WorldWideScience

Sample records for genetics ii edition

  1. Non-GMO genetically edited crop plants.

    Science.gov (United States)

    Kanchiswamy, Chidananda Nagamangala; Malnoy, Mickael; Velasco, Riccardo; Kim, Jin-Soo; Viola, Roberto

    2015-09-01

    Direct delivery of purified Cas9 protein with guide RNA into plant cells, as opposed to plasmid-mediated delivery, displays high efficiency and reduced off-target effects. Following regeneration from edited cells, the ensuing plant is also likely to bypass genetically modified organism (GMO) legislation as the genome editing complex is degraded in the recipient cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. From Genetic Stock to Genome Editing: Gene Exploitation in Wheat.

    Science.gov (United States)

    Wang, Meng; Wang, Shubin; Liang, Zhen; Shi, Weiming; Gao, Caixia; Xia, Guangmin

    2018-02-01

    Bread wheat (Triticum aestivum) ranks as one of our most important staple crops. However, its hexaploid nature has complicated our understanding of the genetic bases underlying many of its traits. Historically, functional genetic studies in wheat have focused on identifying natural variations and have contributed to assembling and enriching its genetic stock. Recently, mold-breaking advances in whole genome sequencing, exome-capture based mutant libraries, and genome editing have revolutionized strategies for genetic research in wheat. We review new trends in wheat functional genetic studies along with germplasm conservation and innovation, including the relevance of genetic stocks, and the application of sequencing-based mutagenesis and genome editing. We also highlight the potential of multiplex genome editing toolkits in addressing species-specific challenges in wheat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The ethics of creating genetically modified children using genome editing.

    Science.gov (United States)

    Ishii, Tetsuya

    2017-12-01

    To review the recent ethical, legal, and social issues surrounding human reproduction involving germline genome editing. Genome editing techniques, such as CRISPR/Cas9, have facilitated genetic modification in human embryos. The most likely purpose of germline genome editing is the prevention of serious genetic disease in offspring. However, complex issues still remain, including irremediable risks to fetuses and future generations, the role of women, the availability of alternatives, long-term follow-up, health insurance coverage, misuse for human enhancement, and the potential effects on adoption. Further discussions, a broad consensus, and appropriate regulations are required before human germline genome editing is introduced into the global society. Before germline genome editing is used for disease prevention, a broad consensus must be formed by carefully discussing its ethical, legal, and social issues.

  4. C-to-U editing and site-directed RNA editing for the correction of genetic mutations.

    Science.gov (United States)

    Vu, Luyen Thi; Tsukahara, Toshifumi

    2017-07-24

    Cytidine to uridine (C-to-U) editing is one type of substitutional RNA editing. It occurs in both mammals and plants. The molecular mechanism of C-to-U editing involves the hydrolytic deamination of a cytosine to a uracil base. C-to-U editing is mediated by RNA-specific cytidine deaminases and several complementation factors, which have not been completely identified. Here, we review recent findings related to the regulation and enzymatic basis of C-to-U RNA editing. More importantly, when C-to-U editing occurs in coding regions, it has the power to reprogram genetic information on the RNA level, therefore it has great potential for applications in transcript repair (diseases related to thymidine to cytidine (T>C) or adenosine to guanosine (A>G) point mutations). If it is possible to manipulate or mimic C-to-U editing, T>C or A>G genetic mutation-related diseases could be treated. Enzymatic and non-enzymatic site-directed RNA editing are two different approaches for mimicking C-to-U editing. For enzymatic site-directed RNA editing, C-to-U editing has not yet been successfully performed, and in theory, adenosine to inosine (A-to-I) editing involves the same strategy as C-to-U editing. Therefore, in this review, for applications in transcript repair, we will provide a detailed overview of enzymatic site-directed RNA editing, with a focus on A-to-I editing and non-enzymatic site-directed C-to-U editing.

  5. Genetics in Czechoslovakia (1935): An Edition

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Michal V.; Hossfeld, U.

    2017-01-01

    Roč. 53, 1/2 (2017), s. 23-30 ISSN 0085-0748 Institutional support: RVO:68378114 Keywords : Mendel * genetics * history Subject RIV: AB - History OBOR OECD: History (history of science and technology to be 6.3, history of specific sciences to be under the respective headings)

  6. Genetic Determinants of RNA Editing Levels of ADAR Targets in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Yerbol Z. Kurmangaliyev

    2016-02-01

    Full Text Available RNA editing usually affects only a fraction of expressed transcripts and there is a vast amount of variation in editing levels of ADAR (adenosine deaminase, RNA-specific targets. Here we explore natural genetic variation affecting editing levels of particular sites in 81 natural strains of Drosophila melanogaster. The analysis of associations between editing levels and single-nucleotide polymorphisms allows us to map putative cis-regulatory regions affecting editing of 16 A-to-I editing sites (cis-RNA editing quantitative trait loci or cis-edQTLs, P < 10−8. The observed changes in editing levels are validated by independent molecular technique. All identified regulatory variants are located in close proximity of modulated editing sites. Moreover, colocalized editing sites are often regulated by same loci. Similar to expression and splicing QTL studies, the characterization of edQTLs will greatly expand our understanding of cis-regulatory evolution of gene expression.

  7. Genetic Determinants of RNA Editing Levels of ADAR Targets in Drosophila melanogaster.

    Science.gov (United States)

    Kurmangaliyev, Yerbol Z; Ali, Sammi; Nuzhdin, Sergey V

    2015-12-12

    RNA editing usually affects only a fraction of expressed transcripts and there is a vast amount of variation in editing levels of ADAR (adenosine deaminase, RNA-specific) targets. Here we explore natural genetic variation affecting editing levels of particular sites in 81 natural strains of Drosophila melanogaster. The analysis of associations between editing levels and single-nucleotide polymorphisms allows us to map putative cis-regulatory regions affecting editing of 16 A-to-I editing sites (cis-RNA editing quantitative trait loci or cis-edQTLs, P < 10(-8)). The observed changes in editing levels are validated by independent molecular technique. All identified regulatory variants are located in close proximity of modulated editing sites. Moreover, colocalized editing sites are often regulated by same loci. Similar to expression and splicing QTL studies, the characterization of edQTLs will greatly expand our understanding of cis-regulatory evolution of gene expression. Copyright © 2016 Kurmangaliyev et al.

  8. Anatomy and Physiology. Module Set II: Major Body Systems. Teacher Edition [and] Student Edition. Surgical Technology.

    Science.gov (United States)

    Hilley, Robert

    This document, which is the second part of a two-part set of modules on anatomy and physiology for future surgical technicians, contains the teacher and student editions of an introduction to anatomy and physiology that consists of modules on the following body systems: integumentary system; skeletal system; muscular system; nervous system;…

  9. Standards of specialized diabetes care. Edited by Dedov II, Shestakova MV (6th edition

    Directory of Open Access Journals (Sweden)

    Ivan Ivanovich Dedov

    2013-06-01

    Full Text Available Dear Colleagues!We are glad to present the 6th Edition of Standards of Diabetes Care. These evidence-based guidelines were designed to standardize and facilitate diabetes care in all regions of the Russian Federation. The Standards are updated on the regular basis to incorporate new data and relevant recommendations from national and international clinical societies, including World Health Organization Guidelines (WHO, 2011, International Diabetes Federation (IDF, 2011, American Diabetes Association (ADA, 2013, American Association of Clinical Endocrinologists (AACE, 2009, International Society for Pediatric and Adolescent Diabetes (ISPAD, 2009 and Russian Association of Endocrinologists (RAE, 2011, 2012. Current edition of the “Standards” also integrates results of completed randomized clinical trials (ADVANCE, ACCORD, VADT, UKPDS, etc., as well as findings from the national studies of diabetes mellitus (DM, conducted in close partnership with a number of Russian hospitals.Latest data indicates that prevalence of DM increased during the last decade more than two-fold, reaching some 371 million patients by 2013. According to the current estimation by the International Diabetes Federation, every tenth inhabitant of the planet will be suffering from DM by 2030. These observations resulted in the UN Resolution 61/225 passed on 20.12.2006 that encouraged all Member States “to develop national policies for the prevention, treatment and care of diabetes”.Like many other countries, Russian Federation experiences a sharp rise in the prevalence of DM. According to Russian State Diabetes Register, there are at least 3.799 million patients with DM in this country. However, the epidemiological survey conducted by the Federal Endocrinology Research Centre during 2002-2010 suggests that actual prevalence is 3 to 4 times greater than the officially recognized and, by this estimate, amounts to 9-10 million persons, comprising 7% of the

  10. Translating human genetics into mouse: the impact of ultra-rapid in vivo genome editing.

    Science.gov (United States)

    Aida, Tomomi; Imahashi, Risa; Tanaka, Kohichi

    2014-01-01

    Gene-targeted mutant animals, such as knockout or knockin mice, have dramatically improved our understanding of the functions of genes in vivo and the genetic diversity that characterizes health and disease. However, the generation of targeted mice relies on gene targeting in embryonic stem (ES) cells, which is a time-consuming, laborious, and expensive process. The recent groundbreaking development of several genome editing technologies has enabled the targeted alteration of almost any sequence in any cell or organism. These technologies have now been applied to mouse zygotes (in vivo genome editing), thereby providing new avenues for simple, convenient, and ultra-rapid production of knockout or knockin mice without the need for ES cells. Here, we review recent achievements in the production of gene-targeted mice by in vivo genome editing. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  11. Hemoglobin genetics: recent contributions of GWAS and gene editing

    Science.gov (United States)

    Smith, Elenoe C.; Orkin, Stuart H.

    2016-01-01

    The β-hemoglobinopathies are inherited disorders resulting from altered coding potential or expression of the adult β-globin gene. Impaired expression of β-globin reduces adult hemoglobin (α2β2) production, the hallmark of β-thalassemia. A single-base mutation at codon 6 leads to formation of HbS (α2βS2) and sickle cell disease. While the basis of these diseases is known, therapy remains largely supportive. Bone marrow transplantation is the only curative therapy. Patients with elevated levels of fetal hemoglobin (HbF, α2γ2) as adults exhibit reduced symptoms and enhanced survival. The β-globin gene locus is a paradigm of cell- and developmental stage-specific regulation. Although the principal erythroid cell transcription factors are known, mechanisms responsible for silencing of the γ-globin gene were obscure until application of genome-wide association studies (GWAS). Here, we review findings in the field. GWAS identified BCL11A as a candidate negative regulator of γ-globin expression. Subsequent studies have established BCL11A as a quantitative repressor. GWAS-related single-nucleotide polymorphisms lie within an essential erythroid enhancer of the BCL11A gene. Disruption of a discrete region within the enhancer reduces BCL11A expression and induces HbF expression, providing the basis for gene therapy using gene editing tools. A recently identified, second silencing factor, leukemia/lymphoma-related factor/Pokemon, shares features with BCL11A, including interaction with the nucleosome remodeling deacetylase repressive complex. These findings suggest involvement of a common pathway for HbF silencing. In addition, we discuss other factors that may be involved in γ-globin gene silencing and their potential manipulation for therapeutic benefit in treating the β-hemoglobinopathies. PMID:27340226

  12. Constructs and methods for genome editing and genetic engineering of fungi and protists

    Science.gov (United States)

    Hittinger, Christopher Todd; Alexander, William Gerald

    2018-01-30

    Provided herein are constructs for genome editing or genetic engineering in fungi or protists, methods of using the constructs and media for use in selecting cells. The construct include a polynucleotide encoding a thymidine kinase operably connected to a promoter, suitably a constitutive promoter; a polynucleotide encoding an endonuclease operably connected to an inducible promoter; and a recognition site for the endonuclease. The constructs may also include selectable markers for use in selecting recombinations.

  13. Invited review: Breeding and ethical perspectives on genetically modified and genome edited cattle.

    Science.gov (United States)

    Eriksson, S; Jonas, E; Rydhmer, L; Röcklinsberg, H

    2018-01-01

    The hot topic of genetic modification and genome editing is sometimes presented as a rapid solution to various problems in the field of animal breeding and genetics. These technologies hold potential for future use in agriculture but we need to be aware of difficulties in large-scale application and integration in breeding schemes. In this review, we discuss applications of both classical genetic modifications (GM) using vectors and genome editing in dairy cattle breeding. We use an interdisciplinary approach considering both ethical and animal breeding perspectives. Decisions on how to make use of these techniques need to be made based not only on what is possible, but on what is reasonable to do. Principles of animal integrity, naturalness, risk perception, and animal welfare issues are examples of ethically relevant factors to consider. These factors also influence public perception and decisions about regulations by authorities. We need to acknowledge that we lack complete understanding of the genetic background of complex traits. It may be difficult, therefore, to predict the full effect of certain modifications in large-scale breeding programs. We present 2 potential applications: genome editing to dispense with dehorning, and insertion of human genes in bovine genomes to improve udder health as an example of classical GM. Both of these cases could be seen as beneficial for animal welfare but they differ in other aspects. In the former case, a genetic variant already present within the species is introduced, whereas in the latter case, transgenic animals are generated-this difference may influence how society regards the applications. We underline that the use of GM, as well as genome editing, of farm animals such as cattle is not independent of the context, and should be considered as part of an entire process, including, for example, the assisted reproduction technology that needs to be used. We propose that breeding organizations and breeding companies

  14. II. Application of genetically modified breeding by introducing foreign ...

    African Journals Online (AJOL)

    Production of salinity tolerant Nile tilapia, Oreochromis niloticus through traditional and modern breeding methods: II. Application of genetically modified breeding by introducing foreign DNA into fish gonads.

  15. The Virtual Genetics Lab II: Improvements to a Freely Available Software Simulation of Genetics

    Science.gov (United States)

    White, Brian T.

    2012-01-01

    The Virtual Genetics Lab II (VGLII) is an improved version of the highly successful genetics simulation software, the Virtual Genetics Lab (VGL). The software allows students to use the techniques of genetic analysis to design crosses and interpret data to solve realistic genetics problems involving a hypothetical diploid insect. This is a brief…

  16. Normative Data on the Beck Depression Inventory--Second Edition (BDI-II) in College Students.

    Science.gov (United States)

    Whisman, Mark A; Richardson, Emily D

    2015-09-01

    This study was conducted to provide normative data on the Beck Depression Inventory--Second Edition (BDI-II) in college students. Data were obtained from 15,233 college students drawn from 17 universities in the United States, weighted to match the gender and race/ethnicity of enrollment in degree-granting institutions. Descriptive statistics, point prevalence of individuals exceeding cutoff scores, and mean differences by gender and race/ethnicity were provided. Because the distribution of BDI-II scores was not normal, percentile ranks for raw scores were provided for the total sample and separately by gender and race/ethnicity for the total sample and by race/ethnicity for men and women. Normative data were used to calculate the Reliable Change Index on the BDI-II for college students. Because the distribution of BDI-II scores demonstrated significant skewness and non-normal kurtosis, percentile ranks are important to consider in interpreting scores on the measure, in addition to descriptive statistics. © 2015 Wiley Periodicals, Inc.

  17. Synthetic biology approaches in cancer immunotherapy, genetic network engineering, and genome editing.

    Science.gov (United States)

    Chakravarti, Deboki; Cho, Jang Hwan; Weinberg, Benjamin H; Wong, Nicole M; Wong, Wilson W

    2016-04-18

    Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.

  18. Editing out five Serpina1 paralogs to create a mouse model of genetic emphysema

    Science.gov (United States)

    Sun, Huaming; Zieger, Marina; Cox, Andrew; Cardozo, Brynn; Li, Weiying; Oliveira, Gabriella; Davis, Airiel; Gruntman, Alisha; Flotte, Terence R.; Brodsky, Michael H.; Hoffman, Andrew M.; Elmallah, Mai K.; Mueller, Christian

    2018-01-01

    Chronic obstructive pulmonary disease affects 10% of the worldwide population, and the leading genetic cause is α-1 antitrypsin (AAT) deficiency. Due to the complexity of the murine locus, which includes up to six Serpina1 paralogs, no genetic animal model of the disease has been successfully generated until now. Here we create a quintuple Serpina1a–e knockout using CRISPR/Cas9-mediated genome editing. The phenotype recapitulates the human disease phenotype, i.e., absence of hepatic and circulating AAT translates functionally to a reduced capacity to inhibit neutrophil elastase. With age, Serpina1 null mice develop emphysema spontaneously, which can be induced in younger mice by a lipopolysaccharide challenge. This mouse models not only AAT deficiency but also emphysema and is a relevant genetic model and not one based on developmental impairment of alveolarization or elastase administration. We anticipate that this unique model will be highly relevant not only to the preclinical development of therapeutics for AAT deficiency, but also to emphysema and smoking research. PMID:29453277

  19. Standards of specialized diabetes care. Edited by Dedov I.I., Shestakova M.V. (7th edition

    Directory of Open Access Journals (Sweden)

    Ivan Ivanovich Dedov

    2015-03-01

    Full Text Available We are glad to present the 7th Edition of Standards of Diabetes Care. These evidence-based guidelines were designed to standardize and facilitate diabetes care in all regions of the Russian Federation. The Standards are updated on the regular basis to incorporate new data and relevant recommendations from national and international clinical societies, including World Health Organization Guidelines (WHO, 2011, 2013, International Diabetes Federation (IDF, 2011, 2012, 2013, American Diabetes Association (ADA, 2012, 2015, American Association of Clinical Endocrinologists (AACE, 2013, International Society for Pediatric and Adolescent Diabetes (ISPAD, 2014 and Russian Association of Endocrinologists (RAE, 2011, 2012. Current edition of the “Standards” also integrates results of completed randomized clinical trials (ADVANCE, ACCORD, VADT, UKPDS, etc., as well as findings from the national studies of diabetes mellitus (DM, conducted in close partnership with a number of Russian hospitals.Latest data indicates that prevalence of DM increased during the last decade more than two-fold, reaching some 387 million patients by the end of 2014. According to the current estimation by the International Diabetes Federation, 592 million patients will be suffering from DM by 2035. These observations resulted in the UN Resolution 61/225 passed on 20.12.2006 that encouraged all Member States “to develop national policies for the prevention, treatment and care of diabetes”.Like many other countries, Russian Federation experiences a sharp rise in the prevalence of DM. According to Russian State Diabetes Register, there are at least 4.1 million patients with DM in this country. However, the epidemiological survey conducted by the Federal Endocrinology Research Centre during 2002-2010 suggests that actual prevalence is 3 to 4 times greater than the officially recognized and, by this estimate, amounts to 9-10 million persons, comprising 7% of the national

  20. CRISPR/Cas9-loxP-Mediated Gene Editing as a Novel Site-Specific Genetic Manipulation Tool.

    Science.gov (United States)

    Yang, Fayu; Liu, Changbao; Chen, Ding; Tu, Mengjun; Xie, Haihua; Sun, Huihui; Ge, Xianglian; Tang, Lianchao; Li, Jin; Zheng, Jiayong; Song, Zongming; Qu, Jia; Gu, Feng

    2017-06-16

    Cre-loxP, as one of the site-specific genetic manipulation tools, offers a method to study the spatial and temporal regulation of gene expression/inactivation in order to decipher gene function. CRISPR/Cas9-mediated targeted genome engineering technologies are sparking a new revolution in biological research. Whether the traditional site-specific genetic manipulation tool and CRISPR/Cas9 could be combined to create a novel genetic tool for highly specific gene editing is not clear. Here, we successfully generated a CRISPR/Cas9-loxP system to perform gene editing in human cells, providing the proof of principle that these two technologies can be used together for the first time. We also showed that distinct non-homologous end-joining (NHEJ) patterns from CRISPR/Cas9-mediated gene editing of the targeting sequence locates at the level of plasmids (episomal) and chromosomes. Specially, the CRISPR/Cas9-mediated NHEJ pattern in the nuclear genome favors deletions (64%-68% at the human AAVS1 locus versus 4%-28% plasmid DNA). CRISPR/Cas9-loxP, a novel site-specific genetic manipulation tool, offers a platform for the dissection of gene function and molecular insights into DNA-repair pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing.

    Science.gov (United States)

    Kang, Xiangjin; He, Wenyin; Huang, Yuling; Yu, Qian; Chen, Yaoyong; Gao, Xingcheng; Sun, Xiaofang; Fan, Yong

    2016-05-01

    As a powerful technology for genome engineering, the CRISPR/Cas system has been successfully applied to modify the genomes of various species. The purpose of this study was to evaluate the technology and establish principles for the introduction of precise genetic modifications in early human embryos. 3PN zygotes were injected with Cas9 messenger RNA (mRNA) (100 ng/μl) and guide RNA (gRNA) (50 ng/μl). For oligo-injections, donor oligo-1 (99 bp) or oligo-2 (99 bp) (100 ng/μl) or dsDonor (1 kb) was mixed with Cas9 mRNA (100 ng/μl) and gRNA (50 ng/μl) and injected into the embryos. By co-injecting Cas9 mRNA, gRNAs, and donor DNA, we successfully introduced the naturally occurring CCR5Δ32 allele into early human 3PN embryos. In the embryos containing the engineered CCR5Δ32 allele, however, the other alleles at the same locus could not be fully controlled because they either remained wild type or contained indel mutations. This work has implications for the development of therapeutic treatments of genetic disorders, and it demonstrates that significant technical issues remain to be addressed. We advocate preventing any application of genome editing on the human germline until after a rigorous and thorough evaluation and discussion are undertaken by the global research and ethics communities.

  2. Genetic variations in multiple myeloma II

    DEFF Research Database (Denmark)

    Vangsted, A.; Klausen, T.W.; Vogel, U.

    2012-01-01

    - and bortezomib-based therapy, maintenance treatment with interferon-α and in relation to therapy-related adverse effects caused by treatment. Candidate genes for prediction of effect of HDT include DNA repair genes, CYP genes and genes involved in inflammation and apoptosis such as IL1B and RAI. In thalidomide......- and bortezomid-based therapy, candidate genes include TNFA and genes involved in the nuclear factor kappa B pathway (NFKB2 and TRAF3), respectively. In maintenance treatment with interferon-α, a polymorphism in gene NFKB1 is a candidate gene for prediction for effect. Adverse effect includes infection......Association studies on genetic variation to treatment effect may serve as a predictive marker for effect of treatment and can also uncover biological pathways behind drug effect. Single-nucleotide polymorphisms (SNPs) have been studied in relation to high-dose treatment (HDT), thalidomide...

  3. Molecular analysis of genetic diversity in elite II synthetic hexaploid ...

    African Journals Online (AJOL)

    The present study was conducted to assess the genetic diversity of Elite-II synthetic hexaploid (SH) wheat by genome DNA fingerprinting as revealed by random amplified polymorphic DNA (RAPD) analysis. Ten decamer RAPD primers (OPG-1, OPG-2, OPG-3, OPG-4, OPG-5, OPA-3, OPA-4, OPA-5, OPA-8, and OPA-15) ...

  4. Class II HLA interactions modulate genetic risk for multiple sclerosis

    DEFF Research Database (Denmark)

    Moutsianas, Loukas; Jostins, Luke; Beecham, Ashley H

    2015-01-01

    ,465 cases and 30,385 controls from 11 cohorts of European ancestry, in combination with imputation of classical HLA alleles, to build a high-resolution map of HLA genetic risk and assess the evidence for interactions involving classical HLA alleles. Among new and previously identified class II risk alleles...

  5. Molecular analysis of genetic diversity in elite II synthetic hexaploid ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... Full Length Research Paper. Molecular analysis of genetic diversity in elite II synthetic hexaploid wheat screened against Barley yellow dwarf virus. Huma Saffdar1 ... The history of cultiva- ted wheat and human .... and viewed under the UV light chamber using the computer pro- gram UVIPhotoMW.

  6. Detailed phenotypic and molecular analyses of genetically modified mice generated by CRISPR-Cas9-mediated editing.

    Directory of Open Access Journals (Sweden)

    Bijal A Parikh

    Full Text Available The bacterial CRISPR-Cas9 system has been adapted for use as a genome editing tool. While several recent reports have indicated that successful genome editing of mice can be achieved, detailed phenotypic and molecular analyses of the mutant animals are limited. Following pronuclear micro-injection of fertilized eggs with either wild-type Cas9 or the nickase mutant (D10A and single or paired guide RNA (sgRNA for targeting of the tyrosinase (Tyr gene, we assessed genome editing in mice using rapid phenotypic readouts (eye and coat color. Mutant mice with insertions or deletions (indels in Tyr were efficiently generated without detectable off-target cleavage events. Gene correction of a single nucleotide by homologous recombination (HR could only occur when the sgRNA recognition sites in the donor DNA were modified. Gene repair did not occur if the donor DNA was not modified because Cas9 catalytic activity was completely inhibited. Our results indicate that allelic mosaicism can occur following -Cas9-mediated editing in mice and appears to correlate with sgRNA cleavage efficiency at the single-cell stage. We also show that larger than expected deletions may be overlooked based on the screening strategy employed. An unbiased analysis of all the deleted nucleotides in our experiments revealed that the highest frequencies of nucleotide deletions were clustered around the predicted Cas9 cleavage sites, with slightly broader distributions than expected. Finally, additional analysis of founder mice and their offspring indicate that their general health, fertility, and the transmission of genetic changes were not compromised. These results provide the foundation to interpret and predict the diverse outcomes following CRISPR-Cas9-mediated genome editing experiments in mice.

  7. Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system.

    Science.gov (United States)

    Sun, Jun; Wang, Qingzhuo; Jiang, Yu; Wen, Zhiqiang; Yang, Lirong; Wu, Jianping; Yang, Sheng

    2018-03-13

    The soil bacterium Pseudomonas putida KT2440 is a "generally recognized as safe"-certified strain with robust property and versatile metabolism. Thus, it is an ideal candidate for synthetic biology, biodegradation, and other biotechnology applications. The known genome editing approaches of Pseudomonas are suboptimal; thus, it is necessary to develop a high efficiency genome editing tool. In this study, we established a fast and convenient CRISPR-Cas9 method in P. putida KT2440. Gene deletion, gene insertion and gene replacement could be achieved within 5 days, and the mutation efficiency reached > 70%. Single nucleotide replacement could be realized, overcoming the limitations of protospacer adjacent motif sequences. We also applied nuclease-deficient Cas9 binding at three locations upstream of enhanced green fluorescent protein (eGFP) for transcriptional inhibition, and the expression intensity of eGFP reduced to 28.5, 29.4, and 72.1% of the control level, respectively. Furthermore, based on this CRISPR-Cas9 system, we also constructed a CRISPR-Cpf1 system, which we validated for genome editing in P. putida KT2440. In this research, we established CRISPR based genome editing and regulation control systems in P. putida KT2440. These fast and efficient approaches will greatly facilitate the application of P. putida KT2440.

  8. Changing blue fluorescent protein to green fluorescent protein using chemical RNA editing as a novel strategy in genetic restoration.

    Science.gov (United States)

    Vu, Luyen T; Nguyen, Thanh T K; Alam, Shafiul; Sakamoto, Takashi; Fujimoto, Kenzo; Suzuki, Hitoshi; Tsukahara, Toshifumi

    2015-11-01

    Using the transition from cytosine of BFP (blue fluorescent protein) gene to uridine of GFP (green fluorescent protein) gene at position 199 as a model, we successfully controlled photochemical RNA editing to effect site-directed deamination of cytidine (C) to uridine (U). Oligodeoxynucleotides (ODNs) containing 5'-carboxyvinyl-2'-deoxyuridine ((CV) U) were used for reversible photoligation, and single-stranded 100-nt BFP DNA and in vitro-transcribed full-length BFP mRNA were the targets. Photo-cross-linking with the responsive ODNs was performed using UV (366 nm) irradiation, which was followed by heat treatment, and the cross-linked nucleotide was cleaved through photosplitting (UV, 312 nm). The products were analyzed using restriction fragment length polymorphism (RFLP) and fluorescence measurements. Western blotting and fluorescence-analysis results revealed that in vitro-translated proteins were synthesized from mRNAs after site-directed RNA editing. We detected substantial amounts of the target-base-substituted fragment using RFLP and observed highly reproducible spectra of the transition-GFP signal using fluorescence spectroscopy, which indicated protein stability. ODNc restored approximately 10% of the C-to-U transition. Thus, we successfully used non-enzymatic site-directed deamination for genetic restoration in vitro. In the near future, in vivo studies that include cultured cells and model animals will be conducted to treat genetic disorders. © 2015 John Wiley & Sons A/S.

  9. Human Germline Genome Editing

    OpenAIRE

    Ormond, Kelly E.; Mortlock, Douglas P.; Scholes, Derek T.; Bombard, Yvonne; Brody, Lawrence C.; Faucett, W. Andrew; Garrison, Nanibaa’ A.; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E.

    2017-01-01

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Gen...

  10. Genome Editing by CRISPR/Cas9: A Game Change in the Genetic Manipulation of Protists.

    Science.gov (United States)

    Lander, Noelia; Chiurillo, Miguel A; Docampo, Roberto

    2016-09-01

    Genome editing by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated gene 9) system has been transformative in biology. Originally discovered as an adaptive prokaryotic immune system, CRISPR/Cas9 has been repurposed for genome editing in a broad range of model organisms, from yeast to mammalian cells. Protist parasites are unicellular organisms producing important human diseases that affect millions of people around the world. For many of these diseases, such as malaria, Chagas disease, leishmaniasis and cryptosporidiosis, there are no effective treatments or vaccines available. The recent adaptation of the CRISPR/Cas9 technology to several protist models will be playing a key role in the functional study of their proteins, in the characterization of their metabolic pathways, and in the understanding of their biology, and will facilitate the search for new chemotherapeutic targets. In this work we review recent studies where the CRISPR/Cas9 system was adapted to protist parasites, particularly to Apicomplexans and trypanosomatids, emphasizing the different molecular strategies used for genome editing of each organism, as well as their advantages. We also discuss the potential usefulness of this technology in the green alga Chlamydomonas reinhardtii. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  11. Genome Editing by CRISPR/Cas9: a Game Change in the Genetic Manipulation of Protists

    Science.gov (United States)

    Lander, Noelia; Chiurillo, Miguel A.; Docampo, Roberto

    2016-01-01

    Genome editing by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated gene 9) system has been transformative in biology. Originally discovered as an adaptive prokaryotic immune system, CRISPR/Cas9 has been repurposed for genome editing in a broad range of model organisms, from yeast to mammalian cells. Protist parasites are unicellular organisms producing important human diseases that affect millions of people around the world. For many of these diseases, such as malaria, Chagas disease, leishmaniasis and cryptosporidiosis, there are no effective treatments or vaccines available. The recent adaptation of the CRISPR/Cas9 technology to several protist models will be playing a key role in the functional study of their proteins, in the characterization of their metabolic pathways, and in the understanding of their biology, and will facilitate the search for new chemotherapeutic targets. In this work we review recent studies where the CRISPR/Cas9 system was adapted to protist parasites, particularly to Apicomplexans and trypanosomatids, emphasizing the different molecular strategies used for genome editing of each organism, as well as their advantages. We also discuss the potential usefulness of this technology in the green alga Chlamydomonas reinhardtii. PMID:27315329

  12. Circumvention of MHC class II restriction by genetic immunization.

    Science.gov (United States)

    Schuler, K; Lu, C; Chang, H D; Croft, M; Zanetti, M; Gerloni, M

    2001-11-12

    The fate of T cell responses to peptide-based vaccination is subject to constraints by the major histocompatibility complex (MHC), MHC restriction. Using as a model system of T and B cell epitopes from the circumsporozoite protein of Plasmodium falciparum malaria parasite, we show that vaccination by somatic transgene immunization readily primes Balb/c mice (H-2(d)) a strain previously reported to be non-responder to immunization with a synthetic peptide vaccine encompassing these epitopes. Following genetic vaccination Balb/c mice developed a primary T cell response comparable to that of the responder strain C57Bl/6 (H-2(b)). Following booster immunization on day 45 Balb/c mice responded with a typical T cell memory response. Priming induced the formation of specific antibodies, which rose sharply after booster immunization. These findings suggests that genetic immunization can circumvent MHC class II restriction.

  13. Class II HLA interactions modulate genetic risk for multiple sclerosis

    Science.gov (United States)

    Dilthey, Alexander T; Xifara, Dionysia K; Ban, Maria; Shah, Tejas S; Patsopoulos, Nikolaos A; Alfredsson, Lars; Anderson, Carl A; Attfield, Katherine E; Baranzini, Sergio E; Barrett, Jeffrey; Binder, Thomas M C; Booth, David; Buck, Dorothea; Celius, Elisabeth G; Cotsapas, Chris; D’Alfonso, Sandra; Dendrou, Calliope A; Donnelly, Peter; Dubois, Bénédicte; Fontaine, Bertrand; Fugger, Lars; Goris, An; Gourraud, Pierre-Antoine; Graetz, Christiane; Hemmer, Bernhard; Hillert, Jan; Kockum, Ingrid; Leslie, Stephen; Lill, Christina M; Martinelli-Boneschi, Filippo; Oksenberg, Jorge R; Olsson, Tomas; Oturai, Annette; Saarela, Janna; Søndergaard, Helle Bach; Spurkland, Anne; Taylor, Bruce; Winkelmann, Juliane; Zipp, Frauke; Haines, Jonathan L; Pericak-Vance, Margaret A; Spencer, Chris C A; Stewart, Graeme; Hafler, David A; Ivinson, Adrian J; Harbo, Hanne F; Hauser, Stephen L; De Jager, Philip L; Compston, Alastair; McCauley, Jacob L; Sawcer, Stephen; McVean, Gil

    2016-01-01

    Association studies have greatly refined the understanding of how variation within the human leukocyte antigen (HLA) genes influences risk of multiple sclerosis. However, the extent to which major effects are modulated by interactions is poorly characterized. We analyzed high-density SNP data on 17,465 cases and 30,385 controls from 11 cohorts of European ancestry, in combination with imputation of classical HLA alleles, to build a high-resolution map of HLA genetic risk and assess the evidence for interactions involving classical HLA alleles. Among new and previously identified class II risk alleles (HLA-DRB1*15:01, HLA-DRB1*13:03, HLA-DRB1*03:01, HLA-DRB1*08:01 and HLA-DQB1*03:02) and class I protective alleles (HLA-A*02:01, HLA-B*44:02, HLA-B*38:01 and HLA-B*55:01), we find evidence for two interactions involving pairs of class II alleles: HLA-DQA1*01:01–HLA-DRB1*15:01 and HLA-DQB1*03:01–HLA-DQB1*03:02. We find no evidence for interactions between classical HLA alleles and non-HLA risk-associated variants and estimate a minimal effect of polygenic epistasis in modulating major risk alleles. PMID:26343388

  14. DECOVALEX II PROJECT. Technical report - Task 2A and 2B. (Revised edition)

    International Nuclear Information System (INIS)

    Lanru Jing; Stephansson, Ove

    1998-08-01

    DECOVALEX II project started in November 1995 as a continuation of the DECOVALEX I project, which was completed at the end of 1994. The project was initiated by recognizing the fact that a proper evaluation of the current capacities of numerical modelling of the coupled T-H-M processes in fractured media is needed not only for small scale, well controlled laboratory test cases such as those studied in DECOVALEX 1, but also for less characterised, more complex and realistic in-situ experiments. This will contribute to validation and confidence building in the current mathematical models, numerical methods and computer codes. Four tasks were defined in the DECOVALEX II project: TASK 1 - numerical study of the RCF3 pumping test and shaft excavation at Sellafield by Nirex, UK; TASK 2 - numerical study of the in-situ T-H-M experiments at Kamaishi Mine by PNC, Japan; TASK 3 - review of current state-of-the-art of rock joint research and TASK 4 - report on the coupled T-H-M issues related to repository design and performance assessment. This report is one of the technical reports of the DECOVALEX II project, describing the work performed for TASK 2A and 2B - the predictions and model calibration for the hydro-mechanical effect of the excavation of the test pit for the in-situ T-H-M experiments at Kamaishi Mine by PNC, Japan. Presented in this report are the descriptions of the project, definition of Task 2, and approaches, methods and results of numerical modelling work carried out by the research teams. The report is a summary of the research reports written by the research teams and the discussions held during project workshops and task force group meetings. The opinions and conclusions in this report, however, reflect only ideas of the authors, not necessarily a collective representation of the funding organisations of the project

  15. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications.

    Science.gov (United States)

    Telugu, Bhanu P; Park, Ki-Eun; Park, Chi-Hun

    2017-08-01

    Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as "dual purpose" applications.

  16. Rapid Generation of Human Genetic Loss-of-Function iPSC Lines by Simultaneous Reprogramming and Gene Editing

    Directory of Open Access Journals (Sweden)

    Andrew M. Tidball

    2017-09-01

    Full Text Available Specifically ablating genes in human induced pluripotent stem cells (iPSCs allows for studies of gene function as well as disease mechanisms in disorders caused by loss-of-function (LOF mutations. While techniques exist for engineering such lines, we have developed and rigorously validated a method of simultaneous iPSC reprogramming while generating CRISPR/Cas9-dependent insertions/deletions (indels. This approach allows for the efficient and rapid formation of genetic LOF human disease cell models with isogenic controls. The rate of mutagenized lines was strikingly consistent across experiments targeting four different human epileptic encephalopathy genes and a metabolic enzyme-encoding gene, and was more efficient and consistent than using CRISPR gene editing of established iPSC lines. The ability of our streamlined method to reproducibly generate heterozygous and homozygous LOF iPSC lines with passage-matched isogenic controls in a single step provides for the rapid development of LOF disease models with ideal control lines, even in the absence of patient tissue.

  17. Human Germline Genome Editing.

    Science.gov (United States)

    Ormond, Kelly E; Mortlock, Douglas P; Scholes, Derek T; Bombard, Yvonne; Brody, Lawrence C; Faucett, W Andrew; Garrison, Nanibaa' A; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E

    2017-08-03

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Genetic Counselors. These groups, as well as the American Society for Reproductive Medicine, Asia Pacific Society of Human Genetics, British Society for Genetic Medicine, Human Genetics Society of Australasia, Professional Society of Genetic Counselors in Asia, and Southern African Society for Human Genetics, endorsed the final statement. The statement includes the following positions. (1) At this time, given the nature and number of unanswered scientific, ethical, and policy questions, it is inappropriate to perform germline gene editing that culminates in human pregnancy. (2) Currently, there is no reason to prohibit in vitro germline genome editing on human embryos and gametes, with appropriate oversight and consent from donors, to facilitate research on the possible future clinical applications of gene editing. There should be no prohibition on making public funds available to support this research. (3) Future clinical application of human germline genome editing should not proceed unless, at a minimum, there is (a) a compelling medical rationale, (b) an evidence base that supports its clinical use, (c) an ethical justification, and (d) a transparent public process to solicit and incorporate stakeholder input. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  18. Genetic editing of HLA expression in hematopoietic stem cells to broaden their human application.

    Science.gov (United States)

    Torikai, Hiroki; Mi, Tiejuan; Gragert, Loren; Maiers, Martin; Najjar, Amer; Ang, Sonny; Maiti, Sourindra; Dai, Jianliang; Switzer, Kirsten C; Huls, Helen; Dulay, Gladys P; Reik, Andreas; Rebar, Edward J; Holmes, Michael C; Gregory, Philip D; Champlin, Richard E; Shpall, Elizabeth J; Cooper, Laurence J N

    2016-02-23

    Mismatch of human leukocyte antigens (HLA) adversely impacts the outcome of patients after allogeneic hematopoietic stem-cell transplantation (alloHSCT). This translates into the clinical requirement to timely identify suitable HLA-matched donors which in turn curtails the chances of recipients, especially those from a racial minority, to successfully undergo alloHSCT. We thus sought to broaden the existing pool of registered unrelated donors based on analysis that eliminating the expression of the HLA-A increases the chance for finding a donor matched at HLA-B, -C, and -DRB1 regardless of a patient's race. Elimination of HLA-A expression in HSC was achieved using artificial zinc finger nucleases designed to target HLA-A alleles. Significantly, these engineered HSCs maintain their ability to engraft and reconstitute hematopoiesis in immunocompromised mice. This introduced loss of HLA-A expression decreases the need to recruit large number of donors to match with potential recipients and has particular importance for patients whose HLA repertoire is under-represented in the current donor pool. Furthermore, the genetic engineering of stem cells provides a translational approach to HLA-match a limited number of third-party donors with a wide number of recipients.

  19. Genetics Home Reference: mucolipidosis II alpha/beta

    Science.gov (United States)

    ... N-acetylglucosamine-1-phosphotransferase gene (GNPTAB) in a French Canadian founder population. Clin Genet. 2008 Mar;73( ... 135(3):333. Citation on PubMed More from Genetics Home Reference Bulletins March is Trisomy Awareness Month ...

  20. Measurement invariance of the Beck Depression Inventory-Second Edition (BDI-II) across gender, race, and ethnicity in college students.

    Science.gov (United States)

    Whisman, Mark A; Judd, Charles M; Whiteford, Natalie T; Gelhorn, Heather L

    2013-08-01

    Measurement invariance of the Beck Depression Inventory-Second Edition (BDI-II) across gender, race, and ethnic groups was evaluated in a large sample of college students, using pooled data from 11 universities from diverse geographical regions in the United States (N = 7,369). Confirmatory factor analysis was used to test the fit of several possible factor structures, and the results from these analyses indicated that the BDI-II was most adequately represented by a hierarchical four-factor structure, composed of three first-order factors and one second-order factor. Results based on analyses of covariance structures indicated there was factorial invariance for this hierarchical four-factor structure across groups, suggesting that the BDI-II provides an assessment of severity of depressive symptoms that is equivalent across gender, race, and ethnicity in college students.

  1. [Preface for genome editing special issue].

    Science.gov (United States)

    Gu, Feng; Gao, Caixia

    2017-10-25

    Genome editing technology, as an innovative biotechnology, has been widely used for editing the genome from model organisms, animals, plants and microbes. CRISPR/Cas9-based genome editing technology shows its great value and potential in the dissection of functional genomics, improved breeding and genetic disease treatment. In the present special issue, the principle and application of genome editing techniques has been summarized. The advantages and disadvantages of the current genome editing technology and future prospects would also be highlighted.

  2. Genetics Home Reference: bare lymphocyte syndrome type II

    Science.gov (United States)

    ... Immunodeficiency Disorders Health Topic: Immune System and Disorders Genetic and Rare Diseases Information Center (1 link) Bare lymphocyte syndrome 2 Additional NIH Resources (1 link) National Institute of Allergy and Infectious Diseases: Primary Immune Deficiency Diseases Educational Resources (6 ...

  3. Genetics Home Reference: distal hereditary motor neuropathy, type II

    Science.gov (United States)

    ... neuropathy, type II change single protein building blocks ( amino acids ) in the protein sequence. If either protein is altered, they may be more likely to cluster together and form clumps (aggregates). Aggregates of heat shock proteins may ...

  4. Matematicas en la vida actual. Volumen II, edicion para el maestro. (Mathematics: A Practical View. Volume II, Teacher Edition). Applied Basic Curriculum Series.

    Science.gov (United States)

    Evaluation, Dissemination and Assessment Center, Dallas.

    This Spanish language teacher's edition of a practical mathematics text for the intermediate grades contains three components which can be structured in different combinations according to different student needs. Built around a review of selected objectives in the mathematics basic curriculum, the material is intended to stimulate interest in…

  5. Genetic characterization of Toxoplasma gondii isolates from Portugal, Austria and Israel reveals higher genetic variability within the type II lineage.

    Science.gov (United States)

    Verma, S K; Ajzenberg, D; Rivera-Sanchez, A; Su, C; Dubey, J P

    2015-06-01

    This study compared genetic diversity of Toxoplasma gondii isolates from Portugal, Austria and Israel. For this, we genotyped 90 T. gondii isolates (16 from Portugal, 67 from Austria and 7 from Israel) using 10 nested PCR-restriction length polymorphism (RFLP) genetic markers and 15 microsatellite (MS) markers. By PCR-RFLP typing, 7 isolates from Portugal chickens were identified as type II (ToxoDB #1 or #3), 4 were type III (ToxoDB #2) and the remaining 4 isolates have unique genotype pattern were designated as ToxoDB #254. One mouse virulent isolate from a bovine fetus (Bos taurus) in Portugal was type I (ToxoDB #10) at all loci and designated as TgCowPr1. All 67 isolates from Austria and 7 from Israel were type II (ToxoDB #1 or #3). By MS typing, many additional genetic variations were revealed among the type II and type III isolates. Phylogenetic analysis showed that isolates from the same geographical locations tend to cluster together, and there is little overlapping of genotypes among different locations. This study demonstrated that the MS markers can provide higher discriminatory power to reveal association of genotypes with geographical locations. Future studies of the type II strains in Europe by these MS markers will be useful to reveal transmission patterns of the parasite.

  6. Neuroprotective therapies in glaucoma: II. Genetic nanotechnology tools.

    Science.gov (United States)

    Nafissi, Nafiseh; Foldvari, Marianna

    2015-01-01

    Neurotrophic factor genome engineering could have many potential applications not only in the deeper understanding of neurodegenerative disorders but also in improved therapeutics. The fields of nanomedicine, regenerative medicine, and gene/cell-based therapy have been revolutionized by the development of safer and efficient non-viral technologies for gene delivery and genome editing with modern techniques for insertion of the neurotrophic factors into clinically relevant cells for a more sustained pharmaceutical effect. It has been suggested that the long-term expression of neurotrophic factors is the ultimate approach to prevent and/or treat neurodegenerative disorders such as glaucoma in patients who do not respond to available treatments or are at the progressive stage of the disease. Recent preclinical research suggests that novel neuroprotective gene and cell therapeutics could be promising approaches for both non-invasive neuroprotection and regenerative functions in the eye. Several progenitor and retinal cell types have been investigated as potential candidates for glaucoma neurotrophin therapy either as targets for gene therapy, options for cell replacement therapy, or as vehicles for gene delivery. Therefore, in parallel with deeper understanding of the specific protective effects of different neurotrophic factors and the potential therapeutic cell candidates for glaucoma neuroprotection, the development of non-invasive and highly specific gene delivery methods with safe and effective technologies to modify cell candidates for life-long neuroprotection in the eye is essential before investing in this field.

  7. NEUROPROTECTIVE THERAPIES IN GLAUCOMA: II. GENETIC NANOTECHNOLOGY TOOLS

    Directory of Open Access Journals (Sweden)

    Nafiseh eNafissi

    2015-10-01

    Full Text Available Neurotrophic factor genome engineering could have many potential applications not only in the deeper understanding of neurodegenerative disorders but also in improved therapeutics. The field of nanomedicine, regenerative medicine, and gene/cell-based therapy have been revolutionized by the development of safer and efficient non-viral technologies for gene delivery and genome editing with modern techniques for insertion of the neurotrophic factors into clinically relevant cells for a more sustained pharmaceutical effect. It has been suggested that the long-term expression of neurotrophic factors is the ultimate approach to prevent and/or treat neurodegenerative disorders such as glaucoma in patients who do not respond to available treatments or are at the progressive stage of the disease. Recent preclinical research suggests that novel neuroprotective gene and cell therapeutics could be promising approaches for both non-invasive neuroprotection and regenerative functions in the eye. Several progenitor and retinal cell types have been investigated as potential candidates for glaucoma neurotrophin therapy either as targets for gene therapy, options for cell replacement therapy, or as vehicles for gene delivery. Therefore, in parallel with deeper understanding of the specific protective effects of different neurotrophic factors and the potential therapeutic cell candidates for glaucoma neuroprotection, the development of non-invasive and highly specific gene delivery methods with safe and effective technologies to modify cell candidates for life-long neuroprotection in the eye is essential before investing in this field.

  8. Genetics Home Reference: lattice corneal dystrophy type II

    Science.gov (United States)

    ... network of protein filaments that gives structure to cells (the cytoskeleton). Mutations that cause lattice corneal dystrophy type II change a single protein building block (amino acid) in the gelsolin protein. ... from the cell. These protein fragments clump together and form amyloid ...

  9. Genetics Home Reference: hereditary sensory and autonomic neuropathy type II

    Science.gov (United States)

    ... is found in the cells of the nervous system, including sensory neurons. The mutations involved in HSAN2A result in ... Samuels M, Rouleau GA. Mutations in the nervous system--specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II. J Clin Invest. 2008 Jul; ...

  10. Quantificational analysis of NPT-II protein from genetically modified ...

    African Journals Online (AJOL)

    Widely distributed inhibitors in grapevine extracts make it difficult to improve analytical procedures for protein detection. In this study, acidity in grapevine extracts was one of the major factors inhibiting the detection of neomycin phosphotransferase II via enzyme-linked immunosorbent assay. Leaf and berry extracts with low ...

  11. Quantificational analysis of NPT-II protein from genetically modified ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... contents in transgenic grapevine tissues possessing a NPT-II gene were successfully measured. The results here may be useful to ... Key words: pH adjustment, polyphenol, protein detection, protein inhibitor, transgenic. INTRODUCTION ... the food industry (Mouщcoucou et al., 2003; Weinbreck et al., 2004 ...

  12. Association genetics in Pinus taeda L. II. Carbon isotope discrimination.

    Science.gov (United States)

    González-Martínez, S C; Huber, D; Ersoz, E; Davis, J M; Neale, D B

    2008-07-01

    Dissection of complex traits that influence fitness is not only a central topic in evolutionary research but can also assist breeding practices for economically important plant species, such as loblolly pine (Pinus taeda L). In this study, 46 single nucleotide polymorphisms (SNPs) from 41 disease and abiotic stress-inducible genes were tested for their genetic association with carbon isotope discrimination (CID), a time-integrated trait measure of stomatal conductance. A family-based approach to detect genotype/phenotype genetic association was developed for the first time in plants by applying the quantitative transmission disequilibrium test on an association population of 961 clones from 61 families (adopted from previous breeding programs) evaluated for phenotypic expression of CID at two sites. Two particularly promising candidates for their genetic effects on CID are: dhn-1, involved in stabilization of cell structures, and lp5-like, a glycine rich protein putatively related to cell wall reinforcement proteins, both of which were shown in previous studies to be water-deficit inducible. Moreover, association in lp5-like involves a nonsynonymous mutation in linkage disequilibrium with two other nonsynonymous polymorphisms that could, by acting together, enhance overall phenotypic effects. This study highlights the complexity of dissecting CID traits and provides insights for designing second-generation association studies based on candidate gene approaches in forest trees.

  13. Effects of C2ta genetic polymorphisms on MHC class II expression and autoimmune diseases.

    Science.gov (United States)

    Yau, Anthony C Y; Piehl, Fredrik; Olsson, Tomas; Holmdahl, Rikard

    2017-04-01

    Antigen presentation by the MHC-II to CD4 + T cells is important in adaptive immune responses. The class II transactivator (CIITA in human and C2TA in mouse) is the master regulator of MHC-II gene expression. It coordinates the transcription factors necessary for the transcription of MHC-II molecules. In humans, genetic variations in CIITA have been associated with differential expression of MHC-II and susceptibility to autoimmune diseases. Here we made use of a C2ta congenic mouse strain (expressing MHC-II haplotype H-2 q ) to investigate the effect of the natural genetic polymorphisms in type I promoter of C2ta on MHC-II expression and function. We demonstrate that an allelic variant in the type I promoter of C2ta resulted in an increased expression of MHC-II on macrophages (72-151% higher mean florescence intensity) and conventional dendritic cells (13-65% higher mean florescence intensity) in both spleen and peripheral blood. The increase in MHC-II expression resulted in an increase in antigen presentation to T cells in vitro and increased T-cell activation. The differential MHC-II expression in B6Q.C2ta, however, did not alter the disease development in models of rheumatoid arthritis (collagen-induced arthritis and human glucose-6-phosphate-isomerase 325-339 -peptide-induced arthritis), or multiple sclerosis (MOG 1-125 protein-induced and MOG 79-96 peptide-induced experimental autoimmune encephalomyelitis). This is the first study to address the role of an allelic variant in type I promoter of C2ta in MHC-II expression and autoimmune diseases; and shows that C2ta polymorphisms regulate MHC-II expression and T-cell responses but do not necessarily have a strong impact on autoimmune diseases. © 2016 John Wiley & Sons Ltd.

  14. Genetic Influences on Learning Disabilities II: Behavior Genetics and Clinical Implications.

    Science.gov (United States)

    Smith, Shelley D.; Pennington, Bruce F.

    1983-01-01

    Research in the genetics of behavioral traits, undertaken by family studies, twin studies, and adoption studies, has revealed information on normal variation in cognitive abilities as well as specific learning disabilities (primarily dyslexia). Genetic evaluation of learning disabled students have implications for counseling and recurrence risk…

  15. Human Genome Editing and Ethical Considerations.

    Science.gov (United States)

    Krishan, Kewal; Kanchan, Tanuj; Singh, Bahadur

    2016-04-01

    Editing human germline genes may act as boon in some genetic and other disorders. Recent editing of the genome of the human embryo with the CRISPR/Cas9 editing tool generated a debate amongst top scientists of the world for the ethical considerations regarding its effect on the future generations. It needs to be seen as to what transformation human gene editing brings to humankind in the times to come.

  16. Molecular genetic analysis of Type II diabetes associated m.3243A ...

    African Journals Online (AJOL)

    Saidul Abrar

    Molecular genetic analysis of Type II diabetes associated m.3243A>G mitochondrial DNA mutation in a Pakistani family. Saidul Abrar a, Khushi Muhammad b, Hasnain Zaman c, Suleman Khan b, Faisal Nouroz a,d, Nousheen Bibi a,* a Department of Bioinformatics, Hazara University Mansehra, Pakistan b Department of ...

  17. Genetic and environmental influences on Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) maladaptive personality traits and their connections with normative personality traits.

    Science.gov (United States)

    Wright, Zara E; Pahlen, Shandell; Krueger, Robert F

    2017-05-01

    The Diagnostic and Statistical Manual for Mental Disorders-Fifth Edition (DSM-5) proposes an alternative model for personality disorders, which includes maladaptive-level personality traits. These traits can be operationalized by the Personality Inventory for the DSM-5 (PID-5). Although there has been extensive research on genetic and environmental influences on normative level personality, the heritability of the DSM-5 traits remains understudied. The present study addresses this gap in the literature by assessing traits indexed by the PID-5 and the International Personality Item Pool NEO (IPIP-NEO) in adult twins (N = 1,812 individuals). Research aims include (a) replicating past findings of the heritability of normative level personality as measured by the IPIP-NEO as a benchmark for studying maladaptive level traits, (b) ascertaining univariate heritability estimates of maladaptive level traits as measured by the PID-5, (c) establishing how much variation in personality pathology can be attributed to the same genetic components affecting variation in normative level personality, and (d) determining residual variance in personality pathology domains after variance attributable to genetic and environmental components of general personality has been removed. Results revealed that PID-5 traits reflect similar levels of heritability to that of IPIP-NEO traits. Further, maladaptive and normative level traits that correlate at the phenotypic level also correlate at the genotypic level, indicating overlapping genetic components contribute to variance in both. Nevertheless, we also found evidence for genetic and environmental components unique to maladaptive level personality traits, not shared with normative level traits. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. genome editing

    Indian Academy of Sciences (India)

    2016-02-11

    Feb 11, 2016 ... terms in molecular biology, but I have the premonition that we are living a similar event, with identically dra- ... meaning of 'editing' occurred in the French language and in biology. In both cases, computers played ..... Tiegs SL, Russell DM and Nemazee D 1993 Receptor editing in self-reactive bone marrow.

  19. Relationships of RNA polymerase II genetic interactors to transcription start site usage defects and growth in Saccharomyces cerevisiae.

    Science.gov (United States)

    Jin, Huiyan; Kaplan, Craig D

    2014-11-06

    Transcription initiation by RNA Polymerase II (Pol II) is an essential step in gene expression and regulation in all organisms. Initiation requires a great number of factors, and defects in this process can be apparent in the form of altered transcription start site (TSS) selection in Saccharomyces cerevisiae (Baker's yeast). It has been shown previously that TSS selection in S. cerevisiae is altered in Pol II catalytic mutants defective in a conserved active site feature known as the trigger loop. Pol II trigger loop mutants show growth phenotypes in vivo that correlate with biochemical defects in vitro and exhibit wide-ranging genetic interactions. We assessed how Pol II mutant growth phenotypes and TSS selection in vivo are modified by Pol II genetic interactors to estimate the relationship between altered TSS selection in vivo and organismal fitness of Pol II mutants. We examined whether the magnitude of TSS selection defects could be correlated with Pol II mutant-transcription factor double mutant phenotypes. We observed broad genetic interactions among Pol II trigger loop mutants and General Transcription Factor (GTF) alleles, with reduced-activity Pol II mutants especially sensitive to defects in TFIIB. However, Pol II mutant growth defects could be uncoupled from TSS selection defects in some Pol II allele-GTF allele double mutants, whereas a number of other Pol II genetic interactors did not influence ADH1 start site selection alone or in combination with Pol II mutants. Initiation defects are likely only partially responsible for Pol II allele growth phenotypes, with some Pol II genetic interactors able to exacerbate Pol II mutant growth defects while leaving initiation at a model TSS selection promoter unaffected. Copyright © 2015 Jin and Kaplan.

  20. Characterization of genetic polymorphism of novel MHC B-LB II alleles in Chinese indigenous chickens.

    Science.gov (United States)

    Xu, Rifu; Li, Kui; Chen, Guohong; Xu, Hui; Qiang, Bayangzong; Li, Changchun; Liu, Bang

    2007-02-01

    Genetic polymorphism of the major histocompatibility complex (MHC) B-LB II gene was studied by amplification of exon 2 using PCR, followed by cloning and DNA sequencing in eight indigenous Chinese chicken populations. To reveal the genetic variation of the B-LB II gene, 37 types of patterns detected by PCR-SSCP were investigated first, which would be used to screen novel B-LB II sequences within the breeds. The types of PCR-SSCP patterns and final sequencing allowed for the identification of 31 novel MHC B-LB II alleles from 30 unrelated individuals of Chinese chickens that were sampled. These are the first designators for the alleles of chicken MHC B-LB II gene based on the rule of assignment for novel mammalian alleles. Sequence alignment of the 31 B-LB II alleles revealed a total of 68 variable sites in the fragment of exon 2, of which 51 parsimony informative and 17 singleton variable sites were observed. Among the polymorphic sites, the nucleotide substitutions in the first and second positions of the codons accounted for 36.76% and 35.29%, respectively. The sequence similarities between the alleles were estimated to be 90.6%-99.5%. The relative frequencies of synonymous and nonsynonymous nucleotide substitutions within the region were 2.92%+/-0.94% and 14.64%+/-2.67%, respectively. These results indicated that the genetic variation within exon 2 appeared to have largely arisen by gene recombination and balancing selection. Alignment of the deduced amino acid sequences of the beta1 domain coded by exon 2 revealed 6 synonymous mutations and 27 nonsynonymous substitutions at the 33 disparate sites. In particular, the nonsynonymous substitutions at the putative peptide-binding sites are considered to be associated with immunological specificity of MHC B-LB II molecule in Chinese native chickens. These results can provide a molecular biological basis for the study of disease resistance in chicken breeding.

  1. Optimal recombination in genetic algorithms for combinatorial optimization problems: Part II

    Directory of Open Access Journals (Sweden)

    Eremeev Anton V.

    2014-01-01

    Full Text Available This paper surveys results on complexity of the optimal recombination problem (ORP, which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. In Part II, we consider the computational complexity of ORPs arising in genetic algorithms for problems on permutations: the Travelling Salesman Problem, the Shortest Hamilton Path Problem and the Makespan Minimization on Single Machine and some other related problems. The analysis indicates that the corresponding ORPs are NP-hard, but solvable by faster algorithms, compared to the problems they are derived from.

  2. Isolation and characterization of functional tripartite group II introns using a Tn5-based genetic screen.

    Directory of Open Access Journals (Sweden)

    Christine Ritlop

    Full Text Available BACKGROUND: Group II introns are RNA enzymes that splice themselves from pre-mRNA transcripts. Most bacterial group II introns harbour an open reading frame (ORF, coding for a protein with reverse transcriptase, maturase and occasionally DNA binding and endonuclease activities. Some ORF-containing group II introns were shown to be mobile retroelements that invade new DNA target sites. From an evolutionary perspective, group II introns are hypothesized to be the ancestors of the spliceosome-dependent nuclear introns and the small nuclear RNAs (snRNAs--U1, U2, U4, U5 and U6 that are important functional elements of the spliceosome machinery. The ability of some group II introns fragmented in two or three pieces to assemble and undergo splicing in trans supports the theory that spliceosomal snRNAs evolved from portions of group II introns. METHODOLOGY/PRINCIPAL FINDINGS: We used a transposon-based genetic screen to explore the ability of the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis to be fragmented into three pieces in vivo. Trans-splicing tripartite variants of Ll.LtrB were selected using a highly efficient and sensitive trans-splicing/conjugation screen. We report that numerous fragmentation sites located throughout Ll.LtrB support tripartite trans-splicing, showing that this intron is remarkably tolerant to fragmentation. CONCLUSIONS/SIGNIFICANCE: This work unveils the great versatility of group II intron fragments to assemble and accurately trans-splice their flanking exons in vivo. The selected introns represent the first evidence of functional tripartite group II introns in bacteria and provide experimental support for the proposed evolutionary relationship between group II introns and snRNAs.

  3. Genetic parameters and genetic trends in the Chinese × European Tiameslan composite pig line. II. Genetic trends

    Directory of Open Access Journals (Sweden)

    Legault Christian

    2000-01-01

    Full Text Available Abstract The Tiameslan line was created between 1983 and 1985 by mating Meishan × Jiaxing crossbred Chinese boars with sows from the Laconie composite male line. The Tiameslan line has been selected since then on an index combining average backfat thickness (ABT and days from 20 to 100 kg (DT. Direct and correlated responses to 11 years of selection were estimated using BLUP methodology applied to a multiple trait animal model. A total of 11 traits were considered, i.e.: ABT, DT, body weight at 4 (W4w, 8 (W8w and 22 (W22w weeks of age, teat number (TEAT, number of good teats (GTEAT, total number of piglets born (TNB, born alive (NBA and weaned (NW per litter, and birth to weaning survival rate (SURV. Performance data from a total of 4 881 males and 4 799 females from 1 341 litters were analysed. The models included both direct and maternal effects for ABT, W4w and W8w. Male and female performances were considered as different traits for W22w, DT and ABT. Genetic parameters estimated in another paper (Zhang et al., Genet. Sel. Evol. 32 (2000 41-56 were used to perform the analyses. Favourable phenotypic (ΔP and direct genetic trends (ΔGd were obtained for post-weaning growth traits and ABT. Trends for maternal effects were limited. Phenotypic and genetic trends were larger in females than in males for ABT (e.g. ΔGd = -0.48 vs. -0.38 mm/year, were larger in males for W22w (ΔGd = 0.90 vs. 0.58 kg/year and were similar in both sexes for DT (ΔGd = -0.54 vs. -0.55 day/year. Phenotypic and genetic trends were slightly favourable for W4w, W8w, TEAT and GTEAT and close to zero for reproductive traits.

  4. Cas9/sgRNA-based genome editing and other reverse genetic approaches for functional genomic studies in rice.

    Science.gov (United States)

    Moin, Mazahar; Bakshi, Achala; Madhav, M S; Kirti, P B

    2018-03-22

    One of the important and direct ways of investigating the function of a gene is to characterize the phenotypic consequences associated with loss or gain-of-function of the corresponding gene. These mutagenesis strategies have been successfully deployed in Arabidopsis, and subsequently extended to crop species including rice. Researchers have made vast advancements in the area of rice genomics and functional genomics, as it is a diploid plant with a relatively smaller genome size unlike other cereals. The advent of rice genome research and the annotation of high-quality genome sequencing along with the developments in databases and computer searches have enabled the functional characterization of unknown genes in rice. Further, with the improvements in the efficiency of regeneration and transformation protocols, it has now become feasible to produce sizable mutant populations in indica rice varieties also. In this review, various mutagenesis methods, the current status of the mutant resources, limitations and strengths of insertional mutagenesis approaches and also results obtained with suitable screens for stress tolerance in rice are discussed. In addition, targeted genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or Cas9/single-guide RNA system and its potential applications in generating transgene-free rice plants through genome engineering as an efficient alternative to classical transgenic technology are also discussed.

  5. Common and distinct genetic properties of ESCRT-II components in Drosophila.

    Directory of Open Access Journals (Sweden)

    Hans-Martin Herz

    Full Text Available BACKGROUND: Genetic studies in yeast have identified class E vps genes that form the ESCRT complexes required for protein sorting at the early endosome. In Drosophila, mutations of the ESCRT-II component vps25 cause endosomal defects leading to accumulation of Notch protein and increased Notch pathway activity. These endosomal and signaling defects are thought to account for several phenotypes. Depending on the developmental context, two different types of overgrowth can be detected. Tissue predominantly mutant for vps25 displays neoplastic tumor characteristics. In contrast, vps25 mutant clones in a wild-type background trigger hyperplastic overgrowth in a non-autonomous manner. In addition, vps25 mutant clones also promote apoptotic resistance in a non-autonomous manner. PRINCIPAL FINDINGS: Here, we genetically characterize the remaining ESCRT-II components vps22 and vps36. Like vps25, mutants of vps22 and vps36 display endosomal defects, accumulate Notch protein and--when the tissue is predominantly mutant--show neoplastic tumor characteristics. However, despite these common phenotypes, they have distinct non-autonomous phenotypes. While vps22 mutations cause strong non-autonomous overgrowth, they do not affect apoptotic resistance. In contrast, vps36 mutations increase apoptotic resistance, but have little effect on non-autonomous proliferation. Further characterization reveals that although all ESCRT-II mutants accumulate Notch protein, only vps22 and vps25 mutations trigger Notch activity. CONCLUSIONS/SIGNIFICANCE: The ESCRT-II components vps22, vps25 and vps36 display common and distinct genetic properties. Our data redefine the role of Notch for hyperplastic and neoplastic overgrowth in these mutants. While Notch is required for hyperplastic growth, it appears to be dispensable for neoplastic transformation.

  6. A Bee Evolutionary Guiding Nondominated Sorting Genetic Algorithm II for Multiobjective Flexible Job-Shop Scheduling

    Directory of Open Access Journals (Sweden)

    Qianwang Deng

    2017-01-01

    Full Text Available Flexible job-shop scheduling problem (FJSP is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II for multiobjective FJSP (MO-FJSP with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N, in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.

  7. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    . The problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications...

  8. genome editing

    Indian Academy of Sciences (India)

    2016-02-11

    Feb 11, 2016 ... What history tells us. XL. The success story of the expression 'genome editing'. MICHEL MORANGE. Centre Cavaillès, République des Savoirs: Lettres, Sciences, Philosophie USR 3608, Ecole. Normale Supérieure, 29 Rue d'Ulm, 75230, Paris Cedex 05, France. (Fax, 33-144-323941; Email, ...

  9. Genetic diversity of the flagellin genes of Clostridium botulinum groups I and II.

    Science.gov (United States)

    Woudstra, Cedric; Lambert, Dominic; Anniballi, Fabrizio; De Medici, Dario; Austin, John; Fach, Patrick

    2013-07-01

    Botulinum neurotoxins (BoNTs) are produced by phenotypically and genetically different Clostridium species, including Clostridium botulinum and some strains of Clostridium baratii (serotype F) and Clostridium butyricum (serotype E). BoNT-producing clostridia responsible for human botulism encompass strains of group I (secreting proteases, producing toxin serotype A, B, or F, and growing optimally at 37°C) and group II (nonproteolytic, producing toxin serotype E, B, or F, and growing optimally at 30°C). Here we report the development of real-time PCR assays for genotyping C. botulinum strains of groups I and II based on flaVR (variable region sequence of flaA) sequences and the flaB gene. Real-time PCR typing of regions flaVR1 to flaVR10 and flaB was optimized and validated with 62 historical and Canadian C. botulinum strains that had been previously typed. Analysis of 210 isolates of European origin allowed the identification of four new C. botulinum flaVR types (flaVR11 to flaVR14) and one new flaVR type specific to C. butyricum type E (flaVR15). The genetic diversity of the flaVR among C. botulinum strains investigated in the present study reveals the clustering of flaVR types into 5 major subgroups. Subgroups 1, 3, and 4 contain proteolytic Clostridium botulinum, subgroup 2 is made up of nonproteolytic C. botulinum only, and subgroup 5 is specific to C. butyricum type E. The genetic variability of the flagellin genes carried by C. botulinum and the possible association of flaVR types with certain geographical areas make gene profiling of flaVR and flaB promising in molecular surveillance and epidemiology of C. botulinum.

  10. The role of RNA editing in dynamic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, L. M. (Luis Mateus); Huang, C. F. (Chien-Feng)

    2004-01-01

    This paper presents a computational methodology based on Genetic Algorithms with Genotype Editing (GAE) for investigating the role of RNA editing in dynamic environments. This model is constructed based on several genetic editing characteristics that are gleaned from the RNA editing system as observed in several organisms. We have previously expanded the traditional Genetic Algorithm (GA) with artificial editing mechanisms (Rocha, 1995, 1997), and studied the benefits of including straightforward Genotype Editing in GA for several machine learning problems (Huang and Rocha, 2003, 2004). We show that the incorporation of genotype editing provides a means for artificial agents with genetic descriptions to gain greater phenotypic plasticity. Artificial agents use genotype edition to their advantage by linking it to environmental context. The ability to link changes in the environment with editing parameters gives organisms an adaptive advantage as genotype expression can become contextually regulated. The study of this RNA editing model in changing environments has shed some light into the evolutionary implications of RNA editing. We expect that our methodology will both facilitate determining the evolutionary role of RNA editing in biology, and advance the current state of research in Evolutionary Computation and Artificial Life.

  11. A genome editing primer for the hematologist

    OpenAIRE

    Hoban, Megan D.; Bauer, Daniel E.

    2016-01-01

    Gene editing enables the site-specific modification of the genome. These technologies have rapidly advanced such that they have entered common use in experimental hematology to investigate genetic function. In addition, genome editing is becoming increasingly plausible as a treatment modality to rectify genetic blood disorders and improve cellular therapies. Genome modification typically ensues from site-specific double-strand breaks and may result in a myriad of outcomes. Even single-strand ...

  12. Usher's Syndrome Type II: A Comparative Study of Genetic Mutations and Vestibular System Evaluation.

    Science.gov (United States)

    Magliulo, Giuseppe; Iannella, Giannicola; Gagliardi, Silvia; Iozzo, Nicola; Plateroti, Rocco; Mariottini, Alessandro; Torricelli, Francesca

    2017-11-01

    Objective Usher's syndrome type II (USH2) is characterized by moderate to profound congenital hearing loss, later onset of retinitis pigmentosa, and normal vestibular function. Recently, a study investigating the vestibular function of USH2 patients demonstrated a pathologic response to vestibular tests. In this cross-sectional study we performed vestibular tests of a group patients with genetic diagnosis of USH2 syndrome to demonstrate if vestibular damage is present in USH2 patients. Study Design Cross-sectional study. Setting Tertiary referral center. Subjects and Methods Mutated genes of 7 patients with a clinical diagnosis of USH2 were evaluated. Vestibular function was investigated by audiometry, Fitzgerald-Hallpike caloric vestibular testing, cervical vestibular evoked myogenic potentials (C-VEMPs), ocular vestibular evoked myogenic potentials (O-VEMPs), and video head impulse test (v-HIT). Results Genetic tests confirmed the USH2 diagnosis in 5 of 7 patients examined, with 1 patient reporting a unique mutation on genetic tests. Four (80%) of the 5 patients with a genetic diagnosis of USH2 showed pathological O-VEMPs. Two patients (40%) reported bilateral absent or abnormal values of C-VEMPs. The superior semicircular canal presented a significant deficit in 2 (40%) patients. The same 2 cases showed a pathologic response of the v-HIT of the horizontal semicircular canal. Finally, the posterior semicircular canal presented a significant deficit in 4 (40.0%) patients. Conclusion A vestibular evaluation with vestibular evoked myogenic potentials and v-HIT seems to identify latent damage to the vestibular receptors of USH2 patients.

  13. In vivo genome editing thrives with diversified CRISPR technologies

    Directory of Open Access Journals (Sweden)

    Xun Ma

    2018-03-01

    Full Text Available Prokaryotic type II adaptive immune systems have been developed into the versatile CRISPR technology, which has been widely applied in site-specific genome editing and has revolutionized biomedical research due to its superior efficiency and flexibility. Recent studies have greatly diversified CRISPR technologies by coupling it with various DNA repair mechanisms and targeting strategies. These new advances have significantly expanded the generation of genetically modified animal models, either by including species in which targeted genetic modification could not be achieved previously, or through introducing complex genetic modifications that take multiple steps and cost years to achieve using traditional methods. Herein, we review the recent developments and applications of CRISPR-based technology in generating various animal models, and discuss the everlasting impact of this new progress on biomedical research.

  14. Harnessing type I and type III CRISPR-Cas systems for genome editing

    DEFF Research Database (Denmark)

    Li, Yingjun; Pan, Saifu; Zhang, Yan

    2016-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are widespread in archaea and bacteria, and research on their molecular mechanisms has led to the development of genome-editing techniques based on a few Type II systems. However, there has not been any...... report on harnessing a Type I or Type III system for genome editing. Here, a method was developed to repurpose both CRISPR-Cas systems for genetic manipulation in Sulfolobus islandicus, a thermophilic archaeon. A novel type of genome-editing plasmid (pGE) was constructed, carrying an artificial mini-CRISPR...... and selectively retained as transformants. Using this strategy, different types of mutation were generated, including deletion, insertion and point mutations. We envision this method is readily applicable to different bacteria and archaea that carry an active CRISPR-Cas system of DNA interference provided...

  15. [Clinical classification and genetic mutation study of two pedigrees with type II Waardenburg syndrome].

    Science.gov (United States)

    Chen, Yong; Yang, Fuwei; Zheng, Hexin; Zhu, Ganghua; Hu, Peng; Wu, Weijing

    2015-12-01

    To explore the molecular etiology of two pedigrees affected with type II Waardenburg syndrome (WS2) and to provide genetic diagnosis and counseling. Blood samples were collected from the proband and his family members. Following extraction of genomic DNA, the coding sequences of PAX3, MITF, SOX10 and SNAI2 genes were amplified with PCR and subjected to DNA sequencing to detect potential mutations. A heterozygous deletional mutation c.649_651delAGA in exon 7 of the MITF gene has been identified in all patients from the first family, while no mutation was found in the other WS2 related genes including PAX3, MITF, SOX10 and SNAI2. The heterozygous deletion mutation c.649_651delAGA in exon 7 of the MITF gene probably underlies the disease in the first family. It is expected that other genes may also underlie WS2.

  16. Genome editing comes of age.

    Science.gov (United States)

    Kim, Jin-Soo

    2016-09-01

    Genome editing harnesses programmable nucleases to cut and paste genetic information in a targeted manner in living cells and organisms. Here, I review the development of programmable nucleases, including zinc finger nucleases (ZFNs), TAL (transcription-activator-like) effector nucleases (TALENs) and CRISPR (cluster of regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated protein 9) RNA-guided endonucleases (RGENs). I specifically highlight the key advances that set the foundation for the rapid and widespread implementation of CRISPR-Cas9 genome editing approaches that has revolutionized the field.

  17. To edit or not to edit: regulation of ADAR editing specificity and efficiency.

    Science.gov (United States)

    Deffit, Sarah N; Hundley, Heather A

    2016-01-01

    Hundreds to millions of adenosine (A)-to-inosine (I) modifications are present in eukaryotic transcriptomes and play an essential role in the creation of proteomic and phenotypic diversity. As adenosine and inosine have different base-pairing properties, the functional consequences of these modifications or 'edits' include altering coding potential, splicing, and miRNA-mediated gene silencing of transcripts. However, rather than serving as a static control of gene expression, A-to-I editing provides a means to dynamically rewire the genetic code during development and in a cell-type specific manner. Interestingly, during normal development, in specific cells, and in both neuropathological diseases and cancers, the extent of RNA editing does not directly correlate with levels of the substrate mRNA or the adenosine deaminase that act on RNA (ADAR) editing enzymes, implying that cellular factors are required for spatiotemporal regulation of A-to-I editing. The factors that affect the specificity and extent of ADAR activity have been thoroughly dissected in vitro. Yet, we still lack a complete understanding of how specific ADAR family members can selectively deaminate certain adenosines while others cannot. Additionally, in the cellular environment, ADAR specificity and editing efficiency is likely to be influenced by cellular factors, which is currently an area of intense investigation. Data from many groups have suggested two main mechanisms for controlling A-to-I editing in the cell: (1) regulating ADAR accessibility to target RNAs and (2) protein-protein interactions that directly alter ADAR enzymatic activity. Recent studies suggest cis- and trans-acting RNA elements, heterodimerization and RNA-binding proteins play important roles in regulating RNA editing levels in vivo. WIREs RNA 2016, 7:113-127. doi: 10.1002/wrna.1319. © 2015 Wiley Periodicals, Inc.

  18. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments

    KAUST Repository

    Adel, Mustafa

    2016-09-06

    The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer.

  19. Clinical and genetic investigation of families with type II Waardenburg syndrome.

    Science.gov (United States)

    Chen, Yong; Yang, Fuwei; Zheng, Hexin; Zhou, Jianda; Zhu, Ganghua; Hu, Peng; Wu, Weijing

    2016-03-01

    The present study aimed to investigate the molecular pathology of Waardenburg syndrome type II in three families, in order to provide genetic diagnosis and hereditary counseling for family members. Relevant clinical examinations were conducted on the probands of the three pedigrees. Peripheral blood samples of the probands and related family members were collected and genomic DNA was extracted. The coding sequences of paired box 3 (PAX3), microphthalmia‑associated transcription factor (MITF), sex‑determining region Y‑box 10 (SOX10) and snail family zinc finger 2 (SNAI2) were analyzed by polymerase chain reaction and DNA sequencing. The heterozygous mutation, c.649_651delAGA in exon 7 of the MITF gene was detected in the proband and all patients of pedigree 1; however, no pathological mutation of the relevant genes (MITF, SNAI2, SOX10 or PAX3) was detected in pedigrees 2 and 3. The heterozygous mutation c.649_651delAGA in exon 7 of the MITF gene is therefore considered the disease‑causing mutation in pedigree 1. However, there are novel disease‑causing genes in Waardenburg syndrome type II, which require further research.

  20. Fuzzy ranking based non-dominated sorting genetic algorithm-II for network overload alleviation

    Directory of Open Access Journals (Sweden)

    Pandiarajan K.

    2014-09-01

    Full Text Available This paper presents an effective method of network overload management in power systems. The three competing objectives 1 generation cost 2 transmission line overload and 3 real power loss are optimized to provide pareto-optimal solutions. A fuzzy ranking based non-dominated sorting genetic algorithm-II (NSGA-II is used to solve this complex nonlinear optimization problem. The minimization of competing objectives is done by generation rescheduling. Fuzzy ranking method is employed to extract the best compromise solution out of the available non-dominated solutions depending upon its highest rank. N-1 contingency analysis is carried out to identify the most severe lines and those lines are selected for outage. The effectiveness of the proposed approach is demonstrated for different contingency cases in IEEE 30 and IEEE 118 bus systems with smooth cost functions and their results are compared with other single objective evolutionary algorithms like Particle swarm optimization (PSO and Differential evolution (DE. Simulation results show the effectiveness of the proposed approach to generate well distributed pareto-optimal non-dominated solutions of multi-objective problem

  1. A genome editing primer for the hematologist

    Science.gov (United States)

    Hoban, Megan D.

    2016-01-01

    Gene editing enables the site-specific modification of the genome. These technologies have rapidly advanced such that they have entered common use in experimental hematology to investigate genetic function. In addition, genome editing is becoming increasingly plausible as a treatment modality to rectify genetic blood disorders and improve cellular therapies. Genome modification typically ensues from site-specific double-strand breaks and may result in a myriad of outcomes. Even single-strand nicks and targeted biochemical modifications that do not permanently alter the DNA sequence (epigenome editing) may be powerful instruments. In this review, we examine the various technologies, describe their advantages and shortcomings for engendering useful genetic alterations, and consider future prospects for genome editing to impact hematology. PMID:27053532

  2. Expression of PAT and NPT II proteins during the developmental stages of a genetically modified pepper developed in Korea.

    Science.gov (United States)

    Kim, Hyo Jin; Lee, Si Myung; Kim, Jae Kwang; Ryu, Tae Hun; Suh, Seok Cheol; Cho, Hyun Suk

    2010-10-27

    Estimation of the protein levels introduced in a biotechnology-derived product is conducted as part of an overall safety assessment. An enzyme-linked immunosorbent assay (ELISA) was used to analyze phosphinothricin acetyltransferase (PAT) and neomycin phosphotransferase II (NPT II) protein expression in a genetically modified (GM) pepper plant developed in Korea. PAT and NPT II expression levels, based on both dry weight and fresh weight, were variable among different plant generations and plant sections from isolated genetically modified organism (GMO) fields at four developmental stages. PAT expression was highest in leaves at anthesis (11.44 μg/gdw and 2.17 μg/gfw) and lowest in roots (0.12 μg/gdw and 0.01 μg/gfw). NPT II expression was also highest in leaves at anthesis (17.31 μg/gdw and 3.41 μg/gfw) and lowest in red pepper (0.65 μg/gdw and 0.12 μg/gfw). In pollen, PAT expression was 0.59-0.62 μg/gdw, while NPT II was not detected. Both PAT and NPT II showed a general pattern of decreased expression with progression of the growing season. As expected, PAT and NPT II protein expression was not detectable in control pepper plants.

  3. Clinical, immunological and genetic features in eleven Algerian patients with major histocompatibility complex class II expression deficiency

    Directory of Open Access Journals (Sweden)

    Djidjik Réda

    2012-08-01

    Full Text Available Abstract Presenting processed antigens to CD4+ lymphocytes during the immune response involves major histocompatibility complex class II molecules. MHC class II genes transcription is regulated by four transcription factors: CIITA, RFXANK, RFX5 and RFXAP. Defects in these factors result in major histocompatibility complex class II expression deficiency, a primary combined immunodeficiency frequent in North Africa. Autosomal recessive mutations in the RFXANK gene have been reported as being the principal defect found in North African patients with this disorder. In this paper, we describe clinical, immunological and genetic features of 11 unrelated Algerian patients whose monocytes display a total absence of MHC class II molecules. They shared mainly the same clinical picture which included protracted diarrhoea and respiratory tract recurrent infections. Genetic analysis revealed that 9 of the 11 patients had the same RFXANK founder mutation, a 26 bp deletion (named I5E6-25_I5E6+1, also known as 752delG26. Immunological and genetic findings in our series may facilitate genetic counselling implementation for Algerian consanguineous families. Further studies need to be conducted to determine 752delG26 heterozygous mutation frequency in Algerian population.

  4. Clinical, immunological and genetic features in eleven Algerian patients with major histocompatibility complex class II expression deficiency.

    Science.gov (United States)

    Djidjik, Réda; Messaoudani, Nesrine; Tahiat, Azzedine; Meddour, Yanis; Chaib, Samia; Atek, Aziz; Khiari, Mohammed Elmokhtar; Benhalla, Nafissa Keltoum; Smati, Leila; Bensenouci, Abdelatif; Baghriche, Mourad; Ghaffor, Mohammed

    2012-08-03

    Presenting processed antigens to CD4+ lymphocytes during the immune response involves major histocompatibility complex class II molecules. MHC class II genes transcription is regulated by four transcription factors: CIITA, RFXANK, RFX5 and RFXAP. Defects in these factors result in major histocompatibility complex class II expression deficiency, a primary combined immunodeficiency frequent in North Africa. Autosomal recessive mutations in the RFXANK gene have been reported as being the principal defect found in North African patients with this disorder. In this paper, we describe clinical, immunological and genetic features of 11 unrelated Algerian patients whose monocytes display a total absence of MHC class II molecules. They shared mainly the same clinical picture which included protracted diarrhoea and respiratory tract recurrent infections. Genetic analysis revealed that 9 of the 11 patients had the same RFXANK founder mutation, a 26 bp deletion (named I5E6-25_I5E6+1, also known as 752delG26). Immunological and genetic findings in our series may facilitate genetic counselling implementation for Algerian consanguineous families. Further studies need to be conducted to determine 752delG26 heterozygous mutation frequency in Algerian population.

  5. [Genome editing of industrial microorganism].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  6. CLINICAL AND GENETIC CHARACTERISTICS OF MUCOLIPIDOSIS II AND IIIA TYPES IN CHILDREN

    Directory of Open Access Journals (Sweden)

    A. N. Semyachkina

    2017-01-01

    Full Text Available The article is devoted to a rare pathology from a group of accumulation diseases with an autosomal recessive type of inheritance – mucolipidosis II and IIIA types. The disease is characterized by a greater phenotypic similarity to mucopolysaccharidosis.Objective: analysis of genophenotypic parameters in Russian patients with mucolipidosis II and IIIA types. The activity of lysosomal enzymes in plasma (β-glucuronidase, total hexosaminidase and N-acetyl-α-D-glucosaminidase was measured using a standard technique using chromogenic and fluorogenic substrates. Genomic DNA of peripheral blood leukocytes was isolated using a set of reagents Preb 100 (DIAtomTM. Amplification of all exons of the GNPTAB gene was carried out by polymerase chain reaction (PCR followed by direct non-radioactive sequencing by Sanger.50 patients aged from 1.5 to 10 years were examined. The clinical symptoms of the disease included: a Hurler-like phenotype, growth retardation, skeletal, cardiac and vascular damage, and CNS. Mucolipidosis type II (I-cell disease was characterized by a more severe course. The clinical diagnosis was confirmed by the results of laboratory methods of investigation: normal parameters of renal excretion of glycosiminoglycans (GAG, high (5-15 times higher than normal activity of lysosomal hydrolases in blood plasma and detection of mutations in the GNPTAB gene.35 probands are completely genotyped. In 8 patients only 8 mutant alleles were detected; 7 mutations were not detected. Six new mutations in exons 1 (p.I31N; p.Q36P, 10 (p.L398P, 11 (p.W446X and 13 (p.S738X; c.2250delT were found, including a frequent mutation for Russian patients P.S738X (21% alleles. The most common (31.4% alleles in the Russian cohort of patients was a known small deletion c. 3503_3504delTC, leading to a reading frameshift.A clinical observation of a child with type 2 mucolipidosis (I-cell disease with typical symptomatology of the disease caused by two nonsense mutations

  7. Population genetics and natural selection in the gene encoding the Duffy binding protein II in Iranian Plasmodium vivax wild isolates.

    Science.gov (United States)

    Valizadeh, Vahideh; Zakeri, Sedigheh; Mehrizi, Akram Abouie; Djadid, Navid Dinparast

    2014-01-01

    Region II of Duffy binding protein (PvDBP-II) is one of the most promising blood-stage vaccine candidate antigens against Plasmodium vivax and having knowledge of the nature and genetic polymorphism of PvDBP-II among global P. vivax isolates is important for developing a DBP-based vaccine. By using PCR and sequencing, the present molecular population genetic approach was carried out to investigate sequence diversity and natural selection of dbp-II gene in 63 P. vivax isolates collected from unstable and low transmission malaria-endemic areas of Iran during 2008-2012. Also, phylogenetic analysis, the diversifying natural selection, and recombination across the pvdbp-II gene, including regions containing B-cell epitopes were analyzed using the DnaSP and MEGA4 programs. Twenty two single nucleotide polymorphisms (SNPs, including 20 non-synonymous and 2 synonymous) were identified in PvDBP-II, resulting in 16 different PvDBP-II haplotypes among the Iranian P. vivax isolates. High binding inhibitory B-cell epitope (H3) overlapping with intrinsically unstructured/disordered region (aa: 384-392) appeared to be highly polymorphic (D384G/E385K/ K386N/Q/R390H), and positive selective pressure acted on this region. Most of the polymorphic amino acids, which are located on the surface of the protein, are under selective pressure that implies increased recombination events and exposure to the human immune system. In summary, PvDBP-II gene displays genetic polymorphism among Iranian P. vivax isolates and it is under selective pressure. Mutations, recombination, and positive selection seem to play a role in the resulting genetic diversity, and phylogenetic analysis of DNA sequences demonstrates that Iranian isolates represent a sample of the global population. These results are useful for understanding the nature of the P. vivax population in Iran and also for development of PvDBP-II-based malaria vaccine. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. California Verbal Learning Test-II performance in schizophrenia as a function of ascertainment strategy: comparing the first and second phases of the Consortium on the Genetics of Schizophrenia (COGS).

    Science.gov (United States)

    Stone, William S; Mesholam-Gately, Raquelle I; Braff, David L; Calkins, Monica E; Freedman, Robert; Green, Michael F; Greenwood, Tiffany A; Gur, Raquel E; Gur, Ruben C; Lazzeroni, Laura C; Light, Gregory A; Nuechterlein, Keith H; Olincy, Ann; Radant, Allen D; Siever, Larry J; Silverman, Jeremy M; Sprock, Joyce; Sugar, Catherine A; Swerdlow, Neal R; Tsuang, Debby W; Tsuang, Ming T; Turetsky, Bruce I; Seidman, Larry J

    2015-04-01

    The first phase of the Consortium on the Genetics of Schizophrenia (COGS-1) showed performance deficits in learning and memory on the California Verbal Learning Test, Second Edition (CVLT-II) in individuals with schizophrenia (SZ), compared to healthy comparison subjects (HCS). A question is whether the COGS-1 study, which used a family study design (i.e. studying relatively intact families), yielded "milder" SZ phenotypes than those acquired subsequently in the COGS-2 case-control design that did not recruit unaffected family members. CVLT-II performance was compared for the COGS-1 and COGS-2 samples. Analyses focused on learning, recall and recognition variables, with age, gender and education as covariates. Analyses of COGS-2 data explored effects of additional covariates and moderating factors in CVLT-II performance. 324 SZ subjects and 510 HCS had complete CVLT-II and covariate data in COGS-1, while 1356 SZ and 1036 HCS had complete data in COGS-2. Except for recognition memory, analysis of covariance showed significantly worse performance in COGS-2 on all CVLT-II variables for SZ and HCS, and remained significant in the presence of the covariates. Performance in each of the 5 learning trials differed significantly. However, effect sizes comparing cases and controls were comparable across the two studies. COGS-2 analyses confirmed SZ performance deficits despite effects of multiple significant covariates and moderating factors. CVLT-II performance was worse in COGS-2 than in COGS-1 for both the SZ and the HCS in this large cohort, likely due to cohort effects. Demographically corrected data yield a consistent pattern of performance across the two studies in SZ. Copyright © 2014. Published by Elsevier B.V.

  9. Basic Wiring. Third Edition. Teacher Edition [and] Student Edition.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary; Blasingame, Don; Batson, Larry; Ipock, Dan; Carroll, Charles; Friesen, Wade; Fleming, Glenn

    This publication contains both a teacher edition and a student edition of materials for a foundation course in an electrical wiring program. The course introduces basic concepts and skills that are prerequisites to residential wiring and commercial and industrial wiring courses. The contents of the materials are tied to measurable and observable…

  10. Diesel Technology: Introduction. Teacher Edition [and] Student Edition. Second Edition.

    Science.gov (United States)

    Joerschke, John D.; Eichhorn, Lane

    This complete teacher edition of a diesel technology course consists of introductory pages, teacher pages, and the student edition. The introductory pages provide these tools: training and competency profile; National Automotive Technicians Education Foundation Crosswalk; instructional/task analysis; basic skills icons and classifications; basic…

  11. Responsible innovation in human germline gene editing: Background document to the recommendations of ESHG and ESHRE

    NARCIS (Netherlands)

    de Wert, Guido; Heindryckx, Björn; Pennings, Guido; Clarke, Angus; Eichenlaub-Ritter, Ursula; van El, Carla G.; Forzano, Francesca; Goddijn, Mariëtte; Howard, Heidi C.; Radojkovic, Dragica; Rial-Sebbag, Emmanuelle; Dondorp, Wybo; Tarlatzis, Basil C.; Cornel, Martina C.

    2018-01-01

    Technological developments in gene editing raise high expectations for clinical applications, including editing of the germline. The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and

  12. Genome Editing in Sugarcane: Challenges Ahead

    OpenAIRE

    Mohan, Chakravarthi

    2016-01-01

    Genome editing opens new and unique opportunities for researchers to enhance crop production. Until 2013, the zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) were the key tools used for genome editing applications. The advent of RNA-guided engineered nucleases - the type II clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 (CRISPR-associated) system from Streptococcus pyogenes holds great potential since it is simple, effective an...

  13. Genome-wide analysis of differential RNA editing in epilepsy

    Science.gov (United States)

    Srivastava, Prashant Kumar; Bagnati, Marta; Delahaye-Duriez, Andree; Ko, Jeong-Hun; Rotival, Maxime; Langley, Sarah R.; Shkura, Kirill; Mazzuferi, Manuela; Danis, Bénédicte; van Eyll, Jonathan; Foerch, Patrik; Behmoaras, Jacques; Kaminski, Rafal M.; Petretto, Enrico; Johnson, Michael R.

    2017-01-01

    The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine–temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including “neuron projection” and “seizures.” Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures. PMID:28250018

  14. Wikipedia editing dynamics

    Science.gov (United States)

    Gandica, Y.; Carvalho, J.; Sampaio dos Aidos, F.

    2015-01-01

    A model for the probabilistic function followed in editing Wikipedia is presented and compared with simulations and real data. It is argued that the probability of editing is proportional to the editor's number of previous edits (preferential attachment), to the editor's fitness, and to an aging factor. Using these simple ingredients, it is possible to reproduce the results obtained for Wikipedia editing dynamics for a collection of single pages as well as the averaged results. Using a stochastic process framework, a recursive equation was obtained for the average of the number of edits per editor that seems to describe the editing behavior in Wikipedia.

  15. Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in Diet-Induced Obesity.

    Science.gov (United States)

    Huang, Ji; Rajapakse, Angana; Xiong, Yuyan; Montani, Jean-Pierre; Verrey, François; Ming, Xiu-Fen; Yang, Zhihong

    2016-01-01

    Obesity is associated with development and progression of chronic kidney disease (CKD). Recent evidence demonstrates that enhanced levels of the L-arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I) and arginase-II (Arg-II) in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS), leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT) C57BL/6 mice and mice deficient in Arg-II gene (Arg-II -/- ) were fed with either a normal chow (NC) or a high-fat-diet (HFD) for 14 weeks (starting at the age of 7 weeks) to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal reactive oxygen species (ROS) levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II -/- mice. Moreover, mesangial expansion as analyzed by Periodic Acid Schiff (PAS) staining and renal expression of vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg-II -/- mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II -/- mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development.

  16. Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Ji Huang

    2016-11-01

    Full Text Available Obesity is associated with development and progression of chronic kidney disease (CKD. Recent evidence demonstrates that enhanced levels of the L-arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I and arginase-II (Arg-II in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS, leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT C57BL/6 mice and mice deficient in Arg-II gene (Arg-II-/- were fed with either a normal chow (NC or a high-fat-diet (HFD for 14 weeks (starting at the age of 7 weeks to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal ROS levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II-/- mice. Moreover, mesangial expansion as analysed by Periodic Acid Schiff (PAS staining and renal expression of vascular adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1 in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg-II-/- mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II-/- mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development.

  17. Protocol for investigating genetic determinants of posttraumatic stress disorder in women from the Nurses' Health Study II

    OpenAIRE

    Koenen, Karestan C; DeVivo, Immaculata; Rich-Edwards, Janet; Smoller, Jordan W; Wright, Rosalind J; Purcell, Shaun M

    2009-01-01

    Abstract Background One in nine American women will meet criteria for the diagnosis of posttraumatic stress disorder (PTSD) in their lifetime. Although twin studies suggest genetic influences account for substantial variance in PTSD risk, little progress has been made in identifying variants in specific genes that influence liability to this common, debilitating disorder. Methods and design We are using the unique resource of the Nurses Health Study II, a prospective epidemiologic cohort of 6...

  18. Genome editing in zebrafish: a practical overview.

    Science.gov (United States)

    Sertori, Robert; Trengove, Monique; Basheer, Faiza; Ward, Alister C; Liongue, Clifford

    2016-07-01

    Zebrafish is a powerful model for the study of vertebrate development, being amenable to a wide range of genetic and other manipulations to probe the molecular basis of development and its perturbation in disease. Over recent years, genome editing approaches have become increasingly used as an efficient and sophisticated approach to precisely engineer the zebrafish genome, which has further enhanced the utility of this organism. This review provides a practical overview of genome editing and its application in zebrafish research, including alternate strategies for introducing and screening for specific genetic changes. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Current status and perspectives of genome editing technology for microalgae

    OpenAIRE

    Jeon, Seungjib; Lim, Jong-Min; Lee, Hyung-Gwan; Shin, Sung-Eun; Kang, Nam Kyu; Park, Youn-Il; Oh, Hee-Mock; Jeong, Won-Joong; Jeong, Byeong-ryool; Chang, Yong Keun

    2017-01-01

    Genome editing techniques are critical for manipulating genes not only to investigate their functions in biology but also to improve traits for genetic engineering in biotechnology. Genome editing has been greatly facilitated by engineered nucleases, dubbed molecular scissors, including zinc-finger nuclease (ZFN), TAL effector endonuclease (TALEN) and clustered regularly interspaced palindromic sequences (CRISPR)/Cas9. In particular, CRISPR/Cas9 has revolutionized genome editing fields with i...

  20. Genome editing for crop improvement: Challenges and opportunities.

    Science.gov (United States)

    Abdallah, Naglaa A; Prakash, Channapatna S; McHughen, Alan G

    2015-01-01

    the genome. Due to its precision, gene editing is more precise than either conventional crop breeding methods or standard genetic engineering methods. Thus this technology is a very powerful tool that can be used toward securing the world's food supply. In addition to improving the nutritional value of crops, it is the most effective way to produce crops that can resist pests and thrive in tough climates. There are 3 types of modifications produced by genome editing; Type I includes altering a few nucleotides, Type II involves replacing an allele with a pre-existing one and Type III allows for the insertion of new gene(s) in predetermined regions in the genome. Because most genome-editing techniques can leave behind traces of DNA alterations evident in a small number of nucleotides, crops created through gene editing could avoid the stringent regulation procedures commonly associated with GM crop development. For this reason many scientists believe plants improved with the more precise gene editing techniques will be more acceptable to the public than transgenic plants. With genome editing comes the promise of new crops being developed more rapidly with a very low risk of off-target effects. It can be performed in any laboratory with any crop, even those that have complex genomes and are not easily bred using conventional methods.

  1. Genome editing for crop improvement: Challenges and opportunities

    Science.gov (United States)

    Abdallah, Naglaa A; Prakash, Channapatna S; McHughen, Alan G

    2015-01-01

    region of the genome. Due to its precision, gene editing is more precise than either conventional crop breeding methods or standard genetic engineering methods. Thus this technology is a very powerful tool that can be used toward securing the world's food supply. In addition to improving the nutritional value of crops, it is the most effective way to produce crops that can resist pests and thrive in tough climates. There are 3 types of modifications produced by genome editing; Type I includes altering a few nucleotides, Type II involves replacing an allele with a pre-existing one and Type III allows for the insertion of new gene(s) in predetermined regions in the genome. Because most genome-editing techniques can leave behind traces of DNA alterations evident in a small number of nucleotides, crops created through gene editing could avoid the stringent regulation procedures commonly associated with GM crop development. For this reason many scientists believe plants improved with the more precise gene editing techniques will be more acceptable to the public than transgenic plants. With genome editing comes the promise of new crops being developed more rapidly with a very low risk of off-target effects. It can be performed in any laboratory with any crop, even those that have complex genomes and are not easily bred using conventional methods. PMID:26930114

  2. Genome editing systems in novel therapies.

    Science.gov (United States)

    Jang, Yoon-Young; Cai, Liuhong; Ye, Zhaohui

    2016-01-01

    Genome editing is the process in which DNA sequences at precise genomic locations are modified. In the past three decades, genome editing by homologous recombination has been successfully performed in mouse for generating genetic models. The low efficiency of this process in human cells, however, had prevented its clinical application until the recent advancements in designer endonuclease technologies. The significantly improved genome editing efficiencies aided by ZFN, TALEN, and CRISPR systems provide unprecedented opportunities not only for biomedical research, but also for developing novel therapies. Applications based on these genome editing tools to disrupt deleterious genes, correct genetic mutations, deliver functional transgenes more effectively or even modify the epigenetic landscape are being actively investigated for gene and cell therapy purposes. Encouraging results have been obtained in limited clinical trials in the past two years. While most of the applications are still in proof-of-principle or preclinical development stages, it is anticipated that the coming years will see increasing clinical success in novel therapies based on the modern genome editing technologies. It should be noted that critical issues still remain before the technologies can be translated into more reliable therapies. These key issues include off-target evaluation, establishing appropriate preclinical models and improving the currently low efficiency of homology-based precise gene replacement. In this review we discuss the preclinical and clinical studies aiming at translating the genome editing technologies as well as the issues that are important for more successful translation.

  3. The commercialization of genome-editing technologies.

    Science.gov (United States)

    Brinegar, Katelyn; K Yetisen, Ali; Choi, Sun; Vallillo, Emily; Ruiz-Esparza, Guillermo U; Prabhakar, Anand M; Khademhosseini, Ali; Yun, Seok-Hyun

    2017-11-01

    The emergence of new gene-editing technologies is profoundly transforming human therapeutics, agriculture, and industrial biotechnology. Advances in clustered regularly interspaced short palindromic repeats (CRISPR) have created a fertile environment for mass-scale manufacturing of cost-effective products ranging from basic research to translational medicine. In our analyses, we evaluated the patent landscape of gene-editing technologies and found that in comparison to earlier gene-editing techniques, CRISPR has gained significant traction and this has established dominance. Although most of the gene-editing technologies originated from the industry, CRISPR has been pioneered by academic research institutions. The spinout of CRISPR biotechnology companies from academic institutions demonstrates a shift in entrepreneurship strategies that were previously led by the industry. These academic institutions, and their subsequent companies, are competing to generate comprehensive intellectual property portfolios to rapidly commercialize CRISPR products. Our analysis shows that the emergence of CRISPR has resulted in a fivefold increase in genome-editing bioenterprise investment over the last year. This entrepreneurial movement has spurred a global biotechnology revolution in the realization of novel gene-editing technologies. This global shift in bioenterprise will continue to grow as the demand for personalized medicine, genetically modified crops and environmentally sustainable biofuels increases. However, the monopolization of intellectual property, negative public perception of genetic engineering and ambiguous regulatory policies may limit the growth of these market segments.

  4. Genome editing: progress and challenges for medical applications

    Directory of Open Access Journals (Sweden)

    Dana Carroll

    2016-11-01

    Full Text Available Editorial summary The development of the CRISPR-Cas platform for genome editing has greatly simplified the process of making targeted genetic modifications. Applications of genome editing are expected to have a substantial impact on human therapies through the development of better animal models, new target discovery, and direct therapeutic intervention.

  5. Current and future editing reagent delivery systems for plant genome editing.

    Science.gov (United States)

    Ran, Yidong; Liang, Zhen; Gao, Caixia

    2017-05-01

    Many genome editing tools have been developed and new ones are anticipated; some have been extensively applied in plant genetics, biotechnology and breeding, especially the CRISPR/Cas9 system. These technologies have opened up a new era for crop improvement due to their precise editing of user-specified sequences related to agronomic traits. In this review, we will focus on an update of recent developments in the methodologies of editing reagent delivery, and consider the pros and cons of current delivery systems. Finally, we will reflect on possible future directions.

  6. Lethal carnitine palmitoyltransferase (CPT) II deficiency in newborns: A molecular-genetic study

    Energy Technology Data Exchange (ETDEWEB)

    Taroni, F.; Gellera, C.; Cavadini, P. [Istituto Nazionale Meurologico, Milano (Italy)] [and others

    1994-09-01

    Classically, CPT II deficiency presents in young adults with recurrent episodes of paroxysmal myoglobinuria triggered by prolonged exercise, cold, or fever. More severe forms of CPT II deficiency have recently been observed in children and newborns. Here, were present biochemical and molecular studies of lethal neonatal CPT II deficiency in a premature Haitian infant of nonconsanguineous parents. He presented at birth with severe respiratory distress, cardiac arrhythmia and heart failure. His condition worsened and he died on the 4th day of life. Postmortem examination showed hypertrophied, dilated heart, and lipid storage in liver, heart and kidney. An older sibling had died unexpectantly at 4 days of age with postmortem evidence of fatty infiltration of liver, kidney, heart and muscle. Biochemical study of cultured fibroblasts demonstrated dramatic reduction of palmitate oxidation (to < 3%) and very low residual CPT II activity ({le}15%). No CPT II protein was detected by Western blot analysis of fibroblasts. However, immunoprecitation of cells pulse-labeled with L-[{sup 35}S] methionine demonstrated normal amounts of newly synthesized CPT II, thus suggesting altered stability of the enzyme. To identify the molecular defect in his patient, individual CPT II exons were amplified by genomic PCR and directly sequenced. A missense mutation was found in exon 4, resulting in the nonconservative amino acid substitution at codon 227 (Pro227Leu). SSCP analysis of a genomic PCR fragment encompassing the mutation demonstrated that the patient was homozygous and the parents were heterozygous for this mutation. The mutation was detected neither in a large number of controls nor in other CPT II deficient patients. Finally, CPT II activity in COS-1 cells transfected with mutated CPT II cDNA was <8% than that in cells transfected with wild-type cDNA, thus demonstrating the pathogenic role of this mutation.

  7. Recognition of an expanded genetic alphabet by type-II restriction endonucleases and their application to analyze polymerase fidelity.

    Science.gov (United States)

    Chen, Fei; Yang, Zunyi; Yan, Maocai; Alvarado, J Brian; Wang, Ganggang; Benner, Steven A

    2011-05-01

    To explore the possibility of using restriction enzymes in a synthetic biology based on artificially expanded genetic information systems (AEGIS), 24 type-II restriction endonucleases (REases) were challenged to digest DNA duplexes containing recognition sites where individual Cs and Gs were replaced by the AEGIS nucleotides Z and P [respectively, 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribofuranosyl)-2(1H)-pyridone and 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one]. These AEGIS nucleotides implement complementary hydrogen bond donor-donor-acceptor and acceptor-acceptor-donor patterns. Results allowed us to classify type-II REases into five groups based on their performance, and to infer some specifics of their interactions with functional groups in the major and minor grooves of the target DNA. For three enzymes among these 24 where crystal structures are available (BcnI, EcoO109I and NotI), these interactions were modeled. Further, we applied a type-II REase to quantitate the fidelity polymerases challenged to maintain in a DNA duplex C:G, T:A and Z:P pairs through repetitive PCR cycles. This work thus adds tools that are able to manipulate this expanded genetic alphabet in vitro, provides some structural insights into the working of restriction enzymes, and offers some preliminary data needed to take the next step in synthetic biology to use an artificial genetic system inside of living bacterial cells. © The Author(s) 2011. Published by Oxford University Press.

  8. A multiobjective non-dominated sorting genetic algorithm (NSGA-II for the Multiple Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Rubén Iván Bolaños

    2015-06-01

    Full Text Available This paper considers a multi-objective version of the Multiple Traveling Salesman Problem (MOmTSP. In particular, two objectives are considered: the minimization of the total traveled distance and the balance of the working times of the traveling salesmen. The problem is formulated as an integer multi-objective optimization model. A non-dominated sorting genetic algorithm (NSGA-II is proposed to solve the MOmTSP. The solution scheme allows one to find a set of ordered solutions in Pareto fronts by considering the concept of dominance. Tests on real world instances and instances adapted from the literature show the effectiveness of the proposed algorithm.

  9. DNA-free genome editing methods for targeted crop improvement.

    Science.gov (United States)

    Kanchiswamy, Chidananda Nagamangala

    2016-07-01

    Evolution of the next-generation clustered, regularly interspaced, short palindromic repeat/Cas9 (CRISPR/Cas9) genome editing tools, ribonucleoprotein (RNA)-guided endonuclease (RGEN) RNPs, is paving the way for developing DNA-free genetically edited crop plants. In this review, I discuss the various methods of RGEN RNPs tool delivery into plant cells and their limitations to adopt this technology to numerous crop plants. Furthermore, focus is given on the importance of developing DNA-free genome edited crop plants, including perennial crop plants. The possible regulation on the DNA-free, next-generation genome-edited crop plants is also highlighted.

  10. The structure of genetic and environmental risk factors for syndromal and subsyndromal common DSM-IV axis I and all axis II disorders.

    Science.gov (United States)

    Kendler, Kenneth S; Aggen, Steven H; Knudsen, Gun Peggy; Røysamb, Espen; Neale, Michael C; Reichborn-Kjennerud, Ted

    2011-01-01

    The authors sought to clarify the structure of the genetic and environmental risk factors for 22 DSM-IV disorders: 12 common axis I disorders and all 10 axis II disorders. The authors examined syndromal and subsyndromal axis I diagnoses and five categories reflecting number of endorsed criteria for axis II disorders in 2,111 personally interviewed young adult members of the Norwegian Institute of Public Health Twin Panel. Four correlated genetic factors were identified: axis I internalizing, axis II internalizing, axis I externalizing, and axis II externalizing. Factors 1 and 2 and factors 3 and 4 were moderately correlated, supporting the importance of the internalizing-externalizing distinction. Five disorders had substantial loadings on two factors: borderline personality disorder (factors 3 and 4), somatoform disorder (factors 1 and 2), paranoid and dependent personality disorders (factors 2 and 4), and eating disorders (factors 1 and 4). Three correlated environmental factors were identified: axis II disorders, axis I internalizing disorders, and externalizing disorders versus anxiety disorders. Common axis I and II psychiatric disorders have a coherent underlying genetic structure that reflects two major dimensions: internalizing versus externalizing, and axis I versus axis II. The underlying structure of environmental influences is quite different. The organization of common psychiatric disorders into coherent groups results largely from genetic, not environmental, factors. These results should be interpreted in the context of unavoidable limitations of current statistical methods applied to this number of diagnostic categories.

  11. Protocol for investigating genetic determinants of posttraumatic stress disorder in women from the Nurses' Health Study II

    Directory of Open Access Journals (Sweden)

    Smoller Jordan W

    2009-05-01

    Full Text Available Abstract Background One in nine American women will meet criteria for the diagnosis of posttraumatic stress disorder (PTSD in their lifetime. Although twin studies suggest genetic influences account for substantial variance in PTSD risk, little progress has been made in identifying variants in specific genes that influence liability to this common, debilitating disorder. Methods and design We are using the unique resource of the Nurses Health Study II, a prospective epidemiologic cohort of 68,518 women, to conduct what promises to be the largest candidate gene association study of PTSD to date. The entire cohort will be screened for trauma exposure and PTSD; 3,000 women will be selected for PTSD diagnostic interviews based on the screening data. Our nested case-control study will genotype1000 women who developed PTSD following a history of trauma exposure; 1000 controls will be selected from women who experienced similar traumas but did not develop PTSD. The primary aim of this study is to detect genetic variants that predict the development of PTSD following trauma. We posit inherited vulnerability to PTSD is mediated by genetic variation in three specific neurobiological systems whose alterations are implicated in PTSD etiology: the hypothalamic-pituitary-adrenal axis, the locus coeruleus/noradrenergic system, and the limbic-frontal neuro-circuitry of fear. The secondary, exploratory aim of this study is to dissect genetic influences on PTSD in the broader genetic and environmental context for the candidate genes that show significant association with PTSD in detection analyses. This will involve: conducting conditional tests to identify the causal genetic variant among multiple correlated signals; testing whether the effect of PTSD genetic risk variants is moderated by age of first trauma, trauma type, and trauma severity; and exploring gene-gene interactions using a novel gene-based statistical approach. Discussion Identification of

  12. The Landscape of Qualitative Research. Third Edition

    Science.gov (United States)

    Denzin, Norman K., Ed.; Lincoln, Yvonna, Ed.

    2007-01-01

    This book, the first volume of the paperback versions of the "The SAGE Handbook of Qualitative Research, Third Edition," takes a look at the field from a broadly theoretical perspective, and is composed of the Handbook's Parts I ("Locating the Field"), II ("Major Paradigms and Perspectives"), and VI ("The Future of Qualitative Research"). "The…

  13. Marinobacter subterrani, a genetically tractable neutrophilic Fe(II-oxidizing strain isolated from the Soudan Iron Mine

    Directory of Open Access Journals (Sweden)

    Benjamin Michael Bonis

    2015-07-01

    Full Text Available We report the isolation, characterization, and development of a robust genetic system for a halophilic, Fe(II-oxidizing bacterium isolated from a vertical borehole originating 714 m below the surface located in the Soudan Iron Mine in northern Minnesota, USA. Sequence analysis of the 16S rRNA gene places the isolate in the genus Marinobacter of the Gammaproteobacteria. The genome of the isolate was sequenced using a combination of short- and long-read technologies resulting in 2 contigs representing a 4.4 Mbp genome. Using genomic information, we used a suicide vector for targeted deletion of specific flagellin genes, resulting in a motility-deficient mutant. The motility mutant was successfully complemented by expression of the deleted genes in trans. Random mutagenesis using a transposon was also achieved. Capable of heterotrophic growth, this isolate represents a microaerophilic Fe(II-oxidizing species for which a system for both directed and random mutagenesis has been established. Analysis of 16S rDNA suggests Marinobacter represents a major taxon in the mine, and genetic interrogation of this genus may offer insight into the structure of deep subsurface communities as well as an additional tool for analyzing nutrient and element cycling in the subsurface ecosystem.

  14. Prenatal diagnosis and genetic counseling for Waardenburg syndrome type I and II in Chinese families

    Science.gov (United States)

    Wang, Li; Qin, Litao; Li, Tao; Liu, Hongjian; Ma, Lingcao; Li, Wan; Wu, Dong; Wang, Hongdan; Guo, Qiannan; Guo, Liangjie; Liao, Shixiu

    2018-01-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder with varying combinations of sensorineural hearing loss and abnormal pigmentation. The present study aimed to investigate the underlying molecular pathology and provide a method of prenatal diagnosis of WS in Chinese families. A total of 11 patients with WS from five unrelated Chinese families were enrolled. A thorough clinical examination was performed on all participants. Furthermore, patients with WS underwent screening for mutations in the following genes: Paired box 3 (PAX3), melanogenesis associated transcription factor (MITF), SRY-box 10, snail family transcriptional repressor 2 and endothelin receptor type B using polymerase chain reaction sequencing. Array-based comparative genomic hybridization was used for specific patients whose sequence results were normal. Following identification of the genotype of the probands and their parents, prenatal genetic diagnosis was performed for family 01 and 05. According to the diagnostic criteria for WS, five cases were diagnosed as WS1, while the other six cases were WS2. Genetic analysis revealed three mutations, including a nonsense mutation PAX3 c.583C>T in family 01, a splice-site mutation MITF c.909G>A in family 03 and an in-frame deletion MITF c.649_651delGAA in family 05. To the best of the authors' knowledge the mutations (c.583C>T in PAX3 and c.909G>A in MITF) were reported for the first time in Chinese people. Mutations in the gene of interest were not identified in family 02 and 04. The prenatal genetic testing of the two fetuses was carried out and demonstrated that the two babies were normal. The results of the present study expanded the range of known genetic mutations in China. Identification of genetic mutations in these families provided an efficient way to understand the causes of WS and improved genetic counseling. PMID:29115496

  15. Genome editing and assisted reproduction: curing embryos, society or prospective parents?

    OpenAIRE

    Cavaliere, Giulia

    2017-01-01

    This paper explores the ethics of introducing genome-editing technologies as a new reproductive option. In particular, it focuses on whether genome editing can be considered a morally valuable alternative to preimplantation genetic diagnosis (PGD). Two arguments against the use of genome editing in reproduction are analysed, namely safety concerns and germline modification. These arguments are then contrasted with arguments in favour of genome editing, in particular with the argument of the c...

  16. Insulin-like signaling (IIS) responses to temperature, genetic background, and growth variation in garter snakes with divergent life histories.

    Science.gov (United States)

    Reding, Dawn M; Addis, Elizabeth A; Palacios, Maria G; Schwartz, Tonia S; Bronikowski, Anne M

    2016-07-01

    The insulin/insulin-like signaling pathway (IIS) has been shown to mediate life history trade-offs in mammalian model organisms, but the function of this pathway in wild and non-mammalian organisms is understudied. Populations of western terrestrial garter snakes (Thamnophis elegans) around Eagle Lake, California, have evolved variation in growth and maturation rates, mortality senescence rates, and annual reproductive output that partition into two ecotypes: "fast-living" and "slow-living". Thus, genes associated with the IIS network are good candidates for investigating the mechanisms underlying ecological divergence in this system. We reared neonates from each ecotype for 1.5years under two thermal treatments. We then used qPCR to compare mRNA expression levels in three tissue types (brain, liver, skeletal muscle) for four genes (igf1, igf2, igf1r, igf2r), and we used radioimmunoassay to measure plasma IGF-1 and IGF-2 protein levels. Our results show that, in contrast to most mammalian model systems, igf2 mRNA and protein levels exceed those of igf1 and suggest an important role for igf2 in postnatal growth in reptiles. Thermal rearing treatment and recent growth had greater impacts on IGF levels than genetic background (i.e., ecotype), and the two ecotypes responded similarly. This suggests that observed ecotypic differences in field measures of IGFs may more strongly reflect plastic responses in different environments than evolutionary divergence. Future analyses of additional components of the IIS pathway and sequence divergence between the ecotypes will further illuminate how environmental and genetic factors influence the endocrine system and its role in mediating life history trade-offs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Genetic counseling for a three-generation Chinese family with Waardenburg syndrome type II associated with a rare SOX10 mutation.

    Science.gov (United States)

    Chen, Kaitian; Zong, Ling; Zhan, Yuan; Wu, Xuan; Liu, Min; Jiang, Hongyan

    2015-05-01

    Waardenburg syndrome is clinically and genetically heterogeneous. The SOX10 mutation related with Waardenburg syndrome type II is rare in Chinese. This study aimed to uncover the genetic causes of Waardenburg syndrome type II in a three-generation family to improve genetic counseling. Complete clinical and molecular evaluations were conducted in a three-generation Han Chinese family with Waardenburg syndrome type II. Targeted genetic counseling was provided to this family. We identified a rare heterozygous dominant mutation c.621C>A (p.Y207X) in SOX10 gene in this family. The premature termination codon occurs in exon 4, 27 residues downstream of the carboxyl end of the high mobility group box. Bioinformatics prediction suggested this variant to be disease-causing, probably due to nonsense-mediated mRNA decay. Useful genetic counseling was given to the family for prenatal guidance. Identification of a rare dominant heterozygous SOX10 mutation c.621C>A in this family provided an efficient way to understand the causes of Waardenburg syndrome type II and improved genetic counseling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Genetic parameters for reproductive traits in female Nile tilapia (Oreochromis niloticus): II. Fecundity and fertility

    NARCIS (Netherlands)

    Trong, T.Q.; Arendonk, van J.A.M.; Komen, J.

    2013-01-01

    Harvest weight is the main trait in Nile tilapia (Oreochromis niloticus) breeding programmes. The effects of selection for harvest weight on female reproductive traits are unknown. In this paper we estimate genetic parameters for reproductive traits and their correlation with harvest weight using

  19. Genetics

    Science.gov (United States)

    ... Likelihood of getting certain diseases Mental abilities Natural talents An abnormal trait (anomaly) that is passed down ... one of them has a genetic disorder. Information Human beings have cells with 46 chromosomes . These consist ...

  20. Genetic analysis of NPT II x HBC 19 (basmati variety) RIL's and ...

    African Journals Online (AJOL)

    HAU Vikram

    Traditional basmati rice varieties are very low yielding due to their tendency to lodging and increasing susceptibility to .... RILs in F5 generation were evaluated for agronomic traits namely, .... Direct (diagonal) and indirect effects of component traits on grain yield/plant in F5 population derived from cross NPT II x HBC 19.

  1. Molecular genetic analysis of Type II diabetes associated m.3243A ...

    African Journals Online (AJOL)

    Background: Type II diabetes is the most often considered as maternally inherited disease and A>G transition at position 3243 of mitochondrial DNA (m.3243A>G) in the encoding tRNALeu(UUR) gene is thought to be strongly responsible for the pathogenesis of the disease in number of cases. Aim: Current study was ...

  2. Genome Editing in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Carlson-Stevermer, Jared; Saha, Krishanu

    2017-01-01

    Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.

  3. Multiplex editing system

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a multiplex editing system. The system allows multiple editing of nucleic acid sequences such as genomic sequences, such as knockins of genes of interest in a genome, knockouts of genomic sequences and/or allele replacement. Also provided herein are a method...

  4. Salient Features of Endonuclease Platforms for Therapeutic Genome Editing.

    Science.gov (United States)

    Certo, Michael T; Morgan, Richard A

    2016-03-01

    Emerging gene-editing technologies are nearing a revolutionary phase in genetic medicine: precisely modifying or repairing causal genetic defects. This may include any number of DNA sequence manipulations, such as knocking out a deleterious gene, introducing a particular mutation, or directly repairing a defective sequence by site-specific recombination. All of these edits can currently be achieved via programmable rare-cutting endonucleases to create targeted DNA breaks that can engage and exploit endogenous DNA repair pathways to impart site-specific genetic changes. Over the past decade, several distinct technologies for introducing site-specific DNA breaks have been developed, yet the different biological origins of these gene-editing technologies bring along inherent differences in parameters that impact clinical implementation. This review aims to provide an accessible overview of the various endonuclease-based gene-editing platforms, highlighting the strengths and weakness of each with respect to therapeutic applications.

  5. Towards social acceptance of plant breeding by genome editing.

    Science.gov (United States)

    Araki, Motoko; Ishii, Tetsuya

    2015-03-01

    Although genome-editing technologies facilitate efficient plant breeding without introducing a transgene, it is creating indistinct boundaries in the regulation of genetically modified organisms (GMOs). Rapid advances in plant breeding by genome-editing require the establishment of a new global policy for the new biotechnology, while filling the gap between process-based and product-based GMO regulations. In this Opinion article we review recent developments in producing major crops using genome-editing, and we propose a regulatory model that takes into account the various methodologies to achieve genetic modifications as well as the resulting types of mutation. Moreover, we discuss the future integration of genome-editing crops into society, specifically a possible response to the 'Right to Know' movement which demands labeling of food that contains genetically engineered ingredients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Phenotypic and dynamical transitions in model genetic networks. II. Application to the evolution of segmentation mechanisms.

    Science.gov (United States)

    Salazar-Ciudad, I; Solé, R V; Newman, S A

    2001-01-01

    Knowledge of the genetic control of segmentation in Drosophila has made insect segmentation a paradigmatic case in the study of the evolution of developmental mechanisms. In Drosophila, the patterns of expression of segmentation genes are established simultaneously in all segments by a complex set of interactions between transcriptional factors that diffuse in a syncytium occupying the whole embryo. Such mechanisms cannot act in short germ-band insects where segments appear sequentially from a cellularized posterior proliferative zone. Here, we compare mechanisms of segmentation in different organisms and discuss how the transition between the different types of segmentation can be explained by small and progressive changes in the underlying gene networks. The recent discovery of a temporal oscillation in expression during somitogenesis of vertebrate homologs of the pair-rule gene hairy enhances the plausibility of an earlier proposal that the evolutionary origin of both the short- and long germ-band modes of segmentation was an oscillatory genetic network (Newman 1993). An implication of this scenario is that the self-organizing, pattern-forming system embodied in an oscillatory network operating in the context of a syncytium (i.e., a reaction-diffusion system)-which is hypothesized to have originated the simultaneous mode of segmentation-must have been replaced by the genetic hierarchy seen in modern-day Drosophila over the course of evolution. As demonstrated by the simulations in the accompanying article, the tendency for "emergent" genetic networks, associated with self-organizing processes, to be replaced through natural selection with hierarchical networks is discussed in relation to the evolution of segmentation.

  7. QUANTITATIVE GENETICS OF MORPHOLOGICAL DIFFERENTIATION IN PEROMYSCUS. II. ANALYSIS OF SELECTION AND DRIFT.

    Science.gov (United States)

    Lofsvold, David

    1988-01-01

    The hypothesis that the morphological divergence of local populations of Peromyscus is due to random genetic drift was evaluated by testing the proportionality of the among-locality covariance matrix, L, and the additive genetic covariance matrix, G. Overall, significant proportionality of L̂ and Ĝ was not observed, indicating the evolutionary divergence of local populations does not result from random genetic drift. The forces of selection needed to differentiate three taxa of Peromyscus were reconstructed to examine the divergence of species and subspecies. The selection gradients obtained illustrate the inadequacy of univariate analyses of selection by finding that some characters evolve in the direction opposite to the force of selection acting directly on them. A retrospective selection index was constructed using the estimated selection gradients, and truncation selection on this index was used to estimate the minimum selective mortality per generation required to produce the observed change. On any of the time scales used, the proportion of the population that would need to be culled was quite low, the greatest being of the same order of magnitude as the selective intensities observed in extant natural populations. Thus, entirely plausible intensities of directional natural selection can produce species-level differences in a period of time too short to be resolved in the fossil record. © 1988 The Society for the Study of Evolution.

  8. Meeting Report: International Symposium on the Genetics of Aging and Life History II.

    Science.gov (United States)

    Artan, Murat; Hwang, Ara B; Lee, Seung V; Nam, Hong Gil

    2015-06-01

    The second International Symposium on the Genetics of Aging and Life History was held at the campus of Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea, from May 14 to 16, 2014. Many leading scientists in the field of aging research from all over the world contributed to the symposium by attending and presenting their recent work and thoughts. The aim of the symposium was to stimulate international collaborations and interactions among scientists who work on the biology of aging. In the symposium, the most recent and exciting work on aging research was presented, covering a wide range of topics, including the genetics of aging, age-associated diseases, and cellular senescence. The work was conducted in various organisms, includingC. elegans, mice, plants, and humans. Topics covered in the symposium stimulated discussion of novel directions for future research on aging. The meeting ended with a commitment for the third International Symposium on the Genetics of Aging and Life History, which will be held in 2016.

  9. Evidence for 15 genetically determined electrophoretic variants of transcobalamin II in rabbit serum.

    Science.gov (United States)

    Masina, P; Ramunno, L; Iannelli, D

    1979-08-01

    By starch gel electrophoresis and autoradiography two classes of vitamin B12 binding proteins were detected in rabbit serum. By analogy to the nomenclature used in man, the two classes of proteins were named "transcobalamin I" (TCI) and "transcobalamin II" (TCII). Fifteen TCII phenotypes were observed, and family data indicated that they are controlled by five allelic codominant genes. The possibility that the five genes arise from the action of at least two polymorphic and closely linked structural loci is discussed.

  10. Distinct genetic difference between the Duffy binding protein (PkDBPαII) of Plasmodium knowlesi clinical isolates from North Borneo and Peninsular Malaysia.

    Science.gov (United States)

    Fong, Mun-Yik; Rashdi, Sarah A A; Yusof, Ruhani; Lau, Yee-Ling

    2015-02-21

    Plasmodium knowlesi is one of the monkey malaria parasites that can cause human malaria. The Duffy binding protein of P. knowlesi (PkDBPαII) is essential for the parasite's invasion into human and monkey erythrocytes. A previous study on P. knowlesi clinical isolates from Peninsular Malaysia reported high level of genetic diversity in the PkDBPαII. Furthermore, 36 amino acid haplotypes were identified and these haplotypes could be separated into allele group I and allele group II. In the present study, the PkDBPαII of clinical isolates from the Malaysian states of Sarawak and Sabah in North Borneo was investigated, and compared with the PkDBPαII of Peninsular Malaysia isolates. Blood samples from 28 knowlesi malaria patients were used. These samples were collected between 2011 and 2013 from hospitals in North Borneo. The PkDBPαII region of the isolates was amplified by PCR, cloned into Escherichia coli, and sequenced. The genetic diversity, natural selection and phylogenetics of PkDBPαII haplotypes were analysed using MEGA5 and DnaSP ver. 5.10.00 programmes. Forty-nine PkDBPαII sequences were obtained. Comparison at the nucleotide level against P. knowlesi strain H as reference sequence revealed 58 synonymous and 102 non-synonymous mutations. Analysis on these mutations showed that PkDBPαII was under purifying (negative) selection. At the amino acid level, 38 different PkDBPαII haplotypes were identified. Twelve of the 28 blood samples had mixed haplotype infections. Phylogenetic analysis revealed that all the haplotypes were in allele group I, but they formed a sub-group that was distinct from those of Peninsular Malaysia. Wright's FST fixation index indicated high genetic differentiation between the North Borneo and Peninsular Malaysia haplotypes. This study is the first to report the genetic diversity and natural selection of PkDBPαII of P. knowlesi from Borneo Island. The PkDBPαII haplotypes found in this study were distinct from those from

  11. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  12. Aggressiveness between genetic groups I and II of isolates of Cercospora zeae-maydis

    OpenAIRE

    Mathioni, Sandra Marisa; Carvalho,; Brunelli, Kátia Regiane; Beló, André; Camargo, Luis Eduardo Aranha

    2006-01-01

    For many years, the gray leaf spot disease (GLS) caused by the fungus Cercospora zeae-maydis Tehon & Daniels, was not considered an important pathogen of maize (Zea mays, L.) in Brazil. However, the recent adoption of agronomical practices such as no-tillage and cultivation under central pivot irrigation systems increased the incidence and severity to the extent that GLS is now one of the most important diseases of maize. Isolates of C. zeae-maydis can be distinguished by two genetic groups (...

  13. Aggressiveness between genetic groups I and II of isolates of Cercospora zeae-maydis

    OpenAIRE

    Mathioni,Sandra Marisa; Carvalho,; Brunelli,Kátia Regiane; Beló,André; Camargo,Luis Eduardo Aranha

    2006-01-01

    For many years, the gray leaf spot disease (GLS) caused by the fungus Cercospora zeae-maydis Tehon & Daniels, was not considered an important pathogen of maize (Zea mays, L.) in Brazil. However, the recent adoption of agronomical practices such as no-tillage and cultivation under central pivot irrigation systems increased the incidence and severity to the extent that GLS is now one of the most important diseases of maize. Isolates of C. zeae-maydis can be distinguished by two genetic grou...

  14. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  15. Genetic and epigenetic features in radiation sensitivity. Part II: implications for clinical practice and radiation protection

    International Nuclear Information System (INIS)

    Bourguignon, Michel H.; Gisone, Pablo A.; Perez, Maria R.; Michelin, Severino; Dubner, Diana; Giorgio, Marina di; Carosella, Edgardo D.

    2005-01-01

    Recent progress especially in the field of gene identification and expression has attracted greater attention to the genetic and epigenetic susceptibility to cancer, possibly enhanced by ionising radiation. This issue is especially important for radiation therapists since hypersensitive patients may suffer from adverse effects in normal tissues following standard radiation therapy, while normally sensitive patients could receive higher doses of radiation, offering a better likelihood of cure for malignant tumours. Although only a small percentage of individuals are ''hypersensitive'' to radiation effects, all medical specialists using ionising radiation should be aware of the aforementioned progress in medical knowledge. The present paper, the second of two parts, reviews human disorders known or strongly suspected to be associated with hypersensitivity to ionising radiation. The main tests capable of detecting such pathologies in advance are analysed, and ethical issues regarding genetic testing are considered. The implications for radiation protection of possible hypersensitivity to radiation in a part of the population are discussed, and some guidelines for nuclear medicine professionals are proposed. (orig.)

  16. Characterization of MHC class II B polymorphism in bottlenecked New Zealand saddlebacks reveals low levels of genetic diversity.

    Science.gov (United States)

    Sutton, Jolene T; Robertson, Bruce C; Grueber, Catherine E; Stanton, Jo-Ann L; Jamieson, Ian G

    2013-08-01

    The major histocompatibility complex (MHC) is integral to the vertebrate adaptive immune system. Characterizing diversity at functional MHC genes is invaluable for elucidating patterns of adaptive variation in wild populations, and is particularly interesting in species of conservation concern, which may suffer from reduced genetic diversity and compromised disease resilience. Here, we use next generation sequencing to investigate MHC class II B (MHCIIB) diversity in two sister taxa of New Zealand birds: South Island saddleback (SIS), Philesturnus carunculatus, and North Island saddleback (NIS), Philesturnus rufusater. These two species represent a passerine family outside the more extensively studied Passerida infraorder, and both have experienced historic bottlenecks. We examined exon 2 sequence data from populations that represent the majority of genetic diversity remaining in each species. A high level of locus co-amplification was detected, with from 1 to 4 and 3 to 12 putative alleles per individual for South and North Island birds, respectively. We found strong evidence for historic balancing selection in peptide-binding regions of putative alleles, and we identified a cluster combining non-classical loci and pseudogene sequences from both species, although no sequences were shared between the species. Fewer total alleles and fewer alleles per bird in SIS may be a consequence of their more severe bottleneck history; however, overall nucleotide diversity was similar between the species. Our characterization of MHCIIB diversity in two closely related species of New Zealand saddlebacks provides an important step in understanding the mechanisms shaping MHC diversity in wild, bottlenecked populations.

  17. Genetic structure and evolution of the Vps25 family, a yeast ESCRT-II component

    Directory of Open Access Journals (Sweden)

    Slater Ruth

    2006-08-01

    Full Text Available Abstract Background Vps25p is the product of yeast gene VPS25 and is found in an endosomal sorting complex required for transport (ESCRT-II, along with Vps22p and Vps36p. This complex is essential for sorting of ubiquitinated biosynthetic and endosomal cargoes into endosomes. Results We found that VPS25 is a highly conserved and widely expressed eukaryotic gene, with single orthologs in chromalveolate, excavate, amoebozoan, plant, fungal and metazoan species. Two paralogs were found in Trichomonas vaginalis. An ortholog was strikingly absent from the Encephalitozoon cuniculi genome. Intron positions were analyzed in VPS25 from 36 species. We found evidence for five ancestral VPS25 introns, intron loss, and single instances of intron gain (a Paramecium species and intron slippage (Theileria species. Processed pseudogenes were identified in four mammalian genomes, with a notable absence in the mouse genome. Two retropseudogenes were found in the chimpanzee genome, one more recently inserted, and one evolving from a common primate ancestor. The amino acid sequences of 119 Vps25 orthologs are aligned, compared with the known secondary structure of yeast Vps25p, and used to carry out phylogenetic analysis. Residues in two amino-terminal PPXY motifs (motif I and II, involved in dimerization of Vps25p and interaction with Vps22p and Vps36p, were closely, but not absolutely conserved. Specifically, motif I was absent in Vps25 homologs of chromalveolates, euglenozoa, and diplomonads. A highly conserved carboxy-terminal lysine was identified, which suggests Vps25 is ubiquitinated. Arginine-83 of yeast Vps25p involved in Vps22p interaction was highly, but not absolutely, conserved. Human tissue expression analysis showed universal expression. Conclusion We have identified 119 orthologs of yeast Vps25p. Expression of mammalian VPS25 in a wide range of tissues, and the presence in a broad range of eukaryotic species, indicates a basic role in eukaryotic cell

  18. Population genetic studies in the Balkans. II. DNA-STR-systems.

    Science.gov (United States)

    Huckenbeck, W; Scheil, H G; Schmidt, H D; Efremovska, L; Xirotiris, N

    2001-09-01

    Within a study of the genetics of Southeastern European populations four DNA-STR-systems (D21S11, FGA, TH01, VWA) were examined in seven samples (samples of three Aromuns and four other Balkan populations). The results have been compared to data from four samples from literature (Austrians, Germans, Hungarians, Slovenians). The results show three clusters: a) the Aromuns from Albania (Andon Poci) and Macedonia (Stip region), b) the Romanian Aromuns (Kogalniceanu), Romanians (Constanta, Ploiesti) and Albanians (Tirana) und c) the data from literature. A sample of Northeastern Greece clearly differs from these three clusters. Including seven serum protein polymorphisms (without the populations from literature) results in two clusters: a) the three Aromun populations and b) Albanians and Romanians. Again the sample of Northeastern Greece clearly differs from these clusters.

  19. Precision genome editing in the CRISPR era.

    Science.gov (United States)

    Salsman, Jayme; Dellaire, Graham

    2017-04-01

    With the introduction of precision genome editing using CRISPR-Cas9 technology, we have entered a new era of genetic engineering and gene therapy. With RNA-guided endonucleases, such as Cas9, it is possible to engineer DNA double strand breaks (DSB) at specific genomic loci. DSB repair by the error-prone non-homologous end-joining (NHEJ) pathway can disrupt a target gene by generating insertions and deletions. Alternatively, Cas9-mediated DSBs can be repaired by homology-directed repair (HDR) using an homologous DNA repair template, thus allowing precise gene editing by incorporating genetic changes into the repair template. HDR can introduce gene sequences for protein epitope tags, delete genes, make point mutations, or alter enhancer and promoter activities. In anticipation of adapting this technology for gene therapy in human somatic cells, much focus has been placed on increasing the fidelity of CRISPR-Cas9 and increasing HDR efficiency to improve precision genome editing. In this review, we will discuss applications of CRISPR technology for gene inactivation and genome editing with a focus on approaches to enhancing CRISPR-Cas9-mediated HDR for the generation of cell and animal models, and conclude with a discussion of recent advances and challenges towards the application of this technology for gene therapy in humans.

  20. Evolving edited k-nearest neighbor classifiers.

    Science.gov (United States)

    Gil-Pita, Roberto; Yao, Xin

    2008-12-01

    The k-nearest neighbor method is a classifier based on the evaluation of the distances to each pattern in the training set. The edited version of this method consists of the application of this classifier with a subset of the complete training set in which some of the training patterns are excluded, in order to reduce the classification error rate. In recent works, genetic algorithms have been successfully applied to determine which patterns must be included in the edited subset. In this paper we propose a novel implementation of a genetic algorithm for designing edited k-nearest neighbor classifiers. It includes the definition of a novel mean square error based fitness function, a novel clustered crossover technique, and the proposal of a fast smart mutation scheme. In order to evaluate the performance of the proposed method, results using the breast cancer database, the diabetes database and the letter recognition database from the UCI machine learning benchmark repository have been included. Both error rate and computational cost have been considered in the analysis. Obtained results show the improvement achieved by the proposed editing method.

  1. CRISPR Genome Editing

    Science.gov (United States)

    A research article about a technique for gene editing known as CRISPR-Cas9. The technique has made it much easier and faster for cancer researchers to study mutations and test new therapeutic targets.

  2. The genome editing revolution

    DEFF Research Database (Denmark)

    Stella, Stefano; Montoya, Guillermo

    2016-01-01

    -Cas system has become the main tool for genome editing in many laboratories. Currently the targeted genome editing technology has been used in many fields and may be a possible approach for human gene therapy. Furthermore, it can also be used to modifying the genomes of model organisms for studying human......In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator-like effector proteins, which are easier to engineer to target new DNA sequences than...... sequence). This ribonucleoprotein complex protects bacteria from invading DNAs, and it was adapted to be used in genome editing. The CRISPR ribonucleic acid (RNA) molecule guides to the specific DNA site the Cas9 nuclease to cleave the DNA target. Two years and more than 1000 publications later, the CRISPR...

  3. Genetic Contribution of MHC Class II Genes in Susceptibility to West Nile Virus Infection.

    Directory of Open Access Journals (Sweden)

    Constantina A Sarri

    Full Text Available WNV is a zoonotic neurotropic flavivirus that has recently emerged globally as a significant cause of viral encephalitis. The last five years, 624 incidents of WNV infection have been reported in Greece. The risk for severe WNV disease increases among immunosuppressed individuals implying thus the contribution of the MHC locus to the control of WNV infection. In order to investigate a possible association of MHC class II genes, especially HLA-DPA1, HLA-DQA1, HLA-DRB1, we examined 105 WNV patients, including 68 cases with neuroinvasive disease and 37 cases with mild clinical phenotype, collected during the period from 2010 to2013, and 100 control individuals selected form the Greek population. Typing was performed for exon 2 for all three genes. DQA1*01:01 was considered to be "protective" against WNV infection (25.4% vs 40.1%, P = 0.004 while DQA1*01:02 was associated with increased susceptibility (48.0% vs 32.1%, P = 0.003. Protection against neuroinvasion was associated with the presence of DRB1*11:02 (4.99% vs 0.0%, P = 0.018. DRB1*16:02 was also absent from the control cohort (P = 0.016. Three additional population control groups were used in order to validate our results. No statistically significant association with the disease was found for HLA-DPA alleles. The results of the present study provide some evidence that MHC class II is involved in the response to WNV infection, outlining infection "susceptibility" and "CNS-high-risk" candidates. Furthermore, three new alleles were identified while the frequency of all alleles in the study was compared with worldwide data. The characterization of the MHC locus could help to estimate the risk for severe WNV cases in a country.

  4. Neurosurgery. Fourth edition

    International Nuclear Information System (INIS)

    Simon, L.; Thomas, D.G.T.; Clark, W.K.

    1987-01-01

    The Fourth Edition of this volume in the Operative Surgery Series has been considerably revised to accommodate the many changes which have changed the practice of neurosurgery in the past eight years. There have been advances in technology, such as the wider application of CT scanning, in surgical technique, and in the design of new implantable materials. All these developments have substantially affected both the practice of neurosurgery and the prognosis for the patient and are fully reflected in the new edition

  5. Decimal Classification Editions

    Directory of Open Access Journals (Sweden)

    Zenovia Niculescu

    2009-01-01

    Full Text Available The study approaches the evolution of Dewey Decimal Classification editions from the perspective of updating the terminology, reallocating and expanding the main and auxilary structure of Dewey indexing language. The comparative analysis of DDC editions emphasizes the efficiency of Dewey scheme from the point of view of improving the informational offer, through basic index terms, revised and developed, as well as valuing the auxilary notations.

  6. Genome Editing Gene Therapy for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Hotta, Akitsu

    2015-09-22

    Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by loss of function of the dystrophin gene on the X chromosome. Gene augmentation of dystrophin is challenging due to the large size of the dystrophin cDNA. Emerging genome editing technologies, such as TALEN and CRISPR-Cas9 systems, open a new erain the restoration of functional dystrophin and are a hallmark of bona fide gene therapy. In this review, we summarize current genome editing approaches, properties of target cell types for ex vivo gene therapy, and perspectives of in vivo gene therapy including genome editing in human zygotes. Although technical challenges, such as efficacy, accuracy, and delivery of the genome editing components, remain to be further improved, yet genome editing technologies offer a new avenue for the gene therapy of DMD.

  7. Germline genome-editing research and its socioethical implications.

    Science.gov (United States)

    Ishii, Tetsuya

    2015-08-01

    Genetically modifying eggs, sperm, and zygotes ('germline' modification) can impact on the entire body of the resulting individual and on subsequent generations. With the advent of genome-editing technology, human germline gene modification is no longer theoretical. Owing to increasing concerns about human germline gene modification, a voluntary moratorium on human genome-editing research and/or the clinical application of human germline genome editing has recently been called for. However, whether such research should be suspended or encouraged warrants careful consideration. The present article reviews recent research on mammalian germline genome editing, discusses the importance of public dialogue on the socioethical implications of human germline genome-editing research, and considers the relevant guidelines and legislation in different countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Developing new levels of edit

    Energy Technology Data Exchange (ETDEWEB)

    Prono, J.K.

    1997-06-01

    Since 1985, Los Alamos National Laboratory (LANL) staff have had four levels of edit to choose from for technical reports. When a CQI survey showed that both authors and editors felt the levels were not meeting author needs, LANL set about revising them. The goals were to simplify the editing process, focus editing on improving technical clarity, and ensure value added in editing. This paper describes the revision process and product--three author-based levels of edit.

  9. An Era of CRISPR/ Cas9 Mediated Plant Genome Editing.

    Science.gov (United States)

    Khurshid, Haris; Jan, Sohail Ahmad; Shinwari, Zabta Khan; Jamal, Muhammad; Shah, Sabir Hussain

    2018-01-01

    Recently the engineered nucleases have revolutionized genome editing to perturb gene expression at specific sites in complex eukaryotic genomes. Three important classes of these genome editing tools are Moreover, the more recent type II Clustered Regularly Inter-spaced Short Palindromic Repeats/Crispr associated protein (CRISPR/Cas9) system has become the most favorite plant genome editing tool for its precision and RNA based specificity unlike its counterparts which rely on protein based specificity. Plasmid-mediated co-delivery of multiple sgRNAs and Cas9 to the Plant cell can simultaneously alter more than one target loci which enable multiplex genome editing. In this review, we discuss recent advancements in the CRISPR/ Cas9 technology mechanism, theory and its applications in plants and agriculture. We also suggest that the CRISPR/ Cas9 as an effective genome editing tool, has vast potential for crop improvement and studying gene regulation mechanism and chromatin remodeling.

  10. A history of genome editing in Saccharomyces cerevisiae.

    Science.gov (United States)

    Alexander, William G

    2017-12-16

    Genome editing is a form of highly precise genetic engineering which produces alterations to an organism's genome as small as a single base pair with no incidental or auxiliary modifications; this technique is crucial to the field of synthetic biology, which requires such precision in the installation of novel genetic circuits into host genomes. While a new methodology for most organisms, genome editing capabilities have been used in the budding yeast Saccharomyces cerevisiae for decades. In this review, I will present a brief history of genome editing in S. cerevisiae, discuss the current gold standard method of Cas9-mediated genome editing, and speculate on future directions of the field. Copyright © 2018 John Wiley & Sons, Ltd.

  11. [Prenatal genetic diagnosis of oculocutaneous albinism type II through mutation detection combined with SNPs linkage analysis].

    Science.gov (United States)

    Chen, Xiaofei; Wei, Haiyun; Zhou, Yi; Zheng, Hui; Fang, Qun; Jiang, Weiying; Li, Hongyi

    2014-04-01

    To provide prenatal diagnosis for two families affected with oculocutaneous albinism (OCA), in both of which only 1 pathogenic allele has been identified. To determine the clinical classification of OCA through DNA sequencing for TYR, P, TYRP1 and SLC45A2 genes in combination with phenotype analysis. Prenatal diagnosis was carried out by direct sequencing and intragenic SNPs family-based linkage analysis. In the first family, only 1 heterozygous mutation c.1255C>T was found in the proband, which was inherited from her mother. Together with its clinical phenotype, the proband was suspected to have OCA2 Screening of amniotic fluid, however, has found no mutation. With family-based linkage analysis, the fetus was deemed to be an OCA2 carrier. In the second family, again only one heterozygous mutation c.1920_1949 del30bp and ins AACA was found in the proband, which was inherited from her father. Together with its clinical phenotype, the proband was suspected to have OCA2. Screening of amniotic fluid has revealed a heterozygous mutation c.1920_1949 del30bp and ins AACA. By family-based linkage analysis, the fetus was deemed to be an OCA2 carrier. Both fetuses had a normal phenotype at birth. Prenatal genetic diagnosis has been provided for the first time for two families affected with OCA, in which only 1 pathogenic mutant allele was detected. The combined mutation detection and SNPs linkage analysis has turned out to be successful.

  12. [Phenotypic and genetic analysis of a patient presented with Tietz/Waardenburg type II a syndrome].

    Science.gov (United States)

    Wang, Huanhuan; Tang, Lifang; Zhang, Jingmin; Hu, Qin; Chen, Yingwei; Xiao, Bing

    2015-08-01

    To determine the genetic cause for a patient featuring decreased pigmentation of the skin and iris, hearing loss and multiple congenital anomalies. Routine chromosomal banding was performed to analyze the karyotype of the patient and his parents. Single nucleotide polymorphism array (SNP array) was employed to identify cryptic chromosome aberrations, and quantitative real-time PCR was used to confirm the results. Karyotype analysis has revealed no obvious anomaly for the patient and his parents. SNP array analysis of the patient has demonstrated a 3.9 Mb deletion encompassing 3p13p14.1, which caused loss of entire MITF gene. The deletion was confirmed by quantitative real-time PCR. Clinical features of the patient have included severe bilateral hearing loss, decreased pigmentation of the skin and iris and multiple congenital anomalies. The patient, carrying a 3p13p14.1 deletion, has features of Tietz syndrome/Waardenburg syndrome type IIa. This case may provide additional data for the study of genotype-phenotype correlation of this disease.

  13. Genetic and phenotypic heterogeneity in Chinese patients with Waardenburg syndrome type II.

    Directory of Open Access Journals (Sweden)

    Shuzhi Yang

    Full Text Available Waardenburg Syndrome (WS is an autosomal-dominant disorder characterized by sensorineural hearing loss and pigmentary abnormalities of the eyes, hair, and skin. Microphthalmia-associated transcription factor (MITF gene mutations account for about 15% of WS type II (WS2 cases. To date, fewer than 40 different MITF gene mutations have been identified in human WS2 patients, and few of these were of Chinese descent. In this study, we report clinical findings and mutation identification in the MITF gene of 20 Chinese WS2 patients from 14 families. A high level of clinical variability was identified. Sensorineural hearing loss (17/20, 85.0% and heterochromia iridum (20/20, 100.0% were the most commonly observed clinical features in Chinese WS2 patients. Five affected individuals (5/20, 25.0% had numerous brown freckles on the face, trunk, and limb extremities. Mutation screening of the MITF gene identified five mutations: c.20A>G, c.332C>T, c.647_649delGAA, c.649A>G, and c.763C>T. The total mutational frequency of the MITF gene was 21.4% (3/14, which is significantly higher than the 15.0% observed in the fair-skinned WS2 population. Our results indicate that MITF mutations are relatively common among Chinese WS2 patients.

  14. Genetic and phenotypic heterogeneity in Chinese patients with Waardenburg syndrome type II.

    Science.gov (United States)

    Yang, Shuzhi; Dai, Pu; Liu, Xin; Kang, Dongyang; Zhang, Xin; Yang, Weiyan; Zhou, Chengyong; Yang, Shiming; Yuan, Huijun

    2013-01-01

    Waardenburg Syndrome (WS) is an autosomal-dominant disorder characterized by sensorineural hearing loss and pigmentary abnormalities of the eyes, hair, and skin. Microphthalmia-associated transcription factor (MITF) gene mutations account for about 15% of WS type II (WS2) cases. To date, fewer than 40 different MITF gene mutations have been identified in human WS2 patients, and few of these were of Chinese descent. In this study, we report clinical findings and mutation identification in the MITF gene of 20 Chinese WS2 patients from 14 families. A high level of clinical variability was identified. Sensorineural hearing loss (17/20, 85.0%) and heterochromia iridum (20/20, 100.0%) were the most commonly observed clinical features in Chinese WS2 patients. Five affected individuals (5/20, 25.0%) had numerous brown freckles on the face, trunk, and limb extremities. Mutation screening of the MITF gene identified five mutations: c.20A>G, c.332C>T, c.647_649delGAA, c.649A>G, and c.763C>T. The total mutational frequency of the MITF gene was 21.4% (3/14), which is significantly higher than the 15.0% observed in the fair-skinned WS2 population. Our results indicate that MITF mutations are relatively common among Chinese WS2 patients.

  15. Genetic and Phenotypic Heterogeneity in Chinese Patients with Waardenburg Syndrome Type II

    Science.gov (United States)

    Yang, Shuzhi; Dai, Pu; Liu, Xin; Kang, Dongyang; Zhang, Xin; Yang, Weiyan; Zhou, Chengyong; Yang, Shiming; Yuan, Huijun

    2013-01-01

    Waardenburg Syndrome (WS) is an autosomal-dominant disorder characterized by sensorineural hearing loss and pigmentary abnormalities of the eyes, hair, and skin. Microphthalmia-associated transcription factor (MITF) gene mutations account for about 15% of WS type II (WS2) cases. To date, fewer than 40 different MITF gene mutations have been identified in human WS2 patients, and few of these were of Chinese descent. In this study, we report clinical findings and mutation identification in the MITF gene of 20 Chinese WS2 patients from 14 families. A high level of clinical variability was identified. Sensorineural hearing loss (17/20, 85.0%) and heterochromia iridum (20/20, 100.0%) were the most commonly observed clinical features in Chinese WS2 patients. Five affected individuals (5/20, 25.0%) had numerous brown freckles on the face, trunk, and limb extremities. Mutation screening of the MITF gene identified five mutations: c.20A>G, c.332C>T, c.647_649delGAA, c.649A>G, and c.763C>T. The total mutational frequency of the MITF gene was 21.4% (3/14), which is significantly higher than the 15.0% observed in the fair-skinned WS2 population. Our results indicate that MITF mutations are relatively common among Chinese WS2 patients. PMID:24194866

  16. Current status and perspectives of genome editing technology for microalgae.

    Science.gov (United States)

    Jeon, Seungjib; Lim, Jong-Min; Lee, Hyung-Gwan; Shin, Sung-Eun; Kang, Nam Kyu; Park, Youn-Il; Oh, Hee-Mock; Jeong, Won-Joong; Jeong, Byeong-Ryool; Chang, Yong Keun

    2017-01-01

    Genome editing techniques are critical for manipulating genes not only to investigate their functions in biology but also to improve traits for genetic engineering in biotechnology. Genome editing has been greatly facilitated by engineered nucleases, dubbed molecular scissors, including zinc-finger nuclease (ZFN), TAL effector endonuclease (TALEN) and clustered regularly interspaced palindromic sequences (CRISPR)/Cas9. In particular, CRISPR/Cas9 has revolutionized genome editing fields with its simplicity, efficiency and accuracy compared to previous nucleases. CRISPR/Cas9-induced genome editing is being used in numerous organisms including microalgae. Microalgae have been subjected to extensive genetic and biological engineering due to their great potential as sustainable biofuel and chemical feedstocks. However, progress in microalgal engineering is slow mainly due to a lack of a proper transformation toolbox, and the same problem also applies to genome editing techniques. Given these problems, there are a few reports on successful genome editing in microalgae. It is, thus, time to consider the problems and solutions of genome editing in microalgae as well as further applications of this exciting technology for other scientific and engineering purposes.

  17. Genome Editing Gene Therapy for Duchenne Muscular Dystrophy

    OpenAIRE

    Hotta, Akitsu

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by loss of function of the dystrophin gene on the X chromosome. Gene augmentation of dystrophin is challenging due to the large size of the dystrophin cDNA. Emerging genome editing technologies, such as TALEN and CRISPR-Cas9 systems, open a new erain the restoration of functional dystrophin and are a hallmark of bona fide gene therapy. In this review, we summarize current genome editing approaches, properties of target cell...

  18. Towards social acceptance of plant breeding by genome editing

    OpenAIRE

    Araki, Motoko; Ishii, Tetsuya

    2015-01-01

    Although genome-editing technologies facilitate efficient plant breeding without introducing a transgene, it is creating indistinct boundaries in the regulation of genetically modified organisms (GMOs). Rapid advances in plant breeding by genome-editing require the establishment of a new global policy for the new biotechnology, while filling the gap between process-based and product-based GMO regulations. In this Opinion article we review recent developments in producing major crops using gen...

  19. [Advances in targeted replacement genome editing in plants].

    Science.gov (United States)

    Wang, Honglin; Zhang, Congsheng; Liu, Changlin; Xie, Chuanxiao

    2017-10-25

    Targeted replacement genome editing refers to DNA modification and engineering technology that could induce and achieve mutations of targeted gene replacement or knockin at a target gene or DNA region. In this review, the principles, implementation methods, factors that influence efficiency and accuracy, and applications of gene replacement editing were summarized and discussed. It provides the reference for gene functional characterization and genetic improvements through gene replacement strategies in higher plant especially crops.

  20. Gene-Editing: Interpretation of Current Law and Legal Policy

    OpenAIRE

    Kim, Na-Kyoung

    2017-01-01

    ABSTRACT With the development of the third-generation gene scissors, CRISPR-Cas9, concerns are being raised about ethical and social repercussions of the new gene-editing technology. In this situation, this article explores the legislation and interpretation of the positive laws in South Korea. The BioAct does not specify and regulate 'gene editing' itself. However, assuming that genetic editing is used in the process of research and treatment, we can look to the specific details of the regul...

  1. Homocysteine Editing, Thioester Chemistry, Coenzyme A, and the Origin of Coded Peptide Synthesis †

    Directory of Open Access Journals (Sweden)

    Hieronim Jakubowski

    2017-02-01

    Full Text Available Aminoacyl-tRNA synthetases (AARSs have evolved “quality control” mechanisms which prevent tRNA aminoacylation with non-protein amino acids, such as homocysteine, homoserine, and ornithine, and thus their access to the Genetic Code. Of the ten AARSs that possess editing function, five edit homocysteine: Class I MetRS, ValRS, IleRS, LeuRS, and Class II LysRS. Studies of their editing function reveal that catalytic modules of these AARSs have a thiol-binding site that confers the ability to catalyze the aminoacylation of coenzyme A, pantetheine, and other thiols. Other AARSs also catalyze aminoacyl-thioester synthesis. Amino acid selectivity of AARSs in the aminoacyl thioesters formation reaction is relaxed, characteristic of primitive amino acid activation systems that may have originated in the Thioester World. With homocysteine and cysteine as thiol substrates, AARSs support peptide bond synthesis. Evolutionary origin of these activities is revealed by genomic comparisons, which show that AARSs are structurally related to proteins involved in coenzyme A/sulfur metabolism and non-coded peptide bond synthesis. These findings suggest that the extant AARSs descended from ancestral forms that were involved in non-coded Thioester-dependent peptide synthesis, functionally similar to the present-day non-ribosomal peptide synthetases.

  2. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.

    Science.gov (United States)

    Ma, Xingliang; Zhu, Qinlong; Chen, Yuanling; Liu, Yao-Guang

    2016-07-06

    The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein9 (Cas9) genome editing system (CRISPR/Cas9) is adapted from the prokaryotic type II adaptive immunity system. The CRISPR/Cas9 tool surpasses other programmable nucleases, such as ZFNs and TALENs, for its simplicity and high efficiency. Various plant-specific CRISPR/Cas9 vector systems have been established for adaption of this technology to many plant species. In this review, we present an overview of current advances on applications of this technology in plants, emphasizing general considerations for establishment of CRISPR/Cas9 vector platforms, strategies for multiplex editing, methods for analyzing the induced mutations, factors affecting editing efficiency and specificity, and features of the induced mutations and applications of the CRISPR/Cas9 system in plants. In addition, we provide a perspective on the challenges of CRISPR/Cas9 technology and its significance for basic plant research and crop genetic improvement. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  3. Genetic and phylogenetic characterization of the type II cyclobutane pyrimidine dimer photolyases encoded by Leporipoxviruses

    International Nuclear Information System (INIS)

    Bennett, C. James; Webb, Melissa; Willer, David O.; Evans, David H.

    2003-01-01

    Shope fibroma virus and myxoma virus encode proteins predicted to be Type II photolyases. These are enzymes that catalyze light-dependent repair of cyclobutane pyrimidine dimers (CPDs). When the Shope fibroma virus S127L gene was expressed in an Escherichia coli strain lacking functional CPD repair pathways, the expressed gene protected the bacteria from 70-75% of the ultraviolet (UV) light-induced cytotoxic DNA damage. This proportion suggests that Leporipoxvirus photolyases can only repair CPDs, which typically comprise ∼70% of the damage caused by short wavelength UV light. To test whether these enzymes can protect virus genomes from UV, we exposed virus suspensions to UV-C light followed by graded exposure to filtered visible light. Viruses encoding a deletion of the putative photolyase gene were unable to photoreactivate UV damage while this treatment again eliminated 70-90% of the lethal photoproducts in wild-type viruses. Western blotting detected photolyase protein in extracts prepared from purified virions and it can be deduced that the poxvirion interior must be fluid enough to permit diffusion of this ∼50-kDa DNA-binding protein to the sites where it catalyzes photoreactivation. Photolyase promoters are difficult to categorize using bioinformatics methods, as they do not obviously resemble any of the known poxvirus promoter motifs. By fusing the SFV promoter to DNA encoding a luciferase open reading frame, the photolyase promoter was found to exhibit very weak late promoter activity. These data show that the genomes of Leporipoxviruses, similar to that of fowlpox virus, encode catalytically active photolyases. Phylogenetic studies also confirmed the monophyletic origin of poxviruses and suggest an ancient origin for these genes and perhaps poxviruses

  4. Genome editing: the breakthrough technology for inherited retinal disease?

    Science.gov (United States)

    Smith, Andrew J; Carter, Stephen P; Kennedy, Breandán N

    2017-10-01

    Genetic alterations resulting in a dysfunctional retinal pigment epithelium and/or degenerating photoreceptors cause impaired vision. These juxtaposed cells in the retina of the posterior eye are crucial for the visual cycle or phototransduction. Deficits in these biochemical processes perturb neural processing of images capturing the external environment. Notably, there is a distinct lack of clinically approved pharmacological, cell- or gene-based therapies for inherited retinal disease. Gene editing technologies are rapidly advancing as a realistic therapeutic option. Areas covered: Recent discovery of endonuclease-mediated gene editing technologies has culminated in a surge of investigations into their therapeutic potential. In this review, the authors discuss gene editing technologies and their applicability in treating inherited retinal diseases, the limitations of the technology and the research obstacles to overcome before editing a patient's genome becomes a viable treatment option. Expert opinion: The ability to strategically edit a patient's genome constitutes a treatment revolution. However, concerns remain over the safety and efficacy of either transplanting iPSC-derived retinal cells following ex vivo gene editing, or with direct gene editing in vivo. Ultimately, further refinements to improve efficacy and safety profiles are paramount for gene editing to emerge as a widely available treatment option.

  5. A genetic marker of the ACKR1 gene is present in patients with Type II congenital smell loss who have type I hyposmia and hypogeusia

    Science.gov (United States)

    Stateman, William A.; Knöppel, Alexandra B.; Flegel, Willy A.; Henkin, Robert I.

    2015-01-01

    PURPOSE Our previous study of Type II congenital smell loss patients revealed a statistically significant lower prevalence of an FY (ACKR1, formerly DARC) haplotype compared to controls. The present study correlates this genetic feature with subgroups of patients defined by specific smell and taste functions. METHODS Smell and taste function measurements were performed by use of olfactometry and gustometry to define degree of abnormality of smell and taste function. Smell loss was classified as anosmia or hyposmia (types I, II or III). Taste loss was similarly classified as ageusia or hypogeusia (types I, II or III). Based upon these results patient erythrocyte antigen expression frequencies were categorized by smell and taste loss with results compared between patients within the Type II group and published controls. RESULTS Comparison of antigen expression frequencies revealed a statistically significant decrease in incidence of an Fyb haplotype only among patients with type I hyposmia and any form of taste loss (hypogeusia). In all other patient groups erythrocyte antigens were expressed at normal frequencies. CONCLUSIONS Data suggest that Type II congenital smell loss patients who exhibit both type I hyposmia and hypogeusia are genetically distinct from all other patients with Type II congenital smell loss. This distinction is based on decreased Fyb expression which correlated with abnormalities in two sensory modalities (hyposmia type I and hypogeusia). Only patients with these two specific sensory abnormalities expressed the Fyb antigen (encoded by the ACKR1 gene on the long arm of chromosome 1) at frequencies different from controls. PMID:27968956

  6. Towards a critical edition of Fibonacci’s Liber Abaci

    Directory of Open Access Journals (Sweden)

    Giuseppe Germano

    2013-11-01

    Full Text Available A group of research working at the University of Naples Federico II aim to achieve the goal to offer a modern scientific and widely accessible edition of Fibonacci’s treatise. With a linguistic-philological, an historical-mathematical and a computer approach it has pointed out the value and the need for a multidisciplinary research in order to achieve the goal of making this edition adequately available to the scientific community.

  7. Efficient ecologic and economic operational rules for dammed systems by means of nondominated sorting genetic algorithm II

    Science.gov (United States)

    Niayifar, A.; Perona, P.

    2015-12-01

    River impoundment by dams is known to strongly affect the natural flow regime and in turn the river attributes and the related ecosystem biodiversity. Making hydropower sustainable implies to seek for innovative operational policies able to generate dynamic environmental flows while maintaining economic efficiency. For dammed systems, we build the ecological and economical efficiency plot for non-proportional flow redistribution operational rules compared to minimal flow operational. As for the case of small hydropower plants (e.g., see the companion paper by Gorla et al., this session), we use a four parameters Fermi-Dirac statistical distribution to mathematically formulate non-proportional redistribution rules. These rules allocate a fraction of water to the riverine environment depending on current reservoir inflows and storage. Riverine ecological benefits associated to dynamic environmental flows are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators. Then, we apply nondominated sorting genetic algorithm II (NSGA-II) to an ensemble of non-proportional and minimal flow redistribution rules in order to generate the Pareto frontier showing the system performances in the ecologic and economic space. This fast and elitist multiobjective optimization method is eventually applied to a case study. It is found that non-proportional dynamic flow releases ensure maximal power production on the one hand, while conciliating ecological sustainability on the other hand. Much of the improvement in the environmental indicator is seen to arise from a better use of the reservoir storage dynamics, which allows to capture, and laminate flood events while recovering part of them for energy production. In conclusion, adopting such new operational policies would unravel a spectrum of globally-efficient performances of the dammed system when compared with those resulting from policies based on constant minimum flow releases.

  8. [From random mutagenesis to precise genome editing: the development and evolution of genome editing techniques in Drosophila].

    Science.gov (United States)

    Su, Fang; Huang, Zong-liang; Guo, Ya-wen; Jiao, Ren-jie; Zi, Li; Chen, Jian-ming; Liu, Ji-yong

    2016-01-01

    Drosophila melanogaster, an important model organism for studying life science, has contributed more to the research of genetics, developmental biology and biomedicine with the development of genome editing techniques. Drosophila genome-editing techniques have evolved from random mutagenesis to precise genome editing and from simple mutant construction to diverse genome editing methods since the 20th century. Chemical mutagenesis, using Ethyl methanesulfonate (EMS), is an important technique to study gene function in forward genetics, however, the precise knockout of Drosophila genes could not be achieved. The gene targeting technology, based on homologous recombination, has accomplished the precise editing of Drosophila genome for the first time, but with low efficiency. The CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein)-mediated precise genome editing is simple, fast and highly efficient compared with the gene targeting technology in Drosophila. In this review, we focus on Drosophila gene knockout, and summarize the evolution of genome editing techniques in Drosophila, emphasizing the development and applications of gene targeting, zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and CRISPR/Cas9 techniques.

  9. Specification Editing and Discovery Assistant, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate safety analysis of software suffers from a lack of appropriate tools for software developers. Current automated tools require approximate analyses;...

  10. Precision genome editing

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric P; Schjoldager, Katrine Ter-Borch Gram

    2014-01-01

    of glycobiology, primarily due to their low efficiencies, with resultant failure to impose substantial phenotypic consequences upon the final glycosylation products. Here, we review novel nuclease-based precision genome editing techniques enabling efficient and stable gene editing, including gene disruption......Precise and stable gene editing in mammalian cell lines has until recently been hampered by the lack of efficient targeting methods. While different gene silencing strategies have had tremendous impact on many biological fields, they have generally not been applied with wide success in the field...... by introducing single or double-stranded breaks at a defined genomic sequence. We here compare and contrast the different techniques and summarize their current applications, highlighting cases from the field of glycobiology as well as pointing to future opportunities. The emerging potential of precision gene...

  11. Genetic variation of the major histocompatibility complex (MHC class II B gene in the threatened Hume's pheasant, Syrmaticus humiae.

    Directory of Open Access Journals (Sweden)

    Weicai Chen

    Full Text Available Major histocompatibility complex (MHC genes are the most polymorphic genes in vertebrates and encode molecules that play a crucial role in pathogen resistance. As a result of their diversity, they have received much attention in the fields of evolutionary and conservation biology. Here, we described the genetic variation of MHC class II B (MHCIIB exon 2 in a wild population of Hume's pheasant (Syrmaticus humiae, which has suffered a dramatic decline in population over the last three decades across its ranges in the face of heavy exploitation and habitat loss. Twenty-four distinct alleles were found in 73 S. humiae specimens. We found seven shared alleles among four geographical groups as well as six rare MHCIIB alleles. Most individuals displayed between one to five alleles, suggesting that there are at least three MHCIIB loci of the Hume's pheasant. The dN ⁄ dS ratio at putative antigen-binding sites (ABS was significantly greater than one, indicating balancing selection is acting on MHCIIB exon 2. Additionally, recombination and gene conversion contributed to generating MHCIIB diversity in the Hume's pheasant. One to three recombination events and seventy-five significant gene conversion events were observed within the Hume's pheasant MHCIIB loci. The phylogenetic tree and network analysis revealed that the Hume's pheasant alleles do not cluster together, but are scattered through the tree or network indicating a trans-species evolutionary mode. These findings revealed the evolution of the Hume's pheasant MHC after suffering extreme habitat fragmentation.

  12. Genetic analysis of a Chinese family with members affected with Usher syndrome type II and Waardenburg syndrome type IV.

    Science.gov (United States)

    Wang, Xueling; Lin, Xiao-Jiang; Tang, Xiangrong; Chai, Yong-Chuan; Yu, De-Hong; Chen, Dong-Ye; Wu, Hao

    2017-11-01

    The purpose of this study was to identify the genetic causes of a family presenting with multiple symptoms overlapping Usher syndrome type II (USH2) and Waardenburg syndrome type IV (WS4). Targeted next-generation sequencing including the exon and flanking intron sequences of 79 deafness genes was performed on the proband. Co-segregation of the disease phenotype and the detected variants were confirmed in all family members by PCR amplification and Sanger sequencing. The affected members of this family had two different recessive disorders, USH2 and WS4. By targeted next-generation sequencing, we identified that USH2 was caused by a novel missense mutation, p.V4907D in GPR98; whereas WS4 due to p.V185M in EDNRB. This is the first report of homozygous p.V185M mutation in EDNRB in patient with WS4. This study reported a Chinese family with multiple independent and overlapping phenotypes. In condition, molecular level analysis was efficient to identify the causative variant p.V4907D in GPR98 and p.V185M in EDNRB, also was helpful to confirm the clinical diagnosis of USH2 and WS4. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Insights into maize genome editing via CRISPR/Cas9.

    Science.gov (United States)

    Agarwal, Astha; Yadava, Pranjal; Kumar, Krishan; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan Kumar

    2018-03-01

    Maize is an important crop for billions of people as food, feed, and industrial raw material. It is a prime driver of the global agricultural economy as well as the livelihoods of millions of farmers. Genetic interventions, such as breeding, hybridization and transgenesis have led to increased productivity of this crop in the last 100 years. The technique of genome editing is the latest advancement in genetics. Genome editing can be used for targeted deletions, additions, and corrections in the genome, all aimed at genetic enhancement of crops. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 9 (CRISPR/Cas9) system is a recent genome editing technique that is considered simple, precise, robust and the most revolutionary. This review summarizes the current state of the art and predicts future directions in the use of the CRISPR/Cas9 tool in maize crop improvement.

  14. Nanoparticles for Site Specific Genome Editing

    Science.gov (United States)

    McNeer, Nicole Ali

    Triplex-forming peptide nucleic acids (PNAs) can be used to coordinate the recombination of short 50-60 by "donor DNA" fragments into genomic DNA, resulting in site-specific correction of genetic mutations or the introduction of advantageous genetic modifications. Site-specific gene editing in hematopoietic stem and progenitor cells (HSPCs) could result in treatment or cure of inherited disorders of the blood such as beta-thalassemia. Gene editing in HSPCs and differentiated T cells could help combat HIV/AIDs by modifying receptors, such as CCR5, necessary for R5-tropic HIV entry. However, translation of genome modification technologies to clinical practice is limited by challenges in intracellular delivery, especially in difficult-to-transfect hematolymphoid cells. In vivo gene editing could also provide novel treatment for systemic monogenic disorders such as cystic fibrosis, an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane receptor. Here, we have engineered biodegradable nanoparticles to deliver oligonucleotides for site-specific genome editing of disease-relevant genes in human cells, with high efficiency, low toxicity, and editing of clinically relevant cell types. We designed nanoparticles to edit the human beta-globin and CCR5 genes in hematopoietic cells. We show that poly(lactic-co-glycolic acid) (PLGA) nanoparticles can delivery PNA and donor DNA for site-specific gene modification in human hematopoietic cells in vitro and in vivo in NOD-scid IL2rgammanull mice. Nanoparticles delivered by tail vein localized to hematopoietic compartments in the spleen and bone marrow of humanized mice, resulting in modification of the beta-globin and CCR5 genes. Modification frequencies ranged from 0.005 to 20% of cells depending on the organ and cell type, without detectable toxicity. This project developed highly versatile methods for delivery of therapeutics to hematolymphoid cells and hematopoietic stem cells, and will help to

  15. Engineered Viruses as Genome Editing Devices.

    Science.gov (United States)

    Chen, Xiaoyu; Gonçalves, Manuel A F V

    2016-03-01

    Genome editing based on sequence-specific designer nucleases, also known as programmable nucleases, seeks to modify in a targeted and precise manner the genetic information content of living cells. Delivering into cells designer nucleases alone or together with donor DNA templates, which serve as surrogate homologous recombination (HR) substrates, can result in gene knockouts or gene knock-ins, respectively. As engineered replication-defective viruses, viral vectors are having an increasingly important role as delivery vehicles for donor DNA templates and designer nucleases, namely, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 (CRISPR-Cas9) nucleases, also known as RNA-guided nucleases (RGNs). We review this dual role played by engineered viral particles on genome editing while focusing on their main scaffolds, consisting of lentiviruses, adeno-associated viruses, and adenoviruses. In addition, the coverage of the growing body of research on the repurposing of viral vectors as delivery systems for genome editing tools is complemented with information regarding their main characteristics, pros, and cons. Finally, this information is framed by a concise description of the chief principles, tools, and applications of the genome editing field as a whole.

  16. Genome editing in fishes and their applications.

    Science.gov (United States)

    Zhu, Bo; Ge, Wei

    2018-02-01

    There have been revolutionary progresses in genome engineering in the past few years. The newly-emerged genome editing technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats associated with Cas9 (CRISPR/Cas9) have enabled biological scientists to perform efficient and precise targeted genome editing in different species. Fish represent the largest group of vertebrates with many species having values for both scientific research and aquaculture industry. Genome editing technologies have found extensive applications in different fish species for basic functional studies as well asapplied research in such fields as disease modeling and aquaculture. This mini-review focuses on recent advancements and applications of the new generation of genome editing technologies in fish species, with particular emphasis on their applications in understanding reproductive functions because the reproductive axis has been most systematically and best studied among others and its function has been difficult to address with reverse genetics approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Genome Editing in Sugarcane: Challenges ahead

    Directory of Open Access Journals (Sweden)

    Chakravarthi Mohan

    2016-10-01

    Full Text Available Genome editing opens new and unique opportunities for researchers to enhance crop production. Until 2013, the zinc finger nucleases (ZFNs and transcription activator-like effector nucleases (TALENs were the key tools used for genome editing applications. The advent of RNA-guided engineered nucleases - the type II clustered regularly interspaced short palindromic repeat (CRISPR/Cas9 (CRISPR-associated system from Streptococcus pyogenes holds great potential since it is simple, effective and more versatile than ZFNs and TALENs. CRISPR/Cas9 system has already been successfully employed in several crop plants. Use of these techniques is in its infant stage in sugarcane. Jung and Altpeter (2016 have reported TALEN mediated approach for the first time to reduce lignin content in sugarcane to make it amenable for biofuel production. This is so far the only report describing genome editing in sugarcane. Large genome size, polyploidy, low transformation efficiency, transgene silencing and lack of high throughput screening techniques are certainly great challenges for genome editing in sugarcane which would be discussed in detail in this review.

  18. Genome Editing in Sugarcane: Challenges Ahead.

    Science.gov (United States)

    Mohan, Chakravarthi

    2016-01-01

    Genome editing opens new and unique opportunities for researchers to enhance crop production. Until 2013, the zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) were the key tools used for genome editing applications. The advent of RNA-guided engineered nucleases - the type II clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 (CRISPR-associated) system from Streptococcus pyogenes holds great potential since it is simple, effective and more versatile than ZFNs and TALENs. CRISPR/Cas9 system has already been successfully employed in several crop plants. Use of these techniques is in its infant stage in sugarcane. Jung and Altpeter (2016) have reported TALEN mediated approach for the first time to reduce lignin content in sugarcane to make it amenable for biofuel production. This is so far the only report describing genome editing in sugarcane. Large genome size, polyploidy, low transformation efficiency, transgene silencing and lack of high throughput screening techniques are certainly great challenges for genome editing in sugarcane which would be discussed in detail in this review.

  19. Genome editing in pluripotent stem cells: research and therapeutic applications

    Energy Technology Data Exchange (ETDEWEB)

    Deleidi, Michela, E-mail: michela.deleidi@dzne.de [German Center for Neurodegenerative Diseases (DZNE) Tübingen within the Helmholtz Association, Tübingen (Germany); Hertie Institute for Clinical Brain Research, University of Tübingen (Germany); Yu, Cong [Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, New York (United States)

    2016-05-06

    Recent progress in human pluripotent stem cell (hPSC) and genome editing technologies has opened up new avenues for the investigation of human biology in health and disease as well as the development of therapeutic applications. Gene editing approaches with programmable nucleases have been successfully established in hPSCs and applied to study gene function, develop novel animal models and perform genetic and chemical screens. Several studies now show the successful editing of disease-linked alleles in somatic and patient-derived induced pluripotent stem cells (iPSCs) as well as in animal models. Importantly, initial clinical trials have shown the safety of programmable nucleases for ex vivo somatic gene therapy. In this context, the unlimited proliferation potential and the pluripotent properties of iPSCs may offer advantages for gene targeting approaches. However, many technical and safety issues still need to be addressed before genome-edited iPSCs are translated into the clinical setting. Here, we provide an overview of the available genome editing systems and discuss opportunities and perspectives for their application in basic research and clinical practice, with a particular focus on hPSC based research and gene therapy approaches. Finally, we discuss recent research on human germline genome editing and its social and ethical implications. - Highlights: • Programmable nucleases have proven efficient and specific for genome editing in human pluripotent stem cells (hPSCs). • Genome edited hPSCs can be employed to study gene function in health and disease as well as drug and chemical screens. • Genome edited hPSCs hold great promise for ex vivo gene therapy approaches. • Technical and safety issues should be first addressed to advance the clinical use of gene-edited hPSCs.

  20. Genome editing in pluripotent stem cells: research and therapeutic applications

    International Nuclear Information System (INIS)

    Deleidi, Michela; Yu, Cong

    2016-01-01

    Recent progress in human pluripotent stem cell (hPSC) and genome editing technologies has opened up new avenues for the investigation of human biology in health and disease as well as the development of therapeutic applications. Gene editing approaches with programmable nucleases have been successfully established in hPSCs and applied to study gene function, develop novel animal models and perform genetic and chemical screens. Several studies now show the successful editing of disease-linked alleles in somatic and patient-derived induced pluripotent stem cells (iPSCs) as well as in animal models. Importantly, initial clinical trials have shown the safety of programmable nucleases for ex vivo somatic gene therapy. In this context, the unlimited proliferation potential and the pluripotent properties of iPSCs may offer advantages for gene targeting approaches. However, many technical and safety issues still need to be addressed before genome-edited iPSCs are translated into the clinical setting. Here, we provide an overview of the available genome editing systems and discuss opportunities and perspectives for their application in basic research and clinical practice, with a particular focus on hPSC based research and gene therapy approaches. Finally, we discuss recent research on human germline genome editing and its social and ethical implications. - Highlights: • Programmable nucleases have proven efficient and specific for genome editing in human pluripotent stem cells (hPSCs). • Genome edited hPSCs can be employed to study gene function in health and disease as well as drug and chemical screens. • Genome edited hPSCs hold great promise for ex vivo gene therapy approaches. • Technical and safety issues should be first addressed to advance the clinical use of gene-edited hPSCs.

  1. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.

    Science.gov (United States)

    Bruder, Mark R; Pyne, Michael E; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2016-10-15

    The discovery and exploitation of the prokaryotic adaptive immunity system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins have revolutionized genetic engineering. CRISPR-Cas tools have enabled extensive genome editing as well as efficient modulation of the transcriptional program in a multitude of organisms. Progress in the development of genetic engineering tools for the genus Clostridium has lagged behind that of many other prokaryotes, presenting the CRISPR-Cas technology an opportunity to resolve a long-existing issue. Here, we applied the Streptococcus pyogenes type II CRISPR-Cas9 (SpCRISPR-Cas9) system for genome editing in Clostridium acetobutylicum DSM792. We further explored the utility of the SpCRISPR-Cas9 machinery for gene-specific transcriptional repression. For proof-of-concept demonstration, a plasmid-encoded fluorescent protein gene was used for transcriptional repression in C. acetobutylicum Subsequently, we targeted the carbon catabolite repression (CCR) system of C. acetobutylicum through transcriptional repression of the hprK gene encoding HPr kinase/phosphorylase, leading to the coutilization of glucose and xylose, which are two abundant carbon sources from lignocellulosic feedstocks. Similar approaches based on SpCRISPR-Cas9 for genome editing and transcriptional repression were also demonstrated in Clostridium pasteurianum ATCC 6013. As such, this work lays a foundation for the derivation of clostridial strains for industrial purposes. After recognizing the industrial potential of Clostridium for decades, methods for the genetic manipulation of these anaerobic bacteria are still underdeveloped. This study reports the implementation of CRISPR-Cas technology for genome editing and transcriptional regulation in Clostridium acetobutylicum, which is arguably the most common industrial clostridial strain. The developed genetic tools enable simpler, more reliable, and more extensive

  2. Editing tools. Transcribing and encoding

    NARCIS (Netherlands)

    Spadini, E.

    2015-01-01

    This paper deals with editing tools and editing platforms, i.e. programs used by editors in order to fulfil one or more tasks in the creation of a scholarly digital edition (SDE). Recurring themes in the field of SDEs are the standardization of XML-TEI markup and the success of documentary digital

  3. Nair handbook. 1995 edition

    International Nuclear Information System (INIS)

    1995-01-01

    This Handbook contains general background, administrative and technical information for those participating in the National Arrangements for Incidents involving Radioactivity (NAIR), updating and replacing the previous edition published in 1987. The overriding need for revision was brought about as a result of changes introduced by British Telecom to the telephone numbers of establishments. (UK)

  4. Beginning to edit physics

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, P.W.

    1995-02-01

    A physicist-turned-editor shows you the basics required for copyediting physics papers (physical quantities, symbols, units, scientific notation, the structure of mathematical expressions, the nature of graphs), and points the way to learning enough ``editorial physics`` to begin substantive editing.

  5. MENTAL DEFICIENCY. SECOND EDITION.

    Science.gov (United States)

    HILLIARD, L.T.; KIRMAN, BRIAN H.

    REVISED TO INCLUDE LEGISLATIVE AND ADMINISTRATIVE PROCEDURES NEW IN BRITAIN SINCE THE 1957 EDITION, THE TEXT INCLUDES RECENT ADVANCES IN ETIOLOGY, PATHOLOGY, AND TREATMENT OF MENTAL DEFICIENCY. CONSIDERATION OF THE BACKGROUND OF MENTAL DEFICIENCY INCLUDES HISTORICAL AND LEGAL ASPECTS, THE SOCIAL BACKGROUND OF MENTAL DEFECT, PRENATAL CAUSES OF…

  6. Newspaper Editing: English, Journalism.

    Science.gov (United States)

    Bullock, Johanna

    A course designed to groom editors for the newspaper is presented. Editing copy, copyreading and proofreading, principles of headlining, responsibility of the press, libel and slander laws, and problems of censorship are covered. Course objectives include the following: (1) The student will recognize and correct all newspaper items that do not…

  7. Black Psychology. Third Edition.

    Science.gov (United States)

    Jones, Reginald L., Ed.

    This book is the third edition of a resource for advanced students and professionals in black psychology in the form of 41 papers organized under 5 subheadings. The "overview" section includes one classic article and offers a new, world view paper. A "perspectives" section treats Afrocentric, humanistic, historical,…

  8. The Craft of Editing

    DEFF Research Database (Denmark)

    Moeran, Brian

    To edit is to make a choice, or series of choices. Will I write a rough draft of this essay in longhand, or hammer it out on my computer? If the latter, what font shall I use? Times New Roman, Book Antiqua, or Garamond? Once I get started, what style shall I adopt: realistic, confessional or impr...

  9. Aspectos genéticos da esclerose múltipla: II. sistema HLA Genetic aspects in multiple sclerosis: HLA system

    Directory of Open Access Journals (Sweden)

    Patrícia Almeida de Rezende

    1996-09-01

    Full Text Available Foi feita análise e revisão de estudos populacionais de associação entre antígenos HLA e a esclerose múltipla (EM. Há evidências de que os genes HLA, principalmente os de classe II, das sub-regiões DR e DQ possam estar envolvidos. O haplótipo DRB1*1501.DQA1*0102.DQB1*0602 referente ao fenótipo DR2.Dw2.DQ6 foi encontrado em associação positiva em vários estudos realizados em populações caucasóides. O desequilíbrio de ligação entre os genes DR e DQ dificulta o reconhecimento da contribuição individual de cada alelo. A heterogeneidade de critérios diagnósticos da EM constitui importante fator metodológico que dificulta a comparação entre os diversos estudos. A padronização dos critérios diagnósticos e dos métodos laboratoriais empregados, assim como a análise individual de grupos de pacientes com formas clínicas diferentes, são medidas que provavelmente permitirão avaliação mais precisa dos fatores genéticos envolvidos no desenvolvimento da EM.Review of studies about HLA antigens and multiple sclerosis (MS. The HLA system, in special class II antigens, subregions DR and DQ, is probably involved in the immunopathogenesis of MS. Haplotype DRB1*1501.DQA1*0102.DQB1*0602, corresponding to phenotype DR2.Dw2.DQ6, is positively associated with MS in several caucasoid populations. Clinical heterogeneity of MS, as well as different diagnostic criteria adopted by investigators are potential sources of confusion and may lead to discrepant results. A better standardization of clinical and laboratorial methodology, appropriate subdivision of patients with different clinical forms of MS, may allow a more accurate evaluation of the role of genetic factors in the pathogenesis of MS.

  10. Tokamaks (Second Edition)

    International Nuclear Information System (INIS)

    Stott, Peter

    1998-01-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  11. Genome editing of crops: A renewed opportunity for food security.

    Science.gov (United States)

    Georges, Fawzy; Ray, Heather

    2017-01-02

    Genome editing of crop plants is a rapidly advancing technology whereby targeted mutations can be introduced into a plant genome in a highly specific manner and with great precision. For the most part, the technology does not incorporate transgenic modifications and is far superior to conventional chemical mutagenesis. In this study we bring into focus some of the underlying differences between the 3 existing technologies: classical plant breeding, genetic modification and genome editing. We discuss some of the main achievements from each area and highlight their common characteristics and individual limitations, while emphasizing the unique capabilities of genome editing. We subsequently examine the possible regulatory mechanisms which governments may be inclined to use in assessing the status of genome edited products. If assessed on the basis of their phenotype rather than the process by which they are obtained, these products will be categorized as equivalent to those produced by classical mutagenesis. This would mean that genome edited products will not be subject to the restrictions imposed on genetically modified products, except in some cases where the mutation involves a large sequence insertion into the genome. We conclude by examining the potential of societal acceptance of genome editing technology, reinforced by a scientific perspective on promoting such acceptance.

  12. The clinical applications of genome editing in HIV.

    Science.gov (United States)

    Wang, Cathy X; Cannon, Paula M

    2016-05-26

    HIV/AIDS has long been at the forefront of the development of gene- and cell-based therapies. Although conventional gene therapy approaches typically involve the addition of anti-HIV genes to cells using semirandomly integrating viral vectors, newer genome editing technologies based on engineered nucleases are now allowing more precise genetic manipulations. The possible outcomes of genome editing include gene disruption, which has been most notably applied to the CCR5 coreceptor gene, or the introduction of small mutations or larger whole gene cassette insertions at a targeted locus. Disruption of CCR5 using zinc finger nucleases was the first-in-human application of genome editing and remains the most clinically advanced platform, with 7 completed or ongoing clinical trials in T cells and hematopoietic stem/progenitor cells (HSPCs). Here we review the laboratory and clinical findings of CCR5 editing in T cells and HSPCs for HIV therapy and summarize other promising genome editing approaches for future clinical development. In particular, recent advances in the delivery of genome editing reagents and the demonstration of highly efficient homology-directed editing in both T cells and HSPCs are expected to spur the development of even more sophisticated applications of this technology for HIV therapy. © 2016 by The American Society of Hematology.

  13. Recent Advances in Therapeutic Genome Editing in China.

    Science.gov (United States)

    Yang, Yang; Wang, Qingnan; Li, Qian; Men, Ke; He, Zhiyao; Deng, Hongxin; Ji, Weizhi; Wei, Yuquan

    2018-02-01

    Editing of the genome to correct disease-causing mutations is a promising approach for the treatment of human diseases. Recent advances in the development of programmable nuclease-based genome editing tools have substantially improved the ability to make precise changes in the human genome. Genome editing technologies are already being used to correct genetic mutations in affected tissues and cells to treat diseases that are refractory to traditional gene therapies. Chinese scientists have made remarkable breakthroughs in the field of therapeutic genome editing, particularly with the first clinical trial involving the clustered regularly interspaced short palindromic repeats-caspase 9 system that began in China. Herein, current progress toward developing programmable nuclease-based gene therapies is introduced, as well as future prospects and challenges in China.

  14. [Advances in genome editing technologies for treating muscular dystrophy.

    Science.gov (United States)

    Makita, Yukimasa; Hozumi, Hiroyuki; Hotta, Akitsu

    Recent advances in genome editing technologies have opened the possibility for treating genetic diseases, such as Duchenne muscular dystrophy(DMD), by correcting the causing gene mutations in dystrophin gene. In fact, there are several reports that demonstrated the restoration of the mutated dystrophin gene in DMD patient-derived iPS cell or functional recovery of forelimb grip strength in DMD model mice. For future clinical applications, there are several aspects that need to be taken into consideration:efficient delivery of the genome editing components, risk of off-target mutagenesis and immunogenicity against genome editing enzyme. In this review, we summarize the current status and future prospective of the research in applying genome editing technologies to DMD.

  15. Arthritis Genetics Analysis Aids Drug Discovery

    Science.gov (United States)

    ... NIH Research Matters January 13, 2014 Arthritis Genetics Analysis Aids Drug Discovery An international research team identified 42 new ... Edition Distracted Driving Raises Crash Risk Arthritis Genetics Analysis Aids Drug Discovery Oxytocin Affects Facial Recognition Connect with Us ...

  16. Genetics Home Reference: spinocerebellar ataxia type 1

    Science.gov (United States)

    ... R, Giunti P. Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum. 2008;7( ... editing and CRISPR-Cas9? What is direct-to-consumer genetic testing? What is precision medicine? What is ...

  17. Clinical Applications of Genome Editing to HIV Cure.

    Science.gov (United States)

    Wang, Cathy X; Cannon, Paula M

    2016-12-01

    Despite significant advances in HIV drug treatment regimens, which grant near-normal life expectancies to infected individuals who have good virological control, HIV infection itself remains incurable. In recent years, novel gene- and cell-based therapies have gained increasing attention due to their potential to provide a functional or even sterilizing cure for HIV infection with a one-shot treatment. A functional cure would keep the infection in check and prevent progression to AIDS, while a sterilizing cure would eradicate all HIV viruses from the patient. Genome editing is the most precise form of gene therapy, able to achieve permanent genetic disruption, modification, or insertion at a predesignated genetic locus. The most well-studied candidate for anti-HIV genome editing is CCR5, an essential coreceptor for the majority of HIV strains, and the lack of which confers HIV resistance in naturally occurring homozygous individuals. Genetic disruption of CCR5 to treat HIV has undergone clinical testing, with seven completed or ongoing trials in T cells and hematopoietic stem and progenitor cells, and has shown promising safety and potential efficacy profiles. Here we summarize clinical findings of CCR5 editing for HIV therapy, as well as other genome editing-based approaches under pre-clinical development. The anticipated development of more sophisticated genome editing technologies should continue to benefit HIV cure efforts.

  18. A to I editing in disease is not fake news.

    Science.gov (United States)

    Bajad, Prajakta; Jantsch, Michael F; Keegan, Liam; O'Connell, Mary

    2017-09-02

    Adenosine deaminases acting on RNA (ADARs) are zinc-containing enzymes that deaminate adenosine bases to inosines within dsRNA regions in transcripts. In short, structured dsRNA hairpins individual adenosine bases may be targeted specifically and edited with up to one hundred percent efficiency, leading to the production of alternative protein variants. However, the majority of editing events occur within longer stretches of dsRNA formed by pairing of repetitive sequences. Here, many different adenosine bases are potential targets but editing efficiency is usually much lower. Recent work shows that ADAR-mediated RNA editing is also required to prevent aberrant activation of antiviral innate immune sensors that detect viral dsRNA in the cytoplasm. Missense mutations in the ADAR1 RNA editing enzyme cause a fatal auto-inflammatory disease, Aicardi-Goutières syndrome (AGS) in affected children. In addition RNA editing by ADARs has been observed to increase in many cancers and also can contribute to vascular disease. Thus the role of RNA editing in the progression of various diseases can no longer be ignored. The ability of ADARs to alter the sequence of RNAs has also been used to artificially target model RNAs in vitro and in cells for RNA editing. Potentially this approach may be used to repair genetic defects and to alter genetic information at the RNA level. In this review we focus on the role of ADARs in disease development and progression and on their potential use to artificially modify RNAs in a targeted manner.

  19. Fan edits and the legacy of The Phantom Edit

    Directory of Open Access Journals (Sweden)

    Joshua Wille

    2014-09-01

    Full Text Available A fan edit can generally be defined as an alternative version of a film or television text created by a fan. It offers a different viewing experience, much as a song remix offers a different listening experience. The contemporary wave of fan edits has emerged during the remix zeitgeist of digital media and at a time when digital video editing technology has become more affordable and popular. The increasing number of alternative versions of films and the works of revisionist Hollywood filmmakers such as George Lucas have contributed to a greater public understanding of cinema as a fluid medium instead of one that exists in a fixed form. The Phantom Edit (2000, a seminal fan edit based on Lucas's Star Wars Episode I: The Phantom Menace (1999, inspired new ranks of fan editors. However, critics have misunderstood fan edits as merely the work of disgruntled fans. In order to provide a critical and historical basis for studies in fan editing as a creative practice, I examine previous interpretations of fan edits in the context of relevant contemporary works, and I use an annotated chronology of The Phantom Edit to trace its influence on subsequent fan editing communities and uncover their relationship with intellectual property disputes.

  20. Desktop Genetics.

    Science.gov (United States)

    Hough, Soren H; Ajetunmobi, Ayokunmi; Brody, Leigh; Humphryes-Kirilov, Neil; Perello, Edward

    2016-11-01

    Desktop Genetics is a bioinformatics company building a gene-editing platform for personalized medicine. The company works with scientists around the world to design and execute state-of-the-art clustered regularly interspaced short palindromic repeats (CRISPR) experiments. Desktop Genetics feeds the lessons learned about experimental intent, single-guide RNA design and data from international genomics projects into a novel CRISPR artificial intelligence system. We believe that machine learning techniques can transform this information into a cognitive therapeutic development tool that will revolutionize medicine.

  1. Preface to Special Edition

    Directory of Open Access Journals (Sweden)

    Renee Nathanson

    2012-04-01

    Full Text Available Given that reading comprehension is at the forefront of global literacy discourse, this special edition of Per Linguam, the first number that is also published online, features a collection of articles that cover different aspects of reading comprehension and instruction, such as, strategies for comprehending texts, metacognitive awareness, the reciprocity of assessment and comprehension instruction and socio-affective factors that influence comprehension.

  2. UN-EDITED VERSION

    Indian Academy of Sciences (India)

    57

    1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. UN-EDITED VERSION ...

  3. Simple Genome Editing of Rodent Intact Embryos by Electroporation.

    Directory of Open Access Journals (Sweden)

    Takehito Kaneko

    Full Text Available The clustered regularly interspaced short palindromic repeat (CRISPR/CRISPR-associated (Cas system is a powerful tool for genome editing in animals. Recently, new technology has been developed to genetically modify animals without using highly skilled techniques, such as pronuclear microinjection of endonucleases. Technique for animal knockout system by electroporation (TAKE method is a simple and effective technology that produces knockout rats by introducing endonuclease mRNAs into intact embryos using electroporation. Using TAKE method and CRISPR/Cas system, the present study successfully produced knockout and knock-in mice and rats. The mice and rats derived from embryos electroporated with Cas9 mRNA, gRNA and single-stranded oligodeoxynucleotide (ssODN comprised the edited targeted gene as a knockout (67% of mice and 88% of rats or knock-in (both 33%. The TAKE method could be widely used as a powerful tool to produce genetically modified animals by genome editing.

  4. Harnessing CRISPR-Cas systems for bacterial genome editing.

    Science.gov (United States)

    Selle, Kurt; Barrangou, Rodolphe

    2015-04-01

    Manipulation of genomic sequences facilitates the identification and characterization of key genetic determinants in the investigation of biological processes. Genome editing via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) constitutes a next-generation method for programmable and high-throughput functional genomics. CRISPR-Cas systems are readily reprogrammed to induce sequence-specific DNA breaks at target loci, resulting in fixed mutations via host-dependent DNA repair mechanisms. Although bacterial genome editing is a relatively unexplored and underrepresented application of CRISPR-Cas systems, recent studies provide valuable insights for the widespread future implementation of this technology. This review summarizes recent progress in bacterial genome editing and identifies fundamental genetic and phenotypic outcomes of CRISPR targeting in bacteria, in the context of tool development, genome homeostasis, and DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Prevalence of coagulation factor II G20210A and factor V G1691A Leiden polymorphisms in Chechans, a genetically isolated population in Jordan.

    Science.gov (United States)

    Dajani, Rana; Fatahallah, Raja; Dajani, Abdelrahman; Al-Shboul, Mohammad; Khader, Yousef

    2012-09-01

    Coagulation factor II G20210A and coagulation factor V (Leiden) G1691A single nucleotide polymorphisms (SNPs) are major inherited risk factors of venous thromboembolism. In view of the heterogeneity in their world distribution and lack of sufficient information about their distribution among Chechans, we addressed the prevalence of these SNPs in the Chechan population in Jordan, a genetically isolated population. Factor II G20210A and factor V Leiden SNPs were analysed by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) method and Amplification refractory mutation detection system (ARMS) respectively in 120 random unrelated subjects from the Chechan population in Jordan. Among the subjects studied for factor II G20210A mutation there were three individuals carrying this mutation as heterozygous (one female and two male), giving a prevalence of 2.5 % and an allele frequency of 1.25 %. No homozygous factor II allele was found. Factor V Leiden G1691A mutation was detected as heterozygous in 22 of 120 of individuals (17 female and five male) indicating a prevalence of 18.3 % and allele frequency of 9.2 %. No homozygous allele was found. Our results indicated that prevalence of factor II G20210A mutation in the Chechan population is similar to prevalence in Jordan and Caucasian populations (1-6 %) while the prevalence of factor V Leiden was higher in the Chechan population compared to Jordan and Caucasian populations (2-15 %).

  6. Do DSM-5 Section II personality disorders and Section III personality trait domains reflect the same genetic and environmental risk factors?

    Science.gov (United States)

    Reichborn-Kjennerud, T; Krueger, R F; Ystrom, E; Torvik, F A; Rosenström, T H; Aggen, S H; South, S C; Neale, M C; Knudsen, G P; Kendler, K S; Czajkowski, N O

    2017-09-01

    DSM-5 includes two conceptualizations of personality disorders (PDs). The classification in Section II is identical to the one found in DSM-IV, and includes 10 categorical PDs. The Alternative Model (Section III) includes criteria for dimensional measures of maladaptive personality traits organized into five domains. The degree to which the two conceptualizations reflect the same etiological factors is not known. We use data from a large population-based sample of adult twins from the Norwegian Institute of Public Health Twin Panel on interview-based DSM-IV PDs and a short self-report inventory that indexes the five domains of the DSM-5 Alternative Model plus a domain explicitly targeting compulsivity. Schizotypal, Paranoid, Antisocial, Borderline, Avoidant, and Obsessive-compulsive PDs were assessed at the same time as the maladaptive personality traits and 10 years previously. Schizoid, Histrionic, Narcissistic, and Dependent PDs were only assessed at the first interview. Biometric models were used to estimate overlap in genetic and environmental risk factors. When measured concurrently, there was 100% genetic overlap between the maladaptive trait domains and Paranoid, Schizotypal, Antisocial, Borderline, and Avoidant PDs. For OCPD, 43% of the genetic variance was shared with the domains. Genetic correlations between the individual domains and PDs ranged from +0.21 to +0.91. The pathological personality trait domains, which are part of the Alternative Model for classification of PDs in DSM-5 Section III, appears to tap, at an aggregate level, the same genetic risk factors as the DSM-5 Section II classification for most of the PDs.

  7. Revising and editing for translators

    CERN Document Server

    Mossop, Brian

    2014-01-01

    Revising and Editing for Translators provides guidance and learning materials for translation students learning to edit texts written by others, and professional translators wishing to improve their self-revision ability or learning to revise the work of others. Editing is understood as making corrections and improvements to texts, with particular attention to tailoring them to the given readership. Revising is this same task applied to draft translations. The linguistic work of editors and revisers is related to the professional situations in which they work. Mossop offers in-depth coverage of a wide range of topics, including copyediting, style editing, structural editing, checking for consistency, revising procedures and principles, and translation quality assessment. This third edition provides extended coverage of computer aids for revisers, and of the different degrees of revision suited to different texts. The inclusion of suggested activities and exercises, numerous real-world examples, a proposed gra...

  8. Genome editing with engineered zinc finger nucleases.

    Science.gov (United States)

    Urnov, Fyodor D; Rebar, Edward J; Holmes, Michael C; Zhang, H Steve; Gregory, Philip D

    2010-09-01

    Reverse genetics in model organisms such as Drosophila melanogaster, Arabidopsis thaliana, zebrafish and rats, efficient genome engineering in human embryonic stem and induced pluripotent stem cells, targeted integration in crop plants, and HIV resistance in immune cells - this broad range of outcomes has resulted from the application of the same core technology: targeted genome cleavage by engineered, sequence-specific zinc finger nucleases followed by gene modification during subsequent repair. Such 'genome editing' is now established in human cells and a number of model organisms, thus opening the door to a range of new experimental and therapeutic possibilities.

  9. Aggressiveness between genetic groups I and II of isolates of Cercospora zeae-maydis Agressividade entre isolados dos grupos genéticos I e II de Cercospora zeae-maydis

    Directory of Open Access Journals (Sweden)

    Sandra Marisa Mathioni

    2006-12-01

    Full Text Available For many years, the gray leaf spot disease (GLS caused by the fungus Cercospora zeae-maydis Tehon & Daniels, was not considered an important pathogen of maize (Zea mays, L. in Brazil. However, the recent adoption of agronomical practices such as no-tillage and cultivation under central pivot irrigation systems increased the incidence and severity to the extent that GLS is now one of the most important diseases of maize. Isolates of C. zeae-maydis can be distinguished by two genetic groups (I and II based on AFLP markers and on polymorphisms of the ITS and 5.8S rDNA regions. Until now, however, the biological implications of this distinction remain unclear. This study investigated whether isolates from the two genetic groups differ in aggressiveness towards maize. For this, symptoms of a susceptible hybrid were evaluated under greenhouse conditions with 9 and 11 isolates of C. zeae-maydis from groups I and II, respectively. Plants in the V3 growth stage were inoculated by placing sorghum seeds colonized with the pathogen in the leaf whorl and symptoms were evaluated with a visual rating scale 30 days later. On average, isolates of genetic group II were more aggressive than those of group I, with mean disease scores of 3.1 and 2.3, respectively. Differences were also observed between experiments, which suggested that group I and II might also differ in their fitness under different environments. This is the first report on differences in aggressiveness between the two genetic groups of C. zeae-maydis.Durante muitos anos, a cercosporiose, causada pelo fungo Cercospora zeae-maydis Tehon & Daniels, não foi considerada importante para a cultura do milho (Zea mays, L. no Brasil. Entretanto, a recente utilização de práticas culturais como o plantio direto e o cultivo sob pivôs centrais favoreceram o aumento de sua severidade e incidência, de forma que a doença é hoje considerada uma das mais importantes da cultura. Isolados de C. zeae

  10. ADAR RNA editing below the backbone.

    Science.gov (United States)

    Keegan, Liam; Khan, Anzer; Vukic, Dragana; O'Connell, Mary

    2017-09-01

    ADAR RNA editing enzymes ( a denosine d e a minases acting on R NA) that convert adenosine bases to inosines were first identified biochemically 30 years ago. Since then, studies on ADARs in genetic model organisms, and evolutionary comparisons between them, continue to reveal a surprising range of pleiotropic biological effects of ADARs. This review focuses on Drosophila melanogaster , which has a single Adar gene encoding a homolog of vertebrate ADAR2 that site-specifically edits hundreds of transcripts to change individual codons in ion channel subunits and membrane and cytoskeletal proteins. Drosophila ADAR is involved in the control of neuronal excitability and neurodegeneration and, intriguingly, in the control of neuronal plasticity and sleep. Drosophila ADAR also interacts strongly with RNA interference, a key antiviral defense mechanism in invertebrates. Recent crystal structures of human ADAR2 deaminase domain-RNA complexes help to interpret available information on Drosophila ADAR isoforms and on the evolution of ADARs from tRNA deaminase ADAT proteins. ADAR RNA editing is a paradigm for the now rapidly expanding range of RNA modifications in mRNAs and ncRNAs. Even with recent progress, much remains to be understood about these groundbreaking ADAR RNA modification systems. © 2017 Keegan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans.

    Science.gov (United States)

    Paix, Alexandre; Folkmann, Andrew; Seydoux, Geraldine

    2017-05-15

    The ability to introduce targeted edits in the genome of model organisms is revolutionizing the field of genetics. State-of-the-art methods for precision genome editing use RNA-guided endonucleases to create double-strand breaks (DSBs) and DNA templates containing the edits to repair the DSBs. Following this strategy, we have developed a protocol to create precise edits in the C. elegans genome. The protocol takes advantage of two innovations to improve editing efficiency: direct injection of CRISPR-Cas9 ribonucleoprotein complexes and use of linear DNAs with short homology arms as repair templates. The protocol requires no cloning or selection, and can be used to generate base and gene-size edits in just 4days. Point mutations, insertions, deletions and gene replacements can all be created using the same experimental pipeline. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Avaliação genética e oftalmológica de pacientes com síndrome de Stickler tipo II Genetic and ophthalmological assessment of patients with type II Stickler syndrome

    Directory of Open Access Journals (Sweden)

    Vanderson Glerian Dias

    2006-12-01

    Full Text Available OBJETIVOS: Diagnosticar, avaliar e descrever os achados clínico-genéticos e oftalmológicos de pacientes com síndrome de Stickler tipo II de uma mesma família. MÉTODOS: Todos os pacientes com alterações oftalmológicas foram submetidos à radiografia de mãos e punhos para idade óssea e posteriormente analisados pelo exame clínico-genético. O diagnóstico de síndrome de Stickler foi dado mediante análise clínica e correlação com o perfil metacarpofalangeano visualizado na radiografia. RESULTADOS: Síndrome de Stickler tipo II foi comprovada em 11 pacientes. Os achados oculares mais importantes foram: alta miopia (80%, subluxação do cristalino (70%, exotropia (50% e anomalias vítreo-retinianas (80% incluindo vazio vítreo (50%. O exame clínico-genético revelou que 30% dos pacientes apresentavam micrognatia, 50% hipoacusia, 40% depressão nasal e 60% palato alto. Hipermotilidade articular e dedos longos foram demonstrados em 7 casos (70% e artropatia esteve presente em 3 pacientes (30% dos casos. CONCLUSÕES: O diagnóstico da síndrome de Stickler é difícil devido à variabilidade fenotípica e a existência de outras síndromes genéticas com características semelhantes. As radiografias de mão e punho são de particular importância no diagnóstico desta síndrome.PURPOSE: To diagnose, evaluate and describe the clinical, genetic and ophthalmic characteristics of a family with type II Stickler syndrome. METHODS: X-rays for bone age, clinical and genetic evaluation were performed in all patients with ocular alterations. The Stickler syndrome diagnosis was established after correlating these examinations. RESULTS: Type II Stickler syndrome was found in 11 patients. The most important ocular findings were: high myopia (80%, lens subluxation (70%, exotropia (50% and vitreoretinal abnormalities (80% including vitreous cavity (50%. The clinical genetic examination disclosed that 30% of the patients had micrognathia, 50% hearing

  13. Photo Editing: A Neglected Art.

    Science.gov (United States)

    Bergeman, Rich

    1987-01-01

    Offers guidelines for using photographs effectively in campus newspapers. Reviews the stages in the photo editing process, suggests alternatives to traditional photographic approaches, and offers technical advice. (AYC)

  14. REDIdb: the RNA editing database.

    Science.gov (United States)

    Picardi, Ernesto; Regina, Teresa Maria Rosaria; Brennicke, Axel; Quagliariello, Carla

    2007-01-01

    The RNA Editing Database (REDIdb) is an interactive, web-based database created and designed with the aim to allocate RNA editing events such as substitutions, insertions and deletions occurring in a wide range of organisms. The database contains both fully and partially sequenced DNA molecules for which editing information is available either by experimental inspection (in vitro) or by computational detection (in silico). Each record of REDIdb is organized in a specific flat-file containing a description of the main characteristics of the entry, a feature table with the editing events and related details and a sequence zone with both the genomic sequence and the corresponding edited transcript. REDIdb is a relational database in which the browsing and identification of editing sites has been simplified by means of two facilities to either graphically display genomic or cDNA sequences or to show the corresponding alignment. In both cases, all editing sites are highlighted in colour and their relative positions are detailed by mousing over. New editing positions can be directly submitted to REDIdb after a user-specific registration to obtain authorized secure access. This first version of REDIdb database stores 9964 editing events and can be freely queried at http://biologia.unical.it/py_script/search.html.

  15. Genome Editing Tools in Plants

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Mohanta

    2017-12-01

    Full Text Available Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR, zinc finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs, pentatricopeptide repeat proteins (PPRs, the CRISPR/Cas9 system, RNA interference (RNAi, cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs.

  16. A REVIEW ON GENOME EDITING

    OpenAIRE

    Akshay Patil, Latesh Patil, H. P. Suryawanshi, S. P. Pawar

    2017-01-01

    The Present Review report contains the information about Genome Editing. In this report genome editing is illustrated at the basic level for better understanding. It contains History of Genome Editing from 1800 to Current day i.e. from concept of DNA till current time. Genome editing is an technique to make every human smarter not our choice, by customizing next generation the way we want it to be like to be look and also the intellectual capacity. In this Concept, the viral Immunity is used ...

  17. International regulatory landscape and integration of corrective genome editing into in vitro fertilization.

    Science.gov (United States)

    Araki, Motoko; Ishii, Tetsuya

    2014-11-24

    Genome editing technology, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas, has enabled far more efficient genetic engineering even in non-human primates. This biotechnology is more likely to develop into medicine for preventing a genetic disease if corrective genome editing is integrated into assisted reproductive technology, represented by in vitro fertilization. Although rapid advances in genome editing are expected to make germline gene correction feasible in a clinical setting, there are many issues that still need to be addressed before this could occur. We herein examine current status of genome editing in mammalian embryonic stem cells and zygotes and discuss potential issues in the international regulatory landscape regarding human germline gene modification. Moreover, we address some ethical and social issues that would be raised when each country considers whether genome editing-mediated germline gene correction for preventive medicine should be permitted.

  18. REDIdb: an upgraded bioinformatics resource for organellar RNA editing sites.

    Science.gov (United States)

    Picardi, Ernesto; Regina, Teresa M R; Verbitskiy, Daniil; Brennicke, Axel; Quagliariello, Carla

    2011-03-01

    RNA editing is a post-transcriptional molecular process whereby the information in a genetic message is modified from that in the corresponding DNA template by means of nucleotide substitutions, insertions and/or deletions. It occurs mostly in organelles by clade-specific diverse and unrelated biochemical mechanisms. RNA editing events have been annotated in primary databases as GenBank and at more sophisticated level in the specialized databases REDIdb, dbRES and EdRNA. At present, REDIdb is the only freely available database that focuses on the organellar RNA editing process and annotates each editing modification in its biological context. Here we present an updated and upgraded release of REDIdb with a web-interface refurbished with graphical and computational facilities that improve RNA editing investigations. Details of the REDIdb features and novelties are illustrated and compared to other RNA editing databases. REDIdb is freely queried at http://biologia.unical.it/py_script/REDIdb/. Copyright © 2010 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  19. Genome Editing: A New Approach to Human Therapeutics.

    Science.gov (United States)

    Porteus, Matthew

    2016-01-01

    The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.

  20. Gene-Editing: Interpretation of Current Law and Legal Policy.

    Science.gov (United States)

    Kim, Na-Kyoung

    2017-09-01

    With the development of the third-generation gene scissors, CRISPR-Cas9, concerns are being raised about ethical and social repercussions of the new gene-editing technology. In this situation, this article explores the legislation and interpretation of the positive laws in South Korea. The BioAct does not specify and regulate 'gene editing' itself. However, assuming that genetic editing is used in the process of research and treatment, we can look to the specific details of the regulations for research on humans as well as gene therapy research in order to see how genetic editing is regulated under the BioAct. BioAct differentiates the regulation between (born) humans and embryos etc. and the regulation differ entirely in the manner and scope. Moreover, due to the fact that gene therapy products are regarded as drugs, they fall under different regulations. The Korean Pharmacopoeia Act put stringent sanctions on clinical trials for gene therapy products and the official Notification "Approval and Examination Regulations for Biological Products, etc." by Food and Drug Safety Administration may be applied to gene editing for gene therapy purposes.

  1. Conservative treatment of bone tissue metabolic disorders among patients with vitamin D-dependent rickets type II with genetic abnormality of type I collagen formation

    Directory of Open Access Journals (Sweden)

    S.M. Martsyniak

    2017-08-01

    Full Text Available Background. The purpose of the article is to determine the effect of conservative therapy on genetically caused disorders of bone tissue metabolism in patients with vitamin D-dependent rickets type II and genetic abnormality of type I collagen formation (VDDR(COL1. Materials and methods. At the premises of consulting and outpatient department of SI “Institute of Traumatology and Orthopaedics of the NAMS of Ukraine”, 13 patients having VDDR type II and genetic damage of type I collagen formation were examined and treated. The medical treatment was conducted in four stages. The first stage included full examination of patients (calcium and phosphorus levels in the blood serum and their urinary excretion, as well as determination of calcidiol and calcitriol serum levels, indicators of parathyroid hormone and osteocalcin, and a marker of bone formation P1NP and osteoresorption b-CTx. At this stage, children were obligated to undergo a genetic test to detect changes (polymorphism in alleles of receptors to vitamin D and type I collagen. Besides genetic tests, examinations at the other stages were conducted in full. Results. The study has shown the following. The genetically caused abnormality of reception to vitamin D results into substantial accumulation of vitamin D active metabolite in the blood serum. When combined with gene­tic abnormality of type I collagen formation, it significantly affected bone formation and destruction processes that causes development of osteomalacia (parathormone — vitamin D — osteocalcin system. The comprehensive study of vitamin D metabolism and biochemical vitals of bone tissue in patients having VDDR (COL1 brought us to understanding of some issues related to pathogenesis and nature of osteomalacia and, in future, osteoporotic changes on different levels, ensured us to express these changes by corresponding indices in the biochemical research and, finally, to develop appropriate schemes for the treatment of

  2. Multi-objective optimization in spatial planning: Improving the effectiveness of multi-objective evolutionary algorithms (non-dominated sorting genetic algorithm II)

    Science.gov (United States)

    Karakostas, Spiros

    2015-05-01

    The multi-objective nature of most spatial planning initiatives and the numerous constraints that are introduced in the planning process by decision makers, stakeholders, etc., synthesize a complex spatial planning context in which the concept of solid and meaningful optimization is a unique challenge. This article investigates new approaches to enhance the effectiveness of multi-objective evolutionary algorithms (MOEAs) via the adoption of a well-known metaheuristic: the non-dominated sorting genetic algorithm II (NSGA-II). In particular, the contribution of a sophisticated crossover operator coupled with an enhanced initialization heuristic is evaluated against a series of metrics measuring the effectiveness of MOEAs. Encouraging results emerge for both the convergence rate of the evolutionary optimization process and the occupation of valuable regions of the objective space by non-dominated solutions, facilitating the work of spatial planners and decision makers. Based on the promising behaviour of both heuristics, topics for further research are proposed to improve their effectiveness.

  3. Instrumental analysis, second edition

    International Nuclear Information System (INIS)

    Christian, G.D.; O'Reilly, J.E.

    1988-01-01

    The second edition of Instrumental Analysis is a survey of the major instrument-based methods of chemical analysis. It appears to be aimed at undergraduates but would be equally useful in a graduate course. The volume explores all of the classical quantitative methods and contains sections on techniques that usually are not included in a semester course in instrumentation (such as electron spectroscopy and the kinetic methods). Adequate coverage of all of the methods contained in this book would require several semesters of focused study. The 25 chapters were written by different authors, yet the style throughout the book is more uniform than in the earlier edition. With the exception of a two-chapter course in analog and digital circuits, the book purports to de-emphasize instrumentation, focusing more on the theory behind the methods and the application of the methods to analytical problems. However, a detailed analysis of the instruments used in each method is by no means absent. The book has the favor of a user's guide to analysis

  4. Quantitative Seismology, Second Edition

    Science.gov (United States)

    Lay, Thorne

    As recently as 1980, anyone seeking a rigorous treatment of the fundamentals of elastodynamics relevant to the rapidly maturing field of seismology had to delve into a host of primary sources, some of which were rather obscure or difficult to obtain. Classical texts in this field tended to focus on limited topics and to treat some areas either superficially or in excessive depth. Graduate education in the field of seismology tended to reflect local faculty expertise and interests, often with compendia of handwritten notes, inconsistent notation, and variable generality. That situation was dramatically changed with the appearance of the first edition of Quantitative Seismology, a two-volume set that distilled the key foundations of elastodynamics for linear elastic materials into an accessible and satisfyingly thorough presentation of seismological theory. The adoption of a uniform, consistent notation in which many previous contributions were represented was perhaps as great of a contribution to the field as the many conceptual insights revealed by the authors' treatment of the topic. That work has become a disciplinary standard, with tremendous impact on the education of students and the research of advanced practitioners in the field. No subsequent text has supplanted this cornerstone of the discipline, but over time the second volume went out of print and a second edition became necessary.

  5. Natural Hazards, Second Edition

    Science.gov (United States)

    Rouhban, Badaoui

    Natural disaster loss is on the rise, and the vulnerability of the human and physical environment to the violent forces of nature is increasing. In many parts of the world, disasters caused by natural hazards such as earthquakes, floods, landslides, drought, wildfires, intense windstorms, tsunami, and volcanic eruptions have caused the loss of human lives, injury, homelessness, and the destruction of economic and social infrastructure. Over the last few years, there has been an increase in the occurrence, severity, and intensity of disasters, culminating with the devastating tsunami of 26 December 2004 in South East Asia.Natural hazards are often unexpected or uncontrollable natural events of varying magnitude. Understanding their mechanisms and assessing their distribution in time and space are necessary for refining risk mitigation measures. This second edition of Natural Hazards, (following a first edition published in 1991 by Cambridge University Press), written by Edward Bryant, associate dean of science at Wollongong University, Australia, grapples with this crucial issue, aspects of hazard prediction, and other issues. The book presents a comprehensive analysis of different categories of hazards of climatic and geological origin.

  6. With this Special Edition

    Directory of Open Access Journals (Sweden)

    Oscar Antonio Martínez Molina

    2017-02-01

    Full Text Available With this Special Edition, the refereed Scientific Magazine, published in February 2017, presents a nourished and multidisciplinary theme, from the relationship of Environmental Education, in this ecological sharing man-environment; the social responsibility from the Management environment and the motivational values ​​conducive to the teaching performance in the different educational levels. Twenty-five (25 articles, generated from research production in university environments at the International level, are a signature of the quality of articles / essays presented in this Special Edition. Several reasons motivate the literary pen of our authors, adjusting to the rhythm of the times and the use of new technologies; and in correspondence with the care of the environment, this way of disseminating and making visible the scientific contents of humanistic and social court, support the care and protection of the forests, being an online production, in the Cloud. Thanks to the support of the Instituto Internacional de Investigación y Desarrollo Tecnológico Educativo INDTEC, CA, Scientific Magazine has been able to develop from the cooperative work of the people who compose its different committees: Editorial Academic Committee, Academic Scientific Committee and the Arbitrators in the review and valuation of the quality of the articles. With these assets, the Scientific Magazine, opening to the general public and especially to the academic new intellectual horizons.

  7. Annotation in Digital Scholarly Editions

    NARCIS (Netherlands)

    Boot, P.; Haentjens Dekker, R.

    2016-01-01

    Annotation in digital scholarly editions (of historical documents, literary works, letters, etc.) has long been recognized as an important desideratum, but has also proven to be an elusive ideal. In so far as annotation functionality is available, it is usually developed for a single edition and

  8. Genetic Diversity, Natural Selection and Haplotype Grouping of Plasmodium knowlesi Gamma Protein Region II (PkγRII): Comparison with the Duffy Binding Protein (PkDBPαRII).

    Science.gov (United States)

    Fong, Mun Yik; Rashdi, Sarah A A; Yusof, Ruhani; Lau, Yee Ling

    2016-01-01

    Plasmodium knowlesi is a simian malaria parasite that has been reported to cause malaria in humans in Southeast Asia. This parasite invades the erythrocytes of humans and of its natural host, the macaque Macaca fascicularis, via interaction between the Duffy binding protein region II (PkDBPαRII) and the Duffy antigen receptor on the host erythrocytes. In contrast, the P. knowlesi gamma protein region II (PkγRII) is not involved in the invasion of P. knowlesi into humans. PkγRII, however, mediates the invasion of P. knowlesi into the erythrocytes of M. mulata, a non-natural host of P. knowlesi via a hitherto unknown receptor. The haplotypes of PkDBPαRII in P. knowlesi isolates from Peninsular Malaysia and North Borneo have been shown to be genetically distinct and geographically clustered. Also, the PkDBPαRII was observed to be undergoing purifying (negative) selection. The present study aimed to determine whether similar phenomena occur in PkγRII. Blood samples from 78 knowlesi malaria patients were used. Forty-eight of the samples were from Peninsular Malaysia, and 30 were from Malaysia Borneo. The genomic DNA of the samples was extracted and used as template for the PCR amplification of the PkγRII. The PCR product was cloned and sequenced. The sequences obtained were analysed for genetic diversity and natural selection using MEGA6 and DnaSP (version 5.10.00) programmes. Genetic differentiation between the PkγRII of Peninsular Malaysia and North Borneo isolates was estimated using the Wright's FST fixation index in DnaSP (version 5.10.00). Haplotype analysis was carried out using the Median-Joining approach in NETWORK (version 4.6.1.3). A total of 78 PkγRII sequences was obtained. Comparative analysis showed that the PkγRII have similar range of haplotype (Hd) and nucleotide diversity (π) with that of PkDBPαRII. Other similarities between PkγRII and PkDBPαRII include undergoing purifying (negative) selection, geographical clustering of haplotypes

  9. From engineering to editing the rat genome.

    Science.gov (United States)

    Meek, Stephen; Mashimo, Tomoji; Burdon, Tom

    2017-08-01

    Since its domestication over 100 years ago, the laboratory rat has been the preferred experimental animal in many areas of biomedical research (Lindsey and Baker The laboratory rat. Academic, New York, pp 1-52, 2006). Its physiology, size, genetics, reproductive cycle, cognitive and behavioural characteristics have made it a particularly useful animal model for studying many human disorders and diseases. Indeed, through selective breeding programmes numerous strains have been derived that are now the mainstay of research on hypertension, obesity and neurobiology (Okamoto and Aoki Jpn Circ J 27:282-293, 1963; Zucker and Zucker J Hered 52(6):275-278, 1961). Despite this wealth of genetic and phenotypic diversity, the ability to manipulate and interrogate the genetic basis of existing phenotypes in rat strains and the methodology to generate new rat models has lagged significantly behind the advances made with its close cousin, the laboratory mouse. However, recent technical developments in stem cell biology and genetic engineering have again brought the rat to the forefront of biomedical studies and enabled researchers to exploit the increasingly accessible wealth of genome sequence information. In this review, we will describe how a breakthrough in understanding the molecular basis of self-renewal of the pluripotent founder cells of the mammalian embryo, embryonic stem (ES) cells, enabled the derivation of rat ES cells and their application in transgenesis. We will also describe the remarkable progress that has been made in the development of gene editing enzymes that enable the generation of transgenic rats directly through targeted genetic modifications in the genomes of zygotes. The simplicity, efficiency and cost-effectiveness of the CRISPR/Cas gene editing system, in particular, mean that the ability to engineer the rat genome is no longer a limiting factor. The selection of suitable targets and gene modifications will now become a priority: a challenge where

  10. Regulation of gene expression and RNA editing in Drosophila adapting to divergent microclimates.

    Science.gov (United States)

    Yablonovitch, Arielle L; Fu, Jeremy; Li, Kexin; Mahato, Simpla; Kang, Lin; Rashkovetsky, Eugenia; Korol, Abraham B; Tang, Hua; Michalak, Pawel; Zelhof, Andrew C; Nevo, Eviatar; Li, Jin Billy

    2017-11-17

    Determining the mechanisms by which a species adapts to its environment is a key endeavor in the study of evolution. In particular, relatively little is known about how transcriptional processes are fine-tuned to adjust to different environmental conditions. Here we study Drosophila melanogaster from 'Evolution Canyon' in Israel, which consists of two opposing slopes with divergent microclimates. We identify several hundred differentially expressed genes and dozens of differentially edited sites between flies from each slope, correlate these changes with genetic differences, and use CRISPR mutagenesis to validate that an intronic SNP in prominin regulates its editing levels. We also demonstrate that while temperature affects editing levels at more sites than genetic differences, genetically regulated sites tend to be less affected by temperature. This work shows the extent to which gene expression and RNA editing differ between flies from different microclimates, and provides insights into the regulation responsible for these differences.

  11. Loss of matK RNA editing in seed plant chloroplasts

    Directory of Open Access Journals (Sweden)

    Maier Uwe G

    2009-08-01

    Full Text Available Abstract Background RNA editing in chloroplasts of angiosperms proceeds by C-to-U conversions at specific sites. Nuclear-encoded factors are required for the recognition of cis-elements located immediately upstream of editing sites. The ensemble of editing sites in a chloroplast genome differs widely between species, and editing sites are thought to evolve rapidly. However, large-scale analyses of the evolution of individual editing sites have not yet been undertaken. Results Here, we analyzed the evolution of two chloroplast editing sites, matK-2 and matK-3, for which DNA sequences from thousands of angiosperm species are available. Both sites are found in most major taxa, including deep-branching families such as the nymphaeaceae. However, 36 isolated taxa scattered across the entire tree lack a C at one of the two matK editing sites. Tests of several exemplary species from this in silico analysis of matK processing unexpectedly revealed that one of the two sites remain unedited in almost half of all species examined. A comparison of sequences between editors and non-editors showed that specific nucleotides co-evolve with the C at the matK editing sites, suggesting that these nucleotides are critical for editing-site recognition. Conclusion (i Both matK editing sites were present in the common ancestor of all angiosperms and have been independently lost multiple times during angiosperm evolution. (ii The editing activities corresponding to matK-2 and matK-3 are unstable. (iii A small number of third-codon positions in the vicinity of editing sites are selectively constrained independent of the presence of the editing site, most likely because of interacting RNA-binding proteins.

  12. Loss of matK RNA editing in seed plant chloroplasts

    Science.gov (United States)

    Tillich, Michael; Le Sy, Vinh; Schulerowitz, Katrin; von Haeseler, Arndt; Maier, Uwe G; Schmitz-Linneweber, Christian

    2009-01-01

    Background RNA editing in chloroplasts of angiosperms proceeds by C-to-U conversions at specific sites. Nuclear-encoded factors are required for the recognition of cis-elements located immediately upstream of editing sites. The ensemble of editing sites in a chloroplast genome differs widely between species, and editing sites are thought to evolve rapidly. However, large-scale analyses of the evolution of individual editing sites have not yet been undertaken. Results Here, we analyzed the evolution of two chloroplast editing sites, matK-2 and matK-3, for which DNA sequences from thousands of angiosperm species are available. Both sites are found in most major taxa, including deep-branching families such as the nymphaeaceae. However, 36 isolated taxa scattered across the entire tree lack a C at one of the two matK editing sites. Tests of several exemplary species from this in silico analysis of matK processing unexpectedly revealed that one of the two sites remain unedited in almost half of all species examined. A comparison of sequences between editors and non-editors showed that specific nucleotides co-evolve with the C at the matK editing sites, suggesting that these nucleotides are critical for editing-site recognition. Conclusion (i) Both matK editing sites were present in the common ancestor of all angiosperms and have been independently lost multiple times during angiosperm evolution. (ii) The editing activities corresponding to matK-2 and matK-3 are unstable. (iii) A small number of third-codon positions in the vicinity of editing sites are selectively constrained independent of the presence of the editing site, most likely because of interacting RNA-binding proteins. PMID:19678945

  13. Gene Editing, Enhancing and Women's Role.

    Science.gov (United States)

    Simonstein, Frida

    2017-02-02

    A recent article on the front page of The Independent (September 18, 2015) reported that the genetic 'manipulation' of IVF embryos is to start in Britain, using a new revolutionary gene-editing technique, called Crispr/Cas9. About three weeks later (Saturday 10, October 2015), on the front page of the same newspaper, it was reported that the National Health Service (NHS) faces a one billion pound deficit only 3 months into the new year. The hidden connection between these reports is that gene editing could be used to solve issues related to health care allocation. Improving the health of future generations might coincide with public health goals; it might improve the health of individuals and communities, and, if successful, might be seen as a public good. However, enhancing future generations will require In Vitro Fertilisation and Pre-implantation Genetic Diagnosis. Remarkably, the necessary involvement of women in an enhancing scenario has not been discussed by its proponents. The present discourse on moral obligations of future generations, although not referring to women, seems to imply that women might be required, morally, if not legally, to reproduce with IVF. Enhancing future generations will be gendered, unless the artificial womb is developed. These are challenging issues that require a wider perspective, of both women and men. Despite the lack of a unified feminist conclusion in the discussions about the merits and risks of human genome modification, there is an urgent need to clarify the role of women in this scenario.

  14. The application of genome editing in studying hearing loss.

    Science.gov (United States)

    Zou, Bing; Mittal, Rahul; Grati, M'hamed; Lu, Zhongmin; Shu, Yilai; Tao, Yong; Feng, Youg; Xie, Dinghua; Kong, Weijia; Yang, Shiming; Chen, Zheng-Yi; Liu, Xuezhong

    2015-09-01

    Targeted genome editing mediated by clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) technology has emerged as one of the most powerful tools to study gene functions, and with potential to treat genetic disorders. Hearing loss is one of the most common sensory disorders, affecting approximately 1 in 500 newborns with no treatment. Mutations of inner ear genes contribute to the largest portion of genetic deafness. The simplicity and robustness of CRISPR/Cas9-directed genome editing in human cells and model organisms such as zebrafish, mice and primates make it a promising technology in hearing research. With CRISPR/Cas9 technology, functions of inner ear genes can be studied efficiently by the disruption of normal gene alleles through non-homologous-end-joining (NHEJ) mechanism. For genetic hearing loss, CRISPR/Cas9 has potential to repair gene mutations by homology-directed-repair (HDR) or to disrupt dominant mutations by NHEJ, which could restore hearing. Our recent work has shown CRISPR/Cas9-mediated genome editing can be efficiently performed in the mammalian inner ear in vivo. Thus, application of CRISPR/Cas9 in hearing research will open up new avenues for understanding the pathology of genetic hearing loss and provide new routes in the development of treatment to restore hearing. In this review, we describe major methodologies currently used for genome editing. We will highlight applications of these technologies in studies of genetic disorders and discuss issues pertaining to applications of CRISPR/Cas9 in auditory systems implicated in genetic hearing loss. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Fundamentals of Welding. Teacher Edition [and] Student Edition [and] Student Workbook. Second Edition.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike; New, Larry

    Teacher and student editions and a student workbook for fundamentals of welding comprise the first of six in a series of competency-based instructional materials for welding programs. Introductory pages in the teacher edition are training and competency profile, instructional/task analysis, basic skills icons and classifications, basic skills…

  16. Oxyacetylene Welding and Oxyfuel Cutting. Third Edition. Teacher Edition [and] Student Edition [and] Student Workbook.

    Science.gov (United States)

    Knapp, John; Harper, Eddie

    This Oklahoma curriculum guide, which includes a teacher edition, a student edition, and a student workbook, provides three units for a course on oxyacetylene welding, oxyfuel cutting, and cutting done with alternative fuels such as MAPP, propane, and natural gas. The three units are: "Oxyacetylene Welding"; "Oxyfuel Cutting";…

  17. Heterologous and endogenous U6 snRNA promoters enable CRISPR/Cas9 mediated genome editing in Aspergillus niger.

    Science.gov (United States)

    Zheng, Xiaomei; Zheng, Ping; Sun, Jibin; Kun, Zhang; Ma, Yanhe

    2018-01-01

    U6 promoters have been used for single guide RNA (sgRNA) transcription in the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas9) genome editing system. However, no available U6 promoters have been identified in Aspergillus niger, which is an important industrial platform for organic acid and protein production. Two CRISPR/Cas9 systems established in A. niger have recourse to the RNA polymerase II promoter or in vitro transcription for sgRNA synthesis, but these approaches generally increase cloning efforts and genetic manipulation. The validation of functional RNA polymerase II promoters is therefore an urgent need for A. niger . Here, we developed a novel CRISPR/Cas9 system in A. niger for sgRNA expression, based on one endogenous U6 promoter and two heterologous U6 promoters. The three tested U6 promoters enabled sgRNA transcription and the disruption of the polyketide synthase albA gene in A. niger . Furthermore, this system enabled highly efficient gene insertion at the targeted genome loci in A. niger using donor DNAs with homologous arms as short as 40-bp. This study demonstrated that both heterologous and endogenous U6 promoters were functional for sgRNA expression in A. niger . Based on this result, a novel and simple CRISPR/Cas9 toolbox was established in A. niger, that will benefit future gene functional analysis and genome editing.

  18. Approximating Tree Edit Distance through String Edit Distance

    OpenAIRE

    Akutsu, Tatsuya; Fukagawa, Daiji; Takasu, Atsuhiro

    2010-01-01

    We present an algorithm to approximate edit distance between two ordered and rooted trees of bounded degree. In this algorithm, each input tree is transformed into a string by computing the Euler string, where labels of some edges in the input trees are modified so that structures of small subtrees are reflected to the labels. We show that the edit distance between trees is at least 1/6 and at most O(n 3/4) of the edit distance between the transformed strings, where n is the maximum size of t...

  19. Primordial germ cell-mediated transgenesis and genome editing in birds.

    Science.gov (United States)

    Han, Jae Yong; Park, Young Hyun

    2018-01-01

    Transgenesis and genome editing in birds are based on a unique germline transmission system using primordial germ cells (PGCs), which is quite different from the mammalian transgenic and genome editing system. PGCs are progenitor cells of gametes that can deliver genetic information to the next generation. Since avian PGCs were first discovered in nineteenth century, there have been numerous efforts to reveal their origin, specification, and unique migration pattern, and to improve germline transmission efficiency. Recent advances in the isolation and in vitro culture of avian PGCs with genetic manipulation and genome editing tools enable the development of valuable avian models that were unavailable before. However, many challenges remain in the production of transgenic and genome-edited birds, including the precise control of germline transmission, introduction of exogenous genes, and genome editing in PGCs. Therefore, establishing reliable germline-competent PGCs and applying precise genome editing systems are critical current issues in the production of avian models. Here, we introduce a historical overview of avian PGCs and their application, including improved techniques and methodologies in the production of transgenic and genome-edited birds, and we discuss the future potential applications of transgenic and genome-edited birds to provide opportunities and benefits for humans.

  20. The effect of combined photobiomodulation and metformin on open skin wound healing in a non-genetic model of type II diabetes.

    Science.gov (United States)

    Asghari, Mohammadali; Kanonisabet, Ali; Safakhah, Mandanad; Azimzadeh, Zahra; Mostafavinia, Ataroalsadat; Taheri, Soudabeh; Amini, Abdollah; Ghorishi, Seyed Kamran; JalaliFiroozkohi, Reza; Bayat, Sahar; Bayat, Mohammad

    2017-04-01

    This study intended to examine the combined influences of photobiomodulation (PBM) and metformin on the microbial flora and biomechanical parameters of wounds in a non-genetic model of type II diabetes mellitus (TII DM). We induced a non-genetic model of TII DM in 20 rats by feeding them a 10% fructose solution for 2weeks followed by an injection of streptozotocin (STZ, 40mg/kg). After 21days from the injection of STZ, we induced one full-thickness skin wound in each of the diabetic rats. We randomly divided the rats into four groups: i) placebo; ii) pulsed wave laser (890nm, 80Hz, 0.324J/cm 2 ); iii) metformin; and iv) laser+metformin. Rats received daily intraperitoneal injections of metformin (50mg/kg). On days 7and 15 we inspected the microbial flora of each wound. On day 15 we obtained a standard sample from each healing wound for biomechanical analyses. PBM significantly decreased colony-forming units (CFUs) 7days after wound infliction compared to the placebo group (LSD test, p=0.012). Metformin significantly enhanced the biomechanical property (stress high load) of the wounds compared to the placebo group (LSD test, p=0.028). We observed the same significant result for PBM compared to the placebo group (LSD test, p=0.047). PBM significantly accelerated the wound healing process and significantly reduced CFUs of bacteria in a non-genetic rat model of TII DM. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. GENETIC ANALYSIS OF 5 α REDUCTASE TYPE II ENZYME IN RELATION TO OXIDATIVE STRESS IN CASES OF ANDROGENETIC ALOPECIA IN A SAMPLE OF EGYPTIAN POPULATION

    Directory of Open Access Journals (Sweden)

    Osama Hussain Rushdy

    2013-10-01

    Full Text Available Objective: To study the genetic polymorphism of 5-α reductase type II enzyme in relation to oxidative stress in cases of androgenetic alopecia (AGA in a sample of Egyptian population. Materials and Methods: This study was conducted on 45 patients with different grades of AGA,and 45 healthy subjects as control group. Laboratory tests included DNA extraction from blood, amplification of the 5-α reductase type II by PCR and V89L mutation analysis by restriction endonuclease enzyme Rsa?, and estimation of the levels of plasma catalase and erythrocyte lysate superoxide dismutase (SOD enzymes by colorimetric methods. Results: The studied subjects carrying the homozygote( LL and the heterozygote (VL genotypes were of no risk of developing AGA.(OR=0. Regarding the leucine allele, the studied subjects carrying the (L allele were at about 3.7 higher risk of AGA .(OR=3.692, and the results were statistically significant (p<0.001. There was significant increase in the level of SOD and catalase in patients than in control group(p=0.005,and (p<0.001 respectively,plasma catalase is significantly higher in patients with LLvariant than inVL variant (p=0.020. Asignificant relations was found between the severity of the disease and age and family history (p=0.037, and (0.036 respectively, there was no significant correlation between the level of catalase enzyme and SOD in one hand and the severity of the disease among patients. Conclusions: There is a possible association between AGA and V89L genetic polymorphism of 5-alpha reductase type II enzyme, patients carrying the mutant leucine (L allele have a risk for developing AGA. Also there is possible association between AGA with oxidative stress..

  2. Spectral editing in MAS NMR of aprotic solids. 31P-113Cd cross-polarization and heteronuclear double-quantum filtering studies in II-IV-V2 semiconductor alloys.

    Science.gov (United States)

    Franke, D; Hudalla, C; Eckert, H

    1993-03-01

    Magic-angle-spinning NMR spectra of aprotic solids, ceramics and glasses frequently suffer from poor site resolution due to wide chemical shift distribution effects. In such cases, cross-polarization and heteronuclear double-quantum filtering experiments involving nuclei other than 1H offer unique spectral editing capabilities. The utility of such assignment techniques for examining site populations in semiconductor alloys is demonstrated for the chalcopyrite systems CdGeAs2-xPx, CdSiAs2-xPx and ZnxCd1-xGeP2. The results permit a distinction between local and non-local effects on experimental chemical shift trends and reveal that compositional dependences observed in these alloys are dominated by non-local chemical shift contributions.

  3. Genetic variation in angiotensin II type 2 receptor gene influences extent of left ventricular hypertrophy in hypertrophic cardiomyopathy independent of blood pressure.

    Science.gov (United States)

    Carstens, Nadia; van der Merwe, Lize; Revera, Miriam; Heradien, Marshall; Goosen, Althea; Brink, Paul A; Moolman-Smook, Johanna C

    2011-09-01

    Hypertrophic cardiomyopathy (HCM), an inherited primary cardiac disorder mostly caused by defective sarcomeric proteins, serves as a model to investigate left ventricular hypertrophy (LVH). HCM manifests extreme variability in the degree and distribution of LVH, even in patients with the same causal mutation. Genes coding for renin-angiotensin-aldosterone system components have been studied as hypertrophy modifiers in HCM, with emphasis on the angiotensin (Ang) II type 1 receptor (AT(1)R). However, Ang II binding to Ang II type 2 receptors (AT(2)R) also has hypertrophy-modulating effects. We investigated the effect of the functional +1675 G/A polymorphism (rs1403543) and additional single nucleotide polymorphisms in the 3' untranslated region of the AT(2)R gene (AGTR2) on a heritable composite hypertrophy score in an HCM family cohort in which HCM founder mutations segregate. We find significant association between rs1403543 and hypertrophy, with each A allele decreasing the average wall thickness by ~0.5 mm, independent of the effects of the primary HCM causal mutation, blood pressure and other hypertrophy covariates (p = 0.020). This study therefore confirms a hypertrophy-modulating effect for AT(2)R also in HCM and implies that +1675 G/A could potentially be used in a panel of markers that profile a genetic predisposition to LVH in HCM.

  4. Genome editing in livestock: Are we ready for a revolution in animal breeding industry?

    Science.gov (United States)

    Ruan, Jinxue; Xu, Jie; Chen-Tsai, Ruby Yanru; Li, Kui

    2017-12-01

    Genome editing is a powerful technology that can efficiently alter the genome of organisms to achieve targeted modification of endogenous genes and targeted integration of exogenous genes. Current genome-editing tools mainly include ZFN, TALEN and CRISPR/Cas9, which have been successfully applied to all species tested including zebrafish, humans, mice, rats, monkeys, pigs, cattle, sheep, goats and others. The application of genome editing has quickly swept through the entire biomedical field, including livestock breeding. Traditional livestock breeding is associated with rate limiting issues such as long breeding cycle and limitations of genetic resources. Genome editing tools offer solutions to these problems at affordable costs. Generation of gene-edited livestock with improved traits has proven feasible and valuable. For example, the CD163 gene-edited pig is resistant to porcine reproductive and respiratory syndrome (PRRS, also referred to as "blue ear disease"), and a SP110 gene knock-in cow less susceptible to tuberculosis. Given the high efficiency and low cost of genome editing tools, particularly CRISPR/Cas9, it is foreseeable that a significant number of genome edited livestock animals will be produced in the near future; hence it is imperative to comprehensively evaluate the pros and cons they will bring to the livestock breeding industry. Only with these considerations in mind, we will be able to fully take the advantage of the genome editing era in livestock breeding.

  5. Genetic association analysis of 13 nuclear-encoded mitochondrial candidate genes with type II diabetes mellitus: The DAMAGE study

    DEFF Research Database (Denmark)

    Reiling, Erwin; van Vliet-Ostaptchouk, Jana V; van 't Riet, Esther

    2009-01-01

    Mitochondria play an important role in many processes, like glucose metabolism, fatty acid oxidation and ATP synthesis. In this study, we aimed to identify association of common polymorphisms in nuclear-encoded genes involved in mitochondrial protein synthesis and biogenesis with type II diabetes...

  6. Personalised genome editing - The future for corneal dystrophies.

    Science.gov (United States)

    Moore, C B Tara; Christie, Kathleen A; Marshall, John; Nesbit, M Andrew

    2018-01-31

    The potential of personalised genome editing reaching the clinic has come to light due to advancements in the field of gene editing, namely the development of CRISPR/Cas9. The different mechanisms of repair used to resolve the double strand breaks (DSBs) mediated by Cas9 allow targeting of a wide range of disease causing mutations. Collectively, the corneal dystrophies offer an ideal platform for personalised genome editing; the majority of corneal dystrophies are monogenic, highly penetrant diseases with a known pattern of inheritance. This genetic background coupled with the accessibility, ease of visualisation and immune privilege status of the cornea make a gene editing strategy for the treatment of corneal dystrophies an attractive option. Off-target cleavage is a major concern for the therapeutic use of CRISPR/Cas9, thus current efforts in the gene editing field are focused on improving the genome-wide specificity of Cas9 to minimise the risk of off-target events. In addition, the delivery of CRISPR/Cas9 to different tissues is a key focus; various viral and non-viral platforms are being explored to develop a vehicle that is highly efficient, specific and non-toxic. The rapid pace and enthusiasm with which CRISPR/Cas9 has taken over biomedical research has ensured the personalised medicine revolution has been realised. CRISPR/Cas9 has recently been utilised in the first wave of clinical trials, and the potential for a genome editing therapy to treat corneal dystrophies looks promising. This review will discuss the current status of therapeutic gene editing in relation to the corneal dystrophies. Copyright © 2018. Published by Elsevier Ltd.

  7. Advances in genome editing for improved animal breeding: A review.

    Science.gov (United States)

    Bhat, Shakil Ahmad; Malik, Abrar Ahad; Ahmad, Syed Mudasir; Shah, Riaz Ahmad; Ganai, Nazir Ahmad; Shafi, Syed Shanaz; Shabir, Nadeem

    2017-11-01

    Since centuries, the traits for production and disease resistance are being targeted while improving the genetic merit of domestic animals, using conventional breeding programs such as inbreeding, outbreeding, or introduction of marker-assisted selection. The arrival of new scientific concepts, such as cloning and genome engineering, has added a new and promising research dimension to the existing animal breeding programs. Development of genome editing technologies such as transcription activator-like effector nuclease, zinc finger nuclease, and clustered regularly interspaced short palindromic repeats systems begun a fresh era of genome editing, through which any change in the genome, including specific DNA sequence or indels, can be made with unprecedented precision and specificity. Furthermore, it offers an opportunity of intensification in the frequency of desirable alleles in an animal population through gene-edited individuals more rapidly than conventional breeding. The specific research is evolving swiftly with a focus on improvement of economically important animal species or their traits all of which form an important subject of this review. It also discusses the hurdles to commercialization of these techniques despite several patent applications owing to the ambiguous legal status of genome-editing methods on account of their disputed classification. Nonetheless, barring ethical concerns gene-editing entailing economically important genes offers a tremendous potential for breeding animals with desirable traits.

  8. Advances in genome editing for improved animal breeding: A review

    Directory of Open Access Journals (Sweden)

    Shakil Ahmad Bhat

    2017-11-01

    Full Text Available Since centuries, the traits for production and disease resistance are being targeted while improving the genetic merit of domestic animals, using conventional breeding programs such as inbreeding, outbreeding, or introduction of marker-assisted selection. The arrival of new scientific concepts, such as cloning and genome engineering, has added a new and promising research dimension to the existing animal breeding programs. Development of genome editing technologies such as transcription activator-like effector nuclease, zinc finger nuclease, and clustered regularly interspaced short palindromic repeats systems begun a fresh era of genome editing, through which any change in the genome, including specific DNA sequence or indels, can be made with unprecedented precision and specificity. Furthermore, it offers an opportunity of intensification in the frequency of desirable alleles in an animal population through gene-edited individuals more rapidly than conventional breeding. The specific research is evolving swiftly with a focus on improvement of economically important animal species or their traits all of which form an important subject of this review. It also discusses the hurdles to commercialization of these techniques despite several patent applications owing to the ambiguous legal status of genome-editing methods on account of their disputed classification. Nonetheless, barring ethical concerns gene-editing entailing economically important genes offers a tremendous potential for breeding animals with desirable traits.

  9. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene

    Science.gov (United States)

    Genome editing tools have revolutionized the generation of genetically modified animals including livestock. In particular, the domestic pig is a proven model of human physiology and an agriculturally important species. In this study, we utilized the CRISPR/Cas9 system to edit the NANOS2 gene in p...

  10. Genetic drift vs. natural selection in a long-term small isolated population: major histocompatibility complex class II variation in the Gulf of California endemic porpoise (Phocoena sinus).

    Science.gov (United States)

    Munguia-Vega, Adrian; Esquer-Garrigos, Yareli; Rojas-Bracho, Lorenzo; Vazquez-Juarez, Ricardo; Castro-Prieto, Aines; Flores-Ramirez, Sergio

    2007-10-01

    Although many studies confirm long-term small isolated populations (e.g. island endemics) commonly sustain low neutral genetic variation as a result of genetic drift, it is less clear how selection on adaptive or detrimental genes interplay with random forces. We investigated sequence variation at two major histocompatibility complex (Mhc) class II loci on a porpoise endemic to the upper Gulf of California, México (Phocoena sinus, or vaquita). Its unique declining population is estimated around 500 individuals. Single-strand conformation polymorphism analysis revealed one putative functional allele fixed at the locus DQB (n = 25). At the DRB locus, we found two presumed functional alleles (n = 29), differing by a single nonsynonymous nucleotide substitution that could increase the stability at the dimer interface of alphabeta-heterodimers on heterozygous individuals. Identical trans-specific DQB1 and DRB1 alleles were identified between P. sinus and its closest relative, the Burmeister's porpoise (Phocoena spinipinnis). Comparison with studies on four island endemic mammals suggests fixation of one allele, due to genetic drift, commonly occurs at the DQA or DQB loci (effectively neutral). Similarly, deleterious alleles of small effect are also effectively neutral and can become fixed; a high frequency of anatomical malformations on vaquita gave empirical support to this prediction. In contrast, retention of low but functional polymorphism at the DRB locus was consistent with higher selection intensity. These observations indicated natural selection could maintain (and likely also purge) some crucial alleles even in the face of strong and prolonged genetic drift and inbreeding, suggesting long-term small populations should display low inbreeding depression. Low levels of Mhc variation warn about a high susceptibility to novel pathogens and diseases in vaquita.

  11. HLA class II alleles in the Otomi population of the Mezquital Valley: a genetic approach to the history of interethnic migrations in the Mexican Central Plateau.

    Science.gov (United States)

    Juárez-Martín, Ana Itzel; González-Sobrino, Blanca Zoila; Olvera, Ángel Eduardo Camarena; Falfán-Valencia, Ramcés

    2014-01-01

    From a historical and genetic point of view, the Otomi of the Mezquital Valley are a frontier people that have played an important role in the population dynamics of the Mexican Central Plateau. Due to the antiquity of their presence in the area, the Otomi may be bearers of ancient genetic variability, shared mainly today with other groups belonging to the Otomanguean linguistic family and with the Nahua. In this study we analyzed the HLA class II allele frequencies reported in Mexican indigenous populations, in order to provide an intraregional-level historical perspective of the genetic relationships between the Otomi of the Mezquital Valley and indigenous populations from other regions of Mexico. We examined genetic variation in HLA-DRB1 and -DQB1 loci in 66 nonrelated individuals belonging to seven indigenous communities from the Ixmiquilpan municipality in the Mezquital Valley, in the State of Hidalgo, Mexico. The variability of the HLA-DRB1 gene among the Otomi of the Mezquital Valley was mainly concentrated in five alleles: -DRB1*08:02 (31.06%), -DRB1*04:07 (25.77%), -DRB1*14:06 (7.55%), -DRB1*14:02 (6.06%), and -DRB1*16:02 (4.55%); these alleles have been previously described in other indigenous populations. The most frequent alleles at the HLA-DQB1 locus were -DQB1*03:02 (34.09%), -DQB1*04:02 (31.03%), and -DQB1*03:01 (19.7%). Furthermore, the HLA-DQB1*02:02 allele was found in the Otomi group with a frequency of 2.27%; this allele has not been reported in Mexican indigenous populations. In conclusion, the genetic constitution of the Otomi population is intermediate to the northern groups and the genetic variability shared by the peoples of the central regions of Mexico. Furthermore, HLA-DRB1 and -DQB1 allelic variability among the Otomi provides insight into the historical processes implied in the biological admixture with European, Asian, and African populations as well as in the admixture with the population of Mexico City associated with long

  12. Human germline gene editing: Recommendations of ESHG and ESHRE.

    Science.gov (United States)

    de Wert, Guido; Pennings, Guido; Clarke, Angus; Eichenlaub-Ritter, Ursula; van El, Carla G; Forzano, Francesca; Goddijn, Mariëtte; Heindryckx, Björn; Howard, Heidi C; Radojkovic, Dragica; Rial-Sebbag, Emmanuelle; Tarlatzis, Basil C; Cornel, Martina C

    2018-01-12

    Technological developments in gene editing raise high expectations for clinical applications, first of all for somatic gene editing but in theory also for germline gene editing (GLGE). GLGE is currently not allowed in many countries. This makes clinical applications in these countries impossible now, even if GLGE would become safe and effective. What were the arguments behind this legislation, and are they still convincing? If a technique can help to avoid serious genetic disorders, in a safe and effective way, would this be a reason to reconsider earlier standpoints? The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and Recommendations to inform and stimulate ongoing societal debates. After consulting its membership and experts, this final version of the Recommendations was endorsed by the Executive Committee and the Board of the respective Societies in May 2017. Taking account of ethical arguments, we argue that both basic and pre-clinical research regarding GLGE can be justified, with conditions. Furthermore, while clinical GLGE would be totally premature, it might become a responsible intervention in the future, but only after adequate pre-clinical research. Safety of the child and future generations is a major concern. Future discussions must also address priorities among reproductive and potential non-reproductive alternatives, such as PGD and somatic editing, if that would be safe and successful. The prohibition of human germline modification, however, needs renewed discussion among relevant stakeholders, including the general public and legislators.

  13. Genetic Manipulation of Lactococcus lactis by Using Targeted Group II Introns: Generation of Stable Insertions without Selection

    Science.gov (United States)

    Frazier, Courtney L.; San Filippo, Joseph; Lambowitz, Alan M.; Mills, David A.

    2003-01-01

    Despite their commercial importance, there are relatively few facile methods for genomic manipulation of the lactic acid bacteria. Here, the lactococcal group II intron, Ll.ltrB, was targeted to insert efficiently into genes encoding malate decarboxylase (mleS) and tetracycline resistance (tetM) within the Lactococcus lactis genome. Integrants were readily identified and maintained in the absence of a selectable marker. Since splicing of the Ll.ltrB intron depends on the intron-encoded protein, targeted invasion with an intron lacking the intron open reading frame disrupted TetM and MleS function, and MleS activity could be partially restored by expressing the intron-encoded protein in trans. Restoration of splicing from intron variants lacking the intron-encoded protein illustrates how targeted group II introns could be used for conditional expression of any gene. Furthermore, the modified Ll.ltrB intron was used to separately deliver a phage resistance gene (abiD) and a tetracycline resistance marker (tetM) into mleS, without the need for selection to drive the integration or to maintain the integrant. Our findings demonstrate the utility of targeted group II introns as a potential food-grade mechanism for delivery of industrially important traits into the genomes of lactococci. PMID:12571038

  14. [The application of genome editing in identification of plant gene function and crop breeding].

    Science.gov (United States)

    Zhou, Xiang-chun; Xing, Yong-zhong

    2016-03-01

    Plant genome can be modified via current biotechnology with high specificity and excellent efficiency. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system are the key engineered nucleases used in the genome editing. Genome editing techniques enable gene targeted mutagenesis, gene knock-out, gene insertion or replacement at the target sites during the endogenous DNA repair process, including non-homologous end joining (NHEJ) and homologous recombination (HR), triggered by the induction of DNA double-strand break (DSB). Genome editing has been successfully applied in the genome modification of diverse plant species, such as Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. In this review, we summarize the application of genome editing in identification of plant gene function and crop breeding. Moreover, we also discuss the improving points of genome editing in crop precision genetic improvement for further study.

  15. Elevated RNA Editing Activity Is a Major Contributor to Transcriptomic Diversity in Tumors

    Directory of Open Access Journals (Sweden)

    Nurit Paz-Yaacov

    2015-10-01

    Full Text Available Genomic mutations in key genes are known to drive tumorigenesis and have been the focus of much attention in recent years. However, genetic content also may change farther downstream. RNA editing alters the mRNA sequence from its genomic blueprint in a dynamic and flexible way. A few isolated cases of editing alterations in cancer have been reported previously. Here, we provide a transcriptome-wide characterization of RNA editing across hundreds of cancer samples from multiple cancer tissues, and we show that A-to-I editing and the enzymes mediating this modification are significantly altered, usually elevated, in most cancer types. Increased editing activity is found to be associated with patient survival. As is the case with somatic mutations in DNA, most of these newly introduced RNA mutations are likely passengers, but a few may serve as drivers that may be novel candidates for therapeutic and diagnostic purposes.

  16. CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Stovicek, Vratislav; Borodina, Irina; Förster, Jochen

    2015-01-01

    , their genetic manipulation is challenging, as they are usually diploid or polyploid. Therefore, there is a need to develop more efficient genetic engineering tools. We applied a CRISPR–Cas9 system for genome editing of different industrial strains, and show simultaneous disruption of two alleles of a gene...

  17. Marine botany. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Dawes, C.J. [Univ. of South Florida, Tampa, FL (United States)

    1998-12-01

    Marine plants are a diverse group that include unicellular algae, seaweeds, seagrasses, salt marshes, and mangrove forests. They carry out a variety of ecological functions and serve as the primary producers in coastal wetlands and oceanic waters. The theme that connects such a wide variety of plants is their ecology, which was also emphasized in the 1981 edition. The goal of this revision is to present taxonomic, physiological, chemical, and ecological aspects of marine plants, their adaptations, and how abiotic and biotic factors interact in their communities. The data are presented in a concise, comparative manner in order to identify similarities and differences between communities such as salt marsh and mangroves or subtidal seaweeds and seagrasses. To accomplish this, the text is organized into five chapters that introduce the marine habitats, consider abiotic and biotic factors, and anthropogenic influences on the communities followed by seven chapters that deal with microalgae, seaweeds, salt marshes, mangroves, seagrasses, and coral reefs. Two appendixes are included; one presents simple field techniques and the other is a summary of seaweed uses.

  18. UN-EDITED VERSION

    Indian Academy of Sciences (India)

    55

    23 usability and influence in chronically HCV-infected patients as well as to observe their interaction with other risk factors or prognosis and genetic markers of the host. Acknowledgements. This work was supported by the Instituto Mexicano del Seguro Social. (FIS/IMSS/PROT/G10/830) and Funds for Scientific Infrastructure ...

  19. Genome editing in cardiovascular diseases.

    Science.gov (United States)

    Strong, Alanna; Musunuru, Kiran

    2017-01-01

    Genome-editing tools, which include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems, have emerged as an invaluable technology to achieve somatic and germline genomic manipulation in cells and model organisms for multiple applications, including the creation of knockout alleles, introducing desired mutations into genomic DNA, and inserting novel transgenes. Genome editing is being rapidly adopted into all fields of biomedical research, including the cardiovascular field, where it has facilitated a greater understanding of lipid metabolism, electrophysiology, cardiomyopathies, and other cardiovascular disorders, has helped to create a wider variety of cellular and animal models, and has opened the door to a new class of therapies. In this Review, we discuss the applications of genome-editing technology throughout cardiovascular disease research and the prospect of in vivo genome-editing therapies in the future. We also describe some of the existing limitations of genome-editing tools that will need to be addressed if cardiovascular genome editing is to achieve its full scientific and therapeutic potential.

  20. Long-term implications of feed energy source in different genetic types of reproductive rabbit females. II. Immunologic status.

    Science.gov (United States)

    Penadés, M; Arnau-Bonachera, A; García-Quirós, A; Viana, D; Selva, L; Corpa, J M; Pascual, J J

    2017-12-11

    Genetic selection and nutrition management have played a central role in the development of commercial rabbitry industry over the last few decades, being able to affect productive and immunological traits of the animals. However, the implication of different energy sources in animals from diverse genetic lines achieving such evolutionary success remains still unknown. Therefore, in this work, 203 female rabbits housed and bred in the same conditions were used from their first artificial insemination until their fifth weaning. The animals belonged to three different genetic types diverging greatly on breeding goals (H line, hyper-prolific (n=66); LP line, robust (n=67) and R line, selected for growth rate (n=67), and were assigned to two experimental diets, promoting major differences in energy source (cereal starch or animal fat)). The aims of this work were to: (1) characterize and describe blood leucocyte populations of three lines of rabbit does in different physiological stages during their reproductive period: first artificial insemination, first weaning, second parturition and fifth weaning; and (2) study the possible influence of two different experimental diets on the leucocyte populations in peripheral blood. Flow cytometry analyses were performed on blood samples taken from females at each different sampling stade. Lymphocyte populations at both weanings were characterized by significantly lower counts of total, CD5+ and CD8+ lymphocytes (-19.8, -21.7 and -44.6%; Ptype in blood leucocyte counts, LP animals presented the highest counts for total, B, CD5+ and CD8+ lymphocytes (+16.7, +31.8, +24.5 and +38.7; Ptype of diet given during the reproductive life did not affect the leucocyte population counts. These results indicate that there are detectable variations in the leucocyte profile depending on the reproductive stage of the animal (parturition, weaning or none of them). Moreover, foundation for reproductive longevity criteria allows animals to be more

  1. A future scenario of the global regulatory landscape regarding genome-edited crops

    Science.gov (United States)

    Araki, Motoko

    2017-01-01

    ABSTRACT The global agricultural landscape regarding the commercial cultivation of genetically modified (GM) crops is mosaic. Meanwhile, a new plant breeding technique, genome editing is expected to make genetic engineering-mediated crop breeding more socially acceptable because it can be used to develop crop varieties without introducing transgenes, which have hampered the regulatory review and public acceptance of GM crops. The present study revealed that product- and process-based concepts have been implemented to regulate GM crops in 30 countries. Moreover, this study analyzed the regulatory responses to genome-edited crops in the USA, Argentina, Sweden and New Zealand. The findings suggested that countries will likely be divided in their policies on genome-edited crops: Some will deregulate transgene-free crops, while others will regulate all types of crops that have been modified by genome editing. These implications are discussed from the viewpoint of public acceptance. PMID:27960622

  2. Use of genome editing tools in human stem cell-based disease modeling and precision medicine.

    Science.gov (United States)

    Wei, Yu-da; Li, Shuang; Liu, Gai-gai; Zhang, Yong-xian; Ding, Qiu-rong

    2015-10-01

    Precision medicine emerges as a new approach that takes into account individual variability. The successful conduct of precision medicine requires the use of precise disease models. Human pluripotent stem cells (hPSCs), as well as adult stem cells, can be differentiated into a variety of human somatic cell types that can be used for research and drug screening. The development of genome editing technology over the past few years, especially the CRISPR/Cas system, has made it feasible to precisely and efficiently edit the genetic background. Therefore, disease modeling by using a combination of human stem cells and genome editing technology has offered a new platform to generate " personalized " disease models, which allow the study of the contribution of individual genetic variabilities to disease progression and the development of precise treatments. In this review, recent advances in the use of genome editing in human stem cells and the generation of stem cell models for rare diseases and cancers are discussed.

  3. A future scenario of the global regulatory landscape regarding genome-edited crops.

    Science.gov (United States)

    Ishii, Tetsuya; Araki, Motoko

    2017-01-02

    The global agricultural landscape regarding the commercial cultivation of genetically modified (GM) crops is mosaic. Meanwhile, a new plant breeding technique, genome editing is expected to make genetic engineering-mediated crop breeding more socially acceptable because it can be used to develop crop varieties without introducing transgenes, which have hampered the regulatory review and public acceptance of GM crops. The present study revealed that product- and process-based concepts have been implemented to regulate GM crops in 30 countries. Moreover, this study analyzed the regulatory responses to genome-edited crops in the USA, Argentina, Sweden and New Zealand. The findings suggested that countries will likely be divided in their policies on genome-edited crops: Some will deregulate transgene-free crops, while others will regulate all types of crops that have been modified by genome editing. These implications are discussed from the viewpoint of public acceptance.

  4. Direct fit of spectroscopic data of diatomic molecules by using genetic algorithms: II. The ground state of RbCs

    International Nuclear Information System (INIS)

    Almeida, Marcos M; Prudente, Frederico V; Fellows, Carlos E; Marques, Jorge M C; Pereira, Francisco B

    2011-01-01

    We extend our previous methodology based on genetic algorithms (Marques et al 2008 J. Phys. B: At. Mol. Opt. Phys. 41 085103) to carry out the challenging fit of the RbCs potential curve to spectroscopic data. Specifically, we have fitted an analytic functional form to line positions of the high-resolution Fourier transform spectrum of RbCs obtained by a laser-induced fluorescence technique. The results for the ground electronic state of RbCs show that the present method provides an efficient way to obtain diatomic potentials with great accuracy.

  5. General Factor Loadings and Specific Effects of the Differential Ability Scales, Second Edition Composites

    Science.gov (United States)

    Maynard, Jennifer L.; Floyd, Randy G.; Acklie, Teresa J.; Houston, Lawrence, III

    2011-01-01

    The purpose of this study was to investigate the "g" loadings and specific effects of the core and diagnostic composite scores from the Differential Abilities Scales, Second Edition (DAS-II; Elliott, 2007a). Scores from a subset of the DAS-II standardization sample for ages 3:6 to 17:11 were submitted to principal factor analysis. Four…

  6. Genetic Analysis of Chromomere 3d4 in DROSOPHILA MELANOGASTER . II. Regulatory Sites for the Dunce Gene

    OpenAIRE

    Salz, Helen K.; Kiger, John A.

    1984-01-01

    Chromomere 3D4 of the X chromosome of D. melanogaster contains two genes, dunce (dnc) and sperm amotile (sam ). Mutations in dnc cause defects in memory formation and female fertility and reduce or eliminate the activity of a cAMP-specific phosphodiesterase designated form II. A fine structure map of this region has been constructed showing the locations of two sam mutations, five dnc mutations and a newly identified locus designated control of fertility (cf) that acts in cis to regulate the...

  7. Low genetic variation in the MHC class II DRB gene and MHC-linked microsatellites in endangered island populations of the leopard cat (Prionailurus bengalensis) in Japan.

    Science.gov (United States)

    Saka, Toshinori; Nishita, Yoshinori; Masuda, Ryuichi

    2018-02-01

    Isolated populations of the leopard cat (Prionailurus bengalensis) on Tsushima and Iriomote islands in Japan are classified as subspecies P. b. euptilurus and P. b. iriomotensis, respectively. Because both populations have decreased to roughly 100, an understanding of their genetic diversity is essential for conservation. We genotyped MHC class II DRB exon 2 and MHC-linked microsatellite loci to evaluate the diversity of MHC genes in the Tsushima and Iriomote cat populations. We detected ten and four DRB alleles in these populations, respectively. A phylogenetic analysis showed DRB alleles from both populations to be closely related to those in other felid DRB lineages, indicating trans-species polymorphism. The MHC-linked microsatellites were more polymorphic in the Tsushima than in the Iriomote population. The MHC diversity of both leopard cat populations is much lower than in the domestic cat populations on these islands, probably due to inbreeding associated with founder effects, geographical isolation, or genetic drift. Our results predict low resistance of the two endangered populations to new pathogens introduced to the islands.

  8. The CRISPR/Cas genome-editing tool: application in improvement of crops

    Directory of Open Access Journals (Sweden)

    SURENDER eKHATODIA

    2016-04-01

    Full Text Available The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR associated Cas9/sgRNA system is a novel fledgling targeted genome-editing technique from bacterial immune system, which is a cheap, easy and most rapidly adopted genome editing tool transforming to revolutionary paradigm. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in changing climate. The emerging areas of research for the genome editing in plants are like, interrogating gene function, rewiring the regulatory signaling networks, sgRNA library for high-throughput loss-of-function screening. In this review, we will discuss the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been discussed. The non-GM designer genetically edited plants could prospect climate resilient and sustainable energy agriculture in coming future for maximizing the yield by combating abiotic and biotic stresses with this new innovative plant breeding technique.

  9. Deficient Peptide Loading and MHC Class II Endosomal Sorting in a Human Genetic Immunodeficiency Disease: the Chediak-Higashi Syndrome

    Science.gov (United States)

    Faigle, Wolfgang; Raposo, Graça; Tenza, Daniele; Pinet, Valérie; Vogt, Anne B.; Kropshofer, Harald; Fischer, Alain; de Saint-Basile, Geneviève; Amigorena, Sebastian

    1998-01-01

    The Chediak-Higashi syndrome (CHS) is a human recessive autosomal disease caused by mutations in a single gene encoding a protein of unknown function, called lysosomal-trafficking regulator. All cells in CHS patients bear enlarged lysosomes. In addition, T- and natural killer cell cytotoxicity is defective in these patients, causing severe immunodeficiencies. We have analyzed major histocompatibility complex class II functions and intracellular transport in Epstein Barr Virus–transformed B cells from CHS patients. Peptide loading onto major histocompatibility complex class II molecules and antigen presentation are strongly delayed these cells. A detailed electron microscopy analysis of endocytic compartments revealed that only lysosomal multilaminar compartments are enlarged (reaching 1–2 μm), whereas late multivesicular endosomes have normal size and morphology. In contrast to giant multilaminar compartments that bear most of the usual lysosomal markers in these cells (HLA-DR, HLA-DM, Lamp-1, CD63, etc.), multivesicular late endosomes displayed reduced levels of all these molecules, suggesting a defect in transport from the trans-Golgi network and/or early endosomes into late multivesicular endosomes. Further insight into a possible mechanism of this transport defect came from immunolocalizing the lysosomal trafficking regulator protein, as antibodies directed to a peptide from its COOH terminal domain decorated punctated structures partially aligned along microtubules. These results suggest that the product of the Lyst gene is required for sorting endosomal resident proteins into late multivesicular endosomes by a mechanism involving microtubules. PMID:9606205

  10. Programmable Genome Editing Tools and their Regulation for Efficient Genome Engineering

    OpenAIRE

    Guha, Tuhin Kumar; Wai, Alvan; Hausner, Georg

    2017-01-01

    Targeted genome editing has become a powerful genetic tool for studying gene function or for modifying genomes by correcting defective genes or introducing genes. A variety of reagents have been developed in recent years that can generate targeted double-stranded DNA cuts which can be repaired by the error-prone, non-homologous end joining repair system or via the homologous recombination-based double-strand break repair pathway provided a suitable template is available. These genome editing ...

  11. From Gene Targeting to Genome Editing: Transgenic animals applications and beyond

    OpenAIRE

    ROCHA-MARTINS,MAURÍCIO; CAVALHEIRO,GABRIEL R.; MATOS-RODRIGUES,GABRIEL E.; MARTINS,RODRIGO A.P.

    2015-01-01

    ABSTRACTGenome modification technologies are powerful tools for molecular biology and related areas. Advances in animal transgenesis and genome editing technologies during the past three decades allowed systematic interrogation of gene function that can help model how the genome influences cellular physiology. Genetic engineering via homologous recombination (HR) has been the standard method to modify genomic sequences. Nevertheless, nuclease-guided genome editing methods that were developed ...

  12. Functional Analysis of Nuclear Estrogen Receptors in Zebrafish Reproduction by Genome Editing Approach.

    Science.gov (United States)

    Lu, Huijie; Cui, Yong; Jiang, Liwen; Ge, Wei

    2017-07-01

    Estrogens signal through both nuclear and membrane receptors with most reported effects being mediated via the nuclear estrogen receptors (nERs). Although much work has been reported on nERs in the zebrafish, there is a lack of direct genetic evidence for their functional roles and importance in reproduction. To address this issue, we undertook this study to disrupt all three nERs in the zebrafish, namely esr1 (ERα), esr2a (ERβII), and esr2b (ERβI), by the genome-editing technology clustered regularly interspaced short palindromic repeats and its associated nuclease (CRISPR/Cas9). Using this loss-of-function genetic approach, we successfully created three mutant zebrafish lines with each nER knocked out. In addition, we also generated all possible double and triple knockouts of the three nERs. The phenotypes of these mutants in reproduction were analyzed in all single, double, and triple nER knockouts in both females and males. Surprisingly, all three single nER mutant fish lines display normal reproductive development and function in both females and males, suggesting functional redundancy among these nERs. Further analysis of double and triple knockouts showed that nERs, especially Esr2a and Esr2b, were essential for female reproduction, and loss of these two nERs led to an arrest of folliculogenesis at previtellogenic stage II followed by sex reversal from female to male. In addition, the current study also revealed a unique role for Esr2a in follicle cell proliferation and transdifferentiation, follicle growth, and chorion formation. Taken together, this study provides the most comprehensive genetic analysis for differential functions of esr1, esr2a, and esr2b in fish reproduction. Copyright © 2017 Endocrine Society.

  13. Natural variation in phosphorylation of photosystem II proteins in Arabidopsis thaliana: is it caused by genetic variation in the STN kinases?

    Science.gov (United States)

    Flood, Pádraic J.; Yin, Lan; Herdean, Andrei; Harbinson, Jeremy; Aarts, Mark G. M.; Spetea, Cornelia

    2014-01-01

    Reversible phosphorylation of photosystem II (PSII) proteins is an important regulatory mechanism that can protect plants from changes in ambient light intensity and quality. We hypothesized that there is natural variation in this process in Arabidopsis (Arabidopsis thaliana), and that this results from genetic variation in the STN7 and STN8 kinase genes. To test this, Arabidopsis accessions of diverse geographical origins were exposed to two light regimes, and the levels of phospho-D1 and phospho-light harvesting complex II (LHCII) proteins were quantified by western blotting with anti-phosphothreonine antibodies. Accessions were classified as having high, moderate or low phosphorylation relative to Col-0. This variation could not be explained by the abundance of the substrates in thylakoid membranes. In genotypes with atrazine-resistant forms of the D1 protein, low D1 and LHCII protein phosphorylation was observed, which may be due to low PSII efficiency, resulting in reduced activation of the STN kinases. In the remaining genotypes, phospho-D1 levels correlated with STN8 protein abundance in high-light conditions. In growth light, D1 and LHCII phosphorylation correlated with longitude and in the case of LHCII phosphorylation also with temperature variability. This suggests a possible role of natural variation in PSII protein phosphorylation in the adaptation of Arabidopsis to diverse environments. PMID:24591726

  14. Cat-rodent Toxoplasma gondii Type II-variant circulation and limited genetic diversity on the Island of Fernando de Noronha, Brazil.

    Science.gov (United States)

    Silva, Jean Carlos Ramos; Ferreira, Fernando; Dias, Ricardo Augusto; Ajzenberg, Daniel; Marvulo, Maria Fernanda Vianna; Magalhães, Fernando Jorge Rodrigues; Filho, Carlos Diógenes Ferreira Lima; Oliveira, Solange; Soares, Herbert Sousa; Feitosa, Thais Ferreira; Aizawa, Juliana; Alves, Leucio Câmara; Mota, Rinaldo Aparecido; Dubey, Jitender Prakask; Gennari, Solange Maria; Pena, Hilda Fátima Jesus

    2017-05-03

    In Brazil, studies on animals and humans in mainland areas have shown that most strains of Toxoplasma gondii are pathogenic to mice and exhibit great genetic variability. In this study, using a set of 11 PCR-RFLP and 15 microsatellite markers, we isolated and genetically characterised T. gondii strains from one cat and three rats on Fernando de Noronha Island. The cat had antibodies to T. gondii, which were revealed using a modified agglutination test (MAT, cut-off 1:25) and the seroprevalence among the 46 rodents was 15.2%. Viable T. gondii was isolated from one cat (TgCatBrFN1), two brown rats (TgRatnoBrFN1 and TgRatnoBrFN2) and one black rat (TgRatraBrFN1). Unlike the strains from mainland Brazil, these isolates were not pathogenic to outbred mice. The genotypes of these strains were compared with strains previously isolated on the island and in mainland Brazil. The analysis based on microsatellite data showed a limited genetic diversity of T. gondii on Fernando de Noronha Island with the majority of strains clustered into the following three groups: type II, III, and Caribbean 1. There was little variation among strains within the same group, suggesting that the majority of strains circulating on Fernando de Noronha are derived from only a few strains that were recently introduced to the island, likely from imported cats. Except for the strain belonging to the Caribbean 1 group that originates from northeast Brazil, there was little evidence that strains from the other groups were introduced to Fernando de Noronha via mainland Brazil.

  15. Genetics Home Reference: primary macronodular adrenal hyperplasia

    Science.gov (United States)

    ... Support and Research Foundation: Genetic Changes Found in Cushing's Disease, Adrenal Tumors, and Adrenal Hyperplasia MalaCards: acth-independent ... macronodular adrenal hyperplasia 2 Merck Manual (Home Edition): Cushing ... Adrenal Diseases Foundation: Cushing's Syndrome Orphanet: Cushing syndrome due to ...

  16. Post-editing through Speech Recognition

    DEFF Research Database (Denmark)

    Mesa-Lao, Bartolomé

    . As a continuation of the pioneering work done in the SEECAT project, our presentation will report on a feasibility study where post-editor trainees will be asked to post-edit raw MT using voice and keyboard as an input method. This feasibility study will explore the potential of combining one of the most popular...... computer-aided translation workbenches in the market (i.e. MemoQ) together with one of the most well-known ASR packages (i.e. Dragon Naturally Speaking from Nuance). Two data correction modes will be considered: a) keyboard vs. b) keyboard and speech combined. These two different ways of verifying...... and correcting raw MT output will be examined making comparisons in terms of: i) overall time to complete the task, ii) final quality of the target text, and iii) user satisfaction....

  17. Gene editing for cell engineering: trends and applications.

    Science.gov (United States)

    Gupta, Sanjeev K; Shukla, Pratyoosh

    2017-08-01

    Gene editing with all its own advantages in molecular biology applications has made easy manipulation of various production hosts with the discovery and implementation of modern gene editing tools such as Crispr (Clustered regularly interspaced short palindromic repeats), TALENs (Transcription activator-like effector nucleases) and ZFNs (Zinc finger nucleases). With the advent of these modern tools, it is now possible to manipulate the genome of industrial production hosts such as yeast and mammalian cells which allows developing a potential and cost effective recombinant therapeutic protein. These tools also allow single editing to multiple genes for knocking-in or knocking-out of a host genome quickly in an efficient manner. A recent study on "multiplexed" gene editing revolutionized the knock-out and knock-in events of yeast and CHO, mammalian cells genome for metabolic engineering as well as high, stable, and consistent expression of a transgene encoding complex therapeutic protein such as monoclonal antibody. The gene of interest can either be integrated or deleted at single or multiple loci depending on the strategy and production requirement. This review will give a gist of all the modern tools with a brief description and advances in genetic manipulation using three major tools being implemented for the modification of such hosts with the emphasis on the use of Crispr-Cas9 for the "multiplexing gene-editing approach" for genetic manipulation of yeast and CHO mammalian hosts that ultimately leads to a fast track product development with consistent, improved product yield, quality, and thus affordability for a population at large.

  18. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan

    2011-12-01

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed high-level operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques.

  19. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan

    2011-12-12

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  20. A technological and regulatory outlook on CRISPR crop editing.

    Science.gov (United States)

    Globus, Rea; Qimron, Udi

    2018-02-01

    Generating plants with increased yields while maintaining low production and maintenance costs is highly important since plants are the major food source for humans and animals, as well as important producers of chemicals, pharmaceuticals, and fuels. Gene editing approaches, particularly the CRISPR-Cas system, are the preferred methods for improving crops, enabling quick, robust, and accurate gene manipulation. Nevertheless, new breeds of genetically modified crops have initiated substantial debates concerning their biosafety, commercial use, and regulation. Here, we discuss the challenges facing genetic engineering of crops by CRISPR-cas, and highlight the pros and cons of using this tool. © 2017 Wiley Periodicals, Inc.

  1. Interactive Editing of Live Visuals

    Science.gov (United States)

    Müller, Pascal; Müller Arisona, Stefan; Schubiger-Banz, Simon; Specht, Matthias

    This paper describes novel concepts for the interactive composition of artistic real-time graphics, so-called live visuals. By establishing two fundamental techniques dealing with the structured media integration and the intrinsic design process, we significantly increase the efficiency of interactive editing in live visuals applications. First, we present a media manager that supports the user in both retrieval and utilization of automatically annotated digital media. The computer-assisted application of individual media items permits the interactive control of non-linear editing (NLE) of video in real-time. Second, we optimize the design process by introducing the design tree, which collects and organizes the artist's work in an intuitive way. Design tree operations provide interactive high-level editing methods which allow for exploration, combination, reuse, and evolution of designs before and particularly during the performance. We examined the effectiveness of our techniques on numerous long-lasting live performances from which representative examples are demonstrated.

  2. Boneless Pose Editing and Animation

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Hansen, Kristian Evers; Erleben, Kenny

    2007-01-01

    In this paper, we propose a pose editing and animation method for triangulated surfaces based on a user controlled partitioning of the model into deformable parts and rigid parts which are denoted handles. In our pose editing system, the user can sculpt a set of poses simply by transforming...... the handles for each pose. Using Laplacian editing, the deformable parts are deformed to match the handles. In our animation system the user can constrain one or several handles in order to define a new pose. New poses are interpolated from the examples poses, by solving a small non-linear optimization...... problem in order to obtain the interpolation weights. While the system can be used simply for building poses, it is also an animation system. The user can specify a path for a given constraint and the model is animated correspondingly....

  3. Editörden

    Directory of Open Access Journals (Sweden)

    Nadir Arıcan

    2007-04-01

    Full Text Available Değerli Adli Bilimci’ler, Dergimizin ilk baskısının yapıldığı 1996 yılından 2006 yılı sonuna kadar 11 ciltten oluşan dizisini ara vermeden kesintisiz olarak yayınlanma başarısını gösteren Adli Tıp Bülteni Yayın Kurulu adına saygı ile selamlıyoruz. Dergimizin 12. cildinin ilk sayısı, yayın kurulundaki görev değişikliği ile elinize ulaşıyor. “Adli Tıp Bülteni”ni tüm olumsuz koşullara karşın, siz alana emek veren adli bilimcilerin de büyük desteği ile yayın hayatım başarı ile sürdürdü. Bu başarıda başta editörlerimiz sayın Prof. Dr. Serpil Salaçin ve sayın Prof. Dr. Şebnem Korur Fincancı ile yayın kurulunda görev almış meslektaşlarımıza teşekkür ediyor ve desteklerinin artarak devam edeceğini ümit ediyoruz. Adli Tıp Bülteni, ilk editörü sayın Prof. Dr. Serpil Salaçin’in bültenin 1. sayısında belirttiği amaca uygun olarak, her geçen gün daha da güçlenerek yayın hayatını sürdürmektedir. Yayın akışında zaman zaman kesintiler olsa da, amacı doğrultusunda “alanındaki bilgi akışını sağlama ve bilimsel gelişmelerin önemli bir parçası olma özelliğini” Adli Tıp Uzmanları Derneği’nin resmi bilimsel yayın organı kimliği ile devam ettirmektedir. Hedefleri doğrultusunda uluslararası indekslerce taranan bir dergi olma yolunda ilk adımını atan dergimizin bu alandaki çalışmaları sayın Prof. Dr. Şebnem Korur Fincancı tarafından yürütülmektedir. Görevini genç meslektaşına devretmiş olsa da alanımızdaki uluslar arası deneyimi ile Adli Tıp Bülteni’ni çok farklı noktalara taşıyacağı inancındayım. Bu alanda yapacağı katkılardan dolayı sayın hocama biz kez daha teşekkür etmek istiyorum. Bundan böyle Adli Tıp Bülteni’ne yayınlanmak üzere gönderdiğiniz çalışmalarınızın değerlendirmesini daha hızlı yapabilmek ve baskı aşamasına getirmek amacı ile iletişimi elektronik ortamda yapmaya

  4. Tokamaks - Third Edition

    International Nuclear Information System (INIS)

    Rogister, A L

    2004-01-01

    John Wesson's well known book, now re-edited for the third time, provides an excellent introduction to fusion oriented plasma physics in tokamaks. The author's task was a very challenging one, for a confined plasma is a complex system characterised by a variety of dimensionless parameters and its properties change qualitatively when certain threshold values are reached in this multi-parameter space. As a consequence, theoretical description is required at different levels, which are complementary: particle orbits, kinetic and fluid descriptions, but also intuitive and empirical approaches. Theory must be carried out on many fronts: equilibrium, instabilities, heating, transport etc. Since the properties of the confined plasma depend on the boundary conditions, the physics of plasmas along open magnetic field lines and plasma surface interaction processes must also be accounted for. Those subjects (and others) are discussed in depth in chapters 2-9. Chapter 1 mostly deals with ignition requirements and the tokamak concept, while chapter 14 provides a list of useful relations: differential operators, collision times, characteristic lengths and frequencies, expressions for the neoclassical resistivity and heat conduction, the bootstrap current etc. The presentation is sufficiently broad and thorough that specialists within tokamak research can either pick useful and up-to-date information or find an authoritative introduction into other areas of the subject. It is also clear and concise so that it should provide an attractive and accurate initiation for those wishing to enter the field and for outsiders who would like to understand the concepts and be informed about the goals and challenges on the horizon. Validation of theoretical models requires adequately resolved experimental data for the various equilibrium profiles (clearly a challenge in the vicinity of transport barriers) and the fluctuations to which instabilities give rise. Chapter 10 is therefore devoted to

  5. Understanding Editing Behaviors in Multilingual Wikipedia.

    Science.gov (United States)

    Kim, Suin; Park, Sungjoon; Hale, Scott A; Kim, Sooyoung; Byun, Jeongmin; Oh, Alice H

    2016-01-01

    Multilingualism is common offline, but we have a more limited understanding of the ways multilingualism is displayed online and the roles that multilinguals play in the spread of content between speakers of different languages. We take a computational approach to studying multilingualism using one of the largest user-generated content platforms, Wikipedia. We study multilingualism by collecting and analyzing a large dataset of the content written by multilingual editors of the English, German, and Spanish editions of Wikipedia. This dataset contains over two million paragraphs edited by over 15,000 multilingual users from July 8 to August 9, 2013. We analyze these multilingual editors in terms of their engagement, interests, and language proficiency in their primary and non-primary (secondary) languages and find that the English edition of Wikipedia displays different dynamics from the Spanish and German editions. Users primarily editing the Spanish and German editions make more complex edits than users who edit these editions as a second language. In contrast, users editing the English edition as a second language make edits that are just as complex as the edits by users who primarily edit the English edition. In this way, English serves a special role bringing together content written by multilinguals from many language editions. Nonetheless, language remains a formidable hurdle to the spread of content: we find evidence for a complexity barrier whereby editors are less likely to edit complex content in a second language. In addition, we find that multilinguals are less engaged and show lower levels of language proficiency in their second languages. We also examine the topical interests of multilingual editors and find that there is no significant difference between primary and non-primary editors in each language.

  6. Understanding Editing Behaviors in Multilingual Wikipedia.

    Directory of Open Access Journals (Sweden)

    Suin Kim

    Full Text Available Multilingualism is common offline, but we have a more limited understanding of the ways multilingualism is displayed online and the roles that multilinguals play in the spread of content between speakers of different languages. We take a computational approach to studying multilingualism using one of the largest user-generated content platforms, Wikipedia. We study multilingualism by collecting and analyzing a large dataset of the content written by multilingual editors of the English, German, and Spanish editions of Wikipedia. This dataset contains over two million paragraphs edited by over 15,000 multilingual users from July 8 to August 9, 2013. We analyze these multilingual editors in terms of their engagement, interests, and language proficiency in their primary and non-primary (secondary languages and find that the English edition of Wikipedia displays different dynamics from the Spanish and German editions. Users primarily editing the Spanish and German editions make more complex edits than users who edit these editions as a second language. In contrast, users editing the English edition as a second language make edits that are just as complex as the edits by users who primarily edit the English edition. In this way, English serves a special role bringing together content written by multilinguals from many language editions. Nonetheless, language remains a formidable hurdle to the spread of content: we find evidence for a complexity barrier whereby editors are less likely to edit complex content in a second language. In addition, we find that multilinguals are less engaged and show lower levels of language proficiency in their second languages. We also examine the topical interests of multilingual editors and find that there is no significant difference between primary and non-primary editors in each language.

  7. Medical writing, revising and editing

    DEFF Research Database (Denmark)

    Pilegaard, Morten

    2006-01-01

    The globalization of science makes medical writing, editing and revision a rapidly growing field of linguistic study and practice. Medical science texts are written according to uniform, general guidelines and medical genres have become highly conventionalized in terms of structure and linguistic...... form. Medical editing often takes the form of peer review and mainly addresses issues of contents and overall validity. Medical revision incorporates the checking of the macrostructure and the microstructure of the text, its language and style and its suitability for the target reader or client...

  8. Handbook of ecotoxicology, second edition

    Science.gov (United States)

    Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    2003-01-01

    Handbook of Ecotoxicology, Second Edition focuses on toxic substances and how they affect ecosystems worldwide. It presents methods for quantifying and measuring ecotoxicological effects in the field and in the lab, as well as methods for estimating, predicting, and modeling in ecotoxicology studies. Completely revised and updated with 18 new chapters, this second edition includes contributions from over 75 international experts. Also, a Technical Review Board reviewed all manuscripts for accuracy and currency. This authoritative work is the definitive reference for students, researchers, consultants, and other professionals in the environmental sciences, toxicology, chemistry, biology, and ecology - in academia, industry, and government.

  9. Beginning XML, 5th Edition

    CERN Document Server

    Fawcett, Joe; Quin, Liam R E

    2012-01-01

    A complete update covering the many advances to the XML language The XML language has become the standard for writing documents on the Internet and is constantly improving and evolving. This new edition covers all the many new XML-based technologies that have appeared since the previous edition four years ago, providing you with an up-to-date introductory guide and reference. Packed with real-world code examples, best practices, and in-depth coverage of the most important and relevant topics, this authoritative resource explores both the advantages and disadvantages of XML and addresses the mo

  10. Introducing ZBrush 3rd Edition

    CERN Document Server

    Keller, Eric

    2012-01-01

    Learn ZBrush inside and out with this updated new edition Get totally comfortable sculpting in a digital environment with the latest edition of this bestselling beginner's guide to ZBrush. Fully updated for the newest version of the software, ZBrush 4R3, this book dispels any fears you might have about the difficulty of using ZBrush and soon has you creating realistic, cartoon, and organic models with flair. Learn all the essentials, as you complete fun tutorials on painting, meshes, organic scripting, hard surface sculpting, lighting, rendering, and more. Introduces you to ZBrush, the sculpt

  11. Language Editing at Astronomy & Astrophysics

    Science.gov (United States)

    Adams, J.

    2011-07-01

    In 2002, the A&A Board of Directors voted that all articles must be written in English and decided to improve the overall quality of the language in the articles with the help of a team of language editors. This article reviews the general advantages of editing the English expression and describes both the aims of this effort and its place in the full publication process. This is followed by the Guide to language editing that has been available on the Journal's website for several years now.

  12. Shielded Metal Arc Pipe Welding. Teacher Edition. Second Edition.

    Science.gov (United States)

    Fortney, Clarence; And Others

    This second edition of the shielded metal arc pipe welding curriculum guide presents both basic and advanced pipe welding skills. All specifications for procedure and welder qualification are presented according to national standards. The standards also include the test position for both groove and fillet pipe welding. The guide contains three…

  13. Editing Dialogics: Ethical Issues Concerning Student Contributors in Edited Collections.

    Science.gov (United States)

    Tassoni, John Paul; Tayko, Gail

    2003-01-01

    Discusses the authors' attempts to enact a process they have come to call "editing dialogics" and its relation to the Conference on College Composition and Communication's "Guidelines for the Ethical Treatment of Students and Student Writing in Composition Studies." Makes their roles explicit to expose elements of scholarly…

  14. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition [and] Student Edition [and] Student Workbook. Second Edition.

    Science.gov (United States)

    Harper, Eddie; Knapp, John

    This packet of instructional materials for a gas tungsten arc welding (GTAW) and plasma arc cutting course is comprised of a teacher edition, student edition, and student workbook. The teacher edition consists of introductory pages and teacher pages. Introductory pages include training and competency profile, state duty/task crosswalk,…

  15. Gas Metal Arc Welding and Flux-Cored Arc Welding. Third Edition. Teacher Edition [and] Student Edition [and] Student Workbook.

    Science.gov (United States)

    Knapp, John; Harper, Eddie

    This packet, containing a teacher's edition, a student edition, and a student workbook, introduces students to high deposition welding and processes for "shielding" a weld. In addition to general information, the teacher edition consists of introductory pages and teacher pages, as well as unit information that corresponds to the…

  16. Algebra II workbook for dummies

    CERN Document Server

    Sterling, Mary Jane

    2014-01-01

    To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

  17. Consumer acceptance of food crops developed by genome editing.

    Science.gov (United States)

    Ishii, Tetsuya; Araki, Motoko

    2016-07-01

    One of the major problems regarding consumer acceptance of genetically modified organisms (GMOs) is the possibility that their transgenes could have adverse effects on the environment and/or human health. Genome editing, represented by the CRISPR/Cas9 system, can efficiently achieve transgene-free gene modifications and is anticipated to generate a wide spectrum of plants. However, the public attitude against GMOs suggests that people will initially be unlikely to accept these plants. We herein explored the bottlenecks of consumer acceptance of transgene-free food crops developed by genome editing and made some recommendations. People should not pursue a zero-risk bias regarding such crops. Developers are encouraged to produce cultivars with a trait that would satisfy consumer needs. Moreover, they should carefully investigate off-target mutations in resultant plants and initially refrain from agricultural use of multiplex genome editing for better risk-benefit communication. The government must consider their regulatory status and establish appropriate regulations if necessary. The government also should foster communication between the public and developers. If people are informed of the benefits of genome editing-mediated plant breeding and trust in the relevant regulations, and if careful risk-benefit communication and sincere considerations for the right to know approach are guaranteed, then such transgene-free crops could gradually be integrated into society.

  18. RNA editing machinery in plant organelles.

    Science.gov (United States)

    Yan, Junjie; Zhang, Qunxia; Yin, Ping

    2018-02-01

    RNA editing is a type of post-transcriptional modification that includes nucleotide insertion/deletion or conversion. Different categories of RNA editing have been widely observed in distinct RNAs from divergent organisms. In flowering plants, RNA editing usually alters cytidine to uridine in plastids and mitochondria, playing important roles in various plant developmental processes, including organelle biogenesis, adaptation to environmental changes, and signal transduction. Numerous studies have demonstrated that a number of factors are involved in plant RNA editing, such as pentatricopeptide repeat (PPR) proteins, multiple organelle RNA editing factors (MORF, also known as RIP), organelle RNA recognition motif (ORRM) containing proteins, protoporphyrinogen IX oxidase 1 (PPO1) and organelle zinc finger 1 (OZ1). These factors play diverse roles in plant RNA editing due to their distinct characteristics. In this review, we discuss the functional roles of the individual editing factors and their associations in plant RNA editing.

  19. RUSSIAN-GERMAN CONNECTIONS IN THE EDITING PRACTICE IN THE MID-19TH CENTURY: VASILIY ZHUKOVSKY AND JUSTINUS KERNER

    Directory of Open Access Journals (Sweden)

    Natalia Egorovna Nikonova

    2015-05-01

    Full Text Available The article reconstructs the history of creative communication between the German romanticist, J. Kerner (1786-1862, and V.A. Zhukovsky (1783-1852, a Russian poet, cultural and political figure and mentor of Alexander II. It also introduces the first edition of German authorized translations of Zhukovsky’s works, «Ostergabe für das Jahr 1850» (Baden-Baden, 1850, as well as a separate edition and the result of this international cooperation, «Das Märchen von Iwan Zarewitsch und dem grauen Wolf», which became popular in Germany.Purpose: The purpose of the article is to reconstruct the context of international co-operation in editing practice between V.A. Zhukovsky, a Russian poet and mentor of the impe-rial family, and a famous German romanticist, mystic and lite-rary man J. Kerner.Methodology. The research methodology combines culture-historical, problem-chronological and historico-genetical analysis methods.Results. The study ascertains new important facts of Russian-German co-operation, as well as introduces new sources of fundamental importance that may play a significant role for researchers and publishers dealing with V.A. Zhukovsky’s heritage.Practical implications. The findings allow to widen and deepen the knowledge of Russian romanticism, V.A. Zhukovsky’s creative biography and heritage, as well as the character of Russian-West-European intercultural contacts in the XIX century; the research findings can be used in teaching various disciplines of the historic-literary, translation and culturological profiles.

  20. Phenotype-genotype profiles in Crohn's disease predicted by genetic markers in autophagy-related genes (GOIA study II).

    Science.gov (United States)

    Durães, Cecília; Machado, José C; Portela, Francisco; Rodrigues, Susana; Lago, Paula; Cravo, Marília; Ministro, Paula; Marques, Margarida; Cremers, Isabelle; Freitas, João; Cotter, José; Tavares, Lurdes; Matos, Leopoldo; Medeiros, Isabel; Sousa, Rui; Ramos, Jaime; Deus, João; Caldeira, Paulo; Chagas, Cristina; Duarte, Maria A; Gonçalves, Raquel; Loureiro, Rui; Barros, Luísa; Bastos, Isabel; Cancela, Eugénia; Moraes, Mário C; Moreira, Maria J; Vieira, Ana I; Magro, Fernando

    2013-02-01

    About 70 loci are associated with susceptibility to Crohn's disease (CD), particularly in pathways of innate immunity, autophagy, and pathogen recognition. Phenotype-genotype associations are inconsistent. CD susceptibility polymorphisms ATG16L1 rs2241880, ICAM1 rs5498, IL4 rs2070874, IL17F rs763780, IRGM rs13361189, ITLN1 rs2274910, LRRK2 rs11175593, and TLR4 rs4986790 were genotyped in a Portuguese population (511 CD patients, 626 controls) and assessed for association with CD clinical characteristics. There is a significant association of CD with the single nucleotide polymorphisms (SNPs) in ATG16L1 (odds ratio [OR] 1.36 [1.15-1.60], P = 2.7 × 10(-6) for allele G), IRGM (OR 1.56 [1.21-1.93], P = 3.9 × 10(-4) for allele C), and ITLN1 (OR 1.55 [1.28-1.88], P = 4.9 × 10(-4) for allele C). These SNPs are associated with ileal location (OR, respectively, 1.49, 1.52, and 1.70), ileocolonic location (OR, respectively, 1.31, 1.57, and 1.68), and involvement of the upper digestive tract (OR, respectively for ATG16L1 and IRGM, 1.96 and 1.95). The risk genotype GG in ATG16L1 is associated with patients who respond to steroids (OR 1.89), respond to immunosuppressants (OR 1.77), and to biologic therapy (OR 1.89). The SNPs in ITLN1 and IRGM are both associated with a positive response to biologic therapy. The risk for ileal, ileocolonic, and upper digestive tract locations increases with the number of risk alleles (OR for three alleles, respectively, 7.10, 3.54, and 12.07); the OR for positive response to biologic therapy is 3.66. A multilocus approach using autophagy-related genes provides insight into CD phenotype-genotype associations and genetic markers for predicting therapeutic responses.

  1. Strategies of Qualitative Inquiry. Third Edition

    Science.gov (United States)

    Denzin, Norman K., Ed.; Lincoln, Yvonna S., Ed.

    2007-01-01

    "Strategies of Qualitative Inquiry, Third Edition," the second volume in the paperback version of "The SAGE Handbook of Qualitative Research, 3rd Edition," consists of Part III of the handbook ("Strategies of Inquiry"). "Strategies of Qualitative Inquiry, Third Edition" presents the major tactics--historically, the research methods--that…

  2. Promoting School Success. Third Edition

    Science.gov (United States)

    Lovitt, Thomas C.

    2007-01-01

    Like its two predecessors, "Preventing School Dropouts" [C1991] and "Preventing School Failure" [C2000], this third edition is a book about teaching. Although primarily written for teachers, tutors and parents may also find this book helpful. It is a collection of carefully selected teaching techniques aimed at helping young adults learn important…

  3. Money and Schools. Fifth Edition

    Science.gov (United States)

    Thompson, David C.; Crampton, Faith E.; Wood, R. Craig

    2012-01-01

    In the new edition of this essential, all-inclusive text, the authors provide more important research for future principals and others enrolled in graduate-level school finance courses. Written in a style that is highly readable, the book offers strong connections to real-world experiences. Readers get both a broad overview of funding concepts and…

  4. Nuclear Electricity. 5th Edition.

    Science.gov (United States)

    Hore-Lacy, Ian

    Educators must address the need for young people to be informed about both the scientific concepts and the reasons for controversy when dealing with controversial issues. Young people must be given the opportunity to form their own opinions when presented with evidence for conflicting arguments. Previous editions of "Nuclear Electricity" have…

  5. Veterinary Microbiology, 3rd Edition

    Science.gov (United States)

    Veterinary Microbiology, Third Edition is organized into four sections and begins with an updated and expanded introductory section on infectious disease pathogenesis, diagnosis and clinical management. The second section covers bacterial and fungal pathogens, and the third section describes viral d...

  6. Gene editing. Time to reflection.

    OpenAIRE

    Santaló Pedro, Josep

    2017-01-01

    The development of new gene editing technologies and their special characteristics have led to a passionate debate on the suitability and reliability of their use both in plant and animal species and in the human species itself. A brief analysis of the arguments used in this debate as well as a summary of some of the most relevant statements in this regard is made.

  7. The impact of genome editing on the introduction of monogenic traits in livestock.

    Science.gov (United States)

    Bastiaansen, John W M; Bovenhuis, Henk; Groenen, Martien A M; Megens, Hendrik-Jan; Mulder, Han A

    2018-04-16

    Genome editing technologies provide new tools for genetic improvement and have the potential to become the next game changer in animal and plant breeding. The aim of this study was to investigate how genome editing in combination with genomic selection can accelerate the introduction of a monogenic trait in a livestock population as compared to genomic selection alone. A breeding population was simulated under genomic selection for a polygenic trait. After reaching Bulmer equilibrium, the selection objective was to increase the allele frequency of a monogenic trait, with or without genome editing, in addition to improving the polygenic trait. Scenarios were compared for time to fixation of the desired allele, selection response for the polygenic trait, and level of inbreeding. The costs, in terms of number of editing procedures, were compared to the benefits of having more animals with the desired phenotype of the monogenic trait. Effects of reduced editing efficiency were investigated. In a population of 20,000 selection candidates per generation, the total number of edited zygotes needed to reach fixation of the desired allele was 22,118, 7072, or 3912 with, no, moderate, or high selection emphasis on the monogenic trait, respectively. Genome editing resulted in up to four-fold faster fixation of the desired allele when efficiency was 100%, while the loss in long-term selection response for the polygenic trait was up to seven-fold less compared to genomic selection alone. With moderate selection emphasis on the monogenic trait, introduction of genome editing led to a four-fold reduction in the total number of animals showing the undesired phenotype before fixation. However, with a currently realistic editing efficiency of 4%, the number of required editing procedures increased by 72% and loss in selection response increased eight-fold compared to 100% efficiency. With low efficiency, loss in selection response was 29% more compared to genomic selection alone

  8. Mojo Hand, a TALEN design tool for genome editing applications

    Directory of Open Access Journals (Sweden)

    Neff Kevin L

    2013-01-01

    Full Text Available Abstract Background Recent studies of transcription activator-like (TAL effector domains fused to nucleases (TALENs demonstrate enormous potential for genome editing. Effective design of TALENs requires a combination of selecting appropriate genetic features, finding pairs of binding sites based on a consensus sequence, and, in some cases, identifying endogenous restriction sites for downstream molecular genetic applications. Results We present the web-based program Mojo Hand for designing TAL and TALEN constructs for genome editing applications (http://www.talendesign.org. We describe the algorithm and its implementation. The features of Mojo Hand include (1 automatic download of genomic data from the National Center for Biotechnology Information, (2 analysis of any DNA sequence to reveal pairs of binding sites based on a user-defined template, (3 selection of restriction-enzyme recognition sites in the spacer between the TAL monomer binding sites including options for the selection of restriction enzyme suppliers, and (4 output files designed for subsequent TALEN construction using the Golden Gate assembly method. Conclusions Mojo Hand enables the rapid identification of TAL binding sites for use in TALEN design. The assembly of TALEN constructs, is also simplified by using the TAL-site prediction program in conjunction with a spreadsheet management aid of reagent concentrations and TALEN formulation. Mojo Hand enables scientists to more rapidly deploy TALENs for genome editing applications.

  9. Advancing Crop Transformation in the Era of Genome Editing.

    Science.gov (United States)

    Altpeter, Fredy; Springer, Nathan M; Bartley, Laura E; Blechl, Ann E; Brutnell, Thomas P; Citovsky, Vitaly; Conrad, Liza J; Gelvin, Stanton B; Jackson, David P; Kausch, Albert P; Lemaux, Peggy G; Medford, June I; Orozco-Cárdenas, Martha L; Tricoli, David M; Van Eck, Joyce; Voytas, Daniel F; Walbot, Virginia; Wang, Kan; Zhang, Zhanyuan J; Stewart, C Neal

    2016-07-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. © 2016 American Society of Plant Biologists. All rights reserved.

  10. Responsible innovation in human germline gene editing: Background document to the recommendations of ESHG and ESHRE.

    Science.gov (United States)

    De Wert, Guido; Heindryckx, Björn; Pennings, Guido; Clarke, Angus; Eichenlaub-Ritter, Ursula; van El, Carla G; Forzano, Francesca; Goddijn, Mariëtte; Howard, Heidi C; Radojkovic, Dragica; Rial-Sebbag, Emmanuelle; Dondorp, Wybo; Tarlatzis, Basil C; Cornel, Martina C

    2018-04-01

    Technological developments in gene editing raise high expectations for clinical applications, including editing of the germline. The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and Recommendations to inform and stimulate ongoing societal debates. This document provides the background to the Recommendations. Germline gene editing is currently not allowed in many countries. This makes clinical applications in these countries impossible now, even if germline gene editing would become safe and effective. What were the arguments behind this legislation, and are they still convincing? If a technique could help to avoid serious genetic disorders, in a safe and effective way, would this be a reason to reconsider earlier standpoints? This Background document summarizes the scientific developments and expectations regarding germline gene editing, legal regulations at the European level, and ethics for three different settings (basic research, preclinical research and clinical applications). In ethical terms, we argue that the deontological objections (e.g., gene editing goes against nature) do not seem convincing while consequentialist objections (e.g., safety for the children thus conceived and following generations) require research, not all of which is allowed in the current legal situation in European countries. Development of this Background document and Recommendations reflects the responsibility to help society understand and debate the full range of possible implications of the new technologies, and to contribute to regulations that are adapted to the dynamics of the field while taking account of ethical considerations and societal concerns.

  11. The emerging role of viral vectors as vehicles for DMD gene editing.

    Science.gov (United States)

    Maggio, Ignazio; Chen, Xiaoyu; Gonçalves, Manuel A F V

    2016-05-23

    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by mutations in the dystrophin-encoding DMD gene. The DMD gene, spanning over 2.4 megabases along the short arm of the X chromosome (Xp21.2), is the largest genetic locus known in the human genome. The size of DMD, combined with the complexity of the DMD phenotype and the extent of the affected tissues, begs for the development of novel, ideally complementary, therapeutic approaches. Genome editing based on the delivery of sequence-specific programmable nucleases into dystrophin-defective cells has recently enriched the portfolio of potential therapies under investigation. Experiments involving different programmable nuclease platforms and target cell types have established that the application of genome-editing principles to the targeted manipulation of defective DMD loci can result in the rescue of dystrophin protein synthesis in gene-edited cells. Looking towards translation into the clinic, these proof-of-principle experiments have been swiftly followed by the conversion of well-established viral vector systems into delivery agents for DMD editing. These gene-editing tools consist of zinc-finger nucleases (ZFNs), engineered homing endoculeases (HEs), transcription activator-like effector nucleases (TALENs), and RNA-guided nucleases (RGNs) based on clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 systems. Here, we succinctly review these fast-paced developments and technologies, highlighting their relative merits and potential bottlenecks, when used as part of in vivo and ex vivo gene-editing strategies.

  12. Modeling and Multi-Objective Optimization of Engine Performance and Hydrocarbon Emissions via the Use of a Computer Aided Engineering Code and the NSGA-II Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Richard Fiifi Turkson

    2016-01-01

    Full Text Available It is feared that the increasing population of vehicles in the world and the depletion of fossil-based fuel reserves could render transportation and other activities that rely on fossil fuels unsustainable in the long term. Concerns over environmental pollution issues, the high cost of fossil-based fuels and the increasing demand for fossil fuels has led to the search for environmentally friendly, cheaper and efficient fuels. In the search for these alternatives, liquefied petroleum gas (LPG has been identified as one of the viable alternatives that could be used in place of gasoline in spark-ignition engines. The objective of the study was to present the modeling and multi-objective optimization of brake mean effective pressure and hydrocarbon emissions for a spark-ignition engine retrofitted to run on LPG. The use of a one-dimensional (1D GT-Power™ model, together with Group Method of Data Handling (GMDH neural networks, has been presented. The multi-objective optimization was implemented in MATLAB® using the non-dominated sorting genetic algorithm (NSGA-II. The modeling process generally achieved low mean squared errors (0.0000032 in the case of the hydrocarbon emissions model for the models developed and was attributed to the collection of a larger training sample data using the 1D engine model. The multi-objective optimization and subsequent decisions for optimal performance have also been presented.

  13. Genetic depletion of glutathione peroxidase-1 potentiates nephrotoxicity induced by multiple doses of cocaine via activation of angiotensin II AT1 receptor.

    Science.gov (United States)

    Mai, Huynh Nhu; Chung, Yoon Hee; Shin, Eun-Joo; Kim, Dae-Joong; Jeong, Ji Hoon; Nguyen, Thuy-Ty Lan; Nam, Yunsung; Lee, Yu Jeung; Nah, Seung-Yeol; Yu, Dae-Yeul; Jang, Choon-Gon; Ho, Ye-Shih; Lei, Xin Gen; Kim, Hyoung-Chun

    2016-01-01

    We investigated the possible roles of angiotensin II type 1 receptor (AT1R) and oxidative stress responsive nuclear factor κB (NFκB) in renal damage caused by multiple doses of cocaine in glutathione peroxidase (GPx)-1 gene-depleted mice. Treatment with cocaine resulted in significant increases in malondialdehyde, protein carbonyl, and pro-apoptotic Bax expression and decreases in the ratio of glutathione (GSH) and its oxidized form (GSSG), GSH-dependent enzymes, and anti-apoptotic factors in the kidney. These alterations were more pronounced in GPx-1 knockout (-/-) mice than in wild type (WT) mice. Notably, the AT1R antagonist losartan protected against the renal toxicity induced by cocaine, whereas the NFκB inhibitor pyrrolidine dithiocarbamate was not protective. The toxicity was more pronounced in GPx-1 (-/-) mice than in WT mice. The protective effect afforded by losartan against cocaine toxicity appeared to be more sensitive in GPx-1 (-/-) mice than that in WT mice. These losartan-mediated protective effects were inhibited by the phosphatidyl-inositol-3-kinase (PI3K) inhibitor LY294002, indicating that losartan provides significant protection from cocaine-induced renal toxicity through PI3K/Akt signaling. Our results suggest that genetic inhibition of GPx-1 potentiates cocaine-induced renal damage via activation of AT1R by inhibition of PI3K-Akt signaling, and that AT1R can be a therapeutic target against renal toxicity induced by cocaine.

  14. Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-II

    Science.gov (United States)

    Dhingra, Sunil; Bhushan, Gian; Dubey, Kashyap Kumar

    2014-03-01

    The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NO x , unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NO x , HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NO x , HC, smoke, a multiobjective optimization problem is formulated. Nondominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.

  15. Human BLCAP transcript: new editing events in normal and cancerous tissues.

    Science.gov (United States)

    Galeano, Federica; Leroy, Anne; Rossetti, Claudia; Gromova, Irina; Gautier, Philippe; Keegan, Liam P; Massimi, Luca; Di Rocco, Concezio; O'Connell, Mary A; Gallo, Angela

    2010-07-01

    Bladder cancer-associated protein (BLCAP) is a highly conserved protein among species, and it is considered a novel candidate tumor suppressor gene originally identified from human bladder carcinoma. However, little is known about the regulation or the function of this protein. Here, we show that the human BLCAP transcript undergoes multiple A-to-I editing events. Some of the new editing events alter the highly conserved amino terminus of the protein creating alternative protein isoforms by changing the genetically coded amino acids. We found that both ADAR1 and ADAR2-editing enzymes cooperate to edit this transcript and that different tissues displayed distinctive ratios of edited and unedited BLCAP transcripts. Moreover, we observed a general decrease in BLCAP-editing level in astrocytomas, bladder cancer and colorectal cancer when compared with the related normal tissues. The newly identified editing events, found to be downregulated in cancers, could be useful for future studies as a diagnostic tool to distinguish malignancies or epigenetic changes in different tumors.

  16. Genome editing and assisted reproduction: curing embryos, society or prospective parents?

    Science.gov (United States)

    Cavaliere, Giulia

    2017-07-19

    This paper explores the ethics of introducing genome-editing technologies as a new reproductive option. In particular, it focuses on whether genome editing can be considered a morally valuable alternative to preimplantation genetic diagnosis (PGD). Two arguments against the use of genome editing in reproduction are analysed, namely safety concerns and germline modification. These arguments are then contrasted with arguments in favour of genome editing, in particular with the argument of the child's welfare and the argument of parental reproductive autonomy. In addition to these two arguments, genome editing could be considered as a worthy alternative to PGD as it may not be subjected to some of the moral critiques moved against this technology. Even if these arguments offer sound reasons in favour of introducing genome editing as a new reproductive option, I conclude that these benefits should be balanced against other considerations. More specifically, I maintain that concerns regarding the equality of access to assisted reproduction and the allocation of scarce resources should be addressed prior to the adoption of genome editing as a new reproductive option.

  17. The Smart Programmable CRISPR Technology: A Next Generation Genome Editing Tool for Investigators.

    Science.gov (United States)

    Chakraborty, Chiranjib; Teoh, Seong Lin; Das, Srijit

    2017-01-01

    The present era is fast experiencing rapid innovation in the genome-editing technology. CRISPR Cas9-mediated targeted genetic manipulation is an easy, cost-effective and scalable method. As a result, it can be used for a broad range of targeted genome engineering. The main objective of the present review is to highlight the structural signature, classification, its mechanism and application from basic science to medicine and future challenges for this genome editing tool kit. The present review provides a brief description of the recent development of CRISPR-Cas9 genome editing technology. We discuss the paradigms shift for this next generation genome editing technology, CRISPR. The CRISPR structural significance, classification and its different applications are also being discussed. We portray the future challenges for this extraordinary genome in vivo editing tool. We also highlight the role of CRISPR genome editing in curing many diseases. Scientists and researchers are constantly looking one genome editing tool that is competent, simple and low-cost assembly of nucleases. It can target any particular site without any off-target mutations in the genome. The CRISPR-Cas9 has all of the above characteristics. The genome engineering technology may be a strong and inspiring technology meant for the next generation of drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. A non-inheritable maternal Cas9-based multiple-gene editing system in mice.

    Science.gov (United States)

    Sakurai, Takayuki; Kamiyoshi, Akiko; Kawate, Hisaka; Mori, Chie; Watanabe, Satoshi; Tanaka, Megumu; Uetake, Ryuichi; Sato, Masahiro; Shindo, Takayuki

    2016-01-28

    The CRISPR/Cas9 system is capable of editing multiple genes through one-step zygote injection. The preexisting method is largely based on the co-injection of Cas9 DNA (or mRNA) and guide RNAs (gRNAs); however, it is unclear how many genes can be simultaneously edited by this method, and a reliable means to generate transgenic (Tg) animals with multiple gene editing has yet to be developed. Here, we employed non-inheritable maternal Cas9 (maCas9) protein derived from Tg mice with systemic Cas9 overexpression (Cas9 mice). The maCas9 protein in zygotes derived from mating or in vitro fertilization of Tg/+ oocytes and +/+ sperm could successfully edit the target genome. The efficiency of such maCas9-based genome editing was comparable to that of zygote microinjection-based genome editing widely used at present. Furthermore, we demonstrated a novel approach to create "Cas9 transgene-free" gene-modified mice using non-Tg (+/+) zygotes carrying maCas9. The maCas9 protein in mouse zygotes edited nine target loci simultaneously after injection with nine different gRNAs alone. Cas9 mouse-derived zygotes have the potential to facilitate the creation of genetically modified animals carrying the Cas9 transgene, enabling repeatable genome engineering and the production of Cas9 transgene-free mice.

  19. A non-inheritable maternal Cas9-based multiple-gene editing system in mice

    Science.gov (United States)

    Sakurai, Takayuki; Kamiyoshi, Akiko; Kawate, Hisaka; Mori, Chie; Watanabe, Satoshi; Tanaka, Megumu; Uetake, Ryuichi; Sato, Masahiro; Shindo, Takayuki

    2016-01-01

    The CRISPR/Cas9 system is capable of editing multiple genes through one-step zygote injection. The preexisting method is largely based on the co-injection of Cas9 DNA (or mRNA) and guide RNAs (gRNAs); however, it is unclear how many genes can be simultaneously edited by this method, and a reliable means to generate transgenic (Tg) animals with multiple gene editing has yet to be developed. Here, we employed non-inheritable maternal Cas9 (maCas9) protein derived from Tg mice with systemic Cas9 overexpression (Cas9 mice). The maCas9 protein in zygotes derived from mating or in vitro fertilization of Tg/+ oocytes and +/+ sperm could successfully edit the target genome. The efficiency of such maCas9-based genome editing was comparable to that of zygote microinjection–based genome editing widely used at present. Furthermore, we demonstrated a novel approach to create “Cas9 transgene-free” gene-modified mice using non-Tg (+/+) zygotes carrying maCas9. The maCas9 protein in mouse zygotes edited nine target loci simultaneously after injection with nine different gRNAs alone. Cas9 mouse-derived zygotes have the potential to facilitate the creation of genetically modified animals carrying the Cas9 transgene, enabling repeatable genome engineering and the production of Cas9 transgene-free mice. PMID:26817415

  20. Microinjection for Transgenesis and Genome Editing in Threespine Sticklebacks.

    Science.gov (United States)

    Erickson, Priscilla A; Ellis, Nicholas A; Miller, Craig T

    2016-05-13

    The threespine stickleback fish has emerged as a powerful system to study the genetic basis of a wide variety of morphological, physiological, and behavioral phenotypes. The remarkably diverse phenotypes that have evolved as marine populations adapt to countless freshwater environments, combined with the ability to cross marine and freshwater forms, provide a rare vertebrate system in which genetics can be used to map genomic regions controlling evolved traits. Excellent genomic resources are now available, facilitating molecular genetic dissection of evolved changes. While mapping experiments generate lists of interesting candidate genes, functional genetic manipulations are required to test the roles of these genes. Gene regulation can be studied with transgenic reporter plasmids and BACs integrated into the genome using the Tol2 transposase system. Functions of specific candidate genes and cis-regulatory elements can be assessed by inducing targeted mutations with TALEN and CRISPR/Cas9 genome editing reagents. All methods require introducing nucleic acids into fertilized one-cell stickleback embryos, a task made challenging by the thick chorion of stickleback embryos and the relatively small and thin blastomere. Here, a detailed protocol for microinjection of nucleic acids into stickleback embryos is described for transgenic and genome editing applications to study gene expression and function, as well as techniques to assess the success of transgenesis and recover stable lines.

  1. Diesel Technology: Steering and Suspension. Second Edition. Teacher Edition [and] Student Edition.

    Science.gov (United States)

    Miller, Roger; Scarberry, Terry; Tesch, Carl; Kellum, Mary

    These teacher and student editions on steering and suspension are part of the diesel mechanics series of instructional materials. The series aligns with the medium/heavy duty truck task list developed by the National Automotive Technicians Education Foundation and used by the National Institute for Automotive Service Excellence in the…

  2. Diesel Technology: Safety Skills. Teacher Edition [and] Student Edition. Second Edition.

    Science.gov (United States)

    Kellum, Mary

    Teacher and student editions of this document are one in a series of competency-based instructional materials for diesel technology programs. The series aligns with the medium/heavy diesel duty truck task list used by the National Institute for Automotive Service Excellence in the certification of medium/heavy duty truck technicians. Introductory…

  3. CRISPR-Cas9 Genome Editing for Treatment of Atherogenic Dyslipidemia.

    Science.gov (United States)

    Chadwick, Alexandra C; Musunuru, Kiran

    2018-01-01

    Although human genetics has resulted in the identification of novel lipid-related genes that can be targeted for the prevention of atherosclerotic vascular disease, medications targeting these genes or their protein products have short-term effects and require frequent administration during the course of the lifetime for maximal benefit. Genome-editing technologies, such as CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) have the potential to permanently alter genes in the body and produce long-term and even lifelong protection against atherosclerosis. In this review, we discuss recent advances in genome-editing technologies and early proof-of-concept studies of somatic in vivo genome editing in mice that highlight the potential of genome editing to target disease-related genes in patients, which would establish a novel therapeutic paradigm for atherosclerosis. © 2017 American Heart Association, Inc.

  4. Genome-editing technologies and patent landscape overview.

    Science.gov (United States)

    Benahmed-Miniuk, Fairouz; Kresz, Mat; Kanaujiya, Jitendra K; Southgate, Christopher D

    2017-05-01

    Unlike with zinc finger nuclease and transcriptional activator-like effector nuclease DNA modification technologies that rely on lead proteins, developed through expensive and time-consuming processes, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system has rapidly emerged as the most promising gene-editing technology to date for the modification of any selected DNA sequence. CRISPR is receiving tremendous fanfare due, in part, to its potential to provide a means to fundamentally alter medical genetics and especially cancer medicine. In this review, we compare key technologies of genome-editing zinc finger nucleases, transcriptional activator-like effector nucleases and CRISPR, with a focus on the race to acquire lucrative intellectual property rights, the current CRISPR patent dispute and potential repercussions on innovation and the adoption of this promising technology by the medical community.

  5. From hacking the human genome to editing organs.

    Science.gov (United States)

    Tobita, Takamasa; Guzman-Lepe, Jorge; Collin de l'Hortet, Alexandra

    2015-01-01

    In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies.

  6. Genome Editing During Development Using the CRISPR-Cas Technology.

    Science.gov (United States)

    Arzate-Mejía, Rodrigo G; Licona-Limón, Paula; Recillas-Targa, Félix

    2018-01-01

    Over the years, the study of gene function during development involved the implementation of sophisticated transgenic strategies to visualize how organisms change during their lifetime. These strategies are diverse and extremely useful and allowed the discovery of some of the fundamental mechanisms governing organism's development. Such strategies can be time-consuming, in some cases expensive, and require complex infrastructure. With the advent of the genome editing CRISPR-Cas9 RNA-guided DNA endonuclease system a tremendous progress has been achieved in manipulating diverse organisms and cell types. In recent years this system has contributed importantly to the design of novel experimental strategies to further understand developmental processes, to generate genetically modified animal models, and develop disease models. Here we highlight examples in which the genome editing CRISPR-Cas9 system has been employed to understand the mechanisms controlling embryonic development and disease.

  7. Statistical Physics Approaches to RNA Editing

    Science.gov (United States)

    Bundschuh, Ralf

    2012-02-01

    The central dogma of molecular Biology states that DNA is transcribed base by base into RNA which is in turn translated into proteins. However, some organisms edit their RNA before translation by inserting, deleting, or substituting individual or short stretches of bases. In many instances the mechanisms by which an organism recognizes the positions at which to edit or by which it performs the actual editing are unknown. One model system that stands out by its very high rate of on average one out of 25 bases being edited are the Myxomycetes, a class of slime molds. In this talk we will show how the computational methods and concepts from statistical Physics can be used to analyze DNA and protein sequence data to predict editing sites in these slime molds and to guide experiments that identified previously unknown types of editing as well as the complete set of editing events in the slime mold Physarum polycephalum.

  8. Progress and prospects in plant genome editing.

    Science.gov (United States)

    Yin, Kangquan; Gao, Caixia; Qiu, Jin-Long

    2017-07-31

    The emergence of sequence-specific nucleases that enable genome editing is revolutionizing basic and applied biology. Since the introduction of CRISPR-Cas9, genome editing has become widely used in transformable plants for characterizing gene function and improving traits, mainly by inducing mutations through non-homologous end joining of double-stranded breaks generated by CRISPR-Cas9. However, it would be highly desirable to perform precision gene editing in plants, especially in transformation-recalcitrant species. Recently developed Cas9 variants, novel RNA-guided nucleases and base-editing systems, and DNA-free CRISPR-Cas9 delivery methods now provide great opportunities for plant genome engineering. In this Review Article, we describe the current status of plant genome editing, focusing on newly developed genome editing tools and methods and their potential applications in plants. We also discuss the specific challenges facing plant genome editing, and future prospects.

  9. Cutting Edges and Weaving Threads in the Gene Editing (Я)evolution: Reconciling scientific progress with Legal, Ethical, & Social concerns 

    DEFF Research Database (Denmark)

    Nordberg, Ana; Minssen, Timo; Holm, Sune Hannibal

    2018-01-01

    Gene editing technologies, such as CRISPR/Cas9, hold great promises for the advancement of science and technology. These foundational technologies enable to modify the genetic structure of living organisms with unprecedented precision. Potential applications include both plant, animal and human g...... scientists, and physicists analyses and discusses the most problematic legal, ethical and societal implications of gene editing....

  10. Analysis of genetic variants of class II cytokine and their receptor genes in psoriasis patients of two ethnic groups from the Volga-Ural region of Russia.

    Science.gov (United States)

    Galimova, Elvira; Akhmetova, Vita; Latipov, Boris; Kingo, Külli; Rätsep, Ranno; Traks, Tanel; Kõks, Sulev; Khusnutdinova, Elza

    2012-10-01

    The molecular basis of pathogenesis of psoriasis remains unclear, but one unifying hypothesis of disease aetiology is the cytokine network model. The class II cytokines (CF2) and their receptors (CRF2) are all involved in the inflammatory processes and single nucleotide polymorphisms (SNPs) in respective genes have been associated with psoriasis in a previous study of the Estonian population. We performed a replication study of 47 SNPs in CF2 and CRF2 genes in independent cohorts of psoriasis patients of two ethnic groups (Russians and Bashkirs) from the Volga-Ural region of Russia. DNA was obtained from 395 psoriasis patients of two ethnic groups from the Volga-Ural region of Russia and 476 ethnically matched controls. 47 SNPs in the loci of the genes encoding Class II cytokines and their receptors were selected by SNPbrowser version 3.5. Genotyping was performed using the SNPlex™ (Applied Biosystems) platform. The genetic variant rs30461 previously associated in original case-control study in Estonians, was also associated in Russians (corrected P-value (Pc=0.008, OR=0.44), but did not reach statistical significance in the Bashkir population. Additionally, the haplotype analysis provided that CC haplotype formed by the SNPs rs30461 and rs955155 had a protective effect in Russians (Pc=0.0024, OR=0.44), supporting the involvement of this locus in the protection against psoriasis. Combined meta-analysis of three populations, including 943 psoriasis patients and 812 healthy controls, showed that the IL29 rs30461 C-allele was not associated with decreased risk of psoriasis (P=0.165, OR=0.68). Moreover, stratification of studies by ethnicity revealed a significant association in the European cohort (P=9.506E-006, OR=0.53). Therefore, there is no overall evidence of association between psoriasis and SNP rs30461 of the IL29 gene, but there is some evidence to suggest that an association exists in Europeans. However, this current concept should be considered as

  11. A Large-Scale Genetic Analysis Reveals a Strong Contribution of the HLA Class II Region to Giant Cell Arteritis Susceptibility

    Science.gov (United States)

    Carmona, F. David; Mackie, Sarah L.; Martín, Jose-Ezequiel; Taylor, John C.; Vaglio, Augusto; Eyre, Stephen; Bossini-Castillo, Lara; Castañeda, Santos; Cid, Maria C.; Hernández-Rodríguez, José; Prieto-González, Sergio; Solans, Roser; Ramentol-Sintas, Marc; González-Escribano, M. Francisca; Ortiz-Fernández, Lourdes; Morado, Inmaculada C.; Narváez, Javier; Miranda-Filloy, José A.; Martínez-Berriochoa, Agustín; Unzurrunzaga, Ainhoa; Hidalgo-Conde, Ana; Madroñero-Vuelta, Ana B.; Fernández-Nebro, Antonio; Ordóñez-Cañizares, M. Carmen; Escalante, Begoña; Marí-Alfonso, Begoña; Sopeña, Bernardo; Magro, César; Raya, Enrique; Grau, Elena; Román, José A.; de Miguel, Eugenio; López-Longo, F. Javier; Martínez, Lina; Gómez-Vaquero, Carmen; Fernández-Gutiérrez, Benjamín; Rodríguez-Rodríguez, Luis; Díaz-López, J. Bernardino; Caminal-Montero, Luis; Martínez-Zapico, Aleida; Monfort, Jordi; Tío, Laura; Sánchez-Martín, Julio; Alegre-Sancho, Juan J.; Sáez-Comet, Luis; Pérez-Conesa, Mercedes; Corbera-Bellalta, Marc; García-Villanueva, M. Jesús; Fernández-Contreras, M. Encarnación; Sanchez-Pernaute, Olga; Blanco, Ricardo; Ortego-Centeno, Norberto; Ríos-Fernández, Raquel; Callejas, José L.; Fanlo-Mateo, Patricia; Martínez-Taboada, Víctor M.; Beretta, Lorenzo; Lunardi, Claudio; Cimmino, Marco A.; Gianfreda, Davide; Santilli, Daniele; Ramirez, Giuseppe A.; Soriano, Alessandra; Muratore, Francesco; Pazzola, Giulia; Addimanda, Olga; Wijmenga, Cisca; Witte, Torsten; Schirmer, Jan H.; Moosig, Frank; Schönau, Verena; Franke, Andre; Palm, Øyvind; Molberg, Øyvind; Diamantopoulos, Andreas P.; Carette, Simon; Cuthbertson, David; Forbess, Lindsy J.; Hoffman, Gary S.; Khalidi, Nader A.; Koening, Curry L.; Langford, Carol A.; McAlear, Carol A.; Moreland, Larry; Monach, Paul A.; Pagnoux, Christian; Seo, Philip; Spiera, Robert; Sreih, Antoine G.; Warrington, Kenneth J.; Ytterberg, Steven R.; Gregersen, Peter K.; Pease, Colin T.; Gough, Andrew; Green, Michael; Hordon, Lesley; Jarrett, Stephen; Watts, Richard; Levy, Sarah; Patel, Yusuf; Kamath, Sanjeet; Dasgupta, Bhaskar; Worthington, Jane; Koeleman, Bobby P.C.; de Bakker, Paul I.W.; Barrett, Jennifer H.; Salvarani, Carlo; Merkel, Peter A.; González-Gay, Miguel A.; Morgan, Ann W.; Martín, Javier

    2015-01-01

    We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10−40, OR = 1.73). A multivariate model including class II amino acids of HLA-DRβ1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB1∗04. An omnibus test on polymorphic amino acid positions highlighted DRβ1 13 (p = 4.08 × 10−43) and HLA-DQα1 47 (p = 4.02 × 10−46), 56, and 76 (both p = 1.84 × 10−45) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10−6, OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10−6, OR = 1.20), and REL (rs115674477, p = 1.10 × 10−5, OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function. PMID:25817017

  12. Editing as a psychological practice.

    Science.gov (United States)

    Beebe, John

    2006-06-01

    The experience of the Jungian analyst in the role of editor of manuscripts by creative colleagues is examined. Historical precedents include Michael Fordham's editorial correspondence with Jung around the latter's synchronicity essay; Jung's handling of manuscripts submitted by Sabina Spielrein to the Jahrbuch für psychoanalytische und psychopathologische Forschungen and various authors to the Zentralblatt für Psychotherapie und ihre Grenzgebiete, and the author's close editing of a paper submitted by Andrew Samuels to the Journal of Analytical Psychology. In addition to mustering an adequate amount of generosity, erudition, and availability, the analytic editor must know how to clarify a psychological argument and to gauge the psychological impact of the written text. Notwithstanding transference/countertransference phenomena that can emerge around issues of competition, envy, and territoriality when author and editor are also fellow-authors working in the same field, the editor needs to be comfortable about serving as the author's selfobject and midwife. From an analytic perspective, although communicating decisions about the best way to put ideas into words can sometimes attract transference to the editor, the more profound transference that analysts experience in the editing situation is toward the text being edited, which helps to motivate donated time spent caring for journal manuscripts.

  13. Retinal sensitivity in subjects with type 2 diabetes mellitus: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study (SN-DREAMS II, Report No. 4).

    Science.gov (United States)

    Gella, Laxmi; Raman, Rajiv; Kulothungan, Vaitheeswaran; Saumya Pal, Swakshyar; Ganesan, Suganeswari; Sharma, Tarun

    2016-06-01

    To evaluate retinal sensitivity (RS) in subjects with diabetes in a population-based study and to elucidate associated risk factors for abnormal RS. A subset of 357 subjects from Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study-II was included in this study. All subjects underwent detailed ophthalmic evaluation including microperimetry and spectral domain optical coherence tomography. The prevalence of abnormal mean retinal sensitivity (MRS) was 89.1%. MRS was significantly reduced in subjects with diabetes but no retinopathy when compared with non-diabetic subjects. MRS was reduced in moderate non-proliferative diabetic retinopathy (DR) and macular oedema (ME) at 8° (p=0.04, p=0.01, respectively) and in ME at 10° (p=0.009) and 12° (p=0.036) compared with no DR. Significant negative correlation was found between MRS and best corrected visual acuity, duration of diabetes, glycosylated haemoglobin and central foveal thickness. Increased retinal thickness remained a significant risk factor (OR, 1.02; p=0.044) for abnormal MRS. Altered inner retinal layers and foveal contour were associated with reduced MRS among subjects with DR and presence of epiretinal membrane, altered foveal contour and altered retinal pigment epithelium were associated with reduced MRS. Reduced RS in those subjects with diabetes but no retinopathy suggests the early neuronal damage in type 2 diabetes mellitus. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Impairment of Colour Vision in Diabetes with No Retinopathy: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study (SNDREAMS- II, Report 3.

    Directory of Open Access Journals (Sweden)

    Laxmi Gella

    Full Text Available To assess impairment of colour vision in type 2 diabetics with no diabetic retinopathy and elucidate associated risk factors in a population-based cross-sectional study.This is part of Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular-genetics Study (SN-DREAMS II which was conducted between 2007-2010. FM 100 hue-test was performed in 253 subjects with no clinical evidence of diabetic retinopathy. All subjects underwent detailed ophthalmic evaluation including cataract grading using LOCS III and 45° 4-field stereoscopic fundus photography. Various ocular and systemic risk factors for impairment of colour vision (ICV were assessed in subjects with diabetes but no retinopathy. P value of < 0.05 was considered statistically significant.The mean age of the study sample was 57.08 ± 9.21 (range: 44-86 years. Gender adjusted prevalence of ICV among subjects with diabetes with no retinopathy was 39.5% (CI: 33.5-45.5. The mean total error score in the study sample was 197.77 ± 100 (range: 19-583. The risk factors for ICV in the study were women OR: 1.79 (1.00-3.18, increased resting heart rate OR: 1.04 (1.01-1.07 and increased intraocular pressure OR: 1.12 (1.00-1.24. Significant protective factor was serum high-density lipoprotein OR: 0.96 (0.93-0.99.Acquired ICV is an early indicator of neurodegenerative changes in the retina. ICV found in diabetic subjects without retinopathy may be of non-vascular etiology.

  15. Confirmatory Factor Structure of the Kaufman Assessment Battery for Children-Second Edition with Preschool Children: Too Young for Differentiation?

    Science.gov (United States)

    Potvin, Deborah C. H.; Keith, Timothy Z.; Caemmerer, Jacqueline M.; Trundt, Katherine M.

    2015-01-01

    With an age range from 3 to 13 years, the Kaufman Assessment Battery for Children-Second Edition (KABC-II) offers an appealing option for the assessment of cognitive abilities for children. Although independent research has provided evidence of the construct validity of the KABC-II for school-age children, previous studies have rarely included an…

  16. CRISPR Editing Technology in Biological and Biomedical Investigation.

    Science.gov (United States)

    White, Martyn K; Kaminski, Rafal; Young, Won-Bin; Roehm, Pamela C; Khalili, Kamel

    2017-11-01

    The CRISPR or clustered regularly interspaced short palindromic repeats system is currently the most advanced approach to genome editing and is notable for providing an unprecedented degree of specificity, effectiveness, and versatility in genetic manipulation. CRISPR evolved as a prokaryotic immune system to provide an acquired immunity and resistance to foreign genetic elements such as bacteriophages. It has recently been developed into a tool for the specific targeting of nucleotide sequences within complex eukaryotic genomes for the purpose of genetic manipulation. The power of CRISPR lies in its simplicity and ease of use, its flexibility to be targeted to any given nucleotide sequence by the choice of an easily synthesized guide RNA, and its ready ability to continue to undergo technical improvements. Applications for CRISPR are numerous including creation of novel transgenic cell animals for research, high-throughput screening of gene function, potential clinical gene therapy, and nongene-editing approaches such as modulating gene activity and fluorescent tagging. In this prospect article, we will describe the salient features of the CRISPR system with an emphasis on important drawbacks and considerations with respect to eliminating off-target events and obtaining efficient CRISPR delivery. We will discuss recent technical developments to the system and we will illustrate some of the most recent applications with an emphasis on approaches to eliminate human viruses including HIV-1, JCV and HSV-1 and prospects for the future. J. Cell. Biochem. 118: 3586-3594, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Integrity of the core mitochondrial RNA-binding complex 1/nis vital for trypanosome RNA editing

    Czech Academy of Sciences Publication Activity Database

    Huang, Zhenqiu; Faktorová, Drahomíra; Křížová, A.; Kafková, L.; Read, L. K.; Lukeš, Julius; Hashimi, Hassan

    2015-01-01

    Roč. 21, č. 12 (2015), s. 2088-2102 ISSN 1355-8382 R&D Projects: GA ČR GA15-21974S EU Projects: European Commission(XE) 289007 Institutional support: RVO:60077344 Keywords : RNA editing * mitochondrion * trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.344, year: 2015

  18. Mucopolysaccharidosis type II

    Science.gov (United States)

    Genetic counseling is recommended for couples who want to have children and who have a family history of MPS II. Prenatal testing is available. Carrier testing for female relatives of affected males is available at a few centers.

  19. RNA editing in plants and its evolution.

    Science.gov (United States)

    Takenaka, Mizuki; Zehrmann, Anja; Verbitskiy, Daniil; Härtel, Barbara; Brennicke, Axel

    2013-01-01

    RNA editing alters the identity of nucleotides in RNA molecules such that the information for a protein in the mRNA differs from the prediction of the genomic DNA. In chloroplasts and mitochondria of flowering plants, RNA editing changes C nucleotides to U nucleotides; in ferns and mosses, it also changes U to C. The approximately 500 editing sites in mitochondria and 40 editing sites in plastids of flowering plants are individually addressed by specific proteins, genes for which are amplified in plant species with organellar RNA editing. These proteins contain repeat elements that bind to cognate RNA sequence motifs just 5' to the edited nucleotide. In flowering plants, the site-specific proteins interact selectively with individual members of a different, smaller family of proteins. These latter proteins may be connectors between the site-specific proteins and the as yet unknown deaminating enzymatic activity.

  20. Connectivity editing for quad-dominant meshes

    KAUST Repository

    Peng, Chihan

    2013-08-01

    We propose a connectivity editing framework for quad-dominant meshes. In our framework, the user can edit the mesh connectivity to control the location, type, and number of irregular vertices (with more or fewer than four neighbors) and irregular faces (non-quads). We provide a theoretical analysis of the problem, discuss what edits are possible and impossible, and describe how to implement an editing framework that realizes all possible editing operations. In the results, we show example edits and illustrate the advantages and disadvantages of different strategies for quad-dominant mesh design. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  1. Genome Editing of Structural Variations: Modeling and Gene Correction.

    Science.gov (United States)

    Park, Chul-Yong; Sung, Jin Jea; Kim, Dong-Wook

    2016-07-01

    The analysis of chromosomal structural variations (SVs), such as inversions and translocations, was made possible by the completion of the human genome project and the development of genome-wide sequencing technologies. SVs contribute to genetic diversity and evolution, although some SVs can cause diseases such as hemophilia A in humans. Genome engineering technology using programmable nucleases (e.g., ZFNs, TALENs, and CRISPR/Cas9) has been rapidly developed, enabling precise and efficient genome editing for SV research. Here, we review advances in modeling and gene correction of SVs, focusing on inversion, translocation, and nucleotide repeat expansion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Operational Transformation In Co-Operative Editing

    Directory of Open Access Journals (Sweden)

    Mandeep Kaur

    2015-08-01

    Full Text Available Cooperative Editing Systems in real-time allows a virtual team to view and edit a shared document at the same time. The document shared must be synchronized in order to ensure consistency for all the participants. This paper describes the Operational Transformation the evolution of its techniques its various applications major issues and achievements. In addition this paper will present working of a platform where two users can edit a code programming file at the same time.

  3. English-to-Japanese Translation vs. Dictation vs. Post-editing

    DEFF Research Database (Denmark)

    Carl, Michael; Aizawa, Akiko; Yamada, Masaru

    2016-01-01

    post-editing. The transcription of the spoken data, keyboard logging and eye-tracking data were recorded with Translog-II, post-processed and integrated into the CRITT Translation Process Research-DB (TPR-DB), which is publicly available under a creative commons license. The paper presents the ENJA15...

  4. The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops

    Science.gov (United States)

    Khatodia, Surender; Bhatotia, Kirti; Passricha, Nishat; Khurana, S. M. P.; Tuteja, Narendra

    2016-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats associated Cas9/sgRNA system is a novel targeted genome-editing technique derived from bacterial immune system. It is an inexpensive, easy, most user friendly and rapidly adopted genome editing tool transforming to revolutionary paradigm. This technique enables precise genomic modifications in many different organisms and tissues. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double-stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE) crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in a changing climate. The emerging areas of research for the genome editing in plants include interrogating gene function, rewiring the regulatory signaling networks and sgRNA library for high-throughput loss-of-function screening. In this review, we have described the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been described. With this powerful and innovative technique the designer GE non-GM plants could further advance climate resilient and sustainable agriculture in the future and maximizing yield by combating abiotic and biotic stresses. PMID:27148329

  5. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases.

    Science.gov (United States)

    Periwal, Vinita

    2017-07-01

    Genome editing with engineered nucleases (zinc finger nucleases, TAL effector nucleases s and Clustered regularly inter-spaced short palindromic repeats/CRISPR-associated) has recently been shown to have great promise in a variety of therapeutic and biotechnological applications. However, their exploitation in genetic analysis and clinical settings largely depends on their specificity for the intended genomic target. Large and complex genomes often contain highly homologous/repetitive sequences, which limits the specificity of genome editing tools and could result in off-target activity. Over the past few years, various computational approaches have been developed to assist the design process and predict/reduce the off-target activity of these nucleases. These tools could be efficiently used to guide the design of constructs for engineered nucleases and evaluate results after genome editing. This review provides a comprehensive overview of various databases, tools, web servers and resources for genome editing and compares their features and functionalities. Additionally, it also describes tools that have been developed to analyse post-genome editing results. The article also discusses important design parameters that could be considered while designing these nucleases. This review is intended to be a quick reference guide for experimentalists as well as computational biologists working in the field of genome editing with engineered nucleases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops.

    Science.gov (United States)

    Khatodia, Surender; Bhatotia, Kirti; Passricha, Nishat; Khurana, S M P; Tuteja, Narendra

    2016-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats associated Cas9/sgRNA system is a novel targeted genome-editing technique derived from bacterial immune system. It is an inexpensive, easy, most user friendly and rapidly adopted genome editing tool transforming to revolutionary paradigm. This technique enables precise genomic modifications in many different organisms and tissues. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double-stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE) crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in a changing climate. The emerging areas of research for the genome editing in plants include interrogating gene function, rewiring the regulatory signaling networks and sgRNA library for high-throughput loss-of-function screening. In this review, we have described the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been described. With this powerful and innovative technique the designer GE non-GM plants could further advance climate resilient and sustainable agriculture in the future and maximizing yield by combating abiotic and biotic stresses.

  7. Therapeutic applications of CRISPR RNA-guided genome editing.

    Science.gov (United States)

    Koo, Taeyoung; Kim, Jin-Soo

    2017-01-01

    The rapid development of programmable nuclease-based genome editing technologies has enabled targeted gene disruption and correction both in vitro and in vivo This revolution opens up the possibility of precise genome editing at target genomic sites to modulate gene function in animals and plants. Among several programmable nucleases, the type II clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) system has progressed remarkably in recent years, leading to its widespread use in research, medicine and biotechnology. In particular, CRISPR-Cas9 shows highly efficient gene editing activity for therapeutic purposes in systems ranging from patient stem cells to animal models. However, the development of therapeutic approaches and delivery methods remains a great challenge for biomedical applications. Herein, we review therapeutic applications that use the CRISPR-Cas9 system and discuss the possibilities and challenges ahead. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. [Advances in CRISPR-Cas-mediated genome editing system in plants].

    Science.gov (United States)

    Wang, Chun; Wang, Kejian

    2017-10-25

    Targeted genome editing technology is an important tool to study the function of genes and to modify organisms at the genetic level. Recently, CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) system has emerged as an efficient tool for specific genome editing in animals and plants. CRISPR-Cas system uses CRISPR-associated endonuclease and a guide RNA to generate double-strand breaks at the target DNA site, subsequently leading to genetic modifications. CRISPR-Cas system has received widespread attention for manipulating the genomes with simple, easy and high specificity. This review summarizes recent advances of diverse applications of the CRISPR-Cas toolkit in plant research and crop breeding, including expanding the range of genome editing, precise editing of a target base, and efficient DNA-free genome editing technology. This review also discusses the potential challenges and application prospect in the future, and provides a useful reference for researchers who are interested in this field.

  9. A Review of CRISPR-Based Genome Editing: Survival, Evolution and Challenges.

    Science.gov (United States)

    Ahmad, Hafiz Ishfaq; Ahmad, Muhammad Jamil; Asif, Akhtar Rasool; Adnan, Muhammad; Iqbal, Muhammad Kashif; Mehmood, Khalid; Muhammad, Sayyed Aun; Bhuiyan, Ali Akbar; Elokil, Abdelmotaleb; Du, Xiaoyong; Zhao, Changzhi; Liu, Xiangdong; Xie, Shengsong

    2018-02-11

    Precise nucleic acid editing technologies have facilitated the research of cellular function and the development of novel therapeutics, especially the current programmable nucleases-based editing tools, such as the prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases (Cas). As CRISPR-based therapies are advancing toward human clinical trials, it is important to understand how natural genetic variation in the human population may affect the results of these trials and even patient safety. The development of "base-editing" technique allows the direct, stable transformation of target DNA base into an alternative in a programmable way, without DNA double strand cleavage or a donor template. Genome-editing techniques hold promises for the treatment of genetic disease at the DNA level by blocking the sequences associated with disease from producing disease-causing proteins. Currently, scientists can select the gene they want to modify, use the Cas9 as a "molecular cutter" to cut it out, and transform it into a more desirable version. In this review, we focus on the recent advances of CRISPR/Cas system by outlining the evolutionary and biotechnological implications of current strategies for improving the specificity and accuracy of these genome-editing technologies.

  10. Applications of genome editing by programmable nucleases to the metabolic engineering of secondary metabolites.

    Science.gov (United States)

    Leitão, Ana Lúcia; Costa, Marina C; Enguita, Francisco J

    2017-01-10

    Genome engineering is a branch of modern biotechnology composed of a cohort of protocols designed to construct and modify a genotype with the main objective of giving rise to a desired phenotype. Conceptually, genome engineering is based on the so called genome editing technologies, a group of genetic techniques that allow either to delete or to insert genetic information in a particular genomic locus. Ten years ago, genome editing tools were limited to virus-driven integration and homologous DNA recombination. However, nowadays the uprising of programmable nucleases is rapidly changing this paradigm. There are two main families of modern tools for genome editing depending on the molecule that controls the specificity of the system and drives the editor machinery to its place of action. Enzymes such as Zn-finger and TALEN nucleases are protein-driven genome editors; while CRISPR system is a nucleic acid-guided editing system. Genome editing techniques are still not widely applied for the design of new compounds with pharmacological activity, but they are starting to be considered as promising tools for rational genome manipulation in biotechnology applications. In this review we will discuss the potential applications of programmable nucleases for the metabolic engineering of secondary metabolites with biological activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fuel Cell Handbook, Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  12. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. The manganese (II), cobalt (II), nickel (II) and copper (II) complexes of N, N' – bis(benzoin)ethylenediiminato have been prepared and characterized by infrared, elemental analysis, conductivity measurements and solubility. The potentiometric, and elemental analyses studies of the complexes revealed 1:1 ...

  13. GPU Computing Gems Emerald Edition

    CERN Document Server

    Hwu, Wen-mei W

    2011-01-01

    ".the perfect companion to Programming Massively Parallel Processors by Hwu & Kirk." -Nicolas Pinto, Research Scientist at Harvard & MIT, NVIDIA Fellow 2009-2010 Graphics processing units (GPUs) can do much more than render graphics. Scientists and researchers increasingly look to GPUs to improve the efficiency and performance of computationally-intensive experiments across a range of disciplines. GPU Computing Gems: Emerald Edition brings their techniques to you, showcasing GPU-based solutions including: Black hole simulations with CUDA GPU-accelerated computation and interactive display of

  14. [Tale nucleases--new tool for genome editing].

    Science.gov (United States)

    Glazkova, D V; Shipulin, G A

    2014-01-01

    The ability to introduce targeted changes in the genome of living cells or entire organisms enables researchers to meet the challenges of basic life sciences, biotechnology and medicine. Knockdown of target genes in the zygotes gives the opportunity to investigate the functions of these genes in different organisms. Replacement of single nucleotide in the DNA sequence allows to correct mutations in genes and thus to cure hereditary diseases. Adding transgene to specific genomic.loci can be used in biotechnology for generation of organisms with certain properties or cell lines for biopharmaceutical production. Such manipulations of gene sequences in their natural chromosomal context became possible after the emergence of the technology called "genome editing". This technology is based on the induction of a double-strand break in a specific genomic target DNA using endonucleases that recognize the unique sequences in the genome and on subsequent recovery of DNA integrity through the use of cellular repair mechanisms. A necessary tool for the genome editing is a custom-designed endonuclease which is able to recognize selected sequences. The emergence of a new type of programmable endonucleases, which were constructed on the basis of bacterial proteins--TAL-effectors (Transcription activators like effector), has become an important stage in the development of technology and promoted wide spread of the genome editing. This article reviews the history of the discovery of TAL effectors and creation of TALE nucleases, and describes their advantages over zinc finger endonucleases that appeared earlier. A large section is devoted to description of genetic modifications that can be performed using the genome editing.

  15. ADAR2 editing activity in newly diagnosed versus relapsed pediatric high-grade astrocytomas

    International Nuclear Information System (INIS)

    Tomaselli, Sara; Galeano, Federica; Massimi, Luca; Di Rocco, Concezio; Lauriola, Libero; Mastronuzzi, Angela; Locatelli, Franco; Gallo, Angela

    2013-01-01

    High-grade (WHO grade III and IV) astrocytomas are aggressive malignant brain tumors affecting humans with a high risk of recurrence in both children and adults. To date, limited information is available on the genetic and molecular alterations important in the onset and progression of pediatric high-grade astrocytomas and, even less, on the prognostic factors that influence long-term outcome in children with recurrence. A-to-I RNA editing is an essential post-transcriptional mechanism that can alter the nucleotide sequence of several RNAs and is mediated by the ADAR enzymes. ADAR2 editing activity is particularly important in mammalian brain and is impaired in both adult and pediatric high-grade astrocytomas. Moreover, we have recently shown that the recovered ADAR2 activity in high-grade astrocytomas inhibits in vivo tumor growth. The aim of the present study is to investigate whether changes may occur in ADAR2-mediated RNA editing profiles of relapsed high-grade astrocytomas compared to their respective specimens collected at diagnosis, in four pediatric patients. Total RNAs extracted from all tumor samples and controls were tested for RNA editing levels (by direct sequencing on cDNA pools) and for ADAR2 mRNA expression (by qRT-PCR). A significant loss of ADAR2-editing activity was observed in the newly diagnosed and recurrent astrocytomas in comparison to normal brain. Surprisingly, we found a substantial rescue of ADAR2 editing activity in the relapsed tumor of the only patient showing prolonged survival. High-grade astrocytomas display a generalized loss of ADAR2-mediated RNA editing at both diagnosis and relapse. However, a peculiar Case, in complete remission of disease, displayed a total rescue of RNA editing at relapse, intriguingly suggesting ADAR2 activity/expression as a possible marker for long-term survival of patients with high-grade astrocytomas

  16. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.

    Science.gov (United States)

    Yuen, Kit-San; Chan, Chi-Ping; Wong, Nok-Hei Mickey; Ho, Chau-Ha; Ho, Ting-Hin; Lei, Ting; Deng, Wen; Tsao, Sai Wah; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan

    2015-03-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a highly efficient and powerful tool for RNA-guided editing of the cellular genome. Whether CRISPR/Cas9 can also cleave the genome of DNA viruses such as Epstein-Barr virus (EBV), which undergo episomal replication in human cells, remains to be established. Here, we reported on CRISPR/Cas9-mediated editing of the EBV genome in human cells. Two guide RNAs (gRNAs) were used to direct a targeted deletion of 558 bp in the promoter region of BART (BamHI A rightward transcript) which encodes viral microRNAs (miRNAs). Targeted editing was achieved in several human epithelial cell lines latently infected with EBV, including nasopharyngeal carcinoma C666-1 cells. CRISPR/Cas9-mediated editing of the EBV genome was efficient. A recombinant virus with the desired deletion was obtained after puromycin selection of cells expressing Cas9 and gRNAs. No off-target cleavage was found by deep sequencing. The loss of BART miRNA expression and activity was verified, supporting the BART promoter as the major promoter of BART RNA. Although CRISPR/Cas9-mediated editing of the multicopy episome of EBV in infected HEK293 cells was mostly incomplete, viruses could be recovered and introduced into other cells at low m.o.i. Recombinant viruses with an edited genome could be further isolated through single-cell sorting. Finally, a DsRed selectable marker was successfully introduced into the EBV genome during the course of CRISPR/Cas9-mediated editing. Taken together, our work provided not only the first genetic evidence that the BART promoter drives the expression of the BART transcript, but also a new and efficient method for targeted editing of EBV genome in human cells. © 2015 The Authors.

  17. RCC-MX (2008 edition)

    International Nuclear Information System (INIS)

    Bravo, X.; Drubay, B.

    2008-10-01

    The RCC-MX books is a compilation of design and construction rules for the mechanical materials of experimental reactors, for their auxiliaries and irradiation devices. This second edition includes the updates of references to NF, EN and ISO standards, the compliance with the regulations for nuclear pressure equipments, and the feedback since the 2005 edition. It comprises 9 books and a CD-Rom and includes a presentation document. The RCC-MX has been developed for the Jules Horowitz reactor but can be used for the design and construction of new projects of new experimental reactors or new equipments and devices for existing facilities. Content: - Book 1: general dispositions, materials for experimental reactors and their auxiliaries, for irradiation devices and for control or handling mechanisms, complementary requirements and particular dispositions; - Book 2: materials for the reactor and for its level 1 auxiliaries; - Book 3: materials for the reactor and for its level 2 and level 3 auxiliaries, control and handling mechanisms, materials for irradiation devices; - Book 4: technical appendixes - materials characteristics (steels and alloys); - Book 5: technical appendixes (design rules); - Book 6: technical specifications of materials; - Book 7: tests and control methods; - Book 8: welding; - Book 9: fabrication. (J.S.)

  18. Geopressured geothermal bibliography. Volume II (geopressure thesaurus). Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    Sepehrnoori, K.; Carter, F.; Schneider, R.; Street, S.; McGill, K.

    1983-05-01

    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. It is a compilation of terms displaying synomymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system - the system vocabulary. The function of this thesaurus is to provide a standardized vocabulary for the information storage and retrieval system to facilitate both the indexing and subject-searching processes. In indexing, a thesaurus is used to translate the natural language of the document to be indexed into the standardized system vocabulary and to place the document at the appropriate level of generality or specificity in relation to the other documents in the data base. In subject retrieval, the thesaurus is used to match the natural language used in search requests with the system vocabulary and to find the most appropriate term to represent a concept.

  19. Environmental law with comments. 8. edition; Code de l'environnement commente. 8. edition

    Energy Technology Data Exchange (ETDEWEB)

    Lamarque, J. [Paris-2 Univ. Pantheon-Assas, 75 (France); Cans, Ch. [Universite du Maine, 72 - Le Mans (France); Billet, Ph. [Metz Univ., 57 (France)

    2005-07-01

    The first edition of the environmental law was published in 1980 with the aim of supplying to the large public the overall basic texts about nature protection and fight against environmental harmful effects. A particular effort has been made in this last edition to ensure the traceability of the legislative texts with respect to the historical context and to the evolution of the legislative part of the official law. This book is shared in two sections: the first section contains the legislative codified part. In this section, each article is followed by the references of the corresponding codified texts. A correspondence between the old texts and the new articles is indicated. The second section contains the application and related texts. The plan of the book is built as follows: 1 - common dispositions: general principles, information and participation of citizens, environmental institutions, environment protection associations, financial dispositions; 2 - physical environments: water and aquatic ecosystems (in particular the water pollution by hydrocarbons), air and atmosphere (air quality, atmospheric pollution, rational use of energy, pollution by radioactive compounds, greenhouse gases and effect); 3 - natural environments: inventory and development of the natural patrimony, coastal areas, natural parks and reserves, classified sites, landscapes, access to natural sites; 4 - fauna and flora: protection, hunting, fishing and management of fish resources; 5 - prevention of pollutions, risks and harmful effects: classified facilities (in particular underground storage and waste management facilities), chemical and biocide compounds, genetically modified organisms, wastes (elimination, disposal, materials recovery), particular dispositions relative to some facilities or plants, prevention of natural risks, prevention of acoustic and visual pollution, protection of life framework (advertisement); 6 - dispositions applicable in overseas territories; 7 - environment

  20. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.

    Science.gov (United States)

    Xu, Rongfang; Wei, Pengcheng; Yang, Jianbo

    2017-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) system is a newly emerging mutagenesis (gene-editing) tool in genetic engineering. Among the agriculturally important crops, several genes have been successfully mutated by the system, and some agronomic important traits have been rapidly generated, which indicates the potential applications in both scientific research and plant breeding. In this chapter, we describe a standard gene-editing procedure to effectively target rice genes and to make specific rice mutants using the CRISPR/Cas9 system mediated by Agrobacterium transformation.

  1. Application of the genome editing tool CRISPR/Cas9 in non-human primates.

    Science.gov (United States)

    Luo, Xin; Li, Min; Su, Bing

    2016-07-18

    In the past three years, RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system has been used to facilitate efficient genome editing in many model and non-model animals. However, its application in nonhuman primates is still at the early stage, though in view of the similarities in anatomy, physiology, behavior and genetics, closely related nonhuman primates serve as optimal models for human biology and disease studies. In this review, we summarize the current proceedings of gene editing using CRISPR/Cas9 in nonhuman primates.

  2. Bibliography of Fynbos ecology: 2nd edition

    CSIR Research Space (South Africa)

    Manders, PT

    1989-12-01

    Full Text Available The first edition of a bibliography of fynbos ecology was produced in 1981 and comprised 814 references to work completed or commenced prior to the initiation of the Fynbos Biome Project. It is appropriate that this second edition...

  3. The Technique of Editing 16mm. Films.

    Science.gov (United States)

    Burder, John

    For professionals and advanced amateurs, this book covers all aspects of editing 16 millimeter film. Beginning with basic matters of film gauge, equipment, and editing facilities, it covers the mechanics of the subject using a how-to-do-it approach. The techniques discussed include preparation of the sound track, cutting, mixing, choice of pace…

  4. Site-specific photochemical RNA editing.

    Science.gov (United States)

    Fujimoto, Kenzo; Konishi-Hiratsuka, Kaoru; Sakamoto, Takashi; Yoshimura, Yoshinaga

    2010-10-28

    Photo-induced artificial RNA editing was demonstrated using photo-reactive oligonucleotides containing 3-cyanovinylcarbazole nucleoside. This non-enzymatic and sequence-specific methodology will make a major contribution to the elucidation of RNA functions including non-coding RNAs and to the development of drugs based on sequence-specific RNA editing.

  5. The Aldine Edition of Aristotle's De Sensu

    DEFF Research Database (Denmark)

    Bloch, David Kristian

    2006-01-01

    This small article examines the quality of and the textual foundation for the først printed edition ever of Aristotle's De Sensu et Sensibilibus, that is, Aldus Manutius' (1497).......This small article examines the quality of and the textual foundation for the først printed edition ever of Aristotle's De Sensu et Sensibilibus, that is, Aldus Manutius' (1497)....

  6. Sex Differences in Cognitive Abilities. Fourth Edition

    Science.gov (United States)

    Halpern, Diane F.

    2011-01-01

    The fourth edition of "Sex Differences in Cognitive Abilities" critically examines the breadth of research on this complex and controversial topic, with the principal aim of helping the reader to understand where sex differences are found--and where they are not. Since the publication of the third edition, there have been many exciting and…

  7. Cat-rodent Toxoplasma gondii Type II-variant circulation and limited genetic diversity on the Island of Fernando de Noronha, Brazil

    Science.gov (United States)

    In Brazil, studies on animals and humans in mainland areas have shown that most strains of Toxoplasma gondii are pathogenic to mice and exhibit great genetic variability. In this study, using a set of 11 PCR-RFLP and 15 microsatellite markers, we isolated and genetically characterised T. gondii stra...

  8. The application of CRISPR-Cas9 genome editing in Caenorhabditis elegans.

    Science.gov (United States)

    Xu, Suhong

    2015-08-20

    Genome editing using the Cas9 endonuclease of Streptococcus pyogenes has demonstrated unparalleled efficacy and facility for modifying genomes in a wide variety of organisms. Caenorhabditis elegans is one of the most convenient multicellular organisms for genetic analysis, and the application of this novel genome editing technique to this organism promises to revolutionize analysis of gene function in the future. CRISPR-Cas9 has been successfully used to generate imprecise insertions and deletions via non-homologous end-joining mechanisms and to create precise mutations by homology-directed repair from donor templates. Key variables are the methods used to deliver the Cas9 endonuclease and the efficiency of the single guide RNAs. CRISPR-Cas9-mediated editing appears to be highly specific in C. elegans, with no reported off-target effects. In this review, I briefly summarize recent progress in CRISPR-Cas9-based genome editing in C. elegans, highlighting technical improvements in mutagenesis and mutation detection, and discuss potential future applications of this technique. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  9. CRISPR-mediated genome editing and human diseases

    Directory of Open Access Journals (Sweden)

    Liquan Cai

    2016-12-01

    Full Text Available CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats technology has emerged as a powerful technology for genome editing and is now widely used in basic biomedical research to explore gene function. More recently, this technology has been increasingly applied to the study or treatment of human diseases, including Barth syndrome effects on the heart, Duchenne muscular dystrophy, hemophilia, β-Thalassemia, and cystic fibrosis. CRISPR/Cas9 (CRISPR-associated protein 9 genome editing has been used to correct disease-causing DNA mutations ranging from a single base pair to large deletions in model systems ranging from cells in vitro to animals in vivo. In addition to genetic diseases, CRISPR/Cas9 gene editing has also been applied in immunology-focused applications such as the targeting of C-C chemokine receptor type 5, the programmed death 1 gene, or the creation of chimeric antigen receptors in T cells for purposes such as the treatment of the acquired immune deficiency syndrome (AIDS or promoting anti-tumor immunotherapy. Furthermore, this technology has been applied to the genetic manipulation of domesticated animals with the goal of producing biologic medical materials, including molecules, cells or organs, on a large scale. Finally, CRISPR/Cas9 has been teamed with induced pluripotent stem (iPS cells to perform multiple tissue engineering tasks including the creation of disease models or the preparation of donor-specific tissues for transplantation. This review will explore the ways in which the use of CRISPR/Cas9 is opening new doors to the treatment of human diseases.

  10. Impact of Gene Editing Tools, Like CRISPR/Cas9, on the Public Health Response to Disease Outbreaks.

    Science.gov (United States)

    Pope, Samuel M

    2017-04-01

    The purpose of this communication is to explore the implications of genome editing techniques, such as CRISPR/Cas9, on public health-related responses to outbreaks of disease. The recent commercialization of genome editing techniques makes the creation and release of genetically altered pathogens a much easier task, increasing the possibility to the point of needing discussion. Three areas need to be addressed: predictions concerning potential genetic alterations, predictions and implications concerning the release of genetically altered pathogens, and the short- and long-term implications of the release of genetically altered pathogens. Full discourse on these topics among professionals in the area of public health will help to combat harm from the use of any genetically altered biologic weapons. The topics covered here include a review of the CRISPR/Cas9 gene editing technique, including a discussion of which possibilities utilize genome editing. We then address predictions about the application of gene alterations in the context of bioweapons. We discuss a few basic concepts about the evolution of an intentionally released genetically altered organism based on circumstances and patterns gleaned from observing nature in the hope that this will aid in the public health response to bioterrorism attack. (Disaster Med Public Health Preparedness. 2017;11:155-159).

  11. Enhancing Wikipedia Editing with WAI-ARIA

    Science.gov (United States)

    Senette, Caterina; Buzzi, Maria Claudia; Buzzi, Marina; Leporini, Barbara

    Nowadays Web 2.0 applications allow anyone to create, share and edit on-line content, but accessibility and usability issues still exist. For instance, Wikipedia presents many difficulties for blind users, especially when they want to write or edit articles. In a previous stage of our study we proposed and discussed how to apply the W3C ARIA suite to simplify the Wikipedia editing page when interacting via screen reader. In this paper we present the results of a user test involving totally blind end-users as they interacted with both the original and the modified Wikipedia editing pages. Specifically, the purpose of the test was to compare the editing and formatting process for original and ARIA-implemented Wikipedia user interfaces, and to evaluate the improvements.

  12. Developing a genetically encoded green fluorescent protein mutant for sensitive light-up fluorescent sensing and cellular imaging of Hg(II).

    Science.gov (United States)

    Jiang, Tao; Guo, Daiping; Wang, Qian; Wu, Xin; Li, Zhao; Zheng, Zhenhua; Yin, Boyuan; Xia, Lin; Tang, Jixian; Luo, Wenxin; Xia, Ningshao; Jiang, Yunbao

    2015-05-30

    Hg(II) is well-known for quenching fluorescence in a distance dependent manner. Nevertheless, when we exposed the fluorophore of a green fluorescent protein (GFP) toward Hg(II), through H148C mutation, the GFP fluorescence could be "lighted up" by Hg(II) down to sub-nM level. The detection linear range is 0.5-3.0 nM for protein solutions at 8.0 nM. The GFPH148C protein displayed a promising selectivity toward Hg(II) and also the cellular imaging capacity. Spectra measurements suggested that the ground-state redistribution of protein contributed to the fluorescence enhancement, which was found not limited to Hg(II), and thus presented an opening for building a pool of GFP-based chemosensors toward other heavy metal ions. Copyright © 2015. Published by Elsevier B.V.

  13. Fuel Cell Handbook, Fifth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  14. Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Related Disease.

    Science.gov (United States)

    Lau, Cia-Hin; Suh, Yousin

    2017-01-01

    The recent advent of genome and epigenome editing technologies has provided a new paradigm in which the landscape of the human genome and epigenome can be precisely manipulated in their native context. Genome and epigenome editing technologies can be applied to many aspects of aging research and offer the potential to develop novel therapeutics against age-related diseases. Here, we discuss the latest technological advances in the CRISPR-based genome and epigenome editing toolbox, and provide insight into how these synthetic biology tools could facilitate aging research by establishing in vitro cell and in vivo animal models to dissect genetic and epigenetic mechanisms underlying aging and age-related diseases. We discuss recent developments in the field with the aims to precisely modulate gene expression and dynamic epigenetic landscapes in a spatial and temporal manner in cellular and animal models, by complementing the CRISPR-based editing capability with conditional genetic manipulation tools including chemically inducible expression systems, optogenetics, logic gate genetic circuits, tissue-specific promoters, and the serotype-specific adeno-associated virus. We also discuss how the combined use of genome and epigenome editing tools permits investigators to uncover novel molecular pathways involved in the pathophysiology and etiology conferred by risk variants associated with aging and aging-related disease. A better understanding of the genetic and epigenetic regulatory mechanisms underlying human aging and age-related disease will significantly contribute to the developments of new therapeutic interventions for extending health span and life span, ultimately improving the quality of life in the elderly populations. © 2016 S. Karger AG, Basel.

  15. COL5A1: Fine genetic mapping, intron/exon organization, and exclusion as candidate gene in families with tuberous sclerosis complex 1, hereditary hemorrhagic telangiectasia, and Ehlers-Danlos syndrome type II

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, D.S. [Univ. of Wisconsin, Madison, WI (United States); Papenberg, K.A.; Marchuk, D.A. [Duke Univ., Durham, NC (United States)] [and others

    1994-09-01

    Type V collagen is the only fibrillar collagen which has yet to be implicated in the pathogenesis of genetic diseases in humans or mice. To begin examining the possible role of type V collagen in genetic disease, we have previously mapped COL5A1, the gene for the {alpha}1 chain of type V collagen, to 9q23.2{r_arrow}q34.3 and described two restriction site polymorphisms which allowed us to exclude COL5A1 as candidate gene for nail-patella syndrome. We have now used these polymorphisms to exclude COL5A1 as candidate gene for tuberous sclerosis complex 1 and Ehlers-Danlos syndrome type II. In addition, we describe a CA repeat, with observed heterozygosity of about 0.5, in a COL5A1 intron, which has allowed us to exclude COL5A1 as a candidate gene in hereditary hemorrhagic telangiectasia and to place COL5A1 on the CEPH family genetic map between markers D9S66 and D9S67. We have also determined the entire intron/exon organization of COL5A1, which will facilitate characterization of mutations in genetic diseases with which COL5A1 may be linked in future studies.

  16. Application and development of genome editing technologies to the Solanaceae plants.

    Science.gov (United States)

    Yamamoto, Tsuyoshi; Kashojiya, Sachiko; Kamimura, Saori; Kameyama, Takato; Ariizumi, Tohru; Ezura, Hiroshi; Miura, Kenji

    2018-03-02

    Genome editing technology using artificial nucleases, including zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regulatory interspaced short palindromic repeats (CRISPR)-Cas9, can mutagenize the target sites of genes of interest. This technology has been successfully applied in several crops, including the Solanaceae plants, such as tomato, potato, tobacco, and petunia. Among the three nucleases, CRISPR-Cas9 is the best for breeding, crop improvement, and the functional analysis of genes of interest, because of its simplicity and high efficiency. Although the technology is useful for reverse genetics, its use in plants is limited due to a lack of regeneration protocols and sequence information. In this review, the present status of genome editing technology in Solanaceae plants is described, and techniques that may improve genome editing technologies are discussed. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. To CRISPR and beyond: the evolution of genome editing in stem cells.

    Science.gov (United States)

    Chen, Kuang-Yui; Knoepfler, Paul S

    2016-12-01

    The goal of editing the genomes of stem cells to generate model organisms and cell lines for genetic and biological studies has been pursued for decades. There is also exciting potential for future clinical impact in humans. While recent, rapid advances in targeted nuclease technologies have led to unprecedented accessibility and ease of gene editing, biology has benefited from past directed gene modification via homologous recombination, gene traps and other transgenic methodologies. Here we review the history of genome editing in stem cells (including via zinc finger nucleases, transcription activator-like effector nucleases and CRISPR-Cas9), discuss recent developments leading to the implementation of stem cell gene therapies in clinical trials and consider the prospects for future advances in this rapidly evolving field.

  18. Genome edited animals: Learning from GM crops?

    Science.gov (United States)

    Bruce, Ann

    2017-06-01

    Genome editing of livestock is poised to become commercial reality, yet questions remain as to appropriate regulation, potential impact on the industry sector and public acceptability of products. This paper looks at how genome editing of livestock has attempted to learn some of the lessons from commercialisation of GM crops, and takes a systemic approach to explore some of the complexity and ambiguity in incorporating genome edited animals in a food production system. Current applications of genome editing are considered, viewed from the perspective of past technological applications. The question of what is genome editing, and can it be considered natural is examined. The implications of regulation on development of different sectors of livestock production systems are studied, with a particular focus on the veterinary sector. From an EU perspective, regulation of genome edited animals, although not necessarily the same as for GM crops, is advocated from a number of different perspectives. This paper aims to open up new avenues of research on genome edited animals, extending from the current primary focus on science and regulation, to engage with a wider-range of food system actors.

  19. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we...... examine definitions of the relevant concepts in order to illustrate this point. The concepts are i) prenatal, ii) genetic screening, iii) screening, scanning and testing, iv) maternal and foetal tests, v) test techniques and vi) genetic conditions. So far, prenatal screening has little connection...... with precisely defined genetics. There are benefits but also disadvantages in overstating current links between them in the term genetic screening. Policy making and professional and public understandings about screening could be clarified if the distinct meanings of prenatal screening and genetic screening were...

  20. Essential Components of Educational Programs on Biomedical Writing, Editing, and Publishing.

    Science.gov (United States)

    Barroga, Edward; Vardaman, Maya

    2015-10-01

    The primary objective of educational programs on biomedical writing, editing, and publishing is to nurture ethical skills among local and international researchers and editors from diverse professional backgrounds. The mechanics, essential components, and target outcomes of these programs are described in this article. The mechanics covers the objectives, design, benefits, duration, participants and qualifications, program formats, administrative issues, and mentorship. The essential components consist of three core schedules: Schedule I Basic aspects of biomedical writing, editing, and communications; Schedule II Essential skills in biomedical writing, editing, and publishing; and Schedule III Interactive lectures on relevant topics. The target outcomes of the programs comprise knowledge acquisition, skills development, paper write-up, and journal publication. These programs add to the prestige and academic standing of the host institutions.

  1. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  2. Programmable Genome Editing Tools and their Regulation for Efficient Genome Engineering

    Directory of Open Access Journals (Sweden)

    Tuhin Kumar Guha

    2017-01-01

    Full Text Available Targeted genome editing has become a powerful genetic tool for studying gene function or for modifying genomes by correcting defective genes or introducing genes. A variety of reagents have been developed in recent years that can generate targeted double-stranded DNA cuts which can be repaired by the error-prone, non-homologous end joining repair system or via the homologous recombination-based double-strand break repair pathway provided a suitable template is available. These genome editing reagents require components for recognizing a specific DNA target site and for DNA-cleavage that generates the double-stranded break. In order to reduce potential toxic effects of genome editing reagents, it might be desirable to control the in vitro or in vivo activity of these reagents by incorporating regulatory switches that can reduce off-target activities and/or allow for these reagents to be turned on or off. This review will outline the various genome editing tools that are currently available and describe the strategies that have so far been employed for regulating these editing reagents. In addition, this review will examine potential regulatory switches/strategies that can be employed in the future in order to provide temporal control for these reagents.

  3. KWIC Index of nuclear codes (1975 edition)

    International Nuclear Information System (INIS)

    Akanuma, Makoto; Hirakawa, Takashi

    1976-01-01

    It is a KWIC Index for 254 nuclear codes in the Nuclear Code Abstracts (1975 edition). The classification of nuclear codes and the form of index are the same as those in the Computer Programme Library at Ispra, Italy. (auth.)

  4. Specification Editing and Discovery Assistant Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project will prototype a specification editing and discovery tool (SPEEDY) for C/C++ that will assist software developers with modular formal verification tasks...

  5. LabVIEW 8 student edition

    CERN Document Server

    Bishop, Robert H

    2007-01-01

    For courses in Measurement and Instrumentation, Electrical Engineering lab, and Physics and Chemistry lab. This revised printing has been updated to include new LabVIEW 8.2 Student Edition. National Instruments' LabVIEW is the defacto industry standard for test, measurement, and automation software solutions. With the Student Edition of LabVIEW, students can design graphical programming solutions to their classroom problems and laboratory experiments with software that delivers the graphical programming capabilites of the LabVIEW professional version. . The Student Edition is also compatible with all National Instruments data acquisition and instrument control hardware. Note: The LabVIEW Student Edition is available to students, faculty, and staff for personal educational use only. It is not intended for research, institutional, or commercial use. For more information about these licensing options, please visit the National Instruments website at (http:www.ni.com/academic/)

  6. Seasonal fluctuation in susceptibility to insecticides within natural populations of Drosophila melanogaster. II. Features of genetic variation in susceptibility to organophosphate insecticides within natural populations of D. melanogaster.

    Science.gov (United States)

    Miyo, Takahiro; Oguma, Yuzuru; Charlesworth, Brian

    2006-08-01

    To elucidate genetic variation in susceptibility to organophosphate insecticides within natural populations of Drosophila melanogaster, we conducted an analysis of variance for mortality data sets of isofemale lines (10-286 lines) used in the previous studies. Susceptibility of isofemale lines to the three organophosphate insecticides was continuously distributed within each natural population, ranging from susceptible to resistant. Analysis of variance showed highly significant variation among isofemale lines in susceptibility to each insecticide for each natural population. Significant genetic variances in susceptibility to the three chemicals were estimated for the Katsunuma population; 0.0529-0.2722 for malathion, 0.0492-0.1603 for prothiophos, and 0.0469-0.1696 for fenitrothion. Contrary to the consistent seasonal tendency towards an increase in mean susceptibility in the fall, reported in the previous study, genetic variances in susceptibility to the three organophosphates did not change significantly in 1997 but tended to increase by 2- to 5-times in 1998. We tested whether both the observed situations, maintenance and increase in genetic variance in organophosphate resistance, can be generated under circumstances in which the levels of resistance to the three organophosphates tended to decrease, by conducting a simulation analysis, based on the hypothesis that resistant genotypes have lower fitnesses than susceptible ones under the density-independent condition. The simulation analysis generally explained the pattern in the mean susceptibility and genetic variances in susceptibility to the three organophosphates, observed in the Katsunuma population of D. melanogaster. It was suggested that the differences in the frequencies of resistance genes in the summer population could affect the patterns in genetic variance in organophosphate resistance in the fall population.

  7. Introductory physics of nuclear medicine. Third edition

    International Nuclear Information System (INIS)

    Chandra, R.

    1987-01-01

    The new third edition includes essential details and many examples and problems taken from the routine practice of nuclear medicine. Basic principles and underlying concepts are explained, although it is assumed that the reader has some current use as a bone densitometer. For resident physicians in nuclear medicine, residents in pathology, radiology, and internal medicine, and students of nuclear medicine technology, the third edition offers a simplified and reliable approach to the physics and basic sciences of nuclear medicine

  8. Nuclear electronics laboratory manual 1989 edition

    International Nuclear Information System (INIS)

    1989-10-01

    This manual is a joint product of several electronics experts who have been associated with IAEA activity in this field for many years. It is based on the experience of conducting twenty-three training courses on nuclear electronics. Compared with the first edition, published 1984, this edition contains many new experiments, mainly on the advanced technical level. The total number of experiments and special projects is 58. Tabs and figs

  9. The Ethics of Germline Gene Editing

    OpenAIRE

    Gyngell, Christopher; Douglas, Thomas; Savulescu, Julian

    2016-01-01

    Germline Gene Editing (GGE) has enormous potential both as a research tool and a therapeutic intervention. While other types of gene editing are relatively uncontroversial, GGE has been strongly resisted. In this paper, we analyze the ethical arguments for and against pursuing GGE, which we take to consist in allowing and funding its development. We argue there is a strong case for pursuing GGE for the prevention of disease. We then examine objections that have been raised against pursuing GG...

  10. Computational Physics - 2nd Edition

    Science.gov (United States)

    Thijssen, J. M.

    1998-11-01

    This second edition describes the computational methods used in theoretical physics, and has been fully updated. New sections have been added to cover finite element methods and lattice Boltzmann simulation, density functional theory, quantum molecular dynamics, Monte Carlo simulation, and diagonalisation of one-dimensional quantum systems. It covers many different areas of physics research and different computational methodologies, including computational methods such as Monte Carlo and molecular dynamics, various electronic structure methodologies, methods for solving partial differential equations, and lattice gauge theory. Throughout the book the relations between the methods used in different fields of physics are emphasised. Several new programs are described and can be downloaded from www.cambridge.org/9780521833462. The book requires a background in elementary programming, numerical analysis, and field theory, as well as undergraduate knowledge on condensed matter theory and statistical physics. It will be of interest to graduate students and researchers in theoretical, computational and experimental physics. Completely revised with new chapters including finite element methods and lattice Boltzmann simulation Describes several new programs which can be downloaded from www.cambridge.org/9780521833462 Contains questions on theory and implementation at the end of each chapter

  11. On the evaluation of segmentation editing tools

    Science.gov (United States)

    Heckel, Frank; Moltz, Jan H.; Meine, Hans; Geisler, Benjamin; Kießling, Andreas; D’Anastasi, Melvin; dos Santos, Daniel Pinto; Theruvath, Ashok Joseph; Hahn, Horst K.

    2014-01-01

    Abstract. Efficient segmentation editing tools are important components in the segmentation process, as no automatic methods exist that always generate sufficient results. Evaluating segmentation editing algorithms is challenging, because their quality depends on the user’s subjective impression. So far, no established methods for an objective, comprehensive evaluation of such tools exist and, particularly, intermediate segmentation results are not taken into account. We discuss the evaluation of editing algorithms in the context of tumor segmentation in computed tomography. We propose a rating scheme to qualitatively measure the accuracy and efficiency of editing tools in user studies. In order to objectively summarize the overall quality, we propose two scores based on the subjective rating and the quantified segmentation quality over time. Finally, a simulation-based evaluation approach is discussed, which allows a more reproducible evaluation without the need for human input. This automated evaluation complements user studies, allowing a more convincing evaluation, particularly during development, where frequent user studies are not possible. The proposed methods have been used to evaluate two dedicated editing algorithms on 131 representative tumor segmentations. We show how the comparison of editing algorithms benefits from the proposed methods. Our results also show the correlation of the suggested quality score with the qualitative ratings. PMID:26158063

  12. Genome editing with engineered nucleases in plants.

    Science.gov (United States)

    Osakabe, Yuriko; Osakabe, Keishi

    2015-03-01

    Numerous examples of successful 'genome editing' now exist. Genome editing uses engineered nucleases as powerful tools to target specific DNA sequences to edit genes precisely in the genomes of both model and crop plants, as well as a variety of other organisms. The DNA-binding domains of zinc finger (ZF) proteins were the first to be used as genome editing tools, in the form of designed ZF nucleases (ZFNs). More recently, transcription activator-like effector nucleases (TALENs), as well as the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, which utilizes RNA-DNA interactions, have proved useful. A key step in genome editing is the generation of a double-stranded DNA break that is specific to the target gene. This is achieved by custom-designed endonucleases, which enable site-directed mutagenesis via a non-homologous end-joining (NHEJ) repair pathway and/or gene targeting via homologous recombination (HR) to occur efficiently at specific sites in the genome. This review provides an overview of recent advances in genome editing technologies in plants, and discusses how these can provide insights into current plant molecular biology research and molecular breeding technology. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. New variants of CRISPR RNA-guided genome editing enzymes.

    Science.gov (United States)

    Murovec, Jana; Pirc, Žan; Yang, Bing

    2017-08-01

    CRISPR-mediated genome editing using the Streptococcus pyogenes Cas9 enzyme is revolutionizing life science by providing new, precise, facile and high-throughput tools for genetic modification by the specific targeting of double-strand breaks in the genome of hosts. Plant biotechnologists have extensively used the S. pyogenes Cas9-based system since its inception in 2013. However, there are still some limitations to its even broader usage in plants. Major restrictions, especially in agricultural biotechnology, are the currently unclear regulatory status of plants modified with CRISPR/Cas9 and the lack of suitable delivery methods for some plant species. Solutions to these limitations could come in the form of new variants of genome editing enzymes that have recently been discovered and have already proved comparable to or even better in performance than S. pyogenes CRISPR/Cas9 in terms of precision and ease of delivery in mammal cells. Although some of them have already been tested in plants, most of them are less well known in the plant science community. In this review, we describe the following new enzyme systems engineered for genome editing, transcriptional regulation and cellular imaging-C2c2 from L. shahii; Cas9 from F. novicida, S. aureus, S. thermophiles, N. meningitidis; Cpf1 from F. novicida, Acidaminococcus and Lachnospiraceae; nickase, split, enhanced and other Cas9 variants from S. pyogenes; catalytically inactive SpCas9 linked to various nuclease or gene-regulating domains-with an emphasis on their advantages in comparison with the broadly used SpCas9. In addition, we discuss new possibilities they offer in plant biotechnology. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. A Large-Scale Genetic Analysis Reveals a Strong Contribution of the HLA Class II Region to Giant Cell Arteritis Susceptibility

    NARCIS (Netherlands)

    David Carmona, F.; Mackie, Sarah L.; Martin, Jose-Ezequiel; Taylor, John C.; Vaglio, Augusto; Eyre, Stephen; Bossini-Castillo, Lara; Castaneda, Santos; Cid, Maria C.; Hernandez-Rodriguez, Jose; Prieto-Gonzalez, Sergio; Solans, Roser; Ramentol-Sintas, Marc; Francisca Gonzalez-Escribano, M.; Ortiz-Fernandez, Lourdes; Morado, Inmaculada C.; Narvaez, Javier; Miranda-Filloy, Jose A.; Beretta, Lorenzo; Lunardi, Claudio; Cimmino, Marco A.; Gianfreda, Davide; Santilli, Daniele; Ramirez, Giuseppe A.; Soriano, Alessandra; Muratore, Francesco; Pazzola, Giulia; Addimanda, Olga; Wijmenga, Cisca; Witte, Torsten; Schirmer, Jan H.; Moosig, Frank; Schoenau, Verena; Franke, Andre; Palm, Oyvind; Molberg, Oyvind; Diamantopoulos, Andreas P.; Carette, Simon; Cuthbertson, David; Forbess, Lindsy J.; Hoffman, Gary S.; Khalidi, Nader A.; Koening, Curry L.; Langford, Carol A.; McAlear, Carol A.; Moreland, Larry; Monach, Paul A.; Pagnoux, Christian; Seo, Philip; Spiera, Robert; Sreih, Antoine G.; Warrington, Kenneth J.; Ytterberg, Steven R.; Gregersen, Peter K.; Pease, Colin T.; Gough, Andrew; Green, Michael; Hordon, Lesley; Jarrett, Stephen; Watts, Richard; Levy, Sarah; Patel, Yusuf; Kamath, Sanjeet; Dasgupta, Bhaskar; Worthington, Jane; Koeleman, Bobby P. C.; de Bakker, Paul I. W.; Barrett, Jennifer H.; Salvarani, Carlo; Merkel, Peter A.; Gonzalez-Gay, Miguel A.; Morgan, Ann W.; Martin, Javier

    2015-01-01

    We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip

  15. Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445

    NARCIS (Netherlands)

    Dubern, J.F.; Coppoolse, E.R.; Stiekema, W.J.; Bloemberg, G.V.

    2008-01-01

    Pseudomonas putida PCL1445 secretes two cyclic lipopeptides, putisolvin I and putisolvin II, which possess a surface-tension-reducing ability, and are able to inhibit biofilm formation and to break down biofilms of Pseudomonas species including Pseudomonas aeruginosa. The putisolvin synthetase gene

  16. Book Review: New Perspectives on Technical Editing

    Science.gov (United States)

    Murphy, A. J. (Ed.); Sterken, Christiaan

    2012-08-01

    New Perspectives on Technical Editing by Avon J. Murphy (ed.) ISBN : 978-0895033949 (2010) Baywood Publishing Company Inc, Hardcover, 210 pages, 35.5 GBP This book presents a collection of 10 chapters dealing with diverse aspects of technical editing (ie, editorial planning, and analysis and structural changes made to other people's technological documents): research in technical editing, trends and teaching of technical editing, copyediting, and technical journal editing. The role and function of the modern journal and book editor is also dealt with in detail. Each chapter is written by an expert in the field: senior editors, university professors in technical communication, technical writers and linguists. The ever-evolving role of the editor is clearly elucidated in several historical reviews, and in the descriptions of the expectations for the future. A very striking aspect of this book is its extensive collection of bibliographic resources: every chapter lists dozens of very useful references, and the closing chapter, and annotated bibliography, contain many not so well known references, and are most useful. All in all, the book is a treasure trove listing more than 400 references, in addition to numerous webpage URLs embedded in the texts. The book is designed to help the reader to understand current practices and norms in technical editing, and to help to take action in editing as well as in teaching and educating would-be editors. The audience for this book thus includes editors and teachers, but also writers, researchers and students. A deep reading of this book will result in a better understanding of the difference between full technical editing and its much narrower component so well known as copyediting, and will convince any prospective editor that editing should not be undertaken if the people involved do not master the art of precision and accuracy in technical (as well as in human) communication, do not possess the technical know how and computer

  17. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity

    Science.gov (United States)

    Tycko, Josh; Myer, Vic E.; Hsu, Patrick D.

    2016-01-01

    Summary Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing mutations. Although the Cas9 protein has been shown to bind and cleave DNA at off-target sites, the field of Cas9 specificity is rapidly progressing with marked improvements in guide RNA selection, protein and guide engineering, novel enzymes, and off-target detection methods. We review important challenges and breakthroughs in the field as a comprehensive practical guide to interested users of genome editing technologies, highlighting key tools and strategies for optimizing specificity. The genome editing community should now strive to standardize such methods for measuring and reporting off-target activity, while keeping in mind that the goal for specificity should be continued improvement and vigilance. PMID:27494557

  18. Gene editing as a promising approach for respiratory diseases.

    Science.gov (United States)

    Bai, Yichun; Liu, Yang; Su, Zhenlei; Ma, Yana; Ren, Chonghua; Zhao, Runzhen; Ji, Hong-Long

    2018-03-01

    Respiratory diseases, which are leading causes of mortality and morbidity in the world, are dysfunctions of the nasopharynx, the trachea, the bronchus, the lung and the pleural cavity. Symptoms of chronic respiratory diseases, such as cough, sneezing and difficulty breathing, may seriously affect the productivity, sleep quality and physical and mental well-being of patients, and patients with acute respiratory diseases may have difficulty breathing, anoxia and even life-threatening respiratory failure. Respiratory diseases are generally heterogeneous, with multifaceted causes including smoking, ageing, air pollution, infection and gene mutations. Clinically, a single pulmonary disease can exhibit more than one phenotype or coexist with multiple organ disorders. To correct abnormal function or repair injured respiratory tissues, one of the most promising techniques is to correct mutated genes by gene editing, as some gene mutations have been clearly demonstrated to be associated with genetic or heterogeneous respiratory diseases. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) systems are three innovative gene editing technologies developed recently. In this short review, we have summarised the structure and operating principles of the ZFNs, TALENs and CRISPR/Cas9 systems and their preclinical and clinical applications in respiratory diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Safe Handling of Radioisotopes. First Edition with Revised Appendix I

    International Nuclear Information System (INIS)

    1966-01-01

    Under its Statute the International Atomic Energy Agency is empowered to provide for the application of standards of safety for protection against radiation to its own operations and to operations making use of assistance provided by it or with which it is otherwise directly associated. To this end authorities receiving such assistance are required to observe relevant health and safety measures prescribed by the Agency. As a first step, it was considered an urgent task to provide users of radioisotopes with a manual of practice for the safe handling of these substances. The first edition of such a manual was published in 1958 and represented the first of the 'Safety Series', a series of manuals and codes on health and safety published by the Agency. It was prepared after careful consideration of existing national and international codes of radiation safety by a group of international experts and in consultation with other international bodies. This edition presents the first revision. It incorporates in the Appendices the latest recommendations of the International Commission on Radiological Protection and extracts from the report of the Committee II of the I.C.R.P. on permissible dose for internal radiation. The Health Physics and Medical Addenda to this Manual, published as No. 2 and No. 3 in the Safety Series in 1960, give more complete advice to the user on specialized topics.

  20. CRISPR/Cas9 in Genome Editing and Beyond.

    Science.gov (United States)

    Wang, Haifeng; La Russa, Marie; Qi, Lei S

    2016-06-02

    The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.

  1. Small RNA and A-to-I Editing in Autism Spectrum Disorders

    Science.gov (United States)

    Eran, Alal

    One in every 88 children is diagnosed with Autism Spectrum Disorders (ASDs), a set of neurodevelopmental conditions characterized by social impairments, communication deficits, and repetitive behavior. ASDs have a substantial genetic component, but the specific cause of most cases remains unknown. Understanding gene-environment interactions underlying ASD is essential for improving early diagnosis and identifying critical targets for intervention and prevention. Towards this goal, we surveyed adenosine-to-inosine (A-to-I) RNA editing in autistic brains. A-to-I editing is an epigenetic mechanism that fine-tunes synaptic function in response to environmental stimuli, shown to modulate complex behavior in animals. We used ultradeep sequencing to quantify A-to-I receding of candidate synaptic genes in postmortem cerebella from individuals with ASD and neurotypical controls. We found unexpectedly wide distributions of human A-to-I editing levels, whose extremes were consistently populated by individuals with ASD. We correlated A-to-I editing with isoform usage, identified clusters of correlated sites, and examined differential editing patterns. Importantly, we found that individuals with ASD commonly use a dysfunctional form of the editing enzyme ADARB1. We next profiled small RNAs thought to regulate A-to-I editing, which originate from one of the most commonly altered loci in ASD, 15q11. Deep targeted sequencing of SNORD115 and SNORD116 transcripts enabled their high-resolution detection in human brains, and revealed a strong gender bias underlying their expression. The consistent 2-fold upregulation of 15q11 small RNAs in male vs. female cerebella could be important in delineating the role of this locus in ASD, a male dominant disorder. Overall, these studies provide an accurate population-level view of small RNA and A-to-I editing in human cerebella, and suggest that A-to-I editing of synaptic genes may be informative for assessing the epigenetic risk for autism

  2. Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex

    Czech Academy of Sciences Publication Activity Database

    Hashimi, Hassan; Zimmer, S.L.; Ammerman, M. L.; Read, L. K.; Lukeš, Julius

    2013-01-01

    Roč. 29, č. 2 (2013), s. 91-99 ISSN 1471-4922 R&D Projects: GA ČR GAP305/12/2261; GA ČR GA204/09/1667 Institutional support: RVO:60077344 Keywords : kinetoplastida * trypanosome * RNA editing * protein complexes * RECC * MRB1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.217, year: 2013 http://www.sciencedirect.com/science/article/pii/S1471492212001985

  3. The ethics of genome editing in the clinic: A dose of realism for healthcare leaders.

    Science.gov (United States)

    Bubela, Tania; Mansour, Yael; Nicol, Dianne

    2017-05-01

    Genome editing technologies promise therapeutic advances for genetic diseases. We discuss the ethical and societal issues raised by these technologies, including their use in preclinical research, their potential to address mutations in somatic cells, and their potential to make germ line alterations that may be passed to subsequent generations. We call for a proportionate response from health leaders based on a realistic assessment of benefits, risks, and timelines for clinical translation.

  4. CRISPR/Cas9: A Practical Approach in Date Palm Genome Editing

    OpenAIRE

    Sattar, Muhammad N.; Iqbal, Zafar; Tahir, Muhammad N.; Shahid, Muhammad S.; Khurshid, Muhammad; Al-Khateeb, Abdullatif A.; Al-Khateeb, Suliman A.

    2017-01-01

    The genetic modifications through breeding of crop plants have long been used to improve the yield and quality. However, precise genome editing (GE) could be a very useful supplementary tool for improvement of crop plants by targeted genome modifications. Various GE techniques including ZFNs (zinc finger nucleases), TALENs (transcription activator-like effector nucleases), and most recently clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (CRISPR-associated protein 9)-b...

  5. Residential Wiring. Fourth Edition. Teacher Edition [and] Student Guide [and] Student Workbook.

    Science.gov (United States)

    Taylor, Mark

    Residential Wiring, the second publication in a series of three wiring publications, prepares students for entry-level employment in the residential wiring trade. Instructional materials include a teacher edition, student guide, and student workbook. The teacher edition begins with introductory pages, including a training and competency profile,…

  6. A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Gene Regulation

    Science.gov (United States)

    Farasat, Iman; Salis, Howard M.

    2016-01-01

    The ability to precisely modify genomes and regulate specific genes will greatly accelerate several medical and engineering applications. The CRISPR/Cas9 (Type II) system binds and cuts DNA using guide RNAs, though the variables that control its on-target and off-target activity remain poorly characterized. Here, we develop and parameterize a system-wide biophysical model of Cas9-based genome editing and gene regulation to predict how changing guide RNA sequences, DNA superhelical densities, Cas9 and crRNA expression levels, organisms and growth conditions, and experimental conditions collectively control the dynamics of dCas9-based binding and Cas9-based cleavage at all DNA sites with both canonical and non-canonical PAMs. We combine statistical thermodynamics and kinetics to model Cas9:crRNA complex formation, diffusion, site selection, reversible R-loop formation, and cleavage, using large amounts of structural, biochemical, expression, and next-generation sequencing data to determine kinetic parameters and develop free energy models. Our results identify DNA supercoiling as a novel mechanism controlling Cas9 binding. Using the model, we predict Cas9 off-target binding frequencies across the lambdaphage and human genomes, and explain why Cas9’s off-target activity can be so high. With this improved understanding, we propose several rules for designing experiments for minimizing off-target activity. We also discuss the implications for engineering dCas9-based genetic circuits. PMID:26824432

  7. Transgenic mouse - Methods and protocols, 2nd edition

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2011-09-01

    Full Text Available Marten H. Hofner (from the Dept. of Pathology of the Groningen University and Jan M. van Deursen (from the Mayo College of Medicine at Rochester, MN, USA provided us with the valuable second edition of Transgenic mouse: in fact, eventhough we are in the –omics era and already equipped with the state-of-the-art techniques in whatsoever field, still we need to have gene(s functional analysis data to understand common and complex deseases. Transgenesis is still an irreplaceable method and protocols to well perform it are more than welcome. Here, how to get genetic modified mice (the quintessential model of so many human deseases considering how much of the human genes are conserved in the mouse and the great block of genic synteny existing between the two genomes is analysed in deep and presented in clearly detailed step by step protocols....

  8. Duchenne muscular dystrophy: genome editing gives new hope for treatment.

    Science.gov (United States)

    Crispi, Vassili; Matsakas, Antonios

    2018-01-31

    Duchenne muscular dystrophy (DMD) is a progressive wasting disease of skeletal and cardiac muscles, representing one of the most common recessive fatal inherited genetic diseases with 1:3500-1:5000 in yearly incidence. It is caused by mutations in the DMD gene that encodes the membrane-associated dystrophin protein. Over the years, many have been the approaches to management of DMD, but despite all efforts, no effective treatment has yet been discovered. Hope for the development of potential therapeutics has followed the recent advances in genome editing and gene therapy. This review gives an overview to DMD and summarises current lines of evidence with regard to treatment and disease management alongside the appropriate considerations. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Gene targeting, genome editing: from Dolly to editors.

    Science.gov (United States)

    Tan, Wenfang; Proudfoot, Chris; Lillico, Simon G; Whitelaw, C Bruce A

    2016-06-01

    One of the most powerful strategies to investigate biology we have as scientists, is the ability to transfer genetic material in a controlled and deliberate manner between organisms. When applied to livestock, applications worthy of commercial venture can be devised. Although initial methods used to generate transgenic livestock resulted in random transgene insertion, the development of SCNT technology enabled homologous recombination gene targeting strategies to be used in livestock. Much has been accomplished using this approach. However, now we have the ability to change a specific base in the genome without leaving any other DNA mark, with no need for a transgene. With the advent of the genome editors this is now possible and like other significant technological leaps, the result is an even greater diversity of possible applications. Indeed, in merely 5 years, these 'molecular scissors' have enabled the production of more than 300 differently edited pigs, cattle, sheep and goats. The advent of genome editors has brought genetic engineering of livestock to a position where industry, the public and politicians are all eager to see real use of genetically engineered livestock to address societal needs. Since the first transgenic livestock reported just over three decades ago the field of livestock biotechnology has come a long way-but the most exciting period is just starting.

  10. BOOK REVIEW: Quantum Gravity: third edition Quantum Gravity: third edition

    Science.gov (United States)

    Rovelli, Carlo

    2012-09-01

    The request by Classical and Quantum Gravity to review the third edition of Claus Kiefer's 'Quantum Gravity' puts me in a slightly awkward position. This is a remarkably good book, which every person working in quantum gravity should have on the shelf. But in my opinion quantum gravity has undergone some dramatic advances in the last few years, of which the book makes no mention. Perhaps the omission only attests to the current vitality of the field, where progress is happening fast, but it is strange for me to review a thoughtful, knowledgeable and comprehensive book on my own field of research, which ignores what I myself consider the most interesting results to date. Kiefer's book is unique as a broad introduction and a reliable overview of quantum gravity. There are numerous books in the field which (often notwithstanding titles) focus on a single approach. There are also countless conference proceedings and article collections aiming to be encyclopaedic, but offering disorganized patchworks. Kiefer's book is a careful and thoughtful presentation of all aspects of the immense problem of quantum gravity. Kiefer is very learned, and brings together three rare qualities: he is pedagogical, he is capable of simplifying matter to the bones and capturing the essential, and he offers a serious and balanced evaluation of views and ideas. In a fractured field based on a major problem that does not yet have a solution, these qualities are precious. I recommend Kiefer's book to my students entering the field: to work in quantum gravity one needs a vast amount of technical knowledge as well as a grasp of different ideas, and Kiefer's book offers this with remarkable clarity. This novel third edition simplifies and improves the presentation of several topics, but also adds very valuable new material on quantum gravity phenomenology, loop quantum cosmology, asymptotic safety, Horava-Lifshitz gravity, analogue gravity, the holographic principle, and more. This is a testament

  11. Aggressiveness between genetic groups I and II of isolates of Cercospora zeae-maydis Agressividade entre isolados dos grupos genéticos I e II de Cercospora zeae-maydis

    OpenAIRE

    Sandra Marisa Mathioni; Carvalho; Kátia Regiane Brunelli; André Beló; Luis Eduardo Aranha Camargo

    2006-01-01

    For many years, the gray leaf spot disease (GLS) caused by the fungus Cercospora zeae-maydis Tehon & Daniels, was not considered an important pathogen of maize (Zea mays, L.) in Brazil. However, the recent adoption of agronomical practices such as no-tillage and cultivation under central pivot irrigation systems increased the incidence and severity to the extent that GLS is now one of the most important diseases of maize. Isolates of C. zeae-maydis can be distinguished by two genetic groups (...

  12. Genome Editing of Monogenic Neuromuscular Diseases

    Science.gov (United States)

    Long, Chengzu; Amoasii, Leonela; Bassel-Duby, Rhonda; Olson, Eric N.

    2017-01-01

    IMPORTANCE Muscle weakness, the most common symptom of neuromuscular disease, may result from muscle dysfunction or may be caused indirectly by neuronal and neuromuscular junction abnormalities. To date, more than 780 monogenic neuromuscular diseases, linked to 417 different genes, have been identified in humans. Genome-editing methods, especially the CRISPR (clustered regularly interspaced short palindromic repeats)–Cas9 (CRISPR-associated protein 9) system, hold clinical potential for curing many monogenic disorders, including neuromuscular diseases such as Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1. OBJECTIVES To provide an overview of genome-editing approaches; to summarize published reports on the feasibility, efficacy, and safety of current genome-editing methods as they relate to the potential correction of monogenic neuromuscular diseases; and to highlight scientific and clinical opportunities and obstacles toward permanent correction of disease-causing mutations responsible for monogenic neuromuscular diseases by genome editing. EVIDENCE REVIEW PubMed and Google Scholar were searched for articles published from June 30, 1989, through June 9, 2016, using the following keywords: genome editing, CRISPR-Cas9, neuromuscular disease, Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, andmyotonic dystrophy type 1. The following sources were reviewed: 341 articles describing different approaches to edit mammalian genomes; 330 articles describing CRISPR-Cas9–mediated genome editing in cell culture lines (in vitro) and animal models (in vivo); 16 websites used to generate single-guide RNA; 4 websites for off-target effects; and 382 articles describing viral and nonviral delivery systems. Articles describing neuromuscular diseases, including Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1

  13. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.

    Science.gov (United States)

    Liu, Jiao; Wang, Yu; Lu, Yujiao; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2017-11-16

    Corynebacterium glutamicum is an important industrial workhorse and advanced genetic engineering tools are urgently demanded. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) have revolutionized the field of genome engineering. The CRISPR/Cas9 system that utilizes NGG as protospacer adjacent motif (PAM) and has good targeting specificity can be developed into a powerful tool for efficient and precise genome editing of C. glutamicum. Herein, we developed a versatile CRISPR/Cas9 genome editing toolbox for C. glutamicum. Cas9 and gRNA expression cassettes were reconstituted to combat Cas9 toxicity and facilitate effective termination of gRNA transcription. Co-transformation of Cas9 and gRNA expression plasmids was exploited to overcome high-frequency mutation of cas9, allowing not only highly efficient gene deletion and insertion with plasmid-borne editing templates (efficiencies up to 60.0 and 62.5%, respectively) but also simple and time-saving operation. Furthermore, CRISPR/Cas9-mediated ssDNA recombineering was developed to precisely introduce small modifications and single-nucleotide changes into the genome of C. glutamicum with efficiencies over 80.0%. Notably, double-locus editing was also achieved in C. glutamicum. This toolbox works well in several C. glutamicum strains including the widely-used strains ATCC 13032 and ATCC 13869. In this study, we developed a CRISPR/Cas9 toolbox that could facilitate markerless gene deletion, gene insertion, precise base editing, and double-locus editing in C. glutamicum. The CRISPR/Cas9 toolbox holds promise for accelerating the engineering of C. glutamicum and advancing its application in the production of biochemicals and biofuels.

  14. CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing

    Science.gov (United States)

    Noman, Ali; Aqeel, Muhammad; He, Shuilin

    2016-01-01

    Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR-Cas9 mediated genome editing is being used for rapid, easy and efficient alteration of genes among diverse plant species. With approximate completion of conceptual work about CRISPR-Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of this system for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but in crop and ornamental plants as well. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with genetically modified plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR-Cas9 technology in plants has been summarized and discussed. We reviewed significance of CRISPR-Cas9 for specific and non-traditional aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques, e.g., Zinc finger nucleases, Transcription activator-like effector nucleases and potential challenges in coming decades have been described. PMID:27917188

  15. CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing.

    Science.gov (United States)

    Noman, Ali; Aqeel, Muhammad; He, Shuilin

    2016-01-01

    Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR-Cas9 mediated genome editing is being used for rapid, easy and efficient alteration of genes among diverse plant species. With approximate completion of conceptual work about CRISPR-Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of this system for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but in crop and ornamental plants as well. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with genetically modified plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR-Cas9 technology in plants has been summarized and discussed. We reviewed significance of CRISPR-Cas9 for specific and non-traditional aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques, e.g., Zinc finger nucleases, Transcription activator-like effector nucleases and potential challenges in coming decades have been described.

  16. Designed nucleases for targeted genome editing.

    Science.gov (United States)

    Lee, Junwon; Chung, Jae-Hee; Kim, Ho Min; Kim, Dong-Wook; Kim, Hyongbum

    2016-02-01

    Targeted genome-editing technology using designed nucleases has been evolving rapidly, and its applications are widely expanding in research, medicine and biotechnology. Using this genome-modifying technology, researchers can precisely and efficiently insert, remove or change specific sequences in various cultured cells, micro-organisms, animals and plants. This genome editing is based on the generation of double-strand breaks (DSBs), repair of which modifies the genome through nonhomologous end-joining (NHEJ) or homology-directed repair (HDR). In addition, designed nickase-induced generation of single-strand breaks can also lead to precise genome editing through HDR, albeit at relatively lower efficiencies than that induced by nucleases. Three kinds of designed nucleases have been used for targeted DSB formation: zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases derived from the bacterial clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) system. A growing number of researchers are using genome-editing technologies, which have become more accessible and affordable since the discovery and adaptation of CRISPR-Cas9. Here, the repair mechanism and outcomes of DSBs are reviewed and the three types of designed nucleases are discussed with the hope that such understanding will facilitate applications to genome editing. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Genetics Home Reference: HSD10 disease

    Science.gov (United States)

    ... on PubMed Central Vilardo E, Rossmanith W. Molecular insights into HSD10 disease: impact of SDR5C1 mutations on ... editing and CRISPR-Cas9? What is direct-to-consumer genetic testing? What is precision medicine? What is ...

  18. Journal of Genetics, Volume 81, 2002

    Indian Academy of Sciences (India)

    Unknown

    Book review: The genetics of the dog, edited by A. Ruvinsky and J. Sampson. 45. Feng, Bing-Jian see Shugart, Yin Y. Guo, Lingchen. Cloning, chromosome localization and features of a novel human gene, MATH2. 13. Hire, Ramesh S. see Misra, Hari S. Holliday, Robin. Epigenetics comes of age in the twentyfirst century. 1.

  19. A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma.

    Science.gov (United States)

    Chan, Tim Hon Man; Lin, Chi Ho; Qi, Lihua; Fei, Jing; Li, Yan; Yong, Kol Jia; Liu, Ming; Song, Yangyang; Chow, Raymond Kwok Kei; Ng, Vanessa Hui En; Yuan, Yun-Fei; Tenen, Daniel G; Guan, Xin-Yuan; Chen, Leilei

    2014-05-01

    Hepatocellular carcinoma (HCC) is a heterogeneous tumour displaying a complex variety of genetic and epigenetic changes. In human cancers, aberrant post-transcriptional modifications, such as alternative splicing and RNA editing, may lead to tumour specific transcriptome diversity. By utilising large scale transcriptome sequencing of three paired HCC clinical specimens and their adjacent non-tumour (NT) tissue counterparts at depth, we discovered an average of 20 007 inferred A to I (adenosine to inosine) RNA editing events in transcripts. The roles of the double stranded RNA specific ADAR (Adenosine DeAminase that act on RNA) family members (ADARs) and the altered gene specific editing patterns were investigated in clinical specimens, cell models and mice. HCC displays a severely disrupted A to I RNA editing balance. ADAR1 and ADAR2 manipulate the A to I imbalance of HCC via their differential expression in HCC compared with NT liver tissues. Patients with ADAR1 overexpression and ADAR2 downregulation in tumours demonstrated an increased risk of liver cirrhosis and postoperative recurrence and had poor prognoses. Due to the differentially expressed ADAR1 and ADAR2 in tumours, the altered gene specific editing activities, which was reflected by the hyper-editing of FLNB (filamin B, β) and the hypo-editing of COPA (coatomer protein complex, subunit α), are closely associated with HCC pathogenesis. In vitro and in vivo functional assays prove that ADAR1 functions as an oncogene while ADAR2 has tumour suppressive ability in HCC. These findings highlight the fact that the differentially expressed ADARs in tumours, which are responsible for an A to I editing imbalance, has great prognostic value and diagnostic potential for HCC.

  20. Apollonius de Perge, Coniques tome 2.3, livres II-IV

    CERN Document Server

    Decorps-Foulquier, Micheline

    2010-01-01

    Volume 2.3, containing the Greek translations of books II-IV, completes the edition of the Conica of Apollonius of Perga. It is arranged according to the same principle as the previous volume on book I: the critical edition of the Greek text is accompanied by numerous notes and a lexicon of all mathematical terms. An introduction and a French translation provide further insights into the text. The edition of the Greek books of the Conica will be thematically complemented by volume 3 of the SGA series, containing the critical edition of Eutocius of Ascalon's commentary on the Conica and its Fre

  1. Introduction to nuclear science, second edition

    CERN Document Server

    Bryan, Jeff C.

    2013-01-01

    This book was written to provide students who have limited backgrounds in the physical sciences and math with an accessible textbook on nuclear science. Expanding on the foundation of the bestselling first edition, Introduction to Nuclear Science, Second Edition provides a clear and complete introduction to nuclear chemistry and physics, from basic concepts to nuclear power and medical applications. Incorporating suggestions from professors using this book for their courses, the author has created a new text that is approximately 60 percent larger and more comprehensive and flexible than the first.New to This Edition: Thorough review of nuclear forensics, radiology, gamma cameras, and decay through proton or neutron emission More detailed explanations of the necessary mathematics A chapter on dosimetry of radiation fields Expanded discussion of applications, introduced earlier in the text More in-depth coverage of nuclear reactors, including a new chapter examining more reactor types, their safety systems,...

  2. Ethical and regulatory aspects of genome editing.

    Science.gov (United States)

    Kohn, Donald B; Porteus, Matthew H; Scharenberg, Andrew M

    2016-05-26

    Gene editing is a rapidly developing area of biotechnology in which the nucleotide sequence of the genome of living cells is precisely changed. The use of genome-editing technologies to modify various types of blood cells, including hematopoietic stem cells, has emerged as an important field of therapeutic development for hematopoietic disease. Although these technologies offer the potential for generation of transformative therapies for patients suffering from myriad disorders of hematopoiesis, their application for therapeutic modification of primary human cells is still in its infancy. Consequently, development of ethical and regulatory frameworks that ensure their safe and effective use is an increasingly important consideration. Here, we review a number of issues that have the potential to impact the clinical implementation of genome-editing technologies, and suggest paths forward for resolving them such that new therapies can be safely and rapidly translated to the clinic. © 2016 by The American Society of Hematology.

  3. Genetic diversity for RFLPs in European maize inbreds : II. Relation to performance of hybrids within versus between heterotic groups for forage traits.

    Science.gov (United States)

    Melchinger, A E; Boppenmaier, J; Dhillon, B S; Pollmer, W G; Herrmann, R G

    1992-08-01

    Restriction fragment length polymorphisms (RFLPs) have been proposed for the prediction of the yield potential of hybrids and the assignment of inbreds to heterotic groups. Such use was investigated in 66 diallel crosses among 6 flint and 6 dent inbreds from European maize (Zea mays L.) germ plasm. Inbreds and hybrids were evaluated for seven forage traits in four environments in the Federal Republic of Germany. Midparent heterosis (MPH) and specific combining ability (SCA) were calculated. Genetic distances (GD) between lines were calculated from RFLP data of 194 clone-enzyme combinations. GDs were greater for flint x dent than for flint x flint and dent x dent line combinations. Cluster analysis based on GDs showed separate groupings of flint and dent lines and agreed with pedigree information, except for 1 inbred. GDs of all line combinations in the diallel were partitioned into general (GGD) and specific (SGD) genetic distances; GGD explained approximately 20% of the variation among GD values. For the 62 diallel crosses (excluding 4 crosses of highly related lines), correlations of GD with F1 performance, MPH, and SCA for dry matter yield (DMY) of stover, ear, and forage were positive but mostly of moderate size (0.09≤r≤0.60) compared with the higher correlations (0.39≤r≤0.77) of SGD with these traits. When separate calculations were performed for various subsets, correlations of GD and SGD with DMY traits were generally small (r<0.47) for the 36 flint x dent crosses, significantly positive (r<0.53) for the 14 flint x flint crosses, and inconclusive for the 12 dent x dent crosses because of the lack of significant genotypic variation. Results indicated that RFLPs can be used for assigning inbreds to heterotic groups. RFLP-based genetic distance measures seem to be useful for predicting forage yield of (1) crosses between lines from the same germ plasm group or (2) crosses including line combinations from the same as well as different heterotic groups

  4. Transportation Energy Data Book, Edition 19

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.C.

    1999-09-01

    The Transportation Energy Data Book: Edition 19 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (http://www-cta.ornl.gov/data/tedb.htm).

  5. The art of editing RNA structural alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth

    2014-01-01

    Manual editing of RNA structural alignments may be considered more art than science, since it still requires an expert biologist to take multiple levels of information into account and be slightly creative when constructing high-quality alignments. Even though the task is rather tedious, it is re......Manual editing of RNA structural alignments may be considered more art than science, since it still requires an expert biologist to take multiple levels of information into account and be slightly creative when constructing high-quality alignments. Even though the task is rather tedious...

  6. The Ethics of Germline Gene Editing.

    Science.gov (United States)

    Gyngell, Christopher; Douglas, Thomas; Savulescu, Julian

    2017-08-01

    Germline Gene Editing (GGE) has enormous potential both as a research tool and a therapeutic intervention. While other types of gene editing are relatively uncontroversial, GGE has been strongly resisted. In this article, we analyse the ethical arguments for and against pursuing GGE by allowing and funding its development. We argue there is a strong case for pursuing GGE for the prevention of disease. We then examine objections that have been raised against pursuing GGE and argue that these fail. We conclude that the moral case in favour of pursuing GGE is stronger than the case against. This suggests that pursuing GGE is morally permissible and indeed morally desirable.

  7. Global Bathymetry: Machine Learning for Data Editing

    Science.gov (United States)

    Sandwell, D. T.; Tea, B.; Freund, Y.

    2017-12-01

    The accuracy of global bathymetry depends primarily on the coverage and accuracy of the sounding data and secondarily on the depth predicted from gravity. A main focus of our research is to add newly-available data to the global compilation. Most data sources have 1-12% of erroneous soundings caused by a wide array of blunders and measurement errors. Over the years we have hand-edited this data using undergraduate employees at UCSD (440 million soundings at 500 m resolution). We are developing a machine learning approach to refine the flagging of the older soundings and provide automated editing of newly-acquired soundings. The approach has three main steps: 1) Combine the sounding data with additional information that may inform the machine learning algorithm. The additional parameters include: depth predicted from gravity; distance to the nearest sounding from other cruises; seafloor age; spreading rate; sediment thickness; and vertical gravity gradient. 2) Use available edit decisions as training data sets for a boosted tree algorithm with a binary logistic objective function and L2 regularization. Initial results with poor quality single beam soundings show that the automated algorithm matches the hand-edited data 89% of the time. The results show that most of the information for detecting outliers comes from predicted depth with secondary contributions from distance to the nearest sounding and longitude. A similar analysis using very high quality multibeam data shows that the automated algorithm matches the hand-edited data 93% of the time. Again, most of the information for detecting outliers comes from predicted depth secondary contributions from distance to the nearest sounding and longitude. 3) The third step in the process is to use the machine learning parameters, derived from the training data, to edit 12 million newly acquired single beam sounding data provided by the National Geospatial-Intelligence Agency. The output of the learning algorithm will be

  8. ERCC2 2251A>C genetic polymorphism was highly correlated with early relapse in high-risk stage II and stage III colorectal cancer patients: A preliminary study

    Directory of Open Access Journals (Sweden)

    Lee Su-Chen

    2008-02-01

    Full Text Available Abstract Background Early relapse in colorectal cancer (CRC patients is attributed mainly to the higher malignant entity (such as an unfavorable genotype, deeper tumor invasion, lymph node metastasis and advance cancer stage and poor response to chemotherapy. Several investigations have demonstrated that genetic polymorphisms in drug-targeted genes, metabolizing enzymes, and DNA-repairing enzymes are all strongly correlated with inter-individual differences in the efficacy and toxicity of many treatment regimens. This preliminary study attempts to identify the correlation between genetic polymorphisms and clinicopathological features of CRC, and evaluates the relationship between genetic polymorphisms and chemotherapeutic susceptibility of Taiwanese CRC patients. To our knowledge, this study discusses, for the first time, early cancer relapse and its indication by multiple genes. Methods Six gene polymorphisms functional in drug-metabolism – GSTP1 Ile105Val, ABCB1 Ile1145Ile, MTHFR Ala222Val, TYMS double (2R or triple (3R tandem repeat – and DNA-repair genes – ERCC2 Lys751Gln and XRCC1 Arg399Gln – were assessed in 201 CRC patients using a polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP technique and DNA sequencing. Patients were diagnosed as either high-risk stage II (T2 and 3 N0 M0 or III (any T N1 and 2 M0 and were administered adjuvant chemotherapy regimens that included 5-fluorouracil (5FU and leucovorin (LV. The correlations between genetic polymorphisms and patient clinicopathological features and relapses were investigated. Results In this study, the distributions of GSTP1 (P = 0.003, ABCB1 (P = 0.001, TYMS (P ERCC2 (P XRCC1 (P = 0.006 genotypes in the Asian population, with the exception of MTHFR (P = 0.081, differed significantly from their distributions in a Caucasian population. However, the unfavorable genotype ERCC2 2251A>C (P = 0.006, tumor invasion depth (P = 0.025, lymph node metastasis (P = 0

  9. Genetic isolation between two sympatric host plant races of the European corn borer, Ostrinia nubilalis Hubner. II: assortative mating and host-plant preferences for oviposition.

    Science.gov (United States)

    Bethenod, M-T; Thomas, Y; Rousset, F; Frérot, B; Pélozuelo, L; Genestier, G; Bourguet, D

    2005-02-01

    The European corn borer, Ostrinia nubilalis Hubner, colonized maize (Zea mays L.) after its introduction into Europe about 500 years ago and is now considered one of the main pests of this crop. In northern France, two sympatric host races have been described: one feeding on maize and the other on mugwort (Artemisia vulgaris L.) and hop (Humulus lupulus L.). In a previous study, we showed that mating between the two races may be impeded by differences in the timing of moth emergence and in the composition of the sex pheromone produced by the females. In this study, we further investigated the genetic isolation of these two races using strains from the maize (Z strain) and mugwort (E strain) races selected for diagnostic alleles at two allozyme loci. In a cage containing maize and mugwort plants and located in natural conditions, mating between individuals of the same strain occurred more often than mating between males and females of the E and Z strains. In particular, we obtained no evidence for crosses between Z females and E males. We also found that females of the Z strain laid their eggs almost exclusively on maize, whereas females of the E strain laid their eggs preferentially, but not exclusively, on mugwort. These results suggest that the genetic differentiation between the two host races may also be favored by host-plant preference, one of the first steps toward sympatric speciation.

  10. Shielded Metal Arc Welding and Carbon Arc Cutting--Air. Teacher Edition [and] Student Edition [and] Student Workbook. Third Edition.

    Science.gov (United States)

    Harper, Eddie; Knapp, John

    This document contains the teacher and student texts and student workbook for a secondary-level course in shielded metal arc welding (SMAW) and carbon arc cutting that consists of units on the following topics: SMAW safety; SMAW equipment, applications, and techniques; hardfacing; and carbon arc cutting--air. The teacher edition includes the…

  11. Multi-objective optimization of MOSFETs channel widths and supply voltage in the proposed dual edge-triggered static D flip-flop with minimum average power and delay by using fuzzy non-dominated sorting genetic algorithm-II.

    Science.gov (United States)

    Keivanian, Farshid; Mehrshad, Nasser; Bijari, Abolfazl

    2016-01-01

    D Flip-Flop as a digital circuit can be used as a timing element in many sophisticated circuits. Therefore the optimum performance with the lowest power consumption and acceptable delay time will be critical issue in electronics circuits. The newly proposed Dual-Edge Triggered Static D Flip-Flop circuit layout is defined as a multi-objective optimization problem. For this, an optimum fuzzy inference system with fuzzy rules is proposed to enhance the performance and convergence of non-dominated sorting Genetic Algorithm-II by adaptive control of the exploration and exploitation parameters. By using proposed Fuzzy NSGA-II algorithm, the more optimum values for MOSFET channel widths and power supply are discovered in search space than ordinary NSGA types. What is more, the design parameters involving NMOS and PMOS channel widths and power supply voltage and the performance parameters including average power consumption and propagation delay time are linked. To do this, the required mathematical backgrounds are presented in this study. The optimum values for the design parameters of MOSFETs channel widths and power supply are discovered. Based on them the power delay product quantity (PDP) is 6.32 PJ at 125 MHz Clock Frequency, L = 0.18 µm, and T = 27 °C.

  12. Utilising polymorphisms to achieve allele-specific genome editing in zebrafish

    Directory of Open Access Journals (Sweden)

    Samuel J. Capon

    2017-01-01

    Full Text Available The advent of genome editing has significantly altered genetic research, including research using the zebrafish model. To better understand the selectivity of the commonly used CRISPR/Cas9 system, we investigated single base pair mismatches in target sites and examined how they affect genome editing in the zebrafish model. Using two different zebrafish strains that have been deep sequenced, CRISPR/Cas9 target sites containing polymorphisms between the two strains were identified. These strains were crossed (creating heterozygotes at polymorphic sites and CRISPR/Cas9 complexes that perfectly complement one strain injected. Sequencing of targeted sites showed biased, allele-specific editing for the perfectly complementary sequence in the majority of cases (14/19. To test utility, we examined whether phenotypes generated by F0 injection could be internally controlled with such polymorphisms. Targeting of genes bmp7a and chordin showed reduction in the frequency of phenotypes in injected ‘heterozygotes’ compared with injecting the strain with perfect complementarity. Next, injecting CRISPR/Cas9 complexes targeting two separate sites created deletions, but deletions were biased to selected chromosomes when one CRISPR/Cas9 target contained a polymorphism. Finally, integration of loxP sequences occurred preferentially in alleles with perfect complementarity. These experiments demonstrate that single nucleotide polymorphisms (SNPs present throughout the genome can be utilised to increase the efficiency of in cis genome editing using CRISPR/Cas9 in the zebrafish model.

  13. Experimental Stochatics (2nd edition)

    International Nuclear Information System (INIS)

    Wiberg, P

    2004-01-01

    for teachers of computational stochastic methods, is the main contribution of this electronic monograph. However, both the book and software suffer from several severe problems. Firstly, I feel that the structure of the text is weak. Probably this is partly the result of the text from the CD-ROM being put into a book format, but the short paragraphs and poorly structured sentences destroy the reading experience. Secondly, although the software is functional, I believe that, like me, many users will be disappointed by the quality of the user interface and the visualizations. The opportunities to interact with the simulations are limited. Thirdly, the presentation is slightly old fashioned and lacking in pedagogical structure. For example, flow charts and Pascal programs are used to present algorithms. To conclude, I am surprised that this electronic monograph warranted a second edition in this form. Teachers may find the examples useful as a starting point, but students and researchers are advised to look elsewhere. (book review)

  14. Unravelling the Franklin Mystery, Second Edition with David C. Woodman

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    2017-01-01

    This is a forthcoming book review of David C. Woodman's second edition of his book "Unravelling the Franklin Mystery."......This is a forthcoming book review of David C. Woodman's second edition of his book "Unravelling the Franklin Mystery."...

  15. Direct Visual Editing of Node Attributes in Graphs

    Directory of Open Access Journals (Sweden)

    Christian Eichner

    2016-10-01

    Full Text Available There are many expressive visualization techniques for analyzing graphs. Yet, there is only little research on how existing visual representations can be employed to support data editing. An increasingly relevant task when working with graphs is the editing of node attributes. We propose an integrated visualize-and-edit approach to editing attribute values via direct interaction with the visual representation. The visualize part is based on node-link diagrams paired with attribute-dependent layouts. The edit part is as easy as moving nodes via drag-and-drop gestures. We present dedicated interaction techniques for editing quantitative as well as qualitative attribute data values. The benefit of our novel integrated approach is that one can directly edit the data while the visualization constantly provides feedback on the implications of the data modifications. Preliminary user feedback indicates that our integrated approach can be a useful complement to standard non-visual editing via external tools.

  16. Effect of marker-data editing on the accuracy of genomic prediction

    DEFF Research Database (Denmark)

    Edriss, Vahid; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2013-01-01

    Genomic selection is a method to predict breeding values using genome-wide single-nucleotide polymorphism (SNP) markers. High-quality marker data are necessary for genomic selection. The aim of this study was to investigate the effect of marker-editing criteria on the accuracy of genomic predicti......Genomic selection is a method to predict breeding values using genome-wide single-nucleotide polymorphism (SNP) markers. High-quality marker data are necessary for genomic selection. The aim of this study was to investigate the effect of marker-editing criteria on the accuracy of genomic.......05 and 0.10, (ii) deviations from Hardy–Weinberg proportions (HWP) with thresholds of no limit, chi-squared p-values of 0.001, 0.02, 0.05 and 0.10, and (iii) GenCall (GC) scores with thresholds of 0.15, 0.55, 0.60, 0.65 and 0.70. The marker data sets edited with different criteria were used for genomic...... prediction of protein yield, fertility and mastitis using a Bayesian variable selection and a GBLUP model. De-regressed EBV were used as response variables. The result showed little difference between prediction accuracies based on marker data sets edited with MAF and deviation from HWP. However, accuracy...

  17. Activity and specificity of TRV-mediated gene editing in plants

    KAUST Repository

    Ali, Zahir

    2015-06-03

    © 2015 Taylor and Francis Group, LLC. Plant trait engineering requires efficient targeted genome-editing technologies. Clustered regularly interspaced palindromic repeats (CRISPRs)/ CRISPR associated (Cas) type II system is used for targeted genome-editing applications across eukaryotic species including plants. Delivery of genome engineering reagents and recovery of mutants remain challenging tasks for in planta applications. Recently, we reported the development of Tobacco rattle virus (TRV)-mediated genome editing in Nicotiana benthamiana. TRV infects the growing points and possesses small genome size; which facilitate cloning, multiplexing, and agroinfections. Here, we report on the persistent activity and specificity of the TRV-mediated CRISPR/Cas9 system for targeted modification of the Nicotiana benthamiana genome. Our data reveal the persistence of the TRVmediated Cas9 activity for up to 30 d post-agroinefection. Further, our data indicate that TRV-mediated genome editing exhibited no off-target activities at potential off-targets indicating the precision of the system for plant genome engineering. Taken together, our data establish the feasibility and exciting possibilities of using virus-mediated CRISPR/Cas9 for targeted engineering of plant genomes.

  18. A population-based evaluation of the seventh edition of the TNM system for lung cancer

    DEFF Research Database (Denmark)

    Strand, T-E; Rostad, H; Wentzel-Larsen, T

    2010-01-01

    Our study describes the new seventh edition of the TNM system for lung cancer in a national population and its clinical implications. We classified 1,885 operated patients with lung cancer, reported to the Cancer Registry of Norway (Oslo, Norway) from 2001 to 2005, according to the sixth and the ......Our study describes the new seventh edition of the TNM system for lung cancer in a national population and its clinical implications. We classified 1,885 operated patients with lung cancer, reported to the Cancer Registry of Norway (Oslo, Norway) from 2001 to 2005, according to the sixth...... to stage II and 161 (48%) patients migrated from stage IIB to IIA. Stage migrations could change the treatment for up to 326 (17.3%) of the study patients. The seventh edition did not improve the overall predictive ability of the TNM system; however, the new classification implies changes in treatment...... for nearly one-fifth of the cases. The implications of the seventh TNM edition for the outcomes of patients should be studied further....

  19. How the analysis of genetic mutations can help us to solve basic problems in gerontology? II. Life extending genetic modifications in budding yeast S. cereviseae, fruit fly D. melanogaster and laboratory mice M. musculus.

    Science.gov (United States)

    Khalyavkin, A V; Yashin, A I

    2003-01-01

    Most studies of aging are conducted in humans and domestic or laboratory animals, i.e. in conditions where artificial environment protection is applied, This yields changes in physiology and behavior, which set up organism's state unobserved in wild life. This state may be less adequate to the evolutionary adjusted genetic construction of an organism, which generates a hypothesis that in natural niches the aging rate can be lower and stress resistance can be higher than in captivity despite the fact that life expectancy in habitat is essentially lower than that in laboratory conditions due to high external mortality. Direct test of this hypothesis is difficult because of problems related to reconstruction of natural environment conditions in the laboratory. Substantial life-extending effect of some mutated genes can serve as indirect test of the hypothesis. We propose that in some cases genetic mutations can distort reaction of an organism on environmental cues and change control parameters of its life cycle. As a result such mutants in laboratory may partly demonstrate life traits similar to those observed in natural environment, e.g. associated with high stress resistance and low rate of aging. These features combined with low external mortality in laboratory conditions may lead to significant extension in the life span of mutants. Recently we considered 56 life-extending gene modifications in nematode C. elegans (Adv. Gerontol., 2003, Vol. 11), scattered in many publications. In this paper we consider pertinent life-extending gene modifications corresponded to the budding yeast S. cerevisease (29 genes), fruit fly D. melanogaster (22 genes) and laboratory mice M. musculus (8 genes).

  20. An Evaluation of the NSGA-II and MOCell Genetic Algorithms for Self-management Planning in a Pervasive Service Middleware

    DEFF Research Database (Denmark)

    Zhang, Weishan; Hansen, Klaus Marius

    2009-01-01

    -objective optimization problems, andare one of the most successful computational intelligenceapproaches currently available. GAs are beginning to beused in planning for self-management, but there is a lack ofcomprehensive work that evaluates GAs performance andsolution quality, and guides the setting of GAs’ parameters......Planning (for example choosing most suitable servicesfor self-configuration) is one important task in selfmanagement for pervasive service computing, and can bereduced to the problem of multi-objective services selectionwith constraints. Genetic algorithms (GAs) are effectivein solving such multi...... JMetal2.1, for achievingmulti-objective selection of available services. From theseevaluations, suggestions on how and when to use NSGA-IIand MOCell are given in the planning for self-management.Our experiences show that to get a true Pareto front for aproblem, combining solutions set from different GAs...

  1. Human Resources Administration: A School-Based Perspective. Fourth Edition

    Science.gov (United States)

    Smith, Richard

    2009-01-01

    Enhanced and updated, this Fourth Edition of Richard E. Smith's highly successful text examines the growing role of the principal in planning, hiring, staff development, supervision, and other human resource functions. The Fourth Edition includes new sections on ethics, induction, and the role of the mentor teacher. This edition also introduces…

  2. Editing modifies the GABA(A) receptor subunit alpha3

    DEFF Research Database (Denmark)

    Ohlson, Johan; Pedersen, Jakob Skou; Haussler, David

    2007-01-01

    to find selectively edited sites and combined it with bioinformatic techniques that find stem-loop structures suitable for editing. We present here the first verified editing candidate detected by this screening procedure. We show that Gabra-3, which codes for the alpha3 subunit of the GABA(A) receptor...

  3. Editing Bosman's stories | MacKenzie | Current Writing: Text and ...

    African Journals Online (AJOL)

    This article looks back at the editing work that went into the fourteen-volume Anniversary Edition of Herman Charles Bosman (1998–2005) and pays particular attention to the editing of Bosman's stories. It examines some of the problems that were encountered in arriving at 'authoritative' versions of the stories and argues ...

  4. Soil Carbon Sequestration and the Greenhouse Effect (2nd Edition)

    Science.gov (United States)

    This volume is a second edition of the book “Soil Carbon Sequestration and The Greenhouse Effect”. The first edition was published in 2001 as SSSA Special Publ. #57. The present edition is an update of the concepts, processes, properties, practices and the supporting data. All chapters are new co...

  5. Genetic breeding of silkworms: from traditional hybridization to molecular design.

    Science.gov (United States)

    Ma, San-Yuan; Xia, Qing-You

    2017-11-20

    Sericulture is one of the great inventions of the Chinese people and has become an important cultural feature of China. As China is the long-lasting center of silk production, genetic breeding of silkworm was highly developed historically, and has formed a comprehensive system for breeding and preservation of new varieties. However, silkworm breeding reached a bottleneck recently, because most of the traditional genetic resources have been utilized and silkworm strains have become homogeneous. Meanwhile, sericulture in China meets huge challenges in the 21 st century. In recent years, with the development and rapid application of molecular biology, genomics, transgene and genome editing, silkworm genetic breeding has entered a new era. In this review, we summarize the development of silkworm genetic breeding, especially the progress and perspective of transgene and genome editing in genetic engineering of silkworms. We also discuss the future development of silkworm genetic breeding.

  6. CRISPR, a Crossroads in Genetic Intervention: Pitting the Right to Health against the Right to Disability

    OpenAIRE

    Benston, Shawna

    2016-01-01

    Reproductive genetic technologies (RGTs), including gene-editing technology, are being discovered and refined at an exponential pace. One gene-editing innovation that demands our swift attention is CRISPR/Cas9, a system of clustered regularly interspaced short palindromic repeats and a protein called Cas9. As CRISPR and other RGTs continue being developed, we must remain vigilant concerning the potential implications of genetic-engineering technology on our interpersonal and legal relationshi...

  7. Let's Talk About Docs (NCSA Edition)

    OpenAIRE

    Sick, Jonathan

    2016-01-01

    User documentation is an essential part of delivering great software. This presentation frames how we should think about user documentation (as software developers and researchers). It covers the three types of documentation (tutorials, user guides and references), and how these formats work together. Finally, the presentation gives some advice on effective technical writing and editing.

  8. Positive Behavior Support Training Curriculum. Second Edition

    Science.gov (United States)

    Reid, Dennis H.; Parsons, Marsha B.

    2007-01-01

    The American Association on Intellectual and Developmental Disabilities' (AAIDD's) Positive Behavior Support Training Curriculum," Second Edition" ("PBSTC"), is a curriculum for training direct support personnel and their supervisors in the values and practices of Positive Behavior Support. The curriculum is designed for direct support persons and…

  9. Does Money Matter in Education? Second Edition

    Science.gov (United States)

    Baker, Bruce D.

    2016-01-01

    This second edition policy brief revisits the long and storied literature on whether money matters in providing a quality education. It includes research released since the original brief in 2012 and covers a handful of additional topics. Increasingly, political rhetoric adheres to the unfounded certainty that money does not make a difference in…

  10. The NMC Horizon Report: 2013 Museum Edition

    Science.gov (United States)

    Johnson, L.; Adams Becker, S.; Freeman, A.

    2013-01-01

    The "NMC Horizon Report: 2013 Museum Edition," is a co-production with the Marcus Institute for Digital Education in the Arts (MIDEA), and examines six emerging technologies for their potential impact on and use in education and interpretation within the museum environment: BYOD (Bring Your Own Device), crowdsourcing, electronic…

  11. The Art of Electronics - 2nd Edition

    Science.gov (United States)

    Horowitz, Paul; Hill, Winfield

    1989-09-01

    This is the thoroughly revised and updated second edition of the hugely successful The Art of Electronics. Widely accepted as the single authoritative text and reference on electronic circuit design, both analog and digital, the original edition sold over 125,000 copies worldwide and was translated into eight languages. The book revolutionized the teaching of electronics by emphasizing the methods actually used by citcuit designers - a combination of some basic laws, rules to thumb, and a large nonmathematical treatment that encourages circuit values and performance. The new Art of Electronics retains the feeling of informality and easy access that helped make the first edition so successful and popular. It is an ideal first textbook on electronics for scientists and engineers and an indispensable reference for anyone, professional or amateur, who works with electronic circuits. The best self-teaching book and reference book in electronics Simply indispensable, packed with essential information for all scientists and engineers who build electronic circuits Totally rewritten chapters on microcomputers and microprocessors The first edition of this book has sold over 100,000 copies in seven years, it has a market in virtually all research centres where electronics is important

  12. Handbook of paediatric radiography. Second edition

    International Nuclear Information System (INIS)

    Gyll, C.

    1985-01-01

    This book gives some ideas on how to achieve good radiographs of children. In this second edition most papers are expanded and brought up to date, the paper on the neonate completely rewritten, and a discussion of child development and child psychology added

  13. Ladybugs of South Dakota, 2nd edition

    Science.gov (United States)

    Images of the 80 species of Coccinellidae, commonly known as lady beetles, that occur in South Dakota are presented in taxonomic order. The second edition updates information, including the addition of a species new to South Dakota. Information on each species includes genus-species name, sub-fami...

  14. International guide to the circus. - 2015 edition

    NARCIS (Netherlands)

    Huey, R.; Albrecht, E.; Belbahri, N.; Brunsdale, M.; Christian, J.; Garcia, J.; Giarola, A.; Jando, D.; Lehmann, R.; Marier, F.; Nieminen, K.; Parkinson, G.; Pierce, R.D.; Revolledo Cárdenas, J.; Rodenhuis, W.; Serena, A.; Schlotfeldt, A.; Shaina, C.; Shrake, P.; Simon, M.; St. Leon, M.; Stone, C.; Cooper, J.; Tamaoki, V.; Winkler, G.

    2015-01-01

    An easy-to-read publication defining 100 key circus terms translated in nine languages. The 2015 edition has been re-created in a smaller "pocket" version, 44 pages in length and weighing 63 grams per book. Additional images have been added to illustrate terms and each book is sold complete with a

  15. Thermodynamics of Fluids Under Flow Second Edition

    CERN Document Server

    Jou, David; Criado-Sancho, Manuel

    2011-01-01

    This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer ble...

  16. Handbook: Emergency Legal Procedures. [Third Edition].

    Science.gov (United States)

    Apperson, Ron; Waxman, Everett

    This is the latest edition of a handbook designed to assist school administrators in preventing and dealing with school disruptions and certain related legal matters. Because the handbook was prepared specifically for use by administrators in the Los Angeles Unified School District, it is based on laws and regulations that may not apply elsewhere.…

  17. Efficient Communication Protocols for Deciding Edit Distance

    DEFF Research Database (Denmark)

    Jowhari, Hossein

    2012-01-01

    In this paper we present two communication protocols on computing edit distance. In our first result, we give a one-way protocol for the following Document Exchange problem. Namely given x ∈ Σn to Alice and y ∈ Σn to Bob and integer k to both, Alice sends a message to Bob so that he learns x...

  18. A Snapshot of Photo Editing Options

    Science.gov (United States)

    Bolkan, J.V.

    2004-01-01

    Plenty of digital imaging professionals claim that Adobe's Photoshop CS is the best photo editing application money can buy. This document reviews Adobe's Photoshop CS and its worthy competitors. In addition to Adobe, the following programs are reviewed in this document: (1) Adobe Photoshop Elements 2.0; (2) Arcsoft PhotoImpression; (3) Jasc Paint…

  19. Power Technologies Data Book 2003 Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2004-06-01

    The 2003 edition of this report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts and comparisons, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, conversion factors, and selected congressional questions and answers.

  20. A DESCRIPTIVE INDONESIAN GRAMMAR--PRELIMINARY EDITION.

    Science.gov (United States)

    DYEN, ISIDORE

    THIS PRELIMINARY EDITION COMPRISES A DESCRIPTIVE GRAMMAR OF INDONESIAN (BAHASA INDONESIA), THE OFFICIAL LANGUAGE OF THE REPUBLIC OF INDONESIA. THE THREE SECTIONS--PHONOLOGY, SYNTAX, AND MORPHOLOGY--PRESENT A COMPREHENSIVE LINGUISTIC ANALYSIS OF INDONESIAN, WITH OCCASIONAL CONTRASTIVE REFERENCE TO MALAY, JAVANESE, SUNDANESE, AND SUMATRAN. THIS…

  1. Grants for Children & Youth--2012 Digital Edition

    Science.gov (United States)

    Foundation Center, 2011

    2011-01-01

    This publication is only available as a downloadable file. See who's giving and getting grants in your field. Strengthen your search for funds with the Foundation Center's digital edition of "Grants for Children & Youth." This new "Grant Guide" reveals the scope of current foundation giving in the field. You'll find descriptions of 37,992 grants…

  2. Grants for Higher Education. 2012 Digital Edition

    Science.gov (United States)

    Foundation Center, 2011

    2011-01-01

    This publication is only available as a downloadable file. See who's giving and getting grants in your field. Strengthen your search for funds with the Foundation Center's digital edition of "Grants for Higher Education." This new "Grant Guide" reveals the scope of current foundation giving in the field. You'll find descriptions of 19,705 grants…

  3. Grants for Employment--2012 Digital Edition

    Science.gov (United States)

    Foundation Center, 2011

    2011-01-01

    This publication is only available as a downloadable file. See who's giving and getting grants in your field. Strengthen your search for funds with the Foundation Center's digital edition of "Grants for Employment." This new "Grant Guide" reveals the scope of current foundation giving in the field. You'll find descriptions of 4,129 grants of…

  4. Edit Distance to Monotonicity in Sliding Windows

    DEFF Research Database (Denmark)

    Chan, Ho-Leung; Lam, Tak-Wah; Lee, Lap Kei

    2011-01-01

    of a data stream is becoming well-understood over the past few years. Motivated by applications on network quality monitoring, we extend the study to estimating the edit distance to monotonicity of a sliding window covering the w most recent items in the stream for any w ≥ 1. We give a deterministic...

  5. School Law: Cases and Concepts. Seventh Edition.

    Science.gov (United States)

    LaMorte, Michael W.

    This book examines the sizable body of school law that outlines legally defensible decisions. A substantial part of it contains edited, reported, and verbatim decisions. Historical perspective is provided, as well as specific case and statutory law. Chapter 1 discusses sources of law for educators, state school board policies, attorneys-general…

  6. Telling Mathematical Stories with Live Editing

    Science.gov (United States)

    Thomson, Ian

    2017-01-01

    Using "live editing" it is possible to write code that can be run a section at a time. This makes it easier to spot and correct errors. It can also be used to create an interactive mathematical story. This brief article shows how MATLAB software can be used to take the user on a mathematical journey with historical connections.

  7. Qualities of Effective Teachers. 2nd Edition

    Science.gov (United States)

    Stronge, James H.

    2007-01-01

    Thousands of educators who are involved with teacher professional development--from training to hiring, mentoring to supervising--rely on this authoritative book to focus on cultivating teacher qualities that are most apt to raise student achievement. Now, this new edition extends this results-based approach to include teachers who work with…

  8. Introduction to Energy - 2nd Edition

    Science.gov (United States)

    Cassedy, Edward S.; Grossman, Peter Z.

    1998-12-01

    Energy issues such as pollution, resource depletion, global warming, nuclear power and waste are problems that demand timely solutions. This book provides a critical examination of the resources, market forces, and social impacts of modern energy production. The book addresses the dilemmas that have arisen due to society's crucial dependence on energy, particularly fossil fuels, and explores the available alternative energy producing technologies. The second edition has increased emphasis on those issues at the forefront of the current energy debate: energy sustainability, climate change, and the radical restructuring of the power industry due to de-regulation. Assuming no prior technical expertise and avoiding complex mathematical formulation, it is directed at a broad readership. The second edition will follow the first in proving especially useful as a textbook for undergraduate programs in Science, Technology and Society (STS), and as a supplementary text in a variety of courses which touch upon energy studies, including environmental and technology policy, environmental, mineral and business law, energy and resource economics. Fully updated second edition of successful first edition that was adopted on Science, Technology and Society courses Provides a critical examination of all aspects of modern energy production for non-technical readers For a broad readership from a variety of backgrounds

  9. Kids & Family Reading Report™. 6th Edition

    Science.gov (United States)

    Scholastic Inc., 2017

    2017-01-01

    This report presents the 6th Edition of Scholastic's biannual study of children's and parents' attitudes and behaviors about reading. The latest research touches on: (1) Reading Books for Fun; (2) Reading Aloud; (3) Summer Reading; and (4) Favorite Children's Books. This research provides both reasons to celebrate as well as a strong motivation to…

  10. 10 Tempting Image-Editing Tasks

    Science.gov (United States)

    Guhin, Paula

    2009-01-01

    Asking students to manipulate digital photos on the computer is one of the easiest ways the author knows to engage their attention. It's fabulous fun for them and a great teaching tool for educators. In this article, the author presents 10 ways to impress students with image-editing software. These are: (1) filters are fascinating; (2) get a move…

  11. ISEE : An Intuitive Sound Editing Environment

    NARCIS (Netherlands)

    Vertegaal, R.P.H.; Bonis, E.

    1994-01-01

    This article presents ISEE, an intuitive sound editing environment, as a general sound synthesis model based on expert auditory perception and cognition of musical instruments. It discusses the backgrounds of current synthesizer user interface design and related timbre space research. Of the three

  12. A Model for Flexibly Editing CSCL Scripts

    Science.gov (United States)

    Sobreira, Pericles; Tchounikine, Pierre

    2012-01-01

    This article presents a model whose primary concern and design rationale is to offer users (teachers) with basic ICT skills an intuitive, easy, and flexible way of editing scripts. The proposal is based on relating an end-user representation as a table and a machine model as a tree. The table-tree model introduces structural expressiveness and…

  13. CRISPR-Cas9 gene editing

    NARCIS (Netherlands)

    Oude Blenke, Erik; Evers, Martijn J.W.; Mastrobattista, Enrico; Oost, van der John

    2016-01-01

    The CRISPR-Cas9 gene editing system has taken the biomedical science field by storm, initiating rumors about future Nobel Prizes and heating up a fierce patent war, but also making significant scientific impact. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with

  14. Edit propagation using geometric relationship functions

    KAUST Repository

    Guerrero, Paul

    2014-04-15

    We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations. © 2014 ACM 0730-0301/2014/03- ART15 $15.00.

  15. Feature sensitive multiscale editing on surfaces

    NARCIS (Netherlands)

    Clarenz, U.; Griebel, M.; Rumpf, M.; Schweitzer, M.A.; Telea, A.

    2004-01-01

    A novel editing method for large triangular meshes is presented. We detect surface features, such as edge and corners, by computing local zero and first surface moments, using a robust and noise resistant method. The feature detection is encoded in a finite element matrix, passed to an algebraic

  16. Collecting and Interpreting Qualitative Materials. Third Edition

    Science.gov (United States)

    Denzin, Norman K., Ed.; Lincoln, Yvonna, Ed.

    2007-01-01

    This book is the third volume of the paperback versions of "The SAGE Handbook of Qualitative Research, Third Edition." This portion of the handbook considers the tasks of collecting, analyzing, and interpreting empirical materials, and comprises the Handbook's Parts IV ("Methods of Collecting and Analyzing Empirical Materials") and V ("The Art and…

  17. Handbook of Qualitative Research. Second Edition.

    Science.gov (United States)

    Denzin, Norman K., Ed.; Lincoln, Yvonna S., Ed.

    This handbook's second edition represents the state of the art for the theory and practice of qualitative inquiry. It features eight new topics, including autoethnography, critical race theory, applied ethnography, queer theory, and "testimonio"every chapter in the handbook has been thoroughly revised and updated. The book…

  18. Home Study Course Development Handbook. Second Edition.

    Science.gov (United States)

    Lambert, Michael P., Ed.; Welch, Sally R., Ed.

    Intended to help developers of home study courses and their directors of education create good correspondence courses, this document updates the 1980 edition and was developed by members of the National Home Study Council's Research and Educational Standards Committee. The document begins with photographs and biographies of its authors. The…

  19. Kids & Family Reading Report™. 5th Edition

    Science.gov (United States)

    Scholastic Inc., 2015

    2015-01-01

    This report presents the 5th Edition of Scholastic's biannual study of children's and parents' attitudes and behaviors about reading. The latest research touches on reading aloud to children of all ages, the impact of reading independently for fun at school and at home, the importance of frequent reading, and the books children want most to read.…

  20. Developmental neuropsychological assessment of 4- to 5-year-old children born following Preimplantation Genetic Diagnosis (PGD): A pilot study.

    Science.gov (United States)

    Sacks, Gilat Chaya; Altarescu, Gheona; Guedalia, Judith; Varshaver, Irit; Gilboa, Tal; Levy-Lahad, Ephrat; Eldar-Geva, Talia

    2016-01-01

    The purpose of this pilot study was to evaluate developmental neuropsychological profiles of 4- to 5-year-old children born after Preimplantation Genetic Diagnosis (PGD). Twenty-seven participants received a neurological examination and a battery of neuropsychological assessments including Wechsler Preschool & Primary Scale of Intelligence - Third Edition (WPPSI-III; cognitive development), Preschool Language Scale, Fourth Edition (PLS-4; language development), Wide Range Assessment of Visual Motor Abilities (visual motor abilities), Childhood Autism Rating Scales II (a screening test for autistic spectrum disorders), and the Miles ABC Test (ocular dominance). Parental questionnaires included the Behavior Rating Inventory of Executive Function Preschool Version (BRIEF-P; executive function), Child Behavior Checklist (CBCL) and the Carey Temperament Scales Behavioral Style Questionnaire (socioemotional development and temperament), and the Vineland Adaptive Behavior Scales, Interview Edition, Second Edition (general adaptive behavior). Subjects' tests results were compared to each test's norms. Children born after PGD demonstrated scores within the normal or above-normal ranges for all developmental outcomes (mean ± SD): WPPSI-III-VIQ 107.4 ± 14.4 (p = .013), PLS-4-Total 113.2 ± 12.4, p < .001), CBCL-Total 41.1 ± 8.6 (p < .001), BRIEF-P-Global Executive Composite 44.8 ± 9.5 (p = .009). Twelve (44%) of the PGD children had a significant difference between their VIQ and PIQ scores (compared to 27% in the general population). One subject was found to show possible signs of autistic spectrum disorder, although a family history of autism was noted. In conclusion, in this pilot study, children assessed at age 4-5 years and conceived after PGD displayed developmental neuropsychological outcomes within normal limits as compared to their chronologic peers. A larger study is needed to evaluate and follow the neuropsychological development of children born after PGD.

  1. Gene Editing of Microalgae: Scientific Progress and Regulatory Challenges in Europe

    Science.gov (United States)

    Spicer, Andrew

    2018-01-01

    It is abundantly clear that the development of gene editing technologies, represents a potentially powerful force for good with regard to human and animal health and addressing the challenges we continue to face in a growing global population. This now includes the development of approaches to modify microalgal strains for potential improvements in productivity, robustness, harvestability, processability, nutritional composition, and application. The rapid emergence and ongoing developments in this area demand a timely review and revision of the current definitions and regulations around genetically modified organisms (GMOs), particularly within Europe. Current practices within the EU provide exemptions from the GMO directives for organisms, including crop plants and micro-organisms that are produced through chemical or UV/radiation mutagenesis. However, organisms generated through gene editing, including microalgae, where only genetic changes in native genes are made, remain currently under the GMO umbrella; they are, as such, excluded from practical and commercial opportunities in the EU. In this review, we will review the advances that are being made in the area of gene editing in microalgae and the impact of regulation on commercial advances in this area with consideration to the current regulatory framework as it relates to GMOs including GM microalgae in Europe. PMID:29509719

  2. Advancing Crop Transformation in the Era of Genome Editing[OPEN

    Science.gov (United States)

    Blechl, Ann E.; Brutnell, Thomas P.; Conrad, Liza J.; Gelvin, Stanton B.; Jackson, David P.; Kausch, Albert P.; Lemaux, Peggy G.; Medford, June I.; Orozco-Cárdenas, Martha L.; Tricoli, David M.; Van Eck, Joyce; Voytas, Daniel F.

    2016-01-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. PMID:27335450

  3. Gene Editing of Microalgae: Scientific Progress and Regulatory Challenges in Europe

    Directory of Open Access Journals (Sweden)

    Andrew Spicer

    2018-03-01

    Full Text Available It is abundantly clear that the development of gene editing technologies, represents a potentially powerful force for good with regard to human and animal health and addressing the challenges we continue to face in a growing global population. This now includes the development of approaches to modify microalgal strains for potential improvements in productivity, robustness, harvestability, processability, nutritional composition, and application. The rapid emergence and ongoing developments in this area demand a timely review and revision of the current definitions and regulations around genetically modified organisms (GMOs, particularly within Europe. Current practices within the EU provide exemptions from the GMO directives for organisms, including crop plants and micro-organisms that are produced through chemical or UV/radiation mutagenesis. However, organisms generated through gene editing, including microalgae, where only genetic changes in native genes are made, remain currently under the GMO umbrella; they are, as such, excluded from practical and commercial opportunities in the EU. In this review, we will review the advances that are being made in the area of gene editing in microalgae and the impact of regulation on commercial advances in this area with consideration to the current regulatory framework as it relates to GMOs including GM microalgae in Europe.

  4. Gene Editing of Microalgae: Scientific Progress and Regulatory Challenges in Europe.

    Science.gov (United States)

    Spicer, Andrew; Molnar, Attila

    2018-03-06

    It is abundantly clear that the development of gene editing technologies, represents a potentially powerful force for good with regard to human and animal health and addressing the challenges we continue to face in a growing global population. This now includes the development of approaches to modify microalgal strains for potential improvements in productivity, robustness, harvestability, processability, nutritional composition, and application. The rapid emergence and ongoing developments in this area demand a timely review and revision of the current definitions and regulations around genetically modified organisms (GMOs), particularly within Europe. Current practices within the EU provide exemptions from the GMO directives for organisms, including crop plants and micro-organisms that are produced through chemical or UV/radiation mutagenesis. However, organisms generated through gene editing, including microalgae, where only genetic changes in native genes are made, remain currently under the GMO umbrella; they are, as such, excluded from practical and commercial opportunities in the EU. In this review, we will review the advances that are being made in the area of gene editing in microalgae and the impact of regulation on commercial advances in this area with consideration to the current regulatory framework as it relates to GMOs including GM microalgae in Europe.

  5. Coleformes fecais em águas de esgoto: II- transferência de marcadores e presença de plasmidial Fecal coliforms in sewage treatment: II. Genetic tranfer and plasmids

    Directory of Open Access Journals (Sweden)

    Ana Carolina Paulo Vicente

    1988-03-01

    Full Text Available Investigou-se a transferência de marcadores genéticos e a presença de DNA plasmidial em 240 culturas de Escherichia coli originárias de água de esgoto (afluente e fluentes da Estação de Tratamento da Ilha do Governador, na cidade do Rio de Janeiro, RJ. Experimentos de conjugação com E. coli K 12 permitiram o isolamento de transconjugantes com resistência a antibióticos (Su, Sm, Tc, Cm e Ap; a metais pesados (Cu, Hg e Zn e fatores colicinogênicos (Col Ia, Ib e V principalmente para os coliformes isolados nos setores terminais da estação de tratamento. A distribuição de plasmídeos foi prevalente nas culturas de E. coli advindas dos efluentes, com percentuais superiores a 65.The transference of the genetic markers and the presence of DNA plasmidial in 240 cultures of Escherichia coli was investigated. The strains were originated from Waste Treatment Plant (inffluent and effluents located in Ilha do Governador, Rio de Janeiro. By conjugation analysis, E. coli K 12 allowed the isolation of the transconjugants resistent to antibiotics Su, Sm, Tc, Cm, Ap; heavy metals (Cu, Hg, and Zn and colicinogenic factors (Ia, Ib and V mainly in coliforms isolated Cm and Ap from the terminals of the treatment plant. The percentual distribution of the plasmids was prevalent in the cultures of E. coli originated from material collected in the effluents and reached a rate higher than 65%.

  6. Application of the CRISPR/Cas9 gene editing technique to research on functional genomes of parasites.

    Science.gov (United States)

    Cui, Yubao; Yu, Lili

    2016-12-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR) structural family functions as an acquired immune system in prokaryotes. Gene editing techniques have co-opted CRISPR and the associated Cas nucleases to allow for the precise genetic modification of human cells, zebrafish, mice, and other eukaryotes. Indeed, this approach has been used to induce a variety of modifications including directed insertion/deletion (InDel) of bases, gene knock-in, introduction of mutations in both alleles of a target gene, and deletion of small DNA fragments. Thus, CRISPR technology offers a precise molecular tool for directed genome modification with a range of potential applications; further, its high mutation efficiency, simple process, and low cost provide additional advantages over prior editing techniques. This paper will provide an overview of the basic structure and function of the CRISPR gene editing system as well as current and potential applications to research on parasites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents.

    Science.gov (United States)

    Gao, Xue; Tao, Yong; Lamas, Veronica; Huang, Mingqian; Yeh, Wei-Hsi; Pan, Bifeng; Hu, Yu-Juan; Hu, Johnny H; Thompson, David B; Shu, Yilai; Li, Yamin; Wang, Hongyang; Yang, Shiming; Xu, Qiaobing; Polley, Daniel B; Liberman, M Charles; Kong, Wei-Jia; Holt, Jeffrey R; Chen, Zheng-Yi; Liu, David R

    2018-01-11

    Although genetic factors contribute to almost half of all cases of deafness, treatment options for genetic deafness are limited. We developed a genome-editing approach to target a dominantly inherited form of genetic deafness. Here we show that cationic lipid-mediated in vivo delivery of Cas9-guide RNA complexes can ameliorate hearing loss in a mouse model of human genetic deafness. We designed and validated, both in vitro and in primary fibroblasts, genome editing agents that preferentially disrupt the dominant deafness-associated allele in the Tmc1 (transmembrane channel-like gene family 1) Beethoven (Bth) mouse model, even though the mutant Tmc1 Bth allele differs from the wild-type allele at only a single base pair. Injection of Cas9-guide RNA-lipid complexes targeting the Tmc1 Bth allele into the cochlea of neonatal Tmc1 Bth/+ mice substantially reduced progressive hearing loss. We observed higher hair cell survival rates and lower auditory brainstem response thresholds in injected ears than in uninjected ears or ears injected with control complexes that targeted an unrelated gene. Enhanced acoustic startle responses were observed among injected compared to uninjected Tmc1 Bth/+ mice. These findings suggest that protein-RNA complex delivery of target gene-disrupting agents in vivo is a potential strategy for the treatment of some types of autosomal-dominant hearing loss.

  8. Partial dispensability of Djp1's J domain in peroxisomal protein import in Saccharomyces cerevisiae results from genetic redundancy with another class II J protein, Caj1.

    Science.gov (United States)

    Dobriyal, Neha; Tripathi, Prerna; Sarkar, Susrita; Tak, Yogesh; Verma, Amit K; Sahi, Chandan

    2017-05-01

    J proteins are obligate co-chaperones of Hsp70s. Via their signature J domain, all J proteins interact with their partner Hsp70s and stimulate their weak ATPase activity, which is vital for Hsp70 functions. The dependency of J proteins on their J domain is such that mutations in critical amino acids in the J domain often results into a null phenotype for a particular J protein. Here, we show that the J domain of Djp1, a cytosolic J protein important for peroxisomal protein import in Saccharomyces cerevisiae, is partially dispensable. A complete deletion of Djp1 J domain resulted into only partial loss in peroxisomal protein import function. Instead, the C-terminal domain of Djp1 was found to be essential for proper localization of the peroxisomal targeted GFP-PTS1. Furthermore, we show that Caj1, another cytosolic J protein, also has some role in peroxisomal protein import. Caj1 was found to be partially redundant with Djp1 as cells lacking both Djp1 and Caj1 resulted into a much more severe defect in GFP-PTS1 localization. Based on these results, we propose that dispensability of J domains could be attributed to genetic redundancy between different J proteins sharing common structural topology and cellular localization.

  9. [Genetic control of the capacity of Sh. flexneri to exert a lethal effect on macrophages. II. Mapping of the cyt-determinant on the Shigella chromosome].

    Science.gov (United States)

    Bondarenko, V M; Maslova, T N

    1975-10-01

    Crossing experiments showed independence of the genetic determinants controlling the capacity of Sh. flexneri to synthesize the primary S-specific side chains (antigen 3,4) and to produce a lethal action on macrophages cultivated in vitro. Cytotoxicity was restored only in transmission to the R-strain of shigellae of the capacity to synthesize the antigenic factor 3,4 from the cyt+, but not from the cyt-- donor of Sh. flexneri. The determinant responsible for the synthesis of cytotoxin designated as cyt was mapped on the chromosome of shigellae near the rfb gene, controlling the synthesis of the group-specific factor 3,4. The rate of linkage of the cyt+ a 3,4+ was equal to 24.4%. Transductants of the his--cyt-- strain of Sh. flexneri of the S-chemotype acquired the capacity to produce a lethal action on the macrophages with the frequency of the contransduction his+cyt+ equal to 2%. Since the rough (his+R) hybrids of Sh. flexneri and the lysozyme spheroplasts obtained from the cytotoxic strain lost the cytotoxicity whereas the synthesis of the group-specific factor 3,4 provided by itself no lethal effect of the dysentery bacilli on the macrophages it could be supposed that cytotoxin represented an additional thermolabile (in connection with the sensitivity to the temperature action) part of the Sh. flexneri O-antigen.

  10. Heritable major histocompatibility complex class II-associated differences in production of tumor necrosis factor. alpha. : Relevance to genetic predisposition to systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, C.O.; Fronek, Z.; Koo, M.; McDevitt, H.O. (Stanford Univ. School of Medicine, CA (USA)); Lewis, G.C. (Genentech Inc., San Francisco, CA (USA)); Hansen, J.A. (Fred Hutchinson Cancer Research Center, Seattle, WA (USA))

    1990-02-01

    The authors report on the production of tumor necrosis factor (TNF)-{alpha} and TNF-{beta} by mitogen-activated peripheral blood lymphocytes or enriched monocyte subpopulations from human leukocyte antigen (HLA)-typed healthy subjects. The results indicate that HLA-DR2- and DQw1-positive donors frequently exhibit low production of TNF-{alpha}, whereas DR3- and DR4-positive subjects show high levels of TNF-{alpha} production. No correlation between TNF-{alpha} levels and HLA-A, -B, and -C genotype was found. The relevance of this quantitative polymorphism to the genetic predisposition to lupus nephritis in systemic lupus erythematosus (SLE) patients was investigated. DR2, DQw1-positive SLE patients show low levels of TNF-{alpha} inducibility; this genotype is also associated with an increased incidence of lupus nephritis. DR3-positive SLE patients, on the other hand, are not predisposed to nephritis, and these patients have high TNF-{alpha} production. DR4 haplotype is associated with high TNF-{alpha} inducibility and is negatively correlated with lupus nephritis. These data may help explain the strong association between HLA-DR2, DQw1 in SLE patients and their susceptibility to nephritis.

  11. Identification of a novel gene (HSN2) causing hereditary sensory and autonomic neuropathy type II through the Study of Canadian Genetic Isolates.

    Science.gov (United States)

    Lafreniere, Ronald G; MacDonald, Marcia L E; Dube, Marie-Pierre; MacFarlane, Julie; O'Driscoll, Mary; Brais, Bernard; Meilleur, Sebastien; Brinkman, Ryan R; Dadivas, Owen; Pape, Terry; Platon, Christele; Radomski, Chris; Risler, Jenni; Thompson, Jay; Guerra-Escobio, Ana-Maria; Davar, Gudarz; Breakefield, Xandra O; Pimstone, Simon N; Green, Roger; Pryse-Phillips, William; Goldberg, Y Paul; Younghusband, H Banfield; Hayden, Michael R; Sherrington, Robin; Rouleau, Guy A; Samuels, Mark E

    2004-05-01

    Hereditary sensory and autonomic neuropathy (HSAN) type II is an autosomal recessive disorder characterized by impairment of pain, temperature, and touch sensation owing to reduction or absence of peripheral sensory neurons. We identified two large pedigrees segregating the disorder in an isolated population living in Newfoundland and performed a 5-cM genome scan. Linkage analysis identified a locus mapping to 12p13.33 with a maximum LOD score of 8.4. Haplotype sharing defined a candidate interval of 1.06 Mb containing all or part of seven annotated genes, sequencing of which failed to detect causative mutations. Comparative genomics revealed a conserved ORF corresponding to a novel gene in which we found three different truncating mutations among five families including patients from rural Quebec and Nova Scotia. This gene, termed "HSN2," consists of a single exon located within intron 8 of the PRKWNK1 gene and is transcribed from the same strand. The HSN2 protein may play a role in the development and/or maintenance of peripheral sensory neurons or their supporting Schwann cells.

  12. Genetic Variation at Exon 2 of the MHC Class II DQB Locus in Blue Whale (Balaenoptera musculus) from the Gulf of California.

    Science.gov (United States)

    Moreno-Santillán, Diana D; Lacey, Eileen A; Gendron, Diane; Ortega, Jorge

    2016-01-01

    The genes of the Major Histocompatibility Complex (MHC) play an important role in the vertebrate immune response and are among the most polymorphic genes known in vertebrates. In some marine mammals, MHC genes have been shown to be characterized by low levels of polymorphism compared to terrestrial taxa; this reduction in variation is often explained as a result of lower pathogen pressures in marine habitats. To determine if this same reduction in variation applies to the migratory population of blue whales (Balaenoptera musculus) that occurs in the Gulf of California, we genotyped a 172 bp fragment of exon 2 of the MHC Class II DQB locus for 80 members of this population. Twenty-two putatively functional DQB allotypes were identified, all of which were homologous with DQB sequences from other cetacean species. Up to 5 putative alleles per individual were identified, suggesting that gene duplication has occurred at this locus. Rates of non-synonymous to synonymous substitutions (ω) and maximum likelihood analyses of models of nucleotide variation provided potential evidence of ongoing positive selection at this exon. Phylogenetic analyses of DQB alleles from B. musculus and 16 other species of cetaceans revealed trans-specific conservation of MHC variants, suggesting that selection has acted on this locus over prolonged periods of time. Collectively our findings reveal that immunogenic variation in blue whales is comparable to that in terrestrial mammals, thereby providing no evidence that marine taxa are subject to reduced pathogen-induced selective pressures.

  13. EDITORIAL ii

    African Journals Online (AJOL)

    This edition has a comprehensive review on implant connections, which is quite relevant especially in the developing nations. Implant dentistry is still at its infancy in many parts of Africa, however the demand for dental implants is growing due to increased awareness. Presently, only the high socioeconomic class in Nigeria ...

  14. CRISPR-Cas9; an efficient tool for precise plant genome editing.

    Science.gov (United States)

    Islam, Waqar

    2018-04-02

    Efficient plant genome editing is dependent upon induction of double stranded DNA breaks (DSBs) through site specified nucleases. These DSBs initiate the process of DNA repair which can either base upon homologous recombination (HR) or non-homologous end jointing (NHEJ). Recently, CRISPR-Cas9 mechanism got highlighted as revolutionizing genetic tool due to its simpler frame work along with the broad range of adaptability and applications. So, in this review, we have tried to sum up the application of this biotechnological tool in plant genome editing. Furthermore, we have tried to explain successful adaptation of CRISPR in various plant species where it is used for the successful generation of stable mutations in a steadily growing number of species through NHEJ. The review also sheds light upon other biotechnological approaches relying upon single DNA lesion induction such as genomic deletion or pair wise nickases for evasion of offsite effects. Copyright © 2018. Published by Elsevier Ltd.

  15. Genome-editing technologies and their potential application in horticultural crop breeding

    Science.gov (United States)

    Xiong, Jin-Song; Ding, Jing; Li, Yi

    2015-01-01

    Plant breeding, one of the oldest agricultural activities, parallels human civilization. Many crops have been domesticated to satisfy human's food and aesthetical needs, including numerous specialty horticultural crops such as fruits, vegetables, ornamental flowers, shrubs, and trees. Crop varieties originated through selection during early human civilization. Other technologies, such as various forms of hybridization, mutation, and transgenics, have also been invented and applied to crop breeding over the past centuries. The progress made in these breeding technologies, especially the modern biotechnology-based breeding technologies, has had a great impact on crop breeding as well as on our lives. Here, we first review the developmental process and applications of these technologies in horticultural crop breeding. Then, we mainly describe the principles of the latest genome-editing technologies and discuss their potential applications in the genetic improvement of horticultural crops. The advantages and challenges of genome-editing technologies in horticultural crop breeding are also discussed. PMID:26504570

  16. Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells.

    Science.gov (United States)

    Dimitrov, Lazar; Pedersen, Darlene; Ching, Kathryn H; Yi, Henry; Collarini, Ellen J; Izquierdo, Shelley; van de Lavoir, Marie-Cecile; Leighton, Philip A

    2016-01-01

    The CRISPR/Cas9 system has been applied in a large number of animal and plant species for genome editing. In chickens, CRISPR has been used to knockout genes in somatic tissues, but no CRISPR-mediated germline modification has yet been reported. Here we use CRISPR to target the chicken immunoglobulin heavy chain locus in primordial germ cells (PGCs) to produce transgenic progeny. Guide RNAs were co-transfected with a donor vector for homology-directed repair of the double-strand break, and clonal populations were selected. All of the resulting drug-resistant clones contained the correct targeting event. The targeted cells gave rise to healthy progeny containing the CRISPR-targeted locus. The results show that gene-edited chickens can be obtained by modifying PGCs in vitro with the CRISPR/Cas9 system, opening up many potential applications for efficient genetic modification in birds.

  17. Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells.

    Directory of Open Access Journals (Sweden)

    Lazar Dimitrov

    Full Text Available The CRISPR/Cas9 system has been applied in a large number of animal and plant species for genome editing. In chickens, CRISPR has been used to knockout genes in somatic tissues, but no CRISPR-mediated germline modification has yet been reported. Here we use CRISPR to target the chicken immunoglobulin heavy chain locus in primordial germ cells (PGCs to produce transgenic progeny. Guide RNAs were co-transfected with a donor vector for homology-directed repair of the double-strand break, and clonal populations were selected. All of the resulting drug-resistant clones contained the correct targeting event. The targeted cells gave rise to healthy progeny containing the CRISPR-targeted locus. The results show that gene-edited chickens can be obtained by modifying PGCs in vitro with the CRISPR/Cas9 system, opening up many potential applications for efficient genetic modification in birds.

  18. From Gene Targeting to Genome Editing: Transgenic animals applications and beyond

    Directory of Open Access Journals (Sweden)

    MAURÍCIO ROCHA-MARTINS

    2015-08-01

    Full Text Available ABSTRACTGenome modification technologies are powerful tools for molecular biology and related areas. Advances in animal transgenesis and genome editing technologies during the past three decades allowed systematic interrogation of gene function that can help model how the genome influences cellular physiology. Genetic engineering via homologous recombination (HR has been the standard method to modify genomic sequences. Nevertheless, nuclease-guided genome editing methods that were developed recently, such as ZFN, TALEN and CRISPR/Cas, opened new perspectives for biomedical research. Here, we present a brief historical perspective of genome modification methods, focusing on transgenic mice models. Moreover, we describe how new techniques were discovered and improved, present the paradigm shifts and discuss their limitations and applications for biomedical research as well as possible future directions.

  19. From Gene Targeting to Genome Editing: Transgenic animals applications and beyond.

    Science.gov (United States)

    Rocha-Martins, Maurício; Cavalheiro, Gabriel R; Matos-Rodrigues, Gabriel E; Martins, Rodrigo A P

    2015-08-01

    Genome modification technologies are powerful tools for molecular biology and related areas. Advances in animal transgenesis and genome editing technologies during the past three decades allowed systematic interrogation of gene function that can help model how the genome influences cellular physiology. Genetic engineering via homologous recombination (HR) has been the standard method to modify genomic sequences. Nevertheless, nuclease-guided genome editing methods that were developed recently, such as ZFN, TALEN and CRISPR/Cas, opened new perspectives for biomedical research. Here, we present a brief historical perspective of genome modification methods, focusing on transgenic mice models. Moreover, we describe how new techniques were discovered and improved, present the paradigm shifts and discuss their limitations and applications for biomedical research as well as possible future directions.

  20. Substrate specificity and catalysis by the editing active site of alanyl-tRNA synthetase from Escherichia coli†

    Science.gov (United States)

    Pasman, Zvi; Robey-Bond, Susan; Mirando, Adam C.; Smith, Gregory J.; Lague, Astrid; Francklyn, Christopher S.

    2011-01-01

    Aminoacyl-tRNA synthetases (ARSs) enhance the fidelity of protein synthesis through multiple mechanisms, including hydrolysis of the adenylate and cleavage of misacylated tRNA. Alanyl-tRNA synthetase (AlaRS) limits misacylation with glycine and serine by use of a dedicated editing domain, and a mutation in this activity has been genetically linked to a mouse model of a progressive neurodegenerative disease. Using the free standing P. horikoshii AlaX editing domain complexed with serine as a model and both Ser-tRNAAla and Ala-tRNAAla as substrates, the deacylation activities of the wild type and five different E. coli AlaRS editing site substitution mutants were characterized. The wild type AlaRS editing domain deacylated Ser-tRNAAla with a kcat/KM of 6.6 × 105 M−1 s−1, equivalent to a rate enhancement of 6000 over the rate of enzyme-independent deacylation, but only 12.2-fold greater than the rate with Ala-tRNAAla. While the E664A and T567G substitutions only minimally decreased kcat/KM, Q584H, I667E, and C666A AlaRS were more compromised in activity, with decreases in kcat/KM in the range of 6-, 7.3-, and 15-fold. C666A AlaRS was 1.4-fold more active on Ala-tRNAAla relative to Ser-tRNAAla, providing the only example of a true reversal of substrate specificity and highlighting a potential role of the coordinated zinc in editing substrate specificity. Along with the potentially serious physiological consequences of serine mis-incorporation, the relatively modest specificity of the AlaRS editing domain may provide a rationale for the widespread phylogenetic distribution of AlaX free standing editing domains, thereby contributing a further mechanism to lower concentrations of misacylated tRNAAla. PMID:21241052