WorldWideScience

Sample records for genome amplification strategy

  1. Generation of recombinant pestiviruses using a full genome amplification strategy

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, Ilona; Uttenthal, Åse

    Aim Complete genome amplification of viral RNA provides a new tool for generation of modified pestiviruses. We have recently reported a full genome amplification strategy for direct recovery of infectious pestivirus (Rasmussen et al., 2008). This comprised rescue of BDV strain “Gifhorn” from a full......-length RT-PCR amplicon demonstrating that long RT-PCR can be used for direct generation of an infectious pestivirus. The strategy is not limited to amplification of BDV “Gifhorn”, but can be further utilized for amplification of a diverse selection of pestivirus strains and for the generation of modified...... the amplicons were prepared for cloning into low-copy vectors to produce new infectious cDNA clones. Conclusions Using this full genome amplification strategy the efforts in producing new viral variants can be expedited and focused on a variety of other viral strains and hence is not limited to the availability...

  2. Generation of recombinant pestiviruses using a full genome amplification strategy

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, Ilona; Uttenthal, Åse

    pestiviruses. Methods Pestivirus genomes were amplified from either total RNA preparations using long RT-PCR or from infectious cDNA clones using long PCR. Viral RNA was extracted from cell cultures inoculated with pestivirus (e.g. BDV “Gifhorn” or BVDV “CP7”) using a combined Trizol/RNeasy protocol. Total RNA...... was reverse transcribed to cDNA at 50C for 90 minutes using SuperScript III reverse transcriptase (Invitrogen). Full-length PCR amplification was performed using primers specific for the extreme 5’- and 3’-ends of the viral genomes. A T7 promoter was incorporated in the 5’-primers for direct in vitro...... transcription of the amplicons. Long (RT)-PCR was performed using Accuprime High Fidelity or Elongase enzyme mix (Invitrogen), which consists of mixtures of Taq and proofreading Pyrococcus GB-D DNA polymerases. Reactions containing 2 l cDNA were amplified using 94C for 30 seconds followed by 35 cycles of 94°C...

  3. Generation of recombinant pestiviruses using a full-genome amplification strategy

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, I.; Uttenthal, Åse

    2010-01-01

    Complete genome amplification of viral RNA provides a new tool for the generation of modified viruses. We have recently reported a full-genome amplification strategy for recovery of pestiviruses (Rasmussen et al., 2008). A full-length cDNA amplicon corresponding to the Border disease virus...... Paderborn strain of Classical swine fever virus plus the CP7 strain of Bovine viral diarrhoea virus. The amplicons were cloned directly into a stable single-copy bacterial artificial chromosome generating full-length pestivirus DNAs from which infectious RNA transcripts could be also derived....

  4. Asexual populations of the human malaria parasite, Plasmodium falciparum, use a two-step genomic strategy to acquire accurate, beneficial DNA amplifications.

    Directory of Open Access Journals (Sweden)

    Jennifer L Guler

    Full Text Available Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes.

  5. Isothermal DNA amplification in bioanalysis: strategies and applications.

    Science.gov (United States)

    Kim, Joonyul; Easley, Christopher J

    2011-01-01

    Isothermal DNA amplification is an alternative to PCR-based amplification for point-of-care diagnosis. Since the early 1990s, the approach has been refined into a simple, rapid and cost-effective tool by means of several distinct strategies. Input signals have been diversified from DNA to RNA, protein or small organic molecules by translating these signals into input DNA before amplification, thus allowing assays on various classes of biomolecules. In situ detection of single biomolecules has been achieved using an isothermal method, leveraging localized signal amplification in an intact specimen. A few pioneering studies to develop a homogenous isothermal protein assay have successfully translated structure-switching of a probe upon target binding into input DNA for isothermal amplification. In addition to the detection of specific targets, isothermal methods have made whole-genome amplification of single cells possible owing to the unbiased, linear nature of the amplification process as well as the large size of amplified products given by ϕ29 DNA polymerase. These applications have been devised with the four isothermal amplification strategies covered in this review: strand-displacement amplification, rolling circle amplification, helicase-dependent amplification and recombinase polymerase amplification.

  6. Whole Genome Amplification from Blood Spot Samples.

    Science.gov (United States)

    Sørensen, Karina Meden

    2015-01-01

    Whole genome amplification is an invaluable technique when working with DNA extracted from blood spots, as the DNA obtained from this source often is too limited for extensive genetic analysis. Two techniques that amplify the entire genome are common. Here, both are described with focus on the benefits and drawbacks of each system. However, in order to obtain the best possible WGA result the quality of input DNA extracted from the blood spot is essential, but also time consumption, flexibility in format and elution volume and price of the technology are factors influencing system choice. Here, three DNA extraction techniques are described and the above aspects are compared between the systems.

  7. Rolling circle amplification of complete nematode mitochondrial genomes.

    Science.gov (United States)

    Tang, Sha; Hyman, Bradley C

    2005-06-01

    To enable investigation of nematode mitochondrial DNA evolution, methodology has been developed to amplify intact nematode mitochondrial genomes in preparative yields using a rolling circle replication strategy. Successful reactions were generated from whole cell template DNA prepared by alkaline lysis of the rhabditid nematode Caenorhabditis elegans and a mermithid nematode, Thaumamermis cosgrovei. These taxa, representing the two major nematode classes Chromodorea and Enoplea, maintain mitochondrial genomes of 13.8 kb and 20.0 kb, respectively. Efficient amplifications were conducted on template DNA isolated from individual or pooled nematodes that were alive or stored at -80 degrees C. Unexpectedly, these experiments revealed that multiple T. cosgrovei mitochondrial DNA haplotypes are maintained in our local population. Rolling circle amplification products can be used as templates for standard PCR reactions with specific primers that target mitochondrial genes or for direct DNA sequencing.

  8. Small Sample Whole-Genome Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Hara, C A; Nguyen, C P; Wheeler, E K; Sorensen, K J; Arroyo, E S; Vrankovich, G P; Christian, A T

    2005-09-20

    Many challenges arise when trying to amplify and analyze human samples collected in the field due to limitations in sample quantity, and contamination of the starting material. Tests such as DNA fingerprinting and mitochondrial typing require a certain sample size and are carried out in large volume reactions; in cases where insufficient sample is present whole genome amplification (WGA) can be used. WGA allows very small quantities of DNA to be amplified in a way that enables subsequent DNA-based tests to be performed. A limiting step to WGA is sample preparation. To minimize the necessary sample size, we have developed two modifications of WGA: the first allows for an increase in amplified product from small, nanoscale, purified samples with the use of carrier DNA while the second is a single-step method for cleaning and amplifying samples all in one column. Conventional DNA cleanup involves binding the DNA to silica, washing away impurities, and then releasing the DNA for subsequent testing. We have eliminated losses associated with incomplete sample release, thereby decreasing the required amount of starting template for DNA testing. Both techniques address the limitations of sample size by providing ample copies of genomic samples. Carrier DNA, included in our WGA reactions, can be used when amplifying samples with the standard purification method, or can be used in conjunction with our single-step DNA purification technique to potentially further decrease the amount of starting sample necessary for future forensic DNA-based assays.

  9. Current Developments in Prokaryotic Single Cell Whole Genome Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, Danielle; Nath, Nandita; Ciobanu, Doina; Cheng, Jan-Fang; Malmstrom, Rex

    2014-03-14

    Our approach to prokaryotic single-cell Whole Genome Amplification at the JGI continues to evolve. To increase both the quality and number of single-cell genomes produced, we explore all aspects of the process from cell sorting to sequencing. For example, we now utilize specialized reagents, acoustic liquid handling, and reduced reaction volumes eliminate non-target DNA contamination in WGA reactions. More specifically, we use a cleaner commercial WGA kit from Qiagen that employs a UV decontamination procedure initially developed at the JGI, and we use the Labcyte Echo for tip-less liquid transfer to set up 2uL reactions. Acoustic liquid handling also dramatically reduces reagent costs. In addition, we are exploring new cell lysis methods including treatment with Proteinase K, lysozyme, and other detergents, in order to complement standard alkaline lysis and allow for more efficient disruption of a wider range of cells. Incomplete lysis represents a major hurdle for WGA on some environmental samples, especially rhizosphere, peatland, and other soils. Finding effective lysis strategies that are also compatible with WGA is challenging, and we are currently assessing the impact of various strategies on genome recovery.

  10. Whole genome amplification - Review of applications and advances

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, Trevor L.; Detter, J.C.; Richardson, Paul

    2001-11-15

    The concept of Whole Genome Amplification is something that has arisen in the past few years as modifications to the polymerase chain reaction (PCR) have been adapted to replicate regions of genomes which are of biological interest. The applications here are many--forensics, embryonic disease diagnosis, bio terrorism genome detection, ''imoralization'' of clinical samples, microbial diversity, and genotyping. The key question is if DNA can be replicated a genome at a time without bias or non random distribution of the target. Several papers published in the last year and currently in preparation may lead to the conclusion that whole genome amplification may indeed be possible and therefore open up a new avenue to molecular biology.

  11. Kinematic amplification strategies in plants and engineering

    Science.gov (United States)

    Charpentier, Victor; Hannequart, Philippe; Adriaenssens, Sigrid; Baverel, Olivier; Viglino, Emmanuel; Eisenman, Sasha

    2017-06-01

    While plants are primarily sessile at the organismal level, they do exhibit a vast array of movements at the organ or sub-organ level. These movements can occur for reasons as diverse as seed dispersal, nutrition, protection or pollination. Their advanced mechanisms generate a myriad of movement typologies, many of which are not fully understood. In recent years, there has been a renewal of interest in understanding the mechanical behavior of plants from an engineering perspective, with an interest in developing novel applications by up-sizing these mechanisms from the micro- to the macro-scale. This literature review identifies the main strategies used by plants to create and amplify movements and anatomize the most recent mechanical understanding of compliant engineering mechanics. The paper ultimately demonstrates that plant movements, rooted in compliance and multi-functionality, can effectively inspire better kinematic/adaptive structures and materials. In plants, the actuators and the deployment structures are fused into a single system. The understanding of those natural movements therefore starts with an exploration of mechanisms at the origins of movements. Plant movements, whether slow or fast, active or passive, reversible or irreversible, are presented and detailed for their mechanical significance. With a focus on displacement amplification, the most recent promising strategies for actuation and adaptive systems are examined with respect to the mechanical principles of shape morphing plant tissues.

  12. Whole genome amplification and its impact on CGH array profiles

    Directory of Open Access Journals (Sweden)

    Meldrum Cliff

    2008-07-01

    Full Text Available Abstract Background Some array comparative genomic hybridisation (array CGH platforms require a minimum of micrograms of DNA for the generation of reliable and reproducible data. For studies where there are limited amounts of genetic material, whole genome amplification (WGA is an attractive method for generating sufficient quantities of genomic material from miniscule amounts of starting material. A range of WGA methods are available and the multiple displacement amplification (MDA approach has been shown to be highly accurate, although amplification bias has been reported. In the current study, WGA was used to amplify DNA extracted from whole blood. In total, six array CGH experiments were performed to investigate whether the use of whole genome amplified DNA (wgaDNA produces reliable and reproducible results. Four experiments were conducted on amplified DNA compared to unamplified DNA and two experiments on unamplified DNA compared to unamplified DNA. Findings All the experiments involving wgaDNA resulted in a high proportion of losses and gains of genomic material. Previously, amplification bias has been overcome by using amplified DNA in both the test and reference DNA. Our data suggests that this approach may not be effective, as the gains and losses introduced by WGA appears to be random and are not reproducible between different experiments using the same DNA. Conclusion In light of these findings, the use of both amplified test and reference DNA on CGH arrays may not provide an accurate representation of copy number variation in the DNA.

  13. New perspectives on microbial community distortion after whole-genome amplification

    Science.gov (United States)

    Whole-genome amplification (WGA) has become an important tool to explore the genomic information of microorganisms in an environmental sample with limited biomass, however potential selective biases during the amplification processes are poorly understood. Here, we describe the e...

  14. Efficient newly designed primers for the amplification and sequencing of bird mitochondrial genomes.

    Science.gov (United States)

    Amer, Sayed A M; Ahmed, Mohamed Mohamed; Shobrak, Mohammed

    2013-01-01

    In the present study, 27 mitochondrial genomes of diverse avian supra-orders were collected from the Genbank database and their genes were aligned separately. From the alignments, the conserved sequences were selected to design novel conserved primers for amplification and sequencing of the different mitochondrial genes. The reproducibility of these primers was tested in the amplification and sequencing of diverse avian supra-order mitochondrial genomes and was confirmed. This method helped in designing a new set of primers to accelerate both the amplification and the sequencing of bird mitogenomes. It also aids in building mitogenome markers in studying the genetic framework of endemic birds as a preliminary strategy for conservation management of them.

  15. Whole genome amplification of DNA for genotyping pharmacogenetics candidate genes.

    Directory of Open Access Journals (Sweden)

    Santosh ePhilips

    2012-03-01

    Full Text Available Whole genome amplification (WGA technologies can be used to amplify genomic DNA when only small amounts of DNA are available. The Multiple Displacement Amplification Phi polymerase based amplification has been shown to accurately amplify DNA for a variety of genotyping assays; however, it has not been tested for genotyping many of the clinically relevant genes important for pharmacogenetic studies, such as the cytochrome P450 genes, that are typically difficult to genotype due to multiple pseudogenes, copy number variations, and high similarity to other related genes. We evaluated whole genome amplified samples for Taqman™ genotyping of SNPs in a variety of pharmacogenetic genes. In 24 DNA samples from the Coriell human diversity panel, the call rates and concordance between amplified (~200-fold amplification and unamplified samples was 100% for two SNPs in CYP2D6 and one in ESR1. In samples from a breast cancer clinical trial (Trial 1, we compared the genotyping results in samples before and after WGA for four SNPs in CYP2D6, one SNP in CYP2C19, one SNP in CYP19A1, two SNPs in ESR1, and two SNPs in ESR2. The concordance rates were all >97%. Finally, we compared the allele frequencies of 143 SNPs determined in Trial 1 (whole genome amplified DNA to the allele frequencies determined in unamplified DNA samples from a separate trial (Trial 2 that enrolled a similar population. The call rates and allele frequencies between the two trials were 98% and 99.7%, respectively. We conclude that the whole genome amplified DNA is suitable for Taqman™ genotyping for a wide variety of pharmacogenetically relevant SNPs.

  16. Whole genome amplification and de novo assembly of single bacterial cells.

    Directory of Open Access Journals (Sweden)

    Sébastien Rodrigue

    Full Text Available BACKGROUND: Single-cell genome sequencing has the potential to allow the in-depth exploration of the vast genetic diversity found in uncultured microbes. We used the marine cyanobacterium Prochlorococcus as a model system for addressing important challenges facing high-throughput whole genome amplification (WGA and complete genome sequencing of individual cells. METHODOLOGY/PRINCIPAL FINDINGS: We describe a pipeline that enables single-cell WGA on hundreds of cells at a time while virtually eliminating non-target DNA from the reactions. We further developed a post-amplification normalization procedure that mitigates extreme variations in sequencing coverage associated with multiple displacement amplification (MDA, and demonstrated that the procedure increased sequencing efficiency and facilitated genome assembly. We report genome recovery as high as 99.6% with reference-guided assembly, and 95% with de novo assembly starting from a single cell. We also analyzed the impact of chimera formation during MDA on de novo assembly, and discuss strategies to minimize the presence of incorrectly joined regions in contigs. CONCLUSIONS/SIGNIFICANCE: The methods describe in this paper will be useful for sequencing genomes of individual cells from a variety of samples.

  17. Lysis of a Single Cyanobacterium for Whole Genome Amplification

    Directory of Open Access Journals (Sweden)

    Richard N. Zare

    2013-08-01

    Full Text Available Bacterial species from natural environments, exhibiting a great degree of genetic diversity that has yet to be characterized, pose a specific challenge to whole genome amplification (WGA from single cells. A major challenge is establishing an effective, compatible, and controlled lysis protocol. We present a novel lysis protocol that can be used to extract genomic information from a single cyanobacterium of Synechocystis sp. PCC 6803 known to have multilayer cell wall structures that resist conventional lysis methods. Simple but effective strategies for releasing genomic DNA from captured cells while retaining cellular identities for single-cell analysis are presented. Successful sequencing of genetic elements from single-cell amplicons prepared by multiple displacement amplification (MDA is demonstrated for selected genes (15 loci nearly equally spaced throughout the main chromosome.

  18. Complete genome amplification of Equine influenza virus subtype 2

    OpenAIRE

    Sguazza, G. H.; Fuentealba, N. A.; Tizzano, Marco Antonio; Galosi, Cecilia Mónica; Pecoraro, M. R.

    2009-01-01

    This work reports a method for rapid amplification of the complete genome of equine influenza virus subtype 2 (H3N8). A ThermoScriptTM reverse transcriptase instead of the avian myeloblastosis virus reverse transcriptase or Moloney murine leukemia virus reverse transcriptase was used. This enzyme has demonstrated higher thermal stability and is described as suitable to make long cDNA with a complex secondary structure. The product obtained by this method can be cloned, used in later...

  19. Complete genome amplification of Equine influenza virus subtype 2

    OpenAIRE

    Sguazza, G.H.; Fuentealba, N. A.; Tizzano, Marco Antonio; Galosi, Cecilia Mónica; M. R. Pecoraro

    2009-01-01

    This work reports a method for rapid amplification of the complete genome of equine influenza virus subtype 2 (H3N8). A ThermoScriptTM reverse transcriptase instead of the avian myeloblastosis virus reverse transcriptase or Moloney murine leukemia virus reverse transcriptase was used. This enzyme has demonstrated higher thermal stability and is described as suitable to make long cDNA with a complex secondary structure. The product obtained by this method can be cloned, used in later...

  20. A dual amplification fluorescent strategy for sensitive detection of DNA methyltransferase activity based on strand displacement amplification and DNAzyme amplification.

    Science.gov (United States)

    Cui, Wanling; Wang, Lei; Jiang, Wei

    2016-03-15

    DNA methyltransferase (MTase) plays a critical role in many biological processes and has been regarded as a predictive cancer biomarker and a therapeutic target in cancer treatment. Sensitive detection of DNA MTase activity is essential for early cancer diagnosis and therapeutics. Here, we developed a dual amplification fluorescent strategy for sensitive detection of DNA MTase activity based on strand displacement amplification (SDA) and DNAzyme amplification. A trifunctional double-stranded DNA (dsDNA) probe was designed including a methylation site for DNA MTase recognition, a complementary sequence of 8-17 DNAzyme for synthesizing DNAzyme, and a nicking site for nicking enzyme cleavage. Firstly, the trifunctional dsDNA probe was methylated by DNA MTase to form the methylated dsDNA. Subsequently, HpaII restriction endonuclease specifically cleaved the residue of unmethylated dsDNA. Next, under the action of polymerase and nicking enzyme, the methylared dsDNA initiated SDA, releasing numbers of 8-17 DNAzymes. Finally, the released 8-17 DNAzymes triggered DNAzyme amplification reaction to induce a significant fluorescence enhancement. This strategy could detect DNA MTase activity as low as 0.0082U/mL. Additionally, the strategy was successfully applied for evaluating the inhibitions of DNA MTase using two anticancer drugs, 5-azacytidine and 5-aza-2'-deoxycytidine. The results indicate the proposed strategy has a potential application in early cancer diagnosis and therapeutics.

  1. Whole Genome Amplification in Genomic Analysis of Single Circulating Tumor Cells.

    Science.gov (United States)

    Gasch, Christin; Pantel, Klaus; Riethdorf, Sabine

    2015-01-01

    Investigation of the genome of organisms is one of the major basics in molecular biology to understand the complex organization of cells. While genomic DNA can easily be isolated from tissues or cell cultures of plant, animal or human origin, DNA extraction from single cells is still challenging. Here, we describe three techniques for the amplification of genomic DNA of fixed single circulating tumor cells (CTC) isolated from blood of cancer patients. This amplification is aimed to increase DNA amounts from those of one cell to yields sufficient for different DNA analyses such as mutational analysis including next-generation sequencing, array-comparative genome hybridization (CGH), and quantitative measurement of gene amplifications. Molecular analysis of CTC as liquid biopsy can be used to identify therapeutic targets in personalized medicine directed, e.g. against human epidermal growth factor receptor 2 (HER2) or epidermal growth factor receptor (EGFR) and to stratify the patients to those therapies.

  2. Specific amplification by PCR of rearranged genomic variable regions of immunoglobulin genes from mouse hybridoma cells.

    Science.gov (United States)

    Berdoz, J; Monath, T P; Kraehenbuhl, J P

    1995-04-01

    We have designed a novel strategy for the isolation of the rearranged genomic fragments encoding the L-VH-D-JH and L-V kappa/lambda-J kappa/lambda regions of mouse immunoglobulin genes. This strategy is based on the PCR amplification of genomic DNA from mouse hybridomas using multiple specific primers chosen in the 5'-untranslated region and in the intron downstream of the rearranged JH/J kappa/lambda sequences. Variable regions with intact coding sequences, including full-length leader peptides (L) can be obtained without previous DNA sequencing. Our strategy is based on a genomic template that produces fragments that do not need to be adapted for recombinant antibody expression, thus facilitating the generation of chimeric and isotype-switched immunoglobulins.

  3. Systematic evaluation of bias in microbial community profiles induced by whole genome amplification

    NARCIS (Netherlands)

    Direito, S.O.L.; Zaura, E.; Little, M.; Ehrenfreund, P.; Röling, W.F.M.

    2014-01-01

    Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used [multiple displacement amplific

  4. Ancient DNA: genomic amplification of Roman and medieval bovine bones

    Directory of Open Access Journals (Sweden)

    A. Valentini

    2010-04-01

    Full Text Available Cattle remains (bones and teeth of both roman and medieval age were collected in the archaeological site of Ferento (Viterbo, Italy with the aim of extracting and characterising nucleic acids. Procedures to minimize contamination with modern DNA and to help ancient DNA (aDNA preservation of the archaeological remains were adopted. Different techniques to extract aDNA (like Phenol/chloroform extraction from bovine bones were tested to identify the method that applies to the peculiar characteristics of the study site. Currently, aDNA investigation is mainly based on mtDNA, due to the ease of amplification of the small and high-copied genome and to its usefulness in evolutionary studies. Preliminary amplification of both mitochondrial and nuclear aDNA fragments from samples of Roman and medieval animals were performed and partial specific sequences of mitochondrial D-loop as well as of nuclear genes were obtained. The innovative amplification of nuclear aDNA could enable the analysis of genes involved in specific animal traits, giving insights of ancient economic and cultural uses, as well as providing information on the origin of modern livestock population.

  5. Post-Fragmentation Whole Genome Amplification-Based Method

    Science.gov (United States)

    Benardini, James; LaDuc, Myron T.; Langmore, John

    2011-01-01

    This innovation is derived from a proprietary amplification scheme that is based upon random fragmentation of the genome into a series of short, overlapping templates. The resulting shorter DNA strands (fragments with defined 3 and 5 termini. Specific primers to these termini are then used to isothermally amplify this library into potentially unlimited quantities that can be used immediately for multiple downstream applications including gel eletrophoresis, quantitative polymerase chain reaction (QPCR), comparative genomic hybridization microarray, SNP analysis, and sequencing. The standard reaction can be performed with minimal hands-on time, and can produce amplified DNA in as little as three hours. Post-fragmentation whole genome amplification-based technology provides a robust and accurate method of amplifying femtogram levels of starting material into microgram yields with no detectable allele bias. The amplified DNA also facilitates the preservation of samples (spacecraft samples) by amplifying scarce amounts of template DNA into microgram concentrations in just a few hours. Based on further optimization of this technology, this could be a feasible technology to use in sample preservation for potential future sample return missions. The research and technology development described here can be pivotal in dealing with backward/forward biological contamination from planetary missions. Such efforts rely heavily on an increasing understanding of the burden and diversity of microorganisms present on spacecraft surfaces throughout assembly and testing. The development and implementation of these technologies could significantly improve the comprehensiveness and resolving power of spacecraft-associated microbial population censuses, and are important to the continued evolution and advancement of planetary protection capabilities. Current molecular procedures for assaying spacecraft-associated microbial burden and diversity have inherent sample loss issues at

  6. Copy Number Variation Analysis by Array Analysis of Single Cells Following Whole Genome Amplification.

    Science.gov (United States)

    Dimitriadou, Eftychia; Zamani Esteki, Masoud; Vermeesch, Joris Robert

    2015-01-01

    Whole genome amplification is required to ensure the availability of sufficient material for copy number variation analysis of a genome deriving from an individual cell. Here, we describe the protocols we use for copy number variation analysis of non-fixed single cells by array-based approaches following single-cell isolation and whole genome amplification. We are focusing on two alternative protocols, an isothermal and a PCR-based whole genome amplification method, followed by either comparative genome hybridization (aCGH) or SNP array analysis, respectively.

  7. Assessment of whole genome amplification for sequence capture and massively parallel sequencing.

    Directory of Open Access Journals (Sweden)

    Johanna Hasmats

    Full Text Available Exome sequence capture and massively parallel sequencing can be combined to achieve inexpensive and rapid global analyses of the functional sections of the genome. The difficulties of working with relatively small quantities of genetic material, as may be necessary when sharing tumor biopsies between collaborators for instance, can be overcome using whole genome amplification. However, the potential drawbacks of using a whole genome amplification technology based on random primers in combination with sequence capture followed by massively parallel sequencing have not yet been examined in detail, especially in the context of mutation discovery in tumor material. In this work, we compare mutations detected in sequence data for unamplified DNA, whole genome amplified DNA, and RNA originating from the same tumor tissue samples from 16 patients diagnosed with non-small cell lung cancer. The results obtained provide a comprehensive overview of the merits of these techniques for mutation analysis. We evaluated the identified genetic variants, and found that most (74% of them were observed in both the amplified and the unamplified sequence data. Eighty-nine percent of the variations found by WGA were shared with unamplified DNA. We demonstrate a strategy for avoiding allelic bias by including RNA-sequencing information.

  8. Assessment of whole genome amplification for sequence capture and massively parallel sequencing.

    Science.gov (United States)

    Hasmats, Johanna; Gréen, Henrik; Orear, Cedric; Validire, Pierre; Huss, Mikael; Käller, Max; Lundeberg, Joakim

    2014-01-01

    Exome sequence capture and massively parallel sequencing can be combined to achieve inexpensive and rapid global analyses of the functional sections of the genome. The difficulties of working with relatively small quantities of genetic material, as may be necessary when sharing tumor biopsies between collaborators for instance, can be overcome using whole genome amplification. However, the potential drawbacks of using a whole genome amplification technology based on random primers in combination with sequence capture followed by massively parallel sequencing have not yet been examined in detail, especially in the context of mutation discovery in tumor material. In this work, we compare mutations detected in sequence data for unamplified DNA, whole genome amplified DNA, and RNA originating from the same tumor tissue samples from 16 patients diagnosed with non-small cell lung cancer. The results obtained provide a comprehensive overview of the merits of these techniques for mutation analysis. We evaluated the identified genetic variants, and found that most (74%) of them were observed in both the amplified and the unamplified sequence data. Eighty-nine percent of the variations found by WGA were shared with unamplified DNA. We demonstrate a strategy for avoiding allelic bias by including RNA-sequencing information.

  9. Whole-genome amplification of single-cell genomes for next-generation sequencing.

    Science.gov (United States)

    Korfhage, Christian; Fisch, Evelyn; Fricke, Evelyn; Baedker, Silke; Loeffert, Dirk

    2013-10-11

    DNA sequence analysis and genotyping of biological samples using next-generation sequencing (NGS), microarrays, or real-time PCR is often limited by the small amount of sample available. A single cell contains only one to four copies of the genomic DNA, depending on the organism (haploid or diploid organism) and the cell-cycle phase. The DNA content of a single cell ranges from a few femtograms in bacteria to picograms in mammalia. In contrast, a deep analysis of the genome currently requires a few hundred nanograms up to micrograms of genomic DNA for library formation necessary for NGS sequencing or labeling protocols (e.g., microarrays). Consequently, accurate whole-genome amplification (WGA) of single-cell DNA is required for reliable genetic analysis (e.g., NGS) and is particularly important when genomic DNA is limited. The use of single-cell WGA has enabled the analysis of genomic heterogeneity of individual cells (e.g., somatic genomic variation in tumor cells). This unit describes how the genome of single cells can be used for WGA for further genomic studies, such as NGS. Recommendations for isolation of single cells are given and common sources of errors are discussed.

  10. Validation of whole genome amplification for analysis of the p53 tumor suppressor gene in limited amounts of tumor samples.

    Science.gov (United States)

    Hasmats, Johanna; Green, Henrik; Solnestam, Beata Werne; Zajac, Pawel; Huss, Mikael; Orear, Cedric; Validire, Pierre; Bjursell, Magnus; Lundeberg, Joakim

    2012-08-24

    Personalized cancer treatment requires molecular characterization of individual tumor biopsies. These samples are frequently only available in limited quantities hampering genomic analysis. Several whole genome amplification (WGA) protocols have been developed with reported varying representation of genomic regions post amplification. In this study we investigate region dropout using a φ29 polymerase based WGA approach. DNA from 123 lung cancers specimens and corresponding normal tissue were used and evaluated by Sanger sequencing of the p53 exons 5-8. To enable comparative analysis of this scarce material, WGA samples were compared with unamplified material using a pooling strategy of the 123 samples. In addition, a more detailed analysis of exon 7 amplicons were performed followed by extensive cloning and Sanger sequencing. Interestingly, by comparing data from the pooled samples to the individually sequenced exon 7, we demonstrate that mutations are more easily recovered from WGA pools and this was also supported by simulations of different sequencing coverage. Overall this data indicate a limited random loss of genomic regions supporting the use of whole genome amplification for genomic analysis.

  11. Review:Whole genome amplification in preimplantation genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    Ying-ming ZHENG; Ning WANG; Lei LI; Fan JIN

    2011-01-01

    Preimplantation genetic diagnosis(PGD)refers to a procedure for genetically analyzing embryos prior to implantation,improving the chance of conception for patients at high risk of transmitting specific inherited disorders.This method has been widely used for a large number of genetic disorders since the first successful application in the early 1990s.Polymerase chain reaction(PCR)and fluorescent in situ hybridization(FISH)are the two main methods in PGD,but there are some inevitable shortcomings limiting the scope of genetic diagnosis.Fortunately,different whole genome amplification(WGA)techniques have been developed to overcome these problems.Sufficient DNA can be amplified and multiple tasks which need abundant DNA can be performed.Moreover,WGA products can be analyzed as a template for multi-loci and multi-gene during the subsequent DNA analysis.In this review,we will focus on the currently available WGA techniques and their applications,as well as the new technical trends from WGA products.

  12. Genome-wide gene amplification during differentiation of neural progenitor cells in vitro.

    Science.gov (United States)

    Fischer, Ulrike; Keller, Andreas; Voss, Meike; Backes, Christina; Welter, Cornelius; Meese, Eckart

    2012-01-01

    DNA sequence amplification is a phenomenon that occurs predictably at defined stages during normal development in some organisms. Developmental gene amplification was first described in amphibians during gametogenesis and has not yet been described in humans. To date gene amplification in humans is a hallmark of many tumors. We used array-CGH (comparative genomic hybridization) and FISH (fluorescence in situ hybridization) to discover gene amplifications during in vitro differentiation of human neural progenitor cells. Here we report a complex gene amplification pattern two and five days after induction of differentiation of human neural progenitor cells. We identified several amplified genes in neural progenitor cells that are known to be amplified in malignant tumors. There is also a striking overlap of amplified chromosomal regions between differentiating neural progenitor cells and malignant tumor cells derived from astrocytes. Gene amplifications in normal human cells as physiological process has not been reported yet and may bear resemblance to developmental gene amplifications in amphibians and insects.

  13. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing

    DEFF Research Database (Denmark)

    Hou, Yong; Wu, Kui; Shi, Xulian;

    2015-01-01

    BACKGROUND: Single-cell resequencing (SCRS) provides many biomedical advances in variations detection at the single-cell level, but it currently relies on whole genome amplification (WGA). Three methods are commonly used for WGA: multiple displacement amplification (MDA), degenerate-oligonucleoti...

  14. An evaluation of multiple annealing and looping based genome amplification using a synthetic bacterial community

    KAUST Repository

    Wang, Yong

    2016-02-23

    The low biomass in environmental samples is a major challenge for microbial metagenomic studies. The amplification of a genomic DNA was frequently applied to meeting the minimum requirement of the DNA for a high-throughput next-generation-sequencing technology. Using a synthetic bacterial community, the amplification efficiency of the Multiple Annealing and Looping Based Amplification Cycles (MALBAC) kit that is originally developed to amplify the single-cell genomic DNA of mammalian organisms is examined. The DNA template of 10 pg in each reaction of the MALBAC amplification may generate enough DNA for Illumina sequencing. Using 10 pg and 100 pg templates for each reaction set, the MALBAC kit shows a stable and homogeneous amplification as indicated by the highly consistent coverage of the reads from the two amplified samples on the contigs assembled by the original unamplified sample. Although GenomePlex whole genome amplification kit allows one to generate enough DNA using 100 pg of template in each reaction, the minority of the mixed bacterial species is not linearly amplified. For both of the kits, the GC-rich regions of the genomic DNA are not efficiently amplified as suggested by the low coverage of the contigs with the high GC content. The high efficiency of the MALBAC kit is supported for the amplification of environmental microbial DNA samples, and the concerns on its application are also raised to bacterial species with the high GC content.

  15. An evaluation of multiple annealing and looping based genome amplification using a synthetic bacterial community

    Institute of Scientific and Technical Information of China (English)

    WANG Yong; GAO Zhaoming; XU Ying; LI Guangyu; HE Lisheng; QIAN Peiyuan

    2016-01-01

    The low biomass in environmental samples is a major challenge for microbial metagenomic studies. The amplification of a genomic DNA was frequently applied to meeting the minimum requirement of the DNA for a high-throughput next-generation-sequencing technology. Using a synthetic bacterial community, the amplification efficiency of the Multiple Annealing and Looping Based Amplification Cycles (MALBAC) kit that is originally developed to amplify the single-cell genomic DNA of mammalian organisms is examined. The DNA template of 10 pg in each reaction of the MALBAC amplification may generate enough DNA for Illumina sequencing. Using 10 pg and 100 pg templates for each reaction set, the MALBAC kit shows a stable and homogeneous amplification as indicated by the highly consistent coverage of the reads from the two amplified samples on the contigs assembled by the original unamplified sample. Although GenomePlex whole genome amplification kit allows one to generate enough DNA using 100 pg of template in each reaction, the minority of the mixed bacterial species is not linearly amplified. For both of the kits, the GC-rich regions of the genomic DNA are not efficiently amplified as suggested by the low coverage of the contigs with the high GC content. The high efficiency of the MALBAC kit is supported for the amplification of environmental microbial DNA samples, and the concerns on its application are also raised to bacterial species with the high GC content.

  16. Clinical characteristics and outcome of patients with neuroblastoma presenting genomic amplification of loci other than MYCN.

    Directory of Open Access Journals (Sweden)

    Anne Guimier

    Full Text Available BACKGROUND: Somatically acquired genomic alterations with MYCN amplification (MNA are key features of neuroblastoma (NB, the most common extra-cranial malignant tumour of childhood. Little is known about the frequency, clinical characteristics and outcome of NBs harbouring genomic amplification(s distinct from MYCN. METHODS: Genomic profiles of 1100 NBs from French centres studied by array-CGH were re-examined specifically to identify regional amplifications. Patients were included if amplifications distinct from the MYCN locus were seen. A subset of NBs treated at Institut Curie and harbouring MNA as determined by array-CGH without other amplification was also studied. Clinical and histology data were retrospectively collected. RESULTS: In total, 56 patients were included and categorised into 3 groups. Group 1 (n = 8 presented regional amplification(s without MNA. Locus 12q13-14 was a recurrent amplified region (4/8 cases. This group was heterogeneous in terms of INSS stages, primary localisations and histology, with atypical clinical features. Group 2 (n = 26 had MNA as well as other regional amplifications. These patients shared clinical features of those of a group of NBs MYCN amplified (Group 3, n = 22. Overall survival for group 1 was better than that of groups 2 and 3 (5 year OS: 87.5%±11% vs 34.9%±7%, log-rank p<0.05. CONCLUSION: NBs harbouring regional amplification(s without MNA are rare and seem to show atypical features in clinical presentation and genomic profile. Further high resolution genetic explorations are justified in this heterogeneous group, especially when considering these alterations as predictive markers for targeted therapy.

  17. Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing

    Directory of Open Access Journals (Sweden)

    Plant Ramona N

    2006-08-01

    Full Text Available Abstract Background Whole genome amplification is an increasingly common technique through which minute amounts of DNA can be multiplied to generate quantities suitable for genetic testing and analysis. Questions of amplification-induced error and template bias generated by these methods have previously been addressed through either small scale (SNPs or large scale (CGH array, FISH methodologies. Here we utilized whole genome sequencing to assess amplification-induced bias in both coding and non-coding regions of two bacterial genomes. Halobacterium species NRC-1 DNA and Campylobacter jejuni were amplified by several common, commercially available protocols: multiple displacement amplification, primer extension pre-amplification and degenerate oligonucleotide primed PCR. The amplification-induced bias of each method was assessed by sequencing both genomes in their entirety using the 454 Sequencing System technology and comparing the results with those obtained from unamplified controls. Results All amplification methodologies induced statistically significant bias relative to the unamplified control. For the Halobacterium species NRC-1 genome, assessed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 119 times greater than those from unamplified material, 164.0 times greater for Repli-G, 165.0 times greater for PEP-PCR and 252.0 times greater than the unamplified controls for DOP-PCR. For Campylobacter jejuni, also analyzed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 15 times greater than those from unamplified material, 19.8 times greater for Repli-G, 61.8 times greater for PEP-PCR and 220.5 times greater than the unamplified controls for DOP-PCR. Conclusion Of the amplification methodologies examined in this paper, the multiple displacement amplification products generated the least bias, and produced significantly higher yields of amplified DNA.

  18. Determining the repertoire of immunodominant proteins via whole-genome amplification of intracellular pathogens.

    Directory of Open Access Journals (Sweden)

    Michael J Dark

    Full Text Available Culturing many obligate intracellular bacteria is difficult or impossible. However, these organisms have numerous adaptations allowing for infection persistence and immune system evasion, making them some of the most interesting to study. Recent advancements in genome sequencing, pyrosequencing and Phi29 amplification, have allowed for examination of whole-genome sequences of intracellular bacteria without culture. We have applied both techniques to the model obligate intracellular pathogen Anaplasma marginale and the human pathogen Anaplasma phagocytophilum, in order to examine the ability of phi29 amplification to determine the sequence of genes allowing for immune system evasion and long-term persistence in the host. When compared to traditional pyrosequencing, phi29-mediated genome amplification had similar genome coverage, with no additional gaps in coverage. Additionally, all msp2 functional pseudogenes from two strains of A. marginale were detected and extracted from the phi29-amplified genomes, highlighting its utility in determining the full complement of genes involved in immune evasion.

  19. Whole genome amplification: Use of advanced isothermal method

    African Journals Online (AJOL)

    Yomi

    2010-12-29

    Dec 29, 2010 ... 5Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj ..... All of these factors produce nonspecific amplification ... PCRs on the same WGA yield, allelic dropout is not locus-.

  20. Genome-wide stochastic adaptive DNA amplification at direct and inverted DNA repeats in the parasite Leishmania.

    Directory of Open Access Journals (Sweden)

    Jean-Michel Ubeda

    2014-05-01

    Full Text Available Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment.

  1. Genome-wide stochastic adaptive DNA amplification at direct and inverted DNA repeats in the parasite Leishmania.

    Science.gov (United States)

    Ubeda, Jean-Michel; Raymond, Frédéric; Mukherjee, Angana; Plourde, Marie; Gingras, Hélène; Roy, Gaétan; Lapointe, Andréanne; Leprohon, Philippe; Papadopoulou, Barbara; Corbeil, Jacques; Ouellette, Marc

    2014-05-01

    Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion) of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment.

  2. Digital Droplet Multiple Displacement Amplification (ddMDA for Whole Genome Sequencing of Limited DNA Samples.

    Directory of Open Access Journals (Sweden)

    Minsoung Rhee

    Full Text Available Multiple displacement amplification (MDA is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet, ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.

  3. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    Directory of Open Access Journals (Sweden)

    Shea N. Gardner

    2014-01-01

    Full Text Available Background. Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results. A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Each group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions. This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.

  4. Identification and Characterization of Genomic Amplifications in Ovarian Serous Carcinoma

    Science.gov (United States)

    2008-01-01

    targets in the Notch pathway are the Notch receptors, in which ;-secretase inhibitors prevent the generation of the oncogenic (intracellular) domain of...mutations, and chromosomal amplification at the Notch receptor loci, are the known mechanisms for constitutive activation of Notch pathway . Despite the

  5. Advances in isothermal amplification: novel strategies inspired by biological processes.

    Science.gov (United States)

    Li, Jia; Macdonald, Joanne

    2015-02-15

    Nucleic acid amplification is an essential process in biological systems. The in vitro adoption of this process has resulted in powerful techniques that underpin modern molecular biology. The most common tool is polymerase chain reaction (PCR). However, the requirement for a thermal cycler has somewhat limited applications of this classic nucleic acid amplification technique. Isothermal amplification, on the other hand, obviates the use of a thermal cycler because reactions occur at a single temperature. Isothermal amplification methods are diverse, but all have been developed from an understanding of natural nucleic acid amplification processes. Here we review current isothermal amplification methods as classified by their enzymatic mechanisms. We compare their advantages, disadvantages, efficiencies, and applications. Finally, we mention some new developments associated with this technology, and consider future possibilities in molecular engineering and recombinant technologies that may develop from an appreciation of the molecular biology of natural systems.

  6. An efficient and high fidelity method for amplification, cloning and sequencing of complete tospovirus genomic RNA segments.

    Science.gov (United States)

    Marshall, Spencer H; Adegbola, Raphael O; Adkins, Scott; Naidu, Rayapati A

    2017-04-01

    Tospoviruses (genus Tospovirus, family Bunyaviridae) are responsible for major losses in an extensive range of crops worldwide. New species of these single-stranded, ambisense RNA viruses regularly emerge and have been shown to maintain heterogeneous populations with individual isolates having quite variable biological and virulence characteristics. Most tospovirus phylogenetic studies have focused on analysis of a single gene, most often the nucleocapsid protein gene. Complete genomic RNA segment amplification as a single fragment would facilitate more detailed analyses of genome-wide sequence variability, but obtaining such sequences for a large number of tospovirus isolates using traditional methods of amplification and cloning of small overlapping fragments is tedious, time consuming and expensive. In this study, protocols were optimized to amplify, clone and sequence full-length M- and S-RNA genome segments of Tomato spotted wilt virus and Impatiens necrotic spot virus. The strategy presented here is straightforward, scalable and offers several advantages over the previously commonplace and overlapping amplicon-based approach. Use of whole genome segments, instead of individual gene sequences or defined portions of genome segments, will facilitate a better understanding of the underlying molecular diversity of tospoviruses in mixed infections.

  7. Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage.

    Directory of Open Access Journals (Sweden)

    Rashel V Grindberg

    Full Text Available Filamentous marine cyanobacteria are extraordinarily rich sources of structurally novel, biomedically relevant natural products. To understand their biosynthetic origins as well as produce increased supplies and analog molecules, access to the clustered biosynthetic genes that encode for the assembly enzymes is necessary. Complicating these efforts is the universal presence of heterotrophic bacteria in the cell wall and sheath material of cyanobacteria obtained from the environment and those grown in uni-cyanobacterial culture. Moreover, the high similarity in genetic elements across disparate secondary metabolite biosynthetic pathways renders imprecise current gene cluster targeting strategies and contributes sequence complexity resulting in partial genome coverage. Thus, it was necessary to use a dual-method approach of single-cell genomic sequencing based on multiple displacement amplification (MDA and metagenomic library screening. Here, we report the identification of the putative apratoxin. A biosynthetic gene cluster, a potent cancer cell cytotoxin with promise for medicinal applications. The roughly 58 kb biosynthetic gene cluster is composed of 12 open reading frames and has a type I modular mixed polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS organization and features loading and off-loading domain architecture never previously described. Moreover, this work represents the first successful isolation of a complete biosynthetic gene cluster from Lyngbya bouillonii, a tropical marine cyanobacterium renowned for its production of diverse bioactive secondary metabolites.

  8. Environmental Whole-Genome Amplification to Access Microbial Diversity in Contaminated Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, C.B.; Wyborski, D.L.; Garcia, J.; Podar, M.; Chen, W.; Chang, S.H.; Chang, H.W.; Watson, D.; Brodie,E.I.; Hazen, T.C.; Keller, M.

    2005-12-10

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using ?29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2 percent genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9 percent of the sequences had significant similarities to known proteins, and ''clusters of orthologous groups'' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  9. Selective Amplification of the Genome Surrounding Key Placental Genes in Trophoblast Giant Cells.

    Science.gov (United States)

    Hannibal, Roberta L; Baker, Julie C

    2016-01-25

    While most cells maintain a diploid state, polyploid cells exist in many organisms and are particularly prevalent within the mammalian placenta [1], where they can generate more than 900 copies of the genome [2]. Polyploidy is thought to be an efficient method of increasing the content of the genome by avoiding the costly and slow process of cytokinesis [1, 3, 4]. Polyploidy can also affect gene regulation by amplifying a subset of genomic regions required for specific cellular function [1, 3, 4]. This mechanism is found in the fruit fly Drosophila melanogaster, where polyploid ovarian follicle cells amplify genomic regions containing chorion genes, which facilitate secretion of eggshell proteins [5]. Here, we report that genomic amplification also occurs in mammals at selective regions of the genome in parietal trophoblast giant cells (p-TGCs) of the mouse placenta. Using whole-genome sequencing (WGS) and digital droplet PCR (ddPCR) of mouse p-TGCs, we identified five amplified regions, each containing a gene family known to be involved in mammalian placentation: the prolactins (two clusters), serpins, cathepsins, and the natural killer (NK)/C-type lectin (CLEC) complex [6-12]. We report here the first description of amplification at selective genomic regions in mammals and present evidence that this is an important mode of genome regulation in placental TGCs.

  10. Single-tube linear DNA amplification for genome-wide studies using a few thousand cells

    NARCIS (Netherlands)

    Shankaranarayanan, P.; Mendoza-Parra, M.A.; Gool, van W.; Trindade, L.M.; Gronemeyer, H.

    2012-01-01

    Linear amplification of DNA (LinDA) by T7 polymerase is a versatile and robust method for generating sufficient amounts of DNA for genome-wide studies with minute amounts of cells. LinDA can be coupled to a great number of global profiling technologies. Indeed, chromatin immunoprecipitation coupled

  11. Chromosomal Localization of DNA Amplifications in Neuroblastoma Tumors Using cDNA Microarray Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Ben Beheshti

    2003-01-01

    Full Text Available Conventional comparative genomic hybridization (CGH profiling of neuroblastomas has identified many genomic aberrations, although the limited resolution has precluded a precise localization of sequences of interest within amplicons. To map high copy number genomic gains in clinically matched stage IV neuroblastomas, CGH analysis using a 19,200-feature cDNA microarray was used. A dedicated (freely available algorithm was developed for rapid in silico determination of chromosomal localizations of microarray cDNA targets, and for generation of an ideogram-type profile of copy number changes. Using these methodologies, novel gene amplifications undetectable by chromosome CGH were identified, and larger MYCN amplicon sizes (in one tumor up to 6 Mb than those previously reported in neuroblastoma were identified. The genes HPCAL1, LPIN1/KIAA0188, NAG, and NSE1/LOC151354 were found to be coamplified with MYCN. To determine whether stage IV primary tumors could be further subclassified based on their genomic copy number profiles, hierarchical clustering was performed. Cluster analysis of microarray CGH data identified three groups: 1 no amplifications evident, 2 a small MYCN amplicon as the only detectable imbalance, and 3 a large MYCN amplicon with additional gene amplifications. Application of CGH to cDNA microarray targets will help to determine both the variation of amplicon size and help better define amplification-dependent and independent pathways of progression in neuroblastoma.

  12. High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay

    Directory of Open Access Journals (Sweden)

    Du Yuefen

    2003-05-01

    Full Text Available Abstract Background Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods. Results A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA. Fluorescent signal output was measured in real time and as an end point. Conclusions Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample.

  13. Monodisperse Picoliter Droplets for Low-Bias and Contamination-Free Reactions in Single-Cell Whole Genome Amplification.

    Directory of Open Access Journals (Sweden)

    Yohei Nishikawa

    Full Text Available Whole genome amplification (WGA is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA, using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples.

  14. Pig genome sequence - analysis and publication strategy

    NARCIS (Netherlands)

    Archibald, A.L.; Bolund, L.; Churcher, C.; Fredholm, M.; Groenen, M.A.M.; Harlizius, B.

    2010-01-01

    Background - The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing. Results - Assemblies of the B

  15. Strategies and tools for whole genome alignments

    Energy Technology Data Exchange (ETDEWEB)

    Couronne, Olivier; Poliakov, Alexander; Bray, Nicolas; Ishkhanov,Tigran; Ryaboy, Dmitriy; Rubin, Edward; Pachter, Lior; Dubchak, Inna

    2002-11-25

    The availability of the assembled mouse genome makespossible, for the first time, an alignment and comparison of two largevertebrate genomes. We have investigated different strategies ofalignment for the subsequent analysis of conservation of genomes that areeffective for different quality assemblies. These strategies were appliedto the comparison of the working draft of the human genome with the MouseGenome Sequencing Consortium assembly, as well as other intermediatemouse assemblies. Our methods are fast and the resulting alignmentsexhibit a high degree of sensitivity, covering more than 90 percent ofknown coding exons in the human genome. We have obtained such coveragewhile preserving specificity. With a view towards the end user, we havedeveloped a suite of tools and websites for automatically aligning, andsubsequently browsing and working with whole genome comparisons. Wedescribe the use of these tools to identify conserved non-coding regionsbetween the human and mouse genomes, some of which have not beenidentified by other methods.

  16. The effect of whole genome amplification on samples originating from more than one donor

    DEFF Research Database (Denmark)

    Thacker, C.R.; Balogh, M.K.; Børsting, Claus;

    2006-01-01

    In this study, the GenomiPhi(TM) DNA Amplification Kit (Amersham Biosciences) was used to investigate the potential of whole genome amplification (WGA) when considering samples originating from more than one donor. DNA was extracted from blood samples, quantified and normalised before being mixed...... found to match the expected peak ratios regardless of the starting concentration of DNA. With samples mixed in the ratio of 1:7 and 1:15, and when the concentration of starting material was at the manufacturer's lower limit, too few minor component peaks were found to allow for statistical analysis...

  17. Strategies for Amplification of Trinucleotide Repeats: Optimization of Fragile X and Androgen Receptor PCR.

    Science.gov (United States)

    Papp; Snyder; Sedra; Guida; Prior

    1996-06-01

    Background: Trinucleotide repeat regions are heritable unstable elements that change in copy number from generation to generation. Amplification of these triplet repeats is an important diagnostic tool for molecular medicine. However, these repeats are often difficult to amplify and may require the use of different cosolvents or amplification strategies. Methods and Results: We used the fragile X and androgen receptor triplet repeat regions to demonstrate a series of conditions that may be used to optimize the amplification of repeat sequences. Conclusions: For androgen receptor, we show that predigestion of the template DNA was sufficient to generate consistent amplification. In the case of fragile X we found that predigestion, when combined with use of betaine as a destabilizing additive, was superior to other methods and yielded consistent amplification of normal and premutation alleles in both isotopic and nonisotopic reactions.

  18. Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR.

    Science.gov (United States)

    Wang, Yunzhou; Tao, Geru; Cui, Yujuan; Lv, Qiyao; Xie, Li; Li, Yuan; Suo, Xun; Qin, Yinghe; Xiao, Lihua; Liu, Xianyong

    2014-09-01

    PCR-based molecular tools are widely used for the identification and characterization of protozoa. Here we report the molecular analysis of Eimeria species using combined methods of whole genome amplification (WGA) and nested PCR. Single oocyst of Eimeria stiedai or Eimeriamedia was directly used for random amplification of the genomic DNA with either primer extension preamplification (PEP) or multiple displacement amplification (MDA), and then the WGA product was used as template in nested PCR with species-specific primers for ITS-1, 18S rDNA and 23S rDNA of E. stiedai and E. media. WGA-based PCR was successful for the amplification of these genes from single oocyst. For the species identification of single oocyst isolated from mixed E. stiedai or E. media, the results from WGA-based PCR were exactly in accordance with those from morphological identification, suggesting the availability of this method in molecular analysis of eimerian parasites at the single oocyst level. WGA-based PCR method can also be applied for the identification and genetic characterization of other protists.

  19. Genome-wide copy number profiling to detect gene amplifications in neural progenitor cells

    Directory of Open Access Journals (Sweden)

    U. Fischer

    2014-12-01

    Full Text Available DNA sequence amplification occurs at defined stages during normal development in amphibians and flies and seems to be restricted in humans to drug-resistant and tumor cells only. We used array-CGH to discover copy number changes including gene amplifications and deletions during differentiation of human neural progenitor cells. Here, we describe cell culture features, DNA extraction, and comparative genomic hybridization (CGH analysis tailored towards the identification of genomic copy number changes. Further detailed analysis of amplified chromosome regions associated with this experiment, was published by Fischer and colleagues in PLOS One in 2012 (Fischer et al., 2012. We provide detailed information on deleted chromosome regions during differentiation and give an overview on copy number changes during differentiation induction for two representative chromosome regions.

  20. Pig genome sequence - analysis and publication strategy

    DEFF Research Database (Denmark)

    Archibald, Alan L.; Bolund, Lars; Churcher, Carol;

    2010-01-01

    BACKGROUND: The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing. RESULTS: Assemblies......) is under construction and will incorporate whole genome shotgun sequence (WGS) data providing > 30x genome coverage. The WGS sequence, most of which comprise short Illumina/Solexa reads, were generated from DNA from the same single Duroc sow as the source of the BAC library from which clones were...

  1. A dumbell probe-mediated rolling circle amplification strategy for highly sensitive transcription factor detection.

    Science.gov (United States)

    Li, Chunxiang; Qiu, Xiyang; Hou, Zhaohui; Deng, Keqin

    2015-02-15

    Highly sensitive detection of transcription factors (TF) is essential to proteome and genomics research as well as clinical diagnosis. We describe herein a novel fluorescent-amplified strategy for ultrasensitive, quantitative, and inexpensive detection of TF. The strategy consists of a hairpin DNA probe containing a TF binding sequence for target TF, a dumbbell-shaped probe, a primer DNA probe designed partly complementary to hairpin DNA probe, and a dumbbell probe. In the presence of target TF, the binding of the TF with hairpin DNA probe will prohibit the hybridization of the primer DNA probe with the "stem" and "loop" region of the hairpin DNA probe, then the unhybridized region of the primer DNA will hybridize with dumbbell probe, subsequently promote the ligation reaction and the rolling circle amplification (RCA), finally, the RCA products are quantified via the fluorescent intensity of SYBR Green I (SG). Using TATA-binding protein (TBP) as a model transcription factor, the proposed assay system can specifically detect TBP with a detection limit as low as 40.7 fM, and with a linear range from 100 fM to 1 nM. Moreover, this assay related DNA probe does not involve any modification and the whole assay proceeds in one tube, which makes the assay simple and low cost. It is expected to become a powerful tool for bioanalysis and clinic diagnostic application.

  2. Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification.

    Science.gov (United States)

    Luhe, Annette Lin; Tan, Lily; Wu, Jinchuan; Zhao, Hua

    2011-05-01

    Saccharomyces cerevisiae was transformed for higher ethanol tolerance by error-prone whole genome amplification. The resulting PCR products were transformed back to the parental strain for homologous recombination to create a library of mutants with the perturbed genomic networks. A few rounds of transformation led to the isolation of mutants that grew in 9% (v/v) ethanol and 100 g glucose l(-1) compared to untransformed yeast which grew only at 6% (v/v) ethanol and 100 g glucose l(-1). © Springer Science+Business Media B.V. 2011

  3. Assessment of REPLI-g Multiple Displacement Whole Genome Amplification (WGA) Techniques for Metagenomic Applications.

    Science.gov (United States)

    Ahsanuddin, Sofia; Afshinnekoo, Ebrahim; Gandara, Jorge; Hakyemezoğlu, Mustafa; Bezdan, Daniela; Minot, Samuel; Greenfield, Nick; Mason, Christopher E

    2017-04-01

    Amplification of minute quantities of DNA is a fundamental challenge in low-biomass metagenomic and microbiome studies because of potential biases in coverage, guanine-cytosine (GC) content, and altered species abundances. Whole genome amplification (WGA), although widely used, is notorious for introducing artifact sequences, either by amplifying laboratory contaminants or by nonrandom amplification of a sample's DNA. In this study, we investigate the effect of REPLI-g multiple displacement amplification (MDA; Qiagen, Valencia, CA, USA) on sequencing data quality and species abundance detection in 8 paired metagenomic samples and 1 titrated, mixed control sample. We extracted and sequenced genomic DNA (gDNA) from 8 environmental samples and compared the quality of the sequencing data for the MDA and their corresponding non-MDA samples. The degree of REPLI-g MDA bias was evaluated by sequence metrics, species composition, and cross-validating observed species abundance and species diversity estimates using the One Codex and MetaPhlAn taxonomic classification tools. Here, we provide evidence of the overall efficacy of REPLI-g MDA on retaining sequencing data quality and species abundance measurements while providing increased yields of high-fidelity DNA. We find that species abundance estimates are largely consistent across samples, even with REPLI-g amplification, as demonstrated by the Spearman's rank order coefficient (R(2) > 0.8). However, REPLI-g MDA often produced fewer classified reads at the species, genera, and family level, resulting in decreased species diversity. We also observed some areas with the PCR "jackpot effect," with varying input DNA values for the Metagenomics Research Group (MGRG) controls at specific genomic loci. We visualize this effect in whole genome coverage plots and with sequence composition analyses and note these caveats of the MDA method. Despite overall concordance of species abundance between the amplified and unamplified samples

  4. Assessment of REPLI-g Multiple Displacement Whole Genome Amplification (WGA) Techniques for Metagenomic Applications

    Science.gov (United States)

    Ahsanuddin, Sofia; Afshinnekoo, Ebrahim; Gandara, Jorge; Hakyemezoğlu, Mustafa; Bezdan, Daniela; Minot, Samuel; Greenfield, Nick; Mason, Christopher E.

    2017-01-01

    Amplification of minute quantities of DNA is a fundamental challenge in low-biomass metagenomic and microbiome studies because of potential biases in coverage, guanine-cytosine (GC) content, and altered species abundances. Whole genome amplification (WGA), although widely used, is notorious for introducing artifact sequences, either by amplifying laboratory contaminants or by nonrandom amplification of a sample’s DNA. In this study, we investigate the effect of REPLI-g multiple displacement amplification (MDA; Qiagen, Valencia, CA, USA) on sequencing data quality and species abundance detection in 8 paired metagenomic samples and 1 titrated, mixed control sample. We extracted and sequenced genomic DNA (gDNA) from 8 environmental samples and compared the quality of the sequencing data for the MDA and their corresponding non-MDA samples. The degree of REPLI-g MDA bias was evaluated by sequence metrics, species composition, and cross-validating observed species abundance and species diversity estimates using the One Codex and MetaPhlAn taxonomic classification tools. Here, we provide evidence of the overall efficacy of REPLI-g MDA on retaining sequencing data quality and species abundance measurements while providing increased yields of high-fidelity DNA. We find that species abundance estimates are largely consistent across samples, even with REPLI-g amplification, as demonstrated by the Spearman’s rank order coefficient (R2 > 0.8). However, REPLI-g MDA often produced fewer classified reads at the species, genera, and family level, resulting in decreased species diversity. We also observed some areas with the PCR “jackpot effect,” with varying input DNA values for the Metagenomics Research Group (MGRG) controls at specific genomic loci. We visualize this effect in whole genome coverage plots and with sequence composition analyses and note these caveats of the MDA method. Despite overall concordance of species abundance between the amplified and unamplified

  5. Genomic amplification upregulates estrogen-related receptor alpha and its depletion inhibits oral squamous cell carcinoma tumors in vivo.

    Science.gov (United States)

    Tiwari, Ankana; Swamy, Shivananda; Gopinath, Kodaganur S; Kumar, Arun

    2015-12-07

    The ESRRA gene encodes a transcription factor and regulates several genes, such as WNT11 and OPN, involved in tumorigenesis. It is upregulated in several cancers, including OSCC. We have previously shown that the tumor suppressor miR-125a targets ESRRA, and its downregulation causes upregulation of ESRRA in OSCC. Upregulation of ESRRA in the absence of downregulation of miR-125a in a subset of OSCC samples suggests the involvement of an alternative mechanism. Using TaqMan(®) copy number assay, here we report for the first time that the genomic amplification of ESRRA causes its upregulation in a subset of OSCC samples. Ectopic overexpression of ESRRA led to accelerated cell proliferation, anchorage-independent cell growth and invasion, and inhibited apoptosis. Whereas, knockdown of ESRRA expression by siRNA led to reduced cell proliferation, anchorage-independent cell growth and invasion, and accelerated apoptosis. Furthermore, the delivery of a synthetic biostable ESRRA siRNA to OSCC cells resulted in regression of xenografts in nude mice. Thus, the genomic amplification of ESRRA is another novel mechanism for its upregulation in OSCC. Based on our in vitro and in vivo experiments, we suggest that targeting ESRRA by siRNA could be a novel therapeutic strategy for OSCC and other cancers.

  6. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin, E-mail: liusq@seu.edu.cn

    2015-06-02

    Highlights: • We review the innovative advances in polymer-based signal amplification. • Conceptual connectivity between different amplified methodologies is illustrated. • Examples explain the mechanisms of polymers/polymerizations-based amplification. • Several elegant applications are summarized that illustrate underlying concept. - Abstract: Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted.

  7. Amplification of HER2 is a marker for global genomic instability

    Directory of Open Access Journals (Sweden)

    Love Brad

    2008-10-01

    Full Text Available Abstract Background Genomic alterations of the proto-oncogene c-erbB-2 (HER-2/neu are associated with aggressive behavior and poor prognosis in patients with breast cancer. The variable clinical outcomes seen in patients with similar HER2 status, given similar treatments, suggests that the effects of amplification of HER2 can be influenced by other genetic changes. To assess the broader genomic implications of structural changes at the HER2 locus, we investigated relationships between genomic instability and HER2 status in patients with invasive breast cancer. Methods HER2 status was determined using the PathVysion® assay. DNA was extracted after laser microdissection from the 181 paraffin-embedded HER2 amplified (n = 39 or HER2 negative (n = 142 tumor specimens with sufficient tumor available to perform molecular analysis. Allelic imbalance (AI was assessed using a panel of microsatellite markers representing 26 chromosomal regions commonly altered in breast cancer. Student t-tests and partial correlations were used to investigate relationships between genomic instability and HER2 status. Results The frequency of AI was significantly higher (P P Conclusion The poor prognosis associated with HER2 amplification may be attributed to global genomic instability as cells with high frequencies of chromosomal alterations have been associated with increased cellular proliferation and aggressive behavior. In addition, high levels of DNA damage may render tumor cells refractory to treatment. In addition, specific alterations at chromosomes 11q13, 16q22-q24, and 18q21, all of which have been associated with aggressive tumor behavior, may serve as genetic modifiers to HER2 amplification. These data not only improve our understanding of HER in breast pathogenesis but may allow more accurate risk profiles and better treatment options to be developed.

  8. Single Cell Analysis of Dystrophin and SRY Gene by Using Whole Genome Amplification

    Institute of Scientific and Technical Information of China (English)

    徐晨明; 金帆; 黄荷凤; 陶冶; 叶英辉

    2001-01-01

    Objective To develop a reliable and sensitive method for detection of sex and multiloci of Duchenne muscular dystrophy (DMD) gene in single cell Materials & methods Whole genome of single cell were amplified by using 15-base random primers (primer extension preamplification, PEP), then a small aliquot of PEP product were analyzed by using locus-specific nest PCR amplification. The procedure was evaluated by detection dystrophin exons 8, 17, 19, 44, 45, 48 and human testis-determining gene (SRY)in single lymphocytes from known sources and single blastomeres from the couples with no family history of DMD.Results The amplification efficiency rate of six dystrophin exons from single lymphocytes and single blastomeres were 97. 2% (175/180) and 100% (60/60) respectively.Results of SRY showed that 100% (15/15) amplification in single male-derived lymphocytes and 0% (0/15) amplification in single female-derived lymphocytes. Conclusion The technique of single cell PEP-nest PCR for dystrophin exons 8, 17,19, 44, 45, 48 and SRY is highly specifc. PEP-nest PCR is suitable for Preimplantation genetic diagnosis (PGD) of DMD at single cell level.

  9. A novel whole genome amplification method using type IIS restriction enzymes to create overhangs with random sequences.

    Science.gov (United States)

    Pan, Xiaoming; Wan, Baihui; Li, Chunchuan; Liu, Yu; Wang, Jing; Mou, Haijin; Liang, Xingguo

    2014-08-20

    Ligation-mediated polymerase chain reaction (LM-PCR) is a whole genome amplification (WGA) method, for which genomic DNA is cleaved into numerous fragments and then all of the fragments are amplified by PCR after attaching a universal end sequence. However, the self-ligation of these fragments could happen and may cause biased amplification and restriction of its application. To decrease the self-ligation probability, here we use type IIS restriction enzymes to digest genomic DNA into fragments with 4-5nt long overhangs with random sequences. After ligation to an adapter with random end sequences to above fragments, PCR is carried out and almost all present DNA sequences are amplified. In this study, whole genome of Vibrio parahaemolyticus was amplified and the amplification efficiency was evaluated by quantitative PCR. The results suggested that our approach could provide sufficient genomic DNA with good quality to meet requirements of various genetic analyses.

  10. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.

    Science.gov (United States)

    Wang, Ping; Zhang, Tonghuan; Yang, Taoyi; Jin, Nan; Zhao, Yanjun; Fan, Aiping

    2014-08-07

    A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.

  11. Amplification of HER2 is a marker for global genomic instability.

    Science.gov (United States)

    Ellsworth, Rachel E; Ellsworth, Darrell L; Patney, Heather L; Deyarmin, Brenda; Love, Brad; Hooke, Jeffrey A; Shriver, Craig D

    2008-10-14

    Genomic alterations of the proto-oncogene c-erbB-2 (HER-2/neu) are associated with aggressive behavior and poor prognosis in patients with breast cancer. The variable clinical outcomes seen in patients with similar HER2 status, given similar treatments, suggests that the effects of amplification of HER2 can be influenced by other genetic changes. To assess the broader genomic implications of structural changes at the HER2 locus, we investigated relationships between genomic instability and HER2 status in patients with invasive breast cancer. HER2 status was determined using the PathVysion assay. DNA was extracted after laser microdissection from the 181 paraffin-embedded HER2 amplified (n=39) or HER2 negative (n=142) tumor specimens with sufficient tumor available to perform molecular analysis. Allelic imbalance (AI) was assessed using a panel of microsatellite markers representing 26 chromosomal regions commonly altered in breast cancer. Student t-tests and partial correlations were used to investigate relationships between genomic instability and HER2 status. The frequency of AI was significantly higher (P.005) in HER2 amplified (27%) compared to HER2 negative tumors (19%). Samples with HER2 amplification showed significantly higher levels of AI (P.05) at chromosomes 11q23, 16q22-q24 and 18q21. Partial correlations including ER status and tumor grade supported associations between HER2 status and alterations at 11q13.1, 16q22-q24 and 18q21. The poor prognosis associated with HER2 amplification may be attributed to global genomic instability as cells with high frequencies of chromosomal alterations have been associated with increased cellular proliferation and aggressive behavior. In addition, high levels of DNA damage may render tumor cells refractory to treatment. In addition, specific alterations at chromosomes 11q13, 16q22-q24, and 18q21, all of which have been associated with aggressive tumor behavior, may serve as genetic modifiers to HER2 amplification

  12. New Perspectives on Microbial Community Distortion after Whole-Genome Amplification

    Science.gov (United States)

    DeSantis, Todd Z.; Santo Domingo, Jorge W.; Ashbolt, Nicholas

    2015-01-01

    Whole-genome amplification (WGA) has become an important tool to explore the genomic information of microorganisms in an environmental sample with limited biomass, however potential selective biases during the amplification processes are poorly understood. Here, we describe the effects of WGA on 31 different microbial communities from five biotopes that also included low-biomass samples from drinking water and groundwater. Our findings provide evidence that microbiome segregation by biotope was possible despite WGA treatment. Nevertheless, samples from different biotopes revealed different levels of distortion, with genomic GC content significantly correlated with WGA perturbation. Certain phylogenetic clades revealed a homogenous trend across various sample types, for instance Alpha- and Betaproteobacteria showed a decrease in their abundance after WGA treatment. On the other hand, Enterobacteriaceae, an important biomarker group for fecal contamination in groundwater and drinking water, were strongly affected by WGA treatment without a predictable pattern. These novel results describe the impact of WGA on low-biomass samples and may highlight issues to be aware of when designing future metagenomic studies that necessitate preceding WGA treatment. PMID:26010362

  13. Multiple displacement amplification of whole genomic DNA from urediospores of Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Zhang, R; Ma, Z H; Wu, B M

    2015-05-01

    Biotrophic fungi, such as Puccinia striiformis f. sp. tritici, because they cannot be cultured on nutrient media, to obtain adequate quantity of DNA for molecular genetic analysis, are usually propagated on living hosts, wheat plants in case of P. striiformis f. sp. tritici. The propagation process is time-, space- and labor-consuming and has been a bottleneck to molecular genetic analysis of this pathogen. In this study we evaluated multiple displacement amplification (MDA) of pathogen genomic DNA from urediospores as an alternative approach to traditional propagation of urediospores followed by DNA extraction. The quantities of pathogen genomic DNA in the products were further determined via real-time PCR with a pair of primers specific for the β-tubulin gene of P. striiformis f. sp. tritici. The amplified fragment length polymorphism (AFLP) fingerprints were also compared between the DNA products. The results demonstrated that adequate genomic DNA at fragment size larger than 23 Kb could be amplified from 20 to 30 urediospores via MDA method. The real-time PCR results suggested that although fresh urediospores collected from diseased leaves were the best, spores picked from diseased leaves stored for a prolonged period could also be used for amplification. AFLP fingerprints exhibited no significant differences between amplified DNA and DNA extracted with CTAB method, suggesting amplified DNA can represent the pathogen's genomic DNA very well. Therefore, MDA could be used to obtain genomic DNA from small precious samples (dozens of spores) for molecular genetic analysis of wheat stripe rust pathogen, and other fungi that are difficult to propagate.

  14. Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges.

    Science.gov (United States)

    Qing, Taiping; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Wen, Li; Shangguan, Jingfang; Mao, Zhengui; Lei, Yanli

    2016-04-01

    Owing to their highly efficient catalytic effects and substrate specificity, the nucleic acid tool enzymes are applied as 'nano-tools' for manipulating different nucleic acid substrates both in the test-tube and in living organisms. In addition to the function as molecular scissors and molecular glue in genetic engineering, the application of nucleic acid tool enzymes in biochemical analysis has also been extensively developed in the past few decades. Used as amplifying labels for biorecognition events, the nucleic acid tool enzymes are mainly applied in nucleic acids amplification sensing, as well as the amplification sensing of biorelated variations of nucleic acids. With the introduction of aptamers, which can bind different target molecules, the nucleic acid tool enzymes-aided signal amplification strategies can also be used to sense non-nucleic targets (e.g., ions, small molecules, proteins, and cells). This review describes and discusses the amplification strategies of nucleic acid tool enzymes-aided biosensors for biochemical analysis applications. Various analytes, including nucleic acids, ions, small molecules, proteins, and cells, are reviewed briefly. This work also addresses the future trends and outlooks for signal amplification in nucleic acid tool enzymes-aided biosensors.

  15. A primer design strategy for PCR amplification of GC-rich DNA sequences.

    Science.gov (United States)

    Li, Li-Yan; Li, Qiang; Yu, Yan-Hong; Zhong, Mei; Yang, Lei; Wu, Qing-Hong; Qiu, Yu-Rong; Luo, Shen-Qiu

    2011-06-01

    To establish a primer design method for amplification of GC-rich DNA sequences. A group of 15 pairs of primers with higher T(m) (>79.7°C) and lower level ΔT(m) (designed to amplify GC-rich sequences (66.0%-84.0%). The statistical analysis of primer parameters and GC content of PCR products was performed and compared with literatures. Other control experiments were conducted using shortened primers for GC-rich PCR amplifications in this study, and the statistical analysis of shortened primer parameters and GC content of PCR products was performed compared with primers not shortened. A group of 26 pairs of primers were designed to test the applicability of this primer designing strategy in amplifications of non-GC-rich sequences (35.2%-53.5%). All the DNA sequences in this study were successfully amplified. Statistical analyses show that the T(m) and ΔT(m) were the main factors influencing amplifications. This primer designing strategy offered a perfect tool for amplification of GC-rich sequences. It proves that the secondary structures cannot be formed at higher annealing temperature conditions (>65°C), and we can overcome this difficulty easily by designing primers and using higher annealing temperature. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  16. Rapid detection of microbial DNA by a novel isothermal genome exponential amplification reaction (GEAR) assay.

    Science.gov (United States)

    Prithiviraj, Jothikumar; Hill, Vincent; Jothikumar, Narayanan

    2012-04-20

    In this study we report the development of a simple target-specific isothermal nucleic acid amplification technique, termed genome exponential amplification reaction (GEAR). Escherichia coli was selected as the microbial target to demonstrate the GEAR technique as a proof of concept. The GEAR technique uses a set of four primers; in the present study these primers targeted 5 regions on the 16S rRNA gene of E. coli. The outer forward and reverse Tab primer sequences are complementary to each other at their 5' end, whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The GEAR assay was performed at a constant temperature 60 °C and monitored continuously in a real-time PCR instrument in the presence of an intercalating dye (SYTO 9). The GEAR assay enabled amplification of as few as one colony forming units of E. coli per reaction within 30 min. We also evaluated the GEAR assay for rapid identification of bacterial colonies cultured on agar media directly in the reaction without DNA extraction. Cells from E. coli colonies were picked and added directly to GEAR assay mastermix without prior DNA extraction. DNA in the cells could be amplified, yielding positive results within 15 min.

  17. Cascaded multiple amplification strategy for ultrasensitive detection of HIV/HCV virus DNA.

    Science.gov (United States)

    Wang, Kun; Fan, Daoqing; Liu, Yaqing; Dong, Shaojun

    2017-01-15

    Ultrasensitive detection of HIV and HCV virus DNA is of great importance for early accurate diagnostics and therapy of HIV virus-infected patients. Herein, to our best knowledge, it is the first to use DNA cascaded multiple amplification strategy for ultrasensitive detection of HIV virus DNA with G-quadruplex-specific fluorescent or colorimetric probes as signal carriers. The developed strategy also exhibited universal applicability for HCV virus DNA detection. After reaction for about 4h, high sensitivity and specificity can be achieved at both fluorescent and colorimetric strategies (limit of detection (LOD) of 10 fM and 0.5pM were reached for fluorescent and colorimetric detection, respectively). And the single-based mismatched DNA even can be distinguished by naked eyes. It is believed that the cascaded multiple amplification strategy presents a huge advance in sensing platform and potential application in future clinical diagnosis.

  18. Single Cell HLA Matching Feasibility by Whole Genomic Amplification and Nested PCR

    Institute of Scientific and Technical Information of China (English)

    Xiao-hong Li; Fang-yin Meng

    2004-01-01

    @@ PCR based single-cell DNA analysis has been widely used in forensic science, preimplantation genetic diagnosis and so on. However, the original sample cannot be efficiently retrieved following single cell PCR, consequently the amount of information gained is limited. HLA system is too sophisticated that it is very hard to complete HLA typing by single cell. A Taq polymerase-based method using random primers to amplify whole genome termed as whole genome amplification (WGA) has demonstrated to be a useful method in increasing the copies of minimum sample. We establish a technique in this study to amplify HLA-A and HLA-B loci at same time in a single cell using WGA.

  19. Mutation and genomic amplification of the PIK3CA proto-oncogene in pituitary adenomas

    Energy Technology Data Exchange (ETDEWEB)

    Murat, C.B.; Braga, P.B.S.; Fortes, M.A.H.Z. [Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Bronstein, M.D. [Unidade de Neuroendocrinologia, Serviço de Endocrinologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Corrêa-Giannella, M.L.C.; Giorgi, R.R. [Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-07-13

    The tumorigenesis of pituitary adenomas is poorly understood. Mutations of the PIK3CA proto-oncogene, which encodes the p110-α catalytic subunit of PI3K, have been reported in various types of human cancers regarding the role of the gene in cell proliferation and survival through activation of the PI3K/Akt signaling pathway. Only one Chinese study described somatic mutations and amplification of the PIK3CA gene in a large series of pituitary adenomas. The aim of the present study was to determine genetic alterations of PIK3CA in a second series that consisted of 33 pituitary adenomas of different subtypes diagnosed by immunohistochemistry: 6 adrenocorticotropic hormone-secreting microadenomas, 5 growth hormone-secreting macroadenomas, 7 prolactin-secreting macroadenomas, and 15 nonfunctioning macroadenomas. Direct sequencing of exons 9 and 20 assessed by qPCR was employed to investigate the presence of mutations and genomic amplification defined as a copy number ≥4. Previously identified PIK3CA mutations (exon 20) were detected in four cases (12.1%). Interestingly, the Chinese study reported mutations only in invasive tumors, while we found a PIK3CA mutation in one noninvasive corticotroph microadenoma. PIK3CA amplification was observed in 21.2% (7/33) of the cases. This study demonstrates the presence of somatic mutations and amplifications of the PIK3CA gene in a second series of pituitary adenomas, corroborating the previously described involvement of the PI3K/Akt signaling pathway in the tumorigenic process of this gland.

  20. Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy.

    Science.gov (United States)

    Yang, Xingwang; Qian, Jing; Jiang, Ling; Yan, Yuting; Wang, Kan; Liu, Qian; Wang, Kun

    2014-04-01

    Ochratoxin A (OTA) has a number of toxic effects to both humans and animals, so developing sensitive detection method is of great importance. Herein, we describe an ultrasensitive electrochemical aptasensor for OTA based on the two-level cascaded signal amplification strategy with methylene blue (MB) as a redox indicator. In this method, capture DNA, aptamers, and reporter DNA functionalized-gold nanoparticles (GNPs) were immobilized on the electrode accordingly, where GNPs were used as the first-level signal enhancer. To receive the more sensitive response, a larger number of guanine (G)-rich DNA was bound to the GNPs' surface to provide abundant anchoring sites for MB to achieve the second-level signal amplification. By employing this novel strategy, an ~8.5 (±0.3) fold amplification in signal intensity was obtained. Afterward, OTA was added to force partial GNPs/G-rich DNA to release from the sensing interface and thus decreased the electrochemical response. An effective sensing range from 2.5pM to 2.5nM was received with an extremely low detection limit of 0.75 (±0.12) pM. This amplification strategy has the potential to be the main technology for aptamer-based electrochemical biosensor in a variety of fields.

  1. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    Energy Technology Data Exchange (ETDEWEB)

    Deymier, Martin J., E-mail: mdeymie@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Claiborne, Daniel T., E-mail: dclaibo@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ende, Zachary, E-mail: zende@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ratner, Hannah K., E-mail: hannah.ratner@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Kilembe, William, E-mail: wkilembe@rzhrg-mail.org [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Allen, Susan, E-mail: sallen5@emory.edu [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States); Hunter, Eric, E-mail: eric.hunter2@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States)

    2014-11-15

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  2. Amplification of Whole Tumor Genomes and Gene-by-Gene Mapping of Genomic Aberrations from Limited Sources of Fresh-Frozen and Paraffin-Embedded DNA

    Science.gov (United States)

    Bredel, Markus; Bredel, Claudia; Juric, Dejan; Kim, Young; Vogel, Hannes; Harsh, Griffith R.; Recht, Lawrence D.; Pollack, Jonathan R.; Sikic, Branimir I.

    2005-01-01

    Sufficient quantity of genomic DNA can be a bottleneck in genome-wide analysis of clinical tissue samples. DNA polymerase Phi29 can be used for the random-primed amplification of whole genomes, although the amplification may introduce bias in gene dosage. We have performed a detailed investigation of this technique in archival fresh-frozen and formalin-fixed/paraffin-embedded tumor DNA by using cDNA microarray-based comparative genomic hybridization. Phi29 amplified DNA from matched pairs of fresh-frozen and formalin-fixed/paraffin-embedded tumor samples with similar efficiency. The distortion in gene dosage representation in the amplified DNA was nonrandom and reproducibly involved distinct genomic loci. Regional amplification efficiency was significantly linked to regional GC content of the template genome. The biased gene representation in amplified tumor DNA could be effectively normalized by using amplified reference DNA. Our data suggest that genome-wide gene dosage alterations in clinical tumor samples can be reliably assessed from a few hundred tumor cells. Therefore, this amplification method should lend itself to high-throughput genetic analyses of limited sources of tumor, such as fine-needle biopsies, laser-microdissected tissue, and small paraffin-embedded specimens. PMID:15858140

  3. Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress.

    Science.gov (United States)

    James, Tharappel C; Usher, Jane; Campbell, Susan; Bond, Ursula

    2008-03-01

    A long-term goal of the brewing industry is to identify yeast strains with increased tolerance to the stresses experienced during the brewing process. We have characterised the genomes of a number of stress-tolerant mutants, derived from the lager yeast strain CMBS-33, that were selected for tolerance to high temperatures and to growth in high specific gravity wort. Our results indicate that the heat-tolerant strains have undergone a number of gross chromosomal rearrangements when compared to the parental strain. To determine if such rearrangements can spontaneously arise in response to exposure to stress conditions experienced during the brewing process, we examined the chromosome integrity of both the stress-tolerant strains and their parent during a single round of fermentation under a variety of environmental stresses. Our results show that the lager yeast genome shows tremendous plasticity during fermentation, especially when fermentations are carried out in high specific gravity wort and at higher than normal temperatures. Many localised regions of gene amplification were observed especially at the telomeres and at the rRNA gene locus on chromosome XII, and general chromosomal instability was evident. However, gross chromosomal rearrangements were not detected, indicating that continued selection in the stress conditions are required to obtain clonal isolates with stable rearrangements. Taken together, the data suggest that lager yeasts display a high degree of genomic plasticity and undergo genomic changes in response to environmental stress.

  4. Large fragment Bst DNA polymerase for whole genome amplification of DNA from formalin-fixed paraffin-embedded tissues

    Directory of Open Access Journals (Sweden)

    Watson Spencer K

    2006-12-01

    Full Text Available Abstract Background Formalin-fixed paraffin-embedded (FFPE tissues represent the largest source of archival biological material available for genomic studies of human cancer. Therefore, it is desirable to develop methods that enable whole genome amplification (WGA using DNA extracted from FFPE tissues. Multiple-strand Displacement Amplification (MDA is an isothermal method for WGA that uses the large fragment of Bst DNA polymerase. To date, MDA has been feasible only for genomic DNA isolated from fresh or snap-frozen tissue, and yields a representational distortion of less than threefold. Results We amplified genomic DNA of five FFPE samples of normal human lung tissue with the large fragment of Bst DNA polymerase. Using quantitative PCR, the copy number of 7 genes was evaluated in both amplified and original DNA samples. Four neuroblastoma xenograft samples derived from cell lines with known N-myc gene copy number were also evaluated, as were 7 samples of non-small cell lung cancer (NSCLC tumors with known Skp2 gene amplification. In addition, we compared the array comparative genomic hybridization (CGH-based genome profiles of two NSCLC samples before and after Bst MDA. A median 990-fold amplification of DNA was achieved. The DNA amplification products had a very high molecular weight (> 23 Kb. When the gene content of the amplified samples was compared to that of the original samples, the representational distortion was limited to threefold. Array CGH genome profiles of amplified and non-amplified FFPE DNA were similar. Conclusion Large fragment Bst DNA polymerase is suitable for WGA of DNA extracted from FFPE tissues, with an expected maximal representational distortion of threefold. Amplified DNA may be used for the detection of gene copy number changes by quantitative realtime PCR and genome profiling by array CGH.

  5. Identification of nine genomic regions of amplification in urothelial carcinoma, correlation with stage, and potential prognostic and therapeutic value.

    Directory of Open Access Journals (Sweden)

    Yvonne Chekaluk

    Full Text Available We performed a genome wide analysis of 164 urothelial carcinoma samples and 27 bladder cancer cell lines to identify copy number changes associated with disease characteristics, and examined the association of amplification events with stage and grade of disease. Multiplex inversion probe (MIP analysis, a recently developed genomic technique, was used to study 80 urothelial carcinomas to identify mutations and copy number changes. Selected amplification events were then analyzed in a validation cohort of 84 bladder cancers by multiplex ligation-dependent probe assay (MLPA. In the MIP analysis, 44 regions of significant copy number change were identified using GISTIC. Nine gene-containing regions of amplification were selected for validation in the second cohort by MLPA. Amplification events at these 9 genomic regions were found to correlate strongly with stage, being seen in only 2 of 23 (9% Ta grade 1 or 1-2 cancers, in contrast to 31 of 61 (51% Ta grade 3 and T2 grade 2 cancers, p<0.001. These observations suggest that analysis of genomic amplification of these 9 regions might help distinguish non-invasive from invasive urothelial carcinoma, although further study is required. Both MIP and MLPA methods perform well on formalin-fixed paraffin-embedded DNA, enhancing their potential clinical use. Furthermore several of the amplified genes identified here (ERBB2, MDM2, CCND1 are potential therapeutic targets.

  6. Impact of whole-genome amplification on the reliability of pre-transfer cattle embryo breeding value estimates.

    Science.gov (United States)

    Shojaei Saadi, Habib A; Vigneault, Christian; Sargolzaei, Mehdi; Gagné, Dominic; Fournier, Éric; de Montera, Béatrice; Chesnais, Jacques; Blondin, Patrick; Robert, Claude

    2014-10-12

    Genome-wide profiling of single-nucleotide polymorphisms is receiving increasing attention as a method of pre-implantation genetic diagnosis in humans and of commercial genotyping of pre-transfer embryos in cattle. However, the very small quantity of genomic DNA in biopsy material from early embryos poses daunting technical challenges. A reliable whole-genome amplification (WGA) procedure would greatly facilitate the procedure. Several PCR-based and non-PCR based WGA technologies, namely multiple displacement amplification, quasi-random primed library synthesis followed by PCR, ligation-mediated PCR, and single-primer isothermal amplification were tested in combination with different DNA extractions protocols for various quantities of genomic DNA inputs. The efficiency of each method was evaluated by comparing the genotypes obtained from 15 cultured cells (representative of an embryonic biopsy) to unamplified reference gDNA. The gDNA input, gDNA extraction method and amplification technology were all found to be critical for successful genome-wide genotyping. The selected WGA platform was then tested on embryo biopsies (n = 226), comparing their results to that of biopsies collected after birth. Although WGA inevitably leads to a random loss of information and to the introduction of erroneous genotypes, following genomic imputation the resulting genetic index of both sources of DNA were highly correlated (r = 0.99, PDNA in sufficient quantities for successful genome-wide genotyping starting from an early embryo biopsy. However, imputation from parental and population genotypes is a requirement for completing and correcting genotypic data. Judicious selection of the WGA platform, careful handling of the samples and genomic imputation together, make it possible to perform extremely reliable genomic evaluations for pre-transfer embryos.

  7. Isothermal rolling circle amplification of virus genomes for rapid antigen detection and typing.

    Science.gov (United States)

    Brasino, Michael D; Cha, Jennifer N

    2015-08-01

    In this work, isothermal rolling circle amplification (RCA) of the multi-kilobase genome of engineered filamentous bacteriophage is used to report the presence and identification of specific protein analytes in solution. First, bacteriophages were chosen as sensing platforms because peptides or antibodies that bind medically relevant targets can be isolated through phage display or expressed as fusions to their p3 and p8 coat proteins. Second, the circular, single-stranded genome contained within the phage serves as a natural large DNA template for a RCA reaction to rapidly generate exponential amounts of double stranded DNA in a single isothermal step that can be easily detected using low-cost fluorescent nucleic acid stains. Amplifying the entire phage genome also provides high detection sensitivities. Furthermore, since the sequence of the viral DNA can be easily modified with multiple restriction enzyme sites, a simple DNA digest can be applied to detect and identify multiple antigens simultaneously. The methods developed here will lead to protein sensors that are highly scalable to produce, can be run without complex biological equipment and do not require the use of multiple antibodies or high-cost fluorescent DNA probes or nucleotides.

  8. Improved rapid amplification of cDNA ends (RACE) for mapping both the 5' and 3' terminal sequences of paramyxovirus genomes.

    Science.gov (United States)

    Li, Zhuo; Yu, Meng; Zhang, Hong; Wang, Hai-Yan; Wang, Lin-Fa

    2005-12-01

    Rapid amplification of cDNA ends (RACE) is a powerful PCR-based technique for determination of RNA terminal sequences. However, most of the RACE methods reported in the literature are developed specifically for the mapping of eukaryotic transcripts with 3' poly-A tail and 5' cap structure. In this study, an improved RACE strategy was developed which allows both 5' and 3' RACE of paramyxovirus genomic RNA using the same set of common molecular biology reagents without having to rely on expensive RACE kits. Mapping of RNA genome terminal sequences is an essential part of characterizing novel paramyxoviruses since these sequences contain important signals for genome replication and transcription, and are important molecular markers for studying virus evolution. The usefulness of this strategy was demonstrated by rapid characterization of both genome ends for a novel paramyxovirus recently isolated from human kidney primary cells. The RACE strategy described in this paper is simple, cost-effective and can be used to map genome ends of any RNA viruses.

  9. Three different signal amplification strategies for the impedimetric sandwich detection of thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Ocaña, Cristina; Valle, Manel del, E-mail: manel.delvalle@uab.cat

    2016-03-17

    In this work, we report a comparative study on three highly specific amplification strategies for the ultrasensitive detection of thrombin with the use of aptamer sandwich protocol. The protocol consisted on the use of a first thrombin aptamer immobilized on the electrode surface, the recognition of thrombin protein, and the reaction with a second biotinylated thrombin aptamer forming the sandwich. Through the exposed biotin end, three variants have been tested to amplify the electrochemical impedance signal. The strategies included (a) silver enhancement treatment, (b) gold enhancement treatment and (c) insoluble product produced by the combination of the enzyme horseradish peroxidase (HRP) and 3-amino-9-ethylcarbazole (AEC). The properties of the sensing surface were probed by electrochemical impedance measurements in the presence of the ferrocyanide/ferricyanide redox marker. Insoluble product strategy and silver enhancement treatment resulted in the lowest detection limit (0.3 pM), while gold enhancement method resulted in the highest reproducibility, 8.8% RSD at the pM thrombin concentration levels. Results of silver and gold enhancement treatment also permitted direct inspection by scanning electron microscopy (SEM). - Highlights: • Aptasensor to detect thrombin reaching the femtomolar level. • Biosensing protocol employs two thrombin aptamers in a sandwich capture scheme. • Use of second biotinylated aptamer allows many amplification and detection variants. • Precipitation reaction provides the highest signal amplification of ca. 3 times. • Double recognition event improves remarkably selectivity for thrombin detection.

  10. Therapeutic potential of PRL-3 targeting and clinical significance of PRL-3 genomic amplification in gastric cancer

    Directory of Open Access Journals (Sweden)

    Nishimiya Hiroshi

    2011-04-01

    Full Text Available Abstract Background Phosphatase of regenerating liver-3 (PRL-3 has deserved attention as a crucial molecule in the multiple steps of metastasis. In the present study, we examined the mechanisms regulating PRL-3 expression, and assessed the clinical potential of PRL-3-targeted therapy in gastric cancer. Methods PRL-3 genomic amplification was analyzed using quantitative-polymerase chain reaction and/or fluorescence in situ hybridization in 77 primary gastric tumors. The anticancer activity of PRL-3 inhibitor (1-4-bromo-2-benzylidene rhodanine treatment was evaluated against cancer cells with different genetic and expression status. Results PRL-3 genomic amplification was closely concordant with high level of its protein expression in cell lines, and was found in 20% (8/40 among human primary tumors with its expression, which were all stage III/IV disease (40%, 8/20, but in none (0/37 among those without expression. Additionally, PRL-3 genomic amplification was associated with metastatic lymph node status, leading to advanced stage and thereby poor outcomes in patients with lymph node metastasis (P = 0.021. PRL-3 small interfering RNA robustly repressed metastatic properties, including cell proliferation, invasion, and anchorage-independent colony formation. Although neither PRL-3 genomic amplification nor expression level was responsible for the sensitivity to PRL-3 inhibitor treatment, the inhibitor showed dose-dependent anticancer efficacy, and remarkably induced apoptosis on all the tested cell lines with PRL-3 expression. Conclusions We have for the first time, demonstrated that PRL-3 genomic amplification is one of the predominant mechanisms inducing its expression, especially in more advanced stage, and that PRL-3-targeted therapy may have a great potential against gastric cancer with its expression.

  11. Allele-specific enzymatic amplification of. beta. -globin genomic DNA for diagnosis of sickle cell anemia

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D.Y.; Ugozzoli, L.; Pal, B.K.; Wallace, B. (Beckman Research Institute of the City of Hope, Duarte, CA (USA))

    1989-04-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell {beta}-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer complementary to both alleles were used in the polymerase chain reaction with genomic DNA templates. The allele-specific primers differed from each other in their terminal 3{prime} nucleotide. Under the proper annealing temperature and polymerase chain reaction conditions, these primers only directed amplification on their complementary allele. In a single blind study of DNA samples from 12 individuals, this method correctly and unambiguously allowed for the determination of the genotypes with no false negatives or positives. If ASPCR is able to discriminate all allelic variation (both transition and transversion mutations), this method has the potential to be a powerful approach for genetic disease diagnosis, carrier screening, HLA typing, human gene mapping, forensics, and paternity testing.

  12. High-Resolution Genomic and Expression Profiling Reveals 105 Putative Amplification Target Genes in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eija H. Mahlamaki

    2004-09-01

    Full Text Available Comparative genomic hybridization (CGH studies have provided a wealth of information on common copy number aberrations in pancreatic cancer, but the genes affected by these aberrations are largely unknown. To identify putative amplification target genes in pancreatic cancer, we performed a parallel copy number and expression survey in 13 pancreatic cancer cell lines using a 12,232-clone cDNA microarray, providing an average resolution of 300 kb throughout the human genome. CGH on cDNA microarray allowed highly accurate mapping of copy number increases and resulted in identification of 24 independent amplicons, ranging in size from 130 kb to 11 Mb. Statistical evaluation of gene copy number and expression data across all 13 cell lines revealed a set of 105 genes whose elevated expression levels were directly attributable to increased copy number. These included genes previously reported to be amplified in cancer as well as several novel targets for copy number alterations, such as p21-activated kinase 4 (PAK4, which was previously shown to be involved in cell migration, cell adhesion, and anchorage-independent growth. In conclusion, our results implicate a set of 105 genes that is likely to be actively involved in the development and progression of pancreatic cancer.

  13. Adaptive dynamic range optimization (ADRO): a digital amplification strategy for hearing aids and cochlear implants.

    Science.gov (United States)

    Blamey, Peter J

    2005-01-01

    Adaptive dynamic range optimization (ADRO) is an amplification strategy that uses digital signal processing techniques to improve the audibility, comfort, and intelligibility of sounds for people who use cochlear implants and/or hearing aids. The strategy uses statistical analysis to select the most information-rich section of the input dynamic range in multiple-frequency channels. Fuzzy logic rules control the gain in each frequency channel so that the selected section of the dynamic range is presented at an audible and comfortable level. The ADRO processing thus adaptively optimizes the dynamic range of the signal in multiple-frequency channels. Clinical studies show that ADRO can be fitted easily to all degrees of hearing loss for hearing aids and cochlear implants in a direct and intuitive manner, taking the preferences of the listener into account. The result is high acceptance by new and experienced hearing aid users and strong preferences for ADRO compared with alternative amplification strategies. The ADRO processing is particularly well suited to bimodal and hybrid stimulation which combine electric and acoustic stimulation in opposite ears or in the same ear, respectively.

  14. Teaching strategies to incorporate genomics education into academic nursing curricula.

    Science.gov (United States)

    Quevedo Garcia, Sylvia P; Greco, Karen E; Loescher, Lois J

    2011-11-01

    The translation of genomic science into health care has expanded our ability to understand the effects of genomics on human health and disease. As genomic advances continue, nurses are expected to have the knowledge and skills to translate genomic information into improved patient care. This integrative review describes strategies used to teach genomics in academic nursing programs and their facilitators and barriers to inclusion in nursing curricula. The Learning Engagement Model and the Diffusion of Innovations Theory guided the interpretation of findings. CINAHL, Medline, and Web of Science were resources for articles published during the past decade that included strategies for teaching genomics in academic nursing programs. Of 135 articles, 13 met criteria for review. Examples of effective genomics teaching strategies included clinical application through case studies, storytelling, online genomics resources, student self-assessment, guest lecturers, and a genetics focus group. Most strategies were not evaluated for effectiveness.

  15. Novel degenerate PCR method for whole genome amplification applied to Peru Margin (ODP Leg 201 subsurface samples

    Directory of Open Access Journals (Sweden)

    Amanda eMartino

    2012-01-01

    Full Text Available A degenerate PCR-based method of whole-genome amplification, designed to work fluidly with 454 sequencing technology, was developed and tested for use on deep marine subsurface DNA samples. The method, which we have called Random Amplification Metagenomic PCR (RAMP, involves the use of specific primers from Roche 454 amplicon sequencing, modified by the addition of a degenerate region at the 3’ end. It utilizes a PCR reaction, which resulted in no amplification from blanks, even after 50 cycles of PCR. After efforts to optimize experimental conditions, the method was tested with DNA extracted from cultured E. coli cells, and genome coverage was estimated after sequencing on three different occasions. Coverage did not vary greatly with the different experimental conditions tested, and was around 62% with a sequencing effort equivalent to a theoretical genome coverage of 14.10X. The GC content of the sequenced amplification product was within 2% of the predicted values for this strain of E. coli. The method was also applied to DNA extracted from marine subsurface samples from ODP Leg 201 site 1229 (Peru Margin, and results of a taxonomic analysis revealed microbial communities dominated by Proteobacteria, Chloroflexi, Firmicutes, Euryarchaeota, and Crenarchaeota, among others. These results were similar to those obtained previously for those samples; however, variations in the proportions of taxa show that community analysis can be sensitive to both the amplification technique used and the method of assigning sequences to taxonomic groups. Overall, we find that RAMP represents a valid methodology for amplifying metagenomes from low biomass samples.

  16. Comprehensive Analysis of Prokaryotes in Environmental Water Using DNA Microarray Analysis and Whole Genome Amplification

    Directory of Open Access Journals (Sweden)

    Norihisa Ishii

    2013-10-01

    Full Text Available The microflora in environmental water consists of a high density and diversity of bacterial species that form the foundation of the water ecosystem. Because the majority of these species cannot be cultured in vitro, a different approach is needed to identify prokaryotes in environmental water. A novel DNA microarray was developed as a simplified detection protocol. Multiple DNA probes were designed against each of the 97,927 sequences in the DNA Data Bank of Japan and mounted on a glass chip in duplicate. Evaluation of the microarray was performed using the DNA extracted from one liter of environmental water samples collected from seven sites in Japan. The extracted DNA was uniformly amplified using whole genome amplification (WGA, labeled with Cy3-conjugated 16S rRNA specific primers and hybridized to the microarray. The microarray successfully identified soil bacteria and environment-specific bacteria clusters. The DNA microarray described herein can be a useful tool in evaluating the diversity of prokaryotes and assessing environmental changes such as global warming.

  17. Poly(T) variation in heteroderid nematode mitochondrial genomes is predominantly an artefact of amplification.

    Science.gov (United States)

    Riepsamen, Angelique H; Gibson, Tracey; Rowe, Janet; Chitwood, David J; Subbotin, Sergei A; Dowton, Mark

    2011-02-01

    We assessed the rate of in vitro polymerase errors at polythymidine [poly(T)] tracts in the mitochondrial DNA (mtDNA) of a heteroderid nematode (Heterodera cajani). The mtDNA of these nematodes contain unusually high numbers of poly(T) tracts, and have previously been suggested to contain biological poly(T) length variation. However, using a cloned molecule, we observed that poly(T) variation was generated in vitro at regions containing more than six consecutive Ts. This artefactual error rate was estimated at 7.3 × 10(-5) indels/poly(T) tract >6 Ts/cycle. This rate was then compared to the rate of poly(T) variation detected after the amplification of a biological sample, in order to estimate the 'biological + artefactual' rate of poly(T) variation. There was no significant difference between the artefactual and the artefactual + biological rates, suggesting that the majority of poly(T) variation in the biological sample was artefactual. We then examined the generation of poly(T) variation in a range of templates with tracts up to 16 Ts long, utilizing a range of Heteroderidae species. We observed that T deletions occurred five times more frequently than insertions, and a trend towards increasing error rates with increasing poly(T) tract length. These findings have significant implications for studies involving genomes with many homopolymer tracts.

  18. Genomic fingerprinting Acinetobacter baumannii: amplification of multiple inter-repetitive extragenic palindromic sequences.

    Science.gov (United States)

    Sheehan, C; Lynch, M; Cullen, C; Cryan, B; Greer, P; Fanning, S

    1995-09-01

    Acinetobacter species are important nosocomial pathogens. A rapid and sensitive identification system, capable of providing strain identity at the genetic level, is required to identify outbreak strains and facilitate the early implementation of infection control procedures. Repetitive extragenic palindromic (REP) elements, have been identified in numerous bacteria and these genomic sequences provide useful targets for DNA amplification. A method for amplifying inter-REP DNA sequences, REP-multiple arbitrary amplicon profiling (REP-MAAP), is described and applied to 29 Acinetobacter baumannii from clinical samples. Amplified polymorphic DNA patterns were demonstrated for all isolates and those displaying identical REP-MAAP patterns were considered identical at the genetic level. In the spring of 1993, 10 intensive care unit patients had endotracheal colonization with A. baumannii (five with REP-MAAP I and five with REP-MAAP II patterns). These findings suggested nosocomial transmission of organisms which was terminated by standard infection control measures. No further A. baumannii were detected until the winter of 1993 when isolates of different REP-MAAP groups emerged, suggesting that factors other than nosocomial transmission were implicated.

  19. Origin and Evolution of HIV-1 in Breast Milk Determined by Single-Genome Amplification and Sequencing▿

    OpenAIRE

    Salazar-Gonzalez, Jesus F.; Salazar, Maria G.; Learn, Gerald H.; Fouda, Genevieve G.; Kang, Helen H.; Mahlokozera, Tatenda; Wilks, Andrew B.; Lovingood, Rachel V.; Stacey, Andrea; Kalilani, Linda; Steve R Meshnick; Borrow, Persephone; David C Montefiori; Denny, Thomas N.; Letvin, Norman L.

    2010-01-01

    HIV transmission via breastfeeding accounts for a considerable proportion of infant HIV acquisition. However, the origin and evolution of the virus population in breast milk, the likely reservoir of transmitted virus variants, are not well characterized. In this study, HIV envelope (env) genes were sequenced from virus variants amplified by single-genome amplification from plasmas and milk of 12 chronically HIV-infected, lactating Malawian women. Maximum likelihood trees and statistical tests...

  20. Simple and reliable procedure for PCR amplification of genomic DNA from yeast cells using short sequencing primers

    DEFF Research Database (Denmark)

    Haaning, J; Oxvig, C; Overgaard, Michael Toft;

    1997-01-01

    Yeast is widely used in molecular biology. Heterologous expression of recombinant proteins in yeast involves screening of a large number of recombinants. We present an easy and reliable procedure for amplifying genomic DNA from freshly grown cells of the methylotrophic yeast Pichia pastoris...... by means of PCR without any prior DNA purification steps. This method involves a simple boiling step of whole yeast cells in the presence of detergent, and subsequent amplification of genomic DNA using short sequencing primers in a polymerase chain reaction assay with a decreasing annealing temperature...

  1. Isolation and amplification of genomic DNA from recalcitrant dried berries of black pepper (Piper nigrum L.)--a medicinal spice.

    Science.gov (United States)

    Dhanya, K; Kizhakkayil, Jaleel; Syamkumar, S; Sasikumar, B

    2007-10-01

    Black pepper is an important medicinal spice traded internationally. The extraction of high quality genomic DNA for PCR amplification from dried black pepper is challenging because of the presence of the exceptionally large amount of oxidized polyphenolic compounds, polysaccharides and other secondary metabolites. Here we report a modified hexadecyl trimethyl ammonium bromide (CTAB) protocol by incorporating potassium acetate and a final PEG precipitation step to isolate PCR amplifiable genomic DNA from dried and powdered berries of black pepper. The protocol has trade implication as it will help in the PCR characterization of traded black peppers from different countries.

  2. Analysis of high-throughput sequencing and annotation strategies for phage genomes.

    Directory of Open Access Journals (Sweden)

    Matthew R Henn

    Full Text Available BACKGROUND: Bacterial viruses (phages play a critical role in shaping microbial populations as they influence both host mortality and horizontal gene transfer. As such, they have a significant impact on local and global ecosystem function and human health. Despite their importance, little is known about the genomic diversity harbored in phages, as methods to capture complete phage genomes have been hampered by the lack of knowledge about the target genomes, and difficulties in generating sufficient quantities of genomic DNA for sequencing. Of the approximately 550 phage genomes currently available in the public domain, fewer than 5% are marine phage. METHODOLOGY/PRINCIPAL FINDINGS: To advance the study of phage biology through comparative genomic approaches we used marine cyanophage as a model system. We compared DNA preparation methodologies (DNA extraction directly from either phage lysates or CsCl purified phage particles, and sequencing strategies that utilize either Sanger sequencing of a linker amplification shotgun library (LASL or of a whole genome shotgun library (WGSL, or 454 pyrosequencing methods. We demonstrate that genomic DNA sample preparation directly from a phage lysate, combined with 454 pyrosequencing, is best suited for phage genome sequencing at scale, as this method is capable of capturing complete continuous genomes with high accuracy. In addition, we describe an automated annotation informatics pipeline that delivers high-quality annotation and yields few false positives and negatives in ORF calling. CONCLUSIONS/SIGNIFICANCE: These DNA preparation, sequencing and annotation strategies enable a high-throughput approach to the burgeoning field of phage genomics.

  3. Polymerase chain reaction amplification of genomic fragments of bovine herpesvirus-1

    OpenAIRE

    Cândido AL; ED Bontempo; Resende M.

    2000-01-01

    Especial conditions were developed for the amplification of five DNA segments from US region of BHV-1 by polymerase chain reaction. In order to eliminate most nonspecific products it was found that addition of three cosolvents DMSO, glycerol and NP 40 was a simple method for increasing the specificity of amplification.

  4. Enzymatic amplification of synthetic oligodeoxyribonucleotides: implications for triplet repeat expansions in the human genome.

    Science.gov (United States)

    Behn-Krappa, A; Doerfler, W

    1994-01-01

    The triplet repeat sequences (CGG)n, (GCT)n, and (CAG)n, which naturally occur in the human genome, can be autonomously expanded in human DNA by an as yet unknown mechanism. These in part excessive expansions have been causally related to human genetic diseases, the fragile X (Martin-Bell) syndrome, to myotonic dystrophy (Curschmann-Steinert), to spinal and bulbar muscular atrophy (Kennedy disease), and recently to Huntington disease. A GCC trinucleotide repeat was found to be expanded and methylated in the fragile site FRAXE on the human X chromosome. These findings were associated with mental retardation (Knight et al., 1993). In spinocerebellar ataxia type 1 (SCA1), a polymorphic CAG repeat was found to be unstable and expanded in individuals with that disease (Orr et al., 1993). We have demonstrated in in vitro experiments that the synthetic oligodeoxyribonucleotides (CGG)17, (CGG)12, (GCC)17, (CG)25, (CTG)17, or (CAG)17 plus (GTC)17, in the absence of added natural DNA, can be expanded with Taq polymerase in the polymerase chain reaction (PCR). Some expansion can already be detected after 4 PCR cycles. The E. coli Klenow DNA polymerase also functions in a similar amplification and expansion reaction performed at 37 degrees C without cycling. Other oligodeoxyribonucleotides, like, (CGG)7, (CGGT)13, or (TAA)17, are devoid of this property or have very low activity. The cytidine-methylated polymers (GCC)17 or (CG)25 yield expansion products of considerably reduced chain lengths. The expansion of the polymer (CGG)17 is affected by cytidine methylation to a lesser degree. A specific sequence and/or secondary structure and high CG content appear to be requirements for this expansion reaction by a possible slippage mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Utilization of touch preparations and whole genome amplification for loss of heterozygosity analysis in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wick, M.J.; Halling, K.; Thibodeau, S.N. [Mayo Clinic and Foundation, Rochester, MN (United States)

    1994-09-01

    Loss of heterozygosity (LOH) analyses have been used extensively to identify tumor suppressor genes in a variety of tumor systems. In an effort to localize such genes in prostate cancer, we have examined tissue for LOH with the use of PCR-based assays for a variety of microsatellites. However, the highly infiltrative nature of prostate carcinoma makes it virtually impossible, by conventional methods, to obtain tumor DNA that is uncontaminated with DNA from normal cells. Thus, we have examined the use of touch preparations as a means to increase the percentage of tumor DNA for our LOH analyses. This method, which involves lightly touching the cut surface of fresh prostate tissue to the surface of a microscope slide, allows for selection of tumor cell clusters. DNA from these cells can then be used in a variety of PCR-based assays. In this study, we demonstrate that tumor cell clusters can be used effectively for LOH analysis. Our studies also demonstrate that use of the touch preparation technique reduces or eliminates normal cell contamination. However, the small quantity of DNA in these clusters prohibits analysis at multiple loci. Therefore, we have examined whole genome amplification (WGA) of tumor cells clusters as a method of avoiding this difficulty. Random 15 base oligonucleotides were used as primers for WGA of cell cluster DNA. Aliquots of the WGA were then subjected to a second round of PCR in which microsatellite markers demonstrating allelic loss in prostate cancer were amplified. Our studies indicate that analysis of limited quantities of prostate tumor DNA at multiple loci can be accomplished through coupling of the touch preparation technique with WGA. This method may have ramifications for the analysis of tissue in which procurement of sufficient quantities of DNA is difficult.

  6. A chronocoulometric aptasensor based on gold nanoparticles as a signal amplification strategy for detection of thrombin.

    Science.gov (United States)

    Jiao, Xiao Xia; Chen, Jing Rong; Zhang, Xi Yuan; Luo, Hong Qun; Li, Nian Bing

    2013-10-15

    A sensitive chronocoulometric aptasensor for the detection of thrombin has been developed based on gold nanoparticle amplification. The functional gold nanoparticles, loaded with link DNA (LDNA) and report DNA (RDNA), were immobilized on an electrode by thrombin aptamers performing as a recognition element and capture probe. LDNA was complementary to the thrombin aptamers and RDNA was noncomplementary, but could combine with [Ru(NH₃)₆]³⁺ (RuHex) cations. Electrochemical signals obtained by RuHex that bound quantitatively to the negatively charged phosphate backbone of DNA via electrostatic interactions were measured by chronocoulometry. In the presence of thrombin, the combination of thrombin and thrombin aptamers and the release of the functional gold nanoparticles could induce a significant decrease in chronocoulometric signal. The incorporation of gold nanoparticles in the chronocoulometric aptasensor significantly enhanced the sensitivity. The performance of the aptasensor was further increased by the optimization of the surface density of aptamers. Under optimum conditions, the chronocoulometric aptasensor exhibited a wide linear response range of 0.1-18.5 nM with a detection limit of 30 pM. The results demonstrated that this nanoparticle-based amplification strategy offers a simple and effective approach to detect thrombin.

  7. An isothermal primer extension method for whole genome amplification of fresh and degraded DNA: applications in comparative genomic hybridization, genotyping and mutation screening.

    Science.gov (United States)

    Lee, Cheryl I P; Leong, Siew Hong; Png, Adrian E H; Choo, Keng Wah; Syn, Christopher; Lim, Dennis T H; Law, Hai Yang; Kon, Oi Lian

    2006-01-01

    We describe a protocol that uses a bioinformatically optimized primer in an isothermal whole genome amplification (WGA) reaction. Overnight incubation at 37 degrees C efficiently generates several hundred- to several thousand-fold increases in input DNA. The amplified product retains reasonably faithful quantitative representation of unamplified whole genomic DNA (gDNA). We provide protocols for applying this isothermal primer extension WGA protocol in three different techniques of genomic analysis: comparative genomic hybridization (CGH), genotyping at simple tandem repeat (STR) loci and screening for single base mutations in a common monogenic disorder, beta-thalassemia. gDNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues can also be amplified with this protocol.

  8. Entropy Beacon: A Hairpin-Free DNA Amplification Strategy for Efficient Detection of Nucleic Acids.

    Science.gov (United States)

    Lv, Yifan; Cui, Liang; Peng, Ruizi; Zhao, Zilong; Qiu, Liping; Chen, Huapei; Jin, Cheng; Zhang, Xiao-Bing; Tan, Weihong

    2015-12-01

    Here, we propose an efficient strategy for enzyme- and hairpin-free nucleic acid detection called an entropy beacon (abbreviated as Ebeacon). Different from previously reported DNA hybridization/displacement-based strategies, Ebeacon is driven forward by increases in the entropy of the system, instead of free energy released from new base-pair formation. Ebeacon shows high sensitivity, with a detection limit of 5 pM target DNA in buffer and 50 pM in cellular homogenate. Ebeacon also benefits from the hairpin-free amplification strategy and zero-background, excellent thermostability from 20 °C to 50 °C, as well as good resistance to complex environments. In particular, based on the huge difference between the breathing rate of a single base pair and two adjacent base pairs, Ebeacon also shows high selectivity toward base mutations, such as substitution, insertion, and deletion and, therefore, is an efficient nucleic acid detection method, comparable to most reported enzyme-free strategies.

  9. A Sequence-Independent Strategy for Amplification and Characterisation of Episomal Badnavirus Sequences Reveals Three Previously Uncharacterised Yam Badnaviruses.

    Science.gov (United States)

    Bömer, Moritz; Turaki, Aliyu A; Silva, Gonçalo; Kumar, P Lava; Seal, Susan E

    2016-07-07

    Yam (Dioscorea spp.) plants are potentially hosts to a diverse range of badnavirus species (genus Badnavirus, family Caulimoviridae), but their detection is complicated by the existence of integrated badnavirus sequences in some yam genomes. To date, only two badnavirus genomes have been characterised, namely, Dioscorea bacilliform AL virus (DBALV) and Dioscorea bacilliform SN virus (DBSNV). A further 10 tentative species in yam have been described based on their partial reverse transcriptase (RT)-ribonuclease H (RNaseH) sequences, generically referred to here as Dioscorea bacilliform viruses (DBVs). Further characterisation of DBV species is necessary to determine which represent episomal viruses and which are only present as integrated badnavirus sequences in some yam genomes. In this study, a sequence-independent multiply-primed rolling circle amplification (RCA) method was evaluated for selective amplification of episomal DBV genomes. This resulted in the identification and characterisation of nine complete genomic sequences (7.4-7.7 kbp) of existing and previously undescribed DBV phylogenetic groups from Dioscorea alata and Dioscorea rotundata accessions. These new yam badnavirus genomes expand our understanding of the diversity and genomic organisation of DBVs, and assist the development of improved diagnostic tools. Our findings also suggest that mixed badnavirus infections occur relatively often in West African yam germplasm.

  10. DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones.

    Science.gov (United States)

    Fiegler, Heike; Carr, Philippa; Douglas, Eleanor J; Burford, Deborah C; Hunt, Sarah; Scott, Carol E; Smith, James; Vetrie, David; Gorman, Patricia; Tomlinson, Ian P M; Carter, Nigel P

    2003-04-01

    We have designed DOP-PCR primers specifically for the amplification of large insert clones for use in the construction of DNA microarrays. A bioinformatic approach was used to construct primers that were efficient in the general amplification of human DNA but were poor at amplifying E. coli DNA, a common contaminant of DNA preparations from large insert clones. We chose the three most selective primers for use in printing DNA microarrays. DNA combined from the amplification of large insert clones by use of these three primers and spotted onto glass slides showed more than a sixfold increase in the human to E. coli hybridization ratio when compared to the standard DOP-PCR primer, 6MW. The microarrays reproducibly delineated previously characterized gains and deletions in a cancer cell line and identified a small gain not detected by use of conventional CGH. We also describe a method for the bulk testing of the hybridization characteristics of chromosome-specific clones spotted on microarrays by use of DNA amplified from flow-sorted chromosomes. Finally, we describe a set of clones selected from the publicly available Golden Path of the human genome at 1-Mb intervals and a view in the Ensembl genome browser from which data required for the use of these clones in array CGH and other experiments can be downloaded across the Internet.

  11. Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies.

    Science.gov (United States)

    Mittal, Sunil; Kaur, Hardeep; Gautam, Nandini; Mantha, Anil K

    2017-02-15

    Breast cancer is highly prevalent in females and accounts for second highest number of deaths, worldwide. Cumbersome, expensive and time consuming detection techniques presently available for detection of breast cancer potentiates the need for development of novel, specific and ultrasensitive devices. Biosensors are the promising and selective detection devices which hold immense potential as point of care (POC) tools. Present review comprehensively scrutinizes various breast cancer biosensors developed so far and their technical evaluation with respect to efficiency and potency of selected bioreceptors and biotransducers. Use of glycoproteins, DNA biomarkers, micro-RNA, circulatory tumor cells (CTC) and some potential biomarkers are introduced briefly. The review also discusses various strategies used in signal amplification such as nanomaterials, redox mediators, p19 protein, duplex specific nucleases (DSN) and redox cycling.

  12. Whole-genome amplification: a useful approach to characterize new genes in unculturable protozoan parasites such as Bonamia exitiosa.

    Science.gov (United States)

    Prado-Alvarez, Maria; Couraleau, Yann; Chollet, Bruno; Tourbiez, Delphine; Arzul, Isabelle

    2015-10-01

    Bonamia exitiosa is an intracellular parasite (Haplosporidia) that has been associated with mass mortalities in oyster populations in the Southern hemisphere. This parasite was recently detected in the Northern hemisphere including Europe. Some representatives of the Bonamia genus have not been well categorized yet due to the lack of genomic information. In the present work, we have applied Whole-Genome Amplification (WGA) technique in order to characterize the actin gene in the unculturable protozoan B. exitiosa. This is the first protein coding gene described in this species. Molecular analysis revealed that B. exitiosa actin is more similar to Bonamia ostreae actin gene-1. Actin phylogeny placed the Bonamia sp. infected oysters in the same clade where the herein described B. exitiosa actin resolved, offering novel information about the classification of the genus. Our results showed that WGA methodology is a promising and valuable technique to be applied to unculturable protozoans whose genomic material is limited.

  13. A novel method to perform genomic walks using a combination of single strand DNA circularization and rolling circle amplification.

    Science.gov (United States)

    Gadkar, Vijay J; Filion, Martin

    2011-10-01

    Characterization of regions flanking a known sequence within a genome, known as genome walking, is a cornerstone technique in modern genetic analysis. In the present work we have developed a new PCR-dependent, directional genome walking protocol based on the unique circularization property of a novel DNA ligase, CircLigase. In the first step, PCR based primer extension is performed using a phosphorylated primer, designed to extend from the boundary of the known sequence, into the flanking region. This linear amplification results in the generation of single-stranded (ss) DNA, which is then circularized using CircLigase. Using the hyperbranching activity of Phi29 DNA polymerase, the circular ssDNA is then linearized by rolling circle amplification, resulting in copious amounts of double stranded concatameric DNA. Nested primers are used to amplify the flanking sequence using inverse PCR. The products are resolved on an agarose gel and the bands whose mobility change due to the nested location of the primer combination used are identified, extracted, and cloned into a plasmid vector for sequencing. Empirical proof for this concept was generated on two antimicrobial biosynthetic genes in Pseudomonas sp. LBUM300. Using the hcnB and phlD genes as starting points, ca 1 kb of flanking sequences were successfully isolated. The use of locus specific primers ensured both directionality and specificity of the walks, alleviating the generation of spurious amplicons, typically observed in randomly primed walking protocols. The presented genome walking protocol could be applied to any microbial genome and requires only 100-150 bp of prior sequence information. The proposed methodology does not entail laborious testing of restriction enzymes or adaptor ligation. This is the first report of a successful application of the novel ligase enzyme, CircLigase for genomic walking purposes.

  14. Genome chaos: survival strategy during crisis.

    Science.gov (United States)

    Liu, Guo; Stevens, Joshua B; Horne, Steven D; Abdallah, Batoul Y; Ye, Karen J; Bremer, Steven W; Ye, Christine J; Chen, David J; Heng, Henry H

    2014-01-01

    Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.

  15. Novel extraction method of genomic DNA suitable for long-fragment amplification from small amounts of milk.

    Science.gov (United States)

    Liu, Y F; Gao, J L; Yang, Y F; Ku, T; Zan, L S

    2014-11-01

    Isolation of genomic DNA is a prerequisite for assessment of milk quality. As a source of genomic DNA, milk somatic cells from milking ruminants are practical, animal friendly, and cost-effective sources. Extracting DNA from milk can avoid the stress response caused by blood and tissue sampling of cows. In this study, we optimized a novel DNA extraction method for amplifying long (>1,000 bp) DNA fragments and used it to evaluate the isolation of DNA from small amounts of milk. The techniques used for the separation of milk somatic cell were explored and combined with a sodium dodecyl sulfate (SDS)-phenol method for optimizing DNA extraction from milk. Spectrophotometry was used to determine the concentration and purity of the extracted DNA. Gel electrophoresis and DNA amplification technologies were used for to determine DNA size and quality. The DNA of 112 cows was obtained from milk (samples of 13 ± 1 mL) and the corresponding optical density ratios at 260:280 nm were between 1.65 and 1.75. Concentrations were between 12 and 45 μg/μL and DNA size and quality were acceptable. The specific PCR amplification of 1,019- and 729-bp bovine DNA fragments was successfully carried out. This novel method can be used as a practical, fast, and economical mean for long genomic DNA extraction from a small amount of milk. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Indirect imaging of cardiac-specific transgene expression using a bidirectional two-step transcriptional amplification strategy

    DEFF Research Database (Denmark)

    Chen, I Y; Gheysens, O; Ray, S

    2010-01-01

    Transcriptional targeting for cardiac gene therapy is limited by the relatively weak activity of most cardiac-specific promoters. We have developed a bidirectional plasmid vector, which uses a two-step transcriptional amplification (TSTA) strategy to enhance the expression of two optical reporter...

  17. Multiplex amplification enabled by selective circularization of large sets of genomic DNA fragments

    Science.gov (United States)

    Dahl, Fredrik; Gullberg, Mats; Stenberg, Johan; Landegren, Ulf; Nilsson, Mats

    2005-01-01

    We present a method to specifically select large sets of DNA sequences for parallel amplification by PCR using target-specific oligonucleotide constructs, so-called selectors. The selectors are oligonucleotide duplexes with single-stranded target-complementary end-sequences that are linked by a general sequence motif. In the selection process, a pool of selectors is combined with denatured restriction digested DNA. Each selector hybridizes to its respective target, forming individual circular complexes that are covalently closed by enzymatic ligation. Non-circularized fragments are removed by exonucleolysis, enriching for the selected fragments. The general sequence that is introduced into the circularized fragments allows them to be amplified in parallel using a universal primer pair. The procedure avoids amplification artifacts associated with conventional multiplex PCR where two primers are used for each target, thereby reducing the number of amplification reactions needed for investigating large sets of DNA sequences. We demonstrate the specificity, reproducibility and flexibility of this process by performing a 96-plex amplification of an arbitrary set of specific DNA sequences, followed by hybridization to a cDNA microarray. Eighty-nine percent of the selectors generated PCR products that hybridized to the expected positions on the array, while little or no amplification artifacts were observed. PMID:15860768

  18. The first complete genome sequences of the acI lineage, the most abundant freshwater Actinobacteria, obtained by whole-genome-amplification of dilution-to-extinction cultures

    Science.gov (United States)

    Kang, Ilnam; Kim, Suhyun; Islam, Md. Rashedul; Cho, Jang-Cheon

    2017-01-01

    The acI lineage of the phylum Actinobacteria is the most abundant bacterial group in most freshwater lakes. However, due to difficulties in laboratory cultivation, only two mixed cultures and some incomplete single-amplified or metagenome-derived genomes have been reported for the lineage. Here, we report the initial cultivation and complete genome sequences of four novel strains of the acI lineage from the tribes acI-A1, -A4, -A7, and -C1. The acI strains, initially isolated by dilution-to-extinction culturing, eventually failed to be maintained as axenic cultures. However, the first complete genomes of the acI lineage were successfully obtained from these initial cultures through whole genome amplification applied to more than hundreds of cultured acI cells. The genome sequences exhibited features of genome streamlining and showed that the strains are aerobic chemoheterotrophs sharing central metabolic pathways, with some differences among tribes that may underlie niche diversification within the acI lineage. Actinorhodopsin was found in all strains, but retinal biosynthesis was complete in only A1 and A4 tribes. PMID:28186143

  19. Copy number and loss of heterozygosity detected by SNP array of formalin-fixed tissues using whole-genome amplification.

    Science.gov (United States)

    Stokes, Angela; Drozdov, Ignat; Guerra, Eliete; Ouzounis, Christos A; Warnakulasuriya, Saman; Gleeson, Michael J; McGurk, Mark; Tavassoli, Mahvash; Odell, Edward W

    2011-01-01

    The requirement for large amounts of good quality DNA for whole-genome applications prohibits their use for small, laser capture micro-dissected (LCM), and/or rare clinical samples, which are also often formalin-fixed and paraffin-embedded (FFPE). Whole-genome amplification of DNA from these samples could, potentially, overcome these limitations. However, little is known about the artefacts introduced by amplification of FFPE-derived DNA with regard to genotyping, and subsequent copy number and loss of heterozygosity (LOH) analyses. Using a ligation adaptor amplification method, we present data from a total of 22 Affymetrix SNP 6.0 experiments, using matched paired amplified and non-amplified DNA from 10 LCM FFPE normal and dysplastic oral epithelial tissues, and an internal method control. An average of 76.5% of SNPs were called in both matched amplified and non-amplified DNA samples, and concordance was a promising 82.4%. Paired analysis for copy number, LOH, and both combined, showed that copy number changes were reduced in amplified DNA, but were 99.5% concordant when detected, amplifications were the changes most likely to be 'missed', only 30% of non-amplified LOH changes were identified in amplified pairs, and when copy number and LOH are combined ∼50% of gene changes detected in the unamplified DNA were also detected in the amplified DNA and within these changes, 86.5% were concordant for both copy number and LOH status. However, there are also changes introduced as ∼20% of changes in the amplified DNA are not detected in the non-amplified DNA. An integrative network biology approach revealed that changes in amplified DNA of dysplastic oral epithelium localize to topologically critical regions of the human protein-protein interaction network, suggesting their functional implication in the pathobiology of this disease. Taken together, our results support the use of amplification of FFPE-derived DNA, provided sufficient samples are used to increase power

  20. DNA Barcoding: Amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species

    Directory of Open Access Journals (Sweden)

    Javed Iqbal Wattoo

    2016-11-01

    Full Text Available Background: DNA barcoding is a novel method of species identification based on nucleotide diversity of conserved sequences. The establishment and refining of plant DNA barcoding systems is more challenging due to high genetic diversity among different species. Therefore, targeting the conserved nuclear transcribed regions would be more reliable for plant scientists to reveal genetic diversity, species discrimination and phylogeny. Methods: In this study, we amplified and sequenced the chloroplast DNA regions (matk+rbcl of Solanum nigrum, Euphorbia helioscopia and Dalbergia sissoo to study the functional annotation, homology modeling and sequence analysis to allow a more efficient utilization of these sequences among different plant species. These three species represent three families; Solanaceae, Euphorbiaceae and Fabaceae respectively. Biological sequence homology and divergence of amplified sequences was studied using Basic Local Alignment Tool (BLAST. Results: Both primers (matk+rbcl showed good amplification in three species. The sequenced regions reveled conserved genome information for future identification of different medicinal plants belonging to these species. The amplified conserved barcodes revealed different levels of biological homology after sequence analysis. The results clearly showed that the use of these conserved DNA sequences as barcode primers would be an accurate way for species identification and discrimination. Conclusion: The amplification and sequencing of conserved genome regions identified a novel sequence of matK in native species of Solanum nigrum. The findings of the study would be applicable in medicinal industry to establish DNA based identification of different medicinal plant species to monitor adulteration.

  1. The Switchgrass Genome: Tools and Strategies

    Directory of Open Access Journals (Sweden)

    Michael D. Casler

    2011-11-01

    Full Text Available Switchgrass ( L. is a perennial grass species receiving significant focus as a potential bioenergy crop. In the last 5 yr the switchgrass research community has produced a genetic linkage map, an expressed sequence tag (EST database, a set of single nucleotide polymorphism (SNP markers that are distributed across the 18 linkage groups, 4x sampling of the AP13 genome in 400-bp reads, and bacterial artificial chromosome (BAC libraries containing over 200,000 clones. These studies have revealed close collinearity of the switchgrass genome with those of sorghum [ (L. Moench], rice ( L., and (L. P. Beauv. Switchgrass researchers have also developed several microarray technologies for gene expression studies. Switchgrass genomic resources will accelerate the ability of plant breeders to enhance productivity, pest resistance, and nutritional quality. Because switchgrass is a relative newcomer to the genomics world, many secrets of the switchgrass genome have yet to be revealed. To continue to efficiently explore basic and applied topics in switchgrass, it will be critical to capture and exploit the knowledge of plant geneticists and breeders on the next logical steps in the development and utilization of genomic resources for this species. To this end, the community has established a switchgrass genomics executive committee and work group ( [verified 28 Oct. 2011].

  2. Strategies for complete plastid genome sequencing.

    Science.gov (United States)

    Twyford, Alex D; Ness, Rob W

    2016-10-28

    Plastid sequencing is an essential tool in the study of plant evolution. This high-copy organelle is one of the most technically accessible regions of the genome, and its sequence conservation makes it a valuable region for comparative genome evolution, phylogenetic analysis and population studies. Here, we discuss recent innovations and approaches for de novo plastid assembly that harness genomic tools. We focus on technical developments including low-cost sequence library preparation approaches for genome skimming, enrichment via hybrid baits and methylation-sensitive capture, sequence platforms with higher read outputs and longer read lengths, and automated tools for assembly. These developments allow for a much more streamlined assembly than via conventional short-range PCR. Although newer methods make complete plastid sequencing possible for any land plant or green alga, there are still challenges for producing finished plastomes particularly from herbarium material or from structurally divergent plastids such as those of parasitic plants.

  3. Array-CGH reveals recurrent genomic changes in Merkel cell carcinoma including amplification of L-Myc.

    Science.gov (United States)

    Paulson, Kelly G; Lemos, Bianca D; Feng, Bin; Jaimes, Natalia; Peñas, Pablo F; Bi, Xiaohui; Maher, Elizabeth; Cohen, Lisa; Leonard, J Helen; Granter, Scott R; Chin, Lynda; Nghiem, Paul

    2009-06-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer with poorly characterized genetics. We performed high resolution comparative genomic hybridization on 25 MCC specimens using a high-density oligonucleotide microarray. Tumors frequently carried extra copies of chromosomes 1, 3q, 5p, and 6 and lost chromosomes 3p, 4, 5q, 7, 10, and 13. MCC tumors with less genomic aberration were associated with improved survival (P=0.04). Tumors from 13 of 22 MCC patients had detectable Merkel cell polyomavirus DNA, and these tumors had fewer genomic deletions. Three regions of genomic alteration were of particular interest: a deletion of 5q12-21 occurred in 26% of tumors, a deletion of 13q14-21 was recurrent in 26% of tumors and contains the well-characterized tumor suppressor RB1, and a previously unreported focal amplification at 1p34 was present in 39% of tumors and centers on L-Myc (MYCL1). L-Myc is related to the c-Myc proto-oncogene, has transforming activity, and is amplified in the closely related small cell lung cancer. Normal skin showed no L-Myc expression, whereas 4/4 MCC specimens tested expressed L-Myc RNA in relative proportion to the DNA copy number gain. These findings suggest several genes that may contribute to MCC pathogenesis, most notably L-Myc.

  4. Functional genomics strategies with transposons in rice

    NARCIS (Netherlands)

    Greco, R.

    2003-01-01

    Rice is a major staple food crop and a recognizedmonocotylenedousmodel plant from which gene function discovery is projected to contribute to improvements in a variety of cereals like wheat and maize. The recent release of rough drafts of the rice genome sequence for public

  5. Specific single-cell isolation and genomic amplification of uncultured microorganisms

    DEFF Research Database (Denmark)

    Kvist, Thomas; Ahring, Birgitte Kiær; Lasken, R.S.

    2007-01-01

    We in this study describe a new method for genomic studies of individual uncultured prokaryotic organisms, which was used for the isolation and partial genome sequencing of a soil archaeon. The diversity of Archaea in a soil sample was mapped by generating a clone library using group...... sequence analysis and shotgun-cloned for additional genomic analysis. Sequence analysis showed > 99% 16S rRNA gene homology to soil crenarchaeotal clone SCA1170 and shotgun fragments had the closest match to a crenarchaeotal BAC clone previously retrieved from a soil sample. The system was validated using...

  6. Selective Whole-Genome Amplification Is a Robust Method That Enables Scalable Whole-Genome Sequencing of Plasmodium vivax from Unprocessed Clinical Samples

    Directory of Open Access Journals (Sweden)

    Annie N. Cowell

    2017-02-01

    Full Text Available Whole-genome sequencing (WGS of microbial pathogens from clinical samples is a highly sensitive tool used to gain a deeper understanding of the biology, epidemiology, and drug resistance mechanisms of many infections. However, WGS of organisms which exhibit low densities in their hosts is challenging due to high levels of host genomic DNA (gDNA, which leads to very low coverage of the microbial genome. WGS of Plasmodium vivax, the most widely distributed form of malaria, is especially difficult because of low parasite densities and the lack of an ex vivo culture system. Current techniques used to enrich P. vivax DNA from clinical samples require significant resources or are not consistently effective. Here, we demonstrate that selective whole-genome amplification (SWGA can enrich P. vivax gDNA from unprocessed human blood samples and dried blood spots for high-quality WGS, allowing genetic characterization of isolates that would otherwise have been prohibitively expensive or impossible to sequence. We achieved an average genome coverage of 24×, with up to 95% of the P. vivax core genome covered by ≥5 reads. The single-nucleotide polymorphism (SNP characteristics and drug resistance mutations seen were consistent with those of other P. vivax sequences from a similar region in Peru, demonstrating that SWGA produces high-quality sequences for downstream analysis. SWGA is a robust tool that will enable efficient, cost-effective WGS of P. vivax isolates from clinical samples that can be applied to other neglected microbial pathogens.

  7. Selective Whole-Genome Amplification Is a Robust Method That Enables Scalable Whole-Genome Sequencing of Plasmodium vivax from Unprocessed Clinical Samples

    Science.gov (United States)

    Loy, Dorothy E.; Sundararaman, Sesh A.; Valdivia, Hugo; Fisch, Kathleen; Lescano, Andres G.; Baldeviano, G. Christian; Durand, Salomon; Gerbasi, Vince; Sutherland, Colin J.; Nolder, Debbie; Vinetz, Joseph M.; Hahn, Beatrice H.

    2017-01-01

    ABSTRACT Whole-genome sequencing (WGS) of microbial pathogens from clinical samples is a highly sensitive tool used to gain a deeper understanding of the biology, epidemiology, and drug resistance mechanisms of many infections. However, WGS of organisms which exhibit low densities in their hosts is challenging due to high levels of host genomic DNA (gDNA), which leads to very low coverage of the microbial genome. WGS of Plasmodium vivax, the most widely distributed form of malaria, is especially difficult because of low parasite densities and the lack of an ex vivo culture system. Current techniques used to enrich P. vivax DNA from clinical samples require significant resources or are not consistently effective. Here, we demonstrate that selective whole-genome amplification (SWGA) can enrich P. vivax gDNA from unprocessed human blood samples and dried blood spots for high-quality WGS, allowing genetic characterization of isolates that would otherwise have been prohibitively expensive or impossible to sequence. We achieved an average genome coverage of 24×, with up to 95% of the P. vivax core genome covered by ≥5 reads. The single-nucleotide polymorphism (SNP) characteristics and drug resistance mutations seen were consistent with those of other P. vivax sequences from a similar region in Peru, demonstrating that SWGA produces high-quality sequences for downstream analysis. SWGA is a robust tool that will enable efficient, cost-effective WGS of P. vivax isolates from clinical samples that can be applied to other neglected microbial pathogens. PMID:28174312

  8. Origins of DNA Replication and Amplification in the Breast Cancer Genome

    Science.gov (United States)

    2011-09-01

    identified 53,914 origins in the MCF-7 genome, with a median width of 1.5 kb using the methodology as follows: We used BEDTools ( Quinlan et al...are collaborating with David Gilbert (University of Florida – Tallahassee) to determine the replication foci higher order structure in the nucleus...Cancer Cell 10: 515-527. Quinlan AR, Hall IM. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 26: 841-2

  9. Whole genome amplification for CGH analysis: Linker-adapter PCR as the method of choice for difficult and limited samples.

    Science.gov (United States)

    Pirker, Christine; Raidl, Maria; Steiner, Elisabeth; Elbling, Leonilla; Holzmann, Klaus; Spiegl-Kreinecker, Sabine; Aubele, Michaela; Grasl-Kraupp, Bettina; Marosi, Christine; Micksche, Michael; Berger, Walter

    2004-09-01

    Comparative genomic hybridization (CGH) is a powerful method to investigate chromosomal imbalances in tumor cells. However, DNA quantity and quality can be limiting factors for successful CGH analysis. The aim of this study was to investigate the applicability of degenerate oligonucleotide-primed PCR (DOP-PCR) and a recently developed linker-adapter-mediated PCR (LA-PCR) for whole genome amplification for use in CGH, especially for difficult source material. We comparatively analyzed DNA of variable quality derived from different cell/tissue types. Additionally, dilution experiments down to the DNA content of a single cell were performed. FISH and/or classical cytogenetic analyses were used as controls. In the case of high quality DNA samples, both methods were equally suitable for CGH. When analyzing very small amounts of these DNA samples (equivalent to one or a few human diploid cells), DOP-PCR-CGH, but not LA-PCR-CGH, frequently produced false-positive signals (e.g., gains in 1p and 16p, and losses in chromosome 4q). In case of formalin-fixed paraffin-embedded tissues, success rates by LA-PCR-CGH were significantly higher as compared to DOP-PCR-CGH. DNA of minor quality frequently could be analyzed correctly by LA-PCR-CGH, but was prone to give false-positive and/or false-negative results by DOP-PCR-CGH. LA-PCR is superior to DOP-PCR for amplification of DNA for CGH analysis, especially in the case of very limited or partly degraded source material. Copyright 2004 Wiley-Liss, Inc

  10. Precise Identification of Genome-Wide Transcription Start Sites in Bacteria by 5'-Rapid Amplification of cDNA Ends (5'-RACE).

    Science.gov (United States)

    Matteau, Dominick; Rodrigue, Sébastien

    2015-01-01

    Transcription start sites are commonly used to locate promoter elements in bacterial genomes. TSS were previously studied one gene at a time, often through 5'-rapid amplification of cDNA ends (5'-RACE). This technique has now been adapted for high-throughput sequencing and can be used to precisely identify TSS in a genome-wide fashion for practically any bacterium, which greatly contributes to our understanding of gene regulatory networks in microorganisms.

  11. GENOMIC PROFILING BY MULTIPLEX LIGATION - DEPENDENT PROBE AMPLIFICATION IN CHRONIC LYMPHOCYTIC LEUKEMIA PATIENTS

    Directory of Open Access Journals (Sweden)

    Georgiana-Emilia Grigore

    2013-11-01

    Full Text Available The clinical management of severe pathological conditions, such as B-cell chronic lymphocytic leukemia (B-CLL, is subject to continuous optimization and re-evaluation. Patients may fully benefit from rapid, standardized laboratory tools designed to facilitate their early stratification according to disease risk, stage and prognosis. Such technologies may also aid the clinician in selecting the therapeutic option with the greatest chances of success. The presence of specific genetic abnormalities are frequently associated with the clinical outcome of oncologic patients in general, and B-CLL patients in particular. In the current study, a group of 58 B-CLL patients were evaluated for the detection of gene copy number alterations (deletions or duplication/ amplifications within 45 distinct genetic targets, by means of a novel molecular methodology, Multiplex Ligation - Dependent Probe Amplification (MLPA. Simple or complex genetic defects were identified in 67% of cases, and the most common aberrations observed were: deletion of the short arm of chromosome 13 in 33% of cases, deletion of the long arm of chromosome 11 in 16% of cases, trisomy 12 in 16% of cases, and deletion of the short arm of chromosome 17 in 7% of cases. The main conclusion of the study presented here points towards MLPA as a potential key step of clinical management protocols in B-CLL, providing that it will be fully standardised for routine diagnosis.

  12. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs

    Science.gov (United States)

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Žel, Jana; Gruden, Kristina

    2008-01-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1–25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880

  13. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    Science.gov (United States)

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  14. Integration of genomics and histology revises diagnosis and enables effective therapy of refractory cancer of unknown primary with PDL1 amplification.

    Science.gov (United States)

    Gröschel, Stefan; Bommer, Martin; Hutter, Barbara; Budczies, Jan; Bonekamp, David; Heining, Christoph; Horak, Peter; Fröhlich, Martina; Uhrig, Sebastian; Hübschmann, Daniel; Geörg, Christina; Richter, Daniela; Pfarr, Nicole; Pfütze, Katrin; Wolf, Stephan; Schirmacher, Peter; Jäger, Dirk; von Kalle, Christof; Brors, Benedikt; Glimm, Hanno; Weichert, Wilko; Stenzinger, Albrecht; Fröhling, Stefan

    2016-11-01

    Identification of the tissue of origin in cancer of unknown primary (CUP) poses a diagnostic challenge and is critical for directing site-specific therapy. Currently, clinical decision-making in patients with CUP primarily relies on histopathology and clinical features. Comprehensive molecular profiling has the potential to contribute to diagnostic categorization and, most importantly, guide CUP therapy through identification of actionable lesions. We here report the case of an advanced-stage malignancy initially mimicking poorly differentiated soft-tissue sarcoma that did not respond to multiagent chemotherapy. Molecular profiling within a clinical whole-exome and transcriptome sequencing program revealed a heterozygous, highly amplified KRAS G12S mutation, compound-heterozygous TP53 mutation/deletion, high mutational load, and focal high-level amplification of Chromosomes 9p (including PDL1 [CD274] and JAK2) and 10p (including GATA3). Integrated analysis of molecular data and histopathology provided a rationale for immune checkpoint inhibitor (ICI) therapy with pembrolizumab, which resulted in rapid clinical improvement and a lasting partial remission. Histopathological analyses ruled out sarcoma and established the diagnosis of a poorly differentiated adenocarcinoma. Although neither histopathology nor molecular data were able to pinpoint the tissue of origin, our analyses established several differential diagnoses including triple-negative breast cancer (TNBC). We analyzed 157 TNBC samples from The Cancer Genome Atlas, revealing PDL1 copy number gains coinciding with excessive PDL1 mRNA expression in 24% of cases. Collectively, these results illustrate the impact of multidimensional tumor profiling in cases with nondescript histology and immunophenotype, show the predictive potential of PDL1 amplification for immune checkpoint inhibitors (ICIs), and suggest a targeted therapeutic strategy in Chromosome 9p24.1/PDL1-amplified cancers.

  15. Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles.

    Science.gov (United States)

    Chang, Chia-Chen; Chen, Chen-Yu; Chuang, Tsung-Liang; Wu, Tzu-Heng; Wei, Shu-Chen; Liao, Hongen; Lin, Chii-Wann

    2016-04-15

    A branched DNA amplification strategy was employed to design a colorimetric aptameric biosensor using unmodified gold nanoparticles (AuNPs). First, a programmed DNA dendritic nanostructure was formed using two double-stranded substrate DNAs and two single-stranded auxiliary DNAs as assembly components via a target-assisted cascade amplification reaction, and it was then captured by DNA sensing probe-stabilized AuNPs. The release of sensing probes from AuNPs led to the formation of unstable AuNPs, promoting salt-induced aggregation. By integrating the signal amplification capacity of the branched DNA cascade reaction and unmodified AuNPs as a sensing indicator, this amplified colorimetric sensing strategy allows protein detection with high sensitivity (at the femtomole level) and selectivity. The limit of detection of this approach for VEGF was lower than those of other aptamer-based detection methods. Moreover, this assay provides modification-free and enzyme-free protein detection without sophisticated instrumentation and might be generally applicable to the detection of other protein targets in the future.

  16. Chemiluminescence immunoassay based on dual signal amplification strategy of Au/mesoporous silica and multienzyme functionalized mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jiehua, E-mail: linjiehua@qust.edu.cn [Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhao Yue; Wei Zhijing; Wang Wei [Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2011-11-15

    Highlights: > The increased amount of monoclonal antibody in Au/SiO{sub 2} led to a wider linear range. > Due to the increased HRP tags in HRP-Ab{sub 2}/SiO{sub 2}, signal amplification achieved. > A simple dual amplification immunoassay achieved with flow injection analysis. - Abstract: A chemiluminescent dual signal amplification strategy for the determination of {alpha}-fetoprotein (AFP) was proposed based on a sandwich immunoassay format. Monoclonal antibody of AFP immobilized on the gold nanoparticles doped mesoporous SiO{sub 2} (Au/SiO{sub 2}) were prepared and used as a primary antibody. Horseradish peroxidase (HRP) and HRP-labeled secondary antibody (Ab{sub 2}) co-immobilized into the mesoporous SiO{sub 2} nanoparticles (HRP-Ab{sub 2}/SiO{sub 2}) were used as the labeled immunological probe. Due to the high ratio surface areas and pore volumes of the mesoporous SiO{sub 2}, not only the amount of AFP monoclonal antibody but also the amount of the modified HRP and Ab{sub 2} in HRP-Ab{sub 2}/SiO{sub 2} were largely increased. Thus the chemiluminescent signal was amplified by using the system of luminol and H{sub 2}O{sub 2} under the catalysis of HRP. Under the optimal conditions, two linear ranges for AFP were obtained from 0.01 to 0.5 ng mL{sup -1} and 0.5 to 100 ng mL{sup -1} with a detection limit of 0.005 ng mL{sup -1} (3{sigma}). The fabricated signal amplification strategy showed an excellent promise for sensitive detection of AFP and other tumor markers.

  17. Exempting homologous pseudogene sequences from polymerase chain reaction amplification allows genomic keratin 14 hotspot mutation analysis

    NARCIS (Netherlands)

    Hut, PHL; van der Vlies, P; Jonkman, MF; Verlind, E; Shimizu, H; Buys, CHCM; Scheffer, H

    In patients with the major forms of epidermolysis bullosa simplex, either of the keratin genes KRT5 or KRT14 is mutated. This causes a disturbance of the filament network resulting in skin fragility and blistering. For KRT5, a genomic mutation detection system has been described previously. Mutation

  18. Comparative genomic hybridization detects novel amplifications in fibroadenomas of the breast

    DEFF Research Database (Denmark)

    Ojopi, E P; Rogatto, S R; Caldeira, J R

    2001-01-01

    Comparative genomic hybridization analysis was performed for identification of chromosomal imbalances in 23 samples of fibroadenomas of the breast. Chromosomal gains rather than losses were a feature of these lesions. Only two cases with a familial and/or previous history of breast lesions had gain...

  19. Origins of DNA Replication and Amplification in the Breast Cancer Genome

    Science.gov (United States)

    2013-09-01

    Fischer G (2008). Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication based mechanisms. PLoS...genomic features. Bioinformatics. 26: 841-2. Raveendranathan M., Chattopadhyay S., Bolon Y.T., Haworth J., Clarke D.J. and Bielinsky A.K. (2006

  20. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia.

    Science.gov (United States)

    Wu, D Y; Ugozzoli, L; Pal, B K; Wallace, R B

    1989-04-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell beta-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer complementary to both alleles were used in the polymerase chain reaction with genomic DNA templates. The allele-specific primers differed from each other in their terminal 3' nucleotide. Under the proper annealing temperature and polymerase chain reaction conditions, these primers only directed amplification on their complementary allele. In a single blind study of DNA samples from 12 individuals, this method correctly and unambiguously allowed for the determination of the genotypes with no false negatives or positives. If ASPCR is able to discriminate all allelic variation (both transition and transversion mutations), this method has the potential to be a powerful approach for genetic disease diagnosis, carrier screening, HLA typing, human gene mapping, forensics, and paternity testing.

  1. TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol

    Science.gov (United States)

    Picher, Ángel J.; Budeus, Bettina; Wafzig, Oliver; Krüger, Carola; García-Gómez, Sara; Martínez-Jiménez, María I.; Díaz-Talavera, Alberto; Weber, Daniela; Blanco, Luis; Schneider, Armin

    2016-01-01

    Sequencing of a single-cell genome requires DNA amplification, a process prone to introducing bias and errors into the amplified genome. Here we introduce a novel multiple displacement amplification (MDA) method based on the unique DNA primase features of Thermus thermophilus (Tth) PrimPol. TthPrimPol displays a potent primase activity preferring dNTPs as substrates unlike conventional primases. A combination of TthPrimPol's unique ability to synthesize DNA primers with the highly processive Phi29 DNA polymerase (Φ29DNApol) enables near-complete whole genome amplification from single cells. This novel method demonstrates superior breadth and evenness of genome coverage, high reproducibility, excellent single-nucleotide variant (SNV) detection rates with low allelic dropout (ADO) and low chimera formation as exemplified by sequencing HEK293 cells. Moreover, copy number variant (CNV) calling yields superior results compared with random primer-based MDA methods. The advantages of this method, which we named TruePrime, promise to facilitate and improve single-cell genomic analysis. PMID:27897270

  2. Genome-wide screening for genetic alterations in esophageal cancer by aCGH identifies 11q13 amplification oncogenes associated with nodal metastasis.

    Directory of Open Access Journals (Sweden)

    Jianming Ying

    Full Text Available BACKGROUND: Esophageal squamous cell carcinoma (ESCC is highly prevalent in China and other Asian countries, as a major cause of cancer-related mortality. ESCC displays complex chromosomal abnormalities, including multiple structural and numerical aberrations. Chromosomal abnormalities, such as recurrent amplifications and homozygous deletions, directly contribute to tumorigenesis through altering the expression of key oncogenes and tumor suppressor genes. METHODOLOGY/PRINCIPLE FINDINGS: To understand the role of genetic alterations in ESCC pathogenesis and identify critical amplification/deletion targets, we performed genome-wide 1-Mb array comparative genomic hybridization (aCGH analysis for 10 commonly used ESCC cell lines. Recurrent chromosomal gains were frequently detected on 3q26-27, 5p15-14, 8p12, 8p22-24, 11q13, 13q21-31, 18p11 and 20q11-13, with frequent losses also found on 8p23-22, 11q22, 14q32 and 18q11-23. Gain of 11q13.3-13.4 was the most frequent alteration in ESCC. Within this region, CCND1 oncogene was identified with high level of amplification and overexpression in ESCC, while FGF19 and SHANK2 was also remarkably over-expressed. Moreover, a high concordance (91.5% of gene amplification and protein overexpression of CCND1 was observed in primary ESCC tumors. CCND1 amplification/overexpression was also significantly correlated with the lymph node metastasis of ESCC. CONCLUSION: These findings suggest that genomic gain of 11q13 is the major mechanism contributing to the amplification. Novel oncogenes identified within the 11q13 amplicon including FGF19 and SHANK2 may play important roles in ESCC tumorigenesis.

  3. Cephalopod genomics: A plan of strategies and organization

    Science.gov (United States)

    Albertin, Caroline B.; Bonnaud, Laure; Brown, C. Titus; Crookes-Goodson, Wendy J.; da Fonseca, Rute R.; Di Cristo, Carlo; Dilkes, Brian P.; Edsinger-Gonzales, Eric; Freeman, Robert M.; Hanlon, Roger T.; Koenig, Kristen M.; Lindgren, Annie R.; Martindale, Mark Q.; Minx, Patrick; Moroz, Leonid L.; Nödl, Marie-Therese; Nyholm, Spencer V.; Ogura, Atsushi; Pungor, Judit R.; Rosenthal, Joshua J. C.; Schwarz, Erich M.; Shigeno, Shuichi; Strugnell, Jan M.; Wollesen, Tim; Zhang, Guojie; Ragsdale, Clifton W.

    2012-01-01

    The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, “Paths to Cephalopod Genomics- Strategies, Choices, Organization,” held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in this white paper. PMID:23451296

  4. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.

    Science.gov (United States)

    Feng, Lingyan; Sivanesan, Arumugam; Lyu, Zhaozi; Offenhäusser, Andreas; Mayer, Dirk

    2015-04-15

    Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems.

  5. Investigation of RNA Viral Genome Amplification by Multiple Displacement Amplification Technique%基于多重置换扩增技术的RNA病毒基因组扩增方法研究

    Institute of Scientific and Technical Information of China (English)

    庞正; 李建东; 李川; 梁米芳; 李德新

    2013-01-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases,a negativestrand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus,and a positive-strand RNA virus-dengue virus,were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples.Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads,after a series of reactions were sequentially processed,single-strand cDNA,double-strand cDNA,double-strand cDNA treated with ligation without or with supplemental RNA were generated,then a Phi29 DNA polymerase depended isothermal amplification was employed,and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods.The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited,while the fold increases of doublestrand cDNA templates treated with ligation could be up to 6× 103,even 2 × 105 when supplemental RNA existed,and better results were obtained when viral RNA loads were lower.A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved,which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.%为了便于新发或罕见病毒性传染病的筛查检测,本研究利用多重置换扩增技术,以负链RNA病毒一发热伴血小板减少综合征病毒和正链RNA病毒一登革病毒为模拟样本探索临床样本中RNA病毒基因组非特异性扩增方法.研究中通过梯度稀释的RNA病毒模拟样本中可能存在的不同丰度的病原体,样本核酸依次加工成单链cDNA、双链cDNA、T4 DNA连接酶处理后的双链cDNA以及添加外源辅助RNA后合成并连接的

  6. A network signal amplification strategy of ultrasensitive photoelectrochemical immunosensing carcinoembryonic antigen based on CdSe/melamine network as label.

    Science.gov (United States)

    Li, Jiaojiao; Zhang, Yong; Kuang, Xuan; Wang, Zhiling; Wei, Qin

    2016-11-15

    Taking advantage of CdSe/melamine network as label and Au-TiO2 as substrate, this work developed a novel kind of signal amplification strategy for fabricating photoelectrochemical (PEC) immunoassay. The melamine, a star-shaped triamino molecule, was firstly used for readily capturing CdSe QDs and forming a CdSe/melamine network, which was formed through strong interactions between the carboxyl groups of TGA-stabilized CdSe QDs and the three amino groups of each melamine molecule. In this strategy, the primary antibody (Ab1) was immobilized onto Au-TiO2 substrate, which made the photoelectric conversion efficiency increase significantly. After the formed Ab2-CdSe/melamine network labels were captured onto the electrode surface via the specific antibody-antigen interaction, the photoelectric activity could be further enhanced via the interaction between the Au-TiO2 substrate and CdSe/melamine network. Due to this amplification of PEC signals and the special structure of the label, the fabricated PEC immunosensor was applied for sensitive and specific detection of cancer biomarker carcinoembryonic antigen (CEA), and displayed a wide linear range (0.005-1000ngmL(-1)) and low detection limit (5pgmL(-1)). In addition, the immunosensor was performed with good stability and reproducibility, and the results to analyze human serum samples were satisfactory.

  7. Genomic amplification of the human telomerase gene (hTERC associated with human papillomavirus is related to the progression of uterine cervical dysplasia to invasive cancer

    Directory of Open Access Journals (Sweden)

    Liu Hongqian

    2012-10-01

    Full Text Available Abstract Background Human papillomavirus (HPV infection plays an etiological role in the development of cervical dysplasia and cancer. Amplification of human telomerase gene (hTERC and over expression of telomerase were found to be associated with cervical tumorigenesis. This study was performed to analyze genomic amplification of hTERC gene, telomerase activity in association with HPV infection in different stages of cervical intraepithelial neoplasia (CIN and cervical cancer. We were studying the role of hTERC in the progression of uterine cervical dysplasia to invasive cancer, and proposed an adjunct method for cervical cancer screening. Methods Exfoliated cervical cells were collected from 114 patients with non neoplastic lesion (NNL, n=27, cervical intraepithelial neoplasia (CIN1, n=26, CIN2, n=16, CIN3, n=24 and cervical carcinoma (CA, n=21, and analyzed for amplification of hTERC with two-color fluorescence in situ hybridization (FISH probe and HPV-DNA with Hybrid Capture 2. From these patients, 53 were taken biopsy to analyze telomerase activity by telomeric repeat amplification protocol (TRAP and expression of human telomerase reverse transcriptase (hTERT, with immunohistochemistry (IHC. All biopsies were clinically confirmed by phathologists. Results Amplification of hTERC was significantly associated with the histologic diagnoses (p Conclusions hTERC ampliffication can be detected with FISH technique on exfoliated cervical cells. Amplification of hTERC and HPV infection are associated with more progressive CIN3 and CA. The testing of hTERC amplification might be a supplementary to cytology screening and HPV test, especially high-risk patients. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1857134686755648.

  8. Human genomic DNA analysis using a semi-automated sample preparation, amplification, and electrophoresis separation platform.

    Science.gov (United States)

    Raisi, Fariba; Blizard, Benjamin A; Raissi Shabari, Akbar; Ching, Jesus; Kintz, Gregory J; Mitchell, Jim; Lemoff, Asuncion; Taylor, Mike T; Weir, Fred; Western, Linda; Wong, Wendy; Joshi, Rekha; Howland, Pamela; Chauhan, Avinash; Nguyen, Peter; Petersen, Kurt E

    2004-03-01

    The growing importance of analyzing the human genome to detect hereditary and infectious diseases associated with specific DNA sequences has motivated us to develop automated devices to integrate sample preparation, real-time PCR, and microchannel electrophoresis (MCE). In this report, we present results from an optimized compact system capable of processing a raw sample of blood, extracting the DNA, and performing a multiplexed PCR reaction. Finally, an innovative electrophoretic separation was performed on the post-PCR products using a unique MCE system. The sample preparation system extracted and lysed white blood cells (WBC) from whole blood, producing DNA of sufficient quantity and quality for a polymerase chain reaction (PCR). Separation of multiple amplicons was achieved in a microfabricated channel 30 microm x 100 microm in cross section and 85 mm in length filled with a replaceable methyl cellulose matrix operated under denaturing conditions at 50 degrees C. By incorporating fluorescent-labeled primers in the PCR, the amplicons were identified by a two-color (multiplexed) fluorescence detection system. Two base-pair resolution of single-stranded DNA (PCR products) was achieved. We believe that this integrated system provides a unique solution for DNA analysis.

  9. Complete genome amplification of Equine influenza virus subtype 2 Amplificación del genoma completo del subtipo 2 del virus de la influenza equina

    OpenAIRE

    Sguazza, G.H.; Fuentealba, N. A.; M. A. Tizzano; Galosi, C. M.; M. R. Pecoraro

    2009-01-01

    This work reports a method for rapid amplification of the complete genome of equine influenza virus subtype 2 (H3N8). A ThermoScriptTM reverse transcriptase instead of the avian myeloblastosis virus reverse transcriptase or Moloney murine leukemia virus reverse transcriptase was used. This enzyme has demonstrated higher thermal stability and is described as suitable to make long cDNA with a complex secondary structure. The product obtained by this method can be cloned, used in later sequencin...

  10. The use of whole genome amplification to study chromosomal changes in prostate cancer: insights into genome-wide signature of preneoplasia associated with cancer progression

    Directory of Open Access Journals (Sweden)

    Squire Jeremy A

    2006-03-01

    Full Text Available Abstract Background Prostate cancer (CaP is a disease with multifactorial etiology that includes both genetic and environmental components. The knowledge of the genetic basis of CaP has increased over the past years, mainly in the pathways that underlie tumourigenesis, progression and drug resistance. The vast majority of cases of CaP are adenocarcinomas that likely develop through a pre-malignant lesion and high-grade prostatic intraepithelial neoplasia (HPIN. Histologically, CaP is a heterogeneous disease consisting of multiple, discrete foci of invasive carcinoma and HPIN that are commonly interspersed with benign glands and stroma. This admixture with benign tissue can complicate genomic analyses in CaP. Specifically, when DNA is bulk-extracted the genetic information obtained represents an average for all of the cells within the sample. Results To minimize this problem, we obtained DNA from individual foci of HPIN and CaP by laser capture microdissection (LCM. The small quantities of DNA thus obtained were then amplified by means of multiple-displacement amplification (MDA, for use in genomic DNA array comparative genomic hybridisation (gaCGH. Recurrent chromosome copy number abnormalities (CNAs were observed in both HPIN and CaP. In HPIN, chromosomal imbalances involving chromosome 8 where common, whilst in CaP additional chromosomal changes involving chromosomes 6, 10, 13 and 16 where also frequently observed. Conclusion An overall increase in chromosomal changes was seen in CaP compared to HPIN, suggesting a universal breakdown in chromosomal stability. The accumulation of CNAs, which occurs during this process is non-random and may indicate chromosomal regions important in tumourigenesis. It is therefore likely that the alterations in copy number are part of a programmed cycle of events that promote tumour development, progression and survival. The combination of LCM, MDA and gaCGH is ideally suited for the identification of CNAs from

  11. Novel amplifications in pediatric medulloblastoma identified by genome-wide copy number profiling.

    Science.gov (United States)

    Nord, Helena; Pfeifer, Susan; Nilsson, Pelle; Sandgren, Johanna; Popova, Svetlana; Strömberg, Bo; Alafuzoff, Irina; Nistér, Monica; Díaz de Ståhl, Teresita

    2012-03-01

    Medulloblastoma (MB) is a WHO grade IV, invasive embryonal CNS tumor that mainly affects children. The aggressiveness and response to therapy can vary considerably between cases, and despite treatment, ~30% of patients die within 2 years from diagnosis. Furthermore, the majority of survivors suffer long-term side-effects due to severe management modalities. Several distinct morphological features have been associated with differences in biological behavior, but improved molecular-based criteria that better reflect the underlying tumor biology are in great demand. In this study, we profiled a series of 25 MB with a 32K BAC array covering 99% of the current assembly of the human genome for the identification of genetic copy number alterations possibly important in MB. Previously known aberrations as well as several novel focally amplified loci could be identified. As expected, the most frequently observed alteration was the combination of 17p loss and 17q gain, which was detected in both high- and standard-risk patients. We also defined minimal overlapping regions of aberrations, including 16 regions of gain and 18 regions of loss in various chromosomes. A few noteworthy narrow amplified loci were identified on autosomes 1 (38.89-41.97 and 84.89-90.76 Mb), 3 (27.64-28.20 and 35.80-43.50 Mb), and 8 (119.66-139.79 Mb), aberrations that were verified with an alternative platform (Illumina 610Q chips). Gene expression levels were also established for these samples using Affymetrix U133Plus2.0 arrays. Several interesting genes encompassed within the amplified regions and presenting with transcript upregulation were identified. These data contribute to the characterization of this malignant childhood brain tumor and confirm its genetic heterogeneity.

  12. Ensemble analysis of adaptive compressed genome sequencing strategies

    Science.gov (United States)

    2014-01-01

    Background Acquiring genomes at single-cell resolution has many applications such as in the study of microbiota. However, deep sequencing and assembly of all of millions of cells in a sample is prohibitively costly. A property that can come to rescue is that deep sequencing of every cell should not be necessary to capture all distinct genomes, as the majority of cells are biological replicates. Biologically important samples are often sparse in that sense. In this paper, we propose an adaptive compressed method, also known as distilled sensing, to capture all distinct genomes in a sparse microbial community with reduced sequencing effort. As opposed to group testing in which the number of distinct events is often constant and sparsity is equivalent to rarity of an event, sparsity in our case means scarcity of distinct events in comparison to the data size. Previously, we introduced the problem and proposed a distilled sensing solution based on the breadth first search strategy. We simulated the whole process which constrained our ability to study the behavior of the algorithm for the entire ensemble due to its computational intensity. Results In this paper, we modify our previous breadth first search strategy and introduce the depth first search strategy. Instead of simulating the entire process, which is intractable for a large number of experiments, we provide a dynamic programming algorithm to analyze the behavior of the method for the entire ensemble. The ensemble analysis algorithm recursively calculates the probability of capturing every distinct genome and also the expected total sequenced nucleotides for a given population profile. Our results suggest that the expected total sequenced nucleotides grows proportional to log of the number of cells and proportional linearly with the number of distinct genomes. The probability of missing a genome depends on its abundance and the ratio of its size over the maximum genome size in the sample. The modified resource

  13. Yeast as a touchstone in post-genomic research: strategies for integrative analysis in functional genomics.

    Science.gov (United States)

    Castrillo, Juan I; Oliver, Stephen G

    2004-01-31

    The new complexity arising from the genome sequencing projects requires new comprehensive post-genomic strategies: advanced studies in regulatory mechanisms, application of new high-throughput technologies at a genome-wide scale, at the different levels of cellular complexity (genome, transcriptome, proteome and metabolome), efficient analysis of the results, and application of new bioinformatic methods in an integrative or systems biology perspective. This can be accomplished in studies with model organisms under controlled conditions. In this review a perspective of the favourable characteristics of yeast as a touchstone model in post-genomic research is presented. The state-of-the art, latest advances in the field and bottlenecks, new strategies, new regulatory mechanisms, applications (patents) and high-throughput technologies, most of them being developed and validated in yeast, are presented. The optimal characteristics of yeast as a well-defined system for comprehensive studies under controlled conditions makes it a perfect model to be used in integrative, "systems biology" studies to get new insights into the mechanisms of regulation (regulatory networks) responsible of specific phenotypes under particular environmental conditions, to be applied to more complex organisms (e.g. plants, human).

  14. A Manual Curation Strategy to Improve Genome Annotation: Application to a Set of Haloarchael Genomes

    Directory of Open Access Journals (Sweden)

    Friedhelm Pfeiffer

    2015-06-01

    Full Text Available Genome annotation errors are a persistent problem that impede research in the biosciences. A manual curation effort is described that attempts to produce high-quality genome annotations for a set of haloarchaeal genomes (Halobacterium salinarum and Hbt. hubeiense, Haloferax volcanii and Hfx. mediterranei, Natronomonas pharaonis and Nmn. moolapensis, Haloquadratum walsbyi strains HBSQ001 and C23, Natrialba magadii, Haloarcula marismortui and Har. hispanica, and Halohasta litchfieldiae. Genomes are checked for missing genes, start codon misassignments, and disrupted genes. Assignments of a specific function are preferably based on experimentally characterized homologs (Gold Standard Proteins. To avoid overannotation, which is a major source of database errors, we restrict annotation to only general function assignments when support for a specific substrate assignment is insufficient. This strategy results in annotations that are resistant to the plethora of errors that compromise public databases. Annotation consistency is rigorously validated for ortholog pairs from the genomes surveyed. The annotation is regularly crosschecked against the UniProt database to further improve annotations and increase the level of standardization. Enhanced genome annotations are submitted to public databases (EMBL/GenBank, UniProt, to the benefit of the scientific community. The enhanced annotations are also publically available via HaloLex.

  15. Rapid genome detection of Schmallenberg virus and bovine viral diarrhea virus by use of isothermal amplification methods and high-speed real-time reverse transcriptase PCR.

    Science.gov (United States)

    Aebischer, Andrea; Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin

    2014-06-01

    Over the past few years, there has been an increasing demand for rapid and simple diagnostic tools that can be applied outside centralized laboratories by using transportable devices. In veterinary medicine, such mobile test systems would circumvent barriers associated with the transportation of samples and significantly reduce the time to diagnose important infectious animal diseases. Among a wide range of available technologies, high-speed real-time reverse transcriptase quantitative PCR (RT-qPCR) and the two isothermal amplification techniques loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) represent three promising candidates for integration into mobile pen-side tests. The aim of this study was to investigate the performance of these amplification strategies and to evaluate their suitability for field application. In order to enable a valid comparison, novel pathogen-specific assays have been developed for the detection of Schmallenberg virus and bovine viral diarrhea virus. The newly developed assays were evaluated in comparison with established standard RT-qPCR using samples from experimentally or field-infected animals. Even though all assays allowed detection of the target virus in less than 30 min, major differences were revealed concerning sensitivity, specificity, robustness, testing time, and complexity of assay design. These findings indicated that the success of an assay will depend on the integrated amplification technology. Therefore, the application-specific pros and cons of each method that were identified during this study provide very valuable insights for future development and optimization of pen-side tests.

  16. Genome editing strategies: potential tools for eradicating HIV-1/AIDS.

    Science.gov (United States)

    Khalili, Kamel; Kaminski, Rafal; Gordon, Jennifer; Cosentino, Laura; Hu, Wenhui

    2015-06-01

    Current therapy for controlling human immunodeficiency virus (HIV-1) infection and preventing acquired immunodeficiency syndrome (AIDS) progression has profoundly decreased viral replication in cells susceptible to HIV-1 infection, but it does not eliminate the low level of viral replication in latently infected cells, which contain integrated copies of HIV-1 proviral DNA. There is an urgent need for the development of HIV-1 genome eradication strategies that will lead to a permanent or "sterile" cure of HIV-1/AIDS. In the past few years, novel nuclease-initiated genome editing tools have been developing rapidly, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 system. These surgical knives, which can excise any genome, provide a great opportunity to eradicate the HIV-1 genome by targeting highly conserved regions of the HIV-1 long terminal repeats or essential viral genes. Given the time consuming and costly engineering of target-specific ZFNs and TALENs, the RNA-guided endonuclease Cas9 technology has emerged as a simpler and more versatile technology to allow permanent removal of integrated HIV-1 proviral DNA in eukaryotic cells, and hopefully animal models or human patients. The major unmet challenges of this approach at present include inefficient nuclease gene delivery, potential off-target cleavage, and cell-specific genome targeting. Nanoparticle or lentivirus-mediated delivery of next generation Cas9 technologies including nickase or RNA-guided FokI nuclease (RFN) will further improve the potential for genome editing to become a promising approach for curing HIV-1/AIDS.

  17. Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2004-07-14

    The structural genomics project is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy which is medically and biologically relevant, of good value, and tractable. As an option to consider, we present the Pfam5000 strategy, which involves selecting the 5000 most important families from the Pfam database as sources for targets. We compare the Pfam5000 strategy to several other proposed strategies that would require similar numbers of targets. These include including complete solution of several small to moderately sized bacterial proteomes, partial coverage of the human proteome, and random selection of approximately 5000 targets from sequenced genomes. We measure the impact that successful implementation of these strategies would have upon structural interpretation of the proteins in Swiss-Prot, TrEMBL, and 131 complete proteomes (including 10 of eukaryotes) from the Proteome Analysis database at EBI. Solving the structures of proteins from the 5000 largest Pfam families would allow accurate fold assignment for approximately 68 percent of all prokaryotic proteins (covering 59 percent of residues) and 61 percent of eukaryotic proteins (40 percent of residues). More fine-grained coverage which would allow accurate modeling of these proteins would require an order of magnitude more targets. The Pfam5000 strategy may be modified in several ways, for example to focus on larger families, bacterial sequences, or eukaryotic sequences; as long as secondary consideration is given to large families within Pfam, coverage results vary only slightly. In contrast, focusing structural genomics on a single tractable genome would have only a limited impact in structural knowledge of other proteomes: a significant fraction (about 30-40 percent of the proteins, and 40-60 percent of the residues) of each proteome is classified in small

  18. [Strategies of the study on herb genome program].

    Science.gov (United States)

    Chen, Shi-lin; Sun, Yong-zhen; Xu, Jiang; Luo, Hong-mei; Sun, Chao; He, Liu; Cheng, Xiang-lin; Zhang, Bo-li; Xiao, Pei-gen

    2010-07-01

    Herb Genome Program (HerbGP) includes a series of projects on whole genome sequencing (WGS) and post-genomics research of medicinal plants with unique secondary metabolism pathways or/and those of great medical and pharmaceutical importance. In this paper, we systematically discussed the strategy of HerbGP, from species selection, whole-genome sequencing, assembly and bioinformatics analysis, to postgenomics research. HerbGP will push study on Chinese traditional medicines into the front field of life science, by selecting a series of plants with unique secondary metabolism pathways as models and introducing "omics" methods into the research of these medicinal plants. HerbGP will provide great opportunities for China to be the leader in the basic research field of traditional Chinese medicine. HerbGP shall also have significant impacts on the R&D of natural medicines and the development of medicinal farming by analysis of secondary metabolic pathways and selection of cultivars with good agricultural traits.

  19. Improved genome-wide localization by ChIP-chip using double-round T7 RNA polymerase-based amplification.

    Science.gov (United States)

    van Bakel, Harm; van Werven, Folkert J; Radonjic, Marijana; Brok, Mariel O; van Leenen, Dik; Holstege, Frank C P; Timmers, H T Marc

    2008-03-01

    Chromatin immunoprecipitation combined with DNA microarrays (ChIP-chip) is a powerful technique to detect in vivo protein-DNA interactions. Due to low yields, ChIP assays of transcription factors generally require amplification of immunoprecipitated genomic DNA. Here, we present an adapted linear amplification method that involves two rounds of T7 RNA polymerase amplification (double-T7). Using this we could successfully amplify as little as 0.4 ng of ChIP DNA to sufficient amounts for microarray analysis. In addition, we compared the double-T7 method to the ligation-mediated polymerase chain reaction (LM-PCR) method in a ChIP-chip of the yeast transcription factor Gsm1p. The double-T7 protocol showed lower noise levels and stronger binding signals compared to LM-PCR. Both LM-PCR and double-T7 identified strongly bound genomic regions, but the double-T7 method increased sensitivity and specificity to allow detection of weaker binding sites.

  20. A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yanagihara Kazuyoshi

    2009-06-01

    Full Text Available Abstract Background Gastric cancer is the third most common malignancy affecting the general population worldwide. Aberrant activation of KRAS is a key factor in the development of many types of tumor, however, oncogenic mutations of KRAS are infrequent in gastric cancer. We have developed a novel quantitative method of analysis of DNA copy number, termed digital genome scanning (DGS, which is based on the enumeration of short restriction fragments, and does not involve PCR or hybridization. In the current study, we used DGS to survey copy-number alterations in gastric cancer cells. Methods DGS of gastric cancer cell lines was performed using the sequences of 5000 to 15000 restriction fragments. We screened 20 gastric cancer cell lines and 86 primary gastric tumors for KRAS amplification by quantitative PCR, and investigated KRAS amplification at the DNA, mRNA and protein levels by mutational analysis, real-time PCR, immunoblot analysis, GTP-RAS pull-down assay and immunohistochemical analysis. The effect of KRAS knock-down on the activation of p44/42 MAP kinase and AKT and on cell growth were examined by immunoblot and colorimetric assay, respectively. Results DGS analysis of the HSC45 gastric cancer cell line revealed the amplification of a 500-kb region on chromosome 12p12.1, which contains the KRAS gene locus. Amplification of the KRAS locus was detected in 15% (3/20 of gastric cancer cell lines (8–18-fold amplification and 4.7% (4/86 of primary gastric tumors (8–50-fold amplification. KRAS mutations were identified in two of the three cell lines in which KRAS was amplified, but were not detected in any of the primary tumors. Overexpression of KRAS protein correlated directly with increased KRAS copy number. The level of GTP-bound KRAS was elevated following serum stimulation in cells with amplified wild-type KRAS, but not in cells with amplified mutant KRAS. Knock-down of KRAS in gastric cancer cells that carried amplified wild

  1. [Plastid genome engineering: novel optimization strategies and applications].

    Science.gov (United States)

    Zhou, Fei; Lu, Shizhan; Gao, Liang; Zhang, Juanjuan; Lin, Yongjun

    2015-08-01

    The plastid genome engineering system allows site-specific modifications via two homologous recombination events. It is much safer, more precise and efficient compared with the nuclear transformation system. This technology can be applied to the basic research to expand plastid genome function analysis, and it also provides an excellent platform for not only high-level production of recombinant proteins but also plant breeding. In this review, we summarize the state of the art and progresses in this field. We focus on novel breeding strategies in transformation system improvement and new tools to enhance plastid transgene expression levels. In addition, we highlight selected applications in resistance engineering and quality improvement via metabolic engineering. We believe that by overcoming current technological limitations in the plastid transformation system can another green revolution for crop breeding beckon.

  2. From amplification to gene in thyroid cancer: A high-resolution mapped bacterial-artificial-chromosome resource for cancer chromosome aberrations guides gene discovery after comparative genome hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.N.; Gonsky, R.; Korenberg, J.R. [UCLA School of Medicine, Los Angeles, CA (United States). Cedars-Sinai Research Inst.; Knauf, J.A.; Fagin, J.A. [Univ. of Cincinnati, OH (United States). Div. of Endocrinology/Metabolism; Wang, M.; Lai, E.H. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Pharmacology; Chissoe, S. [Washington Univ. School of Medicine, St. Louis, MO (United States). Genome Sequencing

    1998-08-01

    Chromosome rearrangements associated with neoplasms provide a rich resource for definition of the pathways of tumorigenesis. The power of comparative genome hybridization (CGH) to identify novel genes depends on the existence of suitable markers, which are lacking throughout most of the genome. The authors now report a general approach that translates CGH data into higher-resolution genomic-clone data that are then used to define the genes located in aneuploid regions. They used CGH to study 33 thyroid-tumor DNAs and two tumor-cell-line DNAs. The results revealed amplifications of chromosome band 2p21, with less-intense amplification on 2p13, 19q13.1, and 1p36 and with least-intense amplification on 1p34, 1q42, 5q31, 5q33-34, 9q32-34, and 14q32. To define the 2p21 region amplified, a dense array of 373 FISH-mapped chromosome 2 bacterial artificial chromosomes (BACs) was constructed, and 87 of these were hybridized to a tumor-cell line. Four BACs carried genomic DNA that was amplified in these cells. The maximum amplified region was narrowed to 3--6 Mb by multicolor FISH with the flanking BACs, and the minimum amplicon size was defined by a contig of 420 kb. Sequence analysis of the amplified BAC 1D9 revealed a fragment of the gene, encoding protein kinase C epsilon (PKC{epsilon}), that was then shown to be amplified and rearranged in tumor cells. In summary, CGH combined with a dense mapped resource of BACs and large-scale sequencing has led directly to the definition of PKC{epsilon} as a previously unmapped candidate gene involved in thyroid tumorigenesis.

  3. Evaluation of three methods of DNA extraction from paraffin-embedded material for the amplification of genomic DNA by means of the PCR technique

    Directory of Open Access Journals (Sweden)

    MESQUITA Ricardo Alves

    2001-01-01

    Full Text Available There are several protocols reported in the literature for the extraction of genomic DNA from formalin-fixed paraffin-embedded samples. Genomic DNA is utilized in molecular analyses, including PCR. This study compares three different methods for the extraction of genomic DNA from formalin-fixed paraffin-embedded (inflammatory fibrous hyperplasia and non-formalin-fixed (normal oral mucosa samples: phenol with enzymatic digestion, and silica with and without enzymatic digestion. The amplification of DNA by means of the PCR technique was carried out with primers for the exon 7 of human keratin type 14. Amplicons were analyzed by means of electrophoresis in an 8% polyacrylamide gel with 5% glycerol, followed by silver-staining visualization. The phenol/enzymatic digestion and the silica/enzymatic digestion methods provided amplicons from both tissue samples. The method described is a potential aid in the establishment of the histopathologic diagnosis and in retrospective studies with archival paraffin-embedded samples.

  4. Rapid detection of Salmonella in raw chicken breast using real-time PCR combined with immunomagnetic separation and whole genome amplification.

    Science.gov (United States)

    Hyeon, Ji-Yeon; Deng, Xiangyu

    2017-05-01

    We presented the first attempt to combine immunomagnetic separation (IMS), whole genome amplification by multiple displacement amplification (MDA) and real-time PCR for detecting a bacterial pathogen in a food sample. This method was effective in enabling real-time PCR detection of low levels of Salmonella enterica Serotype Enteritidis (SE) (∼10 CFU/g) in raw chicken breast without culture enrichment. In addition, it was able to detect refrigeration-stressed SE cells at lower concentrations (∼0.1 CFU/g) in raw chicken breast after a 4-h culture enrichment, shortening the detection process from days to hours and displaying no statistical difference in detection rate in comparison with a culture-based detection method. By substantially improving performance in SE detection over conventional real-time PCR, we demonstrated the potential of IMS-MDA real-time PCR as a rapid, sensitive and affordable method for detecting Salmonella in food.

  5. A cascade signal amplification strategy for surface enhanced Raman spectroscopy detection of thrombin based on DNAzyme assistant DNA recycling and rolling circle amplification.

    Science.gov (United States)

    Gao, Fenglei; Du, Lili; Tang, Daoquan; Lu, Yao; Zhang, Yanzhuo; Zhang, Lixian

    2015-04-15

    A sensitive protocol for surface enhanced Raman spectroscopy (SERS) detection of thrombin is designed with R6G-Ag NPs as a signal tag by combining DNAzyme assistant DNA recycling and rolling circle amplification (RCA). Molecular beacon (MB) as recognition probe immobilizes on the glass slides and performs the amplification procedure. After thrombin-induced structure-switching DNA hairpins of probe 1, the DNAzyme is liberated from the caged structure, which hybridizes with the MB for cleavage of the MB in the presence of cofactor Zn(2+) and initiates the DNA recycling process, leading to the cleavage of a large number of MB and the generation of numerous primers for triggering RCA reaction. The long amplified RCA product which contained hundreds of tandem-repeat sequences, which can bind with oligonucleotide functionalized Ag NPs reporters. The attached signal tags can be easily read out by SERS. Because of the cascade signal amplification, these newly designed protocols provides a sensitive SERS detection of thrombin down to the femolar level (2.3fM) with a linear range of 5 orders of magnitude (from 10(-14) to 10(-9)M) and have high selectivity toward its target protein. The proposed method is expected to be a good clinical tool for the diagnosis of a thrombotic disease.

  6. A titratable two-step transcriptional amplification strategy for targeted gene therapy based on ligand-induced intramolecular folding of a mutant human estrogen receptor

    DEFF Research Database (Denmark)

    Chen, Ian Y; Paulmurugan, Ramasamy; Nielsen, Carsten Haagen

    2014-01-01

    PURPOSE: The efficacy and safety of cardiac gene therapy depend critically on the level and the distribution of therapeutic gene expression following vector administration. We aimed to develop a titratable two-step transcriptional amplification (tTSTA) vector strategy, which allows modulation of ...

  7. Extensive amplification of GI-VII-6, a multidrug resistance genomic island of Salmonella enterica serovar Typhimurium, increases resistance to extended-spectrum cephalosporins

    Directory of Open Access Journals (Sweden)

    Ken-ichi eLee

    2015-02-01

    Full Text Available GI-VII-6 is a chromosomally integrated multidrug resistance genomic island harbored by a specific clone of Salmonella enterica serovar Typhimurium (S. Typhimurium. It contains a gene encoding CMY-2 β-lactamase (blaCMY-2, and therefore contributes to extended-spectrum cephalosporin resistance. To elucidate the significance of GI-VII-6 on adaptive evolution, spontaneous mutants of S. Typhimurium strain L-3553 were selected on plates containing cefotaxime (CTX. The concentrations of CTX were higher than its minimum inhibition concentration to the parent strain. The mutants appeared on the plates containing 12.5 and 25 μg/ml CTX at a frequency of 10−6 and 10−8, respectively. No colonies were observed at higher CTX concentrations. The copy number of blaCMY-2 increased up to 85 per genome in the mutants, while the parent strain contains one copy of that in the chromosome. This elevation was accompanied by increased amount of transcription. The blaCMY-2 copy number in the mutants drastically decreased in the absence of antibiotic selection pressure. Southern hybridization analysis and short-read mapping indicated that the entire 125 kb GI-VII-6 or parts of it were tandemly amplified. GI-VII-6 amplification occurred at its original position, although it also transposed to other locations in the genome in some mutants, including an endogenous plasmid in some of the mutants, leading to the amplification of GI-VII-6 at different loci. Insertion sequences were observed at the junction of the amplified regions in the mutants, suggesting their significant roles in the transposition and amplification. Plasmid copy number in the selected mutants was 1.4 to 4.4 times higher than that of the parent strain. These data suggest that transposition and amplification of the blaCMY-2-containing region, along with the copy number variation of the plasmid, contributed to the extensive amplification of blaCMY-2 and increased resistance to CTX.

  8. Single genome amplification of proviral HIV-1 DNA from dried blood spot specimens collected during early infant screening programs in Lusaka, Zambia.

    Science.gov (United States)

    Seu, Lillian; Mwape, Innocent; Guffey, M Bradford

    2014-07-01

    The ability to evaluate individual HIV-1 virions from the quasispecies of vertically infected infants was evaluated in a field setting at the Centre for Infectious Disease Research in Zambia. Infant heel-prick blood specimens were spotted onto dried blood spot (DBS) filter paper cards at government health clinics. Nucleic acid was extracted and used as a template for HIV-1 proviral DNA detection by a commercial Amplicor HIV-1 PCR test (Roche, version 1.5). On samples that tested positive by commercial diagnostic assay, amplification of DNA was performed using an in-house assay of the 5' and 3' region of the HIV-1 genome. Additionally, fragments covering 1200 nucleotides within pol (full length protease and partial reverse transcriptase) and 1400 nucleotides within env (variable 1-variable 5 region) were further analyzed by single genome amplification (SGA). In summary, we have demonstrated an in-house assay for amplifying the 5' and 3' proviral HIV-1 DNA as well as pol and env proviral DNA fragments from DBS cards collected and analyzed entirely in Zambia. In conclusion, this study shows the feasibility of utilizing DBS cards to amplify the whole proviral HIV-1 genome as well as perform SGA on key HIV-1 genes.

  9. The use of a two-tiered testing strategy for the simultaneous detection of small EGFR mutations and EGFR amplification in lung cancer.

    Directory of Open Access Journals (Sweden)

    Marzena Anna Lewandowska

    Full Text Available Lung cancer is the leading cause of cancer-related death worldwide. Recent progress in lung cancer diagnosis and treatment has been achieved due to a better understanding the molecular mechanisms of the disease and the identification of biomarkers that allow more specific cancer treatments. One of the best known examples of personalized therapy is the use of tyrosine kinase inhibitors, such as gefitinib and erlotinib, for the successful treatment of non-small-cell lung cancer patients selected based on the specific EGFR mutations. Therefore, the reliable detection of mutations is critical for the application of appropriate therapy. In this study, we tested a two-tiered mutation detection strategy using real-time PCR assays as a well-validated high-sensitivity method and multiplex ligation-dependent probe amplification (MLPA-based EGFRmut+ assay as a second-tier standard-sensitivity method. One additional advantage of the applied MLPA method is that it allows the simultaneous detection of EGFR mutations and copy-number alterations (i.e., amplifications in EGFR, MET and ERBB2. Our analysis showed high concordance between these two methods. With the use of this two-tier strategy, we reliably determined the frequency of EGFR mutations and EGFR, MET and ERBB2 amplifications in over 200 lung cancer samples. Additionally, taking advantage of simultaneous copy number and small mutation analyses, we showed a very strong correlation between EGFR mutations and EGFR amplifications and a mutual exclusiveness of EGFR mutations/amplifications with MET and ERBB2 amplifications. Our results proved the reliability and usefulness of the two-tiered EGFR testing strategy.

  10. The use of a two-tiered testing strategy for the simultaneous detection of small EGFR mutations and EGFR amplification in lung cancer.

    Science.gov (United States)

    Lewandowska, Marzena Anna; Czubak, Karol; Klonowska, Katarzyna; Jozwicki, Wojciech; Kowalewski, Janusz; Kozlowski, Piotr

    2015-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Recent progress in lung cancer diagnosis and treatment has been achieved due to a better understanding the molecular mechanisms of the disease and the identification of biomarkers that allow more specific cancer treatments. One of the best known examples of personalized therapy is the use of tyrosine kinase inhibitors, such as gefitinib and erlotinib, for the successful treatment of non-small-cell lung cancer patients selected based on the specific EGFR mutations. Therefore, the reliable detection of mutations is critical for the application of appropriate therapy. In this study, we tested a two-tiered mutation detection strategy using real-time PCR assays as a well-validated high-sensitivity method and multiplex ligation-dependent probe amplification (MLPA)-based EGFRmut+ assay as a second-tier standard-sensitivity method. One additional advantage of the applied MLPA method is that it allows the simultaneous detection of EGFR mutations and copy-number alterations (i.e., amplifications) in EGFR, MET and ERBB2. Our analysis showed high concordance between these two methods. With the use of this two-tier strategy, we reliably determined the frequency of EGFR mutations and EGFR, MET and ERBB2 amplifications in over 200 lung cancer samples. Additionally, taking advantage of simultaneous copy number and small mutation analyses, we showed a very strong correlation between EGFR mutations and EGFR amplifications and a mutual exclusiveness of EGFR mutations/amplifications with MET and ERBB2 amplifications. Our results proved the reliability and usefulness of the two-tiered EGFR testing strategy.

  11. Assessing performance of orthology detection strategies applied to eukaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Feng Chen

    Full Text Available Orthology detection is critically important for accurate functional annotation, and has been widely used to facilitate studies on comparative and evolutionary genomics. Although various methods are now available, there has been no comprehensive analysis of performance, due to the lack of a genomic-scale 'gold standard' orthology dataset. Even in the absence of such datasets, the comparison of results from alternative methodologies contains useful information, as agreement enhances confidence and disagreement indicates possible errors. Latent Class Analysis (LCA is a statistical technique that can exploit this information to reasonably infer sensitivities and specificities, and is applied here to evaluate the performance of various orthology detection methods on a eukaryotic dataset. Overall, we observe a trade-off between sensitivity and specificity in orthology detection, with BLAST-based methods characterized by high sensitivity, and tree-based methods by high specificity. Two algorithms exhibit the best overall balance, with both sensitivity and specificity>80%: INPARANOID identifies orthologs across two species while OrthoMCL clusters orthologs from multiple species. Among methods that permit clustering of ortholog groups spanning multiple genomes, the (automated OrthoMCL algorithm exhibits better within-group consistency with respect to protein function and domain architecture than the (manually curated KOG database, and the homolog clustering algorithm TribeMCL as well. By way of using LCA, we are also able to comprehensively assess similarities and statistical dependence between various strategies, and evaluate the effects of parameter settings on performance. In summary, we present a comprehensive evaluation of orthology detection on a divergent set of eukaryotic genomes, thus providing insights and guides for method selection, tuning and development for different applications. Many biological questions have been addressed by multiple

  12. Identification and complete genome sequencing of paramyxoviruses in mallard ducks (Anas platyrhynchos using random access amplification and next generation sequencing technologies

    Directory of Open Access Journals (Sweden)

    van den Berg Thierry

    2011-10-01

    Full Text Available Abstract Background During a wildlife screening program for avian influenza A viruses (AIV and avian paramyxoviruses (APMV in Belgium, we isolated two hemagglutinating agents from pools of cloacal swabs of wild mallards (Anas platyrhynchos caught in a single sampling site at two different times. AIV and APMV1 were excluded using hemagglutination inhibition (HI testing and specific real-time RT-PCR tests. Methods To refine the virological identification of APMV2-10 realized by HI subtyping tests and in lack of validated molecular tests for APMV2-10, random access amplification was used in combination with next generation sequencing for the sequence independent identification of the viruses and the determination of their genomes. Results Three different APMVs were identified. From one pooled sample, the complete genome sequence (15054 nucleotides of an APMV4 was assembled from the random sequences. From the second pooled sample, the nearly complete genome sequence of an APMV6 (genome size of 16236 nucleotides was determined, as well as a partial sequence for an APMV4. This APMV4 was closely related but not identical to the APMV4 isolated from the first sample. Although a cross-reactivity with other APMV subtypes did not allow formal identification, the HI subtyping revealed APMV4 and APMV6 in the respective pooled samples but failed to identify the co-infecting APMV4 in the APMV6 infected pool. Conclusions These data further contribute to the knowledge about the genetic diversity within the serotypes APMV4 and 6, and confirm the limited sensitivity of the HI subtyping test. Moreover, this study demonstrates the value of a random access nucleic acid amplification method in combination with massive parallel sequencing. Using only a moderate and economical sequencing effort, the characterization and full genome sequencing of APMVs can be obtained, including the identification of viruses in mixed infections.

  13. Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.

    NARCIS (Netherlands)

    Heidenblad, M.; Schoenmakers, E.F.P.M.; Jonson, T.; Gorunova, L.; Veltman, J.A.; Geurts van Kessel, A.H.M.; Hoglund, M.

    2004-01-01

    Pancreatic carcinomas display highly complex chromosomal abnormalities, including many structural and numerical aberrations. There is ample evidence indicating that some of these abnormalities, such as recurrent amplifications and homozygous deletions, contribute to tumorigenesis by altering express

  14. G-quadruplex fluorescent probe-mediated real-time rolling circle amplification strategy for highly sensitive microRNA detection.

    Science.gov (United States)

    Jiang, Hong-Xin; Liang, Zhen-Zhen; Ma, Yan-Hong; Kong, De-Ming; Hong, Zhang-Yong

    2016-11-02

    Real-time PCR has revolutionized PCR from qualitative to quantitative. As an isothermal DNA amplification technique, rolling circular amplification (RCA) has been demonstrated to be a versatile tool in many fields. Development of a simple, highly sensitive, and specific strategy for real-time monitoring of RCA will increase its usefulness in many fields. The strategy reported here utilized the specific fluorescence response of thioflavin T (ThT) to G-quadruplexes formed by RCA products. Such a real-time monitoring strategy works well in both traditional RCA with linear amplification efficiency and modified RCA proceeded in an exponential manner, and can be readily performed in commercially available real-time PCR instruments, thereby achieving high-throughput detection and making the proposed technique more suitable for biosensing applications. As examples, real-time RCA-based sensing platforms were designed and successfully used for quantitation of microRNA over broad linear ranges (8 orders of magnitude) with a detection limit of 4 aM (or 0.12 zmol). The feasibility of microRNA analysis in human lung cancer cells was also demonstrated. This work provides a new method for real-time monitoring of RCA by using unique nucleic acid secondary structures and their specific fluorescent probes. It has the potential to be extended to other isothermal single-stranded DNA amplification techniques.

  15. A novel strategy to analyze L-tryptophan through allosteric Trp repressor based on rolling circle amplification.

    Science.gov (United States)

    Zhao, Guojie; Hu, Tianyu; Li, Jun; Wei, Hua; Shang, Hong; Guan, Yifu

    2015-09-15

    Rolling circle amplification (RCA) has been considered as a powerful tool for nucleic acids detection. Here, a novel repressor-RCA-based method for L-tryptophan (L-Trp) detection was developed. This method utilizes the specific interaction between the RCA circular template and the Trp repressor protein (TrpR) involved in trp operon of Escherichia coli (E. coli). In the absence of L-Trp, the TrpR protein could not bind to the RCA template, and the RCA process can be continued. When L-Trp is present, the activated TrpR will bind to the operon sequence on the RCA template and inhibit the RCA reaction. Thus, the concentration of L-Trp is correlated directly with the fluorescent RCA signals. We succeeded in detecting L-Trp in a single step in simple homogeneous reaction system. The detection limit was estimated to be 0.77 μM (S/N=3) with good linearity. The method can unambiguously distinguish L-Trp from other 19 standard amino acids and L-Trp analogs. This strategy is also promising for detecting many small molecules such as other amino acids and carbohydrates.

  16. A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag

    Science.gov (United States)

    Bulbul, Gonca; Hayat, Akhtar; Andreescu, Silvana

    2015-07-01

    We report a novel non-enzymatic nanocatalyst based approach to construct an electrochemical aptasensor involving the synergistic contribution of a nanoceria (nCe) tag and graphene oxide (GO). The aptamer was immobilized on the surface of a GO modified electrode. The target analyte was captured by the immobilized aptamer via a specific competitive mechanism between the free and the nCe labeled target. The electrochemical signal was generated by monitoring the electro-oxidation of a generic redox species upon reaction with the nCe tag. The signal was further amplified by the GO layer used as an electrode material to immobilize the aptamer and to increase the electron transfer at the electrode surface, further enhancing sensitivity of the assay. This strategy provides a universal platform for sensitive and specific detection of a wide spectrum of aptamer targets. Application of this new design for the electrochemical detection of Ochratoxin A (OTA) is demonstrated. Under optimal conditions, the aptasensor exhibited a linear response to OTA in the range 0.15-180 nM with a detection limit of 0.1 nM. The method has been successfully used for the detection of OTA in cereal samples. This design may offer a new methodology for sensitive and specific detection of a wide spectrum of analytes for medical, environmental and electronic applications.We report a novel non-enzymatic nanocatalyst based approach to construct an electrochemical aptasensor involving the synergistic contribution of a nanoceria (nCe) tag and graphene oxide (GO). The aptamer was immobilized on the surface of a GO modified electrode. The target analyte was captured by the immobilized aptamer via a specific competitive mechanism between the free and the nCe labeled target. The electrochemical signal was generated by monitoring the electro-oxidation of a generic redox species upon reaction with the nCe tag. The signal was further amplified by the GO layer used as an electrode material to immobilize the

  17. Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor.

    Science.gov (United States)

    Zheng, Wanli; Teng, Jun; Cheng, Lin; Ye, Yingwang; Pan, Daodong; Wu, Jingjing; Xue, Feng; Liu, Guodong; Chen, Wei

    2016-06-15

    An electrochemical aptasensor for trace detection of aflatoxin B1 (AFB1) was developed by using an aptamer as the recognition unit while adopting the telomerase and EXO III based two-round signal amplification strategy as the signal enhancement units. The telomerase amplification was used to elongate the ssDNA probes on the surface of gold nanoparticles, by which the signal response range of the signal-off model electrochemical aptasensor could be correspondingly enlarged. Then, the EXO III amplification was used to hydrolyze the 3'-end of the dsDNA after the recognition of target AFB1, which caused the release of bounded AFB1 into the sensing system, where it participated in the next recognition-sensing cycle. With this two-round signal amplified electrochemical aptasensor, target AFB1 was successfully measured at trace concentrations with excellent detection limit of 0.6*10(-4)ppt and satisfied specificity due to the excellent affinity of the aptamer against AFB1. Based on this designed two-round signal amplification strategy, both the sensing range and detection limit were greatly improved. This proposed ultrasensitive electrochemical aptasensor method was also validated by comparison with the classic instrumental methods. Importantly, this hetero-enzyme based two-round signal amplified electrochemical aptasensor offers a great promising protocol for ultrasensitive detection of AFB1 and other mycotoxins by replacing the core recognition sequence of the aptamer.

  18. From human monocytes to genome-wide binding sites--a protocol for small amounts of blood: monocyte isolation/ChIP-protocol/library amplification/genome wide computational data analysis.

    Directory of Open Access Journals (Sweden)

    Sebastian Weiterer

    Full Text Available Chromatin immunoprecipitation in combination with a genome-wide analysis via high-throughput sequencing is the state of the art method to gain genome-wide representation of histone modification or transcription factor binding profiles. However, chromatin immunoprecipitation analysis in the context of human experimental samples is limited, especially in the case of blood cells. The typically extremely low yields of precipitated DNA are usually not compatible with library amplification for next generation sequencing. We developed a highly reproducible protocol to present a guideline from the first step of isolating monocytes from a blood sample to analyse the distribution of histone modifications in a genome-wide manner.The protocol describes the whole work flow from isolating monocytes from human blood samples followed by a high-sensitivity and small-scale chromatin immunoprecipitation assay with guidance for generating libraries compatible with next generation sequencing from small amounts of immunoprecipitated DNA.

  19. Evaluation of a field-portable DNA microarray platform and nucleic acid amplification strategies for the detection of arboviruses, arthropods, and bloodmeals.

    Science.gov (United States)

    Grubaugh, Nathan D; Petz, Lawrence N; Melanson, Vanessa R; McMenamy, Scott S; Turell, Michael J; Long, Lewis S; Pisarcik, Sarah E; Kengluecha, Ampornpan; Jaichapor, Boonsong; O'Guinn, Monica L; Lee, John S

    2013-02-01

    Highly multiplexed assays, such as microarrays, can benefit arbovirus surveillance by allowing researchers to screen for hundreds of targets at once. We evaluated amplification strategies and the practicality of a portable DNA microarray platform to analyze virus-infected mosquitoes. The prototype microarray design used here targeted the non-structural protein 5, ribosomal RNA, and cytochrome b genes for the detection of flaviviruses, mosquitoes, and bloodmeals, respectively. We identified 13 of 14 flaviviruses from virus inoculated mosquitoes and cultured cells. Additionally, we differentiated between four mosquito genera and eight whole blood samples. The microarray platform was field evaluated in Thailand and successfully identified flaviviruses (Culex flavivirus, dengue-3, and Japanese encephalitis viruses), differentiated between mosquito genera (Aedes, Armigeres, Culex, and Mansonia), and detected mammalian bloodmeals (human and dog). We showed that the microarray platform and amplification strategies described here can be used to discern specific information on a wide variety of viruses and their vectors.

  20. Sensitive Immunosensor for Cancer Biomarker Based on Dual Signal Amplification Strategy of Graphene Sheets and Multi-Enzyme Functionalized Carbon Nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Du, Dan; Zou, Zhexiang; Shin, Yongsoon; Wang, Jun; Wu, Hong; Engelhard, Mark H.; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-03-30

    A novel electrochemical immunosensor for sensitive detection of cancer biomarker α fetoprotein (AFP) is described that uses a graphene sheet sensor platform and functionalized carbon nanospheres (CNSs) labeling with horseradish peroxidase-secondary antibodies (HRP-Ab2). Greatly enhanced sensitivity for the cancer biomarker is based on a dual signal amplification strategy: first, the synthesized CNSs yielded a homogeneous and narrow size distribution, which allowed several binding events of HRP-Ab2 on each nanosphere. Enhanced sensitivity was achieved by introducing the multi-bioconjugates of HRP-Ab2-CNSs onto the electrode surface through sandwich immunoreactions. Secondly, functionalized graphene sheets used for the biosensor platform increased the surface area to capture a large amount of primary antibodies (Ab1), thus amplifying the detection response. This amplification strategy is a promising platform for clinical screening of cancer biomarkers and point-of-care diagnostics.

  1. Fe3O4/Au magnetic nanoparticle amplification strategies for ultrasensitive electrochemical immunoassay of alfa-fetoprotein

    Directory of Open Access Journals (Sweden)

    Gan N

    2011-12-01

    Full Text Available Ning Gan1*, Haijuan Jin1*, Tianhua Li1, Lei Zheng21The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, 2Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China *Both authors contributed equally to this workBackground: The purpose of this study was to devise a novel electrochemical immunosensor for ultrasensitive detection of alfa-fetoprotein based on Fe3O4/Au nanoparticles as a carrier using a multienzyme amplification strategy.Methods and results: Greatly enhanced sensitivity was achieved using bioconjugates containing horseradish peroxidase (HRP and a secondary antibody (Ab2 linked to Fe3O4/Au nanoparticles (Fe3O4/Au-HRP-Ab2 at a high HRP/Ab2 ratio. After a sandwich immunoreaction, the Fe3O4/Au-HRP-Ab2 captured on the electrode surface produced an amplified electrocatalytic response by reduction of enzymatically oxidized hydroquinone in the presence of hydrogen peroxide. The high content of HRP in the Fe3O4/Au-HRP-Ab2 could greatly amplify the electrochemical signal. Under optimal conditions, the reduction current increased with increasing alfa-fetoprotein concentration in the sample, and exhibited a dynamic range of 0.005–10 ng/mL with a detection limit of 3 pg/mL.Conclusion: The amplified immunoassay developed in this work shows good precision, acceptable stability, and reproducibility, and can be used for detection of alfa-fetoprotein in real samples, so provides a potential alternative tool for detection of protein in the laboratory. Furthermore, this immunosensor could be regenerated by simply using an external magnetic field.Keywords: Fe3O4/Au nanoparticles, alfa-fetoprotein, sandwich immunoassay, electrochemical immunosensor

  2. Dendritic structure DNA for specific metal ion biosensor based on catalytic hairpin assembly and a sensitive synergistic amplification strategy.

    Science.gov (United States)

    Zhao, Jianmin; Jing, Pei; Xue, Shuyan; Xu, Wenju

    2017-01-15

    In this work, a sensitive electrochemical biosensing to Pb(2+) was proposed based on the high specificity of DNAzymes to Pb(2+). The response signal was efficiently amplified by the catalytic hairpin assembly induced by strand replacement reaction and the formation of dendritic structure DNA (DSDNA) by layer-by-layer assembly. Firstly, in the presence of Pb(2+), the substrate strand (S1) of the Pb(2+)-specific DNAzymes was specifically cleaved by Pb(2+). Secondly, one of the two fragments (rS1) introduced into the electrode surface was hybridized with a hairpin DNA (H1) and further replaced by another hairpin DNA (H2) by the hybridization reaction of H1 with H2. The released rS1 then induced the next hybridization with H1. After repeated cycles, the catalytic recycling assembly of H2 with H1 was completed. Thirdly, two bioconjugates of Pt@Pd nanocages (Pt@PdNCs) labeled with DNA S3/S4 and electroactive toluidine blue (Tb) (Tb-S3-Pt@PdNCs and Tb-S4-Pt@PdNCs) were captured onto the resultant electrode surface through the hybridization of S3 and H2, S3 and S4, resulting in the formation of DSDNA triggered by layer-by-layer assembly. This formed DSDNA greatly facilitated the immobilization of manganese(III) meso-tetrakis (4-N-methylpyridiniumyl)-porphyrin (MnTMPyP) as mimicking enzyme. Under the synergistic catalysis of Pt@PdNCs and MnTMPyP to H2O2 reduction, the effective signal amplification of the developed Pb(2+) biosensor was achieved. As a result, the sensitive detection of the proposed electrochemical strategy for Pb(2+) was greatly improved in the range of 0.1pM-200nM with a detection limit of 0.033pM.

  3. Plant Metabolomics : the missiong link in functional genomics strategies

    NARCIS (Netherlands)

    Hall, R.D.; Beale, M.; Fiehn, O.; Hardy, N.; Summer, L.; Bino, R.

    2002-01-01

    After the establishment of technologies for high-throughput DNA sequencing (genomics), gene expression analysis (transcriptomics), and protein analysis (proteomics), the remaining functional genomics challenge is that of metabolomics. Metabolomics is the term coined for essentially comprehensive, no

  4. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor.

    Science.gov (United States)

    Xiang, Yang; Zhu, Xiaoyan; Huang, Qing; Zheng, Junsong; Fu, Weiling

    2015-04-15

    In this study, we developed a surface plasmon resonance (SPR) DNA biosensor array based on target-primed rolling circle amplification (RCA) for isothermal and rapid detection of two pathogenic mycobacteria, Mycobacterium tuberculosis complex (MTBC) and Mycobacterium avium complex (MAC).The species-specific padlock probe (PLP) was designed to target the sequence in 16S-23S rRNA gene internal transcribed spacer (ITS). After ligation, the circularized PLP could be primed by the target sequence to initial RCA. The RCA performed simultaneously with the cleavage reaction to produce small fragments of single strand DNA which immediately hybridized with the probe immobilized on the sensor chip without denaturation. This process caused SPR angle changes on the chip surface, which made the detection for analysis from the solution achievable, and dynamic real-time RCA monitoring of mycobacterium possible. Besides, Au nanoparticles (AuNPs) were directly assembled onto the surface of the sensor chip via hexanedithiol (HDT) for the enhancement of sensitivity as a label-free detection system. Experimental results show that the signal enhancement by the target-primed RCA together with AuNPs-embedded surface caused at least10-fold increased sensitivity as compared with conventional RCA on bare SPR chip method. Within 40min amplification duration as low as 20amol of synthetic targets and 10(4)CFUmL(-1) of genomic DNA from clinical samples can be detected. The proposed method not only provides a simple design idea for liquid-phase amplification monitoring, but also apply it in clinical pathogen detection, which holds great promise in ultrasensitive bioassay in the future.

  5. Primers for the Amplification of the Circular Chloroplast DNA from the A-genome Group of Cultivated Cotton

    Institute of Scientific and Technical Information of China (English)

    IBRAHIM Rashid Ismael Hag; AZUMA Jun-Ichi; SAKAMOTO Masahiro

    2008-01-01

    @@ The availability of the plastid genome sequences is one of the bases for comparative,functional,and structural genomic studies of plastid-containing living organisms,in addition to the application of plastid genetic engineering technology.The past efforts to sequence plastid genomes involve complicated preparation protocols.One procedure starts with the isolation of plastids,which was tiresome and time wasting that followed by a second step to extract plastid DNA from the isolated plastids,then finally the build up of plasmid or bacterial artificial chromosome (BAC) library.

  6. Multifunctional reduced graphene oxide trigged chemiluminescence resonance energy transfer: Novel signal amplification strategy for photoelectrochemical immunoassay of squamous cell carcinoma antigen.

    Science.gov (United States)

    Zhang, Yan; Sun, Guoqiang; Yang, Hongmei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2016-05-15

    Herein, a photoelectrochemical (PEC) immunoassay is constructed for squamous cell carcinoma antigen (SCCA) detection using zinc oxide nanoflower-bismuth sulfide (Bi2S3) composites as photoactive materials and reduced graphene oxide (rGO) as signal labels. Horseradish peroxidase is used to block sites against nonspecific binding, and then participated in luminol-based chemiluminescence (CL) system. The induced CL emission is acted as an inner light source to excite photoactive materials, simplifying the instrument. A novel signal amplification strategy is stem from rGO because of the rGO acts as an energy acceptor, while luminol serves as a donor to rGO, triggering the CL resonance energy transfer phenomenon between luminol and rGO. Thus, the efficient CL emission to photoactive materials decreases. Furthermore, the signal amplification caused by rGO labeled signal antibodies is related to photogenerated electron-hole pairs: perfect matching of energy levels between rGO and Bi2S3 makes rGO a sink to capture photogenerated electrons from Bi2S3; the increased steric hindrance hinders the electron donor to the surface of Bi2S3 for reaction with the photogenerated holes. On the basis of the novel signal amplification strategy, the proposed immunosensor exhibits excellent analytical performance for PEC detection of SCCA, ranging from 0.8 pg mL(-1) to 80 ng mL(-1) with a low detection limit of 0.21 pg mL(-1). Meanwhile, the designed signal amplification strategy provides a general format for future development of PEC assays.

  7. Ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy using highly loaded palladium nanoparticles/carbon decorated magnetic microspheres as signal labels.

    Science.gov (United States)

    Ji, Lei; Guo, Zhankui; Yan, Tao; Ma, Hongmin; Du, Bin; Li, Yueyun; Wei, Qin

    2015-06-15

    An ultrasensitive sandwich-type electrochemical immunosensor for quantitative detection of alpha fetoprotein (AFP) was proposed based on a novel signal amplification strategy in this work. Carbon decorated Fe3O4 magnetic microspheres (Fe3O4@C) with large specific surface area and good adsorption property were used as labels to anchor palladium nanoparticles (Pd NPs) and the secondary antibodies (Ab2). Pd NPs were loaded on Fe3O4@C to obtain Fe3O4@C@Pd with core-shell structure by electrostatic attraction, which were further used to immobilize Ab2 due to the bonding of Pd-NH2. A signal amplification strategy was the noble metal nanoparticles, such as Pd NPs, exhibiting high electrocatalytic activities toward hydrogen peroxide (H2O2) reduction. This signal amplification was novel not only because of the great capacity, but also the ease of magnetic separation from the sample solution based on their magnetic property. Moreover, carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs-COOH) were used for the immobilization of primary antibodies (Ab1). Therefore, high sensitivity could be realized by the designed immunosensor based on this novel signal amplification strategy. Under optimal conditions, the immunosensor exhibited a wide linear range of 0.5 pg/mL to 10 ng/mL toward AFP with a detection limit of 0.16 pg/mL (S/N=3). Moreover, it revealed good selectivity, acceptable reproducibility and stability, indicating a potential application in clinical monitoring of tumor biomarkers. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Genomic amplification of Fanconi anemia complementation group A (FancA) in head and neck squamous cell carcinoma (HNSCC): Cellular mechanisms of radioresistance and clinical relevance.

    Science.gov (United States)

    Hess, Julia; Unger, Kristian; Orth, Michael; Schötz, Ulrike; Schüttrumpf, Lars; Zangen, Verena; Gimenez-Aznar, Igor; Michna, Agata; Schneider, Ludmila; Stamp, Ramona; Selmansberger, Martin; Braselmann, Herbert; Hieber, Ludwig; Drexler, Guido A; Kuger, Sebastian; Klein, Diana; Jendrossek, Verena; Friedl, Anna A; Belka, Claus; Zitzelsberger, Horst; Lauber, Kirsten

    2017-02-01

    Radio (chemo) therapy is a crucial treatment modality for head and neck squamous cell carcinoma (HNSCC), but relapse is frequent, and the underlying mechanisms remain largely elusive. Therefore, novel biomarkers are urgently needed. Previously, we identified gains on 16q23-24 to be associated with amplification of the Fanconi anemia A (FancA) gene and to correlate with reduced progression-free survival after radiotherapy. Here, we analyzed the effects of FancA on radiation sensitivity in vitro, characterized the underlying mechanisms, and evaluated their clinical relevance. Silencing of FancA expression in HNSCC cell lines with genomic gains on 16q23-24 resulted in significantly impaired clonogenic survival upon irradiation. Conversely, overexpression of FancA in immortalized keratinocytes conferred increased survival accompanied by improved DNA repair, reduced accumulation of chromosomal translocations, but no hyperactivation of the FA/BRCA-pathway. Downregulation of interferon signaling as identified by microarray analyses, enforced irradiation-induced senescence, and elevated production of the senescence-associated secretory phenotype (SASP) appeared to be candidate mechanisms contributing to FancA-mediated radioresistance. Data of the TCGA HNSCC cohort confirmed the association of gains on 16q24.3 with FancA overexpression and impaired overall survival. Importantly, transcriptomic alterations similar to those observed upon FancA overexpression in vitro strengthened the clinical relevance. Overall, FancA amplification and overexpression appear to be crucial for radiotherapeutic failure in HNSCC.

  9. A strategy for implementing genomics into nursing practice informed by three behaviour change theories.

    Science.gov (United States)

    Leach, Verity; Tonkin, Emma; Lancastle, Deborah; Kirk, Maggie

    2016-06-01

    Genomics is an ever increasing aspect of nursing practice, with focus being directed towards improving health. The authors present an implementation strategy for the incorporation of genomics into nursing practice within the UK, based on three behaviour change theories and the identification of individuals who are likely to provide support for change. Individuals identified as Opinion Leaders and Adopters of genomics illustrate how changes in behaviour might occur among the nursing profession. The core philosophy of the strategy is that genomic nurse Adopters and Opinion Leaders who have direct interaction with their peers in practice will be best placed to highlight the importance of genomics within the nursing role. The strategy discussed in this paper provides scope for continued nursing education and development of genomics within nursing practice on a larger scale. The recommendations might be of particular relevance for senior staff and management.

  10. An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences

    Energy Technology Data Exchange (ETDEWEB)

    Turse, Joshua E.; Marshall, Matthew J.; Fredrickson, Jim K.; Lipton, Mary S.; Callister, Stephen J.

    2010-11-12

    Current methods in proteomics are dependent on the availability of sequenced genomes to identify proteins. However, genomic sequences are not always available for bacteria or microbial communities, even with high throughput sequencing technology becoming more readily available. Nevertheless, the homology that exists between related bacteria makes possible the extraction of meaningful biological information from an organism’s, or community’s proteome using the genomic sequence of a near neighbor. Here, a cross-organism search strategy was used to look at the amount of proteomics information obtainable with relative genetic distance from a near neighbor organism and to identify proteins in the proteome of minimally characterized environmental isolates. We conclude that closely related organisms with sequenced genomes, can be used to characterize proteomes of organisms with unsequenced genomes. In general, a cross-organism search strategy demonstrates the first step to use of sequences genomes to evaluate the proteomes of environmental bacteria and microbial communities that have no sequenced genome

  11. The genome of melon (Cucumis melo L.). Genome amplification in the absence of recent duplication in an old widely cultivated species

    Science.gov (United States)

    We report the genome sequence of melon (Cucumis melo L.), an important horticultural crop worldwide. We assembled 375 Mb of the double haploid line DHL92, representing 83.3 % of the estimated melon genome. We predicted 27,427 protein-coding genes, which we analyzed by reconstructing 22,218 phylogene...

  12. A novel, single-amplification PCR targeting mitochondrial genome highly sensitive and specific in diagnosing malaria among returned travellers in Bergen, Norway

    Directory of Open Access Journals (Sweden)

    Haanshuus Christel G

    2013-01-01

    Full Text Available Abstract Background Nested PCR is a commonly used technique in diagnosis of malaria owing to its high sensitivity and specificity. However, it is time-consuming, open to considerable risk of contamination and has low cost-efficiency. Using amplification targets presented in multiple copies, such as rRNA 18S, or mitochondrial targets with an even higher copy number, might increase sensitivity. Methods The sensitivity and specificity of two newly designed Plasmodium genus-specific single-round amplification PCR programmes, based on previously published primers targeting 18S and mitochondrial genome, were compared with a widely used nested 18S PCR. Analyses of dilution series from Plasmodium falciparum reference material were performed, as well as retrospective analyses of 135 blood samples, evaluated by routine microscopy, from 132 fever patients with potential imported malaria. Sequencing of the 220 bp mitochondrial PCR products was performed. Results At the threshold dilution 0.5 parasites/μl, the sensitivity of the mitochondrial PCR was 97% (29/30 parallels, that of the single-round 18S PCR 93% and the reference nested 18S PCR 87%. All three assays detected as low as 0.05 p/μl, though not consistently. In the patient cohort, malaria was diagnosed in 21% (28/135 samples, defined as positive by at least two methods. Both single-round amplification assays identified all malaria positives diagnosed by nested PCR that had sensitivity of 96% (27/28. The mitochondrial PCR detected one additional sample, also positive by microscopy, and was the only method with 100% sensitivity (28/28. The sensitivity and specificity of the mitochondrial PCR were statistically non-inferior to that of the reference nested PCR. Microscopy missed two infections detected by all PCR assays. Sequencing of the genus-specific mitochondrial PCR products revealed different single nucleotide polymorphisms which allowed species identification of the 28 sequences with following

  13. Amplification of full-length hepatitis C virus genome based on plasmid pJFH-1%基于pJFH-1的HCV全基因组扩增方法的建立

    Institute of Scientific and Technical Information of China (English)

    郭艳; 兰林; 何长龙; 洪国祜; 程玲; 毛青

    2011-01-01

    目的 基于pJFH-1建立能稳定扩增HCV全基因组的长链PCR方法.方法 以pJFH-1为测试模板,通过优化PCR扩增中各个重要环节,包括引物的选择、甘油和/或DMSO最适浓度的筛选、循环条件的摸索等,建立能稳定扩增HCV全基因组的长链PCR方案.结果 高Tm值(>65 ℃)的引物更有利于HCV全基因组的扩增;5%、10%甘油或5% DMSO可显著提高PCR扩增的特异性和扩增效率,且甘油的促进作用优于DMSO;双温法较三温法能获得更高产量的PCR产物.结论 通过优化长链PCR反应体系及条件,成功实现HCV基因全长的扩增.%Objective To optimize the protocols of long-PCR for amplifying full-length HCV genome based on plasmid pJFH-1. Methods Optimization of long-PCR strategies was performed by testing a series of primers, adding various concentrations of glycerol, DMSO or both, using different cycle systems to select the optimal long PCR conditions. Results Primers that have higher melting temperatures ( > 65 C )could improve the efficiency of amplification. Glycerol of 5% and 10% or DMSO of 5% improved the specificity and efficiency of PCR amplification of full-length HCV genome. The promoting effect of glycerol was better than that of DMSO. Compared to three-stage temperature method, two-step temperature produced more PCR product. Conclusion Through the optimization of long-PCR protocol, full-length HCV genome is successfully achieved.

  14. Development of an efficient signal amplification strategy for label-free enzyme immunoassay using two site-specific biotinylated recombinant proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jin-Bao [School of Pharmacy, Weifang Medical University, Weifang 261053 (China); Tang, Ying [Affiliated Hospital of Weifang Medical University, Weifang 261041 (China); Yang, Hong-Ming, E-mail: yanghongming2006@sohu.com [School of Pharmacy, Weifang Medical University, Weifang 261053 (China)

    2015-02-15

    Highlights: • An efficient signal amplification strategy for label-free EIA is proposed. • Divalent biotinylated AP and monovalent biotinylated ZZ were prepared via Avitag–BirA system. • The above site-specific biotinylated fusion proteins form complex via SA–biotin interaction. • The mechanism relies on the ZZ–Avi-B/SA/AP–(Avi-B){sub 2} complex. • The analytical signals are enhanced (32-fold) by the proposed strategy. - Abstract: Constructing a recombinant protein between a reporter enzyme and a detector protein to produce a homogeneous immunological reagent is advantageous over random chemical conjugation. However, the approach hardly recombines multiple enzymes in a difunctional fusion protein, which results in insufficient amplification of the enzymatic signal, thereby limiting its application in further enhancement of analytical signal. In this study, two site-specific biotinylated recombinant proteins, namely, divalent biotinylated alkaline phosphatase (AP) and monovalent biotinylated ZZ domain, were produced by employing the Avitag–BirA system. Through the high streptavidin (SA)–biotin interaction, the divalent biotinylated APs were clustered in the SA–biotin complex and then incorporated with the biotinylated ZZ. This incorporation results in the formation of a functional macromolecule that involves numerous APs, thereby enhancing the enzymatic signal, and in the production of several ZZ molecules for the interaction with immunoglobulin G (IgG) antibody. The advantage of this signal amplification strategy is demonstrated through ELISA, in which the analytical signal was substantially enhanced, with a 32-fold increase in the detection sensitivity compared with the ZZ–AP fusion protein approach. The proposed immunoassay without chemical modification can be an alternative strategy to enhance the analytical signals in various applications involving immunosensors and diagnostic chips, given that the label-free IgG antibody is suitable

  15. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dan; Yan, Yurong; Lei, Pinhua; Shen, Bo [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Cheng, Wei [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Ju, Huangxian [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ding, Shijia, E-mail: dingshijia@163.com [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2014-10-10

    A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. - Highlights: • This paper presented a novel sensing strategy for the rapid and ultrasensitive detection for Salmonella. • Combination of rolling circle amplification and DNA–AuNPs probe is the first time for Salmonella electrochemical detection. • The method displayed excellent sensitivity and specificity for detection of Salmonella. • The fabricated biosensor was successfully applied to detect Salmonella in milk samples. - Abstract: A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. The target DNA could be specifically captured by probe 1 on the sensing interface. Then the circularization mixture was added to form a typical sandwich structure. In the presence of dNTPs and phi29 DNA polymerase, the RCA was initiated to produce micrometer-long single-strand DNA. Finally, the detection probe (DNA–AuNPs) could recognize RCA product to produce enzymatic electrochemical signal. Under optimal conditions, the calibration curve of synthetic target DNA had good linearity from 10 aM to 10 pM with a detection limit of 6.76 aM (S/N = 3). The developed method had been successfully applied to detect Salmonella as low as 6 CFU mL{sup −1} in real milk sample. This proposed strategy showed great potential for clinical diagnosis, food safety and environmental monitoring.

  16. False-positive results and contamination in nucleic acid amplification assays : Suggestions for a prevent and destroy strategy

    NARCIS (Netherlands)

    Borst, A; Box, ATA; Fluit, AC

    Contamination of samples with DNA is still a major problem in microbiology laboratories, despite the wide acceptance of PCR and other amplification techniques for the detection of frequently low amounts of target DNA. This review focuses on the implications of contamination in the diagnosis and

  17. On the expression strategy of the tospoviral genome.

    NARCIS (Netherlands)

    Poelwijk, van F.

    1996-01-01

    The work described in this thesis was aimed at the unravelling of the molecular biology of tospoviruses, with special emphasis on the process of replication of the tripartite RNA genome.At the onset of the research the complete genome sequence of tomato spotted wilt virus (TSWV), type species of the

  18. Sample Preparation Methods Following CellSearch Approach Compatible of Single-Cell Whole-Genome Amplification: An Overview

    NARCIS (Netherlands)

    Swennenhuis, J.F.; Terstappen, L.W.M.M.; Kroneis, Thomas

    2015-01-01

    Single cells are increasingly used to determine the heterogeneity of therapy targets in the genome during the course of a disease. The first challenge using single cells is to isolate these cells from the surrounding cells, especially when the targeted cells are rare. A number of techniques have bee

  19. GAPDH as a control gene to estimate genome copy number in Great Tits, with cross-amplification in Blue Tits

    NARCIS (Netherlands)

    Atema, E.; Van Oers, K.; Verhulst, S.

    2013-01-01

    Estimating the number of genome copies in a tissue sample can serve various purposes. For example, such an estimate serves as scaling variable when measuring telomeres with quantitative PCR. We describe the primer development and evaluation for the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) ge

  20. GAPDH as a control gene to estimate genome copy number in Great Tits, with cross-amplification in Blue Tits

    NARCIS (Netherlands)

    Atema, Els; van Oers, Kees; Verhulst, Simon

    2013-01-01

    Estimating the number of genome copies in a tissue sample can serve various purposes. For example, such an estimate serves as a scaling variable when measuring telomeres with quantitative PCR. We describe the primer development and evaluation for the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

  1. HPV16 and 18 genome amplification show different E4-dependence, with 16E4 enhancing E1 nuclear accumulation and replicative efficiency via its cell cycle arrest and kinase activation functions

    Science.gov (United States)

    Jackson, Deborah; Mahmood, Radma

    2017-01-01

    To clarify E1^E4’s role during high-risk HPV infection, the E4 proteins of HPV16 and 18 were compared side by side using an isogenic keratinocyte differentiation model. While no effect on cell proliferation or viral genome copy number was observed during the early phase of either virus life cycle, time-course experiments showed that viral genome amplification and L1 expression were differently affected upon differentiation, with HPV16 showing a much clearer E4 dependency. Although E4 loss never completely abolished genome amplification, its more obvious contribution in HPV16 focused our efforts on 16E4. As previously suggested, in the context of the virus life cycle, 16E4s G2-arrest capability was found to contribute to both genome amplification success and L1 accumulation. Loss of 16E4 also lead to a reduced maintenance of ERK, JNK and p38MAPK activity throughout the genome amplifying cell layers, with 16E4 (but not 18E4) co-localizing precisely with activated cytoplasmic JNK in both wild type raft tissue, and HPV16-induced patient biopsy tissue. When 16E1 was co-expressed with E4, as occurs during genome amplification in vivo, the E1 replication helicase accumulated preferentially in the nucleus, and in transient replication assays, E4 stimulated viral genome amplification. Interestingly, a 16E1 mutant deficient in its regulatory phosphorylation sites no longer accumulated in the nucleus following E4 co-expression. E4-mediated stabilisation of 16E2 was also apparent, with E2 levels declining in organotypic raft culture when 16E4 was absent. These results suggest that 16E4-mediated enhancement of genome amplification involves its cell cycle inhibition and cellular kinase activation functions, with E4 modifying the activity and function of viral replication proteins including E1. These activities of 16E4, and the different kinase patterns seen here with HPV18, 31 and 45, may reflect natural differences in the biology and tropisms of these viruses, as well as

  2. A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans.

    Science.gov (United States)

    Kim, Heesun; Ishidate, Takao; Ghanta, Krishna S; Seth, Meetu; Conte, Darryl; Shirayama, Masaki; Mello, Craig C

    2014-08-01

    Genome editing based on CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease (Cas9) has been successfully applied in dozens of diverse plant and animal species, including the nematode Caenorhabditis elegans. The rapid life cycle and easy access to the ovary by micro-injection make C. elegans an ideal organism both for applying CRISPR-Cas9 genome editing technology and for optimizing genome-editing protocols. Here we report efficient and straightforward CRISPR-Cas9 genome-editing methods for C. elegans, including a Co-CRISPR strategy that facilitates detection of genome-editing events. We describe methods for detecting homologous recombination (HR) events, including direct screening methods as well as new selection/counterselection strategies. Our findings reveal a surprisingly high frequency of HR-mediated gene conversion, making it possible to rapidly and precisely edit the C. elegans genome both with and without the use of co-inserted marker genes.

  3. Engineering targeted chromosomal amplifications in human breast epithelial cells.

    Science.gov (United States)

    Springer, Simeon; Yi, Kyung H; Park, Jeenah; Rajpurohit, Anandita; Price, Amanda J; Lauring, Josh

    2015-07-01

    Chromosomal amplifications are among the most common genetic alterations found in human cancers. However, experimental systems to study the processes that lead to specific, recurrent amplification events in human cancers are lacking. Moreover, some common amplifications, such as that at 8p11-12 in breast cancer, harbor multiple driver oncogenes, which are poorly modeled by conventional overexpression approaches. We sought to develop an experimental system to model recurrent chromosomal amplification events in human cell lines. Our strategy is to use homologous-recombination-mediated gene targeting to deliver a dominantly selectable, amplifiable marker to a specified chromosomal location. We used adeno-associated virus vectors to target human MCF-7 breast cancer cells at the ZNF703 locus, in the recurrent 8p11-12 amplicon, using the E. coli inosine monophosphate dehydrogenase (IMPDH) enzyme as a marker. We applied selective pressure using IMPDH inhibitors. Surviving clones were found to have increased copy number of ZNF703 (average 2.5-fold increase) by droplet digital PCR and FISH. Genome-wide array comparative genomic hybridization confirmed that amplifications had occurred on the short arm of chromosome 8, without changes on 8q or other chromosomes. Patterns of amplification were variable and similar to those seen in primary human breast cancers, including "sawtooth" patterns, distal copy number loss, and large continuous regions of copy number gain. This system will allow study of the cis- and trans-acting factors that are permissive for chromosomal amplification and provide a model to analyze oncogene cooperativity in amplifications harboring multiple candidate driver genes.

  4. Next-generation sequencing strategies for characterizing the turkey genome.

    Science.gov (United States)

    Dalloul, Rami A; Zimin, Aleksey V; Settlage, Robert E; Kim, Sungwon; Reed, Kent M

    2014-02-01

    The turkey genome sequencing project was initiated in 2008 and has relied primarily on next-generation sequencing (NGS) technologies. Our first efforts used a synergistic combination of 2 NGS platforms (Roche/454 and Illumina GAII), detailed bacterial artificial chromosome (BAC) maps, and unique assembly tools to sequence and assemble the genome of the domesticated turkey, Meleagris gallopavo. Since the first release in 2010, efforts to improve the genome assembly, gene annotation, and genomic analyses continue. The initial assembly build (2.01) represented about 89% of the genome sequence with 17X coverage depth (931 Mb). Sequence contigs were assigned to 30 of the 40 chromosomes with approximately 10% of the assembled sequence corresponding to unassigned chromosomes (ChrUn). The sequence has been refined through both genome-wide and area-focused sequencing, including shotgun and paired-end sequencing, and targeted sequencing of chromosomal regions with low or incomplete coverage. These additional efforts have improved the sequence assembly resulting in 2 subsequent genome builds of higher genome coverage (25X/Build3.0 and 30X/Build4.0) with a current sequence totaling 1,010 Mb. Further, BAC with end sequences assigned to the Z/W and MG18 (MHC) chromosomes, ChrUn, or not placed in the previous build were isolated, deeply sequenced (Hi-Seq), and incorporated into the latest build (5.0). To aid in the annotation and to generate a gene expression atlas of major tissues, a comprehensive set of RNA samples was collected at various developmental stages of female and male turkeys. Transcriptome sequencing data (using Illumina Hi-Seq) will provide information to enhance the final assembly and ultimately improve sequence annotation. The most current sequence covers more than 95% of the turkey genome and should yield a much improved gene level of annotation, making it a valuable resource for studying genetic variations underlying economically important traits in poultry.

  5. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-01-31

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg{sup 2+}), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg{sup 2+} by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T{sub (25)} oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg{sup 2+} ion was intercalated into the DNA polyion complex membrane based on T–Hg{sup 2+}–T coordination chemistry. The chelated Hg{sup 2+} ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH{sub 4} and Ru(NH{sub 3}){sub 6}{sup 3+} for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg{sup 2+} level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg{sup 2+}. The strategy afforded exquisite selectivity for Hg{sup 2+} against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg{sup 2+} in spiked tap-water samples, and the recovery was 87.9–113.8%.

  6. 一种适合于PCR扩增的真菌基因组DNA提取方法%RAPID EXTRACTION OF FUNGAL GENOMIC DNA FOR PCR AMPLIFICATION

    Institute of Scientific and Technical Information of China (English)

    李晓倩

    2011-01-01

    以药用真菌灰树花和蛹虫草以及4种植物内生担子菌为材料,优化一种适用于PCR扩增的高质量基因组DNA提取方法.结果表明,采用改良SDS法提取药用真菌和植物内生担子菌基因组DNA的数量和质量都较为理想,A260/A280为1.8~1.9,DNA产量在110-170μg·g-1湿菌体.将提取的DNA作为模板PCR扩增rDNA ITS片段,扩增条带清晰,结果稳定、准确.该方法简便易行,成本低廉,适合富含蛋白质和多糖的真菌基因组DNA的提取.%An efficient method for extracting high quality genome DNA from two medicinal fungi and four endophytic fungi which had plenty of proteins, polysaccharides and many other chemical substances was optimized for PCR amplification. The results showed that quality and quantity of genomic DNA extraction from medicinal fungi and endophytic fungi with improved SDS method were perfect. The DNA purity was checked by analyzing the ratio of A260/A280 and 110 ~ 170μg · g - 1 DNA were obtained from every gram mycelia( wet weight)of different strains. They were used as the templates of PCR and the amplified bands were clear, stable and reliable. This technique was simple, convenient and inexpensive, which was especially adapted to extraction of fungal genomic DNA with abundant proteins and polysaccharides.

  7. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia.

    OpenAIRE

    1989-01-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell beta-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer co...

  8. Molecular cloning of growth hormone encoding cDNA of Indian major carps by a modified rapid amplification of cDNA ends strategy

    Indian Academy of Sciences (India)

    T Venugopal; S Mathavan; T J Pandian

    2002-06-01

    A modified rapid amplification of cDNA ends (RACE) strategy has been developed for cloning highly conserved cDNA sequences. Using this modified method, the growth hormone (GH) encoding cDNA sequences of Labeo rohita, Cirrhina mrigala and Catla catla have been cloned, characterized and overexpressed in Escherichia coli. These sequences show 96–98% homology to each other and are about 85% homologous to that of common carp. Besides, an attempt has been made for the first time to describe a 3-D model of the fish GH protein.

  9. Molecular cloning of growth hormone encoding cDNA of Indian major carps by a modified rapid amplification of cDNA ends strategy.

    Science.gov (United States)

    Venugopal, T; Mathavan, S; Pandian, T J

    2002-06-01

    A modified rapid amplification of cDNA ends (RACE) strategy has been developed for cloning highly conserved cDNA sequences. Using this modified method, the growth hormone (GH) encoding cDNA sequences of Labeo rohita, Cirrhina mrigala and Catla catla have been cloned, characterized and overexpressed in Escherichia coli. These sequences show 96-98% homology to each other and are about 85% homologous to that of common carp. Besides, an attempt has been made for the first time to describe a 3-D model of the fish GH protein.

  10. Expression of Cyclins A, E and Topoisomerase II α correlates with centrosome amplification and genomic instability and influences the reliability of cytometric S-phase determination

    Directory of Open Access Journals (Sweden)

    Laytragoon-Lewin Nongnit

    2003-07-01

    Full Text Available Abstract Background The progression of normal cells through the cell cycle is meticulously regulated by checkpoints guaranteeing the exact replication of the genome during S-phase and its equal division at mitosis. A prerequisite for this achievement is synchronized DNA-replication and centrosome duplication. In this context the expression of cyclins A and E has been shown to play a principal role. Results Our results demonstrated a correlation between centrosome amplification, cell cycle fidelity and the level of mRNA and protein expression of cyclins A and E during the part of the cell cycle defined as G1-phase by means of DNA content based histogram analysis. It is shown that the normal diploid breast cell line HTB-125, the genomically relatively stable aneuploid breast cancer cell line MCF-7, and the genomically unstable aneuploid breast cancer cell line MDA-231 differ remarkably concerning both mRNA and protein expression of the two cyclins during G1-phase. In MDA-231 cells the expression of e.g. cyclin A mRNA was found to be ten times higher than in MCF-7 cells and about 500 times higher than in HTB-125 cells. Topoisomerase II α showed high mRNA expression in MDA compared to MCF-7 cells, but the difference in protein expression was small. Furthermore, we measured centrosome aberrations in 8.4% of the MDA-231 cells, and in only 1.3% of the more stable aneuploid cell line MCF-7. MDA cells showed 27% more incorporation of BrdU than reflected by S-phase determination with flow cytometric DNA content analysis, whereas these values were found to be of the same size in both HTB-125 and MCF-7 cells. Conclusions Our data indicate that the breast cancer cell lines MCF-7 and MDA-231, although both DNA-aneuploid, differ significantly regarding the degree of cell cycle disturbance and centrosome aberrations, which partly could explain the different genomic stability of the two cell lines. The results also question the reliability of cytometric DNA

  11. Construction of Oryza Sativa genome contigs by fingerprint strategy

    Institute of Scientific and Technical Information of China (English)

    TAOQUAZHOU; GUOFANHONG; 等

    1995-01-01

    We described the construction of BAC contigs of the genome of a indica variety of Oryza sativa.Guang Lu Ai 4. An entire representative(Sixfold coverage of rice chromosomes)and genetically stable BAC library of rice genome constructed in this lab has been systematically analysed by restriction enzyme fragmentation and polyacrylamide gel electrophoresis.And all the images thus obtained were subject to image-processing,which consisted of preliminary location of bands,cooperative tracking of lanes by correlation of adjacent bads.a precise densitometric pass,alignment at the marker bands with the standard,optional interactive editing,and normalization of the accepted bands.The contigs were generated based on the Computer Software specially designed for genome mapping.The number of contigs with 600 kb in length on average was 464.of contigs with 1000kb in length on average was 107; of contigs with 1500 kb in length on average was Construction of Oryza Sativa genome contigs.23.Therefor,all the contigs we have obtained ampunted up to 420 megabases in length.Considering the size of rice genome(430 megabased),the contigs generated in this lab have covered nearly 98% of the rice genome.We are now in the process of mapping the contigs to chromosomes.

  12. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santiago-Felipe, S.; Tortajada-Genaro, L.A.; Puchades, R.; Maquieira, A., E-mail: amaquieira@qim.upv.es

    2014-02-06

    Graphical abstract: -- Highlights: •Recombinase polymerase amplification is a powerful DNA method operating at 40 °C. •The combination RPA–ELISA gives excellent performances for high-throughput analysis. •Screening of food safety threats has been done using standard laboratory equipment. •Allergens, GMOs, bacteria, and fungi have been successfully determined. -- Abstract: Polymerase chain reaction in conjunction with enzyme-linked immunosorbent assay (PCR–ELISA) is a well-established technique that provides a suitable rapid, sensitive, and selective method for a broad range of applications. However, the need for precise rapid temperature cycling of PCR is an important drawback that can be overcome by employing isothermal amplification reactions such as recombinase polymerase amplification (RPA). The RPA–ELISA combination is proposed for amplification at a low, constant temperature (40 °C) in a short time (40 min), for the hybridisation of labelled products to specific 5′-biotinylated probes/streptavidin in coated microtiter plates at room temperature, and for detection by colorimetric immunoassay. RPA–ELISA was applied to screen common safety threats in foodstuffs, such as allergens (hazelnut, peanut, soybean, tomato, and maize), genetically modified organisms (P35S and TNOS), pathogenic bacteria (Salmonella sp. and Cronobacter sp.), and fungi (Fusarium sp.). Satisfactory sensitivity and reproducibility results were achieved for all the targets. The RPA–ELISA technique does away with thermocycling and provides a suitable sensitive, specific, and cost-effective method for routine applications, and proves particularly useful for resource-limited settings.

  13. Gene amplification in carcinogenesis

    Directory of Open Access Journals (Sweden)

    Lucimari Bizari

    2006-01-01

    Full Text Available Gene amplification increases the number of genes in a genome and can give rise to karyotype abnormalities called double minutes (DM and homogeneously staining regions (HSR, both of which have been widely observed in human tumors but are also known to play a major role during embryonic development due to the fact that they are responsible for the programmed increase of gene expression. The etiology of gene amplification during carcinogenesis is not yet completely understood but can be considered a result of genetic instability. Gene amplification leads to an increase in protein expression and provides a selective advantage during cell growth. Oncogenes such as CCND1, c-MET, c-MYC, ERBB2, EGFR and MDM2 are amplified in human tumors and can be associated with increased expression of their respective proteins or not. In general, gene amplification is associated with more aggressive tumors, metastases, resistance to chemotherapy and a decrease in the period during which the patient stays free of the disease. This review discusses the major role of gene amplification in the progression of carcinomas, formation of genetic markers and as possible therapeutic targets for the development of drugs for the treatment of some types of tumors.

  14. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jingjin; Ma, Yefei [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China); Kong, Rongmei [The Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165 (China); Zhang, Liangliang, E-mail: liangzhang319@163.com [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China); Yang, Wen; Zhao, Shulin [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China)

    2015-08-05

    Herein, we introduced a tungsten disulfide (WS{sub 2}) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3′-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS{sub 2} nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS{sub 2} nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics. - Highlights: • A fluorescence polarization strategy for DNA glycosylase activity detection was developed. • The present method was based on WS{sub 2} nanosheet and exonuclease III co-assisted signal amplification. • A high sensitivity and desirable selectivity were achieved. • This method provides a promising universal platform for DNA

  15. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity.

    Science.gov (United States)

    Zhao, Jingjin; Ma, Yefei; Kong, Rongmei; Zhang, Liangliang; Yang, Wen; Zhao, Shulin

    2015-08-05

    Herein, we introduced a tungsten disulfide (WS2) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3'-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS2 nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS2 nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics.

  16. Use of psyllid genomes RNA interference for novel pest control strategies

    Science.gov (United States)

    Genomics has changed the strategies used to manage insects and diseases. The ability to effect a change in proteins, and transcripts, through RNA-interference, RNAi, has produced a rush towards the development of the most state-of-the-art pest suppression strategies available. To rapidly advance the...

  17. Digital genome-wide ncRNA expression, including SnoRNAs, across 11 human tissues using polyA-neutral amplification.

    Science.gov (United States)

    Castle, John C; Armour, Christopher D; Löwer, Martin; Haynor, David; Biery, Matthew; Bouzek, Heather; Chen, Ronghua; Jackson, Stuart; Johnson, Jason M; Rohl, Carol A; Raymond, Christopher K

    2010-07-26

    Non-coding RNAs (ncRNAs) are an essential class of molecular species that have been difficult to monitor on high throughput platforms due to frequent lack of polyadenylation. Using a polyadenylation-neutral amplification protocol and next-generation sequencing, we explore ncRNA expression in eleven human tissues. ncRNAs 7SL, U2, 7SK, and HBII-52 are expressed at levels far exceeding mRNAs. C/D and H/ACA box snoRNAs are associated with rRNA methylation and pseudouridylation, respectively: spleen expresses both, hypothalamus expresses mainly C/D box snoRNAs, and testes show enriched expression of both H/ACA box snoRNAs and RNA telomerase TERC. Within the snoRNA 14q cluster, 14q(I-6) is expressed at much higher levels than other cluster members. More reads align to mitochondrial than nuclear tRNAs. Many lincRNAs are actively transcribed, particularly those overlapping known ncRNAs. Within the Prader-Willi syndrome loci, the snoRNA HBII-85 (group I) cluster is highly expressed in hypothalamus, greater than in other tissues and greater than group II or III. Additionally, within the disease locus we find novel transcription across a 400,000 nt span in ovaries. This genome-wide polyA-neutral expression compendium demonstrates the richness of ncRNA expression, their high expression patterns, their function-specific expression patterns, and is publicly available.

  18. Simultaneous detection of genetically modified organisms by multiplex ligation-dependent genome amplification and capillary gel electrophoresis with laser-induced fluorescence.

    Science.gov (United States)

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2010-07-01

    In this work, an innovative method useful to simultaneously analyze multiple genetically modified organisms is described. The developed method consists in the combination of multiplex ligation-dependent genome dependent amplification (MLGA) with CGE and LIF detection using bare-fused silica capillaries. The MLGA process is based on oligonucleotide constructs, formed by a universal sequence (vector) and long specific oligonucleotides (selectors) that facilitate the circularization of specific DNA target regions. Subsequently, the circularized target sequences are simultaneously amplified with the same couple of primers and analyzed by CGE-LIF using a bare-fused silica capillary and a run electrolyte containing 2-hydroxyethyl cellulose acting as both sieving matrix and dynamic capillary coating. CGE-LIF is shown to be very useful and informative for optimizing MLGA parameters such as annealing temperature, number of ligation cycles, and selector probes concentration. We demonstrate the specificity of the method in detecting the presence of transgenic DNA in certified reference and raw commercial samples. The method developed is sensitive and allows the simultaneous detection in a single run of percentages of transgenic maize as low as 1% of GA21, 1% of MON863, and 1% of MON810 in maize samples with signal-to-noise ratios for the corresponding DNA peaks of 15, 12, and 26, respectively. These results demonstrate, to our knowledge for the first time, the great possibilities of MLGA techniques for genetically modified organisms analysis.

  19. Tyramide Signal Amplification for Antibody-overlay Lectin Microarray: A Strategy to Improve the Sensitivity of Targeted Glycan Profiling

    Science.gov (United States)

    Meany, Danni L.; Hackler, Laszlo; Zhang, Hui; Chan, Daniel W.

    2011-01-01

    Antibody-overlay lectin microarray (ALM) has been used for targeted glycan profiling to identify disease-related protein glycoforms. In this context, high sensitivity is desired because it allows for the identification of disease-related glycoforms that are often present at low concentration. We describe a new Tyramide Signal Amplification (TSA) for Antibody-overlay Lectin Microarray procedure for sensitive profiling of glycosylation patterns. We demonstrated that TSA increased the sensitivity of the microarray over 100 times for glycan profiling using the model protein Prostate Specific Antigen (PSA). The glycan profile of PSA enriched from LNCAP cells, obtained at a sub-nanogram level with the aid of TSA, was consistent with the previous reports. We also established the glycan profile of Prostate Specific Membrane Antigen (PSMA) using the TSA and ALM. Thus, the Tyramide Signal Amplification for Antibody-overlay Lectin Microarray is a sensitive, rapid, comprehensive, and high-throughput method for targeted glycan profiling and can potentially be used for the identification of disease-related protein glycoforms. PMID:21133419

  20. Elaeis oleifera genomic-SSR markers: exploitation in oil palm germplasm diversity and cross-amplification in arecaceae.

    Science.gov (United States)

    Zaki, Noorhariza Mohd; Singh, Rajinder; Rosli, Rozana; Ismail, Ismanizan

    2012-01-01

    Species-specific simple sequence repeat (SSR) markers are favored for genetic studies and marker-assisted selection (MAS) breeding for oil palm genetic improvement. This report characterizes 20 SSR markers from an Elaeis oleifera genomic library (gSSR). Characterization of the repeat type in 2000 sequences revealed a high percentage of di-nucleotides (63.6%), followed by tri-nucleotides (24.2%). Primer pairs were successfully designed for 394 of the E. oleifera gSSRs. Subsequent analysis showed the ability of the 20 selected E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The average Polymorphism Information Content (PIC) value for the SSRs was 0.402, with the tri-repeats showing the highest average PIC (0.626). Low values of observed heterozygosity (H(o)) (0.164) and highly positive fixation indices (F(is)) in the E. oleifera germplasm collection, compared to the E. guineensis, indicated an excess of homozygosity in E. oleifera. The transferability of the markers to closely related palms, Elaeis guineensis, Cocos nucifera and ornamental palms is also reported. Sequencing the amplicons of three selected E. oleifera gSSRs across both species and palm taxa revealed variations in the repeat-units. The study showed the potential of E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The markers are also a valuable genetic resource for studying E. oleifera and other genus in the Arecaceae family.

  1. Elaeis oleifera Genomic-SSR Markers: Exploitation in Oil Palm Germplasm Diversity and Cross-Amplification in Arecaceae

    Directory of Open Access Journals (Sweden)

    Ismanizan Ismail

    2012-03-01

    Full Text Available Species-specific simple sequence repeat (SSR markers are favored for genetic studies and marker-assisted selection (MAS breeding for oil palm genetic improvement. This report characterizes 20 SSR markers from an Elaeis oleifera genomic library (gSSR. Characterization of the repeat type in 2000 sequences revealed a high percentage of di-nucleotides (63.6%, followed by tri-nucleotides (24.2%. Primer pairs were successfully designed for 394 of the E. oleifera gSSRs. Subsequent analysis showed the ability of the 20 selected E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The average Polymorphism Information Content (PIC value for the SSRs was 0.402, with the tri-repeats showing the highest average PIC (0.626. Low values of observed heterozygosity (Ho (0.164 and highly positive fixation indices (Fis in the E. oleifera germplasm collection, compared to the E. guineensis, indicated an excess of homozygosity in E. oleifera. The transferability of the markers to closely related palms, Elaeis guineensis, Cocos nucifera and ornamental palms is also reported. Sequencing the amplicons of three selected E. oleifera gSSRs across both species and palm taxa revealed variations in the repeat-units. The study showed the potential of E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The markers are also a valuable genetic resource for studying E. oleifera and other genus in the Arecaceae family.

  2. Rolling circle amplification of metazoan mitochondrialgenomes

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Lindberg, D.R.; Boore, J.L.

    2005-07-31

    Here we report the successful use of rolling circle amplification (RCA) for the amplification of complete metazoan mt genomes to make a product that is amenable to high-throughput genome sequencing techniques. The benefits of RCA over PCR are many and with further development and refinement of RCA, the sequencing of organellar genomics will require far less time and effort than current long PCR approaches.

  3. A Pan-HIV Strategy for Complete Genome Sequencing.

    Science.gov (United States)

    Berg, Michael G; Yamaguchi, Julie; Alessandri-Gradt, Elodie; Tell, Robert W; Plantier, Jean-Christophe; Brennan, Catherine A

    2016-04-01

    Molecular surveillance is essential to monitor HIV diversity and track emerging strains. We have developed a universal library preparation method (HIV-SMART [i.e.,switchingmechanismat 5' end ofRNAtranscript]) for next-generation sequencing that harnesses the specificity of HIV-directed priming to enable full genome characterization of all HIV-1 groups (M, N, O, and P) and HIV-2. Broad application of the HIV-SMART approach was demonstrated using a panel of diverse cell-cultured virus isolates. HIV-1 non-subtype B-infected clinical specimens from Cameroon were then used to optimize the protocol to sequence directly from plasma. When multiplexing 8 or more libraries per MiSeq run, full genome coverage at a median ∼2,000× depth was routinely obtained for either sample type. The method reproducibly generated the same consensus sequence, consistently identified viral sequence heterogeneity present in specimens, and at viral loads of ≤4.5 log copies/ml yielded sufficient coverage to permit strain classification. HIV-SMART provides an unparalleled opportunity to identify diverse HIV strains in patient specimens and to determine phylogenetic classification based on the entire viral genome. Easily adapted to sequence any RNA virus, this technology illustrates the utility of next-generation sequencing (NGS) for viral characterization and surveillance.

  4. A Pan-HIV Strategy for Complete Genome Sequencing

    Science.gov (United States)

    Yamaguchi, Julie; Alessandri-Gradt, Elodie; Tell, Robert W.; Brennan, Catherine A.

    2015-01-01

    Molecular surveillance is essential to monitor HIV diversity and track emerging strains. We have developed a universal library preparation method (HIV-SMART [i.e., switching mechanism at 5′ end of RNA transcript]) for next-generation sequencing that harnesses the specificity of HIV-directed priming to enable full genome characterization of all HIV-1 groups (M, N, O, and P) and HIV-2. Broad application of the HIV-SMART approach was demonstrated using a panel of diverse cell-cultured virus isolates. HIV-1 non-subtype B-infected clinical specimens from Cameroon were then used to optimize the protocol to sequence directly from plasma. When multiplexing 8 or more libraries per MiSeq run, full genome coverage at a median ∼2,000× depth was routinely obtained for either sample type. The method reproducibly generated the same consensus sequence, consistently identified viral sequence heterogeneity present in specimens, and at viral loads of ≤4.5 log copies/ml yielded sufficient coverage to permit strain classification. HIV-SMART provides an unparalleled opportunity to identify diverse HIV strains in patient specimens and to determine phylogenetic classification based on the entire viral genome. Easily adapted to sequence any RNA virus, this technology illustrates the utility of next-generation sequencing (NGS) for viral characterization and surveillance. PMID:26699702

  5. 肿瘤细胞回文序列介导的基因扩增机制研究进展%Research progress on the mechanism of gene amplification mediated by palindromes in tumor genome

    Institute of Scientific and Technical Information of China (English)

    刘佳玮; 徐晖; 张海员; 白静; 傅松滨; 周春水

    2014-01-01

    基因组不稳定是肿瘤细胞的特征性标志,基因扩增是一种特殊的基因组不稳定性的表现形式,其在激活原癌基因引发癌症的过程中起着重要的作用.基因扩增将导致细胞加速生长增殖或耐药生长等表型.人们已经广泛注意到其在癌症的诊断和治疗等方面的重要临床意义.但是,人们对基因扩增的分子机制的认识仍然十分有限,本文综述了回文序列介导的基因扩增的分子机制,提出在DNA断点处以无模板形式、新合成小回文序列可能是一部分肿瘤细胞中基因扩增的关键机制,为进一步探索基因扩增的分子机制提供理论参考.%Gene amplification is a common chromosomal aberration which is often the result of tumor genome instability,and plays a crucial role in the process of activating oncogenes and leading to cancers.As gene amplification often is evident in advanced stages of cancer,its clinical importance in diagnosis and treatment has been popularly recognized.However,the underlying mechanisms governing gene amplification are still not fully understood.Herein,we reviewed one of the well-defined gene amplification mechanisms:DNA double-strand breaks-triggered,palindromes or short DNA inverted repeatsmediated gene amplification model,which was established and validated in a variety of research organisms including T.thermophila,fission yeast,budding yeast and rodent cells.Based on the recent published reports,we put forward a new model for the palindromes mediated gene amplification mechanism,that is de novo synthesis of small palindromic sequences (usually several hundred base pairs in length or shorter) at the DNA breakpoints in a template-free manner is the key determinant for gene amplification in certain tumor genomes.Elucidating the potential mechanism and involved enzymes for the regulation and creation of novel palindromic sequences should shed more light onto the palindromes mediated gene amplification and the

  6. Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb(2+) using molecular beacon and DNAzyme based amplification strategy.

    Science.gov (United States)

    Yun, Wen; Cai, Dingzhou; Jiang, JiaoLai; Zhao, Pengxiang; Huang, Yu; Sang, Ge

    2016-06-15

    An enzyme-free and label-free colorimetric Pb(2+) sensor based on DNAzyme and molecular beacon (MB) has been developed and demonstrated by recycle using enzyme strand for signal amplification. The substrate strand DNA (S-DNA) of DNAzyme could be converted into MB structure with base pairs of stem part at the both ends. The MB could hybridize with enzyme strand DNA (E-DNA) to form DNAzyme, and be activated and cleaved in the presence of Pb(2+). The cleaved MB is much less stable, releasing from the DNAzyme as two product pieces. The product pieces of MB are flexible and could bind to unmodified AuNPs to effectively stabilize them against salt-induced aggregation. Then, the E-DNA is liberated to catalyze the next reaction and amplify the response signal. By taking advantage of repeated using of E-DNA, our proposed method exhibited high sensitive for Pb(2+) detection in a linear range from 0.05 to 5 nM with detection limit of 20 pM by UV-vis spectrometer. Moreover, this method was also used for determination of Pb(2+) in river water samples with satisfying results. Importantly, this strategy could reach high sensitivity without any modification and complex enzymatic or hairpins based amplification procedures.

  7. Binding-induced and label-free colorimetric method for protein detection based on autonomous assembly of hemin/G-quadruplex DNAzyme amplification strategy.

    Science.gov (United States)

    Wu, Hao; Zhang, Kai; Liu, Yaling; Wang, Hongyong; Wu, Jun; Zhu, Feifan; Zou, Pei

    2015-02-15

    In this work, a new binding-induced and label-free colorimetric method for protein detection has been developed on the basis of an autonomous assembly of hemin/G-quadruplex DNAzyme amplification strategy. The system consists of two proximity probes carrying two aptamer sequences as recognition elements for target, and two hairpin structures include three-fourths and one-fourth of the G-quadruplex sequences in inactive configuration as functional elements. In the presence of target protein, two proximity probes bind to the protein simultaneously, forming a stable DNA-protein complex. Then the complex triggers an autonomous cross-opening of the two functional hairpin structures, leading to the formation of numerous hemin/G-quadruplex DNAzymes. The resulting DNAzymes catalyze the oxidation of colorless 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(2-)) to the green-colored ABTS(•-) with the presence of H2O2, thus providing the amplified colorimetric detection of target. Using human α-thrombin as the protein target, this binding-induced DNAzyme amplification colorimetric method affords high sensitivity with a detection limit of 1.9 pM. Furthermore, this method might be further extended to sensitive detection of other proteins by simply replacing recognition elements of proximity probes.

  8. Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes.

    Science.gov (United States)

    Kang, Zhen; Zhang, Junli; Jin, Peng; Yang, Sen

    2015-01-01

    Owing to our limited understanding of the relationship between sequence and function and the interaction between intracellular pathways and regulatory systems, the rational design of enzyme-coding genes and de novo assembly of a brand-new artificial genome for a desired functionality or phenotype are difficult to achieve. As an alternative approach, directed evolution has been widely used to engineer genomes and enzyme-coding genes. In particular, significant developments toward DNA synthesis, DNA assembly (in vitro or in vivo), recombination-mediated genetic engineering, and high-throughput screening techniques in the field of synthetic biology have been matured and widely adopted, enabling rapid semi-rational genome engineering to generate variants with desired properties. In this commentary, these novel tools and their corresponding applications in the directed evolution of genomes and enzymes are discussed. Moreover, the strategies for genome engineering and rapid in vitro enzyme evolution are also proposed.

  9. [Human genomic project and human genomic haplotype map project: opportunitiy, challenge and strategy in stomatology].

    Science.gov (United States)

    Wu, Rui-qing; Zeng, Xin; Wang, Zhi

    2010-08-01

    The human genomic project and the international HapMap project were designed to create a genome-wide database of patterns of human genetic variation, with the expectation that these patterns would be useful for genetic association studies of common diseases, thus lead to molecular diagnosis and personnel therapy. The article briefly reviewed the creation, target and achievement of those two projects. Furthermore, the authors have given four suggestions in facing to the opportunities and challenges brought by the two projects, including cultivation improvement of elites, cross binding of multi-subjects, strengthening construction of research base and initiation of natural key scientific project.

  10. Meta-Analysis in Genome-Wide Association Datasets: Strategies and Application in Parkinson Disease

    Science.gov (United States)

    Evangelou, Evangelos; Maraganore, Demetrius M.; Ioannidis, John P.A.

    2007-01-01

    Background Genome-wide association studies hold substantial promise for identifying common genetic variants that regulate susceptibility to complex diseases. However, for the detection of small genetic effects, single studies may be underpowered. Power may be improved by combining genome-wide datasets with meta-analytic techniques. Methodology/Principal Findings Both single and two-stage genome-wide data may be combined and there are several possible strategies. In the two-stage framework, we considered the options of (1) enhancement of replication data and (2) enhancement of first-stage data, and then, we also considered (3) joint meta-analyses including all first-stage and second-stage data. These strategies were examined empirically using data from two genome-wide association studies (three datasets) on Parkinson disease. In the three strategies, we derived 12, 5, and 49 single nucleotide polymorphisms that show significant associations at conventional levels of statistical significance. None of these remained significant after conservative adjustment for the number of performed analyses in each strategy. However, some may warrant further consideration: 6 SNPs were identified with at least 2 of the 3 strategies and 3 SNPs [rs1000291 on chromosome 3, rs2241743 on chromosome 4 and rs3018626 on chromosome 11] were identified with all 3 strategies and had no or minimal between-dataset heterogeneity (I2 = 0, 0 and 15%, respectively). Analyses were primarily limited by the suboptimal overlap of tested polymorphisms across different datasets (e.g., only 31,192 shared polymorphisms between the two tier 1 datasets). Conclusions/Significance Meta-analysis may be used to improve the power and examine the between-dataset heterogeneity of genome-wide association studies. Prospective designs may be most efficient, if they try to maximize the overlap of genotyping platforms and anticipate the combination of data across many genome-wide association studies. PMID:17332845

  11. Meta-analysis in genome-wide association datasets: strategies and application in Parkinson disease.

    Science.gov (United States)

    Evangelou, Evangelos; Maraganore, Demetrius M; Ioannidis, John P A

    2007-02-07

    Genome-wide association studies hold substantial promise for identifying common genetic variants that regulate susceptibility to complex diseases. However, for the detection of small genetic effects, single studies may be underpowered. Power may be improved by combining genome-wide datasets with meta-analytic techniques. Both single and two-stage genome-wide data may be combined and there are several possible strategies. In the two-stage framework, we considered the options of (1) enhancement of replication data and (2) enhancement of first-stage data, and then, we also considered (3) joint meta-analyses including all first-stage and second-stage data. These strategies were examined empirically using data from two genome-wide association studies (three datasets) on Parkinson disease. In the three strategies, we derived 12, 5, and 49 single nucleotide polymorphisms that show significant associations at conventional levels of statistical significance. None of these remained significant after conservative adjustment for the number of performed analyses in each strategy. However, some may warrant further consideration: 6 SNPs were identified with at least 2 of the 3 strategies and 3 SNPs [rs1000291 on chromosome 3, rs2241743 on chromosome 4 and rs3018626 on chromosome 11] were identified with all 3 strategies and had no or minimal between-dataset heterogeneity (I(2) = 0, 0 and 15%, respectively). Analyses were primarily limited by the suboptimal overlap of tested polymorphisms across different datasets (e.g., only 31,192 shared polymorphisms between the two tier 1 datasets). Meta-analysis may be used to improve the power and examine the between-dataset heterogeneity of genome-wide association studies. Prospective designs may be most efficient, if they try to maximize the overlap of genotyping platforms and anticipate the combination of data across many genome-wide association studies.

  12. Methods and Strategies to Impute Missing Genotypes for Improving Genomic Prediction

    DEFF Research Database (Denmark)

    Ma, Peipei

    Genomic prediction has been widely used in dairy cattle breeding. Genotype imputation is a key procedure to efficently utilize marker data from different chips and obtain high density marker data with minimizing cost. This thesis investigated methods and strategies to genotype imputation for impr......Genomic prediction has been widely used in dairy cattle breeding. Genotype imputation is a key procedure to efficently utilize marker data from different chips and obtain high density marker data with minimizing cost. This thesis investigated methods and strategies to genotype imputation...

  13. A contig-based strategy for the genome-wide discovery of microRNAs without complete genome resources.

    Directory of Open Access Journals (Sweden)

    Jun-Zhi Wen

    Full Text Available MicroRNAs (miRNAs are important regulators of many cellular processes and exist in a wide range of eukaryotes. High-throughput sequencing is a mainstream method of miRNA identification through which it is possible to obtain the complete small RNA profile of an organism. Currently, most approaches to miRNA identification rely on a reference genome for the prediction of hairpin structures. However, many species of economic and phylogenetic importance are non-model organisms without complete genome sequences, and this limits miRNA discovery. Here, to overcome this limitation, we have developed a contig-based miRNA identification strategy. We applied this method to a triploid species of edible banana (GCTCV-119, Musa spp. AAA group and identified 180 pre-miRNAs and 314 mature miRNAs, which is three times more than those were predicted by the available dataset-based methods (represented by EST+GSS. Based on the recently published miRNA data set of Musa acuminate, the recall rate and precision of our strategy are estimated to be 70.6% and 92.2%, respectively, significantly better than those of EST+GSS-based strategy (10.2% and 50.0%, respectively. Our novel, efficient and cost-effective strategy facilitates the study of the functional and evolutionary role of miRNAs, as well as miRNA-based molecular breeding, in non-model species of economic or evolutionary interest.

  14. A robust method for the amplification of RNA in the sense orientation

    Directory of Open Access Journals (Sweden)

    Quackenbush John

    2005-03-01

    Full Text Available Abstract Background Small quantities of RNA (1–4 μg total RNA available from biological samples frequently require a single round of amplification prior to analysis, but current amplification strategies have limitations that may restrict their usefulness in downstream genomic applications. The Eberwine amplification method has been extensively validated but is limited by its ability to produce only antisense RNA. Alternatives lack extensive validation and are often confounded by problems with bias or yield attributable to their greater biological and technical complexity. Results To overcome these limitations, we have developed a straightforward and robust protocol for amplification of RNA in the sense orientation. This protocol is based upon Eberwine's method but incorporates elements of more recent amplification techniques while avoiding their complexities. Our technique yields greater than 100-fold amplification, generates long transcript, and produces mRNA that is well suited for use with microarray applications. Microarrays performed with RNA amplified using this protocol demonstrate minimal amplification bias and high reproducibility. Conclusion The protocol we describe here is readily adaptable for the production of sense or antisense, labeled or unlabeled RNA from intact or partially-degraded prokaryotic or eukaryotic total RNA. The method outperforms several commercial RNA amplification kits and can be used in conjunction with a variety of microarray platforms, such as cDNA arrays, oligonucleotide arrays, and Affymetrix GeneChip™ arrays.

  15. Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes

    Directory of Open Access Journals (Sweden)

    Feltus F

    2011-04-01

    Full Text Available Abstract Background We investigate if pooling BAC clones and sequencing the pools can provide for more accurate assembly of genome sequences than the "whole genome shotgun" (WGS approach. Furthermore, we quantify this accuracy increase. We compare the pooled BAC and WGS approaches using in silico simulations. Standard measures of assembly quality focus on assembly size and fragmentation, which are desirable for large whole genome assemblies. We propose additional measures enabling easy and visual comparison of assembly quality, such as rearrangements and redundant sequence content, relative to the known target sequence. Results The best assembly quality scores were obtained using 454 coverage of 15× linear and 5× paired (3kb insert size reads (15L-5P on Arabidopsis. This regime gave similarly good results on four additional plant genomes of very different GC and repeat contents. BAC pooling improved assembly scores over WGS assembly, coverage and redundancy scores improving the most. Conclusions BAC pooling works better than WGS, however, both require a physical map to order the scaffolds. Pool sizes up to 12Mbp work well, suggesting this pooling density to be effective in medium-scale re-sequencing applications such as targeted sequencing of QTL intervals for candidate gene discovery. Assuming the current Roche/454 Titanium sequencing limitations, a 12 Mbp region could be re-sequenced with a full plate of linear reads and a half plate of paired-end reads, yielding 15L-5P coverage after read pre-processing. Our simulation suggests that massively over-sequencing may not improve accuracy. Our scoring measures can be used generally to evaluate and compare results of simulated genome assemblies.

  16. Digital genome-wide ncRNA expression, including SnoRNAs, across 11 human tissues using polyA-neutral amplification.

    Directory of Open Access Journals (Sweden)

    John C Castle

    Full Text Available Non-coding RNAs (ncRNAs are an essential class of molecular species that have been difficult to monitor on high throughput platforms due to frequent lack of polyadenylation. Using a polyadenylation-neutral amplification protocol and next-generation sequencing, we explore ncRNA expression in eleven human tissues. ncRNAs 7SL, U2, 7SK, and HBII-52 are expressed at levels far exceeding mRNAs. C/D and H/ACA box snoRNAs are associated with rRNA methylation and pseudouridylation, respectively: spleen expresses both, hypothalamus expresses mainly C/D box snoRNAs, and testes show enriched expression of both H/ACA box snoRNAs and RNA telomerase TERC. Within the snoRNA 14q cluster, 14q(I-6 is expressed at much higher levels than other cluster members. More reads align to mitochondrial than nuclear tRNAs. Many lincRNAs are actively transcribed, particularly those overlapping known ncRNAs. Within the Prader-Willi syndrome loci, the snoRNA HBII-85 (group I cluster is highly expressed in hypothalamus, greater than in other tissues and greater than group II or III. Additionally, within the disease locus we find novel transcription across a 400,000 nt span in ovaries. This genome-wide polyA-neutral expression compendium demonstrates the richness of ncRNA expression, their high expression patterns, their function-specific expression patterns, and is publicly available.

  17. Complete genome amplification of Equine influenza virus subtype 2 Amplificación del genoma completo del subtipo 2 del virus de la influenza equina

    Directory of Open Access Journals (Sweden)

    G. H. Sguazza

    2009-12-01

    Full Text Available This work reports a method for rapid amplification of the complete genome of equine influenza virus subtype 2 (H3N8. A ThermoScriptTM reverse transcriptase instead of the avian myeloblastosis virus reverse transcriptase or Moloney murine leukemia virus reverse transcriptase was used. This enzyme has demonstrated higher thermal stability and is described as suitable to make long cDNA with a complex secondary structure. The product obtained by this method can be cloned, used in later sequencing reactions or nested-PCR with the purpose of achieving a rapid diagnosis and characterization of the equine influenza virus type A. This detection assay might be a valuable tool for diagnosis and screening of field samples as well as for conducting molecular studies.En este trabajo comunicamos un método rápido que permite la amplificación del genoma completo del subtipo 2 (H3N8 del virus de la influenza equina. Se utilizó la enzima transcriptasa reversa ThermoScriptTM en lugar de la transcriptasa reversa del virus de la mieloblastosis aviar o la transcriptasa reversa del virus de la leucemia murina de Moloney. Esta enzima ha demostrado tener una alta estabilidad térmica y la capacidad de hacer largas copias de ADN con una estructura secundaria compleja. El producto obtenido por esta técnica puede ser clonado y utilizado posteriormente en reacciones de secuenciación o de PCR anidada con la finalidad de lograr un diagnóstico rápido y la caracterización del virus de la influenza equina tipo A. Este ensayo de detección puede llegar a ser una valiosa herramienta para el diagnóstico y el análisis de muestras de campo, así como para la realización de estudios moleculares.

  18. Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy.

    Science.gov (United States)

    Deng, Huaping; Liu, Qianwen; Wang, Xin; Huang, Ru; Liu, Hongxing; Lin, Qiumei; Zhou, Xiaoming; Xing, Da

    2017-01-15

    MicroRNAs (miRNAs) have been proved to be potential biomarkers in early cancer diagnosis. It is of great significance for rapid and sensitive detection of miRNAs, particularly with point-of-care (POC) diagnosis. Herein, it is the first time to construct quantum dots (QDs)-labeled strip biosensor based on target-recycled nonenzymatic amplification strategy for miRNA detection. In the system, QDs were served as bright, photostable signal labels, which endow this biosensor with good detection efficiency. Moreover, a target-recycled amplification strategy relies on sequence-specific hairpins strand displacement process without the assistance of enzymes, was introduced to further improve the sensitivity. Meanwhile eliminating the requirement of environment-susceptible enzyme protein makes it easy to preserve and enhances the stability and reproducibility of this sensor. Benefiting from these outstanding characteristics, this platform exhibited a good detection sensitivity range from 2fmol to 200fmol with a limit of 200amol, using only 20μL of sample within 80min. The assay was also 10-fold more sensitive than that with a conventional colloidal gold-based test strip for miRNA detection. Additionally, the analysis of miRNA in various tumor cell extracts was in accordance with the performance of quantitative realtime polymerase chain reaction (qRT-PCR). Clinical tumor samples were also tested, and 16 of 20 samples gave out positive signals, which demonstrated the practical application capacity of the biosensor. Therefore, the proposed biosensor holds great promise for potential POC applications and early cancer diagnosis.

  19. Natural biased coin encoded in the genome determines cell strategy.

    Science.gov (United States)

    Dorri, Faezeh; Mahini, Hamid; Sharifi-Zarchi, Ali; Totonchi, Mehdi; Tusserkani, Ruzbeh; Pezeshk, Hamid; Sadeghi, Mehdi

    2014-01-01

    Decision making at a cellular level determines different fates for isogenic cells. However, it is not yet clear how rational decisions are encoded in the genome, how they are transmitted to their offspring, and whether they evolve and become optimized throughout generations. In this paper, we use a game theoretic approach to explain how rational decisions are made in the presence of cooperators and competitors. Our results suggest the existence of an internal switch that operates as a biased coin. The biased coin is, in fact, a biochemical bistable network of interacting genes that can flip to one of its stable states in response to different environmental stimuli. We present a framework to describe how the positions of attractors in such a gene regulatory network correspond to the behavior of a rational player in a competing environment. We evaluate our model by considering lysis/lysogeny decision making of bacteriophage lambda in E. coli.

  20. Natural biased coin encoded in the genome determines cell strategy.

    Directory of Open Access Journals (Sweden)

    Faezeh Dorri

    Full Text Available Decision making at a cellular level determines different fates for isogenic cells. However, it is not yet clear how rational decisions are encoded in the genome, how they are transmitted to their offspring, and whether they evolve and become optimized throughout generations. In this paper, we use a game theoretic approach to explain how rational decisions are made in the presence of cooperators and competitors. Our results suggest the existence of an internal switch that operates as a biased coin. The biased coin is, in fact, a biochemical bistable network of interacting genes that can flip to one of its stable states in response to different environmental stimuli. We present a framework to describe how the positions of attractors in such a gene regulatory network correspond to the behavior of a rational player in a competing environment. We evaluate our model by considering lysis/lysogeny decision making of bacteriophage lambda in E. coli.

  1. A pH Indicator-linked Immunosorbent assay following direct amplification strategy for colorimetric detection of protein biomarkers.

    Science.gov (United States)

    Shao, Fengying; Jiao, Lei; Miao, Luyang; Wei, Qin; Li, He

    2017-04-15

    A new pH indicator-linked immunosorbent assay (PILISA) reached pg/mL sensitivity based on pH indicator molecules loaded carbon nitride nanosheets as signal enhancer has been developed for colorimetric detection of protein biomarkers. As the secondary antibody binds to the carbon nitride nanosheets, the carbon nitride nanosheets and pH indicator complex as the signal amplification platform for colour change by detecting absorbance of pH indicator. The colour change was resulted from the releasing of pH indicator molecules from carbon nitride nanosheets triggered by alkali solution (AS). In this novel PILISA, the intensity absorbance of pH indicator is proportional to the concentration of the disease marker. The outstanding detection performance of the PILISA can be attributed to the following reasons: (1) ultrathin carbon nitride nanosheets with a larger surface area could adsorb abundant phenolphthalein (PP) molecules through hydrophobic interactions as well as the resulted PP anions can be free easily released into aqueous solution, leading to an obvious allochroic response; (2) the signal intensity is precisely determined by the amount of PP molecules loading onto the carbon nitride nanosheets surface, which ensures simple, low-cost and stable colorimetric detection. As expected, this new PILISA method offered an enzyme-free approach followed enzyme-linked immunosorbent assay format, which showed great promising potential as an innovative robust assay method for practical clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Electrochemical DNA probe for Hg(2+) detection based on a triple-helix DNA and Multistage Signal Amplification Strategy.

    Science.gov (United States)

    Wang, Huan; Zhang, Yihe; Ma, Hongmin; Ren, Xiang; Wang, Yaoguang; Zhang, Yong; Wei, Qin

    2016-12-15

    In this work, an ultrasensitive electrochemical sensor was developed for detection of Hg(2+). Gold nanoparticles decorated bovine serum albumin reduction of graphene oxide (AuNP-BSA-rGO) were used as subsurface material for the immobilization of triple-helix DNA. The triple-helix DNA containing a thiol labelled single-stranded DNA (sDNA) and a thymine-rich DNA (T-rich DNA), which could be unwinded in the present of Hg(2+) to form more stable thymine-Hg(2+)-thymine (T-Hg(2+)-T) complex. T-Hg(2+)-T complex was then removed and the sDNA was left on the electrode. At this time, gold nanoparticle carrying thiol labelled cytosine-rich complementary DNA (cDNA-AuNP) could bind with the free sDNA. Meanwhile, the other free cDNA on AuNP could bind with each other in the present of Ag(+) to form the stable cytosine-Ag(+)-cytosine (C-Ag(+)-C) complex and circle amplification. Plenty of C-Ag(+)-C could form silver nanoclusters by electrochemical reduction and the striping signal of Ag could be measured for purpose of the final electrochemical detection of Hg(2+). This sensor could detect Hg(2+) over a wide concentration range from 0.1 to 130nM with a detection limit of 0.03nM.

  3. The Strategies WDK: a graphical search interface and web development kit for functional genomics databases.

    Science.gov (United States)

    Fischer, Steve; Aurrecoechea, Cristina; Brunk, Brian P; Gao, Xin; Harb, Omar S; Kraemer, Eileen T; Pennington, Cary; Treatman, Charles; Kissinger, Jessica C; Roos, David S; Stoeckert, Christian J

    2011-01-01

    Web sites associated with the Eukaryotic Pathogen Bioinformatics Resource Center (EuPathDB.org) have recently introduced a graphical user interface, the Strategies WDK, intended to make advanced searching and set and interval operations easy and accessible to all users. With a design guided by usability studies, the system helps motivate researchers to perform dynamic computational experiments and explore relationships across data sets. For example, PlasmoDB users seeking novel therapeutic targets may wish to locate putative enzymes that distinguish pathogens from their hosts, and that are expressed during appropriate developmental stages. When a researcher runs one of the approximately 100 searches available on the site, the search is presented as a first step in a strategy. The strategy is extended by running additional searches, which are combined with set operators (union, intersect or minus), or genomic interval operators (overlap, contains). A graphical display uses Venn diagrams to make the strategy's flow obvious. The interface facilitates interactive adjustment of the component searches with changes propagating forward through the strategy. Users may save their strategies, creating protocols that can be shared with colleagues. The strategy system has now been deployed on all EuPathDB databases, and successfully deployed by other projects. The Strategies WDK uses a configurable MVC architecture that is compatible with most genomics and biological warehouse databases, and is available for download at code.google.com/p/strategies-wdk. Database URL: www.eupathdb.org.

  4. A novel method to screen genomic libraries that combines genomic immunization with the prime-boost strategy.

    Science.gov (United States)

    Yero, Daniel; Pajón, Rolando; Caballero, Evelin; González, Sonia; Cobas, Karem; Fariñas, Mildrey; Lopez, Yamilé; Acosta, Armando

    2007-08-01

    We employed a prime-boost regimen in combination with the expression library immunization protocol to improve the protective effectiveness of a genomic library used as immunogen. To demonstrate the feasibility of this novel strategy, we used as a prime a serogroup B Neisseria meningitidis random genomic library constructed in a eukaryotic expression vector. Mice immunized with different fractions of this library and boosted with a single dose of meningococcal outer membrane vesicles elicited higher bactericidal antibody titers compared with mice primed with the empty vector. After the boost, passive administration of sera from mice primed with two of these fractions significantly reduced the number of viable bacteria in the blood of infant rats challenged with live N. meningitidis. The method proposed could be applied to the identification of subimmunogenic antigens during vaccine candidate screening by employing expression library immunization.

  5. Towards the molecular dissection of fertilization signaling: Our functional genomic/proteomic strategies.

    Science.gov (United States)

    Sato, Ken-Ichi; Iwasaki, Tetsushi; Sakakibara, Ken-Ichi; Itakura, Shuji; Fukami, Yasuo

    2002-09-01

    Recent advances in DNA sequencing techniques and automated informatics has led to clarification of all genome sequence of some model organisms in a very short period. The demonstration of the first draft sequence of the human genome has prompted us to elaborate new approaches in biology, pharmacology and medicine. Such new research will focus on high throughput methods to function on collections of genes, and hopefully, on a genome-wide, quantitative modeling of the cell system as a whole. In this review article, we discuss the present status of "post genome sequencing" approaches in line with our strategies for understanding the molecular mechanism of fertilization and activation of development using the African clawed frog, Xenopus laevis, as a model system.

  6. A functional glycoprotein competitive recognition and signal amplification strategy for carbohydrate-protein interaction profiling and cell surface carbohydrate expression evaluation.

    Science.gov (United States)

    Wang, Yangzhong; Chen, Zhuhai; Liu, Yang; Li, Jinghong

    2013-08-21

    A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 10(10). The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes.

  7. Urban rinaturactivation in Mediterranean: new strategy from ancian genome

    Directory of Open Access Journals (Sweden)

    Emanuela Nan

    2014-01-01

    Full Text Available The landscapes design and management depend no longer today only on the needs of its inhabitants but also, and increasingly, on the perspectives and exchange identification and understanding of logics imposed by new needs. The main objective of the transformation actions carried out in recent years is to increase 'appetite', to create expectations and ease of enjoyment for a growing number of non-based persons. A new geography of desire is altering so fast the development processes to produce crisis itself, so, it becomes important, therefore, an understanding of expectations and demands posed by users not easily definable, at first glance, as a result of the high mobility reached, because today the number of permanent inhabitants becomes always more negligible benefiting new figures: seasonal workers, commuters...The coastal mediterranean areas, for their stratification and complexity of human and natural contexts, are used more and more as a 'laboratory' where find out new logics urban recycling. The historic flexibility and willingness to hybridization of the Mediterranean territories gives rise in these contexts in a continuous self-redefinition formal and conceptual spaces and geographies. Today these dynamics translate into new strategies of transformation that can be defined of rinaturactivation because based on the rediscovery of the historical interactions between nature and human artifice in all scales.

  8. An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences.

    Directory of Open Access Journals (Sweden)

    Joshua E Turse

    Full Text Available Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300-500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella.

  9. An Empirical Strategy for Characterizing Bacterial Proteomes across Species in the Absence of Genomic Sequences

    Science.gov (United States)

    Turse, Joshua E.; Marshall, Matthew J.; Fredrickson, James K.; Lipton, Mary S.; Callister, Stephen J.

    2010-01-01

    Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300–500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella. PMID:21103051

  10. Trypanosomosis in The Gambia: prevalence in working horses and donkeys detected by whole genome amplification and PCR, and evidence for interactions between trypanosome species

    Directory of Open Access Journals (Sweden)

    Jallow Jibril

    2008-02-01

    Full Text Available Abstract Background The Gambia has an increasing population of equidae largely used for agriculture and transportation. A review of cases at The Gambian Horse and Donkey Trust (GHDT indicated that a common reason for presentation is a poorly defined medical condition often attributed to trypanosomosis. There are few reports describing the prevalence or the range of clinical signs associated with infection with different species of trypanosomes in horses and donkeys, but given the importance of these animals, the role of trypanosomosis requires investigation. Results In total 241 animals from the Central River Division in The Gambia (183 horses and 58 donkeys were screened using Whole Genome Amplification (WGA followed by trypanosome species identification using polymerase chain reaction (PCR. The results indicated overall trypanosome prevalence of 91%; with an infection rate of 31% for Trypanosoma congolense Savannah, 87% for Trypanosoma vivax and 18% for Trypanosoma brucei sp. Multiple species were present in 43% of infections. Microscopy had a good specificity (100% and positive predictive value (100% for trypanosome detection, but the sensitivity (20% and negative predictive value (10.5% were low relative to PCR-based diagnosis. Infection with T congolense showed the greatest negative effect on packed cell volume (PCV, while infection with T. brucei sp also had a significant, although lesser, negative effect on PCV. In addition, cases positive by microscopy were associated with significantly lower PCV. However, concurrent infection with T. vivax appeared to cause less effect on PCV, compared to animals infected with T. congolense alone. Conclusion The prevalence of Trypanosomosis was high in both horses and donkeys. Infection with T. congolense appeared to have the greatest clinical significance, while T. vivax infection may be of limited clinical significance in this population. Indeed, there is evidence of T. vivax co-infection ameliorating

  11. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.

    Science.gov (United States)

    Yen, Jiun Y; Nazem-Bokaee, Hadi; Freedman, Benjamin G; Athamneh, Ahmad I M; Senger, Ryan S

    2013-05-01

    Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design "fine-tuned" metabolic engineering strategies in silico that can be implemented directly with available genomic tools.

  12. Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies.

    Science.gov (United States)

    Yoshida, Takashi; Nagasaki, Keizo; Takashima, Yukari; Shirai, Yoko; Tomaru, Yuji; Takao, Yoshitake; Sakamoto, Shigetaka; Hiroishi, Shingo; Ogata, Hiroyuki

    2008-03-01

    Cyanobacteria and their phages are significant microbial components of the freshwater and marine environments. We identified a lytic phage, Ma-LMM01, infecting Microcystis aeruginosa, a cyanobacterium that forms toxic blooms on the surfaces of freshwater lakes. Here, we describe the first sequenced freshwater cyanomyovirus genome of Ma-LMM01. The linear, circularly permuted, and terminally redundant genome has 162,109 bp and contains 184 predicted protein-coding genes and two tRNA genes. The genome exhibits no colinearity with previously sequenced genomes of cyanomyoviruses or other Myoviridae. The majority of the predicted genes have no detectable homologues in the databases. These findings indicate that Ma-LMM01 is a member of a new lineage of the Myoviridae family. The genome lacks homologues for the photosynthetic genes that are prevalent in marine cyanophages. However, it has a homologue of nblA, which is essential for the degradation of the major cyanobacteria light-harvesting complex, the phycobilisomes. The genome codes for a site-specific recombinase and two prophage antirepressors, suggesting that it has the capacity to integrate into the host genome. Ma-LMM01 possesses six genes, including three coding for transposases, that are highly similar to homologues found in cyanobacteria, suggesting that recent gene transfers have occurred between Ma-LMM01 and its host. We propose that the Ma-LMM01 NblA homologue possibly reduces the absorption of excess light energy and confers benefits to the phage living in surface waters. This phage genome study suggests that light is central in the phage-cyanobacterium relationships where the viruses use diverse genetic strategies to control their host's photosynthesis.

  13. Shot-gun sequencing strategy for long-range genome mapping: a pilot study.

    Science.gov (United States)

    Zabarovsky, E R; Kashuba, V I; Pettersson, B; Petrov, N; Zakharyev, V; Gizatullin, R; Lebedeva, T; Bannikov, V; Pokrovskaya, E S; Zabarovska, V I

    1994-06-01

    We have recently proposed a strategy for construction of long-range physical maps based on random sequencing of NotI linking and jumping clones. Here, we present results of sequence comparison between 168 NotI linking (100 of them were sequenced from both sides) and 81 chromosome 3-specific jumping clones. We were able to identify 14 NotI jumping clones (17%), each joined with two NotI linking clones. The average size of chromosomal jumps was about 650 kb. The assembled 42 NotI genomic fragments correspond to 12-15% of chromosome 3. These results demonstrate the value of random sequencing of NotI linking and jumping clones for genome mapping. This mapping proposal can be used for connecting physical and genetic maps of the human genome and will be a valuable supplement to YAC and cosmid library based mapping projects.

  14. Complete Genomes of Classical Swine Fever Virus Cloned into Bacterial Artificial Chromosomes

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, I.; Uttenthal, Åse;

    Complete genome amplification of viral RNA provides a new tool for the generation of modified pestiviruses. We have used our full-genome amplification strategy for generation of amplicons representing complete genomes of classical swine fever virus. The amplicons were cloned directly into a stabl...... single-copy bacterial artificial chromosome (BAC) generating full-length pestivirus DNAs from which infectious RNA transcripts could be also derived. Our strategy allows construction of stable infectious BAC DNAs from a single full-length PCR product....

  15. Functionalized Graphene Oxide as a Nanocarrier in a Multienzyme Labeling Amplification Strategy for Ultrasensitive Electrochemical Immunoassay of Phosphorylated p53 (S392)

    Energy Technology Data Exchange (ETDEWEB)

    Du, Dan; Wang, Limin; Shao, Yuyan; Wang, Jun; Engelhard, Mark H.; Lin, Yuehe

    2011-01-06

    P53 phosphorylation plays an important role in many biological processes and might be used as a potential biomarker in clinical diagnoses. We report a new electrochemical immunosensor for ultrasensitive detection of phosphorylated p53 at Ser392 (phospho-p53-392) based on graphene oxide (GO) as a nanocarrier in multienzymes amplification strategy. Greatly enhanced sensitivity was achieved by using the bioconjugates featuring horseradish peroxidase (HRP) and p53392 signal antibody (p53Ab2) linked to functionalized GO (HRP-p53Ab2-GO) at high ratio of HRP/p53Ab2. After a sandwich immunoreaction, the HRP-p53Ab2-GO captured onto the electrode surface produced an amplified electrocatalytic response by the reduction of enzymatically oxidized thionine in the presence of hydrogen peroxide. The increase of response current was proportional to the phospho-p53 concentration in the range of 0.02 to 2 nM with the detection limit of 0.01 nM, which was 10-fold lower than that of traditional sandwich electrochemical measurement for p53. The amplified immunoassay developed in this work shows acceptable stability and reproducibility and the assay results for phospho-p53 spiked in human plasma also show good recovery (92%~103.8%). This simple and low-cost immunosensor shows great promise for detection of other phosphorylated proteins and clinical applications.

  16. Efficient and Specific Modifications of the Drosophila Genome by Means of an Easy TALEN Strategy

    Institute of Scientific and Technical Information of China (English)

    Jiyong Liu; Bo Zhang; Wu-Min Deng; Renjie Jiao; Changqing Li; Zhongsheng Yu; Peng Huang; Honggang Wu; Chuanxian Wei; Nannan Zhu; Yan Shen; Yixu Chen

    2012-01-01

    Technology development has always been one of the forces driving breakthroughs in biomedical research.Since the time of Thomas Morgan,Drosophilists have,step by step,developed powerful genetic tools for manipulating and functionally dissecting the Drosophila genome,but room for improving these technologies and developing new techniques is still large,especially today as biologists start to study systematically the functional genomics of different model organisms,including humans,in a high-throughput manner.Here,we report,for the first time in Drosophila,a rapid,easy,and highly specific method for modifying the Drosophila genome at a very high efficiency by means of an improved transcription activator-like effector nuclease (TALEN) strategy.We took advantage of the very recently developed "unit assembly" strategy to assemble two pairs of specific TALENs designed to modify the yellow gene (on the sex chromosome) and a novel autosomal gene.The mRNAs of TALENs were subsequently injected into Drosophila embryos.From 31.2% of the injected Fo fertile flies,we detected inheritable modification involving the yellow gene.The entire process from construction of specific TALENs to detection of inheritable modifications can be accomplished within one month.The potential applications of this TALEN-mediated genome modification method in Drosophila are discussed.

  17. A competitive photoelectrochemical immunosensor based on a CdS-induced signal amplification strategy for the ultrasensitive detection of dexamethasone.

    Science.gov (United States)

    Wang, Xueping; Yan, Tao; Li, Yan; Liu, Yixin; Du, Bin; Ma, Hongmin; Wei, Qin

    2015-12-09

    A novel photoelectrochemical immunosensor based on the competitive strategy is proposed for the specific detection of dexamethasone (DXM). Graphitic carbon nitride coupled with bismuth sulfide are used as the sensing matrix for the immobilization of BSA-DXM on the electrode surface, while cadmium sulfide functionalized titanium dioxide (TiO2@CdS) is used as the photoelectric active labels of anti-DXM. Due to the perfect matching of energy levels between TiO2 and CdS, the in situ prepared composite labels show excellent photocurrent response under visible lights. The competitive binding of DXM in sample solutions and BSA-DXM on the electrode surface reduces the specific attachment of labels to the electrode, resulting in a decrease of the photocurrent intensity. Greatly enhanced sensitivity is achieved after the optimization of the detection conditions. Under the optimal detection condition, the well-designed immunosensor for DXM exhibits a low detection limit of 2 pg ∙ mL(-1). Additionally, the proposed immunoassay system shows high specificity, good reproducibility and acceptable stability, which is also expected to become a promising platform for the detection of other small molecules.

  18. Challenges and strategies for implementing genomic services in diverse settings: experiences from the Implementing GeNomics In pracTicE (IGNITE) network.

    Science.gov (United States)

    Sperber, Nina R; Carpenter, Janet S; Cavallari, Larisa H; J Damschroder, Laura; Cooper-DeHoff, Rhonda M; Denny, Joshua C; Ginsburg, Geoffrey S; Guan, Yue; Horowitz, Carol R; Levy, Kenneth D; Levy, Mia A; Madden, Ebony B; Matheny, Michael E; Pollin, Toni I; Pratt, Victoria M; Rosenman, Marc; Voils, Corrine I; W Weitzel, Kristen; Wilke, Russell A; Ryanne Wu, R; Orlando, Lori A

    2017-05-22

    To realize potential public health benefits from genetic and genomic innovations, understanding how best to implement the innovations into clinical care is important. The objective of this study was to synthesize data on challenges identified by six diverse projects that are part of a National Human Genome Research Institute (NHGRI)-funded network focused on implementing genomics into practice and strategies to overcome these challenges. We used a multiple-case study approach with each project considered as a case and qualitative methods to elicit and describe themes related to implementation challenges and strategies. We describe challenges and strategies in an implementation framework and typology to enable consistent definitions and cross-case comparisons. Strategies were linked to challenges based on expert review and shared themes. Three challenges were identified by all six projects, and strategies to address these challenges varied across the projects. One common challenge was to increase the relative priority of integrating genomics within the health system electronic health record (EHR). Four projects used data warehousing techniques to accomplish the integration. The second common challenge was to strengthen clinicians' knowledge and beliefs about genomic medicine. To overcome this challenge, all projects developed educational materials and conducted meetings and outreach focused on genomic education for clinicians. The third challenge was engaging patients in the genomic medicine projects. Strategies to overcome this challenge included use of mass media to spread the word, actively involving patients in implementation (e.g., a patient advisory board), and preparing patients to be active participants in their healthcare decisions. This is the first collaborative evaluation focusing on the description of genomic medicine innovations implemented in multiple real-world clinical settings. Findings suggest that strategies to facilitate integration of genomic

  19. Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy

    Directory of Open Access Journals (Sweden)

    Garcia-Mas Jordi

    2010-11-01

    Full Text Available Abstract Background Cucumis melo (melon belongs to the Cucurbitaceae family, whose economic importance among horticulture crops is second only to Solanaceae. Melon has a high intra-specific genetic variation, morphologic diversity and a small genome size (454 Mb, which make it suitable for a great variety of molecular and genetic studies. A number of genetic and genomic resources have already been developed, such as several genetic maps, BAC genomic libraries, a BAC-based physical map and EST collections. Sequence information would be invaluable to complete the picture of the melon genomic landscape, furthering our understanding of this species' evolution from its relatives and providing an important genetic tool. However, to this day there is little sequence data available, only a few melon genes and genomic regions are deposited in public databases. The development of massively parallel sequencing methods allows envisaging new strategies to obtain long fragments of genomic sequence at higher speed and lower cost than previous Sanger-based methods. Results In order to gain insight into the structure of a significant portion of the melon genome we set out to perform massive sequencing of pools of BAC clones. For this, a set of 57 BAC clones from a double haploid line was sequenced in two pools with the 454 system using both shotgun and paired-end approaches. The final assembly consists of an estimated 95% of the actual size of the melon BAC clones, with most likely complete sequences for 50 of the BACs, and a total sequence coverage of 39x. The accuracy of the assembly was assessed by comparing the previously available Sanger sequence of one of the BACs against its 454 sequence, and the polymorphisms found involved only 1.7 differences every 10,000 bp that were localized in 15 homopolymeric regions and two dinucleotide tandem repeats. Overall, the study provides approximately 6.7 Mb or 1.5% of the melon genome. The analysis of this new data has

  20. Dynamics and Control of DNA Sequence Amplification

    CERN Document Server

    Marimuthu, Karthikeyan

    2014-01-01

    DNA amplification is the process of replication of a specified DNA sequence \\emph{in vitro} through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction (PCR) as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal tempe...

  1. A Targeted Enrichment Strategy for Massively Parallel Sequencing of Angiosperm Plastid Genomes

    Directory of Open Access Journals (Sweden)

    Gregory W. Stull

    2013-02-01

    Full Text Available Premise of the study: We explored a targeted enrichment strategy to facilitate rapid and low-cost next-generation sequencing (NGS of numerous complete plastid genomes from across the phylogenetic breadth of angiosperms. Methods and Results: A custom RNA probe set including the complete sequences of 22 previously sequenced eudicot plastomes was designed to facilitate hybridization-based targeted enrichment of eudicot plastid genomes. Using this probe set and an Agilent SureSelect targeted enrichment kit, we conducted an enrichment experiment including 24 angiosperms (22 eudicots, two monocots, which were subsequently sequenced on a single lane of the Illumina GAIIx with single-end, 100-bp reads. This approach yielded nearly complete to complete plastid genomes with exceptionally high coverage (mean coverage: 717×, even for the two monocots. Conclusions: Our enrichment experiment was highly successful even though many aspects of the capture process employed were suboptimal. Hence, significant improvements to this methodology are feasible. With this general approach and probe set, it should be possible to sequence more than 300 essentially complete plastid genomes in a single Illumina GAIIx lane (achieving 50× mean coverage. However, given the complications of pooling numerous samples for multiplex sequencing and the limited number of barcodes (e.g., 96 available in commercial kits, we recommend 96 samples as a current practical maximum for multiplex plastome sequencing. This high-throughput approach should facilitate large-scale plastid genome sequencing at any level of phylogenetic diversity in angiosperms.

  2. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans.

    Science.gov (United States)

    Valliyodan, Babu; Ye, Heng; Song, Li; Murphy, MacKensie; Shannon, J Grover; Nguyen, Henry T

    2016-12-07

    Drought and its interaction with high temperature are the major abiotic stress factors affecting soybean yield and production stability. Ongoing climate changes are anticipated to intensify drought events, which will further impact crop production and food security. However, excessive water also limits soybean production. The success of soybean breeding programmes for crop improvement is dependent on the extent of genetic variation present in the germplasm base. Screening for natural genetic variation in drought- and flooding tolerance-related traits, including root system architecture, water and nitrogen-fixation efficiency, and yield performance indices, has helped to identify the best resources for genetic studies in soybean. Genomic resources, including whole-genome sequences of diverse germplasms, millions of single-nucleotide polymorphisms, and high-throughput marker genotyping platforms, have expedited gene and marker discovery for translational genomics in soybean. This review highlights the current knowledge of the genetic diversity and quantitative trait loci associated with root system architecture, canopy wilting, nitrogen-fixation ability, and flooding tolerance that contributes to the understanding of drought- and flooding-tolerance mechanisms in soybean. Next-generation mapping approaches and high-throughput phenotyping will facilitate a better understanding of phenotype-genotype associations and help to formulate genomic-assisted breeding strategies, including genomic selection, in soybean for tolerance to drought and flooding stress.

  3. Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies.

    Science.gov (United States)

    Jiang, Dewei; Zhu, Wei; Wang, Yunchuan; Sun, Chang; Zhang, Ke-Qin; Yang, Jinkui

    2013-12-01

    Advances in genetic transformation techniques have made important contributions to molecular genetics. Various molecular tools and strategies have been developed for functional genomic analysis of filamentous fungi since the first DNA transformation was successfully achieved in Neurospora crassa in 1973. Increasing amounts of genomic data regarding filamentous fungi are continuously reported and large-scale functional studies have become common in a wide range of fungal species. In this review, various molecular tools used in filamentous fungi are compared and discussed, including methods for genetic transformation (e.g., protoplast transformation, electroporation, and microinjection), the construction of random mutant libraries (e.g., restriction enzyme mediated integration, transposon arrayed gene knockout, and Agrobacterium tumefaciens mediated transformation), and the analysis of gene function (e.g., RNA interference and transcription activator-like effector nucleases). We also focused on practical strategies that could enhance the efficiency of genetic manipulation in filamentous fungi, such as choosing a proper screening system and marker genes, assembling target-cassettes or vectors effectively, and transforming into strains that are deficient in the nonhomologous end joining pathway. In summary, we present an up-to-date review on the different molecular tools and latest strategies that have been successfully used in functional genomics in filamentous fungi. © 2013 Elsevier Inc. All rights reserved.

  4. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica.

    Directory of Open Access Journals (Sweden)

    Alga Zuccaro

    2011-10-01

    Full Text Available Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead barley roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyle strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarray analysis, argues for a biphasic root colonization strategy of P. indica. This is supported by a cytological study that shows an early biotrophic growth followed by a cell death-associated phase. About 10% of the fungal genes induced during the biotrophic colonization encoded putative small secreted proteins (SSP, including several lectin-like proteins and members of a P. indica-specific gene family (DELD with a conserved novel seven-amino acids motif at the C-terminus. Similar to effectors found in other filamentous organisms, the occurrence of the DELDs correlated with the presence of transposable elements in gene-poor repeat-rich regions of the genome. This is the first in depth genomic study describing a mutualistic symbiont with a biphasic lifestyle. Our findings provide a significant advance in understanding development of biotrophic plant symbionts and suggest a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi.

  5. Dynamics and control of DNA sequence amplification

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, Karthikeyan [Department of Chemical Engineering and Center for Advanced Process Decision-Making, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu [Department of Chemical Engineering and Center for Advanced Process Decision-Making, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054 (United States)

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  6. Proteomics and integrative genomics for unraveling the mysteries of spermatogenesis: the strategies of a team.

    Science.gov (United States)

    Com, Emmanuelle; Melaine, Nathalie; Chalmel, Frédéric; Pineau, Charles

    2014-07-31

    The strikingly complex structural organization of the mammalian testis in vivo creates particular difficulties for studies of its organization, function and regulation. These difficulties are particularly pronounced for investigations of the molecular communication networks within the seminiferous tubules that govern spermatogenesis. The use of classical molecular and cell biology approaches to unravel this complexity has proved problematic, due to difficulties in maintaining differentiated germ cells in vitro, in particular. The lack of a suitable testing ground has led to a greater reliance on high-quality proteomic and genomic analyses as a prelude to the in vitro antx1d in vivo testing of hypotheses. In this study, we highlight the options currently available for research, as used in our laboratory, in which proteomic and integrative genomic strategies are applied to the study of spermatogenesis in mammals. We will comment on results providing insight into the molecular mechanisms underlying normal and pathological spermatogenesis and new perspectives for the treatment of male infertility in humans. Finally, we will discuss the relevance of our strategies and the unexpected potential and perspectives they offer to teams involved in the study of male reproduction, within the framework of the Human Proteome Project. Integrative genomics is becoming a powerful strategy for discovering the biological significance hidden in proteomic datasets. This work introduces some of the integrative genomic concepts and works used by our team to gain new insight into mammalian spermatogenesis, a remarkably sophisticated process. We demonstrate the relevance of these integrative approaches to understand the cellular cross talks established between the somatic Sertoli cells and the germ cell lineage, within the seminiferous epithelium. Our work also contributes to new knowledge on the pathophysiology of testicular function, with promising clinical applications. This article is

  7. Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations.

    Science.gov (United States)

    Dearfield, Kerry L; Gollapudi, B Bhaskar; Bemis, Jeffrey C; Benz, R Daniel; Douglas, George R; Elespuru, Rosalie K; Johnson, George E; Kirkland, David J; LeBaron, Matthew J; Li, Albert P; Marchetti, Francesco; Pottenger, Lynn H; Rorije, Emiel; Tanir, Jennifer Y; Thybaud, Veronique; van Benthem, Jan; Yauk, Carole L; Zeiger, Errol; Luijten, Mirjam

    2016-09-21

    For several decades, regulatory testing schemes for genetic damage have been standardized where the tests being utilized examined mutations and structural and numerical chromosomal damage. This has served the genetic toxicity community well when most of the substances being tested were amenable to such assays. The outcome from this testing is usually a dichotomous (yes/no) evaluation of test results, and in many instances, the information is only used to determine whether a substance has carcinogenic potential or not. Over the same time period, mechanisms and modes of action (MOAs) that elucidate a wider range of genomic damage involved in many adverse health outcomes have been recognized. In addition, a paradigm shift in applied genetic toxicology is moving the field toward a more quantitative dose-response analysis and point-of-departure (PoD) determination with a focus on risks to exposed humans. This is directing emphasis on genomic damage that is likely to induce changes associated with a variety of adverse health outcomes. This paradigm shift is moving the testing emphasis for genetic damage from a hazard identification only evaluation to a more comprehensive risk assessment approach that provides more insightful information for decision makers regarding the potential risk of genetic damage to exposed humans. To enable this broader context for examining genetic damage, a next generation testing strategy needs to take into account a broader, more flexible approach to testing, and ultimately modeling, of genomic damage as it relates to human exposure. This is consistent with the larger risk assessment context being used in regulatory decision making. As presented here, this flexible approach for examining genomic damage focuses on testing for relevant genomic effects that can be, as best as possible, associated with an adverse health effect. The most desired linkage for risk to humans would be changes in loci associated with human diseases, whether in somatic

  8. A Multiple QTL-Seq Strategy Delineates Potential Genomic Loci Governing Flowering Time in Chickpea

    Science.gov (United States)

    Srivastava, Rishi; Upadhyaya, Hari D.; Kumar, Rajendra; Daware, Anurag; Basu, Udita; Shimray, Philanim W.; Tripathi, Shailesh; Bharadwaj, Chellapilla; Tyagi, Akhilesh K.; Parida, Swarup K.

    2017-01-01

    Identification of functionally relevant potential genomic loci using an economical, simpler and user-friendly genomics-assisted breeding strategy is vital for rapid genetic dissection of complex flowering time quantitative trait in chickpea. A high-throughput multiple QTL-seq strategy was employed in two inter (Cicer arietinum desi accession ICC 4958 × C reticulatum wild accession ICC 17160)- and intra (ICC 4958 × C. arietinum kabuli accession ICC 8261)-specific RIL mapping populations to identify the major QTL genomic regions governing flowering time in chickpea. The whole genome resequencing discovered 1635117 and 592486 SNPs exhibiting differentiation between early- and late-flowering mapping parents and bulks, constituted by pooling the homozygous individuals of extreme flowering time phenotypic trait from each of two aforesaid RIL populations. The multiple QTL-seq analysis using these mined SNPs in two RIL mapping populations narrowed-down two longer (907.1 kb and 1.99 Mb) major flowering time QTL genomic regions into the high-resolution shorter (757.7 kb and 1.39 Mb) QTL intervals on chickpea chromosome 4. This essentially identified regulatory as well as coding (non-synonymous/synonymous) novel SNP allelic variants from two efl1 (early flowering 1) and GI (GIGANTEA) genes regulating flowering time in chickpea. Interestingly, strong natural allelic diversity reduction (88–91%) of two known flowering genes especially mapped at major QTL intervals as compared to that of background genomic regions (where no flowering time QTLs were mapped; 61.8%) in cultivated vis-à-vis wild Cicer gene pools was evident inferring the significant impact of evolutionary bottlenecks on these loci during chickpea domestication. Higher association potential of coding non-synonymous and regulatory SNP alleles mined from efl1 (36–49%) and GI (33–42%) flowering genes for early and late flowering time differentiation among chickpea accessions was evident. The robustness and

  9. Predicting the Reproduction Strategies of Several Microalgae Through Their Genome Sequences

    Institute of Scientific and Technical Information of China (English)

    GUO Li; YANG Guanpin

    2015-01-01

    Documenting the sex and sexual reproduction of the microalgae is very difficult, as most of the results are based on the microscopic observation that can be heavily influenced by genetic, physiological and environmental conditions. Understanding the reproduction strategy of some microalgae is required to breed them in large scale culture industry. Instead of direct observation of sex and sexual reproduction under microscope, the whole set or the majority of core meiosis genes may evidence the sex and sexual reproduction in the unicellular algae, as the meiosis is necessary for maintaining the genomic stability and the advantages of genetic recombination. So far, the available genome sequences and bioinformatic tools (in this study, homolog searching and phylogenetic analysis) allow us to propose that at least 20 core meiosis genes (among them≥6 must be meiosis specific) are enough for an alga to maintain its sexual reproduction. According to this assumption and the genome sequences, it is possible that sexual reproduction was carried out byMicromonas pusilla andCyanidioschyzon merolae, while asexual reproduction was adopted byBigelowiella natans, Guillardia theta,Nannochloropsis gaditana,N. oceanica,Chlorella variablis,Phaeodactylum tricornutum andThalassiosira pseu-donana. This understanding will facilitate the breeding trials of some economic microalgae (e.g.,N. gaditana,N. oceanica,C. vari-ablis andP. tricornutum). However, the reproduction strategies of these microalgae need to be proved by further biological experiments.

  10. Predicting the reproduction strategies of several microalgae through their genome sequences

    Science.gov (United States)

    Guo, Li; Yang, Guanpin

    2015-06-01

    Documenting the sex and sexual reproduction of the microalgae is very difficult, as most of the results are based on the microscopic observation that can be heavily influenced by genetic, physiological and environmental conditions. Understanding the reproduction strategy of some microalgae is required to breed them in large scale culture industry. Instead of direct observation of sex and sexual reproduction under microscope, the whole set or the majority of core meiosis genes may evidence the sex and sexual reproduction in the unicellular algae, as the meiosis is necessary for maintaining the genomic stability and the advantages of genetic recombination. So far, the available genome sequences and bioinformatic tools (in this study, homolog searching and phylogenetic analysis) allow us to propose that at least 20 core meiosis genes (among them ≥6 must be meiosis specific) are enough for an alga to maintain its sexual reproduction. According to this assumption and the genome sequences, it is possible that sexual reproduction was carried out by Micromonas pusilla and Cyanidioschyzon merolae, while asexual reproduction was adopted by Bigelowiella natans, Guillardia theta, Nannochloropsis gaditana, N. oceanica, Chlorella variablis, Phaeodactylum tricornutum and Thalassiosira pseudonana. This understanding will facilitate the breeding trials of some economic microalgae ( e.g., N. gaditana, N. oceanica, C. variablis and P. tricornutum). However, the reproduction strategies of these microalgae need to be proved by further biological experiments.

  11. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabian; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; Wit, Pierre J. G. M. de; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2012-02-29

    The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.

  12. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi.

    Directory of Open Access Journals (Sweden)

    Robin A Ohm

    Full Text Available The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemibiotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.

  13. Integrated genomic analysis of the 8q24 amplification in endometrial cancers identifies ATAD2 as essential to MYC-dependent cancers.

    Directory of Open Access Journals (Sweden)

    Maria B Raeder

    Full Text Available Chromosome 8q24 is the most commonly amplified region across multiple cancer types, and the typical length of the amplification suggests that it may target additional genes to MYC. To explore the roles of the genes most frequently included in 8q24 amplifications, we analyzed the relation between copy number alterations and gene expression in three sets of endometrial cancers (N = 252; and in glioblastoma, ovarian, and breast cancers profiled by TCGA. Among the genes neighbouring MYC, expression of the bromodomain-containing gene ATAD2 was the most associated with amplification. Bromodomain-containing genes have been implicated as mediators of MYC transcriptional function, and indeed ATAD2 expression was more closely associated with expression of genes known to be upregulated by MYC than was MYC itself. Amplifications of 8q24, expression of genes downstream from MYC, and overexpression of ATAD2 predicted poor outcome and increased from primary to metastatic lesions. Knockdown of ATAD2 and MYC in seven endometrial and 21 breast cancer cell lines demonstrated that cell lines that were dependent on MYC also depended upon ATAD2. These same cell lines were also the most sensitive to the histone deacetylase (HDAC inhibitor Trichostatin-A, consistent with prior studies identifying bromodomain-containing proteins as targets of inhibition by HDAC inhibitors. Our data indicate high ATAD2 expression is a marker of aggressive endometrial cancers, and suggest specific inhibitors of ATAD2 may have therapeutic utility in these and other MYC-dependent cancers.

  14. Update on the Pfam5000 Strategy for Selection of StructuralGenomics Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2005-06-27

    Structural Genomics is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy that is medically and biologically relevant, of good financial value, and tractable. In 2003, we presented the ''Pfam5000'' strategy, which involves selecting the 5,000 most important families from the Pfam database as sources for targets. In this update, we show that although both the Pfam database and the number of sequenced genomes have increased in size, the expected benefits of the Pfam5000 strategy have not changed substantially. Solving the structures of proteins from the 5,000 largest Pfam families would allow accurate fold assignment for approximately 65 percent of all prokaryotic proteins (covering 54 percent of residues) and 63 percent of eukaryotic proteins (42 percent of residues). Fewer than 2,300 of the largest families on this list remain to be solved, making the project feasible in the next five years given the expected throughput to be achieved in the production phase of the Protein Structure Initiative.

  15. Carboxylesterase gene amplifications associated with insecticide resistance in Aedes albopictus: Geographical distribution and evolutionary origin.

    Directory of Open Access Journals (Sweden)

    Linda Grigoraki

    2017-04-01

    Full Text Available Aedes albopictus is one of the most invasive human disease vectors. Its control has been largely based on insecticides, such as the larvicide temephos. Temephos resistance has been associated with the up-regulation, through gene amplification, of two carboxylesterase (CCE genes closely linked on the genome, capable of sequestering and metabolizing temephos oxon, the activated form of temephos.Here, we investigated the occurrence, geographical distribution and origin of the CCE amplicon in Ae. albopictus populations from several geographical regions worldwide. The haplotypic diversity at the CCEae3a locus revealed high polymorphism, while phylogenetic analysis showed an absence of correlation between haplotype similarity and geographic origin. Two types of esterase amplifications were found, in two locations only (Athens and Florida: one, previously described, results in the amplification of both CCEae3a and CCEae6a; the second is being described for the first time and results in the amplification of CCEae3a only. The two amplification events are independent, as confirmed by sequence analysis. All individuals from Athens and Florida carrying the CCEae3a-CCEae6a co-amplicon share a common haplotype, indicating a single amplification event, which spread between the two countries.The importance of passive transportation of disease vectors, including individuals carrying resistance mechanisms, is discussed in the light of efficient and sustainable vector control strategies.

  16. Can Genomic Amplification of Human Telomerase Gene and C-MYC in Liquid-Based Cytological Specimens Be Used as a Method for Opportunistic Cervical Cancer Screening?

    Science.gov (United States)

    Gao, Kun; Eurasian, Menglan; Zhang, Jieqing; Wei, Yuluan; Zheng, Qian; Ye, Hongtao; Li, Li

    2015-01-01

    To evaluate the effectiveness of five methods including the ThinPrep cytological test (TCT), liquid-based cytology, the human papillomavirus (HPV) test, detection of the TERC and C-MYC genes and visual inspection with acetic acid/Lugol's iodine (VIA/VILI) for opportunistic cervical cancer screening, and to explore whether genomic amplification of the human telomerase gene and C-MYC in liquid-based cytological specimens can be used as a method for opportunistic cervical cancer screening. Data were collected prospectively from 1,010 consecutive patients who visited the gynecology clinic and agreed to participate in opportunistic cervical cancer screening at our institution from November 2010 to July 2011. The five methods mentioned above were used for the screening in all cases. The histopathological diagnosis served as the gold standard for the evaluation. A comparison between the five screening methods for the diagnosis of high-grade cervical intraepithelial neoplasia (CIN II and III) was performed for their sensitivity, specificity, false-positive rate, false-negative rate, accuracy rate, positive likelihood ratio and negative likelihood ratio. A comprehensive comparison of the different combination programs for screening was performed according to the analysis of the receiver operating characteristic (ROC) curve area. The accuracy of the five screening methods for the diagnosis of high-grade CIN (CIN II and III) was compared in the different age groups. A joint model for the diagnosis using different combinations of the five methods was developed according to the analysis by the SAS 8.0 software. The model was used to evaluate the accuracy of the different combination programs for the diagnosis of high-grade CIN, and the results were confirmed by the histopathological examination. The sensitivity and specificity of the single screen method (TCT, HPV test, detection of the TERC and C-MYC genes, and VIA/VILI method) for CIN II was 80.9, 70.2, 72.3, 76.6, and 72

  17. Analysis on Genomic DNA Methylation Modification of Ginkgo biloba by Methylation-sensitive Amplification Polymorphism%银杏基因组DNA甲基化修饰位点的MSAP分析

    Institute of Scientific and Technical Information of China (English)

    李际红; 邢世岩; 王聪聪; 张倩; 付茵茵

    2011-01-01

    To investigate the DNA methylated modification levels,patterns and sites of the Ginkgo biloba at the genome-wide level,the double digestion of EcoRⅠand HpaⅡ/MspⅠwas used to construct the Ginkgo biloba genomic MSAP(methylation-sensitive amplification polymorphism,MSAP)analysis system.By using 16 pairs of selective primers from the 54 pairs of MSAP selective primers,a total of 454 legible and repeatable amplified DNA bands were detected,on average 28.38 bands were observed after amplification with each primer pair.Two-hundred DNA methylated sites were detected among all the amplificated sites,which represented 44% ratio of methylated modification at CCGG/GGCC sites in Ginkgo biloba genome.Eighteen methylated DNA sequences were isolated and sequenced by extracting part of the amplificated sites.BLASTn comparison indicated that the DNA methylated modification phenomenon was existed in multiple types of DNA sequences,including repeated sequences,transcription regulators,retrotransposons,channel protein,promoter-binding protein,protein kinase,etc.%利用EcoRⅠ和HpaⅡ/MspⅠ双酶切建立适合于银杏基因组的甲基化敏感扩增多态性(methylation-sensitive amplification polymorphism,MSAP)分析体系,在全基因组水平检测银杏DNA甲基化修饰水平、模式及位点等表观遗传信息。结果显示,从54对MSAP选扩引物中,选出16对MSAP引物组合,共扩增产生454条清晰可辨且可重复的DNA条带,平均每对引物扩增获得28.38条带。在全部扩增位点中,检测到甲基化位点200个,CCGG/GGCC位点甲基化修饰比例为44%。部分银杏基因组甲基化修饰位点进行回收,最终分离了18条存在甲基化修饰的基因组DNA序列。BLASTn比对分析表明,银杏基因组中包括转录调控因子、反转录转座子、通道蛋白、启动子结合蛋白、蛋白激酶等在内的多种类型的DNA序列中均存在DNA甲基化修饰现象。

  18. Diagnostic Devices for Isothermal Nucleic Acid Amplification

    Directory of Open Access Journals (Sweden)

    Chia-Chen Chang

    2012-06-01

    Full Text Available Since the development of the polymerase chain reaction (PCR technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.

  19. Detection of paternally inherited fetal point mutations for β-thalassemia in maternal plasma using simple fetal DNA enrichment protocol with or without whole genome amplification: an accuracy assessment.

    Science.gov (United States)

    Ramezanzadeh, Mahboubeh; Salehi, Mansour; Farajzadegan, Ziba; Kamali, Sara; Salehi, Rasoul

    2016-01-01

    To design and evaluate a noninvasive protocol for prenatal diagnosis (PND) of β-thalassemia, using cell free fetal DNA (cff-DNA) in maternal circulation. Traditional current PND which is mainly based on chorionic villous sampling (CVS), amplification refractory mutation system and sequencing holds as gold standard. Ten thalassemia trait couples with distinct mutations for the husband and wife were included in this study. The mutations in carrier fathers were IVSI-1, IVSI-5, FR8/9 and CD44. After maternal plasma isolation and free DNA extraction, all samples subjected to designed protocol including DNA size separation on agarose gel, elution of DNA from the gel slices using a simple and efficient manual purification method, with or without whole genome amplification and the detection method was allele-specific real-time PCR. Presence or absence of the paternal mutant allele was correctly determined in all of cases and the accuracy of designed protocol was determined 100%. The protocol described here is very simple, inexpensive and easy to perform, but with satisfactory accuracy in detection of paternal mutations in cff-DNA. Due to the risk of fetal loss with current invasive sampling for PND, a noninvasive alternative is highly demanded in clinical setting.

  20. Diagnosis and Prognostication of Ductal Adenocarcinomas of the Pancreas Based on Genome-Wide DNA Methylation Profiling by Bacterial Artificial Chromosome Array-Based Methylated CpG Island Amplification

    Directory of Open Access Journals (Sweden)

    Masahiro Gotoh

    2011-01-01

    Full Text Available To establish diagnostic criteria for ductal adenocarcinomas of the pancreas (PCs, bacterial artificial chromosome (BAC array-based methylated CpG island amplification was performed using 139 tissue samples. Twelve BAC clones, for which DNA methylation status was able to discriminate cancerous tissue (T from noncancerous pancreatic tissue in the learning cohort with a specificity of 100%, were identified. Using criteria that combined the 12 BAC clones, T-samples were diagnosed as cancers with 100% sensitivity and specificity in both the learning and validation cohorts. DNA methylation status on 11 of the BAC clones, which was able to discriminate patients showing early relapse from those with no relapse in the learning cohort with 100% specificity, was correlated with the recurrence-free and overall survival rates in the validation cohort and was an independent prognostic factor by multivariate analysis. Genome-wide DNA methylation profiling may provide optimal diagnostic markers and prognostic indicators for patients with PCs.

  1. Comparison of genome-wide selection strategies to identify furfural tolerance genes in Escherichia coli.

    Science.gov (United States)

    Glebes, Tirzah Y; Sandoval, Nicholas R; Gillis, Jacob H; Gill, Ryan T

    2015-01-01

    Engineering both feedstock and product tolerance is important for transitioning towards next-generation biofuels derived from renewable sources. Tolerance to chemical inhibitors typically results in complex phenotypes, for which multiple genetic changes must often be made to confer tolerance. Here, we performed a genome-wide search for furfural-tolerant alleles using the TRackable Multiplex Recombineering (TRMR) method (Warner et al. (2010), Nature Biotechnology), which uses chromosomally integrated mutations directed towards increased or decreased expression of virtually every gene in Escherichia coli. We employed various growth selection strategies to assess the role of selection design towards growth enrichments. We also compared genes with increased fitness from our TRMR selection to those from a previously reported genome-wide identification study of furfural tolerance genes using a plasmid-based genomic library approach (Glebes et al. (2014) PLOS ONE). In several cases, growth improvements were observed for the chromosomally integrated promoter/RBS mutations but not for the plasmid-based overexpression constructs. Through this assessment, four novel tolerance genes, ahpC, yhjH, rna, and dicA, were identified and confirmed for their effect on improving growth in the presence of furfural.

  2. Genomic prediction contributing to a promising global strategy to turbocharge gene banks.

    Science.gov (United States)

    Yu, Xiaoqing; Li, Xianran; Guo, Tingting; Zhu, Chengsong; Wu, Yuye; Mitchell, Sharon E; Roozeboom, Kraig L; Wang, Donghai; Wang, Ming Li; Pederson, Gary A; Tesso, Tesfaye T; Schnable, Patrick S; Bernardo, Rex; Yu, Jianming

    2016-10-03

    The 7.4 million plant accessions in gene banks are largely underutilized due to various resource constraints, but current genomic and analytic technologies are enabling us to mine this natural heritage. Here we report a proof-of-concept study to integrate genomic prediction into a broad germplasm evaluation process. First, a set of 962 biomass sorghum accessions were chosen as a reference set by germplasm curators. With high throughput genotyping-by-sequencing (GBS), we genetically characterized this reference set with 340,496 single nucleotide polymorphisms (SNPs). A set of 299 accessions was selected as the training set to represent the overall diversity of the reference set, and we phenotypically characterized the training set for biomass yield and other related traits. Cross-validation with multiple analytical methods using the data of this training set indicated high prediction accuracy for biomass yield. Empirical experiments with a 200-accession validation set chosen from the reference set confirmed high prediction accuracy. The potential to apply the prediction model to broader genetic contexts was also examined with an independent population. Detailed analyses on prediction reliability provided new insights into strategy optimization. The success of this project illustrates that a global, cost-effective strategy may be designed to assess the vast amount of valuable germplasm archived in 1,750 gene banks.

  3. Genomic amplification patterns of human telomerase RNA gene and C-MYC in liquid-based cytological specimens used for the detection of high-grade cervical intraepithelial neoplasia

    Science.gov (United States)

    2012-01-01

    Background The amplification of oncogenes initiated by high-risk human papillomavirus (HPV) infection is an early event in cervical carcinogenesis and can be used for cervical lesion diagnosis. We measured the genomic amplification rates and the patterns of human telomerase RNA gene (TERC) and C-MYC in the liquid-based cytological specimens to evaluate the diagnostic characteristics for the detection of high-grade cervical lesions. Methods Two hundred and forty-three residual cytological specimens were obtained from outpatients aged 25 to 64 years at Qilu Hospital, Shandong University. The specimens were evaluated by fluorescence in situ hybridization (FISH) using chromosome probes to TERC (3q26) and C-MYC (8q24). All of the patients underwent colposcopic examination and histological evaluation. A Chi-square test was used for categorical data analysis. Results In the normal, cervical intraepithelial neoplasia grade 1 (CIN1), grade 2 (CIN2), grade 3 (CIN3) and squamous cervical cancer (SCC) cases, the TERC positive rates were 9.2%, 17.2%, 76.2%, 100.0% and 100.0%, respectively; the C-MYC positive rates were 20.7%, 31.0%, 71.4%, 81.8% and 100.0%, respectively. The TERC and C-MYC positive rates were higher in the CIN2+ (CIN2, CIN3 and SCC) cases than in the normal and CIN1 cases (p C-MYC test showed lower sensitivity (80.0% vs. 84.0%) and higher specificity (77.7% vs. 64.3%). Using a cut-off value of 5% or more aberrant cells, the TERC test showed the highest combination of sensitivity and specificity. The CIN2+ group showed more high-level TERC gene copy number (GCN) cells than did the normal/CIN1 group (p C-MYC, no significant difference between the two histological categories was detected (p > 0.05). Conclusions The TERC test is highly sensitive and is therefore suitable for cervical cancer screening. The C-MYC test is not suitable for cancer screening because of its lower sensitivity. The amplification patterns of TERC become more diverse and complex as the

  4. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing.

    Directory of Open Access Journals (Sweden)

    Alexander William Eastman

    2015-01-01

    Full Text Available Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing

  5. Efficient strategies for genome scanning using maximum-likelihood affected-sib-pair analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holmans, P.; Craddock, N. [Univ. of Wales College of Medicine, Cardiff (United Kingdom)

    1997-03-01

    Detection of linkage with a systematic genome scan in nuclear families including an affected sibling pair is an important initial step on the path to cloning susceptibility genes for complex genetic disorders, and it is desirable to optimize the efficiency of such studies. The aim is to maximize power while simultaneously minimizing the total number of genotypings and probability of type I error. One approach to increase efficiency, which has been investigated by other workers, is grid tightening: a sample is initially typed using a coarse grid of markers, and promising results are followed up by use of a finer grid. Another approach, not previously considered in detail in the context of an affected-sib-pair genome scan for linkage, is sample splitting: a portion of the sample is typed in the screening stage, and promising results are followed up in the whole sample. In the current study, we have used computer simulation to investigate the relative efficiency of two-stage strategies involving combinations of both grid tightening and sample splitting and found that the optimal strategy incorporates both approaches. In general, typing half the sample of affected pairs with a coarse grid of markers in the screening stage is an efficient strategy under a variety of conditions. If Hardy-Weinberg equilibrium holds, it is most efficient not to type parents in the screening stage. If Hardy-Weinberg equilibrium does not hold (e.g., because of stratification) failure to type parents in the first stage increases the amount of genotyping required, although the overall probability of type I error is not greatly increased, provided the parents are used in the final analysis. 23 refs., 4 figs., 5 tabs.

  6. CGH, cDNA and Tissue Microarray Analyses Implicate FGFR2 Amplification in a Small Subset of Breast Tumors

    Directory of Open Access Journals (Sweden)

    Mervi Heiskanen

    2001-01-01

    Full Text Available Multiple regions of the genome are often amplified during breast cancer development and progression, as evidenced in a number of published studies by comparative genomic hybridization (CGH. However, only relatively few target genes for such amplifications have been identified. Here, we indicate how small‐scale commercially available cDNA and CGH microarray formats combined with the tissue microarray technology enable rapid identification of putative amplification target genes as well as analysis of their clinical significance. According to CGH, the SUM‐52 breast cancer cell line harbors several high‐level DNA amplification sites, including the 10q26 chromosomal region where the fibroblast growth factor receptor 2 (FGFR2 gene has been localized. High level amplification of FGFR2 in SUM‐52 was identified using CGH analysis on a microarray of BAC clones. A cDNA microarray survey of 588 genes showed >40‐fold overexpression of FGFR2. Finally, a tissue microarray based FISH analysis of 750 uncultured primary breast cancers demonstrated in vivo amplification of the FGFR2 gene in about 1% of the tumors. In conclusion, three consecutive microarray (CGH, cDNA and tissue experiments revealed high‐level amplification and overexpression of the FGFR2 in a breast cancer cell line, but only a low frequency of involvement in primary breast tumors. Applied to a genomic scale with larger arrays, this strategy should facilitate identification of the most important target genes for cytogenetic rearrangements, such as DNA amplification sites detected by conventional CGH. Figures on http://www.esacp.org/acp/2001/22‐4/heiskanen.htm

  7. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid.

    Science.gov (United States)

    Xue, Qingwang; Lv, Yanqin; Cui, Hui; Gu, Xiaohong; Zhang, Shuqiu; Liu, Jifeng

    2015-01-26

    An autonomous DNA nanomachine based on rolling circle amplification (RCA)-bridged two-stage exonuclease III (Exo III)-induced recycling amplification (Exo III-RCA-Exo III) was developed for label-free and highly sensitive homogeneous multi-amplified detection of DNA combined with sensitive fluorescence detection technique. According to the configuration, the analysis of DNA is accomplished by recognizing the target to a unlabeled molecular beacon (UMB) that integrates target-binding and signal transducer within one multifunctional design, followed by the target-binding of UMB in duplex DNA removed stepwise by Exo III accompanied by the releasing of target DNA for the successive hybridization and cleavage process and autonomous generation of the primer that initiate RCA process with a rational designed padlock DNA. The RCA products containing thousands of repeated catalytic sequences catalytically hybridize with a hairpin reporter probe that includes a "caged" inactive G-quadruplex sequence (HGP) and were then detected by Exo III-assisted recycling amplification, liberating the active G-quadruplex and generating remarkable ZnPPIX/G-quadruplex fluorescence signals with the help of zinc(II)-protoporphyrin IX (ZnPPIX). The proposed strategy showed a wide dynamic range over 7 orders of magnitude with a low limit of detection of 0.51 aM. In addition, this designed protocol can discriminate mismatched DNA from perfectly matched target DNA, and holds a great potential for early diagnosis in gene-related diseases.

  8. Whole Genome Amplification of Day 3 or Day 5 Human Embryos Biopsies Provides a Suitable DNA Template for PCR-Based Techniques for Genotyping, a Complement of Preimplantation Genetic Testing

    Directory of Open Access Journals (Sweden)

    Elizabeth Schaeffer

    2017-01-01

    Full Text Available Our objective was to determine if whole genome amplification (WGA provides suitable DNA for qPCR-based genotyping for human embryos. Single blastomeres (Day 3 or trophoblastic cells (Day 5 were isolated from 342 embryos for WGA. Comparative Genomic Hybridization determined embryo sex as well as Trisomy 18 or Trisomy 21. To determine the embryo’s sex, qPCR melting curve analysis for SRY and DYS14 was used. Logistic regression indicated a 4.4%, 57.1%, or 98.8% probability of a male embryo when neither gene, SRY only, or both genes were detected, respectively (accuracy = 94.1%, kappa = 0.882, and p<0.001. Fluorescent Capillary Electrophoresis for the amelogenin genes (AMEL was also used to determine sex. AMELY peak’s height was higher and this peak’s presence was highly predictive of male embryos (AUC = 0.93, accuracy = 81.7%, kappa = 0.974, and p<0.001. Trisomy 18 and Trisomy 21 were determined using the threshold cycle difference for RPL17 and TTC3, respectively, which were significantly lower in the corresponding embryos. The Ct difference for TTC3 specifically determined Trisomy 21 (AUC = 0.89 and RPL17 for Trisomy 18 (AUC = 0.94. Here, WGA provides adequate DNA for PCR-based techniques for preimplantation genotyping.

  9. Electrochemical immunoassay of benzo[a]pyrene based on dual amplification strategy of electron-accelerated Fe{sub 3}O{sub 4}/polyaniline platform and multi-enzyme-functionalized carbon sphere label

    Energy Technology Data Exchange (ETDEWEB)

    Lin Mouhong [Institute of Biomaterials, College of Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province (China); Liu Yingju, E-mail: liuyingju@hotmail.com [Institute of Biomaterials, College of Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province (China); Sun Zihong; Zhang Shenglai; Yang Zhuohong [Institute of Biomaterials, College of Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province (China); Ni Chunlin, E-mail: niclchem@scau.edu.cn [Institute of Biomaterials, College of Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province (China)

    2012-04-13

    Graphical abstract: Schematic representation of Fe{sub 3}O{sub 4}/PANI/Nafion-based immunosensor using multi-HRP-HCS-Ab{sub 2} bioconjugates as labels. Highlights: Black-Right-Pointing-Pointer An electrochemical immunosensor for high sensitive detection of BaP. Black-Right-Pointing-Pointer A dual amplification strategy by Fe{sub 3}O{sub 4}/PANI/Nafion film and multi-HRP-HCS-Ab{sub 2} label. Black-Right-Pointing-Pointer An accelerated electron transfer pathway by the Fe{sub 3}O{sub 4}/PANI/Nafion film. - Abstract: An electrochemical immunosensor, basing on a dual amplification strategy by employing a biocompatible Fe{sub 3}O{sub 4}/polyaniline/Nafion (Fe{sub 3}O{sub 4}/PANI/Nafion) layer as sensor platform and multi-enzyme-antibody functionalized highly-carbonized spheres (multi-HRP-HCS-Ab{sub 2}) as label, was constructed for sensitive detection of benzo[a]pyrene (BaP). The stable film, Fe{sub 3}O{sub 4}/PANI/Nafion, can not only immobilize biomolecules, but also catalyze the reduction of hydrogen peroxide, indicating an accelerated electron transfer pathway of the platform. The experimental conditions, including the concentration of Nafion, concentration of Fe{sub 3}O{sub 4}/polyaniline (Fe{sub 3}O{sub 4}/PANI), pH of the detection solution and concentrations of biomolecules, were studied in detail. Basing on a competitive immunoassay, the current change was proportional to the logarithm of BaP concentration in the range of 8 pM and 2 nM with the detection limit of 4 pM. The proposed immunosensor exhibited acceptable reproducibility and stability. This new type of dual amplification strategy may provide potential applications for the detection of environmental pollutants.

  10. Functional genomic analysis of drug sensitivity pathways to guide adjuvant strategies in breast cancer

    DEFF Research Database (Denmark)

    Swanton, Charles; Szallasi, Zoltan Imre; Brenton, James D.

    2008-01-01

    The widespread introduction of high throughput RNA interference screening technology has revealed tumour drug sensitivity pathways to common cytotoxics such as paclitaxel, doxorubicin and 5-fluorouracil, targeted agents such as trastuzumab and inhibitors of AKT and Poly(ADP-ribose) polymerase (PARP......) as well as endocrine therapies such as tamoxifen. Given the limited power of microarray signatures to predict therapeutic response in associative studies of small clinical trial cohorts, the use of functional genomic data combined with expression or sequence analysis of genes and microRNAs implicated...... in drug response in human tumours may provide a more robust method to guide adjuvant treatment strategies in breast cancer that are transferable across different expression platforms and patient cohorts....

  11. Messenger RNA- versus retrovirus-based induced pluripotent stem cell reprogramming strategies: analysis of genomic integrity.

    Science.gov (United States)

    Steichen, Clara; Luce, Eléanor; Maluenda, Jérôme; Tosca, Lucie; Moreno-Gimeno, Inmaculada; Desterke, Christophe; Dianat, Noushin; Goulinet-Mainot, Sylvie; Awan-Toor, Sarah; Burks, Deborah; Marie, Joëlle; Weber, Anne; Tachdjian, Gérard; Melki, Judith; Dubart-Kupperschmitt, Anne

    2014-06-01

    The use of synthetic messenger RNAs to generate human induced pluripotent stem cells (iPSCs) is particularly appealing for potential regenerative medicine applications, because it overcomes the common drawbacks of DNA-based or virus-based reprogramming strategies, including transgene integration in particular. We compared the genomic integrity of mRNA-derived iPSCs with that of retrovirus-derived iPSCs generated in strictly comparable conditions, by single-nucleotide polymorphism (SNP) and copy number variation (CNV) analyses. We showed that mRNA-derived iPSCs do not differ significantly from the parental fibroblasts in SNP analysis, whereas retrovirus-derived iPSCs do. We found that the number of CNVs seemed independent of the reprogramming method, instead appearing to be clone-dependent. Furthermore, differentiation studies indicated that mRNA-derived iPSCs differentiated efficiently into hepatoblasts and that these cells did not load additional CNVs during differentiation. The integration-free hepatoblasts that were generated constitute a new tool for the study of diseased hepatocytes derived from patients' iPSCs and their use in the context of stem cell-derived hepatocyte transplantation. Our findings also highlight the need to conduct careful studies on genome integrity for the selection of iPSC lines before using them for further applications.

  12. Engineering Strategies to Decode and Enhance the Genomes of Coral Symbionts

    KAUST Repository

    Levin, Rachel A.

    2017-06-30

    Elevated sea surface temperatures from a severe and prolonged El Niño event (2014–2016) fueled by climate change have resulted in mass coral bleaching (loss of dinoflagellate photosymbionts, Symbiodinium spp., from coral tissues) and subsequent coral mortality, devastating reefs worldwide. Genetic variation within and between Symbiodinium species strongly influences the bleaching tolerance of corals, thus recent papers have called for genetic engineering of Symbiodinium to elucidate the genetic basis of bleaching-relevant Symbiodinium traits. However, while Symbiodinium has been intensively studied for over 50 years, genetic transformation of Symbiodinium has seen little success likely due to the large evolutionary divergence between Symbiodinium and other model eukaryotes rendering standard transformation systems incompatible. Here, we integrate the growing wealth of Symbiodinium next-generation sequencing data to design tailored genetic engineering strategies. Specifically, we develop a testable expression construct model that incorporates endogenous Symbiodinium promoters, terminators, and genes of interest, as well as an internal ribosomal entry site from a Symbiodinium virus. Furthermore, we assess the potential for CRISPR/Cas9 genome editing through new analyses of the three currently available Symbiodinium genomes. Finally, we discuss how genetic engineering could be applied to enhance the stress tolerance of Symbiodinium, and in turn, coral reefs.

  13. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends.

    Science.gov (United States)

    Schaefer, B C

    1995-05-20

    Rapid amplification of cDNA ends (RACE) is a polymerase chain reaction (PCR)-based technique which was developed to facilitate the cloning of full-length cDNA 5'- and 3'-ends after a partial cDNA sequence has been obtained by other methods. While RACE can yield complete sequences of cDNA ends in only a few days, the RACE procedure frequently results in the exclusive amplification of truncated cDNA ends, undermining efforts to generate full-length clones. Many investigators have suggested modifications to the RACE protocol to improve the effectiveness of the technique. Based on first-hand experience with RACE, a critical review of numerous published variations of the key steps in the RACE method is presented. Also included is a detailed, effective protocol based on RNA ligase-mediated RACE/reverse ligation-mediated PCR, as well as a demonstration of its utility.

  14. EVA: Exome Variation Analyzer, an efficient and versatile tool for filtering strategies in medical genomics

    Directory of Open Access Journals (Sweden)

    Coutant Sophie

    2012-09-01

    Full Text Available Abstract Background Whole exome sequencing (WES has become the strategy of choice to identify a coding allelic variant for a rare human monogenic disorder. This approach is a revolution in medical genetics history, impacting both fundamental research, and diagnostic methods leading to personalized medicine. A plethora of efficient algorithms has been developed to ensure the variant discovery. They generally lead to ~20,000 variations that have to be narrow down to find the potential pathogenic allelic variant(s and the affected gene(s. For this purpose, commonly adopted procedures which implicate various filtering strategies have emerged: exclusion of common variations, type of the allelics variants, pathogenicity effect prediction, modes of inheritance and multiple individuals for exome comparison. To deal with the expansion of WES in medical genomics individual laboratories, new convivial and versatile software tools have to implement these filtering steps. Non-programmer biologists have to be autonomous combining themselves different filtering criteria and conduct a personal strategy depending on their assumptions and study design. Results We describe EVA (Exome Variation Analyzer, a user-friendly web-interfaced software dedicated to the filtering strategies for medical WES. Thanks to different modules, EVA (i integrates and stores annotated exome variation data as strictly confidential to the project owner, (ii allows to combine the main filters dealing with common variations, molecular types, inheritance mode and multiple samples, (iii offers the browsing of annotated data and filtered results in various interactive tables, graphical visualizations and statistical charts, (iv and finally offers export files and cross-links to external useful databases and softwares for further prioritization of the small subset of sorted candidate variations and genes. We report a demonstrative case study that allowed to identify a new candidate gene

  15. Validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification: a revision based on the New Human Genome Reference Sequence (GRCh37).

    Science.gov (United States)

    Ramos, Amanda; Santos, Cristina; Barbena, Elena; Mateiu, Ligia; Alvarez, Luis; Nogués, Ramon; Aluja, Maria Pilar

    2011-03-01

    A new human genome reference sequence--GRCh37--was recently generated and made available by the Genome Reference Consortium. Since the prior disposable human reference sequence--hg18--was previously used for the mitochondrial DNA primer BLAST validation, a revision of those previously published primer pairs is required. Thus, the aim of this Short Communication is to perform an in silico BLAST test of the published disposable nine primer pairs using the new human reference sequence and to report the pertinent modifications. The new analysis showed that one of the tested primer pairs requires a revision. Therefore, a new validated primer pair, which specifically amplifies the mitochondrial region located between positions 6520 and 9184, is presented.

  16. Selective amplification of cDNA sequence from total RNA by cassette-ligation mediated polymerase chain reaction (PCR): application to sequencing 6.5 kb genome segment of hantavirus strain B-1.

    Science.gov (United States)

    Isegawa, Y; Sheng, J; Sokawa, Y; Yamanishi, K; Nakagomi, O; Ueda, S

    1992-12-01

    A method, referred to as cassette-ligation mediated polymerase chain reaction (PCR), has been developed to permit selective and specific amplification of cDNA sequence from total cellular RNA. This technique comprises (i) digestion of cDNA with multiple restriction enzymes, (ii) ligation of cleavage products to double-stranded DNA cassettes possessing a corresponding restriction site and (iii) amplification of cassette-ligated restriction fragments containing a short, known sequence (but not all the other ligation products) by PCR using the specific and cassette primers; the specific primer is designed to prime synthesis from the known sequence of the cDNA whereas the cassette primer anneals to one strand of the cassette. Sequencing from the cassette primer provides information to design a new primer for the next walking step. The amplified cDNA fragments are often larger than the maximum DNA fragments (500-600 bp) that can be sequenced without the need of synthesizing internal sequencing primer. Each of such large cDNA fragments is dissected into smaller DNA fragments by repeating cassette-ligation mediated PCR exploiting different restriction sites and different sets of cassette primers. This dissection process reduces the number of specific primers to a minimum, thereby increasing the speed of sequencing and minimizing the overall cost. We have successfully applied this cDNA walking and sequencing by the cassette-ligation mediated PCR to the sequencing of an entire 6.5 kb genome segment of hantavirus strain B-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Characterization of genomic instability in Saccharomyces cerevisiae and engaging teaching strategies described in two curricula

    Science.gov (United States)

    Keller, Alexandra P.

    Cancer arises through an accumulation of mutations in the genome. In cancer cells, mutations are frequently caused by DNA rearrangements, which include chromosomal breakages, deletions, insertions, and translocations. Such events contribute to genomic instability, a known hallmark of cancer. To study cycles of chromosomal instability, we are using baker's yeast as a model organism. In yeast, a ChrVII system was previously developed (Admire et al., 2006), in which a disomic yeast strain was used to identify regions of instability on ChrVII. Using this system, a fragile site on the left arm of ChrVII (Admire et al., 2006) was identified and characterized. This study led to insight into mechanisms involved in chromosomal rearrangements and mutations that arise from them as well as to an understanding of mechanisms involved in genomic instability. To further our understanding of genomic instability, I devised a strategy to study instability on a different chromosome (ChrV) (Figure 3), so that we could determine whether lessons learned from the ChrVII system are applicable to other chromosomes, and/or whether other mechanisms of instability could be identified. A suitable strain was generated and analyzed, and our findings suggest that frequencies of instability on the right arm of ChrV are similar to those found in ChrVII. The results from the work in ChrV described in this paper support the idea that the instability found on ChrVII is not an isolated occurrence. My research was supported by an NSF GK-12 grant. The aim of this grant is to improve science education in middle schools, and as part of my participation in this program, I studied and practiced effective science communication methodologies. In attempts to explain my research to middle school students, I collaborated with others to develop methods for explaining genetics and the most important techniques I used in my research. While developing these methods, I learned more about what motivates people to learn

  18. A novel strategy for clustering major depression individuals using whole-genome sequencing variant data

    Science.gov (United States)

    Yu, Chenglong; Baune, Bernhard T.; Licinio, Julio; Wong, Ma-Li

    2017-01-01

    Major depressive disorder (MDD) is highly prevalent, resulting in an exceedingly high disease burden. The identification of generic risk factors could lead to advance prevention and therapeutics. Current approaches examine genotyping data to identify specific variations between cases and controls. Compared to genotyping, whole-genome sequencing (WGS) allows for the detection of private mutations. In this proof-of-concept study, we establish a conceptually novel computational approach that clusters subjects based on the entirety of their WGS. Those clusters predicted MDD diagnosis. This strategy yielded encouraging results, showing that depressed Mexican-American participants were grouped closer; in contrast ethnically-matched controls grouped away from MDD patients. This implies that within the same ancestry, the WGS data of an individual can be used to check whether this individual is within or closer to MDD subjects or to controls. We propose a novel strategy to apply WGS data to clinical medicine by facilitating diagnosis through genetic clustering. Further studies utilising our method should examine larger WGS datasets on other ethnical groups. PMID:28287625

  19. [Technological advances in single-cell genomic analyses].

    Science.gov (United States)

    Pan, Xing-Hua; Zhu, Hai-Ying; Marjani, Sadie L

    2011-01-01

    The technological progress of the genomics has transformed life science research. The main objectives of genomics are sequencing of new genomes and genome-wide identification of the function and the interaction of genes and their products. The recently developed second generation or next generation sequencing platforms and DNA microarray technology are immensely important and powerful tools for functional genomic analyses. However, their application is limited by the requirement of sufficient amounts of high quality nucleic acid samples. Therefore, when only a single cell or a very small number of cells are available or are preferred, the whole genomic sequencing or functional genomic objectives cannot be achieved conventionally and require a robust amplification method. This review highlights DNA amplification technologies and summarizes the strategies currently utilized for whole genome sequencing of a single cell, with specific focus on studies investigating microorganisms; An outline for targeted re-sequencing enabling the analysis of larger genomes is also provided. Furthermore, the review presents the emerging functional genomic applications using next-generation sequencing or microarray analysis to examine genome-wide transcriptional profile, chromatin modification and other types of protein-DNA binding profile, and CpG methylation mapping in a single cell or a very low quantity of cells. The nature of these technologies and their prospects are also addressed.

  20. Can long-range PCR be used to amplify genetically divergent mitochondrial genomes for comparative phylogenetics? A case study within spiders (Arthropoda: Araneae).

    Science.gov (United States)

    Briscoe, Andrew G; Goodacre, Sara; Masta, Susan E; Taylor, Martin I; Arnedo, Miquel A; Penney, David; Kenny, John; Creer, Simon

    2013-01-01

    The development of second generation sequencing technology has resulted in the rapid production of large volumes of sequence data for relatively little cost, thereby substantially increasing the quantity of data available for phylogenetic studies. Despite these technological advances, assembling longer sequences, such as that of entire mitochondrial genomes, has not been straightforward. Existing studies have been limited to using only incomplete or nominally intra-specific datasets resulting in a bottleneck between mitogenome amplification and downstream high-throughput sequencing. Here we assess the effectiveness of a wide range of targeted long-range PCR strategies, encapsulating single and dual fragment primer design approaches to provide full mitogenomic coverage within the Araneae (Spiders). Despite extensive rounds of optimisation, full mitochondrial genome PCR amplifications were stochastic in most taxa, although 454 Roche sequencing confirmed the successful amplification of 10 mitochondrial genomes out of the 33 trialled species. The low success rates of amplification using long-Range PCR highlights the difficulties in consistently obtaining genomic amplifications using currently available DNA polymerases optimised for large genomic amplifications and suggests that there may be opportunities for the use of alternative amplification methods.

  1. Can long-range PCR be used to amplify genetically divergent mitochondrial genomes for comparative phylogenetics? A case study within spiders (Arthropoda: Araneae.

    Directory of Open Access Journals (Sweden)

    Andrew G Briscoe

    Full Text Available The development of second generation sequencing technology has resulted in the rapid production of large volumes of sequence data for relatively little cost, thereby substantially increasing the quantity of data available for phylogenetic studies. Despite these technological advances, assembling longer sequences, such as that of entire mitochondrial genomes, has not been straightforward. Existing studies have been limited to using only incomplete or nominally intra-specific datasets resulting in a bottleneck between mitogenome amplification and downstream high-throughput sequencing. Here we assess the effectiveness of a wide range of targeted long-range PCR strategies, encapsulating single and dual fragment primer design approaches to provide full mitogenomic coverage within the Araneae (Spiders. Despite extensive rounds of optimisation, full mitochondrial genome PCR amplifications were stochastic in most taxa, although 454 Roche sequencing confirmed the successful amplification of 10 mitochondrial genomes out of the 33 trialled species. The low success rates of amplification using long-Range PCR highlights the difficulties in consistently obtaining genomic amplifications using currently available DNA polymerases optimised for large genomic amplifications and suggests that there may be opportunities for the use of alternative amplification methods.

  2. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes.

    Directory of Open Access Journals (Sweden)

    Adam Alexander Thil Smith

    2012-05-01

    Full Text Available Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes, a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short. The first step locates "genomic metabolons", i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12.

  3. INNOVATIVE STRATEGIES TO IDENTIFY M. TUBERCULOSIS ANTIGENS AND EPITOPES USING GENOME-WIDE ANALYSES

    Directory of Open Access Journals (Sweden)

    Annemieke eGeluk

    2014-06-01

    Full Text Available In view of the fact that only a small part of the Mtb expressome has been explored for identification of antigens capable of activating human T-cell responses, which is critically required for the design of better TB vaccination strategies, more emphasis should be placed on innovative ways to discover new Mtb antigens and explore their function at the several stages of infection. Better protective antigens for TB vaccines are urgently needed, also in view of the disappointing results of the MVA85 vaccine which failed to induce additional protection in BCG vaccinated infants [54]. Moreover, immune responses to relevant antigens may be useful to identify TB-specific biomarker signatures. Here we describe the potency of novel tools and strategies to reveal such Mtb antigens. Using proteins specific for different Mtb infection phases, many new antigens of the latency-associated Mtb DosR regulon as well as Rpf proteins, associated with resuscitating TB, were discovered that were recognized by CD4+ and CD8+ T-cells. Furthermore, by employing MHC binding algorithms and bioinformatics combined with high throughput human T-cell screens and tetramers, HLA-class Ia restricted poly-functional CD8+ T-cells were identified in TB patients. Comparable methods, led to the identification of HLA-E-restricted Mtb epitopes recognized by CD8+ T-cells. A genome-wide unbiased antigen discovery approach was applied to analyse the in vivo Mtb gene expression profiles in the lungs of mice, resulting in the identification of IVE-TB antigens, which are expressed during infection in the lung, the main target organ of Mtb. IVE-TB antigens induce strong T cell responses in long-term latently Mtb infected individuals, and represent an interesting new group of TB antigens for vaccination. In summary, new tools have helped expand our view on the Mtb antigenome involved in human cellular immunity and provided new candidates for TB vaccination.

  4. A forward-backward fragment assembling algorithm for the identification of genomic amplification and deletion breakpoints using high-density single nucleotide polymorphism (SNP array

    Directory of Open Access Journals (Sweden)

    Bailey Dione K

    2007-05-01

    Full Text Available Abstract Background DNA copy number aberration (CNA is one of the key characteristics of cancer cells. Recent studies demonstrated the feasibility of utilizing high density single nucleotide polymorphism (SNP genotyping arrays to detect CNA. Compared with the two-color array-based comparative genomic hybridization (array-CGH, the SNP arrays offer much higher probe density and lower signal-to-noise ratio at the single SNP level. To accurately identify small segments of CNA from SNP array data, segmentation methods that are sensitive to CNA while resistant to noise are required. Results We have developed a highly sensitive algorithm for the edge detection of copy number data which is especially suitable for the SNP array-based copy number data. The method consists of an over-sensitive edge-detection step and a test-based forward-backward edge selection step. Conclusion Using simulations constructed from real experimental data, the method shows high sensitivity and specificity in detecting small copy number changes in focused regions. The method is implemented in an R package FASeg, which includes data processing and visualization utilities, as well as libraries for processing Affymetrix SNP array data.

  5. CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration.

    Science.gov (United States)

    Fei, Ji-Feng; Schuez, Maritta; Tazaki, Akira; Taniguchi, Yuka; Roensch, Kathleen; Tanaka, Elly M

    2014-09-09

    The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC) and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) in the knockout of three loci in the axolotl and find that CRISPRs show highly penetrant knockout with less toxic effects compared to TALENs. Deletion of Sox2 in up to 100% of cells yielded viable F0 larvae with normal SC organization and ependymoglial cell marker expression such as GFAP and ZO-1. However, upon tail amputation, neural stem cell proliferation was inhibited, resulting in spinal-cord-specific regeneration failure. In contrast, the mesodermal blastema formed normally. Sox3 expression during development, but not regeneration, most likely allowed embryonic survival and the regeneration-specific phenotype. This analysis represents the first tissue-specific regeneration phenotype from the genomic deletion of a gene in the axolotl.

  6. CRISPR-Mediated Genomic Deletion of Sox2 in the Axolotl Shows a Requirement in Spinal Cord Neural Stem Cell Amplification during Tail Regeneration

    Directory of Open Access Journals (Sweden)

    Ji-Feng Fei

    2014-09-01

    Full Text Available The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs and clustered regularly interspaced short palindromic repeats (CRISPRs in the knockout of three loci in the axolotl and find that CRISPRs show highly penetrant knockout with less toxic effects compared to TALENs. Deletion of Sox2 in up to 100% of cells yielded viable F0 larvae with normal SC organization and ependymoglial cell marker expression such as GFAP and ZO-1. However, upon tail amputation, neural stem cell proliferation was inhibited, resulting in spinal-cord-specific regeneration failure. In contrast, the mesodermal blastema formed normally. Sox3 expression during development, but not regeneration, most likely allowed embryonic survival and the regeneration-specific phenotype. This analysis represents the first tissue-specific regeneration phenotype from the genomic deletion of a gene in the axolotl.

  7. Reconstructing Genome-Wide Protein–Protein Interaction Networks Using Multiple Strategies with Homologous Mapping

    Science.gov (United States)

    Lo, Yu-Shu; Huang, Sing-Han; Luo, Yong-Chun; Lin, Chun-Yu; Yang, Jinn-Moon

    2015-01-01

    Background One of the crucial steps toward understanding the biological functions of a cellular system is to investigate protein–protein interaction (PPI) networks. As an increasing number of reliable PPIs become available, there is a growing need for discovering PPIs to reconstruct PPI networks of interesting organisms. Some interolog-based methods and homologous PPI families have been proposed for predicting PPIs from the known PPIs of source organisms. Results Here, we propose a multiple-strategy scoring method to identify reliable PPIs for reconstructing the mouse PPI network from two well-known organisms: human and fly. We firstly identified the PPI candidates of target organisms based on homologous PPIs, sharing significant sequence similarities (joint E-value ≤ 1 × 10−40), from source organisms using generalized interolog mapping. These PPI candidates were evaluated by our multiple-strategy scoring method, combining sequence similarities, normalized ranks, and conservation scores across multiple organisms. According to 106,825 PPI candidates in yeast derived from human and fly, our scoring method can achieve high prediction accuracy and outperform generalized interolog mapping. Experiment results show that our multiple-strategy score can avoid the influence of the protein family size and length to significantly improve PPI prediction accuracy and reflect the biological functions. In addition, the top-ranked and conserved PPIs are often orthologous/essential interactions and share the functional similarity. Based on these reliable predicted PPIs, we reconstructed a comprehensive mouse PPI network, which is a scale-free network and can reflect the biological functions and high connectivity of 292 KEGG modules, including 216 pathways and 76 structural complexes. Conclusions Experimental results show that our scoring method can improve the predicting accuracy based on the normalized rank and evolutionary conservation from multiple organisms. Our predicted

  8. GFinisher: a new strategy to refine and finish bacterial genome assemblies

    Science.gov (United States)

    Guizelini, Dieval; Raittz, Roberto T.; Cruz, Leonardo M.; Souza, Emanuel M.; Steffens, Maria B. R.; Pedrosa, Fabio O.

    2016-10-01

    Despite the development in DNA sequencing technology, improving the number and the length of reads, the process of reconstruction of complete genome sequences, the so called genome assembly, is still complex. Only 13% of the prokaryotic genome sequencing projects have been completed. Draft genome sequences deposited in public databases are fragmented in contigs and may lack the full gene complement. The aim of the present work is to identify assembly errors and improve the assembly process of bacterial genomes. The biological patterns observed in genomic sequences and the application of a priori information can allow the identification of misassembled regions, and the reorganization and improvement of the overall de novo genome assembly. GFinisher starts generating a Fuzzy GC skew graphs for each contig in an assembly and follows breaking down the contigs in critical points in order to reassemble and close them using jFGap. This has been successfully applied to dataset from 96 genome assemblies, decreasing the number of contigs by up to 86%. GFinisher can easily optimize assemblies of prokaryotic draft genomes and can be used to improve the assembly programs based on nucleotide sequence patterns in the genome. The software and source code are available at http://gfinisher.sourceforge.net/.

  9. Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics.

    Science.gov (United States)

    Kelly, Benjamin J; Fitch, James R; Hu, Yangqiu; Corsmeier, Donald J; Zhong, Huachun; Wetzel, Amy N; Nordquist, Russell D; Newsom, David L; White, Peter

    2015-01-20

    While advances in genome sequencing technology make population-scale genomics a possibility, current approaches for analysis of these data rely upon parallelization strategies that have limited scalability, complex implementation and lack reproducibility. Churchill, a balanced regional parallelization strategy, overcomes these challenges, fully automating the multiple steps required to go from raw sequencing reads to variant discovery. Through implementation of novel deterministic parallelization techniques, Churchill allows computationally efficient analysis of a high-depth whole genome sample in less than two hours. The method is highly scalable, enabling full analysis of the 1000 Genomes raw sequence dataset in a week using cloud resources. http://churchill.nchri.org/.

  10. A highly efficient strategy to determine genotypes of genetically-engineered mice using genomic DNA purified from hair roots.

    Science.gov (United States)

    Otaño-Rivera, Víctor; Boakye, Amma; Grobe, Nadja; Almutairi, Mohammed M; Kursan, Shams; Mattis, Lesan K; Castrop, Hayo; Gurley, Susan B; Elased, Khalid M; Boivin, Gregory P; Di Fulvio, Mauricio

    2017-04-01

    Genotyping of genetically-engineered mice is necessary for the effective design of breeding strategies and identification of mutant mice. This process relies on the identification of DNA markers introduced into genomic sequences of mice, a task usually performed using the polymerase chain reaction (PCR). Clearly, the limiting step in genotyping is isolating pure genomic DNA. Isolation of mouse DNA for genotyping typically involves painful procedures such as tail snip, digit removal, or ear punch. Although the harvesting of hair has previously been proposed as a source of genomic DNA, there has been a perceived complication and reluctance to use this non-painful technique because of low DNA yields and fear of contamination. In this study we developed a simple, economic, and efficient strategy using Chelex® resins to purify genomic DNA from hair roots of mice which are suitable for genotyping. Upon comparison with standard DNA purification methods using a commercially available kit, we demonstrate that Chelex® efficiently and consistently purifies high-quality DNA from hair roots, minimizing pain, shortening time and reducing costs associated with the determination of accurate genotypes. Therefore, the use of hair roots combined with Chelex® is a reliable and more humane alternative for DNA genotyping.

  11. Mitogenome assembly from genomic multiplex libraries: comparison of strategies and novel mitogenomes for five species of frogs.

    Science.gov (United States)

    Machado, D J; Lyra, M L; Grant, T

    2016-05-01

    Next-generation sequencing continues to revolutionize biodiversity studies by generating unprecedented amounts of DNA sequence data for comparative genomic analysis. However, these data are produced as millions or billions of short reads of variable quality that cannot be directly applied in comparative analyses, creating a demand for methods to facilitate assembly. We optimized an in silico strategy to efficiently reconstruct high-quality mitochondrial genomes directly from genomic reads. We tested this strategy using sequences from five species of frogs: Hylodes meridionalis (Hylodidae), Hyloxalus yasuni (Dendrobatidae), Pristimantis fenestratus (Craugastoridae), and Melanophryniscus simplex and Rhinella sp. (Bufonidae). These are the first mitogenomes published for these species, the genera Hylodes, Hyloxalus, Pristimantis, Melanophryniscus and Rhinella, and the families Craugastoridae and Hylodidae. Sequences were generated using only half of one lane of a standard Illumina HiqSeq 2000 flow cell, resulting in fewer than eight million reads. We analysed the reads of Hylodes meridionalis using three different assembly strategies: (1) reference-based (using bowtie2); (2) de novo (using abyss, soapdenovo2 and velvet); and (3) baiting and iterative mapping (using mira and mitobim). Mitogenomes were assembled exclusively with strategy 3, which we employed to assemble the remaining mitogenomes. Annotations were performed with mitos and confirmed by comparison with published amphibian mitochondria. In most cases, we recovered all 13 coding genes, 22 tRNAs, and two ribosomal subunit genes, with minor gene rearrangements. Our results show that few raw reads can be sufficient to generate high-quality scaffolds, making any Illumina machine run using genomic multiplex libraries a potential source of data for organelle assemblies as by-catch. © 2015 John Wiley & Sons Ltd.

  12. A Versatile Two-Step CRISPR- and RMCE-Based Strategy for Efficient Genome Engineering in Drosophila

    OpenAIRE

    Zhang, X.; Koolhaas, W.; Schnorrer, F.

    2014-01-01

    The development of clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) technologies promises a quantum leap in genome engineering of model organisms. However, CRISPR-mediated gene targeting reports in Drosophila melanogaster are still restricted to a few genes, use variable experimental conditions, and vary in efficiency, questioning the universal applicability of the method. Here, we developed an efficient two-step strategy to flexibly engineer the fl...

  13. A patent strategy for genomic and research tool patents: are there any differences between the USA, Europe and Japan?

    Science.gov (United States)

    L Ihnen J

    2000-12-01

    The patenting of genomics and research tools, and its effects on the development of therapeutics are attracting considerable attention. Regardless of whether one is in favor of patents for this technology, it is not specifically excluded from patenting in most countries. Accordingly, it is imperative that a suitable global patent strategy be developed and followed to maximize both intellectual property rights and returns on R&D investment.

  14. Flux variability scanning based on enforced objective flux for identifying gene amplification targets

    Directory of Open Access Journals (Sweden)

    Park Jong

    2012-08-01

    Full Text Available Abstract Background In order to reduce time and efforts to develop microbial strains with better capability of producing desired bioproducts, genome-scale metabolic simulations have proven useful in identifying gene knockout and amplification targets. Constraints-based flux analysis has successfully been employed for such simulation, but is limited in its ability to properly describe the complex nature of biological systems. Gene knockout simulations are relatively straightforward to implement, simply by constraining the flux values of the target reaction to zero, but the identification of reliable gene amplification targets is rather difficult. Here, we report a new algorithm which incorporates physiological data into a model to improve the model’s prediction capabilities and to capitalize on the relationships between genes and metabolic fluxes. Results We developed an algorithm, flux variability scanning based on enforced objective flux (FVSEOF with grouping reaction (GR constraints, in an effort to identify gene amplification targets by considering reactions that co-carry flux values based on physiological omics data via “GR constraints”. This method scans changes in the variabilities of metabolic fluxes in response to an artificially enforced objective flux of product formation. The gene amplification targets predicted using this method were validated by comparing the predicted effects with the previous experimental results obtained for the production of shikimic acid and putrescine in Escherichia coli. Moreover, new gene amplification targets for further enhancing putrescine production were validated through experiments involving the overexpression of each identified targeted gene under condition-controlled batch cultivation. Conclusions FVSEOF with GR constraints allows identification of gene amplification targets for metabolic engineering of microbial strains in order to enhance the production of desired bioproducts. The algorithm

  15. The Seneca Amplification Construction

    Directory of Open Access Journals (Sweden)

    Wallace Chafe

    2012-01-01

    Full Text Available The polysynthetic morphology of the Northern Iroquoian languages presents a challenge to studies of clause combining. The discussion here focuses on a Seneca construction that may appear within a single clause but may also straddle clause boundaries. It amplifies the information provided by a referent, here called the trigger, that is introduced by the pronominal prefix within a verb or occasionally in some other way. The particle neh signals that further information about that referent will follow. This construction is found at four levels of syntactic complexity. At the first level the trigger and its amplification occur within the same prosodic phrase and the amplification is a noun. At the second level the amplification occurs in a separate prosodic phrase but remains a noun. At the third level the amplification exhibits verb morphology but has been lexicalized with a nominal function. At the fourth level the amplification functions as a full clause and neh serves as a marker of clause combining. Several varieties of amplification are discussed, as are cases in which the speaker judges that no amplification is needed. It is suggested that the typologically similar Caddo language illustrates a situation in which this construction could never arise, simply because Caddo verbs lack the pronominal element that triggers the construction in Seneca.

  16. Microsatellite loci for tucumã of Amazonas (Astrocaryum aculeatum) and amplification in other Arecaceae.

    Science.gov (United States)

    Ramos, Santiago L Ferreyra; de Macêdo, Jeferson L Vasconcelos; Lopes, Maria T Gomes; Batista, Jacqueline S; Formiga, Kyara M; da Silva, Perla Pimentel; Saulo-Machado, Antonio C; Veasey, Elizabeth Ann

    2012-12-01

    Microsatellite loci were developed for tucumã of Amazonas (Astrocaryum aculeatum), and cross-species amplification was performed in six other Arecaceae, to investigate genetic diversity and population structure and to provide support for natural populations management. • Fourteen microsatellite loci were isolated from a microsatellite-enriched genomic library and used to characterize two wild populations of tucumã of Amazonas (Manaus and Manicoré cities). The investigated loci displayed high polymorphism for both A. aculeatum populations, with a mean observed heterozygosity of 0.498. Amplification rates ranging from 50% to 93% were found for four Astrocaryum species and two additional species of Arecaceae. • The information derived from the microsatellite markers developed here provides significant gains in conserved allelic richness and supports the implementation of several molecular breeding strategies for the Amazonian tucumã.

  17. Towards a typing strategy for Arcobacter species isolated from humans and animals and assessment of the in vitro genomic stability.

    Science.gov (United States)

    Douidah, Laid; De Zutter, Lieven; Baré, Julie; Houf, Kurt

    2014-04-01

    Arcobacter species have a widespread distribution with a broad range of animal hosts and environmental reservoirs, and are increasingly associated with human illness. To elucidate the routes of infection, several characterization methods such as pulsed-field gel electrophoresis (PFGE), amplified fragment-length polymorphism, and enterobacterial repetitive intergenic consensus (ERIC)-PCR have already been applied, but without proper validation or comparison. At present, no criterion standard typing method or strategy has been proposed. Therefore, after the validation of PFGE, those commonly applied typing methods were compared for the characterization of six human- and animal-associated Arcobacter species. With a limited number of isolates to be characterized, PFGE with restriction by KpnI is proposed as the first method of choice. However, ERIC-PCR represents a more convenient genomic fingerprinting technique when a large number of isolates is involved. Therefore, a first clustering of similar patterns obtained after ERIC-PCR, with a subsequent typing of some representatives per ERIC cluster by PFGE, is recommended. As multiple genotypes are commonly isolated from the same host and food, genomic plasticity has been suggested. The in vitro genomic stability of Arcobacter butzleri and A. cryaerophilus was assessed under two temperatures and two oxygen concentrations. Variability in the genomic profile of A. cryaerophilus was observed after different passages for different strains at 37°C under microaerobic conditions. The bias due to these genomic changes must be taken into account in the evaluation of the relationship of strains.

  18. Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes

    OpenAIRE

    WU, F.-H.; KAN, D.-P.; LEE, S.-B.; Daniell, H.; Lee, Y. -W.; Lin, C.-C.; LIN, N.-S.; Lin, C.-S.

    2009-01-01

    Although bamboo is one of the most important woody crops in Asia, information on its genome is still very limited. To investigate the relationship among Poaceae members and to understand the mechanism of albino mutant generation in vitro, the complete chloroplast genome of two economically important bamboo species, Dendrocalamus latiflorus Munro and Bambusa oldhamii Munro, was determined employing a strategy that involved polymerase chain reaction (PCR) amplification using 443 novel primers d...

  19. Genome-wide protein localization prediction strategies for gram negative bacteria

    Directory of Open Access Journals (Sweden)

    Romine Margaret F

    2011-06-01

    Full Text Available Abstract Background Genome-wide prediction of protein subcellular localization is an important type of evidence used for inferring protein function. While a variety of computational tools have been developed for this purpose, errors in the gene models and use of protein sorting signals that are not recognized by the more commonly accepted tools can diminish the accuracy of their output. Results As part of an effort to manually curate the annotations of 19 strains of Shewanella, numerous insights were gained regarding the use of computational tools and proteomics data to predict protein localization. Identification of the suite of secretion systems present in each strain at the start of the process made it possible to tailor-fit the subsequent localization prediction strategies to each strain for improved accuracy. Comparisons of the computational predictions among orthologous proteins revealed inconsistencies in the computational outputs, which could often be resolved by adjusting the gene models or ortholog group memberships. While proteomic data was useful for verifying start site predictions and post-translational proteolytic cleavage, care was needed to distinguish cellular versus sample processing-mediated cleavage events. Searches for lipoprotein signal peptides revealed that neither TatP nor LipoP are designed for identification of lipoprotein substrates of the twin arginine translocation system and that the +2 rule for lipoprotein sorting does not apply to this Genus. Analysis of the relationships between domain occurrence and protein localization prediction enabled identification of numerous location-informative domains which could then be used to refine or increase confidence in location predictions. This collective knowledge was used to develop a general strategy for predicting protein localization that could be adapted to other organisms. Conclusion Improved localization prediction accuracy is not simply a matter of developing better

  20. Ultrasensitive amperometric immunosensor for PSA detection based on Cu2O@CeO2-Au nanocomposites as integrated triple signal amplification strategy.

    Science.gov (United States)

    Li, Faying; Li, Yueyun; Feng, Jinhui; Dong, Yunhui; Wang, Ping; Chen, Lei; Chen, Zhiwei; Liu, Hui; Wei, Qin

    2017-01-15

    In this work, a novel label-free electrochemical immunosensor was developed for the quantitative detection of prostate specific antigen (PSA). To this end, the amino functionalized cuprous oxide @ ceric dioxide (Cu2O@CeO2-NH2) core-shell nanocomposites were prepared to bond gold nanoparticles (Au NPs) by constructing stable Au-N bond between Au NPs and -NH2. Because the synergetic effect presents in Cu2O@CeO2 core-shell loaded with Au NPs (Cu2O@CeO2-Au), it shows better electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) than single Cu2O, Au NPs and Cu2O@CeO2. Featured by large specific surface area, good biocompatibility and good electrochemical properties which can greatly improve the electronic transmission rate, Cu2O@CeO2-Au was used as transducing materials to achieve efficiently capture antibodies and triple signal amplification of the proposed immunosensor. Under the optimal conditions, the proposed immunosensor exhibited a wide linear range from 0.1pg/mL to 100ng/mL with a low detection limit of 0.03pg/mL (S/N=3). Furthermore, the proposed label-free immunosensor has been used to determine PSA in human serum with satisfactory results. Meanwhile, it displayed good reproducibility, acceptable selectivity, and long-term stability, which had promising application in bioassay analysis.

  1. Amplification of NOON States

    CERN Document Server

    Agarwal, G S; Rai, Amit

    2009-01-01

    We examine the behavior of a Non Gaussian state like NOON state under phase insensitive amplification. We derive analytical result for the density matrix of the NOON state for arbitrary gain of the amplifier. We consider cases of both symmetric and antisymmetric amplification of the two modes of the NOON state. We quantitatively evaluate the loss of entanglement by the amplifier in terms of the logarithmic negativity parameter. We find that NOON states are more robust than their Gaussian counterparts.

  2. Amplification of NOON States

    OpenAIRE

    2009-01-01

    We examine the behavior of a Non Gaussian state like NOON state under phase insensitive amplification. We derive analytical result for the density matrix of the NOON state for arbitrary gain of the amplifier. We consider cases of both symmetric and antisymmetric amplification of the two modes of the NOON state. We quantitatively evaluate the loss of entanglement by the amplifier in terms of the logarithmic negativity parameter. We find that NOON states are more robust than their Gaussian coun...

  3. Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide.

    Science.gov (United States)

    Wang, Xiuzhong; Hou, Ting; Dong, Shanshan; Liu, Xiaojuan; Li, Feng

    2016-03-15

    Pesticides are of great importance in agricultural and biological fields, but pesticide residues may harm the environment and human health. A highly sensitive fluorescent biosensor for the detection of carbamate pesticide has been developed based on acetylcholinesterase (AChE)-catalyzed hydrolysis product triggered Hg(2+) release coupled with subsequent nicking enzyme-induced cleavage of a duplex DNA for cycling amplification. In this protocol, two DNA probes, an unmodified single-stranded helper DNA probe 1 (HP1) and a quencher-fluorophore probe (QFP) are ingeniously designed. HP1 can be folded into hairpin configuration through T-Hg(2+)-T base pair formation. QFP, labeled with FAM and BHQ1 at its two terminals, contains the recognition sequence and the cleavage site of the nicking enzyme. In the presence of carbamate pesticide, the activity of AChE is inhibited, and the amount of the product containing the thiol group generated by the hydrolysis reaction of acetylthiocholine chloride (ACh) decreases, resulting in the release of a low concentration of Hg(2+). The number of HP1 that can be selectively unfolded would be reduced and the subsequent nicking enzyme-assisted cleavage processes would be affected, resulting in decreased fluorescence signals. The fluorescence intensity further decreases with the increase of the pesticide concentration. Therefore, the pesticide content can be easily obtained by monitoring the fluorescence signal change, which is inversely proportional to the logarithm of the pesticide concentration. The detection limit of aldicarb, the model analyte, is 3.3 μgL(-1), which is much lower than the Chinese National Standards or those previously reported. The as-proposed method has also been applied to detect carbamate pesticide residues in fresh ginger and artificial lake water samples with satisfactory results, which demonstrates that the method has great potential for practical application in biological or food safety field.

  4. Antarctic notothenioid fishes: genomic resources and strategies for analyzing an adaptive radiation.

    Science.gov (United States)

    Detrich, H W; Amemiya, Chris T

    2010-12-01

    The perciform suborder Notothenoidei provides a compelling opportunity to study the adaptive radiation of a marine species-flock in the cold Southern Ocean that surrounds Antarctica. To facilitate genome-level studies of the diversification of these fishes, we present estimates of the genome sizes of 11 Antarctic species and describe the production of high-quality bacterial artificial chromosome (BAC) libraries for two, the red-blooded notothen Notothenia coriiceps and the white-blooded icefish Chaenocephalus aceratus. Our results indicate that evolution of phylogenetically derived notothenioid families (e.g., the crown group Channichthyidae [icefishes]), was accompanied by genome expansion. Six species from the basal family Nototheniidae had C-values between 0.98 and 1.20 pg, a range that is consistent with the genome sizes of proposed outgroups (e.g., percids) of the notothenioid suborder. In contrast, four icefishes had C-values in the range 1.66-1.83 pg. The BAC libraries VMRC-19 (N. coriiceps) and VMRC-21 (C. aceratus) comprise 12× and 10× coverage of the respective genomes and have average insert sizes of 138 and 168 kb. Paired BAC-end reads representing ∼0.1% of each genome showed that the repetitive element landscapes of the two genomes (13.4% of the N. coriiceps genome and 14.5% for C. aceratus) were similar. The availability of these high-quality and well-characterized BAC libraries sets the stage for targeted genomic analyses of the unusual anatomical and physiological adaptations of the notothenioids, some of which mimic human diseases. Here we consider the evolution of secondary pelagicism by various taxa of the group and illustrate the utility of Antarctic icefishes as an evolutionary-mutant model of human osteopenia (low-mineral density of bones).

  5. 信号放大策略在电化学生物传感器中的应用%The application of signal amplification strategies in electrochemical biosensors

    Institute of Scientific and Technical Information of China (English)

    陈颖

    2015-01-01

    Rapid, simple and sensitive determination of biomolecules has become increasingly important in clinical diagnosis, food analysis and bioterrorism/environmental monitoring over the past few years. Electrochemical biosensor has gained increasing interest due to its inherent advantages such as simplicity, sensitivity and low cost in cooperation with the comprehensive applications in different fields. Various signal amplification methods have been reported to achieve high sensitivity for biomolecules determination. In this article, we briefly introduce the fundamentals of the electrochemical biosensor, and emphatically summarize the popular signal amplification strategies applied in electrochemical biosensors.%近年来,快速、简单、灵敏的生物分子检测在临床诊断、食品分析、生物恐怖主义的防御和环境监测等方面变得日益重要。电化学生物传感器由于具有简单、灵敏、成本低并可广泛运用于不同领域的固有优势而受到越来越多的关注。为了实现高灵敏的生物检测,不同信号放大方法被用于传感器的构建中。该文简单介绍了电化学生物传感器的基本原理,并重点概括了广泛运用于电化学生物传感器中的信号放大策略。

  6. Finding people who will tell you their thoughts on genomics-recruitment strategies for social sciences research.

    Science.gov (United States)

    Middleton, A; Bragin, E; Parker, M

    2014-10-01

    This paper offers a description of how social media, traditional media and direct invitation were used as tools for the recruitment of 6,944 research participants for a social sciences study on genomics. The remit was to gather the views of various stakeholders towards sharing incidental findings from whole genome studies. This involved recruiting members of the public, genetic health professionals, genomic researchers and non-genetic health professionals. A novel survey was designed that contained ten integrated films; this was made available online and open for completion by anyone worldwide. The recruitment methods are described together with the convenience and snowballing sampling framework. The most successful strategy involved the utilisation of social media; Facebook, Blogging, Twitter, LinkedIn and Google Ads led to the ascertainment of over 75 % of the final sample. We conclude that the strategies used were successful in recruiting in eclectic mix of appropriate participants. Design of the survey and results from the study are presented separately.

  7. A versatile two-step CRISPR- and RMCE-based strategy for efficient genome engineering in Drosophila.

    Science.gov (United States)

    Zhang, Xu; Koolhaas, Wouter H; Schnorrer, Frank

    2014-10-15

    The development of clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) technologies promises a quantum leap in genome engineering of model organisms. However, CRISPR-mediated gene targeting reports in Drosophila melanogaster are still restricted to a few genes, use variable experimental conditions, and vary in efficiency, questioning the universal applicability of the method. Here, we developed an efficient two-step strategy to flexibly engineer the fly genome by combining CRISPR with recombinase-mediated cassette exchange (RMCE). In the first step, two sgRNAs, whose activity had been tested in cell culture, were co-injected together with a donor plasmid into transgenic Act5C-Cas9, Ligase4 mutant embryos and the homologous integration events were identified by eye fluorescence. In the second step, the eye marker was replaced with DNA sequences of choice using RMCE enabling flexible gene modification. We applied this strategy to engineer four different locations in the genome, including a gene on the fourth chromosome, at comparably high efficiencies. Our data suggest that any fly laboratory can engineer their favorite gene for a broad range of applications within approximately 3 months.

  8. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Doethideomycetes Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabien; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2012-03-13

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related species can have very diverse host plants. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  9. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabian; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2013-03-05

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops that are grown for biofuel, food or feed. Most Dothideomycetes have only a single host plant, and related species can have very diverse hosts. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  10. Complete Taiwanese Macaque (Macaca cyclopis) Mitochondrial Genome: Reference-Assisted de novo Assembly with Multiple k-mer Strategy.

    Science.gov (United States)

    Huang, Yu-Feng; Midha, Mohit; Chen, Tzu-Han; Wang, Yu-Tai; Smith, David Glenn; Pei, Kurtis Jai-Chyi; Chiu, Kuo Ping

    2015-01-01

    The Taiwanese (Formosan) macaque (Macaca cyclopis) is the only nonhuman primate endemic to Taiwan. This primate species is valuable for evolutionary studies and as subjects in medical research. However, only partial fragments of the mitochondrial genome (mitogenome) of this primate species have been sequenced, not mentioning its nuclear genome. We employed next-generation sequencing to generate 2 x 90 bp paired-end reads, followed by reference-assisted de novo assembly with multiple k-mer strategy to characterize the M. cyclopis mitogenome. We compared the assembled mitogenome with that of other macaque species for phylogenetic analysis. Our results show that, the M. cyclopis mitogenome consists of 16,563 nucleotides encoding for 13 protein-coding genes, 2 ribosomal RNAs and 22 transfer RNAs. Phylogenetic analysis indicates that M. cyclopis is most closely related to M. mulatta lasiota (Chinese rhesus macaque), supporting the notion of Asia-continental origin of M. cyclopis proposed in previous studies based on partial mitochondrial sequences. Our work presents a novel approach for assembling a mitogenome that utilizes the capabilities of de novo genome assembly with assistance of a reference genome. The availability of the complete Taiwanese macaque mitogenome will facilitate the study of primate evolution and the characterization of genetic variations for the potential usage of this species as a non-human primate model for medical research.

  11. Strategies for the inclusion of an internal amplification control in conventional and real time PCR detection of Campylobacter spp. in chicken fecal samples

    DEFF Research Database (Denmark)

    Lund, Marianne; Madsen, Mogens

    2006-01-01

    To illustrate important issues in optimization of a PCR assay with an internal control four different primer combinations for conventional PCR, two non-competitive and two competitive set-ups for real time PCR were used for detection of Campylobacter spp. in chicken faecal samples....... In the conventional PCR assays the internal control was genomic DNA from Yersinia ruckeri, which is not found in chicken faeces. This internal control was also used in one of the set LIPS in real time PCR. In the three other set-ups different DNA fragments of 109 bp length prepared from two oligos of each 66 bp...... by a simple extension reaction was used. All assays were optimized to avoid loss of target sensitivity due to the presence of the internal control by adjusting the amount of internal control primers in the duplex assays and the amount of internal control in all assays. Furthermore. the assays were tested...

  12. RNA amplification for successful gene profiling analysis

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2005-07-01

    Full Text Available Abstract The study of clinical samples is often limited by the amount of material available to study. While proteins cannot be multiplied in their natural form, DNA and RNA can be amplified from small specimens and used for high-throughput analyses. Therefore, genetic studies offer the best opportunity to screen for novel insights of human pathology when little material is available. Precise estimates of DNA copy numbers in a given specimen are necessary. However, most studies investigate static variables such as the genetic background of patients or mutations within pathological specimens without a need to assess proportionality of expression among different genes throughout the genome. Comparative genomic hybridization of DNA samples represents a crude exception to this rule since genomic amplification or deletion is compared among different specimens directly. For gene expression analysis, however, it is critical to accurately estimate the proportional expression of distinct RNA transcripts since such proportions directly govern cell function by modulating protein expression. Furthermore, comparative estimates of relative RNA expression at different time points portray the response of cells to environmental stimuli, indirectly informing about broader biological events affecting a particular tissue in physiological or pathological conditions. This cognitive reaction of cells is similar to the detection of electroencephalographic patterns which inform about the status of the brain in response to external stimuli. As our need to understand human pathophysiology at the global level increases, the development and refinement of technologies for high fidelity messenger RNA amplification have become the focus of increasing interest during the past decade. The need to increase the abundance of RNA has been met not only for gene specific amplification, but, most importantly for global transcriptome wide, unbiased amplification. Now gene

  13. A Guide to Computational Tools and Design Strategies for Genome Editing Experiments in Zebrafish Using CRISPR/Cas9.

    Science.gov (United States)

    Prykhozhij, Sergey V; Rajan, Vinothkumar; Berman, Jason N

    2016-02-01

    The development of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology for mainstream biotechnological use based on its discovery as an adaptive immune mechanism in bacteria has dramatically improved the ability of molecular biologists to modify genomes of model organisms. The zebrafish is highly amenable to applications of CRISPR/Cas9 for mutation generation and a variety of DNA insertions. Cas9 protein in complex with a guide RNA molecule recognizes where to cut the homologous DNA based on a short stretch of DNA termed the protospacer-adjacent motif (PAM). Rapid and efficient identification of target sites immediately preceding PAM sites, quantification of genomic occurrences of similar (off target) sites and predictions of cutting efficiency are some of the features where computational tools play critical roles in CRISPR/Cas9 applications. Given the rapid advent and development of this technology, it can be a challenge for researchers to remain up to date with all of the important technological developments in this field. We have contributed to the armamentarium of CRISPR/Cas9 bioinformatics tools and trained other researchers in the use of appropriate computational programs to develop suitable experimental strategies. Here we provide an in-depth guide on how to use CRISPR/Cas9 and other relevant computational tools at each step of a host of genome editing experimental strategies. We also provide detailed conceptual outlines of the steps involved in the design and execution of CRISPR/Cas9-based experimental strategies, such as generation of frameshift mutations, larger chromosomal deletions and inversions, homology-independent insertion of gene cassettes and homology-based knock-in of defined point mutations and larger gene constructs.

  14. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease.

    Directory of Open Access Journals (Sweden)

    Christel Cazalet

    2010-02-01

    Full Text Available Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these

  15. Ultrasensitive electrochemical aptasensor for the detection of thrombin based on dual signal amplification strategy of Au@GS and DNA-CoPd NPs conjugates.

    Science.gov (United States)

    Wang, Yaoguang; Zhang, Yong; Yan, Tao; Fan, Dawei; Du, Bin; Ma, Hongmin; Wei, Qin

    2016-06-15

    In this work, an ultrasensitive electrochemical aptasensor for the detection of thrombin was developed based on Au nanoparticles decorated graphene sheet (Au@GS) and CoPd binary nanoparticles (CoPd NPs). A sulfydryl-labeled thrombin capture probe (Apt1) and a biotin-labeled thrombin reporter probe (Apt2) were designed to achieve a sandwich-type strategy. Au@GS was used as a sensing platform for the facile immobilization of Apt1 through Au-S bond, forming a sensing interface for thrombin. The specific recognition of thrombin induced the attachment of Apt2-CoPd NPs to the electrode. The labeled CoPd NPs showed good catalytic properties toward the reduction of H2O2, resulting in an amperometric signal. The amperometric response was correlated to the thrombin concentration in sample solutions. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) confirmed the successful fabrication of the aptasensor. A linear response to thrombin in the range of 0.01-2.00 ng mL(-1) with a low detection limit (5 pg mL(-1)) was achieved. The proposed aptasensor showed good selectivity, good reproducibility and acceptable stability. This proposed strategy may find many potential applications in the detection of other biomolecules.

  16. Genomic selection strategies in a small dairy cattle population evaluated for genetic gain and profit

    DEFF Research Database (Denmark)

    Thomasen, Jørn Rind; Egger-Danner, C; Willam, A

    2014-01-01

    progeny testing. Strong positive interaction effects between increased reliability of genomic predictions and more intensive use of young bulls exist. From an economic perspective a juvenile scheme is always advantageous. The main future focus area for the smaller dairy cattle breeds is to join forces...

  17. Evaluation of genomic selection for replacement strategies using selection index theory

    NARCIS (Netherlands)

    Calus, M.P.L.; Bijma, P.; Veerkamp, R.F.

    2015-01-01

    Our objective was to investigate the economic effect of prioritizing heifers for replacement at the herd level based on genomic estimated breeding values, and to compute break-even genotyping costs across a wide range of scenarios. Specifically, we aimed to determine the optimal proportion of presel

  18. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi

    NARCIS (Netherlands)

    Ohm, R.A.; Feau, N.; Henrissat, B.; Schoch, C.L.; Horwitz, B.A.; Barry, K.W.; Condon, B.J.; Copeland, A.C.; Dhillon, B.; Glaser, F.; Hesse, C.N.; Kosti, I.; LaButti, K.; Lindquist, E.A.; Lucas, S.; Salamov, A.A.; Bradshaw, R.E.; Ciuffetti, L.; Hamelin, R.C.; Kema, G.H.J.; Lawrence, C.; Scott, J.A.; Spatafora, J.W.; Turgeon, B.G.; Wit, de P.J.G.M.; Zhong, S.; Goodwin, S.B.; Grigoriev, I.V.

    2012-01-01

    The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to

  19. FISH applications for genomics and plant breeding strategies in tomato and other Solanaceous crops

    NARCIS (Netherlands)

    Szinay, D.; Bai, Y.; Visser, R.G.F.; Jong, de J.H.

    2010-01-01

    This paper describes the use of advanced fluorescence in situ hybridization (FISH) technologies for genomics and breeding of tomato and related Solanum species. The first part deals with the major determinants of FISH technology: (1) spatial resolution, which depends on the diffraction limit of the

  20. Genomic analysis of six new Geobacillus strains reveals highly conserved carbohydrate degradation architectures and strategies

    Directory of Open Access Journals (Sweden)

    Phillip eBrumm

    2015-05-01

    Full Text Available In this work we report the whole genome sequences of six new Geobacillus xylanolytic strains along with the genomic analysis of their capability to degrade carbohydrates.. The six sequenced Geobacillus strains described here have a range of GC contents from 43.9% to 52.5% and clade with named Geobacillus species throughout the entire genus. We have identified a ~200 kb unique super-cluster in all six strains, containing five to eight distinct carbohydrate degradation clusters in a single genomic region, a feature not seen in other genera. The Geobacillus strains rely on a small number of secreted enzymes located within distinct clusters for carbohydrate utilization, in contrast to most biomass-degrading organisms which contain numerous secreted enzymes located randomly throughout the genomes. All six strains are able to utilize fructose, arabinose, xylose, mannitol, gluconate, xylan, and α-1,6-glucosides. The gene clusters for utilization of these seven substrates have identical organization and the individual proteins have a high percent identity to their homologs. The strains show significant differences in their ability to utilize inositol, sucrose, lactose, α-mannosides, α-1,4-glucosides and arabinan.

  1. Test Pricing and Reimbursement in Genomic Medicine: Towards a General Strategy.

    Science.gov (United States)

    Vozikis, Athanassios; Cooper, David N; Mitropoulou, Christina; Kambouris, Manousos E; Brand, Angela; Dolzan, Vita; Fortina, Paolo; Innocenti, Federico; Lee, Ming Ta Michael; Leyens, Lada; Macek, Milan; Al-Mulla, Fahd; Prainsack, Barbara; Squassina, Alessio; Taruscio, Domenica; van Schaik, Ron H; Vayena, Effy; Williams, Marc S; Patrinos, George P

    2016-01-01

    This paper aims to provide an overview of the rationale and basic principles guiding the governance of genomic testing services, to clarify their objectives, and allocate and define responsibilities among stakeholders in a health-care system, with a special focus on the EU countries. Particular attention is paid to issues pertaining to pricing and reimbursement policies, the availability of essential genomic tests which differs between various countries owing to differences in disease prevalence and public health relevance, the prescribing and use of genomic testing services according to existing or new guidelines, budgetary and fiscal control, the balance between price and access to innovative testing, monitoring and evaluation for cost-effectiveness and safety, and the development of research capacity. We conclude that addressing the specific items put forward in this article will help to create a robust policy in relation to pricing and reimbursement in genomic medicine. This will contribute to an effective and sustainable health-care system and will prove beneficial to the economy at large. © 2016 S. Karger AG, Basel.

  2. Strategy for incorporating newly discovered causative genetic variants into genomic evaluations

    Science.gov (United States)

    With sequence data available for an increasing number of dairy cattle, discovery of causative genetic variants is expected to be frequent. Current genomic evaluation systems require genotypes for all markers that contribute to an evaluation. A minimum number of animals with an observation for a new ...

  3. The analyses of HIV-1 quasispecies in HIV-infected subjects by the application of single genome amplification assay%应用单基因组扩增法分析HIV-1准种基因变异

    Institute of Scientific and Technical Information of China (English)

    秦彦珉; 王晓辉; 孔东锋; 张顺祥

    2014-01-01

    目的:探索应用单基因组扩增分析HIV-1准种基因变异。方法将深圳2010年6个基因测序出现重叠峰的样本RNA稀释至单拷贝,采用一步法RT-PCR套式扩增,扩增产物纯化后进行基因测序,应用Mega 4.02多功能基因分析软件分析不同准种序列的基因距离,构建进化树模型。同时,测定样本的CD4+T淋巴细胞浓度和病毒载量。结果同一感染者体内HIV-1准种在进化树上形成了各自独立的簇,有些簇存在明显的亚簇,表明某些病毒株在复制中具有竞争优势。6个样本HIV准种的基因距离介于0.008与0.06之间,与感染持续时间和病毒载量有关。结论单基因组扩增法可以很好地分辨出HIV-1准种的基因变异,对于HIV-1准种基因距离的分析可以判断感染时间和分析免疫逃逸机制,其相关影响因素尚需更大样本的分析。%Objective To establish the single genome amplification ( SGA) method and analyze the quasispecies in HIV-infected patients.Methods All 6 sample RNA acquired in 2010 in Shenzhen and genetic sequenced as overlap peaks were extracted and diluted to a single copy , nest-PCR after one step RT-PCR was employed to amplify HIV-1 genome , and then PCR products was purified and sequenced.Mega 4.02 software was used to analyze the genetic distance among HIV-1 quasispecies , and phylogenetic tree was constructed.Results Our data showed that viral sequences derived from different patients were grouped into different clusters.Subcluster was also observed in several clusters , indicating these existed competition and preferential replication of certain viral strains.The genetic distance within one cluster of 6 samples were between 0.008 and 0.06, it was likely to associate with the duration since infection and viral load.Conclusion SGA is a useful approach to gain information on quasispecies , the genetic distance within one cluster may help to determine the infection time and immune

  4. Comparison of different sequencing and assembly strategies for a repeat-rich fungal genome, Ophiocordyceps sinensis.

    Science.gov (United States)

    Li, Yi; Hsiang, Tom; Yang, Rui-Heng; Hu, Xiao-Di; Wang, Ke; Wang, Wen-Jing; Wang, Xiao-Liang; Jiao, Lei; Yao, Yi-Jian

    2016-09-01

    Ophiocordyceps sinensis is one of the most expensive medicinal fungi world-wide, and has been used as a traditional Chinese medicine for centuries. In a recent report, the genome of this fungus was found to be expanded by extensive repetitive elements after assembly of Roche 454 (223Mb) and Illumina HiSeq (10.6Gb) sequencing data, producing a genome of 87.7Mb with an N50 scaffold length of 12kb and 6972 predicted genes. To test whether the assembly could be improved by deeper sequencing and to assess the amount of data needed for optimal assembly, genomic sequencing was run several times on genomic DNA extractions of a single ascospore isolate (strain 1229) on an Illumina HiSeq platform (25Gb total data). Assemblies were produced using different data types (raw vs. trimmed) and data amounts, and using three freely available assembly programs (ABySS, SOAP and Velvet). In nearly all cases, trimming the data for low quality base calls did not provide assemblies with higher N50 values compared to the non-trimmed data, and increasing the amount of input data (i.e. sequence reads) did not always lead to higher N50 values. Depending on the assembly program and data type, the maximal N50 was reached with between 50% to 90% of the total read data, equivalent to 100× to 200× coverage. The draft genome assembly was improved over the previously published version resulting in a 114Mb assembly, scaffold N50 of 70kb and 9610 predicted genes. Among the predicted genes, 9213 were validated by RNA-Seq analysis in this study, of which 8896 were found to be singletons. Evidence from genome and transcriptome analyses indicated that species assemblies could be improved with defined input material (e.g. haploid mono-ascospore isolate) without the requirement of multiple sequencing technologies, multiple library sizes or data trimming for low quality base calls, and with genome coverages between 100× and 200×.

  5. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    Science.gov (United States)

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  6. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases.

    Science.gov (United States)

    Chen, Jieliang; Zhang, Wen; Lin, Junyu; Wang, Fan; Wu, Min; Chen, Cuncun; Zheng, Ye; Peng, Xiuhua; Li, Jianhua; Yuan, Zhenghong

    2014-02-01

    The hepatitis B virus (HBV) is a DNA virus that can cause chronic hepatitis B (CHB) in humans. Current therapies for CHB infection are limited in efficacy and do not target the pre-existing viral genomic DNA, which are present in the nucleus as a covalently closed circular DNA (cccDNA) form. The transcription activator-like (TAL) effector nucleases (TALENs) are newly developed enzymes that can cleave sequence-specific DNA targets. Here, TALENs targeting the conserved regions of the viral genomic DNA among different HBV genotypes were constructed. The expression of TALENs in Huh7 cells transfected with monomeric linear full-length HBV DNA significantly reduced the viral production of HBeAg, HBsAg, HBcAg, and pgRNA, resulted in a decreased cccDNA level and misrepaired cccDNAs without apparent cytotoxic effects. The anti-HBV effect of TALENs was further demonstrated in a hydrodynamic injection-based mouse model. In addition, an enhanced antiviral effect with combinations of TALENs and interferon-α (IFN-α) treatment was observed and expression of TALENs restored HBV suppressed IFN-stimulated response element-directed transcription. Taken together, these data indicate that TALENs can specifically target and successfully inactivate the HBV genome and are potently synergistic with IFN-α, thus providing a potential therapeutic strategy for treating CHB infection.

  7. Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq.

    Science.gov (United States)

    Lu, Bingxin; Zeng, Zhenbing; Shi, Tieliu

    2013-02-01

    Transcriptome reconstruction is an important application of RNA-Seq, providing critical information for further analysis of transcriptome. Although RNA-Seq offers the potential to identify the whole picture of transcriptome, it still presents special challenges. To handle these difficulties and reconstruct transcriptome as completely as possible, current computational approaches mainly employ two strategies: de novo assembly and genome-guided assembly. In order to find the similarities and differences between them, we firstly chose five representative assemblers belonging to the two classes respectively, and then investigated and compared their algorithm features in theory and real performances in practice. We found that all the methods can be reduced to graph reduction problems, yet they have different conceptual and practical implementations, thus each assembly method has its specific advantages and disadvantages, performing worse than others in certain aspects while outperforming others in anther aspects at the same time. Finally we merged assemblies of the five assemblers and obtained a much better assembly. Additionally we evaluated an assembler using genome-guided de novo assembly approach, and achieved good performance. Based on these results, we suggest that to obtain a comprehensive set of recovered transcripts, it is better to use a combination of de novo assembly and genome-guided assembly.

  8. 一种高效扩增血清松弛环状乙型肝炎病毒DNA全长基因组方法的研究%Study on an efficient method for amplification of full-length HBV genome with relaxed-circular serum DNA

    Institute of Scientific and Technical Information of China (English)

    张纯瑜; 金维荣; 董辉

    2015-01-01

    目的:建立基于滚环复制的、高效扩增血清松弛环状乙型肝炎病毒DNA(HBV RC-DNA)全长基因组的方法。方法以60例慢性乙型肝炎患者血清HBV RC-DNA为研究对象,利用T4 DNA polymerase和T4 DNA ligase,封闭HBV RC-DNA基因组上的缺口,使之成为闭合环状结构;再通过Phi29 DNA polymerase的作用,对闭合环状的HBV基因组进行滚环复制,以滚环复制后的RC-DNA为模板扩增HBV全长基因组。结果成功建立了基于滚环复制的HBV RC-DNA全长基因组扩增方法,可从病毒载量为108~104拷贝/ml样本中扩增出HBV全长基因组。对于107~105拷贝/ml血清样本来说,使用基于RC-DNA滚环复制的全长基因组扩增方法,与以往的一步法扩增相比,扩增效率显著提高。结论基于滚环复制的HBV RC-DNA全长基因组扩增方法具有较高的灵敏度。该方法的建立为H BV全基因组研究提供了一种新的、有效的工具,有望在基础和临床研究中广泛应用。%ObjectiveTo establish an efficient method for amplification of full-length HBV genome with relaxed-circular serum DNA (RC-DNA).MethodsHBV RC-DNA obtained from 60 patients with chronic hepatitis B was involved in this study. First, T4 DNA polymerase and T4 DNA ligase were used to circularize the genome of HBV RC-DNA so that it became a closed circular form. Second, Phi29 DNA polymerase was applied for the rolling circle replication of closed circular RC-DNA, the product of which was then used as the template for amplification of fulllength HBV genome.ResultsWe successfully established the method for amplification of full-length HBV genome with RC-DNA, which was capable to amplify the complete HBV genome from serum samples with viral load ranging between108 to 104 copies/ml. Compared with the one-step amplification method described previously, our method was more efficient for serum samples with viral load varied from 107 to 105 copies/ml.ConclusionThe method

  9. Novel signal amplification strategy for ultrasensitive sandwich-type electrochemical immunosensor employing Pd-Fe3O4-GS as the matrix and SiO2 as the label.

    Science.gov (United States)

    Wang, Yulan; Ma, Hongmin; Wang, Xiaodong; Pang, Xuehui; Wu, Dan; Du, Bin; Wei, Qin

    2015-12-15

    An ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy was developed for the quantitative determination of human immunoglobulin G (IgG). Pd nanocubes functionalized magnetic graphene sheet (Pd-Fe3O4-GS) was employed as the matrix to immobilize the primary antibodies (Ab1). Owing to the synergetic effect between Pd nanocubes and magnetic graphene sheet (Fe3O4-GS), Pd-Fe3O4-GS can provide an obviously increasing electrochemical signal by electrochemical catalysis towards hydrogen peroxide (H2O2). Silicon dioxide (SiO2) was functionalized as the label to conjugate with the secondary antibodies (Ab2). Due to the larger steric hindrance of the obtained conjugate (SiO2@Ab2), the sensitive decrease of the electrochemical signal can be achieved after the specific recognition between antibodies and antigens. In this sense, this proposed immunosensor can achieve a high sensitivity, especially in the presence of low concentrations of IgG. Under optimum conditions, the proposed immunosensor offered an ultrasensitive and specific determination of IgG down to 3.2 fg/mL. This immunoassay method would open up a new promising platform to detect various tumor markers at ultralow levels for early diagnoses of different cancers.

  10. Biomaterials in light amplification

    Science.gov (United States)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living

  11. Subcellular localization of extracytoplasmic proteins in monoderm bacteria: rational secretomics-based strategy for genomic and proteomic analyses.

    Directory of Open Access Journals (Sweden)

    Sandra Renier

    Full Text Available Genome-scale prediction of subcellular localization (SCL is not only useful for inferring protein function but also for supporting proteomic data. In line with the secretome concept, a rational and original analytical strategy mimicking the secretion steps that determine ultimate SCL was developed for Gram-positive (monoderm bacteria. Based on the biology of protein secretion, a flowchart and decision trees were designed considering (i membrane targeting, (ii protein secretion systems, (iii membrane retention, and (iv cell-wall retention by domains or post-translocational modifications, as well as (v incorporation to cell-surface supramolecular structures. Using Listeria monocytogenes as a case study, results were compared with known data set from SCL predictors and experimental proteomics. While in good agreement with experimental extracytoplasmic fractions, the secretomics-based method outperforms other genomic analyses, which were simply not intended to be as inclusive. Compared to all other localization predictors, this method does not only supply a static snapshot of protein SCL but also offers the full picture of the secretion process dynamics: (i the protein routing is detailed, (ii the number of distinct SCL and protein categories is comprehensive, (iii the description of protein type and topology is provided, (iv the SCL is unambiguously differentiated from the protein category, and (v the multiple SCL and protein category are fully considered. In that sense, the secretomics-based method is much more than a SCL predictor. Besides a major step forward in genomics and proteomics of protein secretion, the secretomics-based method appears as a strategy of choice to generate in silico hypotheses for experimental testing.

  12. Comparative genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: Coccidia differing in host range and transmission strategy.

    Directory of Open Access Journals (Sweden)

    Adam James Reid

    Full Text Available Toxoplasma gondii is a zoonotic protozoan parasite which infects nearly one third of the human population and is found in an extraordinary range of vertebrate hosts. Its epidemiology depends heavily on horizontal transmission, especially between rodents and its definitive host, the cat. Neospora caninum is a recently discovered close relative of Toxoplasma, whose definitive host is the dog. Both species are tissue-dwelling Coccidia and members of the phylum Apicomplexa; they share many common features, but Neospora neither infects humans nor shares the same wide host range as Toxoplasma, rather it shows a striking preference for highly efficient vertical transmission in cattle. These species therefore provide a remarkable opportunity to investigate mechanisms of host restriction, transmission strategies, virulence and zoonotic potential. We sequenced the genome of N. caninum and transcriptomes of the invasive stage of both species, undertaking an extensive comparative genomics and transcriptomics analysis. We estimate that these organisms diverged from their common ancestor around 28 million years ago and find that both genomes and gene expression are remarkably conserved. However, in N. caninum we identified an unexpected expansion of surface antigen gene families and the divergence of secreted virulence factors, including rhoptry kinases. Specifically we show that the rhoptry kinase ROP18 is pseudogenised in N. caninum and that, as a possible consequence, Neospora is unable to phosphorylate host immunity-related GTPases, as Toxoplasma does. This defense strategy is thought to be key to virulence in Toxoplasma. We conclude that the ecological niches occupied by these species are influenced by a relatively small number of gene products which operate at the host-parasite interface and that the dominance of vertical transmission in N. caninum may be associated with the evolution of reduced virulence in this species.

  13. Comparative genomics of the apicomplexan parasites Toxoplasma gondii and neospora caninum: Coccidia differing in host range and transmission strategy

    KAUST Repository

    Reid, Adam James

    2012-03-22

    Toxoplasma gondii is a zoonotic protozoan parasite which infects nearly one third of the human population and is found in an extraordinary range of vertebrate hosts. Its epidemiology depends heavily on horizontal transmission, especially between rodents and its definitive host, the cat. Neospora caninum is a recently discovered close relative of Toxoplasma, whose definitive host is the dog. Both species are tissue-dwelling Coccidia and members of the phylum Apicomplexa; they share many common features, but Neospora neither infects humans nor shares the same wide host range as Toxoplasma, rather it shows a striking preference for highly efficient vertical transmission in cattle. These species therefore provide a remarkable opportunity to investigate mechanisms of host restriction, transmission strategies, virulence and zoonotic potential. We sequenced the genome of N. caninum and transcriptomes of the invasive stage of both species, undertaking an extensive comparative genomics and transcriptomics analysis. We estimate that these organisms diverged from their common ancestor around 28 million years ago and find that both genomes and gene expression are remarkably conserved. However, in N. caninum we identified an unexpected expansion of surface antigen gene families and the divergence of secreted virulence factors, including rhoptry kinases. Specifically we show that the rhoptry kinase ROP18 is pseudogenised in N. caninum and that, as a possible consequence, Neospora is unable to phosphorylate host immunity-related GTPases, as Toxoplasma does. This defense strategy is thought to be key to virulence in Toxoplasma. We conclude that the ecological niches occupied by these species are influenced by a relatively small number of gene products which operate at the host-parasite interface and that the dominance of vertical transmission in N. caninum may be associated with the evolution of reduced virulence in this species.

  14. Strategies for use of reproductive technologies in genomic dairy cattle breeding programs

    DEFF Research Database (Denmark)

    Thomasen, Jørn Rind; Sørensen, Anders Christian

    A simulation study was performed for testing the effect of using reproductive technologies in a genomic dairy cattle young bull breeding scheme. The breeding scheme parameters: 1) number of donors, 2) number of progeny per donor, 3) age of the donor, 4) number of sires, and 5) reliability...... of genomic breeding values. The breeding schemes were evaluated according to genetic gain and rate of inbreeding. The relative gain by use of reproductive technologies is 11 to 84 percent points depending on the choice of other breeding scheme parameters. A large donor program with high selection intensity...... of sires provides the highest genetic gain. A relatively higher genetic gain is obtained for higher reliability of GEBV. Extending the donor program and number of selected bulls has a major effect of reducing the rate of inbreeding without compromising genetic gain....

  15. Testing the effects of educational strategies on comprehension of a genomic concept using virtual reality technology.

    Science.gov (United States)

    Kaphingst, Kimberly A; Persky, Susan; McCall, Cade; Lachance, Christina; Loewenstein, Johanna; Beall, Andrew C; Blascovich, Jim

    2009-11-01

    Applying genetic susceptibility information to improve health will likely require educating patients about abstract concepts, for which there is little existing research. This experimental study examined the effect of learning mode on comprehension of a genomic concept. 156 individuals aged 18-40 without specialized knowledge were randomly assigned to either a virtual reality active learning or didactic learning condition. The outcome was comprehension (recall, transfer, mental models). Change in recall was greater for didactic learning than for active learning (pconcepts. Didactic, interpersonal health education approaches may be more effective than interactive games in educating patients about abstract, unfamiliar concepts. These findings indicate the importance of traditional health education approaches in emerging areas like genomics.

  16. Comparison between NuGEN's WT-Ovation Pico and one-direct amplification systems.

    Science.gov (United States)

    Morse, Alison M; Carballo, Valentina; Baldwin, Donald A; Taylor, Christopher G; McIntyre, Lauren M

    2010-09-01

    Differential gene expression between groups of homogenous cell types is a biological question whose time has come. RNA can be extracted from small numbers of cells, such as those isolated by laser-capture microdissection, but the small amounts obtained often require amplification to enable whole genome transcriptome profiling by technologies such as microarray analysis and RNA-seq. Recently, advances in amplification procedures make amplification directly from whole cell lysates possible. The aim of this study was to compare two amplification systems for variations in observed RNA abundance attributable to the amplification procedure for use with small quantities of cells isolated by laser-capture microdissection. Arabidopsis root cells undergoing giant cell formation as a result of nematode infestation and uninfested control root cells were laser-captured and used to evaluate two amplification systems. One, NuGEN's WT-Ovation Pico (Pico) amplification system, uses total RNA as starting material, and the other, NuGEN's WT-One-Direct (One-Direct) amplification system, uses lysate containing the captured cells. The reproducibility of whole genome transcript profiling and correlations of both systems were investigated after microarray analysis. The One-Direct system was less reproducible and more variable than the Pico system. The Pico amplification kit resulted in the detection of thousands of differentially expressed genes between giant cells and control cells. This is in marked contrast to the relatively few genes detected after amplification with the One-Direct amplification kit.

  17. Improved base calling for the Illumina Genome Analyzer using machine learning strategies

    OpenAIRE

    Kircher, Martin; Stenzel, Udo; Kelso, Janet

    2009-01-01

    The Illumina Genome Analyzer generates millions of short sequencing reads. We present Ibis (Improved base identification system), an accurate, fast and easy-to-use base caller that significantly reduces the error rate and increases the output of usable reads. Ibis is faster and more robust with respect to chemistry and technology than other publicly available packages. Ibis is freely available under the GPL from .

  18. Computational strategies for genome-based natural product discovery and engineering in fungi.

    Science.gov (United States)

    van der Lee, Theo A J; Medema, Marnix H

    2016-04-01

    Fungal natural products possess biological activities that are of great value to medicine, agriculture and manufacturing. Recent metagenomic studies accentuate the vastness of fungal taxonomic diversity, and the accompanying specialized metabolic diversity offers a great and still largely untapped resource for natural product discovery. Although fungal natural products show an impressive variation in chemical structures and biological activities, their biosynthetic pathways share a number of key characteristics. First, genes encoding successive steps of a biosynthetic pathway tend to be located adjacently on the chromosome in biosynthetic gene clusters (BGCs). Second, these BGCs are often are located on specific regions of the genome and show a discontinuous distribution among evolutionarily related species and isolates. Third, the same enzyme (super)families are often involved in the production of widely different compounds. Fourth, genes that function in the same pathway are often co-regulated, and therefore co-expressed across various growth conditions. In this mini-review, we describe how these partly interlinked characteristics can be exploited to computationally identify BGCs in fungal genomes and to connect them to their products. Particular attention will be given to novel algorithms to identify unusual classes of BGCs, as well as integrative pan-genomic approaches that use a combination of genomic and metabolomic data for parallelized natural product discovery across multiple strains. Such novel technologies will not only expedite the natural product discovery process, but will also allow the assembly of a high-quality toolbox for the re-design or even de novo design of biosynthetic pathways using synthetic biology approaches.

  19. It's a dirty job--A robust method for the purification and de novo genome assembly of Cryptosporidium from clinical material.

    Science.gov (United States)

    Andersson, Sofia; Sikora, Per; Karlberg, Maria L; Winiecka-Krusnell, Jadwiga; Alm, Erik; Beser, Jessica; Arrighi, Romanico B G

    2015-06-01

    We have developed a novel strategy for the purification of Cryptosporidium oocysts from clinical samples using IMS and PCR amplification of target DNA to facilitate uniform coverage genome sequencing and de novo assembly. Our procedure could also be used for other microbial pathogens from clinical specimens.

  20. The genome of obligately intracellular Ehrlichia canis revealsthemes of complex membrane structure and immune evasion strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K.; Kuyler Doyle, C.; Lykidis, A.; Ivanova, N.; Francino, P.; Chain, P.; Shin, M.; Malfatti, S.; Larimer, F.; Copeland,A.; Detter, J.C.; Land, M.; Richardson, P.M.; Yu, X.J.; Walker, D.H.; McBride, J.W.; Kyrpides, N.C.

    2005-09-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, a-proteobacterium is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, and 17 putative pseudogenes, and a substantial proportion of non-coding sequence (27 percent). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences, and a unique serine-threonine bias associated with the potential for O-glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associated with immune evasion were identified, one of which contains poly G:C tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Proteins associated with pathogen-host interactions were identified including a small group of proteins (12) with tandem repeats and another with eukaryotic-like ankyrin domains (7).

  1. Strategies for the discovery of new natural products by genome mining.

    Science.gov (United States)

    Zerikly, Malek; Challis, Gregory L

    2009-03-02

    Natural products have a very broad spectrum of applications. Many natural products are used clinically as antibacterial, antifungal, antiparasitic, anticancer and immunosuppressive agents and are therefore of utmost importance for our society. When in the 1940s the golden age of antibiotics was ushered in, a "gold rush fever" of natural product discovery in the pharmaceutical industry ensued for many decades. However, the traditional process of discovering new bioactive natural products is generally long and laborious, and known natural products are frequently rediscovered. A mass-withdrawal of pharmaceutical companies from new natural product discovery and natural products research has thus occurred in recent years. In this article, the concept of genome mining for novel natural product discovery, which promises to provide a myriad of new bioactive natural compounds, is summarized and discussed. Genome mining for new natural product discovery exploits the huge and constantly increasing quantity of DNA sequence data from a wide variety of organisms that is accumulating in publicly accessible databases. Genes encoding enzymes likely to be involved in natural product biosynthesis can be readily located in sequenced genomes by use of computational sequence comparison tools. This information can be exploited in a variety of ways in the search for new bioactive natural products.

  2. Genomic Sequencing of Single Microbial Cells from Environmental Samples

    Energy Technology Data Exchange (ETDEWEB)

    Ishoey, Thomas; Woyke, Tanja; Stepanauskas, Ramunas; Novotny, Mark; Lasken, Roger S.

    2008-02-01

    Recently developed techniques allow genomic DNA sequencing from single microbial cells [Lasken RS: Single-cell genomic sequencing using multiple displacement amplification, Curr Opin Microbiol 2007, 10:510-516]. Here, we focus on research strategies for putting these methods into practice in the laboratory setting. An immediate consequence of single-cell sequencing is that it provides an alternative to culturing organisms as a prerequisite for genomic sequencing. The microgram amounts of DNA required as template are amplified from a single bacterium by a method called multiple displacement amplification (MDA) avoiding the need to grow cells. The ability to sequence DNA from individual cells will likely have an immense impact on microbiology considering the vast numbers of novel organisms, which have been inaccessible unless culture-independent methods could be used. However, special approaches have been necessary to work with amplified DNA. MDA may not recover the entire genome from the single copy present in most bacteria. Also, some sequence rearrangements can occur during the DNA amplification reaction. Over the past two years many research groups have begun to use MDA, and some practical approaches to single-cell sequencing have been developed. We review the consensus that is emerging on optimum methods, reliability of amplified template, and the proper interpretation of 'composite' genomes which result from the necessity of combining data from several single-cell MDA reactions in order to complete the assembly. Preferred laboratory methods are considered on the basis of experience at several large sequencing centers where >70% of genomes are now often recovered from single cells. Methods are reviewed for preparation of bacterial fractions from environmental samples, single-cell isolation, DNA amplification by MDA, and DNA sequencing.

  3. Computational strategies for national integration of phenotypic, genomic, and pedigree data in a single-step best linear unbiased prediction.

    Science.gov (United States)

    Legarra, A; Ducrocq, V

    2012-08-01

    The single-step genomic BLUP (SSGBLUP) is a method that can integrate pedigree and genotypes at molecular markers in an optimal way. However, its present form (regular SSGBLUP) has a high computational cost (cubic in the number of genotyped animals) and may need extensive rewriting of genetic evaluation software. In this work, we propose several strategies to implement the single step in a simpler manner. The first one expands the single-step mixed-model equations to obtain equivalent equations from which the regular (including pedigree and records only) mixed-model equations are a subset. These new equations (unsymmetric extended SSGBLUP) have low computational cost, but require a nonsymmetric solver such as the biconjugate gradient stabilized method or successive underrelaxation, which is a variant of successive overrelaxation, with a relaxation factor lower than 1. In addition, we show a new derivation of the single-step method, which includes, as an extra effect, deviations from strictly polygenic breeding values. As a result, the same set of equations as above is obtained. We show that, whereas the new derivation shows apparent problems of nonpositive definiteness for certain covariance matrices, a proper equivalent model including imaginary effects always exists, leading always to the regular SSGBLUP mixed model equations. The system of equations can be solved (iterative SSGBLUP) by iterating between a pedigree and records evaluation and a genomic evaluation (each one solved by any iterative or direct method), whereas global iteration can use a block version of successive underrelaxation, which ensures convergence. The genomic evaluation can explicitly include marker or haplotype effects and possibly involve nonlinear (e.g., Bayesian by Markov chain Monte Carlo) methods. In a simulated example with 28,800 individuals and 1,800 genotyped individuals, all methods converged quickly to the same solutions. Using existing efficient methods with limited memory

  4. Improved rolling circle amplification (RCA) of hepatitis B virus (HBV) relaxed-circular serum DNA (RC-DNA).

    Science.gov (United States)

    Martel, Nora; Gomes, Selma A; Chemin, Isabelle; Trépo, Christian; Kay, Alan

    2013-11-01

    For functional analysis of HBV isolates, epidemiological studies and correct identification of recombinant genomes, the amplification of complete genomes is necessary. A method for completely in vitro amplification of full-length HBV genomes starting from serum RC-DNA is described. This uses in vitro completion/ligation of plus-strand HBV RC-DNA and amplification using Rolling-Circle Amplification, eventually followed by a genomic PCR. The method can amplify complete HBV genomes from sera with viral loads ranging from >1.0E+8 IU/ml down to 1.0E+3 IU/ml. The method can be applied to archived sera that have undergone long-term storage or to archived DNA serum extracts. The genomes can easily be cloned. HBV genotypes A-G can all be amplified with no apparent problems. A recombinant subgenotype A3/genotype E genome was identified and fully sequenced.

  5. Modeling the amplification dynamics of human Alu retrotransposons.

    Directory of Open Access Journals (Sweden)

    Dale J Hedges

    2005-09-01

    Full Text Available Retrotransposons have had a considerable impact on the overall architecture of the human genome. Currently, there are three lineages of retrotransposons (Alu, L1, and SVA that are believed to be actively replicating in humans. While estimates of their copy number, sequence diversity, and levels of insertion polymorphism can readily be obtained from existing genomic sequence data and population sampling, a detailed understanding of the temporal pattern of retrotransposon amplification remains elusive. Here we pose the question of whether, using genomic sequence and population frequency data from extant taxa, one can adequately reconstruct historical amplification patterns. To this end, we developed a computer simulation that incorporates several known aspects of primate Alu retrotransposon biology and accommodates sampling effects resulting from the methods by which mobile elements are typically discovered and characterized. By modeling a number of amplification scenarios and comparing simulation-generated expectations to empirical data gathered from existing Alu subfamilies, we were able to statistically reject a number of amplification scenarios for individual subfamilies, including that of a rapid expansion or explosion of Alu amplification at the time of human-chimpanzee divergence.

  6. Single-cell genomics reveal metabolic strategies for microbial growth and survival in an oligotrophic aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Michael J.; Kennedy, David W.; Castelle, Cindy; Field, Erin; Stepanauskas, Ramunas; Fredrickson, Jim K.; Konopka, Allan

    2014-02-09

    Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site and have been shown to significantly change in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single cell genomics techniques to shed light on the physiological niche of these microorganisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa3­-type and cbb3-type cytochrome c oxidases. These SAGs encoded a wide-range of both intra-and extra­-cellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors (TBDRs), which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. CRISPR-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic microorganisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area subsurface and biogeochemical shifts associated with Columbia River water intrusion.

  7. Novel extraction strategy of ribosomal RNA and genomic DNA from cheese for PCR-based investigations.

    Science.gov (United States)

    Bonaïti, Catherine; Parayre, Sandrine; Irlinger, Françoise

    2006-03-15

    Cheese microorganisms, such as bacteria and fungi, constitute a complex ecosystem that plays a central role in cheeses ripening. The molecular study of cheese microbial diversity and activity is essential but the extraction of high quality nucleic acid may be problematic: the cheese samples are characterised by a strong buffering capacity which negatively influenced the yield of the extracted rRNA. The objective of this study is to develop an effective method for the direct and simultaneous isolation of yeast and bacterial ribosomal RNA and genomic DNA from the same cheese samples. DNA isolation was based on a protocol used for nucleic acids isolation from anaerobic digestor, without preliminary washing step with the combined use of the action of chaotropic agent (acid guanidinium thiocyanate), detergents (SDS, N-lauroylsarcosine), chelating agent (EDTA) and a mechanical method (bead beating system). The DNA purification was carried out by two washing steps of phenol-chloroform. RNA was isolated successfully after the second acid extraction step by recovering it from the phenolic phase of the first acid extraction. The novel method yielded pure preparation of undegraded RNA accessible for reverse transcription-PCR. The extraction protocol of genomic DNA and rRNA was applicable to complex ecosystem of different cheese matrices.

  8. Analysis of leader and trailer sequence of genotype Ⅲ , Ⅵb and Ⅶd Newcastle disease virus determined by modified rapid amplification of Cdna ends (RACE) strategy%简化cDNA末端快速扩增技术测定基因Ⅲ、Ⅵb和Ⅶ d型新城疫病毒基因组末端序列及分析

    Institute of Scientific and Technical Information of China (English)

    仇旭升; 孙庆; 王伟伟; 董丽; 吴双; 胡顺林; 吴艳涛; 刘秀梵

    2009-01-01

    [Objective] The purpose of this research is to establish a simple rapid amplification of cDNA ends (RACE) strategy for direct mapping of the 3' end and 5' end of the genomic RNA of Newcastle disease virus ( NDV) , and to analyze the leader and trailer sequence of NDV strains belonging to different genotypes. [Methods] Classic RNA Iigase Mediated Rapid Amplification of cDNA Ends (RLM-RACE) was specifically modified for mapping both ends of the NDV genome. 3'-RACE was carried out by genomic RNA ligation with 5' end phosphated adaptor CL + , and the 5' end was obtained by first strand cDNA with adaptor CL+ . [Results] A modified RLM-RACE strategy was established in this paper, which proved simple, low-cost, repetitive and could be specifically used to map genome ends of NDV. By using this method, the leader and trailer sequence of 5 NDV strains, termed JS/5/05/Go, JS/07/04/Pi, JS/07/16/Pi, JS/7/05/Ch and JS/9/05/Go, belonging to genotype Ⅲ , VI and VII was determined, respectively. [Conclusion] The initial 8nt at the 3' and 5' ends of the genome of genotype I-VI NDV strains were complementary, whereas, the complementary sequences of strain JS/5/05/Go were up to 9 nt due to a mutation from T to C at the 9th nt in the 5' end. The 3' end of NDV genomic and anti-genomic RNA was predicted to form a potential hairpin structure. The U→C(T→C)mutation was located in the circle part of the hairpin in the 5' end of anti-genomic RNA, and had no visible influence on the formation of RNA secondary structure. However, the sequence of the circle part of the hairpin was changed from 3'-UUUC-5' to 3'-UCUC-5', more similar to the 3'-UCUUA-5* in the hairpin of genomic RNA.%[目的]简化cDNA末端快速扩增技术(Rapid amplification of cDNA ends,fLAcE)流程,测定基因Ⅲ、VIb)和VIId型新城疫病毒(Newcastle disease virus,NDV)基因组两侧末端序列,并对NDV的leader和trailer进行分析.[方法]利用T4 RNA连接酶将特定寡聚核苷酸片段的连接于病毒

  9. The Application of Single-genome Amplification and Sequencing in Genomic Analysis of An Attenuated EIAV Vaccine%利用单基因组扩增法对马传染性贫血病毒疫苗株异质性的分析

    Institute of Scientific and Technical Information of China (English)

    韦华冕; 王雪峰; 王珊珊; 杜承; 刘海芳; 刘强; 周建华

    2012-01-01

    Our previous studies found that the Chinese attenuated EIAV vaccine was composed of a pool of quasispecies, which showed a complicated diversity called "multi-species". Further determining the viral composition of these species in the vaccine should improve the identification of predominant viruses in the vaccine and facilitate the analysis of in vivo evolution of EIAV and the vaccine. In this study, the comparison of fidelities in amplifying and sequencing the V3 to V5 fragment of EIAV envelope gP90 gene by either a single-genome amplification (SGA) approach or the traditional RT-PCR (bulk PCR) was performed. Results revealed that the diversities were 1. 84% and 1. 88% for SGA- and bulk PCR-derived sequences, respectively. Futher analysis revealed that beside the sequences highly homologous to those derived by the bulk PCR, nine of 73 sequences derived by SGA contained a deduced amino acid domain that was identical to the corresponding domain in the virulent strain LN40. In addition, sequences with deletion of one predicted amino acid residual was detected by using SGA The presence of these less populated sequences provided additional evidence for the "multi-species" hypothesis for the action mechanism of the EIAV vaccine. Furthermore, based on the analysis of sampling bias, Our results that the difference in copy number of each viral specie in the pool of quasispecies resulted in the inefficiency to amplify viral sequences that were in low population by bulk PCR. Therefore, the sequences amplified by bulk PCR could not correctly represent the composition of quasispecies. As an approach based on the amplification and sequencing single isolated genome, SGA significantly improved the weakness of bulk PCR and appeared its advantage in analysis of EIAV genome composition with high variety.%前期研究发现,马传染性贫血病毒(Equine infectious anemia virus EIAV)中国弱毒疫苗株并非单一病毒,而是由多种准种(quasispecies)组成的种群.阐明该

  10. Genomic Analysis of Clavibacter michiganensis Reveals Insight Into Virulence Strategies and Genetic Diversity of a Gram-Positive Bacterial Pathogen.

    Science.gov (United States)

    Thapa, Shree P; Pattathil, Sivakumar; Hahn, Michael G; Jacques, Marie-Agnès; Gilbertson, Robert L; Coaker, Gitta

    2017-10-01

    Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial canker disease. In this study, we sequenced and assembled genomes of 11 C. michiganensis subsp. michiganensis strains isolated from infected tomato fields in California as well as five Clavibacter strains that colonize tomato endophytically but are not pathogenic in this host. The analysis of the C. michiganensis subsp. michiganensis genomes supported the monophyletic nature of this pathogen but revealed genetic diversity among strains, consistent with multiple introduction events. Two tomato endophytes that clustered phylogenetically with C. michiganensis strains capable of infecting wheat and pepper and were also able to cause disease in these plants. Plasmid profiles of the California strains were variable and supported the essential role of the pCM1-like plasmid and the CelA cellulase in virulence, whereas the absence of the pCM2-like plasmid in some pathogenic C. michiganensis subsp. michiganensis strains revealed it is not essential. A large number of secreted C. michiganensis subsp. michiganensis proteins were carbohydrate-active enzymes (CAZymes). Glycome profiling revealed that C. michiganensis subsp. michiganensis but not endophytic Clavibacter strains is able to extensively alter tomato cell-wall composition. Two secreted CAZymes found in all C. michiganensis subsp. michiganensis strains, CelA and PelA1, enhanced pathogenicity on tomato. Collectively, these results provide a deeper understanding of C. michiganensis subsp. michiganensis diversity and virulence strategies.

  11. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification

    Science.gov (United States)

    The technique of loop-mediated isothermal amplification (LAMP) utilizes 4 (or 6) primers targeting 6 (or 8) regions within a fairly small segment of a genome for amplification, with concentration higher than that used in traditional PCR methods. The high concentrations of primers used leads to an in...

  12. The genome of melon (Cucumis melo L.).

    Science.gov (United States)

    Garcia-Mas, Jordi; Benjak, Andrej; Sanseverino, Walter; Bourgeois, Michael; Mir, Gisela; González, Víctor M; Hénaff, Elizabeth; Câmara, Francisco; Cozzuto, Luca; Lowy, Ernesto; Alioto, Tyler; Capella-Gutiérrez, Salvador; Blanca, Jose; Cañizares, Joaquín; Ziarsolo, Pello; Gonzalez-Ibeas, Daniel; Rodríguez-Moreno, Luis; Droege, Marcus; Du, Lei; Alvarez-Tejado, Miguel; Lorente-Galdos, Belen; Melé, Marta; Yang, Luming; Weng, Yiqun; Navarro, Arcadi; Marques-Bonet, Tomas; Aranda, Miguel A; Nuez, Fernando; Picó, Belén; Gabaldón, Toni; Roma, Guglielmo; Guigó, Roderic; Casacuberta, Josep M; Arús, Pere; Puigdomènech, Pere

    2012-07-17

    We report the genome sequence of melon, an important horticultural crop worldwide. We assembled 375 Mb of the double-haploid line DHL92, representing 83.3% of the estimated melon genome. We predicted 27,427 protein-coding genes, which we analyzed by reconstructing 22,218 phylogenetic trees, allowing mapping of the orthology and paralogy relationships of sequenced plant genomes. We observed the absence of recent whole-genome duplications in the melon lineage since the ancient eudicot triplication, and our data suggest that transposon amplification may in part explain the increased size of the melon genome compared with the close relative cucumber. A low number of nucleotide-binding site-leucine-rich repeat disease resistance genes were annotated, suggesting the existence of specific defense mechanisms in this species. The DHL92 genome was compared with that of its parental lines allowing the quantification of sequence variability in the species. The use of the genome sequence in future investigations will facilitate the understanding of evolution of cucurbits and the improvement of breeding strategies.

  13. Amplification and characterization of eukaryotic structural genes.

    Science.gov (United States)

    Maniatis, T; Efstratiadis, A; Sim, G K; Kafatos, F

    1978-05-01

    An approach to the study of eukaryotic structural genes which are differentially expressed during development is described. This approach involves the isolation and amplification of mRNA sequences by in vitro conversion of mRNA to double-stranded cDNA followed by molecular cloning in bacterial plasmids. This procedure provides highly specific hybridization probes that can be used to identify genes and their contiguous DNA sequences in genomic DNA, and to detect specific RNA transcripts during development. The nature of the method allows the isolation of individual mRNA sequences from a complex population of molecules at different stages of development.

  14. The impact of training strategies on the accuracy of genomic predictors in United States Red Angus cattle.

    Science.gov (United States)

    Lee, J; Kachman, S D; Spangler, M L

    2017-08-01

    Genomic selection (GS) has become an integral part of genetic evaluation methodology and has been applied to all major livestock species, including beef and dairy cattle, pigs, and chickens. Significant contributions in increased accuracy of selection decisions have been clearly illustrated in dairy cattle after practical application of GS. In the majority of U.S. beef cattle breeds, similar efforts have also been made to increase the accuracy of genetic merit estimates through the inclusion of genomic information into routine genetic evaluations using a variety of methods. However, prediction accuracies can vary relative to panel density, the number of folds used for folds cross-validation, and the choice of dependent variables (e.g., EBV, deregressed EBV, adjusted phenotypes). The aim of this study was to evaluate the accuracy of genomic predictors for Red Angus beef cattle with different strategies used in training and evaluation. The reference population consisted of 9,776 Red Angus animals whose genotypes were imputed to 2 medium-density panels consisting of over 50,000 (50K) and approximately 80,000 (80K) SNP. Using the imputed panels, we determined the influence of marker density, exclusion (deregressed EPD adjusting for parental information [DEPD-PA]) or inclusion (deregressed EPD without adjusting for parental information [DEPD]) of parental information in the deregressed EPD used as the dependent variable, and the number of clusters used to partition training animals (3, 5, or 10). A BayesC model with π set to 0.99 was used to predict molecular breeding values (MBV) for 13 traits for which EPD existed. The prediction accuracies were measured as genetic correlations between MBV and weighted deregressed EPD. The average accuracies across all traits were 0.540 and 0.552 when using the 50K and 80K SNP panels, respectively, and 0.538, 0.541, and 0.561 when using 3, 5, and 10 folds, respectively, for cross-validation. Using DEPD-PA as the response variable

  15. An Intrinsically Digital Amplification Scheme for Hearing Aids

    Directory of Open Access Journals (Sweden)

    Brenton R. Steele

    2005-11-01

    Full Text Available Results for linear and wide-dynamic range compression were compared with a new 64-channel digital amplification strategy in three separate studies. The new strategy addresses the requirements of the hearing aid user with efficient computations on an open-platform digital signal processor (DSP. The new amplification strategy is not modeled on prior analog strategies like compression and linear amplification, but uses statistical analysis of the signal to optimize the output dynamic range in each frequency band independently. Using the open-platform DSP processor also provided the opportunity for blind trial comparisons of the different processing schemes in BTE and ITE devices of a high commercial standard. The speech perception scores and questionnaire results show that it is possible to provide improved audibility for sound in many narrow frequency bands while simultaneously improving comfort, speech intelligibility in noise, and sound quality.

  16. A mechanism of gene amplification driven by small DNA fragments.

    Directory of Open Access Journals (Sweden)

    Kuntal Mukherjee

    Full Text Available DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s. Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region. As DNA fragments are frequently found both inside cells and in the extracellular environment, such as the serum of patients with cancer or other degenerative disorders, we propose that SFDA may be a common mechanism for DNA amplification in cancer cells, as well as a more general cause of DNA copy number variation

  17. ReacKnock: identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network.

    Directory of Open Access Journals (Sweden)

    Zixiang Xu

    Full Text Available Gene knockout has been used as a common strategy to improve microbial strains for producing chemicals. Several algorithms are available to predict the target reactions to be deleted. Most of them apply mixed integer bi-level linear programming (MIBLP based on metabolic networks, and use duality theory to transform bi-level optimization problem of large-scale MIBLP to single-level programming. However, the validity of the transformation was not proved. Solution of MIBLP depends on the structure of inner problem. If the inner problem is continuous, Karush-Kuhn-Tucker (KKT method can be used to reformulate the MIBLP to a single-level one. We adopt KKT technique in our algorithm ReacKnock to attack the intractable problem of the solution of MIBLP, demonstrated with the genome-scale metabolic network model of E. coli for producing various chemicals such as succinate, ethanol, threonine and etc. Compared to the previous methods, our algorithm is fast, stable and reliable to find the optimal solutions for all the chemical products tested, and able to provide all the alternative deletion strategies which lead to the same industrial objective.

  18. Testing communication strategies to convey genomic concepts using virtual reality technology.

    Science.gov (United States)

    Kaphingst, Kimberly A; Persky, Susan; McCall, Cade; Lachance, Christina; Beall, Andrew C; Blascovich, Jim

    2009-06-01

    Health professionals need to be able to communicate information about genomic susceptibility in understandable and usable ways, but substantial challenges are involved. We developed four learning modules that varied along two factors: (1) learning mode (active learning vs. didactic learning) and (2) metaphor (risk elevator vs. bridge) and tested them using a 2 x 2 between-subjects, repeated measures design. The study used an innovative virtual reality technology experimental platform; four virtual worlds were designed to convey the concept that genetic and behavioral factors interact to affect common disease risk. The primary outcome was comprehension (recall, transfer). Study participants were 42 undergraduates aged 19-23. The results indicated that the elevator metaphor better supported learning of the concept than the bridge metaphor. Mean transfer score was significantly higher for the elevator metaphor (p learning than active learning (p learning (e.g., motivation), however, were generally higher for the active learning worlds. The results suggested that active learning might not always be more effective than didactic learning in increasing comprehension of health information. The findings also indicated that less complex metaphors might convey abstract concepts more effectively.

  19. Nucleic acid amplification using microfluidic systems.

    Science.gov (United States)

    Chang, Chen-Min; Chang, Wen-Hsin; Wang, Chih-Hung; Wang, Jung-Hao; Mai, John D; Lee, Gwo-Bin

    2013-04-07

    In the post-human-genome-project era, the development of molecular diagnostic techniques has advanced the frontiers of biomedical research. Nucleic-acid-based technology (NAT) plays an especially important role in molecular diagnosis. However, most research and clinical protocols still rely on the manual analysis of individual samples by skilled technicians which is a time-consuming and labor-intensive process. Recently, with advances in microfluidic designs, integrated micro total-analysis-systems have emerged to overcome the limitations of traditional detection assays. These microfluidic systems have the capability to rapidly perform experiments in parallel and with a high-throughput which allows a NAT analysis to be completed in a few hours or even a few minutes. These features have a significant beneficial influence on many aspects of traditional biological or biochemical research and this new technology is promising for improving molecular diagnosis. Thus, in the foreseeable future, microfluidic systems developed for molecular diagnosis using NAT will become an important tool in clinical diagnosis. One of the critical issues for NAT is nucleic acid amplification. In this review article, recent advances in nucleic acid amplification techniques using microfluidic systems will be reviewed. Different approaches for fast amplification of nucleic acids for molecular diagnosis will be highlighted.

  20. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria.

    Science.gov (United States)

    Sundararaman, Sesh A; Plenderleith, Lindsey J; Liu, Weimin; Loy, Dorothy E; Learn, Gerald H; Li, Yingying; Shaw, Katharina S; Ayouba, Ahidjo; Peeters, Martine; Speede, Sheri; Shaw, George M; Bushman, Frederic D; Brisson, Dustin; Rayner, Julian C; Sharp, Paul M; Hahn, Beatrice H

    2016-03-22

    African apes harbour at least six Plasmodium species of the subgenus Laverania, one of which gave rise to human Plasmodium falciparum. Here we use a selective amplification strategy to sequence the genome of chimpanzee parasites classified as Plasmodium reichenowi and Plasmodium gaboni based on the subgenomic fragments. Genome-wide analyses show that these parasites indeed represent distinct species, with no evidence of cross-species mating. Both P. reichenowi and P. gaboni are 10-fold more diverse than P. falciparum, indicating a very recent origin of the human parasite. We also find a remarkable Laverania-specific expansion of a multigene family involved in erythrocyte remodelling, and show that a short region on chromosome 4, which encodes two essential invasion genes, was horizontally transferred into a recent P. falciparum ancestor. Our results validate the selective amplification strategy for characterizing cryptic pathogen species, and reveal evolutionary events that likely predisposed the precursor of P. falciparum to colonize humans.

  1. Hardness amplification in nondeterministic logspace

    OpenAIRE

    Gupta, Sushmita

    2007-01-01

    A hard problem is one which cannot be easily computed by efficient algorithms. Hardness amplification is a procedure which takes as input a problem of mild hardness and returns a problem of higher hardness. This is closely related to the task of decoding certain error-correcting codes. We show amplification from mild average case hardness to higher average case hardness for nondeterministic logspace and worst-to-average amplification for nondeterministic linspace. Finally we explore possible ...

  2. Genome of Mycoplasma haemofelis, unraveling its strategies for survival and persistence

    Directory of Open Access Journals (Sweden)

    Santos Andrea P

    2011-09-01

    Full Text Available Abstract Mycoplasma haemofelis is a mycoplasmal pathogen (hemoplasma that attaches to the host's erythrocytes. Distributed worldwide, it has a significant impact on the health of cats causing acute disease and, despite treatment, establishing chronic infection. It might also have a role as a zoonotic agent, especially in immunocompromised patients. Whole genome sequencing and analyses of M. haemofelis strain Ohio2 was undertaken as a step toward understanding its survival and persistence. Metabolic pathways are reduced, relying on the host to supply many of the nutrients and metabolites needed for survival. M. haemofelis must import glucose for ATP generation and ribose derivates for RNA/DNA synthesis. Hypoxanthine, adenine, guanine, uracil and CMP are scavenged from the environment to support purine and pyrimidine synthesis. In addition, nicotinamide, amino acids and any vitamins needed for growth, must be acquired from its environment. The core proteome of M. haemofelis contains an abundance of paralogous gene families, corresponding to 70.6% of all the CDSs. This "paralog pool" is a rich source of different antigenic epitopes that can be varied to elude the host's immune system and establish chronic infection. M. haemofelis also appears to be capable of phase variation, which is particularly relevant to the cyclic bacteremia and persistence, characteristics of the infection in the cat. The data generated herein should be of great use for understanding the mechanisms of M. haemofelis infection. Further, it will provide new insights into its pathogenicity and clues needed to formulate media to support the in vitro cultivation of M. haemofelis.

  3. Regulation of ribosomal DNA amplification by the TOR pathway.

    Science.gov (United States)

    Jack, Carmen V; Cruz, Cristina; Hull, Ryan M; Keller, Markus A; Ralser, Markus; Houseley, Jonathan

    2015-08-01

    Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions.

  4. Improvement of Genomic DNA Extraction and Optimization of ISSR-PCR Amplification for Passion Fruit%西番莲基因组DNA的提取及ISSR-PCR的优化

    Institute of Scientific and Technical Information of China (English)

    吴田; 谢江; 蓝增全

    2011-01-01

    By comparing five DNA extraction methods, an efficient method suitable for ISSR-PCR of passion fruit (Passiflora edulis) was identified. The factors influencing ISSR-PCR for passion-fruit were optimized. The result showed that the modified SDS-Ⅱ procedure was most suitable for ISSR-PCR amplification for passion fruit. Detected on 2% agarose, 4.12 amplification bands on the average were observed in the ISSR-PCR products. The optimum amplification conditions for ISSR-PCR of passion fruit were 5 ng DNA template, 0. 2 mmol/L dNTPs, 0. 5 μmol/L primer, 0. 2 U Taq DNA polymerase and 1 × buffer (Mg2+ ) in 20μL reaction volumes.%对5种DNA提取方法进行比较,得到一种效率较高的、且适用于西番莲ISSR-PCR的DNA提取方法.同时,对影响西番莲ISSR-PCR的因子进行优化.结果表明:改良的SDS法2提取的DNA最适宜进行西番莲的ISSR-PCR扩增.ISSR-PCR产物在2%琼脂糖凝胶上检测,发现PCR扩增的平均条带数为4.12条.西番莲的ISSR-PCR的最优体系为20μL PCR反应液体系中含有1×buffer(Mg2+),0.2 mmol/L dNTPs,0.5 μmol/L引物,0.2 U Taq DNA聚合酶,5 ng DNA模板.

  5. High frequency of submicroscopic chromosomal imbalances in patients with syndromic craniosynostosis detected by a combined approach of microsatellite segregation analysis, multiplex ligation-dependent probe amplification and array-based comparative genome hybridisation.

    NARCIS (Netherlands)

    Jehee, F.S.; Krepischi-Santos, A.C.; Rocha, K.M.; Cavalcanti, D.P.; Kim, C.A.; Bertola, D.R.; Alonso, L.G.; D'Angelo, C.S.; Mazzeu, J.F.; Froyen, G.; Lugtenberg, D.; Vianna-Morgante, A.M.; Rosenberg, C.; Passos-Bueno, M.R.

    2008-01-01

    We present the first comprehensive study, to our knowledge, on genomic chromosomal analysis in syndromic craniosynostosis. In total, 45 patients with craniosynostotic disorders were screened with a variety of methods including conventional karyotype, microsatellite segregation analysis, subtelomeric

  6. Isothermal Amplification of Nucleic Acids.

    Science.gov (United States)

    Zhao, Yongxi; Chen, Feng; Li, Qian; Wang, Lihua; Fan, Chunhai

    2015-11-25

    Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.

  7. Efficient audio power amplification - challenges

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Michael A.E.

    2005-07-01

    For more than a decade efficient audio power amplification has evolved and today switch-mode audio power amplification in various forms are the state-of-the-art. The technical steps that lead to this evolution are described and in addition many of the challenges still to be faced and where extensive research and development are needed is covered. (au)

  8. Gene amplification during differentiation of mammalian neural stem cells in vitro and in vivo.

    Science.gov (United States)

    Fischer, Ulrike; Backes, Christina; Raslan, Abdulrahman; Keller, Andreas; Meier, Carola; Meese, Eckart

    2015-03-30

    In development of amphibians and flies, gene amplification is one of mechanisms to increase gene expression. In mammalian cells, gene amplification seems to be restricted to tumorigenesis and acquiring of drug-resistance in cancer cells. Here, we report a complex gene amplification pattern in mouse neural progenitor cells during differentiation with approximately 10% of the genome involved. Half of the amplified mouse chromosome regions overlap with amplified regions previously reported in human neural progenitor cells, indicating conserved mechanisms during differentiation. Using fluorescence in situ hybridization, we verified the amplification in single cells of primary mouse mesencephalon E14 (embryonic stage) neurosphere cells during differentiation. In vivo we confirmed gene amplifications of the TRP53 gene in cryosections from mouse embryos at stage E11.5. Gene amplification is not only a cancer-related mechanism but is also conserved in evolution, occurring during differentiation of mammalian neural stem cells.

  9. Counter-selection recombineering of the baculovirus genome: a strategy for seamless modification of repeat-containing BACs.

    Science.gov (United States)

    Westenberg, Marcel; Soedling, Helen M; Mann, Derek A; Nicholson, Linda J; Dolphin, Colin T

    2010-09-01

    Recombineering is employed to modify large DNA clones such as fosmids, BACs and PACs. Subtle and seamless modifications can be achieved using counter-selection strategies in which a donor cassette carrying both positive and negative markers inserted in the target clone is replaced by the desired sequence change. We are applying counter-selection recombineering to modify bacmid bMON14272, a recombinant baculoviral genome, as we wish to engineer the virus into a therapeutically useful gene delivery vector with cell targeting characteristics. Initial attempts to replace gp64 with Fusion (F) genes from other baculoviruses resulted in many rearranged clones in which the counter-selection cassette had been deleted. Bacmid bMON14272 contains nine highly homologous regions (hrs) and deletions were mapped to recombination between hr pairs. Recombineering modifications were attempted to decrease intramolecular recombination and/or increase recombineering efficiency. Of these only the use of longer homology arms on the donor molecule proved effective permitting seamless modification. bMON14272, because of the presence of the hr sequences, can be considered equivalent to a highly repetitive BAC and, as such, the optimized method detailed here should prove useful to others applying counter-selection recombineering to modify BACs or PACs containing similar regions of significant repeating homologies.

  10. Isolation and Amplification Genomic DNA from Endometriotic Cells Obtained by Laser Capture Microdissection%激光显微切割技术用于子宫内膜异位组织DNA的提取及其完整性分析

    Institute of Scientific and Technical Information of China (English)

    赵路阳; 李小雷; 张燕; 赵亚力; 韩为东; 孟元光

    2013-01-01

    目的::探索一套激光显微切割(LCM)分离子宫内膜异位症腺体细胞后提取微量DNA并进行完整性分析的操作流程。方法:分别对20例石蜡标本及20例冰冻标本进行LCM,收集切割后的腺体细胞;2组标本各取10例提取微量DNA,检测DNA浓度并通过PCR扩增进行验证;余20例标本分别进行全基因组扩增,检测产物浓度并利用8种常见管家基因作为引物通过PCR扩增进行验证,对比分析其结果。结果:石蜡标本与冰冻标本在LCM获取腺体细胞及提取微量DNA两个环节中均可获得满意效果;但经全基因组扩增后,石蜡标本无法保留完整DNA信息。结论:LCM获取子宫内膜异位症腺体细胞提取微量DNA是一种操作简单、结果稳定的方法,可作为日后子宫内膜异位症基因组研究的常规方法;冰冻切片相对石蜡切片,更能保留完整的DNA信息。%Objective: To detect a standard protocol for isolation of low amount DNA from the endometriotic cells obtained by laser capture microdissection(LCM). Methods: Using LCM to collect endometriotic cells from 20 paraffin specimens and 20 frozen specimens. 10 cases of each group were used to extract DNA. The others were used to do whole genome amplification. The production was validated by spectrophotometer and PCR was per-formed with housekeeping genes in different chromosomes. Results: Both the frozen samples and formalin-fixed par-affin embedded tissue can extract DNA production. However, after whole genome amplification, paraffin specimens can not remain intact DNA information. Conclusion: Isolation the genomic DNA from endometriotic cells obtained by LCM is a simple and stable method, which can be used as a routine approach for the future genome research of endometriosis.

  11. An Efficient Strategy Developed for Next-Generation Sequencing of Endosymbiont Genomes Performed Using Crude DNA Isolated from Host Tissues: A Case Study of Blattabacterium cuenoti Inhabiting the Fat Bodies of Cockroaches.

    Science.gov (United States)

    Kinjo, Yukihiro; Saitoh, Seikoh; Tokuda, Gaku

    2015-01-01

    Whole-genome sequencing has emerged as one of the most effective means to elucidate the biological roles and molecular features of obligate intracellular symbionts (endosymbionts). However, the de novo assembly of an endosymbiont genome remains a challenge when host and/or mitochondrial DNA sequences are present in a dataset and hinder the assembly of the genome. By focusing on the traits of genome evolution in endosymbionts, we herein developed and investigated a genome-assembly strategy that consisted of two consecutive procedures: the selection of endosymbiont contigs from an output obtained from a de novo assembly performed using a TBLASTX search against a reference genome, named TBLASTX Contig Selection and Filtering (TCSF), and the iterative reassembling of the genome from reads mapped on the selected contigs, named Iterative Mapping and ReAssembling (IMRA), to merge the contigs. In order to validate this approach, we sequenced two strains of the cockroach endosymbiont Blattabacterium cuenoti and applied this strategy to the datasets. TCSF was determined to be highly accurate and sensitive in contig selection even when the genome of a distantly related free-living bacterium was used as a reference genome. Furthermore, the use of IMRA markedly improved sequence assemblies: the genomic sequence of an endosymbiont was almost completed from a dataset containing only 3% of the sequences of the endosymbiont's genome. The efficiency of our strategy may facilitate further studies on endosymbionts.

  12. Optimizing direct amplification of forensic commercial kits for STR determination.

    Science.gov (United States)

    Caputo, M; Bobillo, M C; Sala, A; Corach, D

    2017-04-01

    Direct DNA amplification in forensic genotyping reduces analytical time when large sample sets are being analyzed. The amplification success depends mainly upon two factors: on one hand, the PCR chemistry and, on the other, the type of solid substrate where the samples are deposited. We developed a workflow strategy aiming to optimize times and cost when starting from blood samples spotted onto diverse absorbent substrates. A set of 770 blood samples spotted onto Blood cards, Whatman(®) 3 MM paper, FTA™ Classic cards, and Whatman(®) Grade 1 was analyzed by a unified working strategy including a low-cost pre-treatment, a PCR amplification volume scale-down, and the use of the 3500 Genetic Analyzer as the analytical platform. Samples were analyzed using three different commercial multiplex STR direct amplification kits. The efficiency of the strategy was evidenced by a higher percentage of high-quality profiles obtained (over 94%), a reduced number of re-injections (average 3.2%), and a reduced amplification failure rate (lower than 5%). Average peak height ratio among different commercial kits was 0.91, and the intra-locus balance showed values ranging from 0.92 to 0.94. A comparison with previously reported results was performed demonstrating the efficiency of the proposed modifications. The protocol described herein showed high performance, producing optimal quality profiles, and being both time and cost effective. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  13. Large Brillouin Amplification in Silicon

    CERN Document Server

    Kittlaus, Eric A; Rakich, Peter T

    2015-01-01

    Strong Brillouin coupling has only recently been realized in silicon using a new class of optomechanical waveguides that yield both optical and phononic confinement. Despite these major advances, appreciable Brillouin amplification has yet to be observed in silicon. Using a new membrane-suspended silicon waveguide we report large Brillouin amplification for the first time, reaching levels greater than 5 dB for modest pump powers, and demonstrate a record low (5 mW) threshold for net amplification. This work represents a crucial advance necessary to realize high-performance Brillouin lasers and amplifiers in silicon.

  14. 实验模型下两种全基因组扩增技术对指纹DNA检验的效能%Effects of two whole genome amplification methods for fingerprint samples' genotyping under two experimental model conditions

    Institute of Scientific and Technical Information of China (English)

    邓建强; 刘宝琴; 蔡继峰; 李文慧; 龙仁; 侯一平

    2012-01-01

    目的 对简并寡核苷酸引物PCR(Begenerate oligonueleofide-primed PCR,DOP-PCR)和扩增前引物延伸PCR(Primer extension pre-amplification PCR,PEP - PCR)用于指纹检材DNA检验的价值进行研究. 方法 建立2种指纹检材DNA模型,分别用普通PCR、DOP技术和PEP技术三种方法对指纹DNA样本进行STR分型,对三种方法的效能进行比较评价.结果 实验模型1条件下,三种方法均不能获得满意分型结果;模型2条件下,DOP和PEP两种方法可以增加STR分型的成功率和信息量.结论 DOP和PEP技术必须结合高效的DNA提取技术才能最大程度发挥其检验效能.%Objective To estimate the practical value of degenerate oligonucleotide -primed PGR (DOP-PCR)and primer extension pre -amplification PCR (PEP-PCR)protocols for fingerprint samples genotyping. Methods DNA samples obtained from fingerprints under two experimental conditions were genotyped by three ways: directly analysis, DOP and PEP protocol. Their effects were compared. Result No satisfied results were received by three methods under model-1 condition, but DOP and PEP protocols improved successful rates and message amounts for fingerprint samples genotyping under experimental model-2 condition. Conclusions In order to perform their powerful capability, DOP and PEP protocol must combine efficient DNA collecting technology.

  15. Complex Oncogenic Translocations with Gene Amplification are Initiated by Specific DNA Breaks in Lymphocytes

    OpenAIRE

    2009-01-01

    Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. While chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA double strand break repair in suppression of oncogenic genome instability, the genomic elements requir...

  16. Identification of genetic elements associated with EPSPs gene amplification.

    Directory of Open Access Journals (Sweden)

    Todd A Gaines

    Full Text Available Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world's most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S A. palmeri, and that only one of these was amplified in glyphosate-resistant (R A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene.

  17. Next generation Chirped Pulse Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nees, J.; Biswal, S.; Mourou, G. [Univ. Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (United States); Nishimura, Akihiko; Takuma, Hiroshi

    1998-03-01

    The limiting factors of Chirped Pulse Amplification (CPA) are discussed and experimental results of CPA in Yb:glass regenerative amplifier are given. Scaling of Yb:glass to the petawatt level is briefly discussed. (author)

  18. Isothermal strand displacement amplification (iSDA): a rapid and sensitive method of nucleic acid amplification for point-of-care diagnosis.

    Science.gov (United States)

    Toley, Bhushan J; Covelli, Isabela; Belousov, Yevgeniy; Ramachandran, Sujatha; Kline, Enos; Scarr, Noah; Vermeulen, Nic; Mahoney, Walt; Lutz, Barry R; Yager, Paul

    2015-11-21

    We present a method of rapid isothermal amplification of DNA without initial heat denaturation of the template, and methods and probes for (a) real-time fluorescence detection and (b) lateral flow detection of amplicons. Isothermal strand displacement amplification (iSDA) can achieve >10(9)-fold amplification of the target sequence in isothermal DNA amplification methods. iSDA initiates at sites where DNA base pairs spontaneously open or transiently convert into Hoogsteen pairs, i.e. "breathe", and proceeds to exponential amplification by repeated nicking, extension, and displacement of single strands. We demonstrate successful iSDA amplification and lateral flow detection of 10 copies of a Staphylococcus aureus gene, NO.-inducible l-lactate dehydrogenase (ldh1) (Richardson, Libby, and Fang, Science, 2008, 319, 1672-1676), in a clean sample and 50 copies in the presence of high concentrations of genomic DNA and mucins in isothermal amplification reactions. Finally, we demonstrate the multiplexing capability of iSDA by the simultaneous amplification of the target gene and an engineered internal control sequence. The speed, sensitivity, and specificity of iSDA make it a powerful method for point-of-care molecular diagnosis.

  19. Emerging Loop-Mediated Isothermal Amplification-Based Microchip and Microdevice Technologies for Nucleic Acid Detection.

    Science.gov (United States)

    Safavieh, Mohammadali; Kanakasabapathy, Manoj K; Tarlan, Farhang; Ahmed, Minhaz U; Zourob, Mohammed; Asghar, Waseem; Shafiee, Hadi

    2016-03-14

    Rapid, sensitive, and selective pathogen detection is of paramount importance in infectious disease diagnosis and treatment monitoring. Currently available diagnostic assays based on polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) are time-consuming, complex, and relatively expensive, thus limiting their utility in resource-limited settings. Loop-mediated isothermal amplification (LAMP) technique has been used extensively in the development of rapid and sensitive diagnostic assays for pathogen detection and nucleic acid analysis and hold great promise for revolutionizing point-of-care molecular diagnostics. Here, we review novel LAMP-based lab-on-a-chip (LOC) diagnostic assays developed for pathogen detection over the past several years. We review various LOC platforms based on their design strategies for pathogen detection and discuss LAMP-based platforms still in development and already in the commercial pipeline. This review is intended as a guide to the use of LAMP techniques in LOC platforms for molecular diagnostics and genomic amplifications.

  20. ASAP: Amplification, sequencing & annotation of plastomes

    Directory of Open Access Journals (Sweden)

    Folta Kevin M

    2005-12-01

    Full Text Available Abstract Background Availability of DNA sequence information is vital for pursuing structural, functional and comparative genomics studies in plastids. Traditionally, the first step in mining the valuable information within a chloroplast genome requires sequencing a chloroplast plasmid library or BAC clones. These activities involve complicated preparatory procedures like chloroplast DNA isolation or identification of the appropriate BAC clones to be sequenced. Rolling circle amplification (RCA is being used currently to amplify the chloroplast genome from purified chloroplast DNA and the resulting products are sheared and cloned prior to sequencing. Herein we present a universal high-throughput, rapid PCR-based technique to amplify, sequence and assemble plastid genome sequence from diverse species in a short time and at reasonable cost from total plant DNA, using the large inverted repeat region from strawberry and peach as proof of concept. The method exploits the highly conserved coding regions or intergenic regions of plastid genes. Using an informatics approach, chloroplast DNA sequence information from 5 available eudicot plastomes was aligned to identify the most conserved regions. Cognate primer pairs were then designed to generate ~1 – 1.2 kb overlapping amplicons from the inverted repeat region in 14 diverse genera. Results 100% coverage of the inverted repeat region was obtained from Arabidopsis, tobacco, orange, strawberry, peach, lettuce, tomato and Amaranthus. Over 80% coverage was obtained from distant species, including Ginkgo, loblolly pine and Equisetum. Sequence from the inverted repeat region of strawberry and peach plastome was obtained, annotated and analyzed. Additionally, a polymorphic region identified from gel electrophoresis was sequenced from tomato and Amaranthus. Sequence analysis revealed large deletions in these species relative to tobacco plastome thus exhibiting the utility of this method for structural and

  1. The value of two whole genome amplification protocols for single shed hair genotyping%两种全基因组扩增技术对单根毛发DNA检验效能的研究

    Institute of Scientific and Technical Information of China (English)

    邓建强; 刘宝琴; 蔡继峰; 李文慧; 龙仁; 侯一平

    2012-01-01

    Objective To estimate the practical value of degenerate oligonucleotide -primed PCR(DOP-PCR)and primer extension pre -amplification PCR (PEP-PCR)protocols in genotyping of single shed hair. Methods DNA samples obtained from single shed hair were genotyped by three ways: the first one was that the DNA saples were genotyped directly by Profiler Plus kit;the second and thord ones were that the original DNA samples were amplified by DOP-PCR and PEP-PCR protocol respectively,then their products were genolyped by Profiler Plug kits as first way. The results of three ways were compared. Results DOP-PCR and PEP-PCR protocols improved accuracy and informamtion for single shed hair genotyping. Conclusions DOP-PCR and PEP-PCR protocol have practical values for STR genotyping of single hair samples.%目的 研究简并寡核苷酸引物PCR(degeneraie oligonucleotide-primed PCR,DOP-PCR)和扩增前引物延伸PCR(primer extension pre - amplification PCR,PEP - PCR)对单根毛发检验的法医学价值.方法 以三种方法对单根毛发样本进行STR分型,第一种方法直接对提取DNA用Profiler Plus试剂盒进行STR分型,第二种和第三种方法是先对提取的DNA样本分别进行DOP-PCR和PEP-PCR扩增处理,然后对其产物用Profiler Plus试剂盒进行STR分型,对两种方法的效能进行比较评价.结果 DOP-PCR和PEP-PCR技术增加了单根毛发STR分型的准确宰和信息量.结论 DOP-PCR和PEP-PCR技术对单根自然脱落毛发的检验具有实用价值.

  2. Integrated Amplification Microarrays for Infectious Disease Diagnostics

    Directory of Open Access Journals (Sweden)

    Darrell P. Chandler

    2012-11-01

    Full Text Available This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.

  3. Mutualism breakdown by amplification of Wolbachia genes.

    Science.gov (United States)

    Chrostek, Ewa; Teixeira, Luis

    2015-02-01

    Most insect species are associated with vertically transmitted endosymbionts. Because of the mode of transmission, the fitness of these symbionts is dependent on the fitness of the hosts. Therefore, these endosymbionts need to control their proliferation in order to minimize their cost for the host. The genetic bases and mechanisms of this regulation remain largely undetermined. The maternally inherited bacteria of the genus Wolbachia are the most common endosymbionts of insects, providing some of them with fitness benefits. In Drosophila melanogaster, Wolbachia wMelPop is a unique virulent variant that proliferates massively in the hosts and shortens their lifespan. The genetic bases of wMelPop virulence are unknown, and their identification would allow a better understanding of how Wolbachia levels are regulated. Here we show that amplification of a region containing eight Wolbachia genes, called Octomom, is responsible for wMelPop virulence. Using Drosophila lines selected for carrying Wolbachia with different Octomom copy numbers, we demonstrate that the number of Octomom copies determines Wolbachia titers and the strength of the lethal phenotype. Octomom amplification is unstable, and reversion of copy number to one reverts all the phenotypes. Our results provide a link between genotype and phenotype in Wolbachia and identify a genomic region regulating Wolbachia proliferation. We also prove that these bacteria can evolve rapidly. Rapid evolution by changes in gene copy number may be common in endosymbionts with a high number of mobile elements and other repeated regions. Understanding wMelPop pathogenicity and variability also allows researchers to better control and predict the outcome of releasing mosquitoes transinfected with this variant to block human vector-borne diseases. Our results show that transition from a mutualist to a pathogen may occur because of a single genomic change in the endosymbiont. This implies that there must be constant selection on

  4. Genome profiling of ERBB2-amplified breast cancers

    Directory of Open Access Journals (Sweden)

    Ayed Farhat

    2010-10-01

    Full Text Available Abstract Background Around 20% of breast cancers (BC show ERBB2 gene amplification and overexpression of the ERBB2 tyrosine kinase receptor. They are associated with a poor prognosis but can benefit from targeted therapy. A better knowledge of these BCs, genomically and biologically heterogeneous, may help understand their behavior and design new therapeutic strategies. Methods We defined the high resolution genome and gene expression profiles of 54 ERBB2-amplified BCs using 244K oligonucleotide array-comparative genomic hybridization and whole-genome DNA microarrays. Expression of ERBB2, phosphorylated ERBB2, EGFR, IGF1R and FOXA1 proteins was assessed by immunohistochemistry to evaluate the functional ERBB2 status and identify co-expressions. Results First, we identified the ERBB2-C17orf37-GRB7 genomic segment as the minimal common 17q12-q21 amplicon, and CRKRS and IKZF3 as the most frequent centromeric and telomeric amplicon borders, respectively. Second, GISTIC analysis identified 17 other genome regions affected by copy number aberration (CNA (amplifications, gains, losses. The expression of 37 genes of these regions was deregulated. Third, two types of heterogeneity were observed in ERBB2-amplified BCs. The genomic profiles of estrogen receptor-postive (ER+ and negative (ER- ERBB2-amplified BCs were different. The WNT/β-catenin signaling pathway was involved in ER- ERBB2-amplified BCs, and PVT1 and TRPS1 were candidate oncogenes associated with ER+ ERBB2-amplified BCs. The size of the ERBB2 amplicon was different in inflammatory (IBC and non-inflammatory BCs. ERBB2-amplified IBCs were characterized by the downregulated and upregulated mRNA expression of ten and two genes in proportion to CNA, respectively. IHC results showed (i a linear relationship between ERBB2 gene amplification and its gene and protein expressions with a good correlation between ERBB2 expression and phosphorylation status; (ii a potential signaling cross-talk between

  5. Uncertainties in Site Amplification Estimation

    Science.gov (United States)

    Cramer, C. H.; Bonilla, F.; Hartzell, S.

    2004-12-01

    Typically geophysical profiles (layer thickness, velocity, density, Q) and dynamic soil properties (modulus and damping versus strain curves) are used with appropriate input ground motions in a soil response computer code to estimate site amplification. Uncertainties in observations can be used to generate a distribution of possible site amplifications. The biggest sources of uncertainty in site amplifications estimates are the uncertainties in (1) input ground motions, (2) shear-wave velocities (Vs), (3) dynamic soil properties, (4) soil response code used, and (5) dynamic pore pressure effects. A study of site amplification was conducted for the 1 km thick Mississippi embayment sediments beneath Memphis, Tennessee (see USGS OFR 04-1294 on the web). In this study, the first three sources of uncertainty resulted in a combined coefficient of variation of 10 to 60 percent. The choice of soil response computer program can lead to uncertainties in median estimates of +/- 50 percent. Dynamic pore pressure effects due to the passing of seismic waves in saturated soft sediments are normally not considered in site-amplification studies and can contribute further large uncertainties in site amplification estimates. The effects may range from dilatancy and high-frequency amplification (such as observed at some sites during the 1993 Kushiro-Oki, Japan and 2001 Nisqually, Washington earthquakes) or general soil failure and deamplification of ground motions (such as observed at Treasure Island during the 1989 Loma Prieta, California earthquake). Examples of two case studies using geotechnical data for downhole arrays in Kushiro, Japan and the Wildlife Refuge, California using one dynamic code, NOAH, will be presented as examples of modeling uncertainties associated with these effects. Additionally, an example of inversion for estimates of in-situ dilatancy-related geotechnical modeling parameters will be presented for the Kushiro, Japan site.

  6. Double trouble: medical implications of genetic duplication and amplification in bacteria.

    Science.gov (United States)

    Craven, Sarah H; Neidle, Ellen L

    2007-06-01

    Gene amplification allows organisms to adapt to changing environmental conditions. This type of increased gene dosage confers selectable benefits, typically by augmenting protein production. Gene amplification is a reversible process that does not require permanent genetic change. Although transient, altered gene dosage has significant medical impact. Recent examples of amplification in bacteria, described here, affect human disease by modifying antibiotic resistance, the virulence of pathogens, vaccine efficacy and antibiotic biosynthesis. Amplification is usually a two-step process whereby genetic duplication (step one) promotes further increases in copy number (step two). Both steps have important evolutionary significance for the emergence of innovative gene functions. Recent genome sequence analyses illustrate how genome plasticity can affect the evolution and immunogenic properties of bacterial pathogens.

  7. c-MYC-induced genomic instability

    National Research Council Canada - National Science Library

    Kuzyk, Alexandra; Mai, Sabine

    2014-01-01

    ...% of all tumors have some form of c-MYC gene dysregulation, which affects gene regulation, microRNA expression profiles, large genomic amplifications, and the overall organization of the nucleus...

  8. Exponential quadruplex priming amplification for DNA-based isothermal diagnostics.

    Science.gov (United States)

    Partskhaladze, Tamar; Taylor, Adam; Lomidze, Levan; Gvarjaladze, David; Kankia, Besik

    2015-02-01

    Polymerase chain reaction (PCR) is a method of choice for molecular diagnostics. However, PCR relies on thermal cycling, which is not compatible with the goals of point-of-care diagnostics. A simple strategy to turn PCR into an isothermal method would be to use specific primers, which upon polymerase elongation can self-dissociate from the primer-binding sites. We recently demonstrated that a monomolecular DNA quadruplex, GGGTGGGTGGGTGGG, meets these requirements, which led to the development of the linear versions of quadruplex priming amplification (QPA). Here we demonstrate exponential version of isothermal QPA, which allows an unprecedented 10(10)-fold amplification of DNA signal in less than 40 min.

  9. Sensitivity of genome-wide-association signals to phenotyping strategy: the PROP-TAS2R38 taste association as a benchmark.

    Directory of Open Access Journals (Sweden)

    Ulrich K Genick

    Full Text Available Natural genetic variation can have a pronounced influence on human taste perception, which in turn may influence food preference and dietary choice. Genome-wide association studies represent a powerful tool to understand this influence. To help optimize the design of future genome-wide-association studies on human taste perception we have used the well-known TAS2R38-PROP association as a tool to determine the relative power and efficiency of different phenotyping and data-analysis strategies. The results show that the choice of both data collection and data processing schemes can have a very substantial impact on the power to detect genotypic variation that affects chemosensory perception. Based on these results we provide practical guidelines for the design of future GWAS studies on chemosensory phenotypes. Moreover, in addition to the TAS2R38 gene past studies have implicated a number of other genetic loci to affect taste sensitivity to PROP and the related bitter compound PTC. None of these other locations showed genome-wide significant associations in our study. To facilitate further, target-gene driven, studies on PROP taste perception we provide the genome-wide list of p-values for all SNPs genotyped in the current study.

  10. Ligation-Independent Mechanism of Multiplex Ligation-Dependent Probe Amplification

    OpenAIRE

    Uno, Naoki; Yanagihara, Katsunori

    2014-01-01

    Multiplex ligation-dependent probe amplification (MLPA) is a widely used technique for detecting genomic structural variants. The technique is based on hybridization and ligation, followed by amplification of the ligation products. Therefore, ligation is considered a fundamental process that determines the feasibility and fidelity of MLPA. However, despite the widespread use of this technique, its reaction mechanism has not been fully analyzed. Herein, we describe a ligation-independent pathw...

  11. Dihydrofolate reductase amplification and sensitization to methotrexate of methotrexate-resistant colon cancer cells

    DEFF Research Database (Denmark)

    Morales Torres, Christina; García, Maria J; Ribas, Maria;

    2009-01-01

    Gene amplification is one of the most frequent manifestations of genomic instability in human tumors and plays an important role in tumor progression and acquisition of drug resistance. To better understand the factors involved in acquired resistance to cytotoxic drugs via gene amplification, we ...... to a second round of treatment if left untreated during a sufficient period of time. [Mol Cancer Ther 2009;8(2):424-32]....

  12. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer.

    Directory of Open Access Journals (Sweden)

    Kevin A Kwei

    2008-05-01

    Full Text Available Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein levels, and strong immunostaining was observed in 25 of 54 (46% primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and identify GATA6 as a candidate lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies.

  13. Application of a Novel "Pan-Genome"-Based Strategy for Assigning RNAseq Transcript Reads to Staphylococcus aureus Strains.

    Science.gov (United States)

    Chaves-Moreno, Diego; Wos-Oxley, Melissa L; Jáuregui, Ruy; Medina, Eva; Oxley, Andrew P A; Pieper, Dietmar H

    2015-01-01

    Understanding the behaviour of opportunistic pathogens such as Staphylococcus aureus in their natural human niche holds great medical interest. With the development of sensitive molecular methods and deep-sequencing technology, it is now possible to robustly assess the global transcriptome of bacterial species in their human habitat. However, as the genomes of the colonizing strains are often not available compiling the pan-genome for the species of interest may provide an effective method to reliably and rapidly compile the transcriptome of a bacterial species. The pan-genome of S. aureus and its associated core and accessory components were compiled based on 25 genomes and comprises a total of 65,557 proteins clustering into 4,198 Orthologous Groups (OGs). The generated gene catalogue was used to assign RNAseq-derived sequence reads to S. aureus in a variety of in vitro and in vivo samples. In all cases, the number of reads that could be assigned to S. aureus was greater using the OG database than using a reference genome. Growth of two S. aureus strains in synthetic nasal medium confirmed that both strains experienced strong iron starvation. Traits such as purine metabolism appeared to be more affected in a typical nasal colonizer than in a strain representative of the S. aureus USA300 lineage. Mapping sequencing reads from a metatranscriptome generated from the human anterior nares allowed the identification of genes highly expressed by S. aureus in vivo. The OG database generated in this study represents a useful tool to obtain a snapshot of the functional attributes of S. aureus under different in vitro and in vivo conditions. The approach proved to be advantageous to assign sequencing reads to bacterial strains when RNAseq data is derived from samples where strain information and/or the corresponding genome/s are unavailable.

  14. Application of a Novel "Pan-Genome"-Based Strategy for Assigning RNAseq Transcript Reads to Staphylococcus aureus Strains.

    Directory of Open Access Journals (Sweden)

    Diego Chaves-Moreno

    Full Text Available Understanding the behaviour of opportunistic pathogens such as Staphylococcus aureus in their natural human niche holds great medical interest. With the development of sensitive molecular methods and deep-sequencing technology, it is now possible to robustly assess the global transcriptome of bacterial species in their human habitat. However, as the genomes of the colonizing strains are often not available compiling the pan-genome for the species of interest may provide an effective method to reliably and rapidly compile the transcriptome of a bacterial species. The pan-genome of S. aureus and its associated core and accessory components were compiled based on 25 genomes and comprises a total of 65,557 proteins clustering into 4,198 Orthologous Groups (OGs. The generated gene catalogue was used to assign RNAseq-derived sequence reads to S. aureus in a variety of in vitro and in vivo samples. In all cases, the number of reads that could be assigned to S. aureus was greater using the OG database than using a reference genome. Growth of two S. aureus strains in synthetic nasal medium confirmed that both strains experienced strong iron starvation. Traits such as purine metabolism appeared to be more affected in a typical nasal colonizer than in a strain representative of the S. aureus USA300 lineage. Mapping sequencing reads from a metatranscriptome generated from the human anterior nares allowed the identification of genes highly expressed by S. aureus in vivo. The OG database generated in this study represents a useful tool to obtain a snapshot of the functional attributes of S. aureus under different in vitro and in vivo conditions. The approach proved to be advantageous to assign sequencing reads to bacterial strains when RNAseq data is derived from samples where strain information and/or the corresponding genome/s are unavailable.

  15. Genomic insights into strategies used by Xanthomonas albilineans with its reduced artillery to spread within sugarcane xylem vessels

    Directory of Open Access Journals (Sweden)

    Pieretti Isabelle

    2012-11-01

    Full Text Available Abstract Background Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa—another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH, genomic features of two strains differing in pathogenicity. Results Comparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the “artillery” of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity. Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism

  16. Identification of the maize gravitropism gene lazy plant1 by a transposon-tagging genome resequencing strategy.

    Directory of Open Access Journals (Sweden)

    Thomas P Howard

    Full Text Available Since their initial discovery, transposons have been widely used as mutagens for forward and reverse genetic screens in a range of organisms. The problems of high copy number and sequence divergence among related transposons have often limited the efficiency at which tagged genes can be identified. A method was developed to identity the locations of Mutator (Mu transposons in the Zea mays genome using a simple enrichment method combined with genome resequencing to identify transposon junction fragments. The sequencing library was prepared from genomic DNA by digesting with a restriction enzyme that cuts within a perfectly conserved motif of the Mu terminal inverted repeats (TIR. Paired-end reads containing Mu TIR sequences were computationally identified and chromosomal sequences flanking the transposon were mapped to the maize reference genome. This method has been used to identify Mu insertions in a number of alleles and to isolate the previously unidentified lazy plant1 (la1 gene. The la1 gene is required for the negatively gravitropic response of shoots and mutant plants lack the ability to sense gravity. Using bioinformatic and fluorescence microscopy approaches, we show that the la1 gene encodes a cell membrane and nuclear localized protein. Our Mu-Taq method is readily adaptable to identify the genomic locations of any insertion of a known sequence in any organism using any sequencing platform.

  17. STRATEGISK STYRNING AV PORTFÖLJER MED UTVECKLINGSPROJEKT : EN MODELL SOM GENOM STRATEGISKA STYRMEDEL OCH PROJEKTPARAMETRAR KOPPLAR SAMMAN PROJEKTPORTFÖLJHANTERING MED STRATEGI

    OpenAIRE

    Hall, Johan; Fraenkel, Patrick

    2016-01-01

    Examensarbetets mål har varit att utveckla en modell för att värdera och prioritera utvecklingsprojekt som verkar för att projektportföljen som helhet ska stödja företagets strategier. För att uppnå målet gavs studien syftet att förklara en process samt vilka styrmedel och parametrar som skapar en projektportföljhantering med koppling till strategin. Bakgrunden till syftet grundas både empiriskt och i vetenskapen. Den empiriska grunden sammanfattas i fyra utmaningar som identifierats genom en...

  18. Identification of Unbalanced Aberrations in the Genome of Equine Sarcoid Cells Using CGH Technique

    National Research Council Canada - National Science Library

    Monika Bugno-Poniewierska; Beata Staroń; Leszek Potocki; Artur Gurgul; Maciej Wnuk

    2016-01-01

    ...) technique identifying the unbalanced chromosome aberrations was used to analyze the genome of equine sarcoid cells and to diagnose the chromosome rearrangements involving large deletions or amplification...

  19. Isothermal Amplification of Insect DNA

    Science.gov (United States)

    The loop-mediated isothermal amplification of DNA (LAMP) method can amplify a target DNA sequence at a constant temperature in about one hour. LAMP has broad application in agriculture and medicine because of the need for rapid and inexpensive diagnoses. LAMP eliminates the need for temperature cycl...

  20. The Genomic Sequence of the Oral Pathobiont Strain NI1060 Reveals Unique Strategies for Bacterial Competition and Pathogenicity.

    Directory of Open Access Journals (Sweden)

    Youssef Darzi

    Full Text Available Strain NI1060 is an oral bacterium responsible for periodontitis in a murine ligature-induced disease model. To better understand its pathogenicity, we have determined the complete sequence of its 2,553,982 bp genome. Although closely related to Pasteurella pneumotropica, a pneumonia-associated rodent commensal based on its 16S rRNA, the NI1060 genomic content suggests that they are different species thriving on different energy sources via alternative metabolic pathways. Genomic and phylogenetic analyses showed that strain NI1060 is distinct from the genera currently described in the family Pasteurellaceae, and is likely to represent a novel species. In addition, we found putative virulence genes involved in lipooligosaccharide synthesis, adhesins and bacteriotoxic proteins. These genes are potentially important for host adaption and for the induction of dysbiosis through bacterial competition and pathogenicity. Importantly, strain NI1060 strongly stimulates Nod1, an innate immune receptor, but is defective in two peptidoglycan recycling genes due to a frameshift mutation. The in-depth analysis of its genome thus provides critical insights for the development of NI1060 as a prime model system for infectious disease.

  1. A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-A Response Regulators

    NARCIS (Netherlands)

    Camp, Op den R.; Mita, De S.; Lillo, A.; Cao, Q.; Limpens, E.H.M.; Bisseling, T.; Geurts, R.

    2011-01-01

    Legumes host their rhizobium symbiont in novel root organs, called nodules. Nodules originate from differentiated root cortical cells that de-differentiate and subsequently form nodule primordia, a process controlled by cytokinin. A whole genome duplication (WGD) has occurred at the root of the legu

  2. A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-A Response Regulators

    NARCIS (Netherlands)

    Camp, Op den R.; Mita, De S.; Lillo, A.; Cao, Q.; Limpens, E.H.M.; Bisseling, T.; Geurts, R.

    2011-01-01

    Legumes host their rhizobium symbiont in novel root organs, called nodules. Nodules originate from differentiated root cortical cells that de-differentiate and subsequently form nodule primordia, a process controlled by cytokinin. A whole genome duplication (WGD) has occurred at the root of the

  3. Strategies for imputation to whole genome sequence using a single or multi-breed reference population in cattle

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Guldbrandtsen, Bernt; Sahana, Goutam

    2014-01-01

    Background The advent of low cost next generation sequencing has made it possible to sequence a large number of dairy and beef bulls which can be used as a reference for imputation of whole genome sequence data. The aim of this study was to investigate the accuracy and speed of imputation from...

  4. Diagnosis of brugian filariasis by loop-mediated isothermal amplification.

    Directory of Open Access Journals (Sweden)

    Catherine B Poole

    Full Text Available In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.

  5. Enhanced sequencing coverage with digital droplet multiple displacement amplification.

    Science.gov (United States)

    Sidore, Angus M; Lan, Freeman; Lim, Shaun W; Abate, Adam R

    2016-04-20

    Sequencing small quantities of DNA is important for applications ranging from the assembly of uncultivable microbial genomes to the identification of cancer-associated mutations. To obtain sufficient quantities of DNA for sequencing, the small amount of starting material must be amplified significantly. However, existing methods often yield errors or non-uniform coverage, reducing sequencing data quality. Here, we describe digital droplet multiple displacement amplification, a method that enables massive amplification of low-input material while maintaining sequence accuracy and uniformity. The low-input material is compartmentalized as single molecules in millions of picoliter droplets. Because the molecules are isolated in compartments, they amplify to saturation without competing for resources; this yields uniform representation of all sequences in the final product and, in turn, enhances the quality of the sequence data. We demonstrate the ability to uniformly amplify the genomes of single Escherichia coli cells, comprising just 4.7 fg of starting DNA, and obtain sequencing coverage distributions that rival that of unamplified material. Digital droplet multiple displacement amplification provides a simple and effective method for amplifying minute amounts of DNA for accurate and uniform sequencing.

  6. Cephalopod genomics

    DEFF Research Database (Denmark)

    Albertin, Caroline B.; Bonnaud, Laure; Brown, C. Titus

    2012-01-01

    The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, ``Paths to Cephalopod Genomics-Strategies, Choices, Organization,'' held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria......, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers...... active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described...

  7. A feasible strategy of preimplantation genetic diagnosis for carriers with chromosomal translocation: Using blastocyst biopsy and array comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Chu-Chun Huang

    2013-09-01

    Conclusion: Our study demonstrates an effective PGD strategy with promising outcomes. Blastocyst biopsy can retrieve more genetic material and may provide more reliable results, and aCGH offers not only detection of chromosomal translocation but also more comprehensive analysis of 24 chromosomes than traditional FISH. More cases are needed to verify our results and this strategy might be considered in general clinical practice.

  8. Cephalopod genomics

    DEFF Research Database (Denmark)

    Albertin, Caroline B.; Bonnaud, Laure; Brown, C. Titus

    2012-01-01

    The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, ``Paths to Cephalopod Genomics-Strategies, Choices, Organization,'' held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austri...

  9. Next-generation sequencing-based 5' rapid amplification of cDNA ends for alternative promoters.

    Science.gov (United States)

    Perera, Bambarendage P U; Kim, Joomyeong

    2016-02-01

    Mammalian genomes contain many unknown alternative first exons and promoters. Thus, we have modified the existing 5'RACE (5' rapid amplification of cDNA ends) approach into a next-generation sequencing (NGS)-based new protocol that can identify these alternative promoters. This protocol has incorporated two main ideas: (i) 5'RACE starting from the known second exons of genes and (ii) NGS-based sequencing of the subsequent cDNA products. This protocol also provides a bioinformatics strategy that processes the sequence reads from NGS runs. This protocol has successfully identified several alternative promoters for an imprinted gene, PEG3. Overall, this NGS-based 5'RACE protocol is a sensitive and reliable method for detecting low-abundant transcripts and promoters.

  10. Miniaturized isothermal nucleic acid amplification, a review.

    Science.gov (United States)

    Asiello, Peter J; Baeumner, Antje J

    2011-04-21

    Micro-Total Analysis Systems (µTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.

  11. Genome evolution of Oryza

    Directory of Open Access Journals (Sweden)

    Tieyan Liu

    2014-01-01

    Full Text Available The genus Oryza is composed of approximately 24 species. Wild species of Oryza contain a largely untapped resource of agronomically important genes. As an increasing number of genomes of wild rice species have been or will be sequenced, Oryza is becoming a model system for plant comparative, functional and evolutionary genomics studies. Comparative analyses of large genomic regions and whole-genome sequences have revealed molecular mechanisms involved in genome size variation, gene movement, genome evolution of polyploids, transition of euchromatin to heterochromatin and centromere evolution in the genus Oryza. Transposon activity and removal of transposable elements by unequal recombination or illegitimate recombination are two important factors contributing to expansion or contraction of Oryza genomes. Double-strand break repair mediated gene movement, especially non-homologous end joining, is an important source of non-colinear genes. Transition of euchromatin to heterochromatin is accompanied by transposable element amplification, segmental and tandem duplication of genic segments, and acquisition of heterochromatic genes from other genomic locations. Comparative analyses of multiple genomes dramatically improve the precision and sensitivity of evolutionary inference than single-genome analyses can provide. Further investigations on the impact of structural variation, lineage-specific genes and evolution of agriculturally important genes on phenotype diversity and adaptation in the genus Oryza should facilitate molecular breeding and genetic improvement of rice.

  12. Analysis of ventilator-associated pneumonia infection route by genome macrorestriction-pulsed-field gel electrophoresis and its prevention with combined nursing strategies.

    Science.gov (United States)

    Wang, Xiaodong; Wang, Junping; Li, Jing; Wang, Jing

    2014-12-01

    The aim of the present study was to explore the infection route of ventilator-associated pneumonia (VAP) and assess the effectiveness of a combined nursing strategy to prevent VAP in intensive care units. Bacteria from the gastric juice and drainage from the hypolarynx and lower respiratory tracts of patients with VAP were analyzed using genome macrorestriction-pulsed-field gel electrophoresis (GM-PFGE). A total of 124 patients with tracheal intubation were placed in the intervention group and were treated with a combined nursing strategy, comprising mosapride (gastric motility stimulant) administration and semi-reclining positioning. A total of 112 intubated patients were placed in the control group and received routine nursing care. The incidence rate of VAP, days of ventilation and mortality rate of patients were compared between the two groups. The GM-PFGE fingerprinting results of three strains of Pseudomonas aeruginosa from the gastric juice, subglottic secretion drainage and drainage of the lower respiratory tract in patients with VAP were similar across groups. The number of days spent on a ventilator by patients in the intervention group (7.37±5.32 days) was lower compared with that by patients in the control group (12.34±4.98 days) (Pnursing strategy (Pnursing strategy of gastric motility stimulant administration and the adoption of a semi-reclining position was effective in preventing VAP by reducing the occurrence of GER.

  13. Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction.

    Directory of Open Access Journals (Sweden)

    Matthias Habjan

    Full Text Available Innate immunity is critically dependent on the rapid production of interferon in response to intruding viruses. The intracellular pathogen recognition receptors RIG-I and MDA5 are essential for interferon induction by viral RNAs containing 5' triphosphates or double-stranded structures, respectively. Viruses with a negative-stranded RNA genome are an important group of pathogens causing emerging and re-emerging diseases. We investigated the ability of genomic RNAs from substantial representatives of this virus group to induce interferon via RIG-I or MDA5. RNAs isolated from particles of Ebola virus, Nipah virus, Lassa virus, and Rift Valley fever virus strongly activated the interferon-beta promoter. Knockdown experiments demonstrated that interferon induction depended on RIG-I, but not MDA5, and phosphatase treatment revealed a requirement for the RNA 5' triphosphate group. In contrast, genomic RNAs of Hantaan virus, Crimean-Congo hemorrhagic fever virus and Borna disease virus did not trigger interferon induction. Sensitivity of these RNAs to a 5' monophosphate-specific exonuclease indicates that the RIG-I-activating 5' triphosphate group was removed post-transcriptionally by a viral function. Consequently, RIG-I is unable to bind the RNAs of Hantaan virus, Crimean-Congo hemorrhagic fever virus and Borna disease virus. These results establish RIG-I as a major intracellular recognition receptor for the genome of most negative-strand RNA viruses and define the cleavage of triphosphates at the RNA 5' end as a strategy of viruses to evade the innate immune response.

  14. DC-driven thermoelectric Peltier device for precise DNA amplification

    Science.gov (United States)

    Yamaguchi, Shigeo; Suzuki, Tadzunu; Inoue, Kazuhito; Azumi, Yoshitaka

    2015-05-01

    Using a DC-driven Peltier device, we fabricated a DNA amplification system [polymerase chain reaction (PCR) system] with the aim of increasing its speed and precision. The Peltier device had a well block sandwiched by Bi2Se0.37Te2.36 as an N-type thermoelectric material and Bi0.59Sb1.30Te3 as a P-type material. The well block was directly controlled by the electric current, leading to a high thermal response. Using the Peltier device with the well block, we performed thermal cycles of a PCR, and we demonstrated that our PCR system produces a smaller amount of nonspecific products for the genome DNA (gDNA) of Arabidopsis thaliana, leading to a more precise DNA amplification system.

  15. Multigene amplification and massively parallel sequencing for cancer mutation discovery

    Science.gov (United States)

    Dahl, Fredrik; Stenberg, Johan; Fredriksson, Simon; Welch, Katrina; Zhang, Michael; Nilsson, Mats; Bicknell, David; Bodmer, Walter F.; Davis, Ronald W.; Ji, Hanlee

    2007-01-01

    We have developed a procedure for massively parallel resequencing of multiple human genes by combining a highly multiplexed and target-specific amplification process with a high-throughput parallel sequencing technology. The amplification process is based on oligonucleotide constructs, called selectors, that guide the circularization of specific DNA target regions. Subsequently, the circularized target sequences are amplified in multiplex and analyzed by using a highly parallel sequencing-by-synthesis technology. As a proof-of-concept study, we demonstrate parallel resequencing of 10 cancer genes covering 177 exons with average sequence coverage per sample of 93%. Seven cancer cell lines and one normal genomic DNA sample were studied with multiple mutations and polymorphisms identified among the 10 genes. Mutations and polymorphisms in the TP53 gene were confirmed by traditional sequencing. PMID:17517648

  16. Bacterial Genome Adaptation to Niches: Divergence of the Potential Virulence Genes in Three Burkholderia Species of Different Survival Strategies

    Science.gov (United States)

    2005-12-01

    species For comparative genomic analysis with pathogenic Bm and Bp, we produced finished sequence of the closely related nonpathogenic soil bacterium...1999. 11. Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, Kinoshita R, Spratt BG: Multilocus sequence typing and evolutionary rela- tionships...5223):496-512. 34. Waterman MS: Computer analysis of nucleic acid sequences . Methods Enzymol 1988, 164:765-793. 35. Bateman A, Birney E, Durbin R, Eddy

  17. The Genome of the Obligately Intracellular Bacterium Ehrlichia canis Reveals Themes of Complex Membrane Structure and Immune Evasion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Doyle, C Kuyler [Center for Biodenfense and Emerging Infectious Diseases; Lykidis, A [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Francino, M P [U.S. Department of Energy, Joint Genome Institute; Chain, Patrick S [ORNL; Shin, M [U.S. Department of Energy, Joint Genome Institute; Malfatti, Stephanie [Lawrence Livermore National Laboratory (LLNL); Larimer, Frank W [ORNL; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Detter, J C [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Yu, X J [Center for Biodenfense and Emerging Infectious Diseases; Walker, D H [Center for Biodenfense and Emerging Infectious Diseases; McBride, J W [Center for Biodenfense and Emerging Infectious Diseases; Kyripides, N C [U.S. Department of Energy, Joint Genome Institute

    2006-01-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, {alpha}-proteobacterium, is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, 17 putative pseudogenes, and a substantial proportion of noncoding sequence (27%). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences and a unique serine-threonine bias associated with the potential for O glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associated with immune evasion were identified, one of which contains poly(G-C) tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Genes associated with pathogen-host interactions were identified, including a small group encoding proteins (n = 12) with tandem repeats and another group encoding proteins with eukaryote-like ankyrin domains (n = 7).

  18. Optimizing Training Population Size and Genotyping Strategy for Genomic Prediction Using Association Study Results and Pedigree Information. A Case of Study in Advanced Wheat Breeding Lines

    Science.gov (United States)

    Jahoor, Ahmed; Orabi, Jihad; Andersen, Jeppe R.; Janss, Luc L.; Jensen, Just

    2017-01-01

    Wheat breeding programs generate a large amount of variation which cannot be completely explored because of limited phenotyping throughput. Genomic prediction (GP) has been proposed as a new tool which provides breeding values estimations without the need of phenotyping all the material produced but only a subset of it named training population (TP). However, genotyping of all the accessions under analysis is needed and, therefore, optimizing TP dimension and genotyping strategy is pivotal to implement GP in commercial breeding schemes. Here, we explored the optimum TP size and we integrated pedigree records and genome wide association studies (GWAS) results to optimize the genotyping strategy. A total of 988 advanced wheat breeding lines were genotyped with the Illumina 15K SNPs wheat chip and phenotyped across several years and locations for yield, lodging, and starch content. Cross-validation using the largest possible TP size and all the SNPs available after editing (~11k), yielded predictive abilities (rGP) ranging between 0.5–0.6. In order to explore the Training population size, rGP were computed using progressively smaller TP. These exercises showed that TP of around 700 lines were enough to yield the highest observed rGP. Moreover, rGP were calculated by randomly reducing the SNPs number. This showed that around 1K markers were enough to reach the highest observed rGP. GWAS was used to identify markers associated with the traits analyzed. A GWAS-based selection of SNPs resulted in increased rGP when compared with random selection and few hundreds SNPs were sufficient to obtain the highest observed rGP. For each of these scenarios, advantages of adding the pedigree information were shown. Our results indicate that moderate TP sizes were enough to yield high rGP and that pedigree information and GWAS results can be used to greatly optimize the genotyping strategy. PMID:28081208

  19. Sequencing intractable DNA to close microbial genomes.

    Science.gov (United States)

    Hurt, Richard A; Brown, Steven D; Podar, Mircea; Palumbo, Anthony V; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  20. Sequencing intractable DNA to close microbial genomes.

    Directory of Open Access Journals (Sweden)

    Richard A Hurt

    Full Text Available Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps and the Desulfovibrio africanus genome (1 intractable gap. The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  1. Spheromak Impedance and Current Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-31

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.

  2. Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes

    Science.gov (United States)

    WU, F.-H.; KAN, D.-P.; LEE, S.-B.; DANIELL, H.; LEE, Y.-W.; LIN, C.-C.; LIN, N.-S.; LIN, C.-S.

    2009-01-01

    Summary Although bamboo is one of the most important woody crops in Asia, information on its genome is still very limited. To investigate the relationship among Poaceae members and to understand the mechanism of albino mutant generation in vitro, the complete chloroplast genome of two economically important bamboo species, Dendrocalamus latiflorus Munro and Bambusa oldhamii Munro, was determined employing a strategy that involved polymerase chain reaction (PCR) amplification using 443 novel primers designed to amplify the chloroplast genome of these two species. The lengths of the B. oldhamii and D. latiflorus chloroplast genomes are 139,350 and 139,365 bp, respectively. The organization structure and the gene order of these two bamboos are identical to other members of Poaceae. Highly conserved chloroplast genomes of Poaceae facilitated sequencing by the PCR method. Phylogenetic analysis using both chloroplast genomes confirmed the results obtained from studies on chromosome number and reproductive organ morphology. There are 23 gaps, insertions/deletions > 100 bp, in the chloroplast genomes of 10 genera of Poaceae compared in this study. The phylogenetic distribution of these gaps corresponds to their taxonomic placement. The sequences of these two chloroplast genomes provide useful information for studying bamboo evolution, ecology and biotechnology. PMID:19324693

  3. Comparative genomic analysis of Saccharomyces cerevisiae yeasts isolated from fermentations of traditional beverages unveils different adaptive strategies.

    Science.gov (United States)

    Ibáñez, Clara; Pérez-Torrado, Roberto; Chiva, Rosana; Guillamón, José Manuel; Barrio, Eladio; Querol, Amparo

    2014-02-03

    Saccharomyces cerevisiae strains are the main responsible of most traditional alcohol fermentation processes performed around the world. The characteristics of the diverse traditional fermentations are very different according to their sugar composition, temperature, pH or nitrogen sources. During the adaptation of yeasts to these new environments provided by human activity, their different compositions likely imposed selective pressures that shaped the S. cerevisiae genome. In the present work we performed a comparative genomic hybridization analysis to explore the genome constitution of six S. cerevisiae strains isolated from different traditional fermentations (masato, mescal, cachaça, sake, wine, and sherry wine) and one natural strain. Our results indicate that gene copy numbers (GCN) are very variable among strains, and most of them were observed in subtelomeric and intrachromosomal gene families involved in metabolic functions related to cellular homeostasis, cell-to-cell interactions, and transport of solutes such as ions, sugars and metals. In many cases, these genes are not essential but they can play an important role in the adaptation to new environmental conditions. However, the most interesting result is the association observed between GCN changes in genes involved in the nitrogen metabolism and the availability of nitrogen sources in the different traditional fermentation processes. This is clearly illustrated by the differences in copy numbers not only in gene PUT1, the main player in the assimilation of proline as a nitrogen source, but also in CAR2, involved in arginine catabolism. Strains isolated from fermentations where proline is more abundant contain a higher number of PUT1 copies and are more efficient in assimilating this amino acid as a nitrogen source. A strain isolated from sugarcane juice fermentations, in which arginine is a rare amino acid, contains less copies of CAR2 and showed low efficiency in arginine assimilation. These

  4. The genome sequences of Cellulomonas fimi and "Cellvibrio gilvus" reveal the cellulolytic strategies of two facultative anaerobes, transfer of "Cellvibrio gilvus" to the genus Cellulomonas, and proposal of Cellulomonas gilvus sp. nov.

    Directory of Open Access Journals (Sweden)

    Melissa R Christopherson

    Full Text Available Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484(T. For comparative purposes, we also sequenced the genome of the aerobic cellulolytic "Cellvibrio gilvus" ATCC 13127(T. An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that "Cellvibrio gilvus" belongs to the genus Cellulomonas. We thus propose to assign "Cellvibrio gilvus" to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482(T showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies.

  5. Recent Perspectives on Genome, Transmission, Clinical Manifestation, Diagnosis, Therapeutic Strategies, Vaccine Developments, and Challenges of Zika Virus Research

    Directory of Open Access Journals (Sweden)

    Apoorva Shankar

    2017-09-01

    Full Text Available One of the potential threats to public health microbiology in 21st century is the increased mortality rate caused by Zika virus (ZIKV, a mosquito-borne flavivirus. The severity of ZIKV infection urged World Health Organization (WHO to declare this virus as a global concern. The limited knowledge on the structure, virulent factors, and replication mechanism of the virus posed as hindrance for vaccine development. Several vector and non-vector-borne mode of transmission are observed for spreading the disease. The similarities of the virus with other flaviviruses such as dengue and West Nile virus are worrisome; hence, there is high scope to undertake ZIKV research that probably provide insight for novel therapeutic intervention. Thus, this review focuses on the recent aspect of ZIKV research which includes the outbreak, genome structure, multiplication and propagation of the virus, current animal models, clinical manifestations, available treatment options (probable vaccines and therapeutics, and the recent advancements in computational drug discovery pipelines, challenges and limitation to undertake ZIKV research. The review suggests that the infection due to ZIKV became one of the universal concerns and an interdisciplinary environment of in vitro cellular assays, genomics, proteomics, and computational biology approaches probably contribute insights for screening of novel molecular targets for drug design. The review tried to provide cutting edge knowledge in ZIKV research with future insights required for the development of novel therapeutic remedies to curtail ZIKV infection.

  6. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome.

    Science.gov (United States)

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes.

  7. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition.

    Science.gov (United States)

    Traxler, Elizabeth A; Yao, Yu; Wang, Yong-Dong; Woodard, Kaitly J; Kurita, Ryo; Nakamura, Yukio; Hughes, Jim R; Hardison, Ross C; Blobel, Gerd A; Li, Chunliang; Weiss, Mitchell J

    2016-09-01

    Disorders resulting from mutations in the hemoglobin subunit beta gene (HBB; which encodes β-globin), mainly sickle cell disease (SCD) and β-thalassemia, become symptomatic postnatally as fetal γ-globin expression from two paralogous genes, hemoglobin subunit gamma 1 (HBG1) and HBG2, decreases and adult β-globin expression increases, thereby shifting red blood cell (RBC) hemoglobin from the fetal (referred to as HbF or α2γ2) to adult (referred to as HbA or α2β2) form. These disorders are alleviated when postnatal expression of fetal γ-globin is maintained. For example, in hereditary persistence of fetal hemoglobin (HPFH), a benign genetic condition, mutations attenuate γ-globin-to-β-globin switching, causing high-level HbF expression throughout life. Co-inheritance of HPFH with β-thalassemia- or SCD-associated gene mutations alleviates their clinical manifestations. Here we performed CRISPR-Cas9-mediated genome editing of human blood progenitors to mutate a 13-nt sequence that is present in the promoters of the HBG1 and HBG2 genes, thereby recapitulating a naturally occurring HPFH-associated mutation. Edited progenitors produced RBCs with increased HbF levels that were sufficient to inhibit the pathological hypoxia-induced RBC morphology found in SCD. Our findings identify a potential DNA target for genome-editing-mediated therapy of β-hemoglobinopathies.

  8. Macromolecular amplification of binding response in superaptamer hydrogels.

    Science.gov (United States)

    Bai, Wei; Gariano, Nicholas A; Spivak, David A

    2013-05-08

    It is becoming more important to detect ultralow concentrations of analytes for biomedical, environmental, and national security applications. Equally important is that new methods should be easy to use, inexpensive, portable, and if possible allow detection by the naked eye. By and large, detection of low concentrations of analytes cannot be achieved directly but requires signal amplification by catalysts, macromolecules, metal surfaces, or supramolecular aggregates. The rapidly progressing field of macromolecular signal amplification has been advanced using conjugated polymers, chirality in polymers, solvating polymers, and polymerization/depolymerization strategies. A new type of aptamer-based hydrogel with specific response to target proteins presented in this report demonstrates an additional category of macromolecular signal amplification. This superaptamer assembly provides the first example of using protein-specific aptamers to create volume-changing hydrogels with amplified response to the target protein. A remarkable aspect of these superaptamer hydrogels is that volume shrinking is visible to the naked eye down to femtomolar concentrations of protein. This extraordinary macromolecular amplification is attributed to a complex interplay between protein-aptamer supramolecular cross-links and the consequential reduction of excluded volume in the hydrogel. Specific recognition is even maintained in biological matrices such as urine and tears. Furthermore, the gels can be dried for long-term storage and regenerated for use without loss of activity. In practice, the ease of this biomarker detection method offers an alternative to traditional analytical techniques that require sophisticated instrumentation and highly trained personnel.

  9. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA

    NARCIS (Netherlands)

    Leone, G.; Schijndel, van H.; Gemen, van B.; Kramer, F.R.; Schoen, C.D.

    1998-01-01

    Molecular beacon probes can be employed in a NASBA amplicon detection system to generate a specific fluorescent signal concomitantly with amplification. A molecular beacon, designed to hybridize within the target sequence, was introduced into NASBA reactions that amplify the genomic RNA of potato le

  10. Locked nucleic acid inhibits amplification of contaminating DNA in real-time PCR

    DEFF Research Database (Denmark)

    Hummelshoj, Lone; Ryder, Lars P; Madsen, Hans O

    2005-01-01

    and real-time PCR, the addition of LNA showed blocking of the amplification of genomic XBP1 but not cDNA XBP1. To test the effect of melting temperature (Tm) on the LNA, we investigated the number of LNA nucleotides that could be replaced with DNA nucleotides and still retain the blocking activity. More...

  11. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA

    NARCIS (Netherlands)

    Leone, G.; Schijndel, van H.; Gemen, van B.; Kramer, F.R.; Schoen, C.D.

    1998-01-01

    Molecular beacon probes can be employed in a NASBA amplicon detection system to generate a specific fluorescent signal concomitantly with amplification. A molecular beacon, designed to hybridize within the target sequence, was introduced into NASBA reactions that amplify the genomic RNA of potato

  12. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA

    NARCIS (Netherlands)

    Leone, G.; Schijndel, van H.; Gemen, van B.; Kramer, F.R.; Schoen, C.D.

    1998-01-01

    Molecular beacon probes can be employed in a NASBA amplicon detection system to generate a specific fluorescent signal concomitantly with amplification. A molecular beacon, designed to hybridize within the target sequence, was introduced into NASBA reactions that amplify the genomic RNA of potato le

  13. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq

    NARCIS (Netherlands)

    Shankaranarayanan, P.; Mendoza-Parra, M.A.; Walia, M.; Wang, L.; Li, N.; Trindade, L.M.; Gronemeyer, H.

    2011-01-01

    Genome-wide profiling of transcription factors based on massive parallel sequencing of immunoprecipitated chromatin (ChIP-seq) requires nanogram amounts of DNA. Here we describe a high-fidelity, single-tube linear DNA amplification method (LinDA) for ChIP-seq and reChIP-seq with picogram DNA amounts

  14. A Novel Pan-Genome Reverse Vaccinology Approach Employing a Negative-Selection Strategy for Screening Surface-Exposed Antigens against leptospirosis

    Science.gov (United States)

    Zeng, LingBing; Wang, Dongliang; Hu, NiYa; Zhu, Qing; Chen, Kaishen; Dong, Ke; Zhang, Yan; Yao, YuFeng; Guo, XiaoKui; Chang, Yung-Fu; Zhu, YongZhang

    2017-01-01

    Reverse vaccinology (RV) has been widely used for screening of surface-exposed proteins (PSEs) of important pathogens, including outer membrane proteins (OMPs), and extracellular proteins (ECPs) as potential vaccine candidates. In this study, we applied a novel RV negative strategy and a pan-genome analysis for screening of PSEs from 17 L. interrogans strains covering 11 predominately epidemic serovars and 17 multilocus typing (MLST) sequence types (STs) worldwide. Our results showed, for instance, out of a total of 633 predicted PSEs in strain 56601, 92.8% were OMPs or ECPs (588/633). Among the 17 strains, 190 core PSEs, 913 dispensable PSEs and 861 unique PSEs were identified. Of the 190 PSEs, 121 were further predicted to be highly antigenic and thus may serve as potential vaccine candidates against leptospirosis. With the exception of LipL45, OmpL1, and LigB, the majority of the 121 PSEs were newly identified antigens. For example, hypothetical proteins BatC, LipL71, and the OmpA family proteins sharing many common features, such as surface-exposed localization, universal conservation, and eliciting strong antibody responses in patients, are regarded as the most promising vaccine antigens. Additionally, a wide array of potential virulence factors among the predicted PSEs including TonB-dependent receptor, sphingomyelinase 2, leucine-rich repeat protein, and 4 neighboring hypothetical proteins were identified as potential antigenicity, and deserve further investigation. Our results can contribute to the prediction of suitable antigens as potential vaccine candidates against leptospirosis and also provide further insights into mechanisms of leptospiral pathogenicity. In addition, our novel negative-screening strategy combined with pan-genome analysis can be a routine RV method applied to numerous other pathogens.

  15. Cross-study analysis of genomic data defines the ciliate multigenic epiplasmin family: strategies for functional analysis in Paramecium tetraurelia

    Directory of Open Access Journals (Sweden)

    Ravet Viviane

    2009-06-01

    Full Text Available Abstract Background The sub-membranous skeleton of the ciliate Paramecium, the epiplasm, is composed of hundreds of epiplasmic scales centered on basal bodies, and presents a complex set of proteins, epiplasmins, which belong to a multigenic family. The repeated duplications observed in the P. tetraurelia genome present an interesting model of the organization and evolution of a multigenic family within a single cell. Results To study this multigenic family, we used phylogenetic, structural, and analytical transcriptional approaches. The phylogenetic method defines 5 groups of epiplasmins in the multigenic family. A refined analysis by Hydrophobic Cluster Analysis (HCA identifies structural characteristics of 51 epiplasmins, defining five separate groups, and three classes. Depending on the sequential arrangement of their structural domains, the epiplasmins are defined as symmetric, asymmetric or atypical. The EST data aid in this classification, in the identification of putative regulating sequences such as TATA or CAAT boxes. When specific RNAi experiments were conducted using sequences from either symmetric or asymmetric classes, phenotypes were drastic. Local effects show either disrupted or ill-shaped epiplasmic scales. In either case, this results in aborted cell division. Using structural features, we show that 4 epiplasmins are also present in another ciliate, Tetrahymena thermophila. Their affiliation with the distinctive structural groups of Paramecium epiplasmins demonstrates an interspecific multigenic family. Conclusion The epiplasmin multigenic family illustrates the history of genomic duplication in Paramecium. This study provides a framework which can guide functional analysis of epiplasmins, the major components of the membrane skeleton in ciliates. We show that this set of proteins handles an important developmental information in Paramecium since maintenance of epiplasm organization is crucial for cell morphogenesis.

  16. Identifying the dominant metabolic strategies used by microorganisms within basalt-hosted, anoxic deep subsurface basement fluids via environmental genomics

    Science.gov (United States)

    Rappe, M. S.; Jungbluth, S.; Carr, S. A.; Lin, H. T.; Hsieh, C. C.; Nigro, O. D.; Steward, G. F.; Orcutt, B.

    2014-12-01

    A microbial ecosystem distinct from both overlying sediments and bottom seawater lies within the basaltic crust of the Juan de Fuca Ridge flank. The metabolic potential and genomic characteristics of microbes residing in fluids of this remote, anoxic region of the subsurface ocean were investigated using environmental DNA extracted from large-volume fluid samples obtained from advanced borehole observatories installed at two recently drilled IODP Boreholes, U1362A and U1362B. Fluids were collected from the deep (204 meters sub-basement) horizon of Borehole U1362A and shallow (40 meters sub-basement) horizon of Borehole U1362B and used to generate 503 and 705 million base-pairs of genomic DNA sequence data, respectively. Phylogenetically informative genes revealed that the community structure recovered via metagenomics was generally consistent with that obtained previously by 16S rRNA gene sequencing and was dominated by uncultivated bacterial lineages of Proteobacteria, Nitrospirae, Candidate Division OP8 (Aminicenantes), Thermotoga and archaeal groups THSCG, MCG (Bathyarchaeota), MBGE, and Archaeoglobus. Genes involved in phage integration, chemotaxis, nitrate reduction, methanogenesis, and amino acid degradation were all detected, revealing potentially dynamic microbial communities. Putative sulfate reduction genes were discovered within previously identified Firmicutes lineage Candidatus Desulforudis, along with other groups (e.g. Archaeoglobus). Significant metagenome assembly resulted in 72 and 105 contigs of >100 Kbp from U1362B and U1362A, respectively, including 1137, 977 and 356 Kbp-long contigs from Candidate Division OP8 residing in U1362B. These assemblies have revealed novel metabolic potential within abundant members of the deep subsurface microbial community, which can be directly related to their survival in the deep oceanic crust.

  17. Multiplex, rapid and sensitive isothermal detection of nucleic-acid sequence by endonuclease restriction-mediated real-time multiple cross displacement amplification

    Directory of Open Access Journals (Sweden)

    Yi eWang

    2016-05-01

    Full Text Available We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA, which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5’ end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labelled at the 5’ end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5’ end short sequences and their complementary sequences, which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 minutes, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  18. On the mechanism of gene amplification induced under stress in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available Gene amplification is a collection of processes whereby a DNA segment is reiterated to multiple copies per genome. It is important in carcinogenesis and resistance to chemotherapeutic agents, and can underlie adaptive evolution via increased expression of an amplified gene, evolution of new gene functions, and genome evolution. Though first described in the model organism Escherichia coli in the early 1960s, only scant information on the mechanism(s of amplification in this system has been obtained, and many models for mechanism(s were possible. More recently, some gene amplifications in E. coli were shown to be stress-inducible and to confer a selective advantage to cells under stress (adaptive amplifications, potentially accelerating evolution specifically when cells are poorly adapted to their environment. We focus on stress-induced amplification in E. coli and report several findings that indicate a novel molecular mechanism, and we suggest that most amplifications might be stress-induced, not spontaneous. First, as often hypothesized, but not shown previously, certain proteins used for DNA double-strand-break repair and homologous recombination are required for amplification. Second, in contrast with previous models in which homologous recombination between repeated sequences caused duplications that lead to amplification, the amplified DNAs are present in situ as tandem, direct repeats of 7-32 kilobases bordered by only 4 to 15 base pairs of G-rich homology, indicating an initial non-homologous recombination event. Sequences at the rearrangement junctions suggest nonhomologous recombination mechanisms that occur via template switching during DNA replication, but unlike previously described template switching events, these must occur over long distances. Third, we provide evidence that 3'-single-strand DNA ends are intermediates in the process, supporting a template-switching mechanism. Fourth, we provide evidence that lagging

  19. Multiplex amplification of large sets of human exons.

    Science.gov (United States)

    Porreca, Gregory J; Zhang, Kun; Li, Jin Billy; Xie, Bin; Austin, Derek; Vassallo, Sara L; LeProust, Emily M; Peck, Bill J; Emig, Christopher J; Dahl, Fredrik; Gao, Yuan; Church, George M; Shendure, Jay

    2007-11-01

    A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.

  20. Chum-RNA allows preparation of a high-quality cDNA library from a single-cell quantity of mRNA without PCR amplification

    OpenAIRE

    2008-01-01

    Linear RNA amplification using T7 RNA polymerase is useful in genome-wide analysis of gene expression using DNA microarrays, but exponential amplification using polymerase chain reaction (PCR) is still required for cDNA library preparation from single-cell quantities of RNA. We have designed a small RNA molecule called chum-RNA that has enabled us to prepare a single-cell cDNA library after four rounds of T7-based linear amplification, without using PCR amplification. Chum-RNA drove cDNA synt...

  1. Whole-genome prokaryotic phylogeny

    National Research Council Canada - National Science Library

    Henz, Stefan R; Huson, Daniel H; Auch, Alexander F; Nieselt-Struwe, Kay; Schuster, Stephan C

    2005-01-01

    .... We introduce a new strategy, GBDP, 'genome blast distance phylogeny', and show that different variants of this approach robustly produce phylogenies that are biologically sound, when applied to 91 prokaryotic genomes...

  2. MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells.

    Science.gov (United States)

    Taccioli, Cristian; Sorrentino, Giovanni; Zannini, Alessandro; Caroli, Jimmy; Beneventano, Domenico; Anderlucci, Laura; Lolli, Marco; Bicciato, Silvio; Del Sal, Giannino

    2015-11-17

    Targeted anticancer therapies represent the most effective pharmacological strategies in terms of clinical responses. In this context, genetic alteration of several oncogenes represents an optimal predictor of response to targeted therapy. Integration of large-scale molecular and pharmacological data from cancer cell lines promises to be effective in the discovery of new genetic markers of drug sensitivity and of clinically relevant anticancer compounds. To define novel pharmacogenomic dependencies in cancer, we created the Mutations and Drugs Portal (MDP, http://mdp.unimore.it), a web accessible database that combines the cell-based NCI60 screening of more than 50,000 compounds with genomic data extracted from the Cancer Cell Line Encyclopedia and the NCI60 DTP projects. MDP can be queried for drugs active in cancer cell lines carrying mutations in specific cancer genes or for genetic markers associated to sensitivity or resistance to a given compound. As proof of performance, we interrogated MDP to identify both known and novel pharmacogenomics associations and unveiled an unpredicted combination of two FDA-approved compounds, namely statins and Dasatinib, as an effective strategy to potently inhibit YAP/TAZ in cancer cells.

  3. LOMA: A fast method to generate efficient tagged-random primers despite amplification bias of random PCR on pathogens

    Directory of Open Access Journals (Sweden)

    Lee Wah

    2008-09-01

    Full Text Available Abstract Background Pathogen detection using DNA microarrays has the potential to become a fast and comprehensive diagnostics tool. However, since pathogen detection chips currently utilize random primers rather than specific primers for the RT-PCR step, bias inherent in random PCR amplification becomes a serious problem that causes large inaccuracies in hybridization signals. Results In this paper, we study how the efficiency of random PCR amplification affects hybridization signals. We describe a model that predicts the amplification efficiency of a given random primer on a target viral genome. The prediction allows us to filter false-negative probes of the genome that lie in regions of poor random PCR amplification and improves the accuracy of pathogen detection. Subsequently, we propose LOMA, an algorithm to generate random primers that have good amplification efficiency. Wet-lab validation showed that the generated random primers improve the amplification efficiency significantly. Conclusion The blind use of a random primer with attached universal tag (random-tagged primer in a PCR reaction on a pathogen sample may not lead to a successful amplification. Thus, the design of random-tagged primers is an important consideration when performing PCR.

  4. University of California San Francisco (UCSF-1): Chemical-Genetic Interaction Mapping Strategy | Office of Cancer Genomics