most reports.

  14. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan

    2014-01-01

    mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost......BACKGROUND: Structural variants (SVs) are less common than single nucleotide polymorphisms and indels in the population, but collectively account for a significant fraction of genetic polymorphism and diseases. Base pair differences arising from SVs are on a much higher order (>100 fold) than point...... mapping technology as a comprehensive and cost-effective method for detecting structural variation and studying complex regions in the human genome, as well as deciphering viral integration into the host genome....

  15. Fragment-Based and Structure-Guided Discovery and Optimization of Rho Kinase Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rongshi; Martin, Mathew P.; Liu, Yan; Wang, Binglin; Patel, Ronil A.; Zhu, Jin-Yi; Sun, Nan; Pireddu, Roberta; Lawrence, Nicholas J.; Li, Jiannong; Haura, Eric B.; Sung, Shen-Shu; Guida, Wayne C.; Schonbrunn, Ernst; Sebti, Said M. (Moffitt)

    2012-05-14

    Using high concentration biochemical assays and fragment-based screening assisted by structure-guided design, we discovered a novel class of Rho-kinase inhibitors. Compound 18 was equipotent for ROCK1 (IC{sub 50} = 650 nM) and ROCK2 (IC{sub 50} = 670 nM), whereas compound 24 was more selective for ROCK2 (IC{sub 50} = 100 nM) over ROCK1 (IC{sub 50} = 1690 nM). The crystal structure of the compound 18-ROCK1 complex revealed that 18 is a type 1 inhibitor that binds the hinge region in the ATP binding site. Compounds 18 and 24 inhibited potently the phosphorylation of the ROCK substrate MLC2 in intact human breast cancer cells.

  16. 基于片段的药物发现%Fragment-based drug discovery

    Institute of Scientific and Technical Information of China (English)

    东圆珍; 冯军

    2011-01-01

    为了增加新药发现、研究的效率,科学家们一直致力于寻找新的药物设计和药物筛选方法.基于片断的药物发现(FBDD)为药物设计提供了一种新的选择.本文综述FBDD的过程、所采用的技术方法以及目前国外研究的主要成果.%In order to enhance the efficiency of new drug research and development, scientists are looking for new approach on drug design and screening. Fragment-based drug discovery (FBDD) provides a new choice for drug design.This review describes the process, the technology used, and the current research status of FBDD.

  17. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models

    Directory of Open Access Journals (Sweden)

    Surovcik Katharina

    2006-03-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is considered a strong evolutionary force shaping the content of microbial genomes in a substantial manner. It is the difference in speed enabling the rapid adaptation to changing environmental demands that distinguishes HGT from gene genesis, duplications or mutations. For a precise characterization, algorithms are needed that identify transfer events with high reliability. Frequently, the transferred pieces of DNA have a considerable length, comprise several genes and are called genomic islands (GIs or more specifically pathogenicity or symbiotic islands. Results We have implemented the program SIGI-HMM that predicts GIs and the putative donor of each individual alien gene. It is based on the analysis of codon usage (CU of each individual gene of a genome under study. CU of each gene is compared against a carefully selected set of CU tables representing microbial donors or highly expressed genes. Multiple tests are used to identify putatively alien genes, to predict putative donors and to mask putatively highly expressed genes. Thus, we determine the states and emission probabilities of an inhomogeneous hidden Markov model working on gene level. For the transition probabilities, we draw upon classical test theory with the intention of integrating a sensitivity controller in a consistent manner. SIGI-HMM was written in JAVA and is publicly available. It accepts as input any file created according to the EMBL-format. It generates output in the common GFF format readable for genome browsers. Benchmark tests showed that the output of SIGI-HMM is in agreement with known findings. Its predictions were both consistent with annotated GIs and with predictions generated by different methods. Conclusion SIGI-HMM is a sensitive tool for the identification of GIs in microbial genomes. It allows to interactively analyze genomes in detail and to generate or to test hypotheses about the origin of acquired

  18. Genomic profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization.

    Directory of Open Access Journals (Sweden)

    Shunichi Yoshioka

    Full Text Available We designed a study to investigate genetic relationships between primary tumors of oral squamous cell carcinoma (OSCC and their lymph node metastases, and to identify genomic copy number aberrations (CNAs related to lymph node metastasis. For this purpose, we collected a total of 42 tumor samples from 25 patients and analyzed their genomic profiles by array-based comparative genomic hybridization. We then compared the genetic profiles of metastatic primary tumors (MPTs with their paired lymph node metastases (LNMs, and also those of LNMs with non-metastatic primary tumors (NMPTs. Firstly, we found that although there were some distinctive differences in the patterns of genomic profiles between MPTs and their paired LNMs, the paired samples shared similar genomic aberration patterns in each case. Unsupervised hierarchical clustering analysis grouped together 12 of the 15 MPT-LNM pairs. Furthermore, similarity scores between paired samples were significantly higher than those between non-paired samples. These results suggested that MPTs and their paired LNMs are composed predominantly of genetically clonal tumor cells, while minor populations with different CNAs may also exist in metastatic OSCCs. Secondly, to identify CNAs related to lymph node metastasis, we compared CNAs between grouped samples of MPTs and LNMs, but were unable to find any CNAs that were more common in LNMs. Finally, we hypothesized that subpopulations carrying metastasis-related CNAs might be present in both the MPT and LNM. Accordingly, we compared CNAs between NMPTs and LNMs, and found that gains of 7p, 8q and 17q were more common in the latter than in the former, suggesting that these CNAs may be involved in lymph node metastasis of OSCC. In conclusion, our data suggest that in OSCCs showing metastasis, the primary and metastatic tumors share similar genomic profiles, and that cells in the primary tumor may tend to metastasize after acquiring metastasis-associated CNAs.

  19. Comparative genomics beyond sequence-based alignments

    DEFF Research Database (Denmark)

    Þórarinsson, Elfar; Yao, Zizhen; Wiklund, Eric D.;

    2008-01-01

    Recent computational scans for non-coding RNAs (ncRNAs) in multiple organisms have relied on existing multiple sequence alignments. However, as sequence similarity drops, a key signal of RNA structure--frequent compensating base changes--is increasingly likely to cause sequence-based alignment me...

  20. WormBase 2016: expanding to enable helminth genomic research

    Science.gov (United States)

    Howe, Kevin L.; Bolt, Bruce J.; Cain, Scott; Chan, Juancarlos; Chen, Wen J.; Davis, Paul; Done, James; Down, Thomas; Gao, Sibyl; Grove, Christian; Harris, Todd W.; Kishore, Ranjana; Lee, Raymond; Lomax, Jane; Li, Yuling; Muller, Hans-Michael; Nakamura, Cecilia; Nuin, Paulo; Paulini, Michael; Raciti, Daniela; Schindelman, Gary; Stanley, Eleanor; Tuli, Mary Ann; Van Auken, Kimberly; Wang, Daniel; Wang, Xiaodong; Williams, Gary; Wright, Adam; Yook, Karen; Berriman, Matthew; Kersey, Paul; Schedl, Tim; Stein, Lincoln; Sternberg, Paul W.

    2016-01-01

    WormBase (www.wormbase.org) is a central repository for research data on the biology, genetics and genomics of Caenorhabditis elegans and other nematodes. The project has evolved from its original remit to collect and integrate all data for a single species, and now extends to numerous nematodes, ranging from evolutionary comparators of C. elegans to parasitic species that threaten plant, animal and human health. Research activity using C. elegans as a model system is as vibrant as ever, and we have created new tools for community curation in response to the ever-increasing volume and complexity of data. To better allow users to navigate their way through these data, we have made a number of improvements to our main website, including new tools for browsing genomic features and ontology annotations. Finally, we have developed a new portal for parasitic worm genomes. WormBase ParaSite (parasite.wormbase.org) contains all publicly available nematode and platyhelminth annotated genome sequences, and is designed specifically to support helminth genomic research. PMID:26578572

  1. Changing Histopathological Diagnostics by Genome-Based Tumor Classification

    Directory of Open Access Journals (Sweden)

    Michael Kloth

    2014-05-01

    Full Text Available Traditionally, tumors are classified by histopathological criteria, i.e., based on their specific morphological appearances. Consequently, current therapeutic decisions in oncology are strongly influenced by histology rather than underlying molecular or genomic aberrations. The increase of information on molecular changes however, enabled by the Human Genome Project and the International Cancer Genome Consortium as well as the manifold advances in molecular biology and high-throughput sequencing techniques, inaugurated the integration of genomic information into disease classification. Furthermore, in some cases it became evident that former classifications needed major revision and adaption. Such adaptations are often required by understanding the pathogenesis of a disease from a specific molecular alteration, using this molecular driver for targeted and highly effective therapies. Altogether, reclassifications should lead to higher information content of the underlying diagnoses, reflecting their molecular pathogenesis and resulting in optimized and individual therapeutic decisions. The objective of this article is to summarize some particularly important examples of genome-based classification approaches and associated therapeutic concepts. In addition to reviewing disease specific markers, we focus on potentially therapeutic or predictive markers and the relevance of molecular diagnostics in disease monitoring.

  2. Bespoke Fragments

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2016-01-01

    The Ph.D. -project Bespoke Fragments seeks to explore and utilise the space emerging between the potentials of digital drawing and fabrication and the field of materials and their properties and capacities. Within this span, the project is situated in a shuttling between the virtual and the actual......, the emergence of virtual space is no longer limited to the computer's digital world, but extends into the materials' world. Creation and uncertainty are allowed as virtual parameters in both the digital and reality. Based on this notion the project suggests utilising that exact potential to develop...

  3. Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia.

    Science.gov (United States)

    Sinha, Siddharth; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Somvanshi, Pallavi; Grover, Abhinav

    2016-10-01

    Expansion of polyglutamine (CAG) triplets within the coding gene ataxin 2 results in transcriptional repression, forming the molecular basis of the neurodegenerative disorder named spinocerebellar ataxia type-2 (SCA2). HDAC inhibitors (HDACi) have been elements of great interest in polyglutamine disorders such as Huntington's and Ataxia's. In this study, we have selected hydroxamic acid derivatives as HDACi and performed fragment-based G-QSAR, molecular docking studies and molecular dynamics simulations for elucidating the dynamic mode of action of HDACi with His-Asp catalytic dyad of HDAC4. The model was statistically validated to establish its predictive robustness. The model was statistically significant with r(2) value of .6297, cross-validated co-relation coefficient q(2) value of .5905 and pred_r(2) (predicted square co-relation coefficient) value of .85. An F-test value of 56.11 confirms absolute robustness of the model. Two combinatorial libraries comprising of 3180 compounds were created with hydroxamate moiety as the template and their pIC50 activities were predicted based on the G-QSAR model. The combinatorial library created was screened on the basis of predicted activity (pIC50), with two resultant top scoring compounds, HIC and DHC. The interaction of the compounds with His-Asp dyad in terms of H-bond interactions with His802, Asp840, Pro942, and Gly975 residues of HDAC4 was evaluated by docking and 20 ns long molecular dynamics simulations. This study provides valuable leads for structural substitutions required for hydroxamate moiety to exhibit enhanced inhibitory activity against HDAC4. The reported compounds demonstrated good binding and thus can be considered as potent therapeutic leads against ataxia.

  4. Method for Measuring Velocity of Warhead Fragments Based on Photoelectric Detection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    For measuring velocity and impacting position of single fragment of warhead, a non-contact measuring method is proposed, in which a six-light-screen array, a position indicator, a multi-channel chronograph and a computer are used.The principle of measurement is described. The key device of the system is a light screen array sensor which consists of six light screens allocated with certain geometrical parameters. When the fragment flies through the light screen array, the time of passing through each of the screens is recorded by the multi-channel chronograph. According to the time data and the geometrical parameters of the array, the velocity vector and the location of the fragment can be calculated immediately. The presented method can be used to locate the fragment and to measure the real velocity on its flying direction. It can also be used to measure the velocity of a fragment swarm after the system is engineered further.

  5. cDNA-AFLP-based genetical genomics in cotton fibers.

    Science.gov (United States)

    Claverie, Michel; Souquet, Marlène; Jean, Janine; Forestier-Chiron, Nelly; Lepitre, Vincent; Pré, Martial; Jacobs, John; Llewellyn, Danny; Lacape, Jean-Marc

    2012-03-01

    Genetical genomics, or genetic analysis applied to gene expression data, has not been widely used in plants. We used quantitative cDNA-AFLP to monitor the variation in the expression level of cotton fiber transcripts among a population of inter-specific Gossypium hirsutum × G. barbadense recombinant inbred lines (RILs). Two key fiber developmental stages, elongation (10 days post anthesis, dpa), and secondary cell wall thickening (22 dpa), were studied. Normalized intensity ratios of 3,263 and 1,201 transcript-derived fragments (TDFs) segregating over 88 RILs were analyzed for quantitative trait loci (QTL) mapping for the 10 and 22 dpa fibers, respectively. Two-thirds of all TDFs mapped between 1 and 6 eQTLs (LOD > 3.5). Chromosome 21 had a higher density of eQTLs than other chromosomes in both data sets and, within chromosomes, hotspots of presumably trans-acting eQTLs were identified. The eQTL hotspots were compared to the location of phenotypic QTLs for fiber characteristics among the RILs, and several cases of co-localization were detected. Quantitative RT-PCR for 15 sequenced TDFs showed that 3 TDFs had at least one eQTL at a similar location to those identified by cDNA-AFLP, while 3 other TDFs mapped an eQTL at a similar location but with opposite additive effect. In conclusion, cDNA-AFLP proved to be a cost-effective and highly transferable platform for genome-wide and population-wide gene expression profiling. Because TDFs are anonymous, further validation and interpretation (in silico analysis, qPCR gene profiling) of the eQTL and eQTL hotspots will be facilitated by the increasing availability of cDNA and genomic sequence resources in cotton.

  6. GI-SVM: A sensitive method for predicting genomic islands based on unannotated sequence of a single genome.

    Science.gov (United States)

    Lu, Bingxin; Leong, Hon Wai

    2016-02-01

    Genomic islands (GIs) are clusters of functionally related genes acquired by lateral genetic transfer (LGT), and they are present in many bacterial genomes. GIs are extremely important for bacterial research, because they not only promote genome evolution but also contain genes that enhance adaption and enable antibiotic resistance. Many methods have been proposed to predict GI. But most of them rely on either annotations or comparisons with other closely related genomes. Hence these methods cannot be easily applied to new genomes. As the number of newly sequenced bacterial genomes rapidly increases, there is a need for methods to detect GI based solely on sequences of a single genome. In this paper, we propose a novel method, GI-SVM, to predict GIs given only the unannotated genome sequence. GI-SVM is based on one-class support vector machine (SVM), utilizing composition bias in terms of k-mer content. From our evaluations on three real genomes, GI-SVM can achieve higher recall compared with current methods, without much loss of precision. Besides, GI-SVM allows flexible parameter tuning to get optimal results for each genome. In short, GI-SVM provides a more sensitive method for researchers interested in a first-pass detection of GI in newly sequenced genomes.

  7. Accurate genome relative abundance estimation based on shotgun metagenomic reads.

    Directory of Open Access Journals (Sweden)

    Li C Xia

    Full Text Available Accurate estimation of microbial community composition based on metagenomic sequencing data is fundamental for subsequent metagenomics analysis. Prevalent estimation methods are mainly based on directly summarizing alignment results or its variants; often result in biased and/or unstable estimates. We have developed a unified probabilistic framework (named GRAMMy by explicitly modeling read assignment ambiguities, genome size biases and read distributions along the genomes. Maximum likelihood method is employed to compute Genome Relative Abundance of microbial communities using the Mixture Model theory (GRAMMy. GRAMMy has been demonstrated to give estimates that are accurate and robust across both simulated and real read benchmark datasets. We applied GRAMMy to a collection of 34 metagenomic read sets from four metagenomics projects and identified 99 frequent species (minimally 0.5% abundant in at least 50% of the data-sets in the human gut samples. Our results show substantial improvements over previous studies, such as adjusting the over-estimated abundance for Bacteroides species for human gut samples, by providing a new reference-based strategy for metagenomic sample comparisons. GRAMMy can be used flexibly with many read assignment tools (mapping, alignment or composition-based even with low-sensitivity mapping results from huge short-read datasets. It will be increasingly useful as an accurate and robust tool for abundance estimation with the growing size of read sets and the expanding database of reference genomes.

  8. INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    TIEDJE, JAMES M; KONSTANTINIDIS, KOSTAS; WORDEN, MARK

    2014-01-08

    The aim of the work reported is to study Shewanella population genomics, and to understand the evolution, ecophysiology, and speciation of Shewanella. The tasks supporting this aim are: to study genetic and ecophysiological bases defining the core and diversification of Shewanella species; to determine gene content patterns along redox gradients; and to Investigate the evolutionary processes, patterns and mechanisms of Shewanella.

  9. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome

    Science.gov (United States)

    CRISPR/Cas9 has been recently demonstrated as an effective and popular genome editing tool for modifying genomes of human, animals, microorganisms, and plants. Success of such genome editing is highly dependent on the availability of suitable target sites in the genomes to be edited. Many specific t...

  10. Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site

    Directory of Open Access Journals (Sweden)

    Soares Alexei S

    2007-11-01

    Full Text Available Abstract Background Ricin is a potent toxin and known bioterrorism threat with no available antidote. The ricin A-chain (RTA acts enzymatically to cleave a specific adenine base from ribosomal RNA, thereby blocking translation. To understand better the relationship between ligand binding and RTA active site conformational change, we used a fragment-based approach to find a minimal set of bonding interactions able to induce rearrangements in critical side-chain positions. Results We found that the smallest ligand stabilizing an open conformer of the RTA active site pocket was an amide group, bound weakly by only a few hydrogen bonds to the protein. Complexes with small amide-containing molecules also revealed a switch in geometry from a parallel towards a splayed arrangement of an arginine-tryptophan cation-pi interaction that was associated with an increase and red-shift in tryptophan fluorescence upon ligand binding. Using the observed fluorescence signal, we determined the thermodynamic changes of adenine binding to the RTA active site, as well as the site-specific binding of urea. Urea binding had a favorable enthalpy change and unfavorable entropy change, with a ΔH of -13 ± 2 kJ/mol and a ΔS of -0.04 ± 0.01 kJ/(K*mol. The side-chain position of residue Tyr80 in a complex with adenine was found not to involve as large an overlap of rings with the purine as previously considered, suggesting a smaller role for aromatic stacking at the RTA active site. Conclusion We found that amide ligands can bind weakly but specifically to the ricin active site, producing significant shifts in positions of the critical active site residues Arg180 and Tyr80. These results indicate that fragment-based drug discovery methods are capable of identifying minimal bonding determinants of active-site side-chain rearrangements and the mechanistic origins of spectroscopic shifts. Our results suggest that tryptophan fluorescence provides a sensitive probe for the

  11. Impulsive Neural Networks Algorithm Based on the Artificial Genome Model

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2014-05-01

    Full Text Available To describe gene regulatory networks, this article takes the framework of the artificial genome model and proposes impulsive neural networks algorithm based on the artificial genome model. Firstly, the gene expression and the cell division tree are applied to generate spiking neurons with specific attributes, neural network structure, connection weights and specific learning rules of each neuron. Next, the gene segment duplications and divergence model are applied to design the evolutionary algorithm of impulsive neural networks at the level of the artificial genome. The dynamic changes of developmental gene regulatory networks are controlled during the whole evolutionary process. Finally, the behavior of collecting food for autonomous intelligent agent is simulated, which is driven by nerves. Experimental results demonstrate that the algorithm in this article has the evolutionary ability on large-scale impulsive neural networks

  12. The effect of genealogy-based haplotypes on genomic prediction

    DEFF Research Database (Denmark)

    Edriss, Vahid; Fernando, Rohan L.; Su, Guosheng

    2013-01-01

    Background Genomic prediction uses two sources of information: linkage disequilibrium between markers and quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of genomic prediction is to capture more linkage disequilibrium by regression...... on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes based on local genealogy information. Methods A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were constructed using...... local genealogical trees. Effects of haplotype covariates were estimated with two types of prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP method and (2) assuming that a large proportion (pi) of the haplotype covariates had zero effect...

  13. CFGP: a web-based, comparative fungal genomics platform.

    Science.gov (United States)

    Park, Jongsun; Park, Bongsoo; Jung, Kyongyong; Jang, Suwang; Yu, Kwangyul; Choi, Jaeyoung; Kong, Sunghyung; Park, Jaejin; Kim, Seryun; Kim, Hyojeong; Kim, Soonok; Kim, Jihyun F; Blair, Jaime E; Lee, Kwangwon; Kang, Seogchan; Lee, Yong-Hwan

    2008-01-01

    Since the completion of the Saccharomyces cerevisiae genome sequencing project in 1996, the genomes of over 80 fungal species have been sequenced or are currently being sequenced. Resulting data provide opportunities for studying and comparing fungal biology and evolution at the genome level. To support such studies, the Comparative Fungal Genomics Platform (CFGP; http://cfgp.snu.ac.kr), a web-based multifunctional informatics workbench, was developed. The CFGP comprises three layers, including the basal layer, middleware and the user interface. The data warehouse in the basal layer contains standardized genome sequences of 65 fungal species. The middleware processes queries via six analysis tools, including BLAST, ClustalW, InterProScan, SignalP 3.0, PSORT II and a newly developed tool named BLASTMatrix. The BLASTMatrix permits the identification and visualization of genes homologous to a query across multiple species. The Data-driven User Interface (DUI) of the CFGP was built on a new concept of pre-collecting data and post-executing analysis instead of the 'fill-in-the-form-and-press-SUBMIT' user interfaces utilized by most bioinformatics sites. A tool termed Favorite, which supports the management of encapsulated sequence data and provides a personalized data repository to users, is another novel feature in the DUI.

  14. Dynamic fragmentation and query translation based security framework for distributed databases

    Directory of Open Access Journals (Sweden)

    Arunabha Sengupta

    2015-09-01

    Full Text Available The existing security models for distributed databases suffer from several drawbacks viz. tight coupling with the choice of database; lack of dynamism, granularity and flexibility; non scalability and vulnerability to intrusion attacks. There is a lack of an integrated flexible and interoperable security framework that can dynamically control access to table, row, column and field level data entity. The objective of this proposed framework is to address the issue of security in distributed query processing using the dynamic fragmentation and query translation methodologies based on a parameterized security model which could be tailored based on the business requirements to take care of relational level, record level, column level as well as the atomic data element level security and access requirements. This solution has been implemented and tested for DML operations on distributed relational databases and the execution results are found to be very promising in terms of restricting access to data elements with higher security clearance; blocking queries that return data at/below user’s level but its evaluation requires accessing columns/rows with higher security clearance; and blocking aggregate queries used for inferring classified information.

  15. CCSD(T)/CBS fragment-based calculations of lattice energy of molecular crystals

    Science.gov (United States)

    Červinka, Ctirad; Fulem, Michal; Růžička, Květoslav

    2016-02-01

    A comparative study of the lattice energy calculations for a data set of 25 molecular crystals is performed using an additive scheme based on the individual energies of up to four-body interactions calculated using the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction (CCSD(T)) with an estimated complete basis set (CBS) description. The CCSD(T)/CBS values on lattice energies are used to estimate sublimation enthalpies which are compared with critically assessed and thermodynamically consistent experimental values. The average absolute percentage deviation of calculated sublimation enthalpies from experimental values amounts to 13% (corresponding to 4.8 kJ mol-1 on absolute scale) with unbiased distribution of positive to negative deviations. As pair interaction energies present a dominant contribution to the lattice energy and CCSD(T)/CBS calculations still remain computationally costly, benchmark calculations of pair interaction energies defined by crystal parameters involving 17 levels of theory, including recently developed methods with local and explicit treatment of electronic correlation, such as LCC and LCC-F12, are also presented. Locally and explicitly correlated methods are found to be computationally effective and reliable methods enabling the application of fragment-based methods for larger systems.

  16. Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure.

    Science.gov (United States)

    Valone, S M; Pilania, G; Liu, X Y; Allen, J R; Wu, T-C; Atlas, S R; Dunlap, D H

    2015-11-14

    Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) model uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transfer hopping integrals T and on-fragment parameters U((FH)). The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. We demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U((FH)), thus providing new insight into the nature of metal-insulator transitions. This result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.

  17. Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure

    Energy Technology Data Exchange (ETDEWEB)

    Valone, S. M.; Pilania, G.; Liu, X. Y. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Allen, J. R.; Wu, T.-C.; Atlas, S. R.; Dunlap, D. H. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2015-11-14

    Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) model uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transfer hopping integrals T and on-fragment parameters U{sup (FH)}. The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. We demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U{sup (FH)}, thus providing new insight into the nature of metal-insulator transitions. This result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.

  18. SPY: A new scission point model based on microscopic ingredients to predict fission fragments properties

    Science.gov (United States)

    Lemaître, J.-F.; Dubray, N.; Hilaire, S.; Panebianco, S.; Sida, J.-L.

    2013-12-01

    Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.

  19. SPY: A new scission point model based on microscopic ingredients to predict fission fragments properties

    Directory of Open Access Journals (Sweden)

    Lemaître J.-F.

    2013-12-01

    Full Text Available Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.

  20. Fragmented implementation of maternal and child health home-based records in Vietnam: need for integration

    Directory of Open Access Journals (Sweden)

    Hirotsugu Aiga

    2016-02-01

    Full Text Available Background: Home-based records (HBRs are globally implemented as the effective tools that encourage pregnant women and mothers to timely and adequately utilise maternal and child health (MCH services. While availability and utilisation of nationally representative HBRs have been assessed in several earlier studies, the reality of a number of HBRs subnationally implemented in a less coordinated manner has been neither reported nor analysed. Objectives: This study is aimed at estimating the prevalence of HBRs for MCH and the level of fragmentation of and overlapping between different HBRs for MCH in Vietnam. The study further attempts to identify health workers’ and mothers’ perceptions towards HBR operations and utilisations. Design: A self-administered questionnaire was sent to the provincial health departments of 28 selected provinces. A copy of each HBR available was collected from them. A total of 20 semi-structured interviews with health workers and mothers were conducted at rural communities in four of 28 selected provinces. Results: Whereas HBRs developed exclusively for maternal health and exclusively for child health were available in four provinces (14% and in 28 provinces (100%, respectively, those for both maternal health and child health were available in nine provinces (32%. The mean number of HBRs in 28 provinces (=5.75 indicates over-availability of HBRs. All 119 minimum required items for recording found in three different HBRs under nationwide scale-up were also included in the Maternal and Child Health Handbook being piloted for nationwide scaling-up. Implementation of multiple HBRs is likely to confuse not only health workers by requiring them to record the same data on several HBRs but also mothers about which HBR they should refer to and rely on at home. Conclusions: To enable both health workers and pregnant women to focus on only one type of HBR, province-specific HBRs for maternal and/or child health need to be

  1. Predicting drug side-effect profiles: a chemical fragment-based approach.

    Science.gov (United States)

    Pauwels, Edouard; Stoven, Véronique; Yamanishi, Yoshihiro

    2011-05-18

    Drug side-effects, or adverse drug reactions, have become a major public health concern. It is one of the main causes of failure in the process of drug development, and of drug withdrawal once they have reached the market. Therefore, in silico prediction of potential side-effects early in the drug discovery process, before reaching the clinical stages, is of great interest to improve this long and expensive process and to provide new efficient and safe therapies for patients. In the present work, we propose a new method to predict potential side-effects of drug candidate molecules based on their chemical structures, applicable on large molecular databanks. A unique feature of the proposed method is its ability to extract correlated sets of chemical substructures (or chemical fragments) and side-effects. This is made possible using sparse canonical correlation analysis (SCCA). In the results, we show the usefulness of the proposed method by predicting 1385 side-effects in the SIDER database from the chemical structures of 888 approved drugs. These predictions are performed with simultaneous extraction of correlated ensembles formed by a set of chemical substructures shared by drugs that are likely to have a set of side-effects. We also conduct a comprehensive side-effect prediction for many uncharacterized drug molecules stored in DrugBank, and were able to confirm interesting predictions using independent source of information. The proposed method is expected to be useful in various stages of the drug development process.

  2. Cartesian positioning system for localization of blast and ballistic fragments: a phantom-based pilot study.

    Science.gov (United States)

    Folio, Les; Fischer, Tatjana; Shogan, Paul J; Frew, Michael; Bunger, Rolf; Provenzale, James M

    2011-11-01

    Our purpose was to demonstrate the consistency of radiologists' three-dimensional measurements of simulated blast fragment locations in vitro in an effort to objectively localize retained fragments and wound paths. We designed a phantom consisting of 10 nail heads (simulating blast fragments) glued to wooden pegs that were randomly situated at distances from a reference point within a plastic tub. The x, y, and z coordinates of simulated fragments were recorded in Cartesian 3-space relative to the reference point. Computed tomography images of the phantom were acquired. Differences in x, y, and z positions as determined by three observers were summed for each fragment. Agreement between recordings of coordinates across readers was assessed using the intraclass correlation coefficient. Summed differences in coordinate positions as determined by readers ranged between 0.00 and 1.204 cm (mean: 0.732 cm). Across readers, the intraclass correlation coefficient for each dimension was >0.99. We found excellent agreement among readers with minimal discrepancy of measured locations of simulated fragments. Our results provide a foundation for trajectory analysis necessary to lead to automated organ damage reporting for immediate assessment in the emergency department and for forensic investigation and long-term epidemiological analysis.

  3. AMPLIFICATION OF AZOSPIRILLUM SP. JG3 GLPD GENE FRAGMENT USING DEGENERATE PRIMERS GENERATED BY WEB-BASED TOOLS

    Directory of Open Access Journals (Sweden)

    Stalis Norma Ethica

    2013-12-01

    Full Text Available Primaclade and In Silico web-based tools were used as a strategy to obtain the correct-size PCR amplicon targeting a fragment of gene encoding glycerol-3-phosphate dehydrogenase (glpD of Azospirillum sp. JG3. The bacterial strains are soil, Gram-negative PGPR (Plant-Growth Promoting Rhizobacteria isolated from an agricultural land in Purwokerto, Central Java, Indonesia, which have ability to produce several commercial enzymes. The aim is to obtain a pair of reliable degenerate primers from a limited number of glpD sequences from other Azospirilla retrieved in GenBank using bioinformatics approach. We demonstrated degenerate primer design that led to successful PCR amplification corresponding to the targeted DNA fragment. Homology analysis showed that the obtained DNA fragment is 61% and 99% similar to sn-glycerol-3-phosphate dehydrogenase genes of Azospirillum brasilense and Stenotrophomonas maltophili respectively.

  4. Repositioning the substrate activity screening (SAS) approach as a fragment-based method for identification of weak binders.

    Science.gov (United States)

    Gladysz, Rafaela; Cleenewerck, Matthias; Joossens, Jurgen; Lambeir, Anne-Marie; Augustyns, Koen; Van der Veken, Pieter

    2014-10-13

    Fragment-based drug discovery (FBDD) has evolved into an established approach for "hit" identification. Typically, most applications of FBDD depend on specialised cost- and time-intensive biophysical techniques. The substrate activity screening (SAS) approach has been proposed as a relatively cheap and straightforward alternative for identification of fragments for enzyme inhibitors. We have investigated SAS for the discovery of inhibitors of oncology target urokinase (uPA). Although our results support the key hypotheses of SAS, we also encountered a number of unreported limitations. In response, we propose an efficient modified methodology: "MSAS" (modified substrate activity screening). MSAS circumvents the limitations of SAS and broadens its scope by providing additional fragments and more coherent SAR data. As well as presenting and validating MSAS, this study expands existing SAR knowledge for the S1 pocket of uPA and reports new reversible and irreversible uPA inhibitor scaffolds.

  5. The complete mitochondrial genome of the enigmatic bigheadedturtle (Platysternon): description of unusual genomic features and thereconciliation of phylogenetic hypotheses based on mitochondrial andnuclear DNA

    Energy Technology Data Exchange (ETDEWEB)

    Parham, James F.; Feldman, Chris R.; Boore, Jeffrey L.

    2005-12-28

    The big-headed turtle (Platysternon megacephalum) from east Asia is the sole living representative of a poorly-studied turtle lineage (Platysternidae). It has no close living relatives, and its phylogenetic position within turtles is one of the outstanding controversies in turtle systematics. Platysternon was traditionally considered to be close to snapping turtles (Chelydridae) based on some studies of its morphology and mitochondrial (mt) DNA, however, other studies of morphology and nuclear (nu) DNA do not support that hypothesis. We sequenced the complete mt genome of Platysternon and the nearly complete mt genomes of two other relevant turtles and compared them to turtle mt genomes from the literature to form the largest molecular dataset used to date to address this issue. The resulting phylogeny robustly rejects the placement of Platysternon with Chelydridae, but instead shows that it is a member of the Testudinoidea, a diverse, nearly globally-distributed group that includes pond turtles and tortoises. We also discovered that Platysternon mtDNA has large-scale gene rearrangements and possesses two, nearly identical, control regions, features that distinguish it from all other studied turtles. Our study robustly determines the phylogenetic placement of Platysternon and provides a well-resolved outline of major turtle lineages, while demonstrating the significantly greater resolving power of comparing large amounts of mt sequence over that of short fragments. Earlier phylogenies placing Platysternon with chelydrids required a temporal gap in the fossil record that is now unnecessary. The duplicated control regions and gene rearrangements of the Platysternon mt DNA probably resulted from the duplication of part of the genome and then the subsequent loss of redundant genes. Although it is possible that having two control regions may provide some advantage, explaining why the control regions would be maintained while some of the duplicated genes were eroded

  6. Genomic-based-breeding tools for tropical maize improvement.

    Science.gov (United States)

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-09-05

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in

  7. Molecular epidemiology of contagious bovine pleuropneumonia in Tanzania based on amplified fragment length polymorphism and pulsed-field gel electrophoresis analysis

    DEFF Research Database (Denmark)

    Kusiluka, L.J.M.; Ojeniyi, B.; Friis, N.F.

    2001-01-01

    . The strains were analysed fur variations in the EcoRI and Csp6I restriction sites in the genomic DNA using the amplified fragment length polymorphism (AFLP) technique, and variations in the BamHI restriction sites using pulscd-field gel electrophoresis (PFGE). Six AFLP I) pes were detected among the analysed...

  8. CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum.

    Science.gov (United States)

    Pohl, C; Kiel, J A K W; Driessen, A J M; Bovenberg, R A L; Nygård, Y

    2016-07-15

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially relevant cell factory. The developed CRISPR/Cas9 toolbox is highly flexible and allows editing of new targets with minimal cloning efforts. The Cas9 protein and the sgRNA can be either delivered during transformation, as preassembled CRISPR-Cas9 ribonucleoproteins (RNPs) or expressed from an AMA1 based plasmid within the cell. The direct delivery of the Cas9 protein with in vitro synthesized sgRNA to the cells allows for a transient method for genome engineering that may rapidly be applicable for other filamentous fungi. The expression of Cas9 from an AMA1 based vector was shown to be highly efficient for marker-free gene deletions.

  9. FN-Identify: Novel Restriction Enzymes-Based Method for Bacterial Identification in Absence of Genome Sequencing.

    Science.gov (United States)

    Awad, Mohamed; Ouda, Osama; El-Refy, Ali; El-Feky, Fawzy A; Mosa, Kareem A; Helmy, Mohamed

    2015-01-01

    Sequencing and restriction analysis of genes like 16S rRNA and HSP60 are intensively used for molecular identification in the microbial communities. With aid of the rapid progress in bioinformatics, genome sequencing became the method of choice for bacterial identification. However, the genome sequencing technology is still out of reach in the developing countries. In this paper, we propose FN-Identify, a sequencing-free method for bacterial identification. FN-Identify exploits the gene sequences data available in GenBank and other databases and the two algorithms that we developed, CreateScheme and GeneIdentify, to create a restriction enzyme-based identification scheme. FN-Identify was tested using three different and diverse bacterial populations (members of Lactobacillus, Pseudomonas, and Mycobacterium groups) in an in silico analysis using restriction enzymes and sequences of 16S rRNA gene. The analysis of the restriction maps of the members of three groups using the fragment numbers information only or along with fragments sizes successfully identified all of the members of the three groups using a minimum of four and maximum of eight restriction enzymes. Our results demonstrate the utility and accuracy of FN-Identify method and its two algorithms as an alternative method that uses the standard microbiology laboratories techniques when the genome sequencing is not available.

  10. FN-Identify: Novel Restriction Enzymes-Based Method for Bacterial Identification in Absence of Genome Sequencing

    Science.gov (United States)

    Ouda, Osama; El-Refy, Ali; El-Feky, Fawzy A.; Mosa, Kareem A.

    2015-01-01

    Sequencing and restriction analysis of genes like 16S rRNA and HSP60 are intensively used for molecular identification in the microbial communities. With aid of the rapid progress in bioinformatics, genome sequencing became the method of choice for bacterial identification. However, the genome sequencing technology is still out of reach in the developing countries. In this paper, we propose FN-Identify, a sequencing-free method for bacterial identification. FN-Identify exploits the gene sequences data available in GenBank and other databases and the two algorithms that we developed, CreateScheme and GeneIdentify, to create a restriction enzyme-based identification scheme. FN-Identify was tested using three different and diverse bacterial populations (members of Lactobacillus, Pseudomonas, and Mycobacterium groups) in an in silico analysis using restriction enzymes and sequences of 16S rRNA gene. The analysis of the restriction maps of the members of three groups using the fragment numbers information only or along with fragments sizes successfully identified all of the members of the three groups using a minimum of four and maximum of eight restriction enzymes. Our results demonstrate the utility and accuracy of FN-Identify method and its two algorithms as an alternative method that uses the standard microbiology laboratories techniques when the genome sequencing is not available. PMID:26880910

  11. Genomics and Public Health: Development of Web-based Training Tools for Increasing Genomic Awareness

    OpenAIRE

    Kardia, Sharon LR; Bodzin, Jennifer; Goldenberg, Aaron; Citrin, Toby; Raup, Sarah F; Bach, Janice V

    2005-01-01

    In 2001, the Centers for Disease Control and Prevention funded three Centers for Genomics and Public Health to develop training tools for increasing genomic awareness. Over the past three years, the centers, working together with the Centers for Disease Control and Prevention's Office of Genomics and Disease Prevention, have developed tools to increase awareness of the impact genomics will have on public health practice, to provide a foundation for understanding basic genomic advances, and to...

  12. Amplified-fragment length polymorphism fingerprinting of Mycoplasma species

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Friis, N.F.; Jensen, J.S.

    1999-01-01

    Amplified-fragment length polymorphism (AFLP) is a whole-genome fingerprinting method based on selective amplification of restriction fragments. The potential of the method for the characterization of mycoplasmas was investigated in a total of 50 strains of human and animal origin, including......I restriction endonucleases and subsequent ligation of corresponding site-specific adapters. The amplification of AFLP templates with a single set of nonselective primers resulted in reproducible fingerprints of approximately 60 to 80 fragments in the size range of 50 to 500 bp, The method was able...

  13. Predicting drug side-effect profiles: a chemical fragment-based approach

    Directory of Open Access Journals (Sweden)

    Stoven Véronique

    2011-05-01

    Full Text Available Abstract Background Drug side-effects, or adverse drug reactions, have become a major public health concern. It is one of the main causes of failure in the process of drug development, and of drug withdrawal once they have reached the market. Therefore, in silico prediction of potential side-effects early in the drug discovery process, before reaching the clinical stages, is of great interest to improve this long and expensive process and to provide new efficient and safe therapies for patients. Results In the present work, we propose a new method to predict potential side-effects of drug candidate molecules based on their chemical structures, applicable on large molecular databanks. A unique feature of the proposed method is its ability to extract correlated sets of chemical substructures (or chemical fragments and side-effects. This is made possible using sparse canonical correlation analysis (SCCA. In the results, we show the usefulness of the proposed method by predicting 1385 side-effects in the SIDER database from the chemical structures of 888 approved drugs. These predictions are performed with simultaneous extraction of correlated ensembles formed by a set of chemical substructures shared by drugs that are likely to have a set of side-effects. We also conduct a comprehensive side-effect prediction for many uncharacterized drug molecules stored in DrugBank, and were able to confirm interesting predictions using independent source of information. Conclusions The proposed method is expected to be useful in various stages of the drug development process.

  14. Integrated Genome-Based Studies of Shewanella Echophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Margrethe H. Serres

    2012-06-29

    Shewanella oneidensis MR-1 is a motile, facultative {gamma}-Proteobacterium with remarkable respiratory versatility; it can utilize a range of organic and inorganic compounds as terminal electronacceptors for anaerobic metabolism. The ability to effectively reduce nitrate, S0, polyvalent metals andradionuclides has established MR-1 as an important model dissimilatory metal-reducing microorganism for genome-based investigations of biogeochemical transformation of metals and radionuclides that are of concern to the U.S. Department of Energy (DOE) sites nationwide. Metal-reducing bacteria such as Shewanella also have a highly developed capacity for extracellular transfer of respiratory electrons to solid phase Fe and Mn oxides as well as directly to anode surfaces in microbial fuel cells. More broadly, Shewanellae are recognized free-living microorganisms and members of microbial communities involved in the decomposition of organic matter and the cycling of elements in aquatic and sedimentary systems. To function and compete in environments that are subject to spatial and temporal environmental change, Shewanella must be able to sense and respond to such changes and therefore require relatively robust sensing and regulation systems. The overall goal of this project is to apply the tools of genomics, leveraging the availability of genome sequence for 18 additional strains of Shewanella, to better understand the ecophysiology and speciation of respiratory-versatile members of this important genus. To understand these systems we propose to use genome-based approaches to investigate Shewanella as a system of integrated networks; first describing key cellular subsystems - those involved in signal transduction, regulation, and metabolism - then building towards understanding the function of whole cells and, eventually, cells within populations. As a general approach, this project will employ complimentary "top-down" - bioinformatics-based genome functional predictions, high

  15. 乙型肝炎病毒基因组中罕见大片段缺失突变的分析%Analysis of rare mutation of large fragment deletion in the genome of hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    俞杨; 邬兰; 焦杰; 杜同信; 王自正; 颜宁

    2013-01-01

    目的 对来源于一例慢性乙型肝炎患者的包含罕见大片段缺失的乙肝病毒(HBV)全基因组进行序列分析.方法 提取乙肝病毒基因组DNA,扩增全长基因组,通过单克隆化分析不同准种中大片段缺失的位点和长度;将包含两段缺失突变的片段分别进行扩增,通过扩增产物的序列分析验证准种分析的结果.结果 该标本的HBV基因组中的确存在超过1.4 kb的大片段缺失突变,其中P基因上存在nt2449~489的1256bp的缺失突变,C基因上存在大约nt2088~2298的209bp的缺失突变.结论 该患者HBV基因组中存在罕见大片段缺失突变.%Objective To analyze the whole genome sequence of hepatitis B virus(HBV) including rare large fragment deletion from a patient with chronic hepatitis B.Methods Genomic DNA was extracted from HBV and the whole genome was amplified.The sites and sizes of large fragment deletion in different quasispecies were subjected to monoclonal analysis.Fragments including two deletion mutations were amplified respectively,and the results of quasispecies analysis were confirmed by sequencing analysis of amplified products.Results Mutation of over 1.4 kb large fragment deletion exactly existed in HBV genome of this sample,with 1 256 bp nt2449-489 mutation in P gene and about 209 bp nt2088-2298 deletion mutation in C gene.Conclusion There is a mutation of rare large fragment deletion in HBV genome of the patient.

  16. Whole genome sequence-based serogrouping of Listeria monocytogenes isolates.

    Science.gov (United States)

    Hyden, Patrick; Pietzka, Ariane; Lennkh, Anna; Murer, Andrea; Springer, Burkhard; Blaschitz, Marion; Indra, Alexander; Huhulescu, Steliana; Allerberger, Franz; Ruppitsch, Werner; Sensen, Christoph W

    2016-10-10

    Whole genome sequencing (WGS) is currently becoming the method of choice for characterization of Listeria monocytogenes isolates in national reference laboratories (NRLs). WGS is superior with regards to accuracy, resolution and analysis speed in comparison to several other methods including serotyping, PCR, pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), multilocus variable number tandem repeat analysis (MLVA), and multivirulence-locus sequence typing (MVLST), which have been used thus far for the characterization of bacterial isolates (and are still important tools in reference laboratories today) to control and prevent listeriosis, one of the major sources of foodborne diseases for humans. Backward compatibility of WGS to former methods can be maintained by extraction of the respective information from WGS data. Serotyping was the first subtyping method for L. monocytogenes capable of differentiating 12 serovars and national reference laboratories still perform serotyping and PCR-based serogrouping as a first level classification method for Listeria monocytogenes surveillance. Whole genome sequence based core genome MLST analysis of a L. monocytogenes collection comprising 172 isolates spanning all 12 serotypes was performed for serogroup determination. These isolates clustered according to their serotypes and it was possible to group them either into the IIa, IIc, IVb or IIb clusters, respectively, which were generated by minimum spanning tree (MST) and neighbor joining (NJ) tree data analysis, demonstrating the power of the new approach. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions

    Science.gov (United States)

    Burton, Joshua N.; Adey, Andrew; Patwardhan, Rupali P.; Qiu, Ruolan; Kitzman, Jacob O.; Shendure, Jay

    2014-01-01

    Genomes assembled de novo from short reads are highly fragmented relative to the finished chromosomes of H. sapiens and key model organisms generated by the Human Genome Project. To address this, we need scalable, cost-effective methods enabling chromosome-scale contiguity. Here we show that genome-wide chromatin interaction datasets, such as those generated by Hi-C, are a rich source of long-range information for assigning, ordering and orienting genomic sequences to chromosomes, including across centromeres. To exploit this, we developed an algorithm that uses Hi-C data for ultra-long-range scaffolding of de novo genome assemblies. We demonstrate the approach by combining shotgun fragment and short jump mate-pair sequences with Hi-C data to generate chromosome-scale de novo assemblies of the human, mouse and Drosophila genomes, achieving – for human – 98% accuracy in assigning scaffolds to chromosome groups and 99% accuracy in ordering and orienting scaffolds within chromosome groups. Hi-C data can also be used to validate chromosomal translocations in cancer genomes. PMID:24185095

  18. Linear-Scaling Time-Dependent Density Functional Theory Based on the Idea of "From Fragments to Molecule".

    Science.gov (United States)

    Wu, Fangqin; Liu, Wenjian; Zhang, Yong; Li, Zhendong

    2011-11-08

    To circumvent the cubic scaling and convergence difficulties encountered in the standard top-down localization of the global canonical molecular orbitals (CMOs), a bottom-up localization scheme is proposed based on the idea of "from fragments to molecule". That is, the global localized MOs (LMOs), both occupied and unoccupied, are to be synthesized from the primitive fragment LMOs (pFLMOs) obtained from subsystem calculations. They are orthonormal but are still well localized on the parent fragments of the pFLMOs and can hence be termed as "fragment LMOs" (FLMOs). This has been achieved by making use of two important factors. Physically, it is the transferability of the locality of the fragments that serves as the basis. Mathematically, it is the special block-diagonalization of the Kohn-Sham matrix that allows retention of the locality: The occupied-occupied and virtual-virtual diagonal blocks are only minimally modified when the occupied-virtual off-diagonal blocks are annihilated. Such a bottom-up localization scheme is applicable to systems composed of all kinds of chemical bonds. It is then shown that, by a simple prescreening of the particle-hole pairs, the FLMO-based time-dependent density functional theory (TDDFT) can achieve linear scaling with respect to the system size, with a very small prefactor. As a proof of principle, representative model systems are taken as examples to demonstrate the accuracy and efficiency of the algorithms. As both the orbital picture and integral number of electrons are retained, the FLMO-TDDFT offers a clear characterization of the nature of the excited states in line with chemical/physical intuition.

  19. Genomic and epigenetic insights into the molecular bases of heterosis.

    Science.gov (United States)

    Chen, Z Jeffrey

    2013-07-01

    Heterosis, also known as hybrid vigour, is widespread in plants and animals, but the molecular bases for this phenomenon remain elusive. Recent studies in hybrids and allopolyploids using transcriptomic, proteomic, metabolomic, epigenomic and systems biology approaches have provided new insights. Emerging genomic and epigenetic perspectives suggest that heterosis arises from allelic interactions between parental genomes, leading to altered programming of genes that promote the growth, stress tolerance and fitness of hybrids. For example, epigenetic modifications of key regulatory genes in hybrids and allopolyploids can alter complex regulatory networks of physiology and metabolism, thus modulating biomass and leading to heterosis. The conceptual advances could help to improve plant and animal productivity through the manipulation of heterosis.

  20. Genome-based bioprospecting of microbes for new therapeutics.

    Science.gov (United States)

    Zotchev, Sergey B; Sekurova, Olga N; Katz, Leonard

    2012-12-01

    Bioprospecting of natural sources for new medicines has a long and successful history, exemplified by the fact that over 50% of all drugs currently on the market are either derived from or inspired by natural products. However, development of new natural product-based therapeutics has been on the decline over the past 20 years, mainly owing to frequent re-discovery of already known compounds coupled with high costs for screening, characterization and development. With the onset of the genomic era allowing rapid sequencing and analysis of bacterial and fungal genomes, it became evident that these organisms possess 'hidden treasures' in the form of gene clusters potentially governing biosynthesis of novel biologically active compounds. This review highlights current progress in mining for and expression of these gene clusters, which may revolutionize the drug discovery pipelines in the near future.

  1. RAPD-based screening of genomic libraries for positional cloning.

    Science.gov (United States)

    Dioh, W; Tharreau, D; Lebrun, M H

    1997-12-15

    RAPD markers are frequently used for positional cloning. However, RAPD markers often contain repeated sequences which prevent genomic library screening by hybridisation. We have developed a simple RAPD analysis of genomic libraries based on the identification of cosmid pools and clones amplifying the RAPD marker of interest. Our method does not require the cloning or characterisation of the RAPD marker as it relies on the analysis of cosmid pools or clones using a simple RAPD protocol. We applied this strategy using four RAPD markers composed of single copy or repeated sequences linked to avirulence genes of the rice blast fungus Magnaporthe grisea . Cosmids containing these RAPD markers were easily and rapidly identified allowing the construction of physical contigs at these loci.

  2. Base-By-Base: Single nucleotide-level analysis of whole viral genome alignments

    Directory of Open Access Journals (Sweden)

    Tcherepanov Vasily

    2004-07-01

    Full Text Available Abstract Background With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes is not feasible without new bioinformatics tools. Results A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1 rapidly identify and correct alignment errors in large, multiple genome alignments; and 2 generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs to retrieve detailed annotation information about the aligned genomes or use information from text files. Conclusion Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  3. A Field-Based Technique for Teaching about Habitat Fragmentation and Edge Effects

    Science.gov (United States)

    Resler, Lynn M.; Kolivras, Korine N.

    2009-01-01

    This article presents a field technique that exposes students to the indirect effects of habitat fragmentation on plant distributions through studying edge effects. This assignment, suited for students in an introductory biogeography or resource geography class, increases students' knowledge of basic biogeographic concepts such as environmental…

  4. In silico design of fragment-based drug targeting host processing α-glucosidase i for dengue fever

    Science.gov (United States)

    Toepak, E. P.; Tambunan, U. S. F.

    2017-02-01

    Dengue is a major health problem in the tropical and sub-tropical regions. The development of antiviral that targeting dengue’s host enzyme can be more effective and efficient treatment than the viral enzyme. Host enzyme processing α-glucosidase I has an important role in the maturation process of dengue virus envelope glycoprotein. The inhibition of processing α-glucosidase I can become a promising target for dengue fever treatment. The antiviral approach using in silico fragment-based drug design can generate drug candidates with high binding affinity. In this research, 198.621 compounds were obtained from ZINC15 Biogenic Database. These compounds were screened to find the favorable fragments according to Rules of Three and pharmacological properties. The screening fragments were docked into the active site of processing α-glucosidase I. The potential fragment candidates from the molecular docking simulation were linked with castanospermine (CAST) to generate ligands with a better binding affinity. The Analysis of ligand - enzyme interaction showed ligands with code LRS 22, 28, and 47 have the better binding free energy than the standard ligand. Ligand LRS 28 (N-2-4-methyl-5-((1S,3S,6S,7R,8R,8aR)-1,6,7,8-tetrahydroxyoctahydroindolizin-3-yl) pentyl) indolin-1-yl) propionamide) itself among the other ligands has the lowest binding free energy. Pharmacological properties prediction also showed the ligands LRS 22, 28, and 47 can be promising as the dengue fever drug candidates.

  5. Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods

    Science.gov (United States)

    2010-01-01

    Background Classification of bacteria within the genus Brucella has been difficult due in part to considerable genomic homogeneity between the different species and biovars, in spite of clear differences in phenotypes. Therefore, many different methods have been used to assess Brucella taxonomy. In the current work, we examine 32 sequenced genomes from genus Brucella representing the six classical species, as well as more recently described species, using bioinformatical methods. Comparisons were made at the level of genomic DNA using oligonucleotide based methods (Markov chain based genomic signatures, genomic codon and amino acid frequencies based comparisons) and proteomes (all-against-all BLAST protein comparisons and pan-genomic analyses). Results We found that the oligonucleotide based methods gave different results compared to that of the proteome based methods. Differences were also found between the oligonucleotide based methods used. Whilst the Markov chain based genomic signatures grouped the different species in genus Brucella according to host preference, the codon and amino acid frequencies based methods reflected small differences between the Brucella species. Only minor differences could be detected between all genera included in this study using the codon and amino acid frequencies based methods. Proteome comparisons were found to be in strong accordance with current Brucella taxonomy indicating a remarkable association between gene gain or loss on one hand and mutations in marker genes on the other. The proteome based methods found greater similarity between Brucella species and Ochrobactrum species than between species within genus Agrobacterium compared to each other. In other words, proteome comparisons of species within genus Agrobacterium were found to be more diverse than proteome comparisons between species in genus Brucella and genus Ochrobactrum. Pan-genomic analyses indicated that uptake of DNA from outside genus Brucella appears to be

  6. Quantum fragmentation

    CERN Document Server

    Peschanski, R

    1993-01-01

    Phenomenological and theoretical aspects of fragmentation for elementary particles (resp. nuclei) are discussed. It is shown that some concepts of classical fragmentation remain relevant in a microscopic framework, exhibiting non-trivial properties of quantum relativistic field theory (resp. lattice percolation). Email contact: pesch@amoco.saclay.cea.fr

  7. Fragmentation pathways of drugs of abuse and their metabolites based on QTOF MS/MS and MSE accurate-mass spectra

    OpenAIRE

    2011-01-01

    A study of the fragmentation pathways of several classes of drugs of abuse (cannabinoids, ketamine, amphetamine and amphetamine-type stimulants (ATS), cocaine and opiates) and their related substances has been made. The knowledge of the fragmentation is highly useful for specific fragment selection or for recognition of related compounds when developing MS-based analytical methods for the trace-level determination of these compounds in complex matrices. In this work, accurate-mass spectra of ...

  8. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence

    Directory of Open Access Journals (Sweden)

    Luo Ming-Cheng

    2011-01-01

    Full Text Available Abstract Background Many plants have large and complex genomes with an abundance of repeated sequences. Many plants are also polyploid. Both of these attributes typify the genome architecture in the tribe Triticeae, whose members include economically important wheat, rye and barley. Large genome sizes, an abundance of repeated sequences, and polyploidy present challenges to genome-wide SNP discovery using next-generation sequencing (NGS of total genomic DNA by making alignment and clustering of short reads generated by the NGS platforms difficult, particularly in the absence of a reference genome sequence. Results An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions from repetitive sequences and sequences shared by paralogous genes. Multiple genome equivalents of shotgun reads of another genotype generated with SOLiD or Solexa are then mapped to the annotated Roche 454 reads to identify putative SNPs. A pipeline program package, AGSNP, was developed and used for genome-wide SNP discovery in Aegilops tauschii-the diploid source of the wheat D genome, and with a genome size of 4.02 Gb, of which 90% is repetitive sequences. Genomic DNA of Ae. tauschii accession AL8/78 was sequenced with the Roche 454 NGS platform. Genomic DNA and cDNA of Ae. tauschii accession AS75 was sequenced primarily with SOLiD, although some Solexa and Roche 454 genomic sequences were also generated. A total of 195,631 putative SNPs were discovered in gene sequences, 155,580 putative SNPs were discovered in uncharacterized single-copy regions, and another 145,907 putative SNPs were discovered in repeat junctions. These SNPs were dispersed across the entire Ae. tauschii genome. To assess the false positive SNP discovery rate, DNA

  9. Fragment Merger: An Online Tool to Merge Overlapping Long Sequence Fragments

    Directory of Open Access Journals (Sweden)

    Anna Kramvis

    2013-03-01

    Full Text Available While PCR amplicons extend to a few thousand bases, the length of sequences from direct Sanger sequencing is limited to 500–800 nucleotides. Therefore, several fragments may be required to cover an amplicon, a gene or an entire genome. These fragments are typically sequenced in an overlapping fashion and assembled by manually sliding and aligning the sequences visually. This is time-consuming, repetitive and error-prone, and further complicated by circular genomes. An online tool merging two to twelve long overlapping sequence fragments was developed. Either chromatograms or FASTA files are submitted to the tool, which trims poor quality ends of chromatograms according to user-specified parameters. Fragments are assembled into a single sequence by repeatedly calling the EMBOSS merger tool in a consecutive manner. Output includes the number of trimmed nucleotides, details of each merge, and an optional alignment to a reference sequence. The final merge sequence is displayed and can be downloaded in FASTA format. All output files can be downloaded as a ZIP archive. This tool allows for easy and automated assembly of overlapping sequences and is aimed at researchers without specialist computer skills. The tool is genome- and organism-agnostic and has been developed using hepatitis B virus sequence data.

  10. Integrated Genome-Based Studies of Shewanella Ecophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Andrei L. Osterman, Ph.D.

    2012-12-17

    Integration of bioinformatics and experimental techniques was applied to mapping and characterization of the key components (pathways, enzymes, transporters, regulators) of the core metabolic machinery in Shewanella oneidensis and related species with main focus was on metabolic and regulatory pathways involved in utilization of various carbon and energy sources. Among the main accomplishments reflected in ten joint publications with other participants of Shewanella Federation are: (i) A systems-level reconstruction of carbohydrate utilization pathways in the genus of Shewanella (19 species). This analysis yielded reconstruction of 18 sugar utilization pathways including 10 novel pathway variants and prediction of > 60 novel protein families of enzymes, transporters and regulators involved in these pathways. Selected functional predictions were verified by focused biochemical and genetic experiments. Observed growth phenotypes were consistent with bioinformatic predictions providing strong validation of the technology and (ii) Global genomic reconstruction of transcriptional regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors, 8 riboswitches and 6 translational attenuators. Of those, 45 regulons were inferred directly from the genome context analysis, whereas others were propagated from previously characterized regulons in other species. Selected regulatory predictions were experimentally tested. Integration of this analysis with microarray data revealed overall consistency and provided additional layer of interactions between regulons. All the results were captured in the new database RegPrecise, which is a joint development with the LBNL team. A more detailed analysis of the individual subsystems, pathways and regulons in Shewanella spp included bioinfiormatics-based prediction and experimental characterization of: (i) N-Acetylglucosamine catabolic pathway; (ii)Lactate utilization machinery; (iii) Novel Nrt

  11. Annotation-Based Whole Genomic Prediction and Selection

    DEFF Research Database (Denmark)

    Kadarmideen, Haja; Do, Duy Ngoc; Janss, Luc;

    in their contribution to estimated genomic variances and in prediction of genomic breeding values by applying SNP annotation approaches to feed efficiency. Ensembl Variant Predictor (EVP) and Pig QTL database were used as the source of genomic annotation for 60K chip. Genomic prediction was performed using the Bayes...... prove useful for less heritable traits such as diseases and fertility...

  12. Heteropolymeric triplex-based genomic assay to detect pathogens or single-nucleotide polymorphisms in human genomic samples.

    Directory of Open Access Journals (Sweden)

    Jasmine I Daksis

    Full Text Available Human genomic samples are complex and are considered difficult to assay directly without denaturation or PCR amplification. We report the use of a base-specific heteropolymeric triplex, formed by native duplex genomic target and an oligonucleotide third strand probe, to assay for low copy pathogen genomes present in a sample also containing human genomic duplex DNA, or to assay human genomic duplex DNA for Single Nucleotide Polymorphisms (SNP, without PCR amplification. Wild-type and mutant probes are used to identify triplexes containing FVL G1691A, MTHFR C677T and CFTR mutations. The specific triplex structure forms rapidly at room temperature in solution and may be detected without a separation step. YOYO-1, a fluorescent bis-intercalator, promotes and signals the formation of the specific triplex. Genomic duplexes may be assayed homogeneously with single base pair resolution. The specific triple-stranded structures of the assay may approximate homologous recombination intermediates, which various models suggest may form in either the major or minor groove of the duplex. The bases of the stable duplex target are rendered specifically reactive to the bases of the probe because of the activity of intercalated YOYO-1, which is known to decondense duplex locally 1.3 fold. This may approximate the local decondensation effected by recombination proteins such as RecA in vivo. Our assay, while involving triplex formation, is sui generis, as it is not homopurine sequence-dependent, as are "canonical triplexes". Rather, the base pair-specific heteropolymeric triplex of the assay is conformation-dependent. The highly sensitive diagnostic assay we present allows for the direct detection of base sequence in genomic duplex samples, including those containing human genomic duplex DNA, thereby bypassing the inherent problems and cost associated with conventional PCR based diagnostic assays.

  13. Colibri: a functional data base for the Escherichia coli genome.

    Science.gov (United States)

    Médigue, C; Viari, A; Hénaut, A; Danchin, A

    1993-09-01

    Several data libraries have been created to organize all the data obtained worldwide about the Escherichia coli genome. Because the known data now amount to more than 40% of the whole genome sequence, it has become necessary to organize the data in such a way that appropriate procedures can associate knowledge produced by experiments about each gene to its position on the chromosome and its relation to other relevant genes, for example. In addition, global properties of genes, affected by the introduction of new entries, should be present as appropriate description fields. A data base, implemented on Macintosh by using the data base management system 4th Dimension, is described. It is constructed around a core constituted by known contigs of E. coli sequences and links data collected in general libraries (unmodified) to data associated with evolving knowledge (with modifiable fields). Biologically significant results obtained through the coupling of appropriate procedures (learning or statistical data analysis) are presented. The data base is available through a 4th Dimension runtime and through FTP on Internet. It has been regularly updated and will be systematically linked to other E. coli data bases (M. Kroger, R. Wahl, G. Schachtel, and P. Rice, Nucleic Acids Res. 20(Suppl.):2119-2144, 1992; K. E. Rudd, W. Miller, C. Werner, J. Ostell, C. Tolstoshev, and S. G. Satterfield, Nucleic Acids Res. 19:637-647, 1991) in the near future.

  14. 毛竹大片段双元细菌人工染色体基因组文库的构建%Construction of a large genomic DNA fragments,BIBAC library for Phyllostachys pubescens

    Institute of Scientific and Technical Information of China (English)

    管雨; 杨洋; 张智俊; 罗淑萍; 汤定钦

    2011-01-01

    One plant-transformation-competent binary bacterial artificial chromosome (BIBAC) library was constructed which represents the first large genomic DNA fragment library generated for Phyllostachys pubescens. High-quality, genomic DNA extracted from young leaves of Phyllostachys pubescens was gradiently enzyme-digested with a gradient using BamH I. Desirable DNA fragments were isolated by pulsed field gel electrophoresis, ligated to the dephosphorylatedion carrier Pcld04541 with a mass ratio of 3:1, and then transformed to Escherichia coli DH10B competent cells. This was followed by blue-white screening with establishment of a binary bacterial artificial chromosome (BIBAC) genome library. Results showed a high recombination positive colony from which a BIB AC genome library, consisting of 104 clones with an average insert fragment size of about 105 kb after detection with a pulsed field gel electrophoresis, was constructed. The BIBAC library was 5 times larger than the Phyllostachys pubescens genome. The construction of this BIBAC genome library laid a good foundation for related genome research.%从毛竹Phyllostachys pubescens幼嫩叶片中提取纯化得到高质量的基因组DNA,经限制性内切酶BamH I对它们进行梯度酶切,脉冲场电泳选择合适酶切DNA片段,与脱磷酸化处理过的质粒载体pCLD04541按质量比3∶1相互连接,转化大肠杆菌Escherichia coli DH10B感受态细胞进行蓝白斑筛选,挑取白色克隆,获得重组率较高的阳性克隆,构建了含有104个克隆的双元细菌人工染色体(BIBAC)基因组文库,并通过脉冲场电泳检测分析后确定,所构建的毛竹BIBAC文库平均插入片段为105 kb,约覆盖5倍毛竹基因组.该文库的构建为毛竹基因组研究做好了前期的基础工作.

  15. Fragmented Authoritarianism or Integrated Fragmentation

    DEFF Research Database (Denmark)

    Brødsgaard, Kjeld Erik

    of these business leaders prompts the question of whether we are seeing the development of distinct interest groups that could challenge Party and state authority and create a fragmented polity. However, through the nomenklatura system the Party has an important instrument of control to wield over business groups...... and the Party-state, I suggest the notion of integrated fragmentation....

  16. Genome size evolution in pufferfish: an insight from BAC clone-based Diodon holocanthus genome sequencing

    Directory of Open Access Journals (Sweden)

    Gan Xiaoni

    2010-06-01

    Full Text Available Abstract Background Variations in genome size within and between species have been observed since the 1950 s in diverse taxonomic groups. Serving as model organisms, smooth pufferfish possess the smallest vertebrate genomes. Interestingly, spiny pufferfish from its sister family have genome twice as large as smooth pufferfish. Therefore, comparative genomic analysis between smooth pufferfish and spiny pufferfish is useful for our understanding of genome size evolution in pufferfish. Results Ten BAC clones of a spiny pufferfish Diodon holocanthus were randomly selected and shotgun sequenced. In total, 776 kb of non-redundant sequences without gap representing 0.1% of the D. holocanthus genome were identified, and 77 distinct genes were predicted. In the sequenced D. holocanthus genome, 364 kb is homologous with 265 kb of the Takifugu rubripes genome, and 223 kb is homologous with 148 kb of the Tetraodon nigroviridis genome. The repetitive DNA accounts for 8% of the sequenced D. holocanthus genome, which is higher than that in the T. rubripes genome (6.89% and that in the Te. nigroviridis genome (4.66%. In the repetitive DNA, 76% is retroelements which account for 6% of the sequenced D. holocanthus genome and belong to known families of transposable elements. More than half of retroelements were distributed within genes. In the non-homologous regions, repeat element proportion in D. holocanthus genome increased to 10.6% compared with T. rubripes and increased to 9.19% compared with Te. nigroviridis. A comparison of 10 well-defined orthologous genes showed that the average intron size (566 bp in D. holocanthus genome is significantly longer than that in the smooth pufferfish genome (435 bp. Conclusion Compared with the smooth pufferfish, D. holocanthus has a low gene density and repeat elements rich genome. Genome size variation between D. holocanthus and the smooth pufferfish exhibits as length variation between homologous region and different

  17. Fragment-Based Drug Design Facilitated by Protein-Templated Click Chemistry : Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin

    NARCIS (Netherlands)

    Mondal, Milon; Unver, M. Yagiz; Pal, Asish; Bakker, Matthijs; Berrier, Stephan P.; Hirsch, Anna K. H.

    2016-01-01

    There is an urgent need for the development of efficient methodologies that accelerate drug discovery. We demonstrate that the strategic combination of fragment linking/optimization and protein-templated click chemistry is an efficient and powerful method that accelerates the hit-identification proc

  18. Fragment-Based Drug Design Facilitated by Protein-Templated Click Chemistry : Fragment Linking and -Optimization of Inhibitors of the Aspartic Protease Endothiapepsin

    NARCIS (Netherlands)

    Mondal, Milon; Unver, M. Yagiz; Pal, Asish; Bakker, Matthijs; Berrier, Stephan R.; Hirsch, Anna K H

    2016-01-01

    There is an urgent need for the development of efficient methodologies that accelerate drug discovery. We demonstrate that the strategic combination of fragment linking/optimization and protein-templated click chemistry is an efficient and powerful method that accelerates the hit-identification proc

  19. Fragment-Based Drug Design Facilitated by Protein-Templated Click Chemistry : Fragment Linking and -Optimization of Inhibitors of the Aspartic Protease Endothiapepsin

    NARCIS (Netherlands)

    Mondal, Milon; Unver, M. Yagiz; Pal, Asish; Bakker, Matthijs; Berrier, Stephan R.; Hirsch, Anna K H

    2016-01-01

    There is an urgent need for the development of efficient methodologies that accelerate drug discovery. We demonstrate that the strategic combination of fragment linking/optimization and protein-templated click chemistry is an efficient and powerful method that accelerates the hit-identification proc

  20. Fragment-Based Drug Design Facilitated by Protein-Templated Click Chemistry : Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin

    NARCIS (Netherlands)

    Mondal, Milon; Unver, M. Yagiz; Pal, Asish; Bakker, Matthijs; Berrier, Stephan P.; Hirsch, Anna K. H.

    2016-01-01

    There is an urgent need for the development of efficient methodologies that accelerate drug discovery. We demonstrate that the strategic combination of fragment linking/optimization and protein-templated click chemistry is an efficient and powerful method that accelerates the hit-identification proc

  1. Genomics and Public Health: Development of Web-based Training

    OpenAIRE

    Janice V. Bach, MS; Aaron Goldenberg, MA, MPH; Toby Citrin, JD; Sarah F. Raup, MPH; Jennifer Bodzin, MPH; Sharon L.R. Kardia, PhD

    2005-01-01

    In 2001, the Centers for Disease Control and Prevention funded three Centers for Genomics and Public Health to develop training tools for increasing genomic awareness. Over the past three years, the centers, working together with the Centers for Disease Control and Preventions Office of Genomics and Disease Prevention, have developed tools to increase awareness of the impact genomics will have on public health practice, to provide a foundation for understanding basic genomic advances, and to ...

  2. An Integrative Pathway-based Clinical-genomic Model for Cancer Survival Prediction.

    Science.gov (United States)

    Chen, Xi; Wang, Lily; Ishwaran, Hemant

    2010-09-01

    Prediction models that use gene expression levels are now being proposed for personalized treatment of cancer, but building accurate models that are easy to interpret remains a challenge. In this paper, we describe an integrative clinical-genomic approach that combines both genomic pathway and clinical information. First, we summarize information from genes in each pathway using Supervised Principal Components (SPCA) to obtain pathway-based genomic predictors. Next, we build a prediction model based on clinical variables and pathway-based genomic predictors using Random Survival Forests (RSF). Our rationale for this two-stage procedure is that the underlying disease process may be influenced by environmental exposure (measured by clinical variables) and perturbations in different pathways (measured by pathway-based genomic variables), as well as their interactions. Using two cancer microarray datasets, we show that the pathway-based clinical-genomic model outperforms gene-based clinical-genomic models, with improved prediction accuracy and interpretability.

  3. Solution-based targeted genomic enrichment for precious DNA samples

    Directory of Open Access Journals (Sweden)

    Shearer Aiden

    2012-05-01

    Full Text Available Abstract Background Solution-based targeted genomic enrichment (TGE protocols permit selective sequencing of genomic regions of interest on a massively parallel scale. These protocols could be improved by: 1 modifying or eliminating time consuming steps; 2 increasing yield to reduce input DNA and excessive PCR cycling; and 3 enhancing reproducible. Results We developed a solution-based TGE method for downstream Illumina sequencing in a non-automated workflow, adding standard Illumina barcode indexes during the post-hybridization amplification to allow for sample pooling prior to sequencing. The method utilizes Agilent SureSelect baits, primers and hybridization reagents for the capture, off-the-shelf reagents for the library preparation steps, and adaptor oligonucleotides for Illumina paired-end sequencing purchased directly from an oligonucleotide manufacturing company. Conclusions This solution-based TGE method for Illumina sequencing is optimized for small- or medium-sized laboratories and addresses the weaknesses of standard protocols by reducing the amount of input DNA required, increasing capture yield, optimizing efficiency, and improving reproducibility.

  4. Reversible phospholipid nanogels for deoxyribonucleic acid fragment size determinations up to 1500 base pairs and integrated sample stacking.

    Science.gov (United States)

    Durney, Brandon C; Bachert, Beth A; Sloane, Hillary S; Lukomski, Slawomir; Landers, James P; Holland, Lisa A

    2015-06-23

    Phospholipid additives are a cost-effective medium to separate deoxyribonucleic acid (DNA) fragments and possess a thermally-responsive viscosity. This provides a mechanism to easily create and replace a highly viscous nanogel in a narrow bore capillary with only a 10°C change in temperature. Preparations composed of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) self-assemble, forming structures such as nanodisks and wormlike micelles. Factors that influence the morphology of a particular DMPC-DHPC preparation include the concentration of lipid in solution, the temperature, and the ratio of DMPC and DHPC. It has previously been established that an aqueous solution containing 10% phospholipid with a ratio of [DMPC]/[DHPC]=2.5 separates DNA fragments with nearly single base resolution for DNA fragments up to 500 base pairs in length, but beyond this size the resolution decreases dramatically. A new DMPC-DHPC medium is developed to effectively separate and size DNA fragments up to 1500 base pairs by decreasing the total lipid concentration to 2.5%. A 2.5% phospholipid nanogel generates a resolution of 1% of the DNA fragment size up to 1500 base pairs. This increase in the upper size limit is accomplished using commercially available phospholipids at an even lower material cost than is achieved with the 10% preparation. The separation additive is used to evaluate size markers ranging between 200 and 1500 base pairs in order to distinguish invasive strains of Streptococcus pyogenes and Aspergillus species by harnessing differences in gene sequences of collagen-like proteins in these organisms. For the first time, a reversible stacking gel is integrated in a capillary sieving separation by utilizing the thermally-responsive viscosity of these self-assembled phospholipid preparations. A discontinuous matrix is created that is composed of a cartridge of highly viscous phospholipid assimilated into a separation matrix

  5. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins.

    Science.gov (United States)

    Joshi, Priyanka; Chia, Sean; Habchi, Johnny; Knowles, Tuomas P J; Dobson, Christopher M; Vendruscolo, Michele

    2016-03-14

    The aggregation process of intrinsically disordered proteins (IDPs) has been associated with a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Currently, however, no drug in clinical use targets IDP aggregation. To facilitate drug discovery programs in this important and challenging area, we describe a fragment-based approach of generating small-molecule libraries that target specific IDPs. The method is based on the use of molecular fragments extracted from compounds reported in the literature to inhibit of the aggregation of IDPs. These fragments are used to screen existing large generic libraries of small molecules to form smaller libraries specific for given IDPs. We illustrate this approach by describing three distinct small-molecule libraries to target, Aβ, tau, and α-synuclein, which are three IDPs implicated in Alzheimer's and Parkinson's diseases. The strategy described here offers novel opportunities for the identification of effective molecular scaffolds for drug discovery for neurodegenerative disorders and to provide insights into the mechanism of small-molecule binding to IDPs.

  6. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome.

    Science.gov (United States)

    Wang, Yi; Liu, Xianju; Ren, Chong; Zhong, Gan-Yuan; Yang, Long; Li, Shaohua; Liang, Zhenchang

    2016-04-21

    CRISPR/Cas9 has been recently demonstrated as an effective and popular genome editing tool for modifying genomes of humans, animals, microorganisms, and plants. Success of such genome editing is highly dependent on the availability of suitable target sites in the genomes to be edited. Many specific target sites for CRISPR/Cas9 have been computationally identified for several annual model and crop species, but such sites have not been reported for perennial, woody fruit species. In this study, we identified and characterized five types of CRISPR/Cas9 target sites in the widely cultivated grape species Vitis vinifera and developed a user-friendly database for editing grape genomes in the future. A total of 35,767,960 potential CRISPR/Cas9 target sites were identified from grape genomes in this study. Among them, 22,597,817 target sites were mapped to specific genomic locations and 7,269,788 were found to be highly specific. Protospacers and PAMs were found to distribute uniformly and abundantly in the grape genomes. They were present in all the structural elements of genes with the coding region having the highest abundance. Five PAM types, TGG, AGG, GGG, CGG and NGG, were observed. With the exception of the NGG type, they were abundantly present in the grape genomes. Synteny analysis of similar genes revealed that the synteny of protospacers matched the synteny of homologous genes. A user-friendly database containing protospacers and detailed information of the sites was developed and is available for public use at the Grape-CRISPR website ( http://biodb.sdau.edu.cn/gc/index.html ). Grape genomes harbour millions of potential CRISPR/Cas9 target sites. These sites are widely distributed among and within chromosomes with predominant abundance in the coding regions of genes. We developed a publicly-accessible Grape-CRISPR database for facilitating the use of the CRISPR/Cas9 system as a genome editing tool for functional studies and molecular breeding of grapes. Among

  7. A forward-backward fragment assembling algorithm for the identification of genomic amplification and deletion breakpoints using high-density single nucleotide polymorphism (SNP array

    Directory of Open Access Journals (Sweden)

    Bailey Dione K

    2007-05-01

    Full Text Available Abstract Background DNA copy number aberration (CNA is one of the key characteristics of cancer cells. Recent studies demonstrated the feasibility of utilizing high density single nucleotide polymorphism (SNP genotyping arrays to detect CNA. Compared with the two-color array-based comparative genomic hybridization (array-CGH, the SNP arrays offer much higher probe density and lower signal-to-noise ratio at the single SNP level. To accurately identify small segments of CNA from SNP array data, segmentation methods that are sensitive to CNA while resistant to noise are required. Results We have developed a highly sensitive algorithm for the edge detection of copy number data which is especially suitable for the SNP array-based copy number data. The method consists of an over-sensitive edge-detection step and a test-based forward-backward edge selection step. Conclusion Using simulations constructed from real experimental data, the method shows high sensitivity and specificity in detecting small copy number changes in focused regions. The method is implemented in an R package FASeg, which includes data processing and visualization utilities, as well as libraries for processing Affymetrix SNP array data.

  8. Local even-odd effect based on the number of configurations of pre-formed and formed fragmentations in a fissioning nucleus

    Science.gov (United States)

    Tudora, A.; Hambsch, F.-J.; Giubega, G.

    2016-09-01

    The present paper proposes a modeling of the local even-odd effect based on the number of configurations in a nucleus undergoing fission at two stages along its fission path. One is the fissioning nucleus stage just after passing through the outer saddle point when the fragments are considered as pre-formed and the intrinsic energy is not yet shared. The other stage is at the end of the fission path when the scission is imminent. Then the intrinsic energy is already partitioned and the fragments are completely formed. The probability that a pre-formed fragmentation arrives at the end of the fission path (i.e. at scission) when the fragmentation is completely formed is expressed by the ratio of the number of configurations of the formed fragmentation to the one of pre-formed fragmentation. The local even-odd effect is defined as half of the difference between these normalized ratios corresponding to even-Z and odd-Z fragmentations. Both numbers of configurations in the fissioning nucleus, in which the fragments are pre-formed and completely formed, are calculated using level densities described by the constant temperature function (justified by the small values of the intrinsic energy before scission). The obtained local even-odd effect results describe well the experimental data, including the increase at asymmetry values corresponding to fragmentations in which one of the fragments is magic or double magic (i.e. fragmentations in which ZH = 50 and/or NH = 82 and very asymmetric fragmentations in which ZL = 28).

  9. Analysis of chimpanzee history based on genome sequence alignments.

    Directory of Open Access Journals (Sweden)

    Jennifer L Caswell

    2008-04-01

    Full Text Available Population geneticists often study small numbers of carefully chosen loci, but it has become possible to obtain orders of magnitude for more data from overlaps of genome sequences. Here, we generate tens of millions of base pairs of multiple sequence alignments from combinations of three western chimpanzees, three central chimpanzees, an eastern chimpanzee, a bonobo, a human, an orangutan, and a macaque. Analysis provides a more precise understanding of demographic history than was previously available. We show that bonobos and common chimpanzees were separated approximately 1,290,000 years ago, western and other common chimpanzees approximately 510,000 years ago, and eastern and central chimpanzees at least 50,000 years ago. We infer that the central chimpanzee population size increased by at least a factor of 4 since its separation from western chimpanzees, while the western chimpanzee effective population size decreased. Surprisingly, in about one percent of the genome, the genetic relationships between humans, chimpanzees, and bonobos appear to be different from the species relationships. We used PCR-based resequencing to confirm 11 regions where chimpanzees and bonobos are not most closely related. Study of such loci should provide information about the period of time 5-7 million years ago when the ancestors of humans separated from those of the chimpanzees.

  10. Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray

    Directory of Open Access Journals (Sweden)

    Lan Shu

    2008-07-01

    Full Text Available Genomic microarrays are powerful research tools in bioinformatics and modern medicinal research because they enable massively-parallel assays and simultaneous monitoring of thousands of gene expression of biological samples. However, a simple microarray experiment often leads to very high-dimensional data and a huge amount of information, the vast amount of data challenges researchers into extracting the important features and reducing the high dimensionality. In this paper, a nonlinear dimensionality reduction kernel method based locally linear embedding(LLE is proposed, and fuzzy K-nearest neighbors algorithm which denoises datasets will be introduced as a replacement to the classical LLE’s KNN algorithm. In addition, kernel method based support vector machine (SVM will be used to classify genomic microarray data sets in this paper. We demonstrate the application of the techniques to two published DNA microarray data sets. The experimental results confirm the superiority and high success rates of the presented method.

  11. Ratiometric bioluminescence indicators for monitoring cyclic adenosine 3',5'-monophosphate in live cells based on luciferase-fragment complementation.

    Science.gov (United States)

    Takeuchi, Masaki; Nagaoka, Yasutaka; Yamada, Toshimichi; Takakura, Hideo; Ozawa, Takeaki

    2010-11-15

    Bioluminescent indicators for cyclic 3',5'-monophosphate AMP (cAMP) are powerful tools for noninvasive detection with high sensitivity. However, the absolute photon counts are affected substantially by adenosine 5'-triphosphate (ATP) and d-luciferin concentrations, limiting temporal analysis in live cells. This report describes a genetically encoded bioluminescent indicator for detecting intracellular cAMP based on complementation of split fragments of two-color luciferase mutants originated from click beetles. A cAMP binding domain of protein kinase A was connected with an engineered carboxy-terminal fragment of luciferase, of which ends were connected with amino-terminal fragments of green luciferase and red luciferase. We demonstrated that the ratio of green to red bioluminescence intensities was less influenced by the changes of ATP and d-luciferin concentrations. We also showed an applicability of the bioluminescent indicator for time-course and quantitative assessments of intracellular cAMP in living cells and mice. The bioluminescent indicator will enable quantitative analysis and imaging of spatiotemporal dynamics of cAMP in opaque and autofluorescent living subjects.

  12. Short read DNA fragment anchoring algorithm.

    Science.gov (United States)

    Wang, Wendi; Zhang, Peiheng; Liu, Xinchun

    2009-01-30

    The emerging next-generation sequencing method based on PCR technology boosts genome sequencing speed considerably, the expense is also get decreased. It has been utilized to address a broad range of bioinformatics problems. Limited by reliable output sequence length of next-generation sequencing technologies, we are confined to study gene fragments with 30 - 50 bps in general and it is relatively shorter than traditional gene fragment length. Anchoring gene fragments in long reference sequence is an essential and prerequisite step for further assembly and analysis works. Due to the sheer number of fragments produced by next-generation sequencing technologies and the huge size of reference sequences, anchoring would rapidly becoming a computational bottleneck. We compared algorithm efficiency on BLAT, SOAP and EMBF. The efficiency is defined as the count of total output results divided by time consumed to retrieve them. The data show that our algorithm EMBF have 3 - 4 times efficiency advantage over SOAP, and at least 150 times over BLAT. Moreover, when the reference sequence size is increased, the efficiency of SOAP will get degraded as far as 30%, while EMBF have preferable increasing tendency. In conclusion, we deem that EMBF is more suitable for short fragment anchoring problem where result completeness and accuracy is predominant and the reference sequences are relatively large.

  13. CRISPR-Cas9 Based Engineering of Actinomycetal Genomes

    DEFF Research Database (Denmark)

    Tong, Yaojun; Charusanti, Pep; Zhang, Lixin

    2015-01-01

    . To facilitate the genetic manipulation of actinomycetes, we developed a highly efficient CRISPR-Cas9 system to delete gene(s) or gene cluster(s), implement precise gene replacements, and reversibly control gene expression in actinomycetes. We demonstrate our system by targeting two genes, actIORF1 (SCO5087......) and actVB (SCO5092), from the actinorhodin biosynthetic gene cluster in Streptomyces coelicolor A3(2). Our CRISPR-Cas9 system successfully inactivated the targeted genes. When no templates for homology-directed repair (HDR) were present, the site-specific DNA double-strand breaks (DSBs) introduced by Cas9....... Moreover, we developed a system to efficiently and reversibly control expression of target genes, deemed CRISPRi, based on a catalytically dead variant of Cas9 (dCas9). The CRISPR-Cas9 based system described here comprises a powerful and broadly applicable set of tools to manipulate actinomycetal genomes....

  14. Magma Fragmentation

    Science.gov (United States)

    Gonnermann, Helge M.

    2015-05-01

    Magma fragmentation is the breakup of a continuous volume of molten rock into discrete pieces, called pyroclasts. Because magma contains bubbles of compressible magmatic volatiles, decompression of low-viscosity magma leads to rapid expansion. The magma is torn into fragments, as it is stretched into hydrodynamically unstable sheets and filaments. If the magma is highly viscous, resistance to bubble growth will instead lead to excess gas pressure and the magma will deform viscoelastically by fracturing like a glassy solid, resulting in the formation of a violently expanding gas-pyroclast mixture. In either case, fragmentation represents the conversion of potential energy into the surface energy of the newly created fragments and the kinetic energy of the expanding gas-pyroclast mixture. If magma comes into contact with external water, the conversion of thermal energy will vaporize water and quench magma at the melt-water interface, thus creating dynamic stresses that cause fragmentation and the release of kinetic energy. Lastly, shear deformation of highly viscous magma may cause brittle fractures and release seismic energy.

  15. AgBase: a functional genomics resource for agriculture

    OpenAIRE

    2006-01-01

    Abstract Background Many agricultural species and their pathogens have sequenced genomes and more are in progress. Agricultural species provide food, fiber, xenotransplant tissues, biopharmaceuticals and biomedical models. Moreover, many agricultural microorganisms are human zoonoses. However, systems biology from functional genomics data is hindered in agricultural species because agricultural genome sequences have relatively poor structural and functional annotation and agricultural researc...

  16. Genome-scale constraint-based modeling of Geobacter metallireducens

    Directory of Open Access Journals (Sweden)

    Famili Iman

    2009-01-01

    Full Text Available Abstract Background Geobacter metallireducens was the first organism that can be grown in pure culture to completely oxidize organic compounds with Fe(III oxide serving as electron acceptor. Geobacter species, including G. sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic matter and renewable biomass. The constraint-based modeling approach enables the development of genome-scale in silico models that can predict the behavior of complex biological systems and their responses to the environments. Such a modeling approach was applied to provide physiological and ecological insights on the metabolism of G. metallireducens. Results The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697 reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains 118 unique reactions that reflect many of G. metallireducens' specific metabolic capabilities. Detailed examination of the G. metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate. These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches were applied to accelerate G. metallireducens research. For example, growth of G. metallireducens with different electron donors and electron acceptors were studied using the genome

  17. Phylogeny and evolution of Cervidae based on complete mitochondrial genomes.

    Science.gov (United States)

    Zhang, W-Q; Zhang, M-H

    2012-03-14

    Mitochondrial DNA sequences can be used to estimate phylogenetic relationships among animal taxa and for molecular phylogenetic evolution analysis. With the development of sequencing technology, more and more mitochondrial sequences have been made available in public databases, including whole mitochondrial DNA sequences. These data have been used for phylogenetic analysis of animal species, and for studies of evolutionary processes. We made phylogenetic analyses of 19 species of Cervidae, with Bos taurus as the outgroup. We used neighbor joining, maximum likelihood, maximum parsimony, and Bayesian inference methods on whole mitochondrial genome sequences. The consensus phylogenetic trees supported monophyly of the family Cervidae; it was divided into two subfamilies, Plesiometacarpalia and Telemetacarpalia, and four tribes, Cervinae, Muntiacinae, Hydropotinae, and Odocoileinae. The divergence times in these families were estimated by phylogenetic analysis using the Bayesian method with a relaxed molecular clock method; the results were consistent with those of previous studies. We concluded that the evolutionary structure of the family Cervidae can be reconstructed by phylogenetic analysis based on whole mitochondrial genomes; this method could be used broadly in phylogenetic evolutionary analysis of animal taxa.

  18. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    Science.gov (United States)

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-07-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  19. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    Directory of Open Access Journals (Sweden)

    Param Priya Singh

    2015-07-01

    Full Text Available Whole genome duplications (WGD have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  20. An acquisition account of genomic islands based on genome signature comparisons

    Directory of Open Access Journals (Sweden)

    Luyf ACM

    2005-11-01

    Full Text Available Abstract Background Recent analyses of prokaryotic genome sequences have demonstrated the important force horizontal gene transfer constitutes in genome evolution. Horizontally acquired sequences are detectable by, among others, their dinucleotide composition (genome signature dissimilarity with the host genome. Genomic islands (GIs comprise important and interesting horizontally transferred sequences, but information about acquisition events or relatedness between GIs is scarce. In Vibrio vulnificus CMCP6, 10 and 11 GIs have previously been identified in the sequenced chromosomes I and II, respectively. We assessed the compositional similarity and putative acquisition account of these GIs using the genome signature. For this analysis we developed a new algorithm, available as a web application. Results Of 21 GIs, VvI-1 and VvI-10 of chromosome I have similar genome signatures, and while artificially divided due to a linear annotation, they are adjacent on the circular chromosome and therefore comprise one GI. Similarly, GIs VvI-3 and VvI-4 of chromosome I together with the region between these two islands are compositionally similar, suggesting that they form one GI (making a total of 19 GIs in chromosome I + chromosome II. Cluster analysis assigned the 19 GIs to 11 different branches above our conservative threshold. This suggests a limited number of compositionally similar donors or intragenomic dispersion of ancestral acquisitions. Furthermore, 2 GIs of chromosome II cluster with chromosome I, while none of the 19 GIs group with chromosome II, suggesting an unidirectional dispersal of large anomalous gene clusters from chromosome I to chromosome II. Conclusion From the results, we infer 10 compositionally dissimilar donors for 19 GIs in the V. vulnificus CMCP6 genome, including chromosome I donating to chromosome II. This suggests multiple transfer events from individual donor types or from donors with similar genome signatures. Applied to

  1. Fast comparison of genomic and meta-genomic reads with alignment-free measures based on quality values.

    Science.gov (United States)

    Comin, Matteo; Schimd, Michele

    2016-08-12

    Sequencing technologies are generating enormous amounts of read data, however assembly of genomes and metagenomes remain among the most challenging tasks. In this paper we study the comparison of genomes and metagenomes only based on read data, using word counts statistics called alignment-free thus not requiring reference genomes or assemblies. Quality scores produced by sequencing platforms are fundamental for various analyses, moreover future-generation sequencing platforms, will produce longer reads but with error rate around 15 %. In this context it will be fundamental to exploit quality values information within the framework of alignment-free measures. In this paper we present a family of alignment-free measures, called d (q) -type, that are based on k-mer counts and quality values. These statistics can be used to compare genomes and metagenomes based on their read sets. Results show that the evolutionary relationship of genomes can be reconstructed based on the direct comparison of theirs reads sets. The use of quality values on average improves the classification accuracy, and its contribution increases when the reads are more noisy. Also the comparison of metagenomic microbial communities can be performed efficiently. Similar metagenomes are quickly detected, just by processing their read data, without the need of costly alignments.

  2. The Wicked Problem of Climate Change: A New Approach Based on Social Mess and Fragmentation

    Directory of Open Access Journals (Sweden)

    Jiazhe Sun

    2016-12-01

    Full Text Available The 21st century has been the warmest period on record since 1880, making the problem of climate change a central issue in the global political arena. While most approaches to climate change emphasize setting and imposing thresholds for greenhouse gas emissions, this paper argues that the issue of climate change and its solutions should be viewed in a more dynamic and complex way, involving social messes and the fragmentation of industries and organizations. In this context, learning models can offer a starting point to understand the reasons why organizations engage in certain types of corporate environmental strategies with regard to climate change, and can help in the search for solutions to the problem of climate change.

  3. Pharmacophore-based database mining for probing fragmental drug-likeness of diketo acid analogues.

    Science.gov (United States)

    Bak, A; Magdziarz, T; Polanski, J

    2012-01-01

    A number of the structurally diverse chemical compounds with functional diketo acid (DKA) subunit(s) have been revealed by combined online and MoStBiodat 3D pharmacophore-guided ZINC and PubChem database screening. We used the structural data available from such screening to analyse the similarities of the compounds containing the DKA fragment. Generally, the analysis by principal component analysis and self-organizing neural network approaches reveals four families of compounds complying with the chemical constitution (aromatic, aliphatic) of the compounds. From a practical point of view, similar studies may reveal potential bioisosteres of known drugs, e.g. raltegravir/elvitegravir. In this context, it seems that mono-halogenated aryl substructures with para group show the closest similarity to these compounds, in contrast to structures where the aromatic ring is halogenated in both ortho- and para-locations.

  4. Annotation-Based Whole Genomic Prediction and Selection

    DEFF Research Database (Denmark)

    Kadarmideen, Haja; Do, Duy Ngoc; Janss, Luc

    Cπ method and applied to 1,272 Duroc pigs with both genotypic and phenotypic records including residual (RFI) and daily feed intake (DFI), average daily gain (ADG) and back fat (BF)). Records were split into a training (968 pigs) and a validation dataset (304 pigs). SNPs were annotated by 14 different...... groups. Genomic prediction has accuracy comparable to an own phenotype and use of genomic prediction can be cost effective by replacing feed intake measurement. Use of genomic annotation of SNPs and QTL information had no largely significant impact on predictive accuracy for the current traits but may...... in their contribution to estimated genomic variances and in prediction of genomic breeding values by applying SNP annotation approaches to feed efficiency. Ensembl Variant Predictor (EVP) and Pig QTL database were used as the source of genomic annotation for 60K chip. Genomic prediction was performed using the Bayes...

  5. Fragment-Based Approach to the Development of an Orally Bioavailable Lactam Inhibitor of Lipoprotein-Associated Phospholipase A2 (Lp-PLA2).

    Science.gov (United States)

    Woolford, Alison J-A; Day, Philip J; Bénéton, Véronique; Berdini, Valerio; Coyle, Joseph E; Dudit, Yann; Grondin, Pascal; Huet, Pascal; Lee, Lydia Y W; Manas, Eric S; McMenamin, Rachel L; Murray, Christopher W; Page, Lee W; Patel, Vipulkumar K; Potvain, Florent; Rich, Sharna J; Sang, Yingxia; Somers, Don O; Trottet, Lionel; Wan, Zehong; Zhang, Xiaomin

    2016-12-08

    Lp-PLA2 has been explored as a target for a number of inflammation associated diseases, including cardiovascular disease and dementia. This article describes the discovery of a new fragment derived chemotype that interacts with the active site of Lp-PLA2. The starting fragment hit was discovered through an X-ray fragment screen and showed no activity in the bioassay (IC50 > 1 mM). The fragment hit was optimized using a variety of structure-based drug design techniques, including virtual screening, fragment merging, and improvement of shape complementarity. A novel series of Lp-PLA2 inhibitors was generated with low lipophilicity and a promising pharmacokinetic profile.

  6. The complete mitochondrial genome of the enigmatic bigheaded turtle (Platysternon: description of unusual genomic features and the reconciliation of phylogenetic hypotheses based on mitochondrial and nuclear DNA

    Directory of Open Access Journals (Sweden)

    Feldman Chris R

    2006-02-01

    Full Text Available Abstract Background The big-headed turtle (Platysternon megacephalum from east Asia is the sole living representative of a poorly-studied turtle lineage (Platysternidae. It has no close living relatives, and its phylogenetic position within turtles is one of the outstanding controversies in turtle systematics. Platysternon was traditionally considered to be close to snapping turtles (Chelydridae based on some studies of its morphology and mitochondrial (mt DNA, however, other studies of morphology and nuclear (nu DNA do not support that hypothesis. Results We sequenced the complete mt genome of Platysternon and the nearly complete mt genomes of two other relevant turtles and compared them to turtle mt genomes from the literature to form the largest molecular dataset used to date to address this issue. The resulting phylogeny robustly rejects the placement of Platysternon with Chelydridae, but instead shows that it is a member of the Testudinoidea, a diverse, nearly globally-distributed group that includes pond turtles and tortoises. We also discovered that Platysternon mtDNA has large-scale gene rearrangements and possesses two, nearly identical, control regions, features that distinguish it from all other studied turtles. Conclusion Our study robustly determines the phylogenetic placement of Platysternon and provides a well-resolved outline of major turtle lineages, while demonstrating the significantly greater resolving power of comparing large amounts of mt sequence over that of short fragments. Earlier phylogenies placing Platysternon with chelydrids required a temporal gap in the fossil record that is now unnecessary. The duplicated control regions and gene rearrangements of the Platysternon mtDNA probably resulted from the duplication of part of the genome and then the subsequent loss of redundant genes. Although it is possible that having two control regions may provide some advantage, explaining why the control regions would be

  7. Amplified fragment length polymorphism and multilocus sequence analysis-based genotypic relatedness among pathogenic variants of Xanthomonas citri pv. citri and Xanthomonas campestris pv. bilvae.

    Science.gov (United States)

    Bui Thi Ngoc, Lan; Vernière, Christian; Jouen, Emmanuel; Ah-You, Nathalie; Lefeuvre, Pierre; Chiroleu, Frédéric; Gagnevin, Lionel; Pruvost, Olivier

    2010-03-01

    Three pathogenic variants (i.e. pathotypes) have been described within Xanthomonas citri pv. citri, the causal agent of Asiatic citrus canker. Pathotype A strains naturally infect a wide range of Citrus species and members of some related genera. In contrast, pathotypes A* and A(w) have narrow host ranges within the genus Citrus and have been isolated from Mexican lime (Citrus aurantifolia L.) and from Mexican lime and alemow (Citrus macrophylla L.), respectively. We used amplified fragment length polymorphism (AFLP) and multilocus sequence analysis (MLSA) based on four partial housekeeping gene sequences (atpD, dnaK, efp and gyrB ) for the genotypic classification of Xanthomonas citri pv. citri and the poorly characterized citrus pathogen Xanthomonas campestris pv. bilvae. A Mantel test showed that genetic distances derived from AFLP and MLSA were highly correlated. X. campestris pv. bilvae showed a close relatedness to the type strain of X. citri, indicating that this pathovar should be reclassified as X. citri pv. bilvae. All pathotype A* and A(w) strains were most closely related to X. citri pv. citri strains with a wide host range (pathotype A), confirming previous DNA-DNA hybridization data. Pathotype A(w) should be considered a junior synonym of pathotype A* on the basis of pathogenicity tests, AFLP, MLSA and PCR using pathovar-specific primers. Evolutionary genome divergences computed from AFLP data suggested that pathotype A* (including A(w) strains) is a group of strains that shows a wider genetic diversity than pathotype A.

  8. High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System

    Science.gov (United States)

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C. T.; Shui, Lingling

    2017-01-01

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1-10 Kbp fragment lengths with a yield of 75.30-91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future.

  9. Spontaneous deletion of a 209-kilobase-pair fragment from the Escherichia coli genome occurs with acquisition of resistance to an assortment of infectious phages.

    Science.gov (United States)

    Tanji, Yasunori; Hattori, Kenji; Suzuki, Kohichi; Miyanaga, Kazuhiko

    2008-07-01

    To breed resistance to an assortment of infectious phages, continuous cultures of Escherichia coli JM109 grown in a chemostat were exposed to phage mixtures prepared from sewage influent. Four sequential chemostat-grown cultures were each infected with a different phage mixture. At the end of a chemostat run, one phage-resistant colony was isolated and used to inoculate the subsequent culture. This process was repeated, and increased phage resistance of the input bacterial strain resulted from the successive challenges with different phage cocktails. Multiple mutations apparently accumulated progressively. A mutant isolated at the end of the four runs, designated D198, showed resistance to 38 of 40 phages that infect the parent strain, JM109. D198 produced less outer membrane protein C (OmpC) than JM109. However, restoration of the OmpC protein by plasmid-mediated complementation did not completely restore the susceptibility of D198 to the 38 phages. Therefore, alterations beyond the level of OmpC protein production contribute to the phage resistance of D198. PCR-based genetic analysis revealed that D198 has a genome that is 209 kbp (about 200 genes) smaller than JM109. The deletion includes the chromosomal section from ompC to wbbL that encodes the rhamnosyl transferase involved in lipopolysaccharide biosynthesis. Strains D198 and JM109 were comparable in their growth characteristics and their abilities to express a recombinant protein.

  10. ArraySearch: A Web-Based Genomic Search Engine.

    Science.gov (United States)

    Wilson, Tyler J; Ge, Steven X

    2012-01-01

    Recent advances in microarray technologies have resulted in a flood of genomics data. This large body of accumulated data could be used as a knowledge base to help researchers interpret new experimental data. ArraySearch finds statistical correlations between newly observed gene expression profiles and the huge source of well-characterized expression signatures deposited in the public domain. A search query of a list of genes will return experiments on which the genes are significantly up- or downregulated collectively. Searches can also be conducted using gene expression signatures from new experiments. This resource will empower biological researchers with a statistical method to explore expression data from their own research by comparing it with expression signatures from a large public archive.

  11. Ascaris phylogeny based on multiple whole mtDNA genomes

    DEFF Research Database (Denmark)

    Nejsum, Peter; Hawash, Mohamed B F; Betson, Martha

    2016-01-01

    Ascaris lumbricoides and A. suum are two parasitic nematodes infecting humans and pigs, respectively. There has been considerable debate as to whether Ascaris in the two hosts should be considered a single or two separate species. Previous studies identified at least three major clusters (A, B...... and C) of human and pig Ascaris based on partial cox1 sequences. In the present study, we selected major haplotypes from these different clusters to characterize their whole mitochondrial genomes for phylogenetic analysis. We also undertook coalescent simulations to investigate the evolutionary history...... events: the first one occurring early in the Neolithic period which resulted in a differentiated population of Ascaris in pigs (cluster C), the second occurring more recently (~ 900 generations ago), resulting in clusters A and B which might have been spread worldwide by human activities....

  12. Biosurveillance enterprise for operational awareness, a genomic-based approach for tracking pathogen virulence.

    Science.gov (United States)

    Valdivia-Granda, Willy A

    2013-11-15

    To protect our civilians and warfighters against both known and unknown pathogens, biodefense stakeholders must be able to foresee possible technological trends that could affect their threat risk assessment. However, significant flaws in how we prioritize our countermeasure-needs continue to limit their development. As recombinant biotechnology becomes increasingly simplified and inexpensive, small groups, and even individuals, can now achieve the design, synthesis, and production of pathogenic organisms for offensive purposes. Under these daunting circumstances, a reliable biosurveillance approach that supports a diversity of users could better provide early warnings about the emergence of new pathogens (both natural and manmade), reverse engineer pathogens carrying traits to avoid available countermeasures, and suggest the most appropriate detection, prophylactic, and therapeutic solutions. While impressive in data mining capabilities, real-time content analysis of social media data misses much of the complexity in the factual reality. Quality issues within freeform user-provided hashtags and biased referencing can significantly undermine our confidence in the information obtained to make critical decisions about the natural vs. intentional emergence of a pathogen. At the same time, errors in pathogen genomic records, the narrow scope of most databases, and the lack of standards and interoperability across different detection and diagnostic devices, continue to restrict the multidimensional biothreat assessment. The fragmentation of our biosurveillance efforts into different approaches has stultified attempts to implement any new foundational enterprise that is more reliable, more realistic and that avoids the scenario of the warning that comes too late. This discussion focus on the development of genomic-based decentralized medical intelligence and laboratory system to track emerging and novel microbial health threats in both military and civilian settings and

  13. Automated NMR fragment based screening identified a novel interface blocker to the LARG/RhoA complex.

    Directory of Open Access Journals (Sweden)

    Jia Gao

    Full Text Available The small GTPase cycles between the inactive GDP form and the activated GTP form, catalyzed by the upstream guanine exchange factors. The modulation of such process by small molecules has been proven to be a fruitful route for therapeutic intervention to prevent the over-activation of the small GTPase. The fragment based approach emerging in the past decade has demonstrated its paramount potential in the discovery of inhibitors targeting such novel and challenging protein-protein interactions. The details regarding the procedure of NMR fragment screening from scratch have been rarely disclosed comprehensively, thus restricts its wider applications. To achieve a consistent screening applicable to a number of targets, we developed a highly automated protocol to cover every aspect of NMR fragment screening as possible, including the construction of small but diverse libray, determination of the aqueous solubility by NMR, grouping compounds with mutual dispersity to a cocktail, and the automated processing and visualization of the ligand based screening spectra. We exemplified our streamlined screening in RhoA alone and the complex of the small GTPase RhoA and its upstream guanine exchange factor LARG. Two hits were confirmed from the primary screening in cocktail and secondary screening over individual hits for LARG/RhoA complex, while one of them was also identified from the screening for RhoA alone. HSQC titration of the two hits over RhoA and LARG alone, respectively, identified one compound binding to RhoA.GDP at a 0.11 mM affinity, and perturbed the residues at the switch II region of RhoA. This hit blocked the formation of the LARG/RhoA complex, validated by the native gel electrophoresis, and the titration of RhoA to ¹⁵N labeled LARG in the absence and presence the compound, respectively. It therefore provides us a starting point toward a more potent inhibitor to RhoA activation catalyzed by LARG.

  14. Automated NMR fragment based screening identified a novel interface blocker to the LARG/RhoA complex.

    Science.gov (United States)

    Gao, Jia; Ma, Rongsheng; Wang, Wei; Wang, Na; Sasaki, Ryan; Snyderman, David; Wu, Jihui; Ruan, Ke

    2014-01-01

    The small GTPase cycles between the inactive GDP form and the activated GTP form, catalyzed by the upstream guanine exchange factors. The modulation of such process by small molecules has been proven to be a fruitful route for therapeutic intervention to prevent the over-activation of the small GTPase. The fragment based approach emerging in the past decade has demonstrated its paramount potential in the discovery of inhibitors targeting such novel and challenging protein-protein interactions. The details regarding the procedure of NMR fragment screening from scratch have been rarely disclosed comprehensively, thus restricts its wider applications. To achieve a consistent screening applicable to a number of targets, we developed a highly automated protocol to cover every aspect of NMR fragment screening as possible, including the construction of small but diverse libray, determination of the aqueous solubility by NMR, grouping compounds with mutual dispersity to a cocktail, and the automated processing and visualization of the ligand based screening spectra. We exemplified our streamlined screening in RhoA alone and the complex of the small GTPase RhoA and its upstream guanine exchange factor LARG. Two hits were confirmed from the primary screening in cocktail and secondary screening over individual hits for LARG/RhoA complex, while one of them was also identified from the screening for RhoA alone. HSQC titration of the two hits over RhoA and LARG alone, respectively, identified one compound binding to RhoA.GDP at a 0.11 mM affinity, and perturbed the residues at the switch II region of RhoA. This hit blocked the formation of the LARG/RhoA complex, validated by the native gel electrophoresis, and the titration of RhoA to ¹⁵N labeled LARG in the absence and presence the compound, respectively. It therefore provides us a starting point toward a more potent inhibitor to RhoA activation catalyzed by LARG.

  15. Detection of low-abundance KRAS mutations in colorectal cancer using microfluidic capillary electrophoresis-based restriction fragment length polymorphism method with optimized assay conditions.

    Directory of Open Access Journals (Sweden)

    Huidan Zhang

    Full Text Available Constitutively active KRAS mutations have been found to be involved in various processes of cancer development, and render tumor cells resistant to EGFR-targeted therapies. Mutation detection methods with higher sensitivity will increase the possibility of choosing the correct individual therapy. Here, we established a highly sensitive and efficient microfluidic capillary electrophoresis-based restriction fragment length polymorphism (µCE-based RFLP platform for low-abundance KRAS genotyping with the combination of µCE and RFLP techniques. By using our self-built sensitive laser induced fluorescence (LIF detector and a new DNA intercalating dye YOYO-1, the separation conditions of µCE for ΦX174 HaeIII DNA marker were first optimized. Then, a Mav I digested 107-bp KRAS gene fragment was directly introduced into the microfluidic device and analyzed by µCE, in which field amplified sample stacking (FASS technique was employed to obtain the enrichment of the RFLP digestion products and extremely improved the sensitivity. The accurate analysis of KRAS statuses in HT29, LS174T, CCL187, SW480, Clone A, and CX-1 colorectal cancer (CRC cell lines by µCE-based RFLP were achieved in 5 min with picoliter-scale sample consumption, and as low as 0.01% of mutant KRAS could be identified from a large excess of wild-type genomic DNA (gDNA. In 98 paraffin-embedded CRC tissues, KRAS codon 12 mutations were discovered in 28 (28.6%, significantly higher than that obtained by direct sequencing (13, 13.3%. Clone sequencing confirmed these results and showed this system could detect at least 0.4% of the mutant KRAS in CRC tissue slides. Compared with direct sequencing, the new finding of the µCE-based RFLP platform was that KRAS mutations in codon 12 were correlated with the patient's age. In conclusion, we established a sensitive, fast, and cost-effective screening method for KRAS mutations, and successfully detected low-abundance KRAS mutations in clinical

  16. Fragmentation trees reloaded.

    Science.gov (United States)

    Böcker, Sebastian; Dührkop, Kai

    2016-01-01

    Untargeted metabolomics commonly uses liquid chromatography mass spectrometry to measure abundances of metabolites; subsequent tandem mass spectrometry is used to derive information about individual compounds. One of the bottlenecks in this experimental setup is the interpretation of fragmentation spectra to accurately and efficiently identify compounds. Fragmentation trees have become a powerful tool for the interpretation of tandem mass spectrometry data of small molecules. These trees are determined from the data using combinatorial optimization, and aim at explaining the experimental data via fragmentation cascades. Fragmentation tree computation does not require spectral or structural databases. To obtain biochemically meaningful trees, one needs an elaborate optimization function (scoring). We present a new scoring for computing fragmentation trees, transforming the combinatorial optimization into a Maximum A Posteriori estimator. We demonstrate the superiority of the new scoring for two tasks: both for the de novo identification of molecular formulas of unknown compounds, and for searching a database for structurally similar compounds, our method SIRIUS 3, performs significantly better than the previous version of our method, as well as other methods for this task. SIRIUS 3 can be a part of an untargeted metabolomics workflow, allowing researchers to investigate unknowns using automated computational methods.Graphical abstractWe present a new scoring for computing fragmentation trees from tandem mass spectrometry data based on Bayesian statistics. The best scoring fragmentation tree most likely explains the molecular formula of the measured parent ion.

  17. Discovery of Potent Non-Nucleoside Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase from a Fragment Hit Using Structure-Based Drug Design.

    Science.gov (United States)

    Yokokawa, Fumiaki; Nilar, Shahul; Noble, Christian G; Lim, Siew Pheng; Rao, Ranga; Tania, Stefani; Wang, Gang; Lee, Gladys; Hunziker, Jürg; Karuna, Ratna; Manjunatha, Ujjini; Shi, Pei-Yong; Smith, Paul W

    2016-04-28

    The discovery and optimization of non-nucleoside dengue viral RNA-dependent-RNA polymerase (RdRp) inhibitors are described. An X-ray-based fragment screen of Novartis' fragment collection resulted in the identification of a biphenyl acetic acid fragment 3, which bound in the palm subdomain of RdRp. Subsequent optimization of the fragment hit 3, relying on structure-based design, resulted in a >1000-fold improvement in potency in vitro and acquired antidengue activity against all four serotypes with low micromolar EC50 in cell-based assays. The lead candidate 27 interacts with a novel binding pocket in the palm subdomain of the RdRp and exerts a promising activity against all clinically relevant dengue serotypes.

  18. Analysis Of Segmental Duplications In The Pig Genome Based On Next-Generation Sequencing

    DEFF Research Database (Denmark)

    Fadista, João; Bendixen, Christian

    extensively studied in other organisms, its analysis in pig has been hampered by the lack of a complete pig genome assembly. By measuring the depth of coverage of Illumina whole-genome shotgun sequencing reads of the Tabasco animal aligned to the latest pig genome assembly (Sus scrofa 10 – based also...... on Tabasco), led us to the detection of a high-resolution map of segmental duplications in the pig genome. Comparing these segments with four other Duroc animals sequenced at our institute, supplied the resources needed to describe the first genome-wide and systematic analysis of segmental duplications...

  19. GeNemo: a search engine for web-based functional genomic data

    OpenAIRE

    Zhang, Yongqing; Cao, Xiaoyi; Zhong, Sheng

    2016-01-01

    A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of E...

  20. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA

    Directory of Open Access Journals (Sweden)

    Chan Alan

    2006-06-01

    Full Text Available Abstract Background Current methods for measurement of copy number do not combine all the desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH we aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform from PamGene International. In this new method, electrophoretic analysis of amplified products is replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is that discrimination of amplified probes is based on sequence and not fragment length. Results In this study we showed that microarray MAPH measurement of PMP22 gene dosage correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have Charcot-Marie-Tooth disease type 1A (CMT1A. Conclusion Measurement of microarray-based endpoints for MAPH appears to be of comparable accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes with a large number of exons, or of expanded sets of probes from dispersed genomic locations.

  1. Genome-Wide Analysis of Microsatellite Markers Based on Sequenced Database in Chinese Spring Wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Bin Han

    Full Text Available Microsatellites or simple sequence repeats (SSRs are distributed across both prokaryotic and eukaryotic genomes and have been widely used for genetic studies and molecular marker-assisted breeding in crops. Though an ordered draft sequence of hexaploid bread wheat have been announced, the researches about systemic analysis of SSRs for wheat still have not been reported so far. In the present study, we identified 364,347 SSRs from among 10,603,760 sequences of the Chinese spring wheat (CSW genome, which were present at a density of 36.68 SSR/Mb. In total, we detected 488 types of motifs ranging from di- to hexanucleotides, among which dinucleotide repeats dominated, accounting for approximately 42.52% of the genome. The density of tri- to hexanucleotide repeats was 24.97%, 4.62%, 3.25% and 24.65%, respectively. AG/CT, AAG/CTT, AGAT/ATCT, AAAAG/CTTTT and AAAATT/AATTTT were the most frequent repeats among di- to hexanucleotide repeats. Among the 21 chromosomes of CSW, the density of repeats was highest on chromosome 2D and lowest on chromosome 3A. The proportions of di-, tri-, tetra-, penta- and hexanucleotide repeats on each chromosome, and even on the whole genome, were almost identical. In addition, 295,267 SSR markers were successfully developed from the 21 chromosomes of CSW, which cover the entire genome at a density of 29.73 per Mb. All of the SSR markers were validated by reverse electronic-Polymerase Chain Reaction (re-PCR; 70,564 (23.9% were found to be monomorphic and 224,703 (76.1% were found to be polymorphic. A total of 45 monomorphic markers were selected randomly for validation purposes; 24 (53.3% amplified one locus, 8 (17.8% amplified multiple identical loci, and 13 (28.9% did not amplify any fragments from the genomic DNA of CSW. Then a dendrogram was generated based on the 24 monomorphic SSR markers among 20 wheat cultivars and three species of its diploid ancestors showing that monomorphic SSR markers represented a promising

  2. Fragment-based treatment of delocalization and static correlation errors in density-functional theory.

    Science.gov (United States)

    Nafziger, Jonathan; Wasserman, Adam

    2015-12-21

    One of the most important open challenges in modern Kohn-Sham (KS) density-functional theory (DFT) is the correct treatment of systems involving fractional electron charges and spins. Approximate exchange-correlation functionals struggle with such systems, leading to pervasive delocalization and static correlation errors. We demonstrate how these errors, which plague density-functional calculations of bond-stretching processes, can be avoided by employing the alternative framework of partition density-functional theory (PDFT) even using the local density approximation for the fragments. Our method is illustrated with explicit calculations on simple systems exhibiting delocalization and static-correlation errors, stretched H2 (+), H2, He2 (+), Li2 (+), and Li2. In all these cases, our method leads to greatly improved dissociation-energy curves. The effective KS potential corresponding to our self-consistent solutions displays key features around the bond midpoint; these are known to be present in the exact KS potential, but are absent from most approximate KS potentials and are essential for the correct description of electron dynamics.

  3. Fragment-based solid-phase assembly of oligonucleotide conjugates with peptide and polyethylene glycol ligands.

    Science.gov (United States)

    Dirin, Mehrdad; Urban, Ernst; Noe, Christian R; Winkler, Johannes

    2016-10-04

    Ligand conjugation to oligonucleotides is an attractive strategy for enhancing the therapeutic potential of antisense and siRNA agents by inferring properties such as improved cellular uptake or better pharmacokinetic properties. Disulfide linkages enable dissociation of ligands and oligonucleotides in reducing environments found in endosomal compartments after cellular uptake. Solution-phase fragment coupling procedures for producing oligonucleotide conjugates are often tedious, produce moderate yields and reaction byproducts are frequently difficult to remove. We have developed an improved method for solid-phase coupling of ligands to oligonucleotides via disulfides directly after solid-phase synthesis. A 2'-thiol introduced using a modified nucleotide building block was orthogonally deprotected on the controlled pore glass solid support with N-butylphosphine. Oligolysine peptides and a short monodisperse ethylene glycol chain were successfully coupled to the deprotected thiol. Cleavage from the resin and full removal of oligonucleotide protection groups were achieved using methanolic ammonia. After standard desalting, and without further purification, homogenous conjugates were obtained as demonstrated by HPLC, gel electrophoresis, and mass spectrometry. The attachment of both amphiphilic and cationic ligands proves the versatility of the conjugation procedure. An antisense oligonucleotide conjugate with hexalysine showed pronounced gene silencing in a cell culture tumor model in the absence of a transfection reagent and the corresponding ethylene glycol conjugate resulted in down regulation of the target gene to nearly 50% after naked application. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Research on rice acreage estimation in fragmented area based on decomposition of mixed pixels

    Science.gov (United States)

    Zhang, H.; Li, Q. Z.; Lei, F.; Du, X.; Wei, J. D.

    2015-04-01

    Rice acreage estimation is a key aspect to guarantee food security and also important to support government agricultural subsidy system. In this paper, we explored a sophisticated method to improve rice estimation accuracy at county scale and we developed our approach with China Environment Satellite HJ-1A/B data in Hunan Province, a fragmented area with complex rice cropping patterns. Our approach improved the estimation accuracy by combing supervised and unsupervised classification upon decomposition of mixed pixels model, and the rice estimation results, validated by ground survey data, showed a close relationship (RMSE~3.40) with survey figures, the estimated accuracy (EA) reached 83.74% at county level according to the sub-pixel method, and the accuracy can be increased about 12% compared to the pure-pixel method. The results suggest that decomposition of mixed pixels method has great significance to the improvement of rice acreage estimation accuracy, and can be used in mountainous and broken planting area.

  5. Identification of Sinorhizobium (Ensifer) medicae based on a specific genomic sequence unveiled by M13-PCR fingerprinting.

    Science.gov (United States)

    Dourado, Ana Catarina; Alves, Paula I L; Tenreiro, Tania; Ferreira, Eugénio M; Tenreiro, Rogério; Fareleira, Paula; Crespo, M Teresa Barreto

    2009-12-01

    A collection of nodule isolates from Medicago polymorpha obtained from southern and central Portugal was evaluated by M13-PCR fingerprinting and hierarchical cluster analysis. Several genomic clusters were obtained which, by 16S rRNA gene sequencing of selected representatives, were shown to be associated with particular taxonomic groups of rhizobia and other soil bacteria. The method provided a clear separation between rhizobia and co-isolated non-symbiotic soil contaminants. Ten M13-PCR groups were assigned to Sinorhizobium (Ensifer) medicae and included all isolates responsible for the formation of nitrogen-fixing nodules upon re-inoculation of M. polymorpha test-plants. In addition, enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting indicated a high genomic heterogeneity within the major M13- PCR clusters of S. medicae isolates. Based on nucleotide sequence data of an M13-PCR amplicon of ca. 1500 bp, observed only in S. medicae isolates and spanning locus Smed_3707 to Smed_3709 from the pSMED01 plasmid sequence of S. medicae WSM419 genome's sequence, a pair of PCR primers was designed and used for direct PCR amplification of a 1399-bp sequence within this fragment. Additional in silico and in vitro experiments, as well as phylogenetic analysis, confirmed the specificity of this primer combination and therefore the reliability of this approach in the prompt identification of S. medicae isolates and their distinction from other soil bacteria.

  6. Multiplexed, rapid detection of H5N1 using a PCR-free nanoparticle-based genomic microarray assay

    Directory of Open Access Journals (Sweden)

    Ragupathy Viswanath

    2010-10-01

    Full Text Available Abstract Background For more than a decade there has been increasing interest in the use of nanotechnology and microarray platforms for diagnostic applications. In this report, we describe a rapid and simple gold nanoparticle (NP-based genomic microarray assay for specific identification of avian influenza virus H5N1 and its discrimination from other major influenza A virus strains (H1N1, H3N2. Results Capture and intermediate oligonucleotides were designed based on the consensus sequences of the matrix (M gene of H1N1, H3N2 and H5N1 viruses, and sequences specific for the hemaglutinin (HA and neuraminidase (NA genes of the H5N1 virus. Viral RNA was detected within 2.5 hours using capture-target-intermediate oligonucleotide hybridization and gold NP-mediated silver staining in the absence of RNA fragmentation, target amplification, and enzymatic reactions. The lower limit of detection (LOD of the assay was less than 100 fM for purified PCR fragments and 103 TCID50 units for H5N1 viral RNA. Conclusions The NP-based microarray assay was able to detect and distinguish H5N1 sequences from those of major influenza A viruses (H1N1, H3N2. The new method described here may be useful for simultaneous detection and subtyping of major influenza A viruses.

  7. Technology-Driven and Evidence-Based Genomic Analysis for Integrated Pediatric and Prenatal Genetics Evaluation

    Institute of Scientific and Technical Information of China (English)

    Yuan Wei; Fang Xu; Peining Li

    2013-01-01

    The first decade since the completion of the Human Genome Project has been marked with rapid development of genomic technologies and their immediate clinical applications.Genomic analysis using oligonucleotide array comparative genomic hybridization (aCGH) or single nucleotide polymorphism (SNP) chips has been applied to pediatric patients with developmental and intellectual disabilities (DD/ID),multiple congenital anomalies (MCA) and autistic spectrum disorders (ASD).Evaluation of analytical and clinical validities of aCGH showed > 99% sensitivity and specificity and increased analytical resolution by higher density probe coverage.Reviews of case series,multi-center comparison and large patient-control studies demonstrated a diagnostic yield of 12%-20%; approximately 60% of these abnormalities were recurrent genomic disorders.This pediatric experience has been extended toward prenatal diagnosis.A series of reports indicated approximately 10% of pregnancies with ultrasound-detected structural anomalies and normal cytogenetic findings had genomic abnormalities,and 30% of these abnormalities were syndromic genomic disorders.Evidence-based practice guidelines and standards for implementing genomic analysis and web-delivered knowledge resources for interpreting genomic findings have been established.The progress from this technology-driven and evidence-based genomic analysis provides not only opportunities to dissect disease-causing mechanisms and develop rational therapeutic interventions but also important lessons for integrating genomic sequencing into pediatric and prenatal genetic evaluation.

  8. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Fedorov, Dmitri G. [NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yokojima, Satoshi [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Kitaura, Kazuo [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Sakurai, Minoru [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Nakamura, Shinichiro [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-04-14

    We extended the fragment molecular orbital (FMO) method interfaced with density functional theory (DFT) into spin unrestricted formalism (UDFT) and developed energy gradients for the ground state and single point excited state energies based on time-dependent DFT. The accuracy of FMO is evaluated in comparison to the full calculations without fragmentation. Electronic excitations in solvated organic radicals and in the blue copper protein, plastocyanin (PDB code: 1BXV), are reported. The contributions of solvent molecules to the electronic excitations are analyzed in terms of the fragment polarization and quantum effects such as interfragment charge transfer.

  9. GeNemo: a search engine for web-based functional genomic data.

    Science.gov (United States)

    Zhang, Yongqing; Cao, Xiaoyi; Zhong, Sheng

    2016-07-08

    A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of ENCODE and mouse ENCODE datasets. Unlike text-based search engines, GeNemo's searches are based on pattern matching of functional genomic regions. This distinguishes GeNemo from text or DNA sequence searches. The user can input any complete or partial functional genomic dataset, for example, a binding intensity file (bigWig) or a peak file. GeNemo reports any genomic regions, ranging from hundred bases to hundred thousand bases, from any of the online ENCODE datasets that share similar functional (binding, modification, accessibility) patterns. This is enabled by a Markov Chain Monte Carlo-based maximization process, executed on up to 24 parallel computing threads. By clicking on a search result, the user can visually compare her/his data with the found datasets and navigate the identified genomic regions. GeNemo is available at www.genemo.org.

  10. Genome-based versus gene-based theory of cancer: Possible implications for clinical practice

    Indian Academy of Sciences (India)

    Nataša Todorović-Raković

    2011-09-01

    The current state in oncology research indicates that the attempts to explain such complex process as cancerogenesis by a single or several genetic mutations were not successful enough. On the other hand, chromosomal/genomic instability – almost universal features of malignant tumours which influence a global pattern of gene expression and, subsequently, many oncogenic pathways – were often disregarded and considered nonessential to clinical application. However, a new arising field of system biology including ‘new forms’ of genome diversity such as copy number variations (CNV) and high-throughput oncogene mutation profiling now reveal all the complexity of cancer and provide the final explanation of the oncogenic pathways, based on stochastic (onco)genomic variation rather than on (onco)genic concepts.

  11. The FlyBase database of the Drosophila genome projects andcommunity literature

    Energy Technology Data Exchange (ETDEWEB)

    Gelbart, William; Bayraktaroglu, Leyla; Bettencourt, Brian; Campbell, Kathy; Crosby, Madeline; Emmert, David; Hradecky, Pavel; Huang,Yanmei; Letovsky, Stan; Matthews, Beverly; Russo, Susan; Schroeder,Andrew; Smutniak, Frank; Zhou, Pinglei; Zytkovicz, Mark; Ashburner,Michael; Drysdale, Rachel; de Grey, Aubrey; Foulger, Rebecca; Millburn,Gillian; Yamada, Chihiro; Kaufman, Thomas; Matthews, Kathy; Gilbert, Don; Grumbling, Gary; Strelets, Victor; Shemen, C.; Rubin, Gerald; Berman,Brian; Frise, Erwin; Gibson, Mark; Harris, Nomi; Kaminker, Josh; Lewis,Suzanna; Marshall, Brad; Misra, Sima; Mungall, Christopher; Prochnik,Simon; Richter, John; Smith, Christopher; Shu, ShengQiang; Tupy,Jonathan; Wiel, Colin

    2002-09-16

    FlyBase (http://flybase.bio.indiana.edu/) provides an integrated view of the fundamental genomic and genetic data on the major genetic model Drosophila melanogaster and related species. FlyBase has primary responsibility for the continual reannotation of the D.melanogaster genome. The ultimate goal of the reannotation effort is to decorate the euchromatic sequence of the genome with as much biological information as is available from the community and from the major genome project centers. A complete revision of the annotations of the now-finished euchromatic genomic sequence has been completed. There are many points of entry to the genome within FlyBase, most notably through maps, gene products and ontologies, structured phenotypic and gene expression data, and anatomy.

  12. INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    NEALSON, KENNETH H.

    2013-10-15

    laboratories. Applications: 1. Corrosion: Electron flow is often part of the corrosive process, and several studies were done in concert with this proposal with regard to the ability of EET-capable bacteria to enhance, inhibit, or detect corrosion. These included using EET-capable bacteria to detect corrosion in its earliest stages [5], to use corrosion-causing bacteria for the study of the microbe/mineral interface during corrosion [1], and to study the groups of microbes involved with corrosion of natural systems [19]. 2. Bioenergy and microbial fuel cells: The production of electricity by Shewanella was shown early in this program (several years ago) to be dependent on the genes for extracellular electron transport (EET), and applied work involved the testing of various strains and conditions for the optimization of current production by the shewanellae [11,14,16]. 3. Identification of shewanellae strains: Based on similarities seen in genomic comparisons, a rapid method was employed for distinguishing between shewanellae strains [17]. Interactions with other laboratories: This grant was an extension of a grant involving the so-called ?Shewanella Federation?, and as such, a number of our publications were joint with other members of this group. The groups included: 1. Pacific Northwest Laboratories ? 2. Oak Ridge National Labs 3. Michigan State University 4. University of Oklahoma 5. Naval Research Laboratory, Washington DC 6. Burnham Medical Research Institute, San Diego 7. J. Craig Venter Institute, San Diego Education: Graduate Students: Michael Waters, Ph.D. ? at NIST, Washington D.C. Lewis Hsu, Ph.D. ? at NRL, San Diego Howard Harris, Ph.D. ? Postdoc at University, France Everett Salas, Ph.D. ? Scientist at Chevron McLean, Jeffrey, Ph.D. ? Scientist at J. Craig Venter Institute McCrow, John, Ph.D. ? Scientist at J. Craig Venter Institute Postdocs: Mohamed El-Naggar ? Professor of Physics, USC Jinjun Kan ? Senior Researcher at Undergraduatges: During this year, we had

  13. A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the Turkey and Chicken genomes

    Directory of Open Access Journals (Sweden)

    Vereijken Addie

    2010-11-01

    Full Text Available Abstract Background The turkey (Meleagris gallopavo is an important agricultural species that is the second largest contributor to the world's poultry meat production. The genomic resources of turkey provide turkey breeders with tools needed for the genetic improvement of commercial breeds of turkey for economically important traits. A linkage map of turkey is essential not only for the mapping of quantitative trait loci, but also as a framework to enable the assignment of sequence contigs to specific chromosomes. Comparative genomics with chicken provides insight into mechanisms of genome evolution and helps in identifying rare genomic events such as genomic rearrangements and duplications/deletions. Results Eighteen full sib families, comprising 1008 (35 F1 and 973 F2 birds, were genotyped for 775 single nucleotide polymorphisms (SNPs. Of the 775 SNPs, 570 were informative and used to construct a linkage map in turkey. The final map contains 531 markers in 28 linkage groups. The total genetic distance covered by these linkage groups is 2,324 centimorgans (cM with the largest linkage group (81 loci measuring 326 cM. Average marker interval for all markers across the 28 linkage groups is 4.6 cM. Comparative mapping of turkey and chicken revealed two inter-, and 57 intrachromosomal rearrangements between these two species. Conclusion Our turkey genetic map of 531 markers reveals a genome length of 2,324 cM. Our linkage map provides an improvement of previously published maps because of the more even distribution of the markers and because the map is completely based on SNP markers enabling easier and faster genotyping assays than the microsatellitemarkers used in previous linkage maps. Turkey and chicken are shown to have a highly conserved genomic structure with a relatively low number of inter-, and intrachromosomal rearrangements.

  14. Small molecule inhibitors of the LEDGF site of human immunodeficiency virus integrase identified by fragment screening and structure based design.

    Directory of Open Access Journals (Sweden)

    Thomas S Peat

    Full Text Available A fragment-based screen against human immunodeficiency virus type 1 (HIV integrase led to a number of compounds that bound to the lens epithelium derived growth factor (LEDGF binding site of the integrase catalytic core domain. We determined the crystallographic structures of complexes of the HIV integrase catalytic core domain for 10 of these compounds and quantitated the binding by surface plasmon resonance. We demonstrate that the compounds inhibit the interaction of LEDGF with HIV integrase in a proximity AlphaScreen assay, an assay for the LEDGF enhancement of HIV integrase strand transfer and in a cell based assay. The compounds identified represent a potential framework for the development of a new series of HIV integrase inhibitors that do not bind to the catalytic site of the enzyme.

  15. Genomic analysis of plant chromosomes based on meiotic pairing

    Directory of Open Access Journals (Sweden)

    Lisete Chamma Davide

    2007-12-01

    Full Text Available This review presents the principles and applications of classical genomic analysis, with emphasis on plant breeding. The main mathematical models used to estimate the preferential chromosome pairing in diploid or polyploid, interspecific or intergenera hybrids are presented and discussed, with special reference to the applications and studies for the definition of genome relationships among species of the Poaceae family.

  16. A Genomics-Based Classification of Human Lung Tumors

    NARCIS (Netherlands)

    Seidel, Danila; Zander, Thomas; Heukamp, Lukas C.; Peifer, Martin; Bos, Marc; Fernandez-Cuesta, Lynnette; Leenders, Frauke; Lu, Xin; Ansen, Sascha; Gardizi, Masyar; Nguyen, Chau; Berg, Johannes; Russell, Prudence; Wainer, Zoe; Schildhaus, Hans-Ulrich; Rogers, Toni-Maree; Solomon, Benjamin; Pao, William; Carter, Scott L.; Getz, Gad; Hayes, D. Neil; Wilkerson, Matthew D.; Thunnissen, Erik; Travis, William D.; Perner, Sven; Wright, Gavin; Brambilla, Elisabeth; Buettner, Reinhard; Wolf, Juergen; Thomas, Roman; Gabler, Franziska; Wilkening, Ines; Mueller, Christian; Dahmen, Ilona; Menon, Roopika; Koenig, Katharina; Albus, Kerstin; Merkelbach-Bruse, Sabine; Fassunke, Jana; Schmitz, Katja; Kuenstlinger, Helen; Kleine, Michaela; Binot, Elke; Querings, Silvia; Altmueller, Janine; Boessmann, Ingelore; Nuemberg, Peter; Schneider, Peter; Bogus, Magdalena; Buettner, Reinhard; Perner, Sven; Russell, Prudence; Thunnissen, Erik; Travis, William D.; Brambilla, Elisabeth; Soltermann, Alex; Moch, Holger; Brustugun, Odd Terje; Solberg, Steinar; Lund-Iversen, Marius; Helland, Aslaug; Muley, Thomas; Hoffmann, Hans; Schnabel, Philipp A.; Chen, Yuan; Groen, Herman; Timens, Wim; Sietsma, Hannie; Clement, Joachim H.; Weder, Walter; Saenger, Joerg; Stoelben, Erich; Ludwig, Corinna; Engel-Riedel, Walburga; Smit, Egbert; Heideman, Danille A. M.; Snijders, Peter J. F.; Nogova, Lucia; Sos, Martin L.; Mattonet, Christian; Toepelt, Karin; Scheffler, Matthias; Goekkurt, Eray; Kappes, Rainer; Krueger, Stefan; Kambartel, Kato; Behringer, Dirk; Schulte, Wolfgang; Galetke, Wolfgang; Randerath, Winfried; Heldwein, Matthias; Schlesinger, Andreas; Serke, Monika; Hekmat, Khosro; Frank, Konrad F.; Schnell, Roland; Reiser, Marcel; Huenerlituerkoglu, Ali-Nuri; Schmitz, Stephan; Meffert, Lisa; Ko, Yon-Dschun; Litt-Lampe, Markus; Gerigk, Ulrich; Fricke, Rainer; Besse, Benjamin; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Moro-Sibilot, Denis; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John K.; Hyde, Russell; Validire, Pierre; Girard, Philippe; Muscarella, Lucia A.; Fazio, Vito M.; Hallek, Michael; Soria, Jean-Charles; Carter, Scott L.; Getz, Gad; Hayes, D. Neil; Wilkerson, Matthew D.; Achter, Viktor; Lang, Ulrich; Seidel, Danila; Zander, Thomas; Heukamp, Lukas C.; Peifer, Martin; Bos, Marc; Pao, William; Travis, William D.; Brambilla, Elisabeth; Buettner, Reinhard; Wolf, Juergen; Thomas, Roman K.

    2013-01-01

    We characterized genome alterations in 1255 clinically annotated lung tumors of all histological subgroups to identify genetically defined and clinically relevant subtypes. More than 55% of all cases had at least one oncogenic genome alteration potentially amenable to specific therapeutic interventi

  17. Whole-genome sequence-based analysis of thyroid function

    DEFF Research Database (Denmark)

    Taylor, Peter N.; Porcu, Eleonora; Chew, Shelby

    2015-01-01

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N = 2,287). Using additional whole-genome seque...

  18. CRISPR-Cas9 Based Engineering of Actinomycetal Genomes.

    Science.gov (United States)

    Tong, Yaojun; Charusanti, Pep; Zhang, Lixin; Weber, Tilmann; Lee, Sang Yup

    2015-09-18

    Bacteria of the order Actinomycetales are one of the most important sources of pharmacologically active and industrially relevant secondary metabolites. Unfortunately, many of them are still recalcitrant to genetic manipulation, which is a bottleneck for systematic metabolic engineering. To facilitate the genetic manipulation of actinomycetes, we developed a highly efficient CRISPR-Cas9 system to delete gene(s) or gene cluster(s), implement precise gene replacements, and reversibly control gene expression in actinomycetes. We demonstrate our system by targeting two genes, actIORF1 (SCO5087) and actVB (SCO5092), from the actinorhodin biosynthetic gene cluster in Streptomyces coelicolor A3(2). Our CRISPR-Cas9 system successfully inactivated the targeted genes. When no templates for homology-directed repair (HDR) were present, the site-specific DNA double-strand breaks (DSBs) introduced by Cas9 were repaired through the error-prone nonhomologous end joining (NHEJ) pathway, resulting in a library of deletions with variable sizes around the targeted sequence. If templates for HDR were provided at the same time, precise deletions of the targeted gene were observed with near 100% frequency. Moreover, we developed a system to efficiently and reversibly control expression of target genes, deemed CRISPRi, based on a catalytically dead variant of Cas9 (dCas9). The CRISPR-Cas9 based system described here comprises a powerful and broadly applicable set of tools to manipulate actinomycetal genomes.

  19. Recent advances in genome-based polyketide discovery.

    Science.gov (United States)

    Helfrich, Eric J N; Reiter, Silke; Piel, Jörn

    2014-10-01

    Polyketides are extraordinarily diverse secondary metabolites of great pharmacological value and with interesting ecological functions. The post-genomics era has led to fundamental changes in natural product research by inverting the workflow of secondary metabolite discovery. As opposed to traditional bioactivity-guided screenings, genome mining is an in silico method to screen and analyze sequenced genomes for natural product biosynthetic gene clusters. Since genes for known compounds can be recognized at the early computational stage, genome mining presents an opportunity for dereplication. This review highlights recent progress in bioinformatics, pathway engineering and chemical analytics to extract the biosynthetic secrets hidden in the genome of both well-known natural product sources as well as previously neglected bacteria.

  20. [Transcription activator-like effectors(TALEs)based genome engineering].

    Science.gov (United States)

    Zhao, Mei-Wei; Duan, Cheng-Li; Liu, Jiang

    2013-10-01

    Systematic reverse-engineering of functional genome architecture requires precise modifications of gene sequences and transcription levels. The development and application of transcription activator-like effectors(TALEs) has created a wealth of genome engineering possibilities. TALEs are a class of naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas species. The DNA-binding domain of each TALE typically consists of tandem 34-amino acid repeat modules rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Such "genome engineering" has now been established in human cells and a number of model organisms, thus opening the door to better understanding gene function in model organisms, improving traits in crop plants and treating human genetic disorders.

  1. WormBase: network access to the genome and biology of Caenorhabditis elegans.

    Science.gov (United States)

    Stein, L; Sternberg, P; Durbin, R; Thierry-Mieg, J; Spieth, J

    2001-01-01

    WormBase (http://www.wormbase.org) is a web-based resource for the Caenorhabditis elegans genome and its biology. It builds upon the existing ACeDB database of the C.elegans genome by providing data curation services, a significantly expanded range of subject areas and a user-friendly front end.

  2. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design.

    Directory of Open Access Journals (Sweden)

    Arun Chandramohan

    2016-06-01

    Full Text Available A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower. Amide hydrogen deuterium Exchange mass spectrometry (HDXMS is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD.

  3. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design

    Science.gov (United States)

    Larsson, Andreas; Nordlund, Paer; Jansson, Anna; Anand, Ganesh S.

    2016-01-01

    A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower). Amide hydrogen deuterium Exchange mass spectrometry (HDXMS) is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM) and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD). PMID:27253209

  4. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Fedorov, Dmitri G., E-mail: d.g.fedorov@aist.go.jp [NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zahariev, Federico; Schmidt, Michael W.; Gordon, Mark S. [Department of Chemistry and Ames Laboratory, US-DOE, Iowa State University, Ames, Iowa 50011 (United States); Kitaura, Kazuo [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Nakamura, Shinichiro [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2015-03-28

    Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluated for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in S{sub N}2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented.

  5. Efficient multi-site-directed mutagenesis directly from genomic template

    Indian Academy of Sciences (India)

    Fengtao Luo; Xiaolan Du; Tujun Weng; Xuan Wen; Junlan Huang; Lin Chen

    2012-12-01

    In this article, the traditional multi-site-directed mutagenesis method based on overlap extension PCR was improved specifically for complicated templates, such as genomic sequence or complementary DNA. This method was effectively applied for multi-site-directed mutagenesis directly from mouse genomic DNA, as well as for combination, deletion or insertion of DNA fragments.

  6. A gapless genome sequence of the fungus Botrytis cinerea

    NARCIS (Netherlands)

    Kan, Van Jan A.L.; Stassen, Joost H.M.; Mosbach, Andreas; Lee, Van Der Theo A.J.; Faino, Luigi; Farmer, Andrew D.; Papasotiriou, Dimitrios G.; Zhou, Shiguo; Seidl, Michael F.; Cottam, Eleanor; Edel, Dominique; Hahn, Matthias; Schwartz, David C.; Dietrich, Robert A.; Widdison, Stephanie; Scalliet, Gabriel

    2016-01-01

    Following earlier incomplete and fragmented versions of a genome sequence for the grey mould Botrytis cinerea, a gapless, near-finished genome sequence for B. cinerea strain B05.10 is reported. The assembly comprised 18 chromosomes and was confirmed by an optical map and a genetic map based on ap

  7. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants].

    Science.gov (United States)

    Xingliang, Ma; Yaoguang, Liu

    2016-02-01

    Targeted genomic editing technologies use programmable DNA nucleases to cleave genomic target sites, thus inducing targeted mutations in the genomes. The newly prevailed clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system that consists of the Cas9 nuclease and single guide RNA (sgRNA) has the advantages of simplicity and high efficiency as compared to other programmable DNA nuclease systems such as zinc finger nucleases (ZFNs) and transcription activator like effector nucleases (TALENs). Currently, a number of cases have been reported on the application of the CRISPR/Cas9 genomic editing technology in plants. In this review, we summarize the strategies for preparing the Cas9 and sgRNA expression constructs, the transformation method for obtaining targeted mutations, the efficiency and features of the resulting mutations and the methods for detecting or genotyping of the mutation sites. We also discuss the existing problems and perspectives of CRISPR/Cas9-based genomic editing in plants.

  8. Research progress of plant population genomics based on high-throughput sequencing.

    Science.gov (United States)

    Yunsheng, Wang

    2016-08-01

    Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.

  9. Analysis of the genomic homologous recombination in Theilovirus based on complete genomes

    Directory of Open Access Journals (Sweden)

    Yi Maoli

    2011-09-01

    Full Text Available Abstract At present, Theilovirus is considered to comprise four distinct serotypes, including Theiler's murine encephalomyelitis virus, Vilyuisk human encephalomyelitis virus, Thera virus, and Saffold virus. So far, there is no systematical study that investigated the genomic recombination of Theilovirus. The present study performed the phylogenetic and recombination analysis of Theilovirus over the complete genomes. Seven potentially significant recombination events were identified. However, according to the strains information and references related to the recombinants and their parental strains, four of the recombination events might happen non-naturally. These results will provide valuable hints for future research on evolution and antigenic variability of Theilovirus.

  10. Analysis of the genomic homologous recombination in Theilovirus based on complete genomes.

    Science.gov (United States)

    Sun, Guangming; Zhang, Xiaodan; Yi, Maoli; Shao, Shihe; Zhang, Wen

    2011-09-17

    At present, Theilovirus is considered to comprise four distinct serotypes, including Theiler's murine encephalomyelitis virus, Vilyuisk human encephalomyelitis virus, Thera virus, and Saffold virus. So far, there is no systematical study that investigated the genomic recombination of Theilovirus. The present study performed the phylogenetic and recombination analysis of Theilovirus over the complete genomes. Seven potentially significant recombination events were identified. However, according to the strains information and references related to the recombinants and their parental strains, four of the recombination events might happen non-naturally. These results will provide valuable hints for future research on evolution and antigenic variability of Theilovirus.

  11. Pilot Sequencing of Onion Genomic DNA Reveals Fragments of Transposable Elements, Low Gene Densities, and Significant Gene Enrichment After Methyl Filtration

    Science.gov (United States)

    Onion (Allium cepa) is a diploid (2n=2x=16) monocot with one of the largest nuclear genomes among cultivated plants, over 6 and 16 times that of maize and rice, respectively. In this study, we sequenced onion BACs to estimate gene densities and investigate the nature and distribution of repetitive ...

  12. Thermodynamics of fragment binding.

    Science.gov (United States)

    Ferenczy, György G; Keserű, György M

    2012-04-23

    The ligand binding pockets of proteins have preponderance of hydrophobic amino acids and are typically within the apolar interior of the protein; nevertheless, they are able to bind low complexity, polar, water-soluble fragments. In order to understand this phenomenon, we analyzed high resolution X-ray data of protein-ligand complexes from the Protein Data Bank and found that fragments bind to proteins with two near optimal geometry H-bonds on average. The linear extent of the fragment binding site was found not to be larger than 10 Å, and the H-bonding region was found to be restricted to about 5 Å on average. The number of conserved H-bonds in proteins cocrystallized with multiple different fragments is also near to 2. These fragment binding sites that are able to form limited number of strong H-bonds in a hydrophobic environment are identified as hot spots. An estimate of the free-energy gain of H-bond formation versus apolar desolvation supports that fragment sized compounds need H-bonds to achieve detectable binding. This suggests that fragment binding is mostly enthalpic that is in line with their observed binding thermodynamics documented in Isothermal Titration Calorimetry (ITC) data sets and gives a thermodynamic rationale for fragment based approaches. The binding of larger compounds tends to more rely on apolar desolvation with a corresponding increase of the entropy content of their binding free-energy. These findings explain the reported size-dependence of maximal available affinity and ligand efficiency both behaving differently in the small molecule region featured by strong H-bond formation and in the larger molecule region featured by apolar desolvation.

  13. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions

    Directory of Open Access Journals (Sweden)

    Ertl Peter

    2009-06-01

    Full Text Available Abstract Background A method to estimate ease of synthesis (synthetic accessibility of drug-like molecules is needed in many areas of the drug discovery process. The development and validation of such a method that is able to characterize molecule synthetic accessibility as a score between 1 (easy to make and 10 (very difficult to make is described in this article. Results The method for estimation of the synthetic accessibility score (SAscore described here is based on a combination of fragment contributions and a complexity penalty. Fragment contributions have been calculated based on the analysis of one million representative molecules from PubChem and therefore one can say that they capture historical synthetic knowledge stored in this database. The molecular complexity score takes into account the presence of non-standard structural features, such as large rings, non-standard ring fusions, stereocomplexity and molecule size. The method has been validated by comparing calculated SAscores with ease of synthesis as estimated by experienced medicinal chemists for a set of 40 molecules. The agreement between calculated and manually estimated synthetic accessibility is very good with r2 = 0.89. Conclusion A novel method to estimate synthetic accessibility of molecules has been developed. This method uses historical synthetic knowledge obtained by analyzing information from millions of already synthesized chemicals and considers also molecule complexity. The method is sufficiently fast and provides results consistent with estimation of ease of synthesis by experienced medicinal chemists. The calculated SAscore may be used to support various drug discovery processes where a large number of molecules needs to be ranked based on their synthetic accessibility, for example when purchasing samples for screening, selecting hits from high-throughput screening for follow-up, or ranking molecules generated by various de novo design approaches.

  14. Frozen-thawed spermatozoa from oligozoospermic ejaculates are susceptible to in situ DNA fragmentation in polyvinylpyrrolidone-based sperm-immobilization medium.

    Science.gov (United States)

    Salian, Sujit Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumar, Pratap; Adiga, Satish Kumar

    2012-08-01

    To elucidate the effect of sperm immobilization media that are and are not based on polyvinylpyrrolidone (PVP) on the DNA integrity of fresh and frozen-thawed spermatozoa during standard intracytoplasmic sperm injection (ICSI) conditions. Experimental prospective study. Embryology research laboratory. Forty-six ejaculates from normozoospermic and oligozoospermic men. Assessment of sperm DNA fragmentation by single-cell gel electrophoresis assay. DNA integrity of fresh and frozen-thawed spermatozoa from normozoospermic and oligozoospermic ejaculates exposed to PVP-based and non-PVP-based media. Exposure of fresh and frozen thawed spermatozoa from normozoospermic and oligozoospermic ejaculates to PVP-based medium in an ICSI dish for 30 minutes statistically significantly increased the DNA fragmentation. In contrast, the extent of DNA fragmentation in non-PVP-based medium did not statistically significantly differ from control. A PVP-based medium can induce a statistically significant amount of sperm DNA fragmentation in an ICSI dish, and frozen-thawed sperm from oligozoospermic ejaculates are more susceptible to in situ DNA fragmentation. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Genome chaos: survival strategy during crisis.

    Science.gov (United States)

    Liu, Guo; Stevens, Joshua B; Horne, Steven D; Abdallah, Batoul Y; Ye, Karen J; Bremer, Steven W; Ye, Christine J; Chen, David J; Heng, Henry H

    2014-01-01

    Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.

  16. Ligand Discovery for a Peptide-Binding GPCR by Structure-Based Screening of Fragment- and Lead-Like Chemical Libraries.

    Science.gov (United States)

    Ranganathan, Anirudh; Heine, Philipp; Rudling, Axel; Plückthun, Andreas; Kummer, Lutz; Carlsson, Jens

    2017-03-17

    Peptide-recognizing G protein-coupled receptors (GPCRs) are promising therapeutic targets but often resist drug discovery efforts. Determination of crystal structures for peptide-binding GPCRs has provided opportunities to explore structure-based methods in lead development. Molecular docking screens of two chemical libraries, containing either fragment- or lead-like compounds, against a neurotensin receptor 1 crystal structure allowed for a comparison between different drug development strategies for peptide-binding GPCRs. A total of 2.3 million molecules were screened computationally, and 25 fragments and 27 leads that were top-ranked in each library were selected for experimental evaluation. Of these, eight fragments and five leads were confirmed as ligands by surface plasmon resonance. The hit rate for the fragment screen (32%) was thus higher than for the lead-like library (19%), but the affinities of the fragments were ∼100-fold lower. Both screens returned unique scaffolds and demonstrated that a crystal structure of a stabilized peptide-binding GPCR can guide the discovery of small-molecule agonists. The complementary advantages of exploring fragment- and lead-like chemical space suggest that these strategies should be applied synergistically in structure-based screens against challenging GPCR targets.

  17. Study on the performance of polycarboxylate-based superplasticizers synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization

    Science.gov (United States)

    Yu, Binbin; Zeng, Zhong; Ren, Qinyu; Chen, Yang; Liang, Mei; Zou, Huawei

    2016-09-01

    A series of block type polycarboxylate-based superplasticizers (PCs) with different molecular architectures were synthesized with macromonomer butenyl alkylene polyoxyethylene-polyoxypropylene ether (BAPP) and acrylic acid (AA) by reversible addition-fragmentation chain transfer (RAFT) polymerization. Fourier-Transformed Infrared (FTIR) Spectroscopy and dynamic light scattering (DLS) were applied to investigate the PCs' molecular structure. The dispersion capacity of the PCs in cement were also measured, and the results showed that the polycarboxylic dispersing agents prepared by this method were suitable for portlant cement. It was found that the PCs could affect the hydration process, which was performed through retarding the generation of ettringite in the hydrated product. Our studies with X-ray diffraction (XRD), scanning electron microscopy (SEM) and compressive strength measurement of hydrated production were all supporting this conclusion.

  18. Compatibility of pedigree-based and marker-based relationships for single-step genomic prediction

    DEFF Research Database (Denmark)

    Christensen, Ole Fredslund

    2012-01-01

    Single-step methods for genomic prediction have recently become popular because they are conceptually simple and in practice such a method can completely replace a pedigree-based method for routine genetic evaluation. An issue with single-step methods is compatibility between the marker-based rel......Single-step methods for genomic prediction have recently become popular because they are conceptually simple and in practice such a method can completely replace a pedigree-based method for routine genetic evaluation. An issue with single-step methods is compatibility between the marker......-based relationship matrix and the pedigree-based relationship matrix. The compatibility issue involves which allele frequencies to use in the marker-based relationship matrix, and also that adjustments of this matrix to the pedigree-based relationship matrix are needed. In addition, it has been overlooked...... in the base population. Here, two ideas are explored. The first idea is to instead adjust the pedigree-based relationship matrix to be compatible to the marker-based relationship matrix, whereas the second idea is to include the likelihood for the observed markers. A single-step method is used where...

  19. Integrated Genome-Based Studies of Shewanella Ecophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jizhong; He, Zhili

    2014-04-08

    As a part of the Shewanella Federation project, we have used integrated genomic, proteomic and computational technologies to study various aspects of energy metabolism of two Shewanella strains from a systems-level perspective.

  20. Ligation-based assembly for constructing mouse synthetic scFv libraries by chain shuffling with in vivo-amplified VH and VL fragments.

    Science.gov (United States)

    Nishi, Michiru; Jian, Nan; Yamamoto, Keiko; Seto, Haruyo; Nishida, Yuichi; Tonoyama, Yasuhiro; Shimizu, Nobuyoshi; Nishi, Yoshisuke

    2014-10-01

    In vitro assembly of two or three PCR fragments using primers is a common method of constructing scFv fragments for display on the surface of phage. However, mismatch annealing often occurs during in this step, leading to cloning and display of incomplete Fab or scFv fragments. To overcome this limitation, we developed a ligation-based two-fragment assembly (LTFA) protocol that involved separately cloning VH and Vκ fragments into the high-copy-number plasmid pUC18. The VH and Vκ fragments had randomized complementarity-determining region 3 (CDR3) and were joined with a peptidyl linker composed of (G4S)3. Using this approach, complete sequences of scFv fragments were successfully constructed, and the sequencing of 83 scFv clones revealed that none of the sequences, including the linker region, contained deletions or mutations. In contrast, linker sequences generated using a conventional two-fragment PCR assembly (TFPA) protocol often contained sequence anomalies, including large truncations. Using the LTFA protocol, a final library size of 1.0×10(8)cfu was achieved. Examination of the amino acid profiles of the generated scFv fragments within the randomized regions introduced using degenerate codons did not detect any bias from that expected based on stochastic distribution. After several cycles of panning with this library, antigen-specific scFvs against two reference antigens, hen egg lysozyme and streptavidin were detected. In addition, scFvs with specificity against peptidyl antigens in the loop region of the Medaka ortholog of human C6orf89, which encodes a histone deacetylase enhancer that interacts with the bombesin receptor, were also obtained. The LTFA protocol developed here is robust and allows for the easy construction of integral scFv fragments compared with conventional TFPA. Utilizing LTFA, other CDRs can be readily combined. This approach also allows for the in vitro maturation of scFv fragments by separately introducing randomization in CDRs or

  1. Discovery of novel inhibitors of Aurora kinases with indazole scaffold: In silico fragment-based and knowledge-based drug design.

    Science.gov (United States)

    Chang, Chun-Feng; Lin, Wen-Hsing; Ke, Yi-Yu; Lin, Yih-Shyan; Wang, Wen-Chieh; Chen, Chun-Hwa; Kuo, Po-Chu; Hsu, John T A; Uang, Biing-Jiun; Hsieh, Hsing-Pang

    2016-11-29

    Aurora kinases have emerged as important anticancer targets so that there are several inhibitors have advanced into clinical study. Herein, we identified novel indazole derivatives as potent Aurora kinases inhibitors by utilizing in silico fragment-based approach and knowledge-based drug design. After intensive hit-to-lead optimization, compounds 17 (dual Aurora A and B), 21 (Aurora B selective) and 30 (Aurora A selective) possessed indazole privileged scaffold with different substituents, which provide sub-type kinase selectivity. Computational modeling helps in understanding that the isoform selectivity could be targeted specific residue in the Aurora kinase binding pocket in particular targeting residues Arg220, Thr217 or Glu177.

  2. A URI-based approach for addressing fragments of media resources on the Web

    NARCIS (Netherlands)

    Mannens, E.; Deursen, D. van; Troncy, R.; Pfeiffer, S.; Parker, C.; Lafon, Y.; Jansen, A.J.; Hausenblas, M.; Walle, R. van de

    2011-01-01

    To make media resources a prime citizen on the Web, we have to go beyond simply replicating digital media files. The Web is based on hyperlinks between Web resources, and that includes hyperlinking out of resources (e.g., from a word or an image within a Web page) as well as hyperlinking into resour

  3. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system.

    Science.gov (United States)

    Speth, Daan R; In 't Zandt, Michiel H; Guerrero-Cruz, Simon; Dutilh, Bas E; Jetten, Mike S M

    2016-03-31

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete draft genomes that together represent the majority of the microbial community. We assign these genomes to distinct anaerobic and aerobic microbial communities. In the aerobic community, nitrifying organisms and heterotrophs predominate. In the anaerobic community, widespread potential for partial denitrification suggests a nitrite loop increases treatment efficiency. Of our genomes, 19 have no previously cultivated or sequenced close relatives and six belong to bacterial phyla without any cultivated members, including the most complete Omnitrophica (formerly OP3) genome to date.

  4. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner

    DEFF Research Database (Denmark)

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan

    2009-01-01

    MOTIVATION: The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary......' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners...... heuristics. RESULTS: We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect...

  5. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    NARCIS (Netherlands)

    Speth, D.; Zandt, M.H. In 't; Guerrero-Cruz, S.; Dutilh, B.E.; Jetten, M.S.M

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is use

  6. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    NARCIS (Netherlands)

    Speth, D.; Zandt, M.H. In 't; Guerrero-Cruz, S.; Dutilh, B.E.; Jetten, M.S.M

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is

  7. 基于Tanimoto系数的JPEG碎片数据识别方法%A JPEG DATA FRAGMENT IDENTIFICATION METHOD BASED ON TANIMOTO COEFFICIENT

    Institute of Scientific and Technical Information of China (English)

    汤燕彬; 许榕生

    2011-01-01

    当前市面上存在多种功能强大的电子取证工具,但这些取证工具缺乏对特定碎片数据类型的识别.提出满足当前实际需求的一种碎片数据类型识别方法.该方法以数据的字节频率分布为基础,首次将Tanimoto系数应用于JPEG碎片数据类型识别,利用文件类型特有的结构特征以及相邻碎片数据的关联性作为优化参数,提高识别率.实验结果表明,该方法能较好地识别出JPEG碎片数据类型.%Several powerful digital forensics tools have been employed in the progress of obtaining judicial evidences. However, there is lack of identification of specific data fragments. In this article, a method that meets actual demands is proposed, which, based on the byte frequency distribution of data fragments, applies tanimoto coefficient to the identification of JPEG data fragments for the first time and promotes the chances to identifying those fragments by using special structural features and relationship between adjacent fragments as optimization parameters. Experimental results show that this method is able to efficiently identify the JPEG data fragments.

  8. Comprehensive genome characterization of solitary fibrous tumors using high-resolution array-based comparative genomic hybridization.

    Science.gov (United States)

    Bertucci, François; Bouvier-Labit, Corinne; Finetti, Pascal; Adélaïde, José; Metellus, Philippe; Mokhtari, Karima; Decouvelaere, Anne-Valérie; Miquel, Catherine; Jouvet, Anne; Figarella-Branger, Dominique; Pedeutour, Florence; Chaffanet, Max; Birnbaum, Daniel

    2013-02-01

    Solitary fibrous tumors (SFTs) are rare spindle cell tumors with limited therapeutic options. Their molecular basis is poorly known. No consistent cytogenetic abnormality has been reported. We used high-resolution whole-genome array-based comparative genomic hybridization (Agilent 244K oligonucleotide chips) to profile 47 samples, meningeal in >75% of cases. Few copy number aberrations (CNAs) were observed. Sixty-eight percent of samples did not show any gene CNA after exclusion of probes located in regions with referenced copy number variation (CNV). Only low-level CNAs were observed. The genomic profiles were very homogeneous among samples. No molecular class was revealed by clustering of DNA copy numbers. All cases displayed a "simplex" profile. No recurrent CNA was identified. Imbalances occurring in >20%, such as the gain of 8p11.23-11.22 region, contained known CNVs. The 13q14.11-13q31.1 region (lost in 4% of cases) was the largest altered region and contained the lowest percentage of genes with referenced CNVs. A total of 425 genes without CNV showed copy number transition in at least one sample, but only but only 1 in at least 10% of samples. The genomic profiles of meningeal and extra-meningeal cases did not show any differences.

  9. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination.

    Science.gov (United States)

    Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J

    2016-06-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location.

  10. Genomes-based phylogeny of the genus Xanthomonas

    Directory of Open Access Journals (Sweden)

    Rodriguez-R Luis M

    2012-03-01

    Full Text Available Abstract Background The genus Xanthomonas comprises several plant pathogenic bacteria affecting a wide range of hosts. Despite the economic, industrial and biological importance of Xanthomonas, the classification and phylogenetic relationships within the genus are still under active debate. Some of the relationships between pathovars and species have not been thoroughly clarified, with old pathovars becoming new species. A change in the genus name has been recently suggested for Xanthomonas albilineans, an early branching species currently located in this genus, but a thorough phylogenomic reconstruction would aid in solving these and other discrepancies in this genus. Results Here we report the results of the genome-wide analysis of DNA sequences from 989 orthologous groups from 17 Xanthomonas spp. genomes available to date, representing all major lineages within the genus. The phylogenetic and computational analyses used in this study have been automated in a Perl package designated Unus, which provides a framework for phylogenomic analyses which can be applied to other datasets at the genomic level. Unus can also be easily incorporated into other phylogenomic pipelines. Conclusions Our phylogeny agrees with previous phylogenetic topologies on the genus, but revealed that the genomes of Xanthomonas citri and Xanthomonas fuscans belong to the same species, and that of Xanthomonas albilineans is basal to the joint clade of Xanthomonas and Xylella fastidiosa. Genome reduction was identified in the species Xanthomonas vasicola in addition to the previously identified reduction in Xanthomonas albilineans. Lateral gene transfer was also observed in two gene clusters.

  11. Cas9-based genome editing in Arabidopsis and tobacco.

    Science.gov (United States)

    Li, Jian-Feng; Zhang, Dandan; Sheen, Jen

    2014-01-01

    Targeted modification of plant genome is key to elucidating and manipulating gene functions in plant research and biotechnology. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology is emerging as a powerful genome-editing method in diverse plants that traditionally lacked facile and versatile tools for targeted genetic engineering. This technology utilizes easily reprogrammable guide RNAs (sgRNAs) to direct Streptococcus pyogenes Cas9 endonuclease to generate DNA double-stranded breaks in targeted genome sequences, which facilitates efficient mutagenesis by error-prone nonhomologous end-joining (NHEJ) or sequence replacement by homology-directed repair (HDR). In this chapter, we describe the procedure to design and evaluate dual sgRNAs for plant codon-optimized Cas9-mediated genome editing using mesophyll protoplasts as model cell systems in Arabidopsis thaliana and Nicotiana benthamiana. We also discuss future directions in sgRNA/Cas9 applications for generating targeted genome modifications and gene regulations in plants.

  12. Characterization of nosocomial Serratia marcescens isolates: comparison of Fourier-transform infrared spectroscopy with pulsed-field gel electrophoresis of genomic DNA fragments and multilocus enzyme electrophoresis.

    Science.gov (United States)

    Irmscher, H M; Fischer, R; Beer, W; Seltmann, G

    1999-07-01

    A total of 66 Serratia marcescens isolates from 46 patients was investigated by macrorestriction using XbaI followed by pulsed-field gel electrophoresis. 7 restriction fragment patterns attributable to more than one patient and 9 individual patterns were identified. The isolates were additionally characterized by multilocus enzyme electrophoresis and Fourier-transform infrared spectroscopy. The macrorestriction patterns and the multilocus enzyme electrophoresis patterns corresponded fairly well while the classifications derived from these methods were not completely congruent. The grouping achieved by Fourier-transform infrared spectroscopy on the basis of high (> 1000) and moderately high heterogeneity values (300) was consistent with the macrorestriction results. Grouping on a lower heterogeneity level did not contribute to further discrimination. In general, Fourier-transform infrared spectroscopy was less discriminatory than the two other methods, but easier to perform. Therefore, laboratories equipped with the necessary devices may use it to rapidly select bacterial isolates for macrorestriction or other well established characterization procedures.

  13. Bounds on the distribution of the number of gaps when circles and lines are covered by fragments: Theory and practical application to genomic and metagenomic projects

    Directory of Open Access Journals (Sweden)

    Marchesi Julian R

    2007-03-01

    Full Text Available Abstract Background The question of how a circle or line segment becomes covered when random arcs are marked off has arisen repeatedly in bioinformatics. The number of uncovered gaps is of particular interest. Approximate distributions for the number of gaps have been given in the literature, one motivation being ease of computation. Error bounds for these approximate distributions have not been given. Results We give bounds on the probability distribution of the number of gaps when a circle is covered by fragments of fixed size. The absolute error in the approximation is typically on the order of 0.1% at 10× coverage depth. The method can be applied to coverage problems on the interval, including edge effects, and applications are given to metagenomic libraries and shotgun sequencing.

  14. INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    NEALSON, KENNETH H.

    2013-10-15

    laboratories. Applications: 1. Corrosion: Electron flow is often part of the corrosive process, and several studies were done in concert with this proposal with regard to the ability of EET-capable bacteria to enhance, inhibit, or detect corrosion. These included using EET-capable bacteria to detect corrosion in its earliest stages [5], to use corrosion-causing bacteria for the study of the microbe/mineral interface during corrosion [1], and to study the groups of microbes involved with corrosion of natural systems [19]. 2. Bioenergy and microbial fuel cells: The production of electricity by Shewanella was shown early in this program (several years ago) to be dependent on the genes for extracellular electron transport (EET), and applied work involved the testing of various strains and conditions for the optimization of current production by the shewanellae [11,14,16]. 3. Identification of shewanellae strains: Based on similarities seen in genomic comparisons, a rapid method was employed for distinguishing between shewanellae strains [17]. Interactions with other laboratories: This grant was an extension of a grant involving the so-called ?Shewanella Federation?, and as such, a number of our publications were joint with other members of this group. The groups included: 1. Pacific Northwest Laboratories ? 2. Oak Ridge National Labs 3. Michigan State University 4. University of Oklahoma 5. Naval Research Laboratory, Washington DC 6. Burnham Medical Research Institute, San Diego 7. J. Craig Venter Institute, San Diego Education: Graduate Students: Michael Waters, Ph.D. ? at NIST, Washington D.C. Lewis Hsu, Ph.D. ? at NRL, San Diego Howard Harris, Ph.D. ? Postdoc at University, France Everett Salas, Ph.D. ? Scientist at Chevron McLean, Jeffrey, Ph.D. ? Scientist at J. Craig Venter Institute McCrow, John, Ph.D. ? Scientist at J. Craig Venter Institute Postdocs: Mohamed El-Naggar ? Professor of Physics, USC Jinjun Kan ? Senior Researcher at Undergraduatges: During this year, we had

  15. A web-based multi-genome synteny viewer for customized data

    Directory of Open Access Journals (Sweden)

    Revanna Kashi V

    2012-08-01

    Full Text Available Abstract Background Web-based synteny visualization tools are important for sharing data and revealing patterns of complicated genome conservation and rearrangements. Such tools should allow biologists to upload genomic data for their own analysis. This requirement is critical because individual biologists are generating large amounts of genomic sequences that quickly overwhelm any centralized web resources to collect and display all those data. Recently, we published a web-based synteny viewer, GSV, which was designed to satisfy the above requirement. However, GSV can only compare two genomes at a given time. Extending the functionality of GSV to visualize multiple genomes is important to meet the increasing demand of the research community. Results We have developed a multi-Genome Synteny Viewer (mGSV. Similar to GSV, mGSV is a web-based tool that allows users to upload their own genomic data files for visualization. Multiple genomes can be presented in a single integrated view with an enhanced user interface. Users can navigate through all the selected genomes in either pairwise or multiple viewing mode to examine conserved genomic regions as well as the accompanying genome annotations. Besides serving users who manually interact with the web server, mGSV also provides Web Services for machine-to-machine communication to accept data sent by other remote resources. The entire mGSV package can also be downloaded for easy local installation. Conclusions mGSV significantly enhances the original functionalities of GSV. A web server hosting mGSV is provided at http://cas-bioinfo.cas.unt.edu/mgsv.

  16. Quantitative metagenomic analyses based on average genome size normalization

    DEFF Research Database (Denmark)

    Frank, Jeremy Alexander; Sørensen, Søren Johannes

    2011-01-01

    Over the past quarter-century, microbiologists have used DNA sequence information to aid in the characterization of microbial communities. During the last decade, this has expanded from single genes to microbial community genomics, or metagenomics, in which the gene content of an environment can...... by estimating average genome sizes. This normalization can relieve comparative biases introduced by differences in community structure, number of sequencing reads, and sequencing read lengths between different metagenomes. We demonstrate the utility of this approach by comparing metagenomes from two different...... marine sources using both conventional small-subunit (SSU) rRNA gene analyses and our quantitative method to calculate the proportion of genomes in each sample that are capable of a particular metabolic trait. With both environments, to determine what proportion of each community they make up and how...

  17. VibrioBase: A Model for Next-Generation Genome and Annotation Database Development

    Directory of Open Access Journals (Sweden)

    Siew Woh Choo

    2014-01-01

    Full Text Available To facilitate the ongoing research of Vibrio spp., a dedicated platform for the Vibrio research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. We present VibrioBase, a useful resource platform, providing all basic features of a sequence database with the addition of unique analysis tools which could be valuable for the Vibrio research community. VibrioBase currently houses a total of 252 Vibrio genomes developed in a user-friendly manner and useful to enable the analysis of these genomic data, particularly in the field of comparative genomics. Besides general data browsing features, VibrioBase offers analysis tools such as BLAST interfaces and JBrowse genome browser. Other important features of this platform include our newly developed in-house tools, the pairwise genome comparison (PGC tool, and pathogenomics profiling tool (PathoProT. The PGC tool is useful in the identification and comparative analysis of two genomes, whereas PathoProT is designed for comparative pathogenomics analysis of Vibrio strains. Both of these tools will enable researchers with little experience in bioinformatics to get meaningful information from Vibrio genomes with ease. We have tested the validity and suitability of these tools and features for use in the next-generation database development.

  18. Manifold Based Optimization for Single-Cell 3D Genome Reconstruction.

    Directory of Open Access Journals (Sweden)

    Jonas Paulsen

    2015-08-01

    Full Text Available The three-dimensional (3D structure of the genome is important for orchestration of gene expression and cell differentiation. While mapping genomes in 3D has for a long time been elusive, recent adaptations of high-throughput sequencing to chromosome conformation capture (3C techniques, allows for genome-wide structural characterization for the first time. However, reconstruction of "consensus" 3D genomes from 3C-based data is a challenging problem, since the data are aggregated over millions of cells. Recent single-cell adaptations to the 3C-technique, however, allow for non-aggregated structural assessment of genome structure, but data suffer from sparse and noisy interaction sampling. We present a manifold based optimization (MBO approach for the reconstruction of 3D genome structure from chromosomal contact data. We show that MBO is able to reconstruct 3D structures based on the chromosomal contacts, imposing fewer structural violations than comparable methods. Additionally, MBO is suitable for efficient high-throughput reconstruction of large systems, such as entire genomes, allowing for comparative studies of genomic structure across cell-lines and different species.

  19. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  20. Whole-genome sequence-based analysis of thyroid function

    OpenAIRE

    Taylor, Peter N; Porcu, Eleonora; Chew, Shelby; Campbell, Purdey J.; Traglia, Michela; Brown, Suzanne J.; Mullin, Benjamin H; Shihab, Hashem A.; Min, Josine; Walter, Klaudia; Memari, Yasin; Huang, Jie; Barnes, Michael R.; Beilby, John P.; Charoen, Pimphen

    2015-01-01

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335). For TSH, we identify a novel variant in SYN2 (MAF=23.5%, P=6.15 × 1...

  1. [Current perspectives on genome-based diagnostic tests in Pediatrics].

    Science.gov (United States)

    Lay-Son, R Guillermo; León, P Luis

    2015-01-01

    Etiological diagnosis is essential in the clinical management of individual patients. Some children with complex medical conditions are subjected to numerous testing, known as "diagnostic odyssey", which often gives no conclusive results. In recent years, a revolution in genomic medicine is underway with the use of technologies that promise to increase the ability to make a diagnosis and reduce the time involved. The main advantages and limitations of genomic diagnosis, as opposed to usual methodologies are reviewed with an emphasis on Pediatrics. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  2. Construction of a phylogenetic tree of photosynthetic prokaryotes based on average similarities of whole genome sequences.

    Science.gov (United States)

    Satoh, Soichirou; Mimuro, Mamoru; Tanaka, Ayumi

    2013-01-01

    Phylogenetic trees have been constructed for a wide range of organisms using gene sequence information, especially through the identification of orthologous genes that have been vertically inherited. The number of available complete genome sequences is rapidly increasing, and many tools for construction of genome trees based on whole genome sequences have been proposed. However, development of a reasonable method of using complete genome sequences for construction of phylogenetic trees has not been established. We have developed a method for construction of phylogenetic trees based on the average sequence similarities of whole genome sequences. We used this method to examine the phylogeny of 115 photosynthetic prokaryotes, i.e., cyanobacteria, Chlorobi, proteobacteria, Chloroflexi, Firmicutes and nonphotosynthetic organisms including Archaea. Although the bootstrap values for the branching order of phyla were low, probably due to lateral gene transfer and saturated mutation, the obtained tree was largely consistent with the previously reported phylogenetic trees, indicating that this method is a robust alternative to traditional phylogenetic methods.

  3. Multi-Scale Particle Size Distributions of Mars, Moon and Itokawa based on a time-maturation dependent fragmentation model

    Science.gov (United States)

    Charalambous, C. A.; Pike, W. T.

    2013-12-01

    We present the development of a soil evolution framework and multiscale modelling of the surface of Mars, Moon and Itokawa thus providing an atlas of extra-terrestrial Particle Size Distributions (PSD). These PSDs are profoundly based on a tailoring method which interconnects several datasets from different sites captured by the various missions. The final integrated product is then fully justified through a soil evolution analysis model mathematically constructed via fundamental physical principles (Charalambous, 2013). The construction of the PSD takes into account the macroscale fresh primary impacts and their products, the mesoscale distributions obtained by the in-situ data of surface missions (Golombek et al., 1997, 2012) and finally the microscopic scale distributions provided by Curiosity and Phoenix Lander (Pike, 2011). The distribution naturally extends at the magnitudinal scales at which current data does not exist due to the lack of scientific instruments capturing the populations at these data absent scales. The extension is based on the model distribution (Charalambous, 2013) which takes as parameters known values of material specific probabilities of fragmentation and grinding limits. Additionally, the establishment of a closed-form statistical distribution provides a quantitative description of the soil's structure. Consequently, reverse engineering of the model distribution allows the synthesis of soil that faithfully represents the particle population at the studied sites (Charalambous, 2011). Such representation essentially delivers a virtual soil environment to work with for numerous applications. A specific application demonstrated here will be the information that can directly be extracted for the successful drilling probability as a function of distance in an effort to aid the HP3 instrument of the 2016 Insight Mission to Mars. Pike, W. T., et al. "Quantification of the dry history of the Martian soil inferred from in situ microscopy

  4. Evidence-based gene models for structural and functional annotations of the oil palm genome.

    Science.gov (United States)

    Chan, Kuang-Lim; Tatarinova, Tatiana V; Rosli, Rozana; Amiruddin, Nadzirah; Azizi, Norazah; Halim, Mohd Amin Ab; Sanusi, Nik Shazana Nik Mohd; Jayanthi, Nagappan; Ponomarenko, Petr; Triska, Martin; Solovyev, Victor; Firdaus-Raih, Mohd; Sambanthamurthi, Ravigadevi; Murphy, Denis; Low, Eng-Ti Leslie

    2017-09-08

    Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as FA

  5. YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia.

    Science.gov (United States)

    Tan, Shi Yang; Dutta, Avirup; Jakubovics, Nicholas S; Ang, Mia Yang; Siow, Cheuk Chuen; Mutha, Naresh Vr; Heydari, Hamed; Wee, Wei Yee; Wong, Guat Jah; Choo, Siew Woh

    2015-01-16

    Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the

  6. Integrated management of land and water resources based on a collective approach to fragmented international conventions.

    Science.gov (United States)

    Duda, Alfred M

    2003-12-29

    Interlinked crises of land degradation, food security, ecosystem decline, water quality and water flow depletion stand in the way of poverty reduction and sustainable development. These crises are made worse by increased fluctuations in climatic regimes. Single-purpose international conventions address these crises in a piecemeal, sectoral fashion and may not meet their objectives without greater attention to policy, legal, and institutional reforms related to: (i) balancing competing uses of land and water resources within hydrologic units; (ii) adopting integrated approaches to management; and (iii) establishing effective governance institutions for adaptive management within transboundary basins. This paper describes this global challenge and argues that peace, stability and security are all at stake when integrated approaches are not used. The paper presents encouraging results from a decade of transboundary water projects supported by the Global Environment Facility in developing countries that test practical applications of processes for facilitating reforms related to land and water that are underpinned by science-based approaches. Case studies of using these participative processes are described that collectively assist in the transition to integrated management. A new imperative for incorporating interlinkages among food, water, and environment security at the basin level is identified.

  7. Focusing on shared subpockets - new developments in fragment based drug discovery

    Science.gov (United States)

    Abdelraheem, Eman M. M.; Camacho, Carlos; Dömling, Alexander

    2016-01-01

    Introduction Protein–protein interactions (PPIs) are important targets for understanding fundamental biology and for the development of therapeutic agents. Based on different physicochemical properties, numerous pieces of software (e.g PocketQuery, Anchor and FTMap) have been reported to find pockets on protein surfaces and have applications in facilitating the design and discovery of small molecular weight compounds which bind to these pockets. Areas covered The authors discuss a pocket-centric method of analyzing protein-protein interaction interfaces, which prioritize their pockets for small molecule drug discovery and the importance of multicomponent reaction (MCR) chemistry as starting points for undruggable targets. The authors also provide their perspectives on the field Expert opinion Only the tight interplay of efficient computational methods capable of screening a large chemical space and fast synthetic chemistry will lead to progress in the rational design of PPI antagonists in the future. Early drug discovery platforms will also benefit from efficient rapid feedback loops from early clinical research back to molecular design and the medicinal chemistry bench. PMID:26296101

  8. Genomic tools development for Aquilegia: construction of a BAC-based physical map

    Directory of Open Access Journals (Sweden)

    Hodges Scott A

    2010-11-01

    Full Text Available Abstract Background The genus Aquilegia, consisting of approximately 70 taxa, is a member of the basal eudicot lineage, Ranuculales, which is evolutionarily intermediate between monocots and core eudicots, and represents a relatively unstudied clade in the angiosperm phylogenetic tree that bridges the gap between these two major plant groups. Aquilegia species are closely related and their distribution covers highly diverse habitats. These provide rich resources to better understand the genetic basis of adaptation to different pollinators and habitats that in turn leads to rapid speciation. To gain insights into the genome structure and facilitate gene identification, comparative genomics and whole-genome shotgun sequencing assembly, BAC-based genomics resources are of crucial importance. Results BAC-based genomic resources, including two BAC libraries, a physical map with anchored markers and BAC end sequences, were established from A. formosa. The physical map was composed of a total of 50,155 BAC clones in 832 contigs and 3939 singletons, covering 21X genome equivalents. These contigs spanned a physical length of 689.8 Mb (~2.3X of the genome suggesting the complex heterozygosity of the genome. A set of 197 markers was developed from ESTs induced by drought-stress, or involved in anthocyanin biosynthesis or floral development, and was integrated into the physical map. Among these were 87 genetically mapped markers that anchored 54 contigs, spanning 76.4 Mb (25.5% across the genome. Analysis of a selection of 12,086 BAC end sequences (BESs from the minimal tiling path (MTP allowed a preview of the Aquilegia genome organization, including identification of transposable elements, simple sequence repeats and gene content. Common repetitive elements previously reported in both monocots and core eudicots were identified in Aquilegia suggesting the value of this genome in connecting the two major plant clades. Comparison with sequenced plant genomes

  9. A thermodynamic theory of dynamic fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Yew, Ching H. [Texas Univ., Austin, TX (United States); Taylor, P.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    We present a theory of dynamic fragmentation of brittle materials based on thermodynamic arguments. We recover the expressions for average fragment size and number as originally derived by Grady. We extend the previous work by obtaining descriptions of fragment size distribution and compressibility change due to the fragmentation process. The size distribution is assumed to be proportional to the spectral power of the strain history and a sample distribution is presented for a fragmentation process corresponding to a constant rate strain history. The description of compressibility change should be useful in computational studies of fragmentation. These results should provide insight into the process of fragmentation of brittle materials from hypervelocity impact.

  10. Electronic coupling calculation and pathway analysis of electron transfer reaction using ab initio fragment-based method. I. FMO-LCMO approach.

    Science.gov (United States)

    Nishioka, Hirotaka; Ando, Koji

    2011-05-28

    By making use of an ab initio fragment-based electronic structure method, fragment molecular orbital-linear combination of MOs of the fragments (FMO-LCMO), developed by Tsuneyuki et al. [Chem. Phys. Lett. 476, 104 (2009)], we propose a novel approach to describe long-distance electron transfer (ET) in large system. The FMO-LCMO method produces one-electron Hamiltonian of whole system using the output of the FMO calculation with computational cost much lower than conventional all-electron calculations. Diagonalizing the FMO-LCMO Hamiltonian matrix, the molecular orbitals (MOs) of the whole system can be described by the LCMOs. In our approach, electronic coupling T(DA) of ET is calculated from the energy splitting of the frontier MOs of whole system or perturbation method in terms of the FMO-LCMO Hamiltonian matrix. Moreover, taking into account only the valence MOs of the fragments, we can considerably reduce computational cost to evaluate T(DA). Our approach was tested on four different kinds of model ET systems with non-covalent stacks of methane, non-covalent stacks of benzene, trans-alkanes, and alanine polypeptides as their bridge molecules, respectively. As a result, it reproduced reasonable T(DA) for all cases compared to the reference all-electron calculations. Furthermore, the tunneling pathway at fragment-based resolution was obtained from the tunneling current method with the FMO-LCMO Hamiltonian matrix.

  11. Fragment-based docking: development of the CHARMMing Web user interface as a platform for computer-aided drug design.

    Science.gov (United States)

    Pevzner, Yuri; Frugier, Emilie; Schalk, Vinushka; Caflisch, Amedeo; Woodcock, H Lee

    2014-09-22

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser. One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing's capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of "re-dockings" with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing's docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening.

  12. Fragment-hopping-based discovery of a novel chemical series of proto-oncogene PIM-1 kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Gustavo Saluste

    Full Text Available A new chemical series, triazolo[4,5-b]pyridines, has been identified as an inhibitor of PIM-1 by a chemotype hopping strategy based on a chemically feasible fragment database. In this case, structure-based virtual screening and in silico chemogenomics provide added value to the previously reported strategy of prioritizing among proposed novel scaffolds. Pairwise comparison between compound 3, recently discontinued from Phase I clinical trials, and molecule 8, bearing the selected novel scaffold, shows that the primary activities are similar (IC(50 in the 20 to 150 nM range. At the same time, some ADME properties (for example, an increase of more than 45% in metabolic stability in human liver microsomes and the off-target selectivity (for example, an increase of more than 2 log units in IC(50vs. FLT3 are improved, and the intellectual property (IP position is enhanced. The discovery of a reliable starting point that fulfills critical criteria for a plausible medicinal chemistry project is demonstrated in this prospective study.

  13. Boronate affinity-based surface molecularly imprinted polymers using glucose as fragment template for excellent recognition of glucosides.

    Science.gov (United States)

    Peng, Mijun; Xiang, Haiyan; Hu, Xin; Shi, Shuyun; Chen, Xiaoqing

    2016-11-25

    Rapid and efficient extraction of bioactive glycosides from complex natural origins poses a difficult challenge, and then is often inherent bottleneck for their highly utilization. Herein, we propose a strategy to fabricate boronate affinity based surface molecularly imprinted polymers (MIPs) for excellent recognition of glucosides. d-glucose was used as fragment template. Boronic acid, dynamic covalent binding with d-glucose under different pH conditions, was selected as functional monomer to improve specificity. Fe3O4 solid core for surface imprinting using tetraethyl orthosilicate (TEOS) as crosslinker could control imprinted shell thickness for favorable adsorption capacity and satisfactory mass transfer rate, improve hydrophilicity, separate easily by a magnet. Model adsorption studies showed that the resulting MIPs show specific recognition of glucosides. The equilibrium data fitted well to Langmuir equation and the adsorption process could be described by pseudo-second order model. Furthermore, the MIPs were successfully applied for selective extraction of three flavonoid glucosides (daidzin, glycitin, and genistin) from soybean. Results indicated that selective extraction of glucosides from complex aqueous media based on the prepared MIPs is simple, rapid, efficient and specific. Moreover, this method opens up a universal route for imprinting saccharide with cis-diol group for glycosides recognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Ligand mapping on protein surfaces by the 3D-RISM theory: toward computational fragment-based drug design.

    Science.gov (United States)

    Imai, Takashi; Oda, Koji; Kovalenko, Andriy; Hirata, Fumio; Kidera, Akinori

    2009-09-02

    In line with the recent development of fragment-based drug design, a new computational method for mapping of small ligand molecules on protein surfaces is proposed. The method uses three-dimensional (3D) spatial distribution functions of the atomic sites of the ligand calculated using the molecular theory of solvation, known as the 3D reference interaction site model (3D-RISM) theory, to identify the most probable binding modes of ligand molecules. The 3D-RISM-based method is applied to the binding of several small organic molecules to thermolysin, in order to show its efficiency and accuracy in detecting binding sites. The results demonstrate that our method can reproduce the major binding modes found by X-ray crystallographic studies with sufficient precision. Moreover, the method can successfully identify some binding modes associated with a known inhibitor, which could not be detected by X-ray analysis. The dependence of ligand-binding modes on the ligand concentration, which essentially cannot be treated with other existing computational methods, is also investigated. The results indicate that some binding modes are readily affected by the ligand concentration, whereas others are not significantly altered. In the former case, it is the subtle balance in the binding affinity between the ligand and water that determines the dominant ligand-binding mode.

  15. Fragment-Based Discovery of a Dual pan-RET/VEGFR2 Kinase Inhibitor Optimized for Single-Agent Polypharmacology.

    Science.gov (United States)

    Frett, Brendan; Carlomagno, Francesca; Moccia, Maria Luisa; Brescia, Annalisa; Federico, Giorgia; De Falco, Valentina; Admire, Brittany; Chen, Zhongzhu; Qi, Wenqing; Santoro, Massimo; Li, Hong-yu

    2015-07-20

    Oncogenic conversion of the RET (rearranged during transfection) tyrosine kinase is associated with several cancers. A fragment-based chemical screen led to the identification of a novel RET inhibitor, Pz-1. Modeling and kinetic analysis identified Pz-1 as a type II tyrosine kinase inhibitor that is able to bind the "DFG-out" conformation of the kinase. Importantly, from a single-agent polypharmacology standpoint, Pz-1 was shown to be active on VEGFR2, which can block the blood supply required for RET-stimulated growth. In cell-based assays, 1.0 nM of Pz-1 strongly inhibited phosphorylation of all tested RET oncoproteins. At 1.0 mg kg(-1)  day(-1) per os, Pz-1 abrogated the formation of tumors induced by RET-mutant fibroblasts and blocked the phosphorylation of both RET and VEGFR2 in tumor tissue. Pz-1 featured no detectable toxicity at concentrations of up to 100.0 mg kg(-1), which indicates a large therapeutic window. This study validates the effectiveness and usefulness of a medicinal chemistry/polypharmacology approach to obtain an inhibitor capable of targeting multiple oncogenic pathways.

  16. Whole genome homology-based identification of candidate genes ...

    African Journals Online (AJOL)

    Josephine Erhiakporeh

    2016-07-06

    Jul 6, 2016 ... identification of a set of 75 candidate genes (42, 22 and 11 from Arabidopsis, potato and tomato, ... understanding on the genetic basis of drought tolerance by using the .... Comparative genomics and genes expression assay ... Primer code ... physiological and molecular responses to drought stress.

  17. 基于片段的先导化合物发现中的核磁应用%NMR in Fragment Based Lead Discovery

    Institute of Scientific and Technical Information of China (English)

    阮科; 高佳; 马荣声

    2012-01-01

    基于片段的药物筛选与设计在过去10年开始出现并获得了重要的应用,数十种基于片段的药物已经进入临床测试期,源于靶标蛋白和小分子片段本质上的弱相互作用,现代核磁技术在其中发挥着无可替代的作用.该文简略介绍了核磁片段筛选的基本流程和重要概念,包括靶标蛋白的选择、片段库的设计、质量控制和重要的核磁筛选技术,在后续的基于片段的先导化合物发现阶段,阐述了核磁新技术的基本理论框架,包括化学位移扰动、分子间NOE、残留偶极耦合和顺磁标记等方法,以及这些新技术在靶标/配基复合体结构研究中的实际应用,穿插演示了片段组装的基本思路和成功案例.%The fragment based drug screening and design emerged in the past decade, and has gained important applications. Many fragment-derived drugs have entered clinical trials. Probing the weak interactions between the target protein and small molecule fragments Modern NMR techniques play a vital role in fragment based lead discovery. In this article, the basic procedures of NMR fragment screening and the relevant key concepts (I. E. , target validation, fragment library design, quality control and prevailing NMR fragment screening techniques) were first introduced. The theoretical framework of the NMR techniques commonly used in fragment based lead discovery stage, including chemical shift perturbation, intermolecular NOE, residual dipolar coupling and paramagnetic spin label etc. , were also reviewed. Examples were given to show how these techniques can be used to resolve the structure of target/ligand complexs. Strategies of fragment growth, linking and merging were also discussed.

  18. The ethical introduction of genome-based information and technologies into public health.

    Science.gov (United States)

    Howard, H C; Swinnen, E; Douw, K; Vondeling, H; Cassiman, J-J; Cambon-Thomsen, A; Borry, P

    2013-01-01

    With the human genome project running from 1989 until its completion in 2003, and the incredible advances in sequencing technology and in bioinformatics during the last decade, there has been a shift towards an increase focus on studying common complex disorders which develop due to the interplay of many different genes as well as environmental factors. Although some susceptibility genes have been identified in some populations for disorders such as cancer, diabetes and cardiovascular diseases, the integration of this information into the health care system has proven to be much more problematic than for single gene disorders. Furthermore, with the 1000$ genome supposedly just around the corner, and whole genome sequencing gradually being integrated into research protocols as well as in the clinical context, there is a strong push for the uptake of additional genomic testing. Indeed, the advent of public health genomics, wherein genomics would be integrated in all aspects of health care and public health, should be taken seriously. Although laudable, these advances also bring with them a slew of ethical and social issues that challenge the normative frameworks used in clinical genetics until now. With this in mind, we highlight herein 5 principles that are used as a primer to discuss the ethical introduction of genome-based information and genome-based technologies into public health.

  19. Scientific advice on the suitability of data for the assessment of DNA integration into the fish genome of a genetically modified DNA plasmid-based veterinary vaccine

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2013-05-01

    Full Text Available Pancreas disease caused by salmonid alphavirus in farmed Atlantic salmon (Salmo salar leads to high mortality rates post infection and histopathological lesions in several organs. As protection against pancreas disease, Novartis developed a prophylactic DNA plasmid-based vaccine to be administered to salmon as naked plasmid in a single intramuscular injection. In order to assess the legal status of the fish vaccinated with this new vaccine with regard to the legislation on genetically modified organisms, the European Commission suggested that the company carry out a scientific study on the integration/non-integration of the plasmid DNA into the fish genome. Subsequently, the European Commission requested EFSA to give scientific advice on the study design and the conclusions drawn by the company. PCR based analysis of genomic DNA from muscle samples, taken from at or around the injection site 436 days post vaccination, led the company to conclude that integration of plasmid DNA into the fish genome is extremely unlikely. After an assessment of the study, EFSA considers that the study presented by Novartis Animal Health on the integration/non-integration of DNA plasmid-based vaccine into the salmon genomic DNA provides insufficient information on the potential integration of plasmid DNA fragments into the fish genome due to a limited coverage of the plasmid DNA by the detection method provided, the limited number of samples analysed and an insufficient limit of detection and method validation. Therefore, EFSA is of the opinion that the results from the integration/non-integration study submitted by Novartis Animal Health are not sufficient to support the conclusion of non-integration of plasmid DNA into the fish genome drawn by the company.

  20. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    Science.gov (United States)

    Kyriakou, Theodosios; Nelson, Christopher P; Hopewell, Jemma C; Webb, Thomas R; Zeng, Lingyao; Dehghan, Abbas; Alver, Maris; Armasu, Sebastian M; Auro, Kirsi; Bjonnes, Andrew; Chasman, Daniel I; Chen, Shufeng; Ford, Ian; Franceschini, Nora; Gieger, Christian; Grace, Christopher; Gustafsson, Stefan; Huang, Jie; Hwang, Shih-Jen; Kim, Yun Kyoung; Kleber, Marcus E; Lau, King Wai; Lu, Xiangfeng; Lu, Yingchang; Lyytikäinen, Leo-Pekka; Mihailov, Evelin; Morrison, Alanna C; Pervjakova, Natalia; Qu, Liming; Rose, Lynda M; Salfati, Elias; Saxena, Richa; Scholz, Markus; Smith, Albert V; Tikkanen, Emmi; Uitterlinden, Andre; Yang, Xueli; Zhang, Weihua; Zhao, Wei; de Andrade, Mariza; de Vries, Paul S; van Zuydam, Natalie R; Anand, Sonia S; Bertram, Lars; Beutner, Frank; Dedoussis, George; Frossard, Philippe; Gauguier, Dominique; Goodall, Alison H; Gottesman, Omri; Haber, Marc; Han, Bok-Ghee; Huang, Jianfeng; Jalilzadeh, Shapour; Kessler, Thorsten; König, Inke R; Lannfelt, Lars; Lieb, Wolfgang; Lind, Lars; Lindgren, Cecilia M; Lokki, Marja-Liisa; Magnusson, Patrik K; Mallick, Nadeem H; Mehra, Narinder; Meitinger, Thomas; Memon, Fazal-ur-Rehman; Morris, Andrew P; Nieminen, Markku S; Pedersen, Nancy L; Peters, Annette; Rallidis, Loukianos S; Rasheed, Asif; Samuel, Maria; Shah, Svati H; Sinisalo, Juha; Stirrups, Kathleen E; Trompet, Stella; Wang, Laiyuan; Zaman, Khan S; Ardissino, Diego; Boerwinkle, Eric; Borecki, Ingrid B; Bottinger, Erwin P; Buring, Julie E; Chambers, John C; Collins, Rory; Cupples, L Adrienne; Danesh, John; Demuth, Ilja; Elosua, Roberto; Epstein, Stephen E; Esko, Tõnu; Feitosa, Mary F; Franco, Oscar H; Franzosi, Maria Grazia; Granger, Christopher B; Gu, Dongfeng; Gudnason, Vilmundur; Hall, Alistair S; Hamsten, Anders; Harris, Tamara B; Hazen, Stanley L; Hengstenberg, Christian; Hofman, Albert; Ingelsson, Erik; Iribarren, Carlos; Jukema, J Wouter; Karhunen, Pekka J; Kim, Bong-Jo; Kooner, Jaspal S; Kullo, Iftikhar J; Lehtimäki, Terho; Loos, Ruth J F; Melander, Olle; Metspalu, Andres; März, Winfried; Palmer, Colin N; Perola, Markus; Quertermous, Thomas; Rader, Daniel J; Ridker, Paul M; Ripatti, Samuli; Roberts, Robert; Salomaa, Veikko; Sanghera, Dharambir K; Schwartz, Stephen M; Seedorf, Udo; Stewart, Alexandre F; Stott, David J; Thiery, Joachim; Zalloua, Pierre A; O’Donnell, Christopher J; Reilly, Muredach P; Assimes, Themistocles L; Thompson, John R; Erdmann, Jeanette; Clarke, Robert; Watkins, Hugh; Kathiresan, Sekar; McPherson, Ruth; Deloukas, Panos; Schunkert, Heribert; Samani, Nilesh J; Farrall, Martin

    2015-01-01

    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005

  1. Gene prediction in metagenomic fragments: A large scale machine learning approach

    Directory of Open Access Journals (Sweden)

    Morgenstern Burkhard

    2008-04-01

    Full Text Available Abstract Background Metagenomics is an approach to the characterization of microbial genomes via the direct isolation of genomic sequences from the environment without prior cultivation. The amount of metagenomic sequence data is growing fast while computational methods for metagenome analysis are still in their infancy. In contrast to genomic sequences of single species, which can usually be assembled and analyzed by many available methods, a large proportion of metagenome data remains as unassembled anonymous sequencing reads. One of the aims of all metagenomic sequencing projects is the identification of novel genes. Short length, for example, Sanger sequencing yields on average 700 bp fragments, and unknown phylogenetic origin of most fragments require approaches to gene prediction that are different from the currently available methods for genomes of single species. In particular, the large size of metagenomic samples requires fast and accurate methods with small numbers of false positive predictions. Results We introduce a novel gene prediction algorithm for metagenomic fragments based on a two-stage machine learning approach. In the first stage, we use linear discriminants for monocodon usage, dicodon usage and translation initiation sites to extract features from DNA sequences. In the second stage, an artificial neural network combines these features with open reading frame length and fragment GC-content to compute the probability that this open reading frame encodes a protein. This probability is used for the classification and scoring of gene candidates. With large scale training, our method provides fast single fragment predictions with good sensitivity and specificity on artificially fragmented genomic DNA. Additionally, this method is able to predict translation initiation sites accurately and distinguishes complete from incomplete genes with high reliability. Conclusion Large scale machine learning methods are well-suited for gene

  2. Definition of the applicability domains of knowledge-based predictive toxicology expert systems by using a structural fragment-based approach.

    Science.gov (United States)

    Ellison, Claire M; Enoch, Steven J; Cronin, Mark Td; Madden, Judith C; Judson, Philip

    2009-11-01

    The applicability domain of a (quantitative) structure-activity relationship ([Q]SAR) must be defined, if a model is to be used successfully for toxicity prediction, particularly for regulatory purposes. Previous efforts to set guidelines on the definition of applicability domains have often been biased toward quantitative, rather than qualitative, models. As a result, novel techniques are still required to define the applicability domains of structural alert models and knowledge-based systems. By using Derek for Windows as an example, this study defined the domain for the skin sensitisation structural alert rule-base. This was achieved by fragmenting the molecules within a training set of compounds, then searching the fragments for those created from a test compound. This novel method was able to highlight test chemicals which differed from those in the training set. The information was then used to designate chemicals as being either within or outside the domain of applicability for the structural alert on which that training set was based.

  3. Isolation of Ty1-copia-like Retrotransposon Sequences from the Apple Genome by Chromosome Walking Based on Modified SiteFinding-polymerase Chain Reaction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Long terminal repeat (LTR) retrotransposons are powerful tools for studying genetic biodiversity,genome evolution, gene mutation, gene cloning and gene expression. The scarcity of retrotransposon sequence information restricts the development of these studies in higher plants. In the present study, 31 reverse transcriptase (RT) genes of Tyl-copia-like retrotransposons were identified from the apple genome by amplifying the RT coding region using degenerate primers. Nineteen RT genes showed extreme heterogeneity in terms of fragment size, base pair composition and open reading frame integrality. Originating from one 266 bp cloned RT gene, a 1966 bp Ty1-copia-like retrotransposon (named Tcrm1), including RT-ribonuclease H-LTR domain sequences, was achieved by chromosome walking based on modified SiteFinding-polymerase chain reaction. The comparison between Tcrm1 and other LTR retrotransposons in gene structure and sequence homology shows that Tcrm1 is the first Ty1-copia-like retrotransposon including an LTR domain in the apple genome. Dot blot analysis revealed that Tcrm1 copy number in the apple was approximately 1×103 copies per haploid genome.

  4. Binding-site assessment by virtual fragment screening.

    Directory of Open Access Journals (Sweden)

    Niu Huang

    Full Text Available The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock approximately 11,000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors.

  5. A contig-based strategy for the genome-wide discovery of microRNAs without complete genome resources.

    Directory of Open Access Journals (Sweden)

    Jun-Zhi Wen

    Full Text Available MicroRNAs (miRNAs are important regulators of many cellular processes and exist in a wide range of eukaryotes. High-throughput sequencing is a mainstream method of miRNA identification through which it is possible to obtain the complete small RNA profile of an organism. Currently, most approaches to miRNA identification rely on a reference genome for the prediction of hairpin structures. However, many species of economic and phylogenetic importance are non-model organisms without complete genome sequences, and this limits miRNA discovery. Here, to overcome this limitation, we have developed a contig-based miRNA identification strategy. We applied this method to a triploid species of edible banana (GCTCV-119, Musa spp. AAA group and identified 180 pre-miRNAs and 314 mature miRNAs, which is three times more than those were predicted by the available dataset-based methods (represented by EST+GSS. Based on the recently published miRNA data set of Musa acuminate, the recall rate and precision of our strategy are estimated to be 70.6% and 92.2%, respectively, significantly better than those of EST+GSS-based strategy (10.2% and 50.0%, respectively. Our novel, efficient and cost-effective strategy facilitates the study of the functional and evolutionary role of miRNAs, as well as miRNA-based molecular breeding, in non-model species of economic or evolutionary interest.

  6. Similarity-based disease risk assessment for personal genomes: proof of concept.

    Science.gov (United States)

    Woo, Jung Hoon; Lai, Albert M; Chung, Wendy K; Weng, Chunhua

    2011-01-01

    The increasing availability of personal genome data has led to escalating needs by consumers to understand the implications of their gene sequences. At present, poorly integrated genetic knowledge has not met these needs. This proof-of-concept study proposes a similarity-based approach to assess the disease risk predisposition for personal genomes. We hypothesize that the semantic similarity between a personal genome and a disease can indicate the disease risks in the person. We developed a knowledge network that integrates existing knowledge of genes, diseases, and symptoms from six sources using the Semantic Web standard, Resource Description Framework (RDF). We then used latent relationships between genes and diseases derived from our knowledge network to measure the semantic similarity between a personal genome and a genetic disease. For demonstration, we showed the feasibility of assessing the disease risks in one personal genome and discussed related methodology issues.

  7. Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas.

    Science.gov (United States)

    Kim, Rachel; Trubetskoy, Alla; Suzuki, Takeshi; Jenkins, Nancy A; Copeland, Neal G; Lenz, Jack

    2003-02-01

    The identification of tumor-inducing genes is a driving force for elucidating the molecular mechanisms underlying cancer. Many retroviruses induce tumors by insertion of viral DNA adjacent to cellular oncogenes, resulting in altered expression and/or structure of the encoded proteins. The availability of the mouse genome sequence now allows analysis of retroviral common integration sites in murine tumors to be used as a genetic screen for identification of large numbers of candidate cancer genes. By positioning the sequences of inverse PCR-amplified, virus-host junction fragments within the mouse genome, 19 target genes were identified in T-cell lymphomas induced by the retrovirus SL3-3. The candidate cancer genes included transcription factors (Fos, Gfi1, Lef1, Myb, Myc, Runx3, and Sox3), all three D cyclins, Ras signaling pathway components (Rras2/TC21 and Rasgrp1), and Cmkbr7/CCR7. The most frequent target was Rras2. Insertions as far as 57 kb away from the transcribed portion were associated with substantially increased transcription of Rras2, and no coding sequence mutations, including those typically involved in Ras activation, were detected. These studies demonstrate the power of genome-based analysis of retroviral insertion sites for cancer gene discovery, identify several new genes worth examining for a role in human cancer, and implicate the pathways in which those genes act in lymphomagenesis. They also provide strong genetic evidence that overexpression of unmutated Rras2 contributes to tumorigenesis, thus suggesting that it may also do so if it is inappropriately expressed in human tumors.

  8. Individual-Based Spatially-Explicit Model of an Herbivore and Its Resource: The Effect of Habitat Reduction and Fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kostova, T; Carlsen, T; Kercher, J

    2002-06-17

    We present an individual-based, spatially-explicit model of the dynamics of a small mammal and its resource. The life histories of each individual animal are modeled separately. The individuals can have the status of residents or wanderers and belong to behaviorally differing groups of juveniles or adults and males or females. Their territory defending and monogamous behavior is taken into consideration. The resource, green vegetation, grows depending on seasonal climatic characteristics and is diminished due to the herbivore's grazing. Other specifics such as a varying personal energetic level due to feeding and starvation of the individuals, mating preferences, avoidance of competitors, dispersal of juveniles, as a result of site overgrazing, etc. are included in the model. We determined model parameters from real data for the species Microtus ochrogaster (prairie vole). The simulations are done for a case of an enclosed habitat without predators or other species competitors. The goal of the study is to find the relation between size of habitat and population persistence. The experiments with the model show the populations go extinct due to severe overgrazing, but that the length of population persistence depends on the area of the habitat as well as on the presence of fragmentation. Additionally, the total population size of the vole population obtained during the simulations exhibits yearly fluctuations as well as multi-yearly peaks of fluctuations. This dynamics is similar to the one observed in prairie vole field studies.

  9. A magnetic nanoparticle-based time-resolved fluoroimmunoassay for determination of the cytokeratin 19 fragment in human serum.

    Science.gov (United States)

    Lin, Guanfeng; Liu, Tiancai; Hou, Jingyuan; Ren, Zhiqi; Zhou, Jianwei; Liang, Qianni; Chen, Zhenhua; Dong, Wenqi; Wu, Yingsong

    2015-03-01

    A sensitive, rapid and novel measurement method for cytokeratin 19 fragment (CYFRA 21-1) in human serum by magnetic particle-based time-resolved fluoroimmunoassay (TRFIA) is described. Built on a sandwich-type immunoassay format, analytes in samples were captured by one monoclonal antibody coating onto the surface of magnetic beads and "sandwiched" by another monoclonal antibody labeled with europium chelates. The coefficient variations of the method were lower than 7%, and the recoveries were in the range of 90-110% for serum samples. The lower limit of quantitation of the present method for CYFRA 21-1 was 0.78 ng/ml. The correlation coefficient of CYFRA 21-1 values obtained by our novel TRFIA and CLIA was 0.980. The present novel TRFIA demonstrated high sensitivity, wider effective detection range and excellent reproducibility for determination of CYFRA 21-1 can be useful for early screening and prognosis evaluation of patients with non-small cell lung cancer.

  10. Identification of a Fragment-Based Scaffold that Inhibits the Glycosyltransferase WaaG from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Claudio Muheim

    2016-01-01

    Full Text Available WaaG is a glycosyltransferase that is involved in the biosynthesis of lipopolysaccharide in Gram-negative bacteria. Inhibitors of WaaG are highly sought after as they could be used to inhibit the biosynthesis of the core region of lipopolysaccharide, which would improve the uptake of antibiotics. Herein, we establish an activity assay for WaaG using 14C-labeled UDP-glucose and LPS purified from a ∆waaG strain of Escherichia coli. We noted that addition of the lipids phosphatidylglycerol (PG and cardiolipin (CL, as well as the detergent 3-[(3-cholamidopropyldimethylammonio]-1-propanesulfonate (CHAPS increased activity. We then use the assay to determine if three molecular scaffolds, which bind to WaaG, could inhibit its activity in vitro. We show that 4-(2-amino-1,3-thiazol-4-ylphenol inhibits WaaG (IC50 1.0 mM, but that the other scaffolds do not. This study represents an important step towards an inhibitor of WaaG by fragment-based lead discovery.

  11. Fragment Screening of Soluble Epoxide Hydrolase for Lead Generation-Structure-Based Hit Evaluation and Chemistry Exploration.

    Science.gov (United States)

    Xue, Yafeng; Olsson, Thomas; Johansson, Carina A; Öster, Linda; Beisel, Hans-Georg; Rohman, Mattias; Karis, David; Bäckström, Stefan

    2016-03-04

    Soluble epoxide hydrolase (sEH) is involved in the regulation of many biological processes by metabolizing the key bioactive lipid mediator, epoxyeicosatrienoic acids. For the development of sEH inhibitors with improved physicochemical properties, we performed both a fragment screening and a high-throughput screening aiming at an integrated hit evaluation and lead generation. Followed by a joint dose-response analysis to confirm the hits, the identified actives were then effectively triaged by a structure-based hit-classification approach to three prioritized series. Two distinct scaffolds were identified as tractable starting points for potential lead chemistry work. The oxoindoline series bind at the right-hand side of the active-site pocket with hydrogen bonds to the protein. The 2-phenylbenzimidazole-4-sulfonamide series bind at the central channel with significant induced fit, which has not been previously reported. On the basis of the encouraging initial results, we envision that a new lead series with improved properties could be generated if a vector is found that could merge the cyclohexyl functionality of the oxoindoline series with the trifluoromethyl moiety of the 2-phenylbenzimidazole-4-sulfonamide series.

  12. Carbonic Anhydrase II: A Model System for Artificial Copper Center Design, Protein-guided Cycloadditions, Tethering Screenings and Fragment-based Lead Discovery

    OpenAIRE

    Schulze Wischeler, Johannes

    2010-01-01

    In this thesis a variety of quite different fragment-based lead discovery approaches have been applied to the target protein carbonic anhydrase II. The different projects were strongly supported and methodologically tailored towards protein crystallography; a method which is currently emerging as a routine analytical tool. This maturation mainly results from improved radiation sources and enhanced computing power. About 200-250 da...

  13. Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Fengju Chen

    2016-03-01

    Full Text Available On the basis of multidimensional and comprehensive molecular characterization (including DNA methalylation and copy number, RNA, and protein expression, we classified 894 renal cell carcinomas (RCCs of various histologic types into nine major genomic subtypes. Site of origin within the nephron was one major determinant in the classification, reflecting differences among clear cell, chromophobe, and papillary RCC. Widespread molecular changes associated with TFE3 gene fusion or chromatin modifier genes were present within a specific subtype and spanned multiple subtypes. Differences in patient survival and in alteration of specific pathways (including hypoxia, metabolism, MAP kinase, NRF2-ARE, Hippo, immune checkpoint, and PI3K/AKT/mTOR could further distinguish the subtypes. Immune checkpoint markers and molecular signatures of T cell infiltrates were both highest in the subtype associated with aggressive clear cell RCC. Differences between the genomic subtypes suggest that therapeutic strategies could be tailored to each RCC disease subset.

  14. Evaluation of Semiautomated IS6110-Based Restriction Fragment Length Polymorphism Typing for Mycobacterium tuberculosis in a High-Burden Setting.

    Science.gov (United States)

    Said, Halima M; Krishnamani, Keshav; Omar, Shaheed V; Dreyer, Andries W; Sansom, Bianca; Fallows, Dorothy; Ismail, Nazir A

    2016-10-01

    The manual IS6110-based restriction fragment length polymorphism (RFLP) typing method is highly discriminatory; however, it is laborious and technically demanding, and data exchange remains a challenge. In an effort to improve IS6110-based RFLP to make it a faster format, DuPont Molecular Diagnostics recently introduced the IS6110-PvuII kit for semiautomated typing of Mycobacterium tuberculosis using the RiboPrinter microbial characterization system. This study aimed to evaluate the semiautomated RFLP typing against the standard manual method. A total of 112 isolates collected between 2013 and 2014 were included. All isolates were genotyped using manual and semiautomated RFLP typing methods. Clustering rates and discriminatory indexes were compared between methods. The overall performance of semiautomated RFLP compared to manual typing was excellent, with high discriminatory index (0.990 versus 0.995, respectively) and similar numbers of unique profiles (72 versus 74, respectively), numbers of clustered isolates (33 versus 31, respectively), cluster sizes (2 to 6 and 2 to 5 isolates, respectively), and clustering rates (21.9% and 17.1%, respectively). The semiautomated RFLP system is technically simple and significantly faster than the manual RFLP method (8 h versus 5 days). The analysis is fully automated and generates easily manageable databases of standardized fingerprints that can be easily exchanged between laboratories. Based on its high-throughput processing with minimal human effort, the semiautomated RFLP can be a very useful tool as a first-line method for routine typing of M. tuberculosis isolates, especially where Beijing strains are highly prevalent, followed by manual RFLP typing if resolution is not achieved, thereby saving time and labor.

  15. Genome-based comparative analyses of Antarctic and temperate species of Paenibacillus.

    Directory of Open Access Journals (Sweden)

    Melissa Dsouza

    Full Text Available Antarctic soils represent a unique environment characterised by extremes of temperature, salinity, elevated UV radiation, low nutrient and low water content. Despite the harshness of this environment, members of 15 bacterial phyla have been identified in soils of the Ross Sea Region (RSR. However, the survival mechanisms and ecological roles of these phyla are largely unknown. The aim of this study was to investigate whether strains of Paenibacillus darwinianus owe their resilience to substantial genomic changes. For this, genome-based comparative analyses were performed on three P. darwinianus strains, isolated from gamma-irradiated RSR soils, together with nine temperate, soil-dwelling Paenibacillus spp. The genome of each strain was sequenced to over 1,000-fold coverage, then assembled into contigs totalling approximately 3 Mbp per genome. Based on the occurrence of essential, single-copy genes, genome completeness was estimated at approximately 88%. Genome analysis revealed between 3,043-3,091 protein-coding sequences (CDSs, primarily associated with two-component systems, sigma factors, transporters, sporulation and genes induced by cold-shock, oxidative and osmotic stresses. These comparative analyses provide an insight into the metabolic potential of P. darwinianus, revealing potential adaptive mechanisms for survival in Antarctic soils. However, a large proportion of these mechanisms were also identified in temperate Paenibacillus spp., suggesting that these mechanisms are beneficial for growth and survival in a range of soil environments. These analyses have also revealed that the P. darwinianus genomes contain significantly fewer CDSs and have a lower paralogous content. Notwithstanding the incompleteness of the assemblies, the large differences in genome sizes, determined by the number of genes in paralogous clusters and the CDS content, are indicative of genome content scaling. Finally, these sequences are a resource for further

  16. Evolutionary insights from suffix array-based genome sequence analysis

    Indian Academy of Sciences (India)

    Anindya Poddar; Nagasuma Chandra; Madhavi Ganapathiraju; K Sekar; Judith Klein-Seetharaman; Raj Reddy; N Balakrishnan

    2007-08-01

    Gene and protein sequence analyses, central components of studies in modern biology are easily amenable to string matching and pattern recognition algorithms. The growing need of analysing whole genome sequences more efficiently and thoroughly, has led to the emergence of new computational methods. Suffix trees and suffix arrays are data structures, well known in many other areas and are highly suited for sequence analysis too. Here we report an improvement to the design of construction of suffix arrays. Enhancement in versatility and scalability, enabled by this approach, is demonstrated through the use of real-life examples. The scalability of the algorithm to whole genomes renders it suitable to address many biologically interesting problems. One example is the evolutionary insight gained by analysing unigrams, bi-grams and higher n-grams, indicating that the genetic code has a direct influence on the overall composition of the genome. Further, different proteomes have been analysed for the coverage of the possible peptide space, which indicate that as much as a quarter of the total space at the tetra-peptide level is left un-sampled in prokaryotic organisms, although almost all tri-peptides can be seen in one protein or another in a proteome. Besides, distinct patterns begin to emerge for the counts of particular tetra and higher peptides, indicative of a ‘meaning’ for tetra and higher n-grams. The toolkit has also been used to demonstrate the usefulness of identifying repeats in whole proteomes efficiently. As an example, 16 members of one COG, coded by the genome of Mycobacterium tuberculosis H37Rv have been found to contain a repeating sequence of 300 amino acids.

  17. PBrowse: a web-based platform for real-time collaborative exploration of genomic data.

    Science.gov (United States)

    Szot, Peter S; Yang, Andrian; Wang, Xin; Parsania, Chirag; Röhm, Uwe; Wong, Koon Ho; Ho, Joshua W K

    2017-05-19

    Genome browsers are widely used for individually exploring various types of genomic data. A handful of genome browsers offer limited tools for collaboration among multiple users. Here, we describe PBrowse, an integrated real-time collaborative genome browser that enables multiple users to simultaneously view and access genomic data, thereby harnessing the wisdom of the crowd. PBrowse is based on the Dalliance genome browser and has a re-designed user and data management system with novel collaborative functionalities, including real-time collaborative view, track comment and an integrated group chat feature. Through the Distributed Annotation Server protocol, PBrowse can easily access a wide range of publicly available genomic data, such as the ENCODE data sets. We argue that PBrowse represents a paradigm shift from using a genome browser as a static data visualization tool to a platform that enables real-time human-human interaction and knowledge exchange in a collaborative setting. PBrowse is available at http://pbrowse.victorchang.edu.au, and its source code is available via an open source BSD 3 license at http://github.com/VCCRI/PBrowse. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Genome-wide prediction, display and refinement of binding sites with information theory-based models

    Directory of Open Access Journals (Sweden)

    Leeder J Steven

    2003-09-01

    Full Text Available Abstract Background We present Delila-genome, a software system for identification, visualization and analysis of protein binding sites in complete genome sequences. Binding sites are predicted by scanning genomic sequences with information theory-based (or user-defined weight matrices. Matrices are refined by adding experimentally-defined binding sites to published binding sites. Delila-Genome was used to examine the accuracy of individual information contents of binding sites detected with refined matrices as a measure of the strengths of the corresponding protein-nucleic acid interactions. The software can then be used to predict novel sites by rescanning the genome with the refined matrices. Results Parameters for genome scans are entered using a Java-based GUI interface and backend scripts in Perl. Multi-processor CPU load-sharing minimized the average response time for scans of different chromosomes. Scans of human genome assemblies required 4–6 hours for transcription factor binding sites and 10–19 hours for splice sites, respectively, on 24- and 3-node Mosix and Beowulf clusters. Individual binding sites are displayed either as high-resolution sequence walkers or in low-resolution custom tracks in the UCSC genome browser. For large datasets, we applied a data reduction strategy that limited displays of binding sites exceeding a threshold information content to specific chromosomal regions within or adjacent to genes. An HTML document is produced listing binding sites ranked by binding site strength or chromosomal location hyperlinked to the UCSC custom track, other annotation databases and binding site sequences. Post-genome scan tools parse binding site annotations of selected chromosome intervals and compare the results of genome scans using different weight matrices. Comparisons of multiple genome scans can display binding sites that are unique to each scan and identify sites with significantly altered binding strengths

  19. Event-based text mining for biology and functional genomics

    Science.gov (United States)

    Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B.

    2015-01-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. PMID:24907365

  20. Event-based text mining for biology and functional genomics.

    Science.gov (United States)

    Ananiadou, Sophia; Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B

    2015-05-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of 'events', i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research.

  1. IMPACT fragmentation model developments

    Science.gov (United States)

    Sorge, Marlon E.; Mains, Deanna L.

    2016-09-01

    The IMPACT fragmentation model has been used by The Aerospace Corporation for more than 25 years to analyze orbital altitude explosions and hypervelocity collisions. The model is semi-empirical, combining mass, energy and momentum conservation laws with empirically derived relationships for fragment characteristics such as number, mass, area-to-mass ratio, and spreading velocity as well as event energy distribution. Model results are used for several types of analysis including assessment of short-term risks to satellites from orbital altitude fragmentations, prediction of the long-term evolution of the orbital debris environment and forensic assessments of breakup events. A new version of IMPACT, version 6, has been completed and incorporates a number of advancements enabled by a multi-year long effort to characterize more than 11,000 debris fragments from more than three dozen historical on-orbit breakup events. These events involved a wide range of causes, energies, and fragmenting objects. Special focus was placed on the explosion model, as the majority of events examined were explosions. Revisions were made to the mass distribution used for explosion events, increasing the number of smaller fragments generated. The algorithm for modeling upper stage large fragment generation was updated. A momentum conserving asymmetric spreading velocity distribution algorithm was implemented to better represent sub-catastrophic events. An approach was developed for modeling sub-catastrophic explosions, those where the majority of the parent object remains intact, based on estimated event energy. Finally, significant modifications were made to the area-to-mass ratio distribution to incorporate the tendencies of different materials to fragment into different shapes. This ability enabled better matches between the observed area-to-mass ratios and those generated by the model. It also opened up additional possibilities for post-event analysis of breakups. The paper will discuss

  2. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.

    Science.gov (United States)

    Li, Zhixiu; Yang, Yuedong; Faraggi, Eshel; Zhan, Jian; Zhou, Yaoqi

    2014-10-01

    Locating sequences compatible with a protein structural fold is the well-known inverse protein-folding problem. While significant progress has been made, the success rate of protein design remains low. As a result, a library of designed sequences or profile of sequences is currently employed for guiding experimental screening or directed evolution. Sequence profiles can be computationally predicted by iterative mutations of a random sequence to produce energy-optimized sequences, or by combining sequences of structurally similar fragments in a template library. The latter approach is computationally more efficient but yields less accurate profiles than the former because of lacking tertiary structural information. Here we present a method called SPIN that predicts Sequence Profiles by Integrated Neural network based on fragment-derived sequence profiles and structure-derived energy profiles. SPIN improves over the fragment-derived profile by 6.7% (from 23.6 to 30.3%) in sequence identity between predicted and wild-type sequences. The method also reduces the number of residues in low complex regions by 15.7% and has a significantly better balance of hydrophilic and hydrophobic residues at protein surface. The accuracy of sequence profiles obtained is comparable to those generated from the protein design program RosettaDesign 3.5. This highly efficient method for predicting sequence profiles from structures will be useful as a single-body scoring term for improving scoring functions used in protein design and fold recognition. It also complements protein design programs in guiding experimental design of the sequence library for screening and directed evolution of designed sequences. The SPIN server is available at http://sparks-lab.org.

  3. Generation of a BAC-based physical map of the melon genome

    Directory of Open Access Journals (Sweden)

    Puigdomènech Pere

    2010-05-01

    Full Text Available Abstract Background Cucumis melo (melon belongs to the Cucurbitaceae family, whose economic importance among horticulture crops is second only to Solanaceae. Melon has high intra-specific genetic variation, morphologic diversity and a small genome size (450 Mb, which make this species suitable for a great variety of molecular and genetic studies that can lead to the development of tools for breeding varieties of the species. A number of genetic and genomic resources have already been developed, such as several genetic maps and BAC genomic libraries. These tools are essential for the construction of a physical map, a valuable resource for map-based cloning, comparative genomics and assembly of whole genome sequencing data. However, no physical map of any Cucurbitaceae has yet been developed. A project has recently been started to sequence the complete melon genome following a whole-genome shotgun strategy, which makes use of massive sequencing data. A BAC-based melon physical map will be a useful tool to help assemble and refine the draft genome data that is being produced. Results A melon physical map was constructed using a 5.7 × BAC library and a genetic map previously developed in our laboratories. High-information-content fingerprinting (HICF was carried out on 23,040 BAC clones, digesting with five restriction enzymes and SNaPshot labeling, followed by contig assembly with FPC software. The physical map has 1,355 contigs and 441 singletons, with an estimated physical length of 407 Mb (0.9 × coverage of the genome and the longest contig being 3.2 Mb. The anchoring of 845 BAC clones to 178 genetic markers (100 RFLPs, 76 SNPs and 2 SSRs also allowed the genetic positioning of 183 physical map contigs/singletons, representing 55 Mb (12% of the melon genome, to individual chromosomal loci. The melon FPC database is available for download at http://melonomics.upv.es/static/files/public/physical_map/. Conclusions Here we report the construction

  4. Applications of Genome-based Science in Shaping Citrus Industries of the World (JGI Seventh Annual User Meeting, 2012: Genomics of Energy and Environment)

    Energy Technology Data Exchange (ETDEWEB)

    Gmitter Jr, Fred [University of Florida

    2012-03-21

    Fred Gmitter from the University of Florida on "Applications of Genome-based Science in Shaping the Future of the World's Citrus Industries" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  5. A BAC-based physical map of the Drosophila buzzatii genome

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Josefa; Nefedov, Michael; Bosdet, Ian; Casals, Ferran; Calvete, Oriol; Delprat, Alejandra; Shin, Heesun; Chiu, Readman; Mathewson, Carrie; Wye, Natasja; Hoskins, Roger A.; Schein, JacquelineE.; de Jong, Pieter; Ruiz, Alfredo

    2005-03-18

    Large-insert genomic libraries facilitate cloning of large genomic regions, allow the construction of clone-based physical maps and provide useful resources for sequencing entire genomes. Drosophilabuzzatii is a representative species of the repleta group in the Drosophila subgenus, which is being widely used as a model in studies of genome evolution, ecological adaptation and speciation. We constructed a Bacterial Artificial Chromosome (BAC) genomic library of D. buzzatii using the shuttle vector pTARBAC2.1. The library comprises 18,353 clones with an average insert size of 152 kb and a {approx}18X expected representation of the D. buzzatii euchromatic genome. We screened the entire library with six euchromatic gene probes and estimated the actual genome representation to be {approx}23X. In addition, we fingerprinted by restriction digestion and agarose gel electrophoresis a sample of 9,555 clones, and assembled them using Finger Printed Contigs (FPC) software and manual editing into 345 contigs (mean of 26 clones per contig) and 670singletons. Finally, we anchored 181 large contigs (containing 7,788clones) to the D. buzzatii salivary gland polytene chromosomes by in situ hybridization of 427 representative clones. The BAC library and a database with all the information regarding the high coverage BAC-based physical map described in this paper are available to the research community.

  6. Integrated genome-based studies of Shewanella ecophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Segre Daniel; Beg Qasim

    2012-02-14

    This project was a component of the Shewanella Federation and, as such, contributed to the overall goal of applying the genomic tools to better understand eco-physiology and speciation of respiratory-versatile members of Shewanella genus. Our role at Boston University was to perform bioreactor and high throughput gene expression microarrays, and combine dynamic flux balance modeling with experimentally obtained transcriptional and gene expression datasets from different growth conditions. In the first part of project, we designed the S. oneidensis microarray probes for Affymetrix Inc. (based in California), then we identified the pathways of carbon utilization in the metal-reducing marine bacterium Shewanella oneidensis MR-1, using our newly designed high-density oligonucleotide Affymetrix microarray on Shewanella cells grown with various carbon sources. Next, using a combination of experimental and computational approaches, we built algorithm and methods to integrate the transcriptional and metabolic regulatory networks of S. oneidensis. Specifically, we combined mRNA microarray and metabolite measurements with statistical inference and dynamic flux balance analysis (dFBA) to study the transcriptional response of S. oneidensis MR-1 as it passes through exponential, stationary, and transition phases. By measuring time-dependent mRNA expression levels during batch growth of S. oneidensis MR-1 under two radically different nutrient compositions (minimal lactate and nutritionally rich LB medium), we obtain detailed snapshots of the regulatory strategies used by this bacterium to cope with gradually changing nutrient availability. In addition to traditional clustering, which provides a first indication of major regulatory trends and transcription factors activities, we developed and implemented a new computational approach for Dynamic Detection of Transcriptional Triggers (D2T2). This new method allows us to infer a putative topology of transcriptional dependencies

  7. Fragmentation and Hadronization

    OpenAIRE

    Webber, B. R.

    1999-01-01

    Experimental data, theoretical ideas and models concerning jet fragmentation and the hadronization process are reviewed, concentrating on the following topics: factorization and small-x resummation of fragmentation functions, hadronization models, single-particle yields and spectra in Z decay, comparisons between quark and gluon jets, current and target fragmentation in deep inelastic scattering, heavy quark fragmentation, Bose-Einstein correlations and WW fragmentation.

  8. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2017-01-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  9. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2016-09-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  10. Intimate evolution of proteins. Proteome atomic content correlates with genome base composition.

    Science.gov (United States)

    Baudouin-Cornu, Peggy; Schuerer, Katja; Marlière, Philippe; Thomas, Dominique

    2004-02-13

    Discerning the significant relations that exist within and among genome sequences is a major step toward the modeling of biopolymer evolution. Here we report the systematic analysis of the atomic composition of proteins encoded by organisms representative of each kingdoms. Protein atomic contents are shown to vary largely among species, the larger variations being observed for the main architectural component of proteins, the carbon atom. These variations apply to the bulk proteins as well as to subsets of ortholog proteins. A pronounced correlation between proteome carbon content and genome base composition is further evidenced, with high G+C genome content being related to low protein carbon content. The generation of random proteomes and the examination of the canonical genetic code provide arguments for the hypothesis that natural selection might have driven genome base composition.

  11. Rationalizing fragment based drug discovery for BACE1: insights from FB-QSAR, FB-QSSR, multi objective (MO-QSPR) and MIF studies

    Science.gov (United States)

    Manoharan, Prabu; Vijayan, R. S. K.; Ghoshal, Nanda

    2010-10-01

    The ability to identify fragments that interact with a biological target is a key step in FBDD. To date, the concept of fragment based drug design (FBDD) is increasingly driven by bio-physical methods. To expand the boundaries of QSAR paradigm, and to rationalize FBDD using In silico approach, we propose a fragment based QSAR methodology referred here in as FB-QSAR. The FB-QSAR methodology was validated on a dataset consisting of 52 Hydroxy ethylamine (HEA) inhibitors, disclosed by GlaxoSmithKline Pharmaceuticals as potential anti-Alzheimer agents. To address the issue of target selectivity, a major confounding factor in the development of selective BACE1 inhibitors, FB-QSSR models were developed using the reported off target activity values. A heat map constructed, based on the activity and selectivity profile of the individual R-group fragments, and was in turn used to identify superior R-group fragments. Further, simultaneous optimization of multiple properties, an issue encountered in real-world drug discovery scenario, and often overlooked in QSAR approaches, was addressed using a Multi Objective (MO-QSPR) method that balances properties, based on the defined objectives. MO-QSPR was implemented using Derringer and Suich desirability algorithm to identify the optimal level of independent variables ( X) that could confer a trade-off between selectivity and activity. The results obtained from FB-QSAR were further substantiated using MIF (Molecular Interaction Fields) studies. To exemplify the potentials of FB-QSAR and MO-QSPR in a pragmatic fashion, the insights gleaned from the MO-QSPR study was reverse engineered using Inverse-QSAR in a combinatorial fashion to enumerate some prospective novel, potent and selective BACE1 inhibitors.

  12. Comment on ‘An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales’

    Science.gov (United States)

    Hennig, Thomas; Magee, Darrin

    2017-03-01

    In their article ‘An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales’ (2015 Environ. Res. Lett. 10 015001), Grill et al utilized a graph-based river routing model to simultaneously assess flow regulation and fragmentation by dams at multiple scales. Using global dam data they developed the river fragmentation index and the river regulation index, both based on river volume. Their results indicate that, on a global basis, 48% of river volume is moderately to severely impacted by either flow regulation, fragmentation, or both. Assuming completion of all dams planned and under construction in their future scenario, Grill et al find this number would rise to 93%, an effect they attribute largely to dam construction in the Amazon Basin. They also provide evidence for the importance of considering small- to medium-sized dams. We find this approach interesting and the analysis straightforward, but in this response note some limitations to the Asia-specific data on which the analysis is based. China and India are not only the two most populous countries, but are home to the vast majority of the world’s largest dams and reservoirs, numbers which will rapidly increase in the future. Grill et al however, limit their modeling and subsequent basin assessment (flow regulation and river fragmentation) to less than ten percent of existing and forthcoming dams in those two countries. While we suspect this is due to data limitations, it results in what we feel are significant misinterpretations of the future of dams and rivers across much of Asia.

  13. Prokaryotic Phylogeny Based on Complete Genomes Without Sequence Alignment

    Science.gov (United States)

    Hao, Bailin; Qi, Ji; Wang, Bin

    2003-04-01

    This is a brief review of a series of on-going work on bacterial phylogeny. We have proposed a new method to infer relatedness of prokaryotes from their complete genome data without using sequence alignment. It has led to results comparable with the bacteriologists' systematics as reflected in the latest 2001 edition of the Bergey's Manual of Systematic Bacteriology1. In what follows we only touch on the mathematical aspects of the method. The biological implications of our results will be published elsewhere.

  14. Recombination analysis based on the complete genome of bocavirus

    Directory of Open Access Journals (Sweden)

    Chen Shengxia

    2011-04-01

    Full Text Available Abstract Bocavirus include bovine parvovirus, minute virus of canine, porcine bocavirus, gorilla bocavirus, and Human bocaviruses 1-4 (HBoVs. Although recent reports showed that recombination happened in bocavirus, no systematical study investigated the recombination of bocavirus. The present study performed the phylogenetic and recombination analysis of bocavirus over the complete genomes available in GenBank. Results confirmed that recombination existed among bocavirus, including the likely inter-genotype recombination between HBoV1 and HBoV4, and intra-genotype recombination among HBoV2 variants. Moreover, it is the first report revealing the recombination that occurred between minute viruses of canine.

  15. DNA fragment editing of genomes by CRISPR/Cas9%CRISPR/Cas9系统在基因组DNA片段编辑中的应用

    Institute of Scientific and Technical Information of China (English)

    李金环; 寿佳; 吴强

    2015-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system from bacteria and archaea emerged recently as a new powerful technology of genome editing in vir-tually any organism. Due to its simplicity and cost effectiveness, a revolutionary change of genetics has occurred. Here, we summarize the recent development of DNA fragment editing methods by CRISPR/Cas9 and describe tar-geted DNA fragment deletions, inversions, duplications, insertions, and translocations. The efficient method of DNA fragment editing provides a powerful tool for studying gene function, regulatory elements, tissue development, and disease progression. Finally, we discuss the prospects of CRISPR/Cas9 system and the potential applications of other types of CRISPR system.%源于细菌和古菌的Ⅱ型成簇规律间隔短回文重复系统[Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9(Cas9),CRISPR/Cas9]近年被改造成为基因组定点编辑的新技术。由于它具有设计简单、操作方便、费用低廉等巨大优势,给遗传操作领域带来了一场革命性的改变。本文重点介绍了CRISPR/Cas9系统在基因组DNA片段靶向编辑方面的研究和应用,主要包括DNA片段的删除、反转、重复、插入和易位,这一有效的DNA片段编辑方法为研究基因功能、调控元件、组织发育和疾病发生发展提供了有力手段。本文最后展望了Ⅱ型CRISPR/Cas9系统的应用前景和其他类型CRISPR系统的应用潜力,为开展利用基因组DNA片段靶向编辑进行基因调控和功能研究提供参考。

  16. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  17. Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts

    OpenAIRE

    Sprink, Thorben; Eriksson, Dennis; Schiemann, Joachim; Hartung, Frank

    2016-01-01

    Novel plant genome editing techniques call for an updated legislation regulating the use of plants produced by genetic engineering or genome editing, especially in the European Union. Established more than 25?years ago and based on a clear distinction between transgenic and conventionally bred plants, the current EU Directives fail to accommodate the new continuum between genetic engineering and conventional breeding. Despite the fact that the Directive 2001/18/EC contains both process- and p...

  18. Implementing Genomic Clinical Decision Support for Drug‐Based Precision Medicine

    Science.gov (United States)

    Formea, CM; Hoffman, JM; Matey, E; Peterson, JF; Boyce, RD

    2017-01-01

    The explosive growth of patient‐specific genomic information relevant to drug therapy will continue to be a defining characteristic of biomedical research. To implement drug‐based personalized medicine (PM) for patients, clinicians need actionable information incorporated into electronic health records (EHRs). New clinical decision support (CDS) methods and informatics infrastructure are required in order to comprehensively integrate, interpret, deliver, and apply the full range of genomic data for each patient.1 PMID:28109071

  19. A versatile genome-scale PCR-based pipeline for high-definition DNA FISH.

    Science.gov (United States)

    Bienko, Magda; Crosetto, Nicola; Teytelman, Leonid; Klemm, Sandy; Itzkovitz, Shalev; van Oudenaarden, Alexander

    2013-02-01

    We developed a cost-effective genome-scale PCR-based method for high-definition DNA FISH (HD-FISH). We visualized gene loci with diffraction-limited resolution, chromosomes as spot clusters and single genes together with transcripts by combining HD-FISH with single-molecule RNA FISH. We provide a database of over 4.3 million primer pairs targeting the human and mouse genomes that is readily usable for rapid and flexible generation of probes.

  20. A first generation BAC-based physical map of the channel catfish genome

    Directory of Open Access Journals (Sweden)

    Waldbieser Geoffrey C

    2007-02-01

    Full Text Available Abstract Background Channel catfish, Ictalurus punctatus, is the leading species in North American aquaculture. Genetic improvement of catfish is performed through selective breeding, and genomic tools will help improve selection efficiency. A physical map is needed to integrate the genetic map with the karyotype and to support fine mapping of phenotypic trait alleles such as Quantitative Trait Loci (QTL and the effective positional cloning of genes. Results A genome-wide physical map of the channel catfish was constructed by High-Information-Content Fingerprinting (HICF of 46,548 Bacterial Artificial Chromosomes (BAC clones using the SNaPshot technique. The clones were assembled into contigs with FPC software. The resulting assembly contained 1,782 contigs and covered an estimated physical length of 0.93 Gb. The validity of the assembly was demonstrated by 1 anchoring 19 of the largest contigs to the microsatellite linkage map 2 comparing the assembly of a multi-gene family to Restriction Fragment Length Polymorphism (RFLP patterns seen in Southern blots, and 3 contig sequencing. Conclusion This is the first physical map for channel catfish. The HICF technique allowed the project to be finished with a limited amount of human resource in a high throughput manner. This physical map will greatly facilitate the detailed study of many different genomic regions in channel catfish, and the positional cloning of genes controlling economically important production traits.

  1. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Science.gov (United States)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  2. De novo fragment-based design of inhibitors of DXS guided by spin-diffusion-based NMR spectroscopy

    NARCIS (Netherlands)

    Masini, T.; Pilger, J.; Kroezen, B. S.; Illarionov, B.; Lottmann, P.; Fischer, M.; Griesinger, C.; Hirsch, A. K. H.

    2014-01-01

    We applied for the first time an innovative ligand-based NMR methodology (STI) to a medicinal-chemistry project aimed at the development of inhibitors for the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). DXS is the first enzyme of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway, presen

  3. BioViews: Java-based tools for genomic data visualization.

    Science.gov (United States)

    Helt, G A; Lewis, S; Loraine, A E; Rubin, G M

    1998-03-01

    Visualization tools for bioinformatics ideally should provide universal access to the most current data in an interactive and intuitive graphical user interface. Since the introduction of Java, a language designed for distributed programming over the Web, the technology now exists to build a genomic data visualization tool that meets these requirements. Using Java we have developed a prototype genome browser applet (BioViews) that incorporates a three-level graphical view of genomic data: a physical map, an annotated sequence map, and a DNA sequence display. Annotated biological features are displayed on the physical and sequence-based maps, and the different views are interconnected. The applet is linked to several databases and can retrieve features and display hyperlinked textual data on selected features. In addition to browsing genomic data, different types of analyses can be performed interactively and the results of these analyses visualized alongside prior annotations. Our genome browser is built on top of extensible, reusable graphic components specifically designed for bioinformatics. Other groups can (and do) reuse this work in various ways. Genome centers can reuse large parts of the genome browser with minor modifications, bioinformatics groups working on sequence analysis can reuse components to build front ends for analysis programs, and biology laboratories can reuse components to publish results as dynamic Web documents.

  4. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing

    Science.gov (United States)

    2013-01-01

    Background The genetics and molecular biology of sesame has only recently begun to be studied even though sesame is an important oil seed crop. A high-density genetic map for sesame has not been published yet due to a lack of sufficient molecular markers. Specific length amplified fragment sequencing (SLAF-seq) is a recently developed high-resolution strategy for large-scale de novo SNP discovery and genotyping. SLAF-seq was employed in this study to obtain sufficient markers to construct a high-density genetic map for sesame. Results In total, 28.21 Gb of data containing 201,488,285 pair-end reads was obtained after sequencing. The average coverage for each SLAF marker was 23.48-fold in the male parent, 23.38-fold in the female parent, and 14.46-fold average in each F2 individual. In total, 71,793 high-quality SLAFs were detected of which 3,673 SLAFs were polymorphic and 1,272 of the polymorphic markers met the requirements for use in the construction of a genetic map. The final map included 1,233 markers on the 15 linkage groups (LGs) and was 1,474.87 cM in length with an average distance of 1.20 cM between adjacent markers. To our knowledge, this map is the densest genetic linkage map to date for sesame. 'SNP_only’ markers accounted for 87.51% of the markers on the map. A total of 205 markers on the map showed significant (P sesame. The map was constructed using an F2 population and the SLAF-seq approach, which allowed the efficient development of a large number of polymorphic markers in a short time. Results of this study will not only provide a platform for gene/QTL fine mapping, map-based gene isolation, and molecular breeding for sesame, but will also serve as a reference for positioning sequence scaffolds on a physical map, to assist in the process of assembling the sesame genome sequence. PMID:24060091

  5. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing.

    Science.gov (United States)

    Zhang, Yanxin; Wang, Linhai; Xin, Huaigen; Li, Donghua; Ma, Chouxian; Ding, Xia; Hong, Weiguo; Zhang, Xiurong

    2013-09-24

    The genetics and molecular biology of sesame has only recently begun to be studied even though sesame is an important oil seed crop. A high-density genetic map for sesame has not been published yet due to a lack of sufficient molecular markers. Specific length amplified fragment sequencing (SLAF-seq) is a recently developed high-resolution strategy for large-scale de novo SNP discovery and genotyping. SLAF-seq was employed in this study to obtain sufficient markers to construct a high-density genetic map for sesame. In total, 28.21 Gb of data containing 201,488,285 pair-end reads was obtained after sequencing. The average coverage for each SLAF marker was 23.48-fold in the male parent, 23.38-fold in the female parent, and 14.46-fold average in each F2 individual. In total, 71,793 high-quality SLAFs were detected of which 3,673 SLAFs were polymorphic and 1,272 of the polymorphic markers met the requirements for use in the construction of a genetic map. The final map included 1,233 markers on the 15 linkage groups (LGs) and was 1,474.87 cM in length with an average distance of 1.20 cM between adjacent markers. To our knowledge, this map is the densest genetic linkage map to date for sesame. 'SNP_only' markers accounted for 87.51% of the markers on the map. A total of 205 markers on the map showed significant (P sesame. The map was constructed using an F2 population and the SLAF-seq approach, which allowed the efficient development of a large number of polymorphic markers in a short time. Results of this study will not only provide a platform for gene/QTL fine mapping, map-based gene isolation, and molecular breeding for sesame, but will also serve as a reference for positioning sequence scaffolds on a physical map, to assist in the process of assembling the sesame genome sequence.

  6. Mathematical design of prokaryotic clone-based microarrays

    NARCIS (Netherlands)

    Pieterse, B.; Quirijns, E.J.; Schuren, F.H.J.; Werf, van der M.J.

    2005-01-01

    Background - Clone-based microarrays, on which each spot represents a random genomic fragment, are a good alternative to open reading frame-based microarrays, especially for microorganisms for which the complete genome sequence is not available. Since the generation of a genomic DNA library is a ran

  7. Mathematical design of prokaryotic clone-based microarrays

    NARCIS (Netherlands)

    Pieterse, B.; Quirijns, E.J.; Schuren, F.H.J.; Werf, M.J. van der

    2005-01-01

    Background: Clone-based microarrays, on which each spot represents a random genomic fragment, are a good alternative to open reading frame-based microarrays, especially for microorganisms for which the complete genome sequence is not available. Since the generation of a genomic DNA library is a rand

  8. CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells

    Directory of Open Access Journals (Sweden)

    Irvine Alistair

    2005-06-01

    Full Text Available Abstract Background The hCMV promoter is very commonly used for high level expression of transgenes in mammalian cells, but its utility is hindered by transcriptional silencing. Large genomic fragments incorporating the CpG island region of the HNRPA2B1 locus are resistant to transcriptional silencing. Results In this report we describe studies on the use of a novel series of vectors combining the HNRPA2B1 CpG island with the hCMV promoter for expression of transgenes in CHO-K1 cells. We show that the CpG island gives at least twenty-fold increases in the levels of EGFP and EPO observed in pools of transfectants, and that transgene expression levels remain high in such pools for more than 100 generations. These novel vectors also allow facile isolation of clonal CHO-K1 cell lines showing stable, high-level transgene expression. Conclusion Vectors incorporating the hnRPA2B1 CpG island give major benefits in transgene expression from the hCMV promoter, including substantial improvements in the level and stability of expression. The utility of these vectors for the improved production of recombinant proteins in CHO cells has been demonstrated.

  9. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses.

    Science.gov (United States)

    Talukder, Shyamal K; Saha, Malay C

    2017-01-01

    Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.

  10. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Directory of Open Access Journals (Sweden)

    Shyamal K. Talukder

    2017-07-01

    Full Text Available Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs. Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.

  11. Reliability and applications of statistical methods based on oligonucleotide frequencies in bacterial and archaeal genomes

    DEFF Research Database (Denmark)

    Bohlin, J; Skjerve, E; Ussery, David

    2008-01-01

    BACKGROUND: The increasing number of sequenced prokaryotic genomes contains a wealth of genomic data that needs to be effectively analysed. A set of statistical tools exists for such analysis, but their strengths and weaknesses have not been fully explored. The statistical methods we are concerned......, or be based on specific statistical distributions. Advantages with these statistical methods include measurements of phylogenetic relationship with relatively small pieces of DNA sampled from almost anywhere within genomes, detection of foreign/conserved DNA, and homology searches. Our aim was to explore...... measure was a good measure to detect horizontally transferred regions, and when used to compare the phylogenetic relationships between plasmids and hosts, significant correlation (R2 = 0.4) was found with genomic GC content and intra-chromosomal homogeneity. CONCLUSION: The statistical methods examined...

  12. Application of Microarray-Based Comparative Genomic Hybridization in Prenatal and Postnatal Settings: Three Case Reports

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2011-01-01

    Full Text Available Microarray-based comparative genomic hybridization (array CGH is a newly emerged molecular cytogenetic technique for rapid evaluation of the entire genome with sub-megabase resolution. It allows for the comprehensive investigation of thousands and millions of genomic loci at once and therefore enables the efficient detection of DNA copy number variations (a.k.a, cryptic genomic imbalances. The development and the clinical application of array CGH have revolutionized the diagnostic process in patients and has provided a clue to many unidentified or unexplained diseases which are suspected to have a genetic cause. In this paper, we present three clinical cases in both prenatal and postnatal settings. Among all, array CGH played a major discovery role to reveal the cryptic and/or complex nature of chromosome arrangements. By identifying the genetic causes responsible for the clinical observation in patients, array CGH has provided accurate diagnosis and appropriate clinical management in a timely and efficient manner.

  13. Kernel-based whole-genome prediction of complex traits: a review

    Directory of Open Access Journals (Sweden)

    Gota eMorota

    2014-10-01

    Full Text Available Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways, thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.

  14. VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics.

    Science.gov (United States)

    Megy, Karine; Emrich, Scott J; Lawson, Daniel; Campbell, David; Dialynas, Emmanuel; Hughes, Daniel S T; Koscielny, Gautier; Louis, Christos; Maccallum, Robert M; Redmond, Seth N; Sheehan, Andrew; Topalis, Pantelis; Wilson, Derek

    2012-01-01

    VectorBase (http://www.vectorbase.org) is a NIAID-supported bioinformatics resource for invertebrate vectors of human pathogens. It hosts data for nine genomes: mosquitoes (three Anopheles gambiae genomes, Aedes aegypti and Culex quinquefasciatus), tick (Ixodes scapularis), body louse (Pediculus humanus), kissing bug (Rhodnius prolixus) and tsetse fly (Glossina morsitans). Hosted data range from genomic features and expression data to population genetics and ontologies. We describe improvements and integration of new data that expand our taxonomic coverage. Releases are bi-monthly and include the delivery of preliminary data for emerging genomes. Frequent updates of the genome browser provide VectorBase users with increasing options for visualizing their own high-throughput data. One major development is a new population biology resource for storing genomic variations, insecticide resistance data and their associated metadata. It takes advantage of improved ontologies and controlled vocabularies. Combined, these new features ensure timely release of multiple types of data in the public domain while helping overcome the bottlenecks of bioinformatics and annotation by engaging with our user community.

  15. WormBase ParaSite - a comprehensive resource for helminth genomics.

    Science.gov (United States)

    Howe, Kevin L; Bolt, Bruce J; Shafie, Myriam; Kersey, Paul; Berriman, Matthew

    2017-07-01

    The number of publicly available parasitic worm genome sequences has increased dramatically in the past three years, and research interest in helminth functional genomics is now quickly gathering pace in response to the foundation that has been laid by these collective efforts. A systematic approach to the organisation, curation, analysis and presentation of these data is clearly vital for maximising the utility of these data to researchers. We have developed a portal called WormBase ParaSite (http://parasite.wormbase.org) for interrogating helminth genomes on a large scale. Data from over 100 nematode and platyhelminth species are integrated, adding value by way of systematic and consistent functional annotation (e.g. protein domains and Gene Ontology terms), gene expression analysis (e.g. alignment of life-stage specific transcriptome data sets), and comparative analysis (e.g. orthologues and paralogues). We provide several ways of exploring the data, including genome browsers, genome and gene summary pages, text search, sequence search, a query wizard, bulk downloads, and programmatic interfaces. In this review, we provide an overview of the back-end infrastructure and analysis behind WormBase ParaSite, and the displays and tools available to users for interrogating helminth genomic data. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Kernel-based whole-genome prediction of complex traits: a review

    Science.gov (United States)

    Morota, Gota; Gianola, Daniel

    2014-01-01

    Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics. PMID:25360145

  17. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector.

    Science.gov (United States)

    Kabadi, Ami M; Ousterout, David G; Hilton, Isaac B; Gersbach, Charles A

    2014-10-29

    Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform.

    Science.gov (United States)

    Zheng, Wenning; Mutha, Naresh V R; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah; Choo, Siew Woh

    2016-01-01

    Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor

  19. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform

    Directory of Open Access Journals (Sweden)

    Wenning Zheng

    2016-03-01

    Full Text Available Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%, predicted hydrophobicity and molecular weight (Da using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1 client workstation, (2 web server, (3 application server, and (4 database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs, 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence

  20. Amplified fragment length polymorphism based identification of genetic markers and novel PCR assay for differentiation of Campylobacter fetus subspecies

    NARCIS (Netherlands)

    Bergen, van M.A.P.; Simons, G.; Graaf-van Bloois, van der L.; Putten, van J.P.; Rombout, J.; Wesley, I.; Wagenaar, J.A.

    2005-01-01

    Differentiation of Campylobacter fetus into C. fetus subsp. fetus (Cff) and C. fetus subsp. venerealis (Cfv) is important for both clinical and economic reasons. In the past, several molecular typing methods have been used for differentiation, including amplified fragment length polymorphism (AFLP).

  1. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    Directory of Open Access Journals (Sweden)

    Francesca Bertolini

    Full Text Available Few studies investigated the donkey (Equus asinus at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca. The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing and Ion Torrent (RRL runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  2. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    Science.gov (United States)

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  3. RadishBase: a database for genomics and genetics of radish.

    Science.gov (United States)

    Shen, Di; Sun, Honghe; Huang, Mingyun; Zheng, Yi; Li, Xixiang; Fei, Zhangjun

    2013-02-01

    Radish is an economically important vegetable crop. During the past several years, large-scale genomics and genetics resources have been accumulated for this species. To store, query, analyze and integrate these radish resources efficiently, we have developed RadishBase (http://bioinfo.bti.cornell.edu/radish), a genomics and genetics database of radish. Currently the database contains radish mitochondrial genome sequences, expressed sequence tag (EST) and unigene sequences and annotations, biochemical pathways, EST-derived single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers, and genetic maps. RadishBase is designed to enable users easily to retrieve and visualize biologically important information through a set of efficient query interfaces and analysis tools, including the BLAST search and unigene annotation query interfaces, and tools to classify unigenes functionally, to identify enriched gene ontology (GO) terms and to visualize genetic maps. A database containing radish pathways predicted from unigene sequences is also included in RadishBase. The tools and interfaces in RadishBase allow efficient mining of recently released and continually expanding large-scale radish genomics and genetics data sets, including the radish genome sequences and RNA-seq data sets.

  4. Microarray-based genomic profiling as a diagnostic tool in acute lymphoblastic leukemia.

    Science.gov (United States)

    Simons, Annet; Stevens-Kroef, Marian; El Idrissi-Zaynoun, Najat; van Gessel, Sabine; Weghuis, Daniel Olde; van den Berg, Eva; Waanders, Esmé; Hoogerbrugge, Peter; Kuiper, Roland; van Kessel, Ad Geurts

    2011-12-01

    In acute lymphoblastic leukemia (ALL) specific genomic abnormalities provide important clinical information. In most routine clinical diagnostic laboratories conventional karyotyping, in conjunction with targeted screens using e.g., fluorescence in situ hybridization (FISH), is currently considered as the gold standard to detect such aberrations. Conventional karyotyping, however, is limited in its resolution and yield, thus hampering the genetic diagnosis of ALL. We explored whether microarray-based genomic profiling would be feasible as an alternative strategy in a routine clinical diagnostic setting. To this end, we compared conventional karyotypes with microarray-deduced copy number aberration (CNA) karyotypes in 60 ALL cases. Microarray-based genomic profiling resulted in a CNA detection rate of 90%, whereas for conventional karyotyping this was 61%. In addition, many small (< 5 Mb) genetic lesions were encountered, frequently harboring clinically relevant ALL-related genes such as CDKN2A/B, ETV6, PAX5, and IKZF1. From our data we conclude that microarray-based genomic profiling serves as a robust tool in the genetic diagnosis of ALL, outreaching conventional karyotyping in CNA detection both in terms of sensitivity and specificity. We also propose a practical workflow for a comprehensive and objective interpretation of CNAs obtained through microarray-based genomic profiling, thereby facilitating its application in a routine clinical diagnostic setting.

  5. A novel genome-information content-based statistic for genome-wide association analysis designed for next-generation sequencing data.

    Science.gov (United States)

    Luo, Li; Zhu, Yun; Xiong, Momiao

    2012-06-01

    The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.

  6. 基于片段的药物发现方法进展%Progress in the fragment-based drug discovery

    Institute of Scientific and Technical Information of China (English)

    任景; 李健; 石峰; 王昕; 何建华; 许叶春; 张乃霞; 熊兵; 沈竞康

    2013-01-01

    基于片段的药物发现(fragment-based drug discovery,FBDD)是基于结构的药物研发方法的延伸,正日趋成熟,并在药物研发中发挥着重要的作用.该方法是通过SPR、MS、NMR、X-ray等生物物理方法快速筛选片段分子库,检测并发现分子量小、相对结合效率高的活性化合物,继之结合结构生物学研究进行分子优化设计,得到更为类药的先导和候选化合物,进行创新性药物开发.与传统高通量筛选等方法相比,FBDD具有十分显著的优点,发现的活性片段利于优化、获得的活性分子成药性高.本文结合实例综述了基于片段的药物发现方法的研究进展.%As an extension of the structure-based drug discovery, fragment-based drug discovery is matured increasingly, and plays an important role in drug development. Fragments in a small library, with lower molecular mass and high "ligand efficiency", are detected by SPR, MS, NMR, X-ray crystallography technologies and other biophysical methods. Then they are considered as starting points for chemical optimization with the guidance of structural biology methods to get good "drug-like" lead and candidate compounds. In this article, we reviewed the current progress of fragment-based drug discovery and detailed a number of examples to illustrate the novel strategies.

  7. Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes

    Directory of Open Access Journals (Sweden)

    Eckalbar Walter L

    2013-01-01

    Full Text Available Abstract Background The green anole lizard, Anolis carolinensis, is a key species for both laboratory and field-based studies of evolutionary genetics, development, neurobiology, physiology, behavior, and ecology. As the first non-avian reptilian genome sequenced, A. carolinesis is also a prime reptilian model for comparison with other vertebrate genomes. The public databases of Ensembl and NCBI have provided a first generation gene annotation of the anole genome that relies primarily on sequence conservation with related species. A second generation annotation based on tissue-specific transcriptomes would provide a valuable resource for molecular studies. Results Here we provide an annotation of the A. carolinensis genome based on de novo assembly of deep transcriptomes of 14 adult and embryonic tissues. This revised annotation describes 59,373 transcripts, compared to 16,533 and 18,939 currently for Ensembl and NCBI, and 22,962 predicted protein-coding genes. A key improvement in this revised annotation is coverage of untranslated region (UTR sequences, with 79% and 59% of transcripts containing 5’ and 3’ UTRs, respectively. Gaps in genome sequence from the current A. carolinensis build (Anocar2.0 are highlighted by our identification of 16,542 unmapped transcripts, representing 6,695 orthologues, with less than 70% genomic coverage. Conclusions Incorporation of tissue-specific transcriptome sequence into the A. carolinensis genome annotation has markedly improved its utility for comparative and functional studies. Increased UTR coverage allows for more accurate predicted protein sequence and regulatory analysis. This revised annotation also provides an atlas of gene expression specific to adult and embryonic tissues.

  8. Single gene-based distinction of individual microbial genomes from a mixed population of microbial cells

    Directory of Open Access Journals (Sweden)

    Manu Valtteri Tamminen

    2015-03-01

    Full Text Available Recent progress in environmental microbiology has revealed vast populations of microbes in any given habitat that cannot be detected by conventional culturing strategies. The use of sensitive genetic detection methods such as CARD-FISH and in situ PCR have been limited by the cell wall permeabilization requirement that cannot be performed similarly on all cell types without lysing some and leaving some unpermeabilized. Furthermore, the detection of low copy targets such as genes present in single copies in the microbial genomes, has remained problematic. We describe an emulsion-based procedure to trap individual microbial cells into picoliter-volume polyacrylamide droplets that provide a rigid support for genetic material and therefore allow complete degradation of cellular material to expose the individual genomes. The polyacrylamide droplets are subsequently converted into picoliter-scale reactors for genome amplification. The amplified genomes are labelled based on the presence of a target gene and differentiated from those that do not contain the gene by flow cytometry. Using the Escherichia coli strains XL1 and MC1061, which differ with respect to the presence (XL1 or absence (MC1061 of a single copy of a tetracycline resistance gene per genome, we demonstrate that XL1 genomes present at 0.1% of MC1061 genomes can be differentiated using this method. Using a spiked sediment microbial sample, we demonstrate that the method is applicable to highly complex environmental microbial communities as a target gene-based screen for individual microbes. The method provides a novel tool for enumerating functional cell populations in complex microbial communities. We envision that the method could be optimized for fluorescence-activated cell sorting to enrich genetic material of interest from complex environmental samples.

  9. GENOMIC VARIABILITY AMONG CATTLE POPULATIONS BASED ON RUNS OF HOMOZYGOSITY

    Directory of Open Access Journals (Sweden)

    Veronika Šidlová

    2015-09-01

    Full Text Available In this work, the distribution of different lengths ROH (runs of homozygosity in six cattle breeds was described. A total of 122 animals from six cattle breeds (Holstein, Simmental, Austrian Pinzgau, Ayrshire, MRI-Meuse Rhine Issel and Slovak Pinzgau were analysed. The ROH approach was used to distinguish Slovak Pinzgau population from other investigated breeds as well as to differentiate between ancient and recent inbreeding. The average number of ROH per animal ranged from 17.06 in Holstein to 159.22 in Ayrshire. The highest number of short ROH (ancient inbreeding was found in Simmental, followed by Ayrshire. The Ayrshire and MRI had a higher proportion of longer ROH distributed across the whole genome, revealing recent inbreeding. ROH were identified and used to estimate molecular inbreeding coefficients (FROH. The highest level of inbreeding from the investigated breeds was found out in Ayrshire with the same tendency for all length categories compared to Slovak Pinzgau with higher ancient inbreeding. Ancient inbreeding was only observed in Holstein population. A similar trend is becoming apparent even for Slovak Pinzgau, showing the second smallest recent inbreeding. Therefore, it is necessary to preserve the given population in the original phenotype and prevent further increase of inbreeding especially in endangered breeds.

  10. Whole genome data for omics-based research on the self-fertilizing fish Kryptolebias marmoratus.

    Science.gov (United States)

    Rhee, Jae-Sung; Lee, Jae-Seong

    2014-08-30

    Genome resources have advantages for understanding diverse areas such as biological patterns and functioning of organisms. Omics platforms are useful approaches for the study of organs and organisms. These approaches can be powerful screening tools for whole genome, proteome, and metabolome profiling, and can be used to understand molecular changes in response to internal and external stimuli. This methodology has been applied successfully in freshwater model fish such as the zebrafish Danio rerio and the Japanese medaka Oryzias latipes in research areas such as basic physiology, developmental biology, genetics, and environmental biology. However, information is still scarce about model fish that inhabit brackish water or seawater. To develop the self-fertilizing killifish Kryptolebias marmoratus as a potential model species with unique characteristics and research merits, we obtained genomic information about K. marmoratus. We address ways to use these data for genome-based molecular mechanistic studies. We review the current state of genome information on K. mar