WorldWideScience

Sample records for genetically remote pathogenic

  1. Ensuring privacy in the study of pathogen genetics

    OpenAIRE

    Mehta, Sanjay R.; Vinterbo, Staal A.; Little, Susan J.

    2014-01-01

    Rapid growth in the genetic sequencing of pathogens in recent years has led to the creation of large sequence databases. This aggregated sequence data can be very useful for tracking and predicting epidemics of infectious diseases. However, the balance between the potential public health benefit and the risk to personal privacy for individuals whose genetic data (personal or pathogen) are included in such work has been difficult to delineate, because neither the true benefit nor the actual ri...

  2. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    Science.gov (United States)

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  3. The Genetically Remote Pathogenic Strain NVH391-98 of the Bacillus cereus Group Represents the Cluster of Thermophilic Strains

    Energy Technology Data Exchange (ETDEWEB)

    Auger, Sandrine; Galleron, Nathalie; Bidnenko, Elena; Ehrlich, S. Dusko; Lapidus, Alla; Sorokin, Alexei

    2007-10-02

    Bacteria of the Bacillus cereus group are known to cause food poisoning. A rare phylogenetically remote strain, NVH391-98, was recently characterized to encode a particularly efficient cytotoxin K presumably responsible for food poisoning. This pathogenic strain and its close relatives can be phenotypically distinguished from other strains of the B. cereus group by the inability to grow at temperatures below 17 degrees C and by the ability to grow at temperatures from 48 to 53 degrees C. A temperate phage, phBC391A2, residing in the genome of NVH391-98 allows us to distinguish the three known members of this thermophilic strain cluster.

  4. Genetic parameters for pathogen-specific mastitis resistance in Danish Holstein cattle

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Madsen, P.; Mark, Thomas

    2009-01-01

    The objective of this study was to estimate heritabilities for and genetic correlations among different pathogen-specific mastitis traits. The traits were unspecific mastitis, which is all mastitis treatments regardless of the causative pathogen as well as mastitis caused by Streptococcus...... caused by different pathogens has been shown to differ greatly. Sampling bias may be present because there were not pathogen information on all mastitis treatments and because some farms do not record pathogen information. Therefore, improved recording of pathogen information and mastitis treatment sin...

  5. Wildlife translocation: the conservation implications of pathogen exposure and genetic heterozygosity

    Science.gov (United States)

    2011-01-01

    Background A key challenge for conservation biologists is to determine the most appropriate demographic and genetic management strategies for wildlife populations threatened by disease. We explored this topic by examining whether genetic background and previous pathogen exposure influenced survival of translocated animals when captive-bred and free-ranging bighorn sheep (Ovis canadensis) were used to re-establish a population that had been extirpated in the San Andres Mountains in New Mexico, USA. Results Although the free-ranging source population had significantly higher multi-locus heterozygosity at 30 microsatellite loci than the captive bred animals, neither source population nor genetic background significantly influenced survival or cause of death. The presence of antibodies to a respiratory virus known to cause pneumonia was associated with increased survival, but there was no correlation between genetic heterozygosity and the presence of antibodies to this virus. Conclusions Although genetic theory predicts otherwise, increased heterozygosity was not associated with increased fitness (survival) among translocated animals. While heterosis or genetic rescue effects may occur in F1 and later generations as the two source populations interbreed, we conclude that previous pathogen exposure was a more important marker than genetic heterozygosity for predicting survival of translocated animals. Every wildlife translocation is an experiment, and whenever possible, translocations should be designed and evaluated to test hypotheses that will further improve our understanding of how pathogen exposure and genetic variability influence fitness. PMID:21284886

  6. Wildlife translocation: the conservation implications of pathogen exposure and genetic heterozygosity

    Directory of Open Access Journals (Sweden)

    Penedo M Cecilia T

    2011-02-01

    Full Text Available Abstract Background A key challenge for conservation biologists is to determine the most appropriate demographic and genetic management strategies for wildlife populations threatened by disease. We explored this topic by examining whether genetic background and previous pathogen exposure influenced survival of translocated animals when captive-bred and free-ranging bighorn sheep (Ovis canadensis were used to re-establish a population that had been extirpated in the San Andres Mountains in New Mexico, USA. Results Although the free-ranging source population had significantly higher multi-locus heterozygosity at 30 microsatellite loci than the captive bred animals, neither source population nor genetic background significantly influenced survival or cause of death. The presence of antibodies to a respiratory virus known to cause pneumonia was associated with increased survival, but there was no correlation between genetic heterozygosity and the presence of antibodies to this virus. Conclusions Although genetic theory predicts otherwise, increased heterozygosity was not associated with increased fitness (survival among translocated animals. While heterosis or genetic rescue effects may occur in F1 and later generations as the two source populations interbreed, we conclude that previous pathogen exposure was a more important marker than genetic heterozygosity for predicting survival of translocated animals. Every wildlife translocation is an experiment, and whenever possible, translocations should be designed and evaluated to test hypotheses that will further improve our understanding of how pathogen exposure and genetic variability influence fitness.

  7. [Correlation between genetic differences of mates and pathogenicity of Schistosoma japonicum in definitive host].

    Science.gov (United States)

    Wen-Qiao, Huang; Yuan-Jian, Zhu; Da-Bing, Lv; Xia, Zhou; Ying-Nan, Yang; Hong-Xiang, Zhu-Ge

    2016-05-24

    To explore the correlation between the genetic dissimilarity and heterozygosity of mates and the pathogenicity of Schistosoma japonicum in the definitive host. By using seven microsatellite loci markers, S. japonicum genotyping of sixteen pairs randomly mated was performed, the genetic dissimilarity and heterozygosity were calculated between the mates, and the correlation between the genetic dissimilarity and heterozygosity of the mates and the pathogenicity of S. japonicum in the definitive host was evaluated. There was a significant correlation between the genetic similarity of S. japonicum mates and the mean number of eggs per worm pair in the liver and intestinal tissue ( r = 0.501 6, P correlation between the genetic similarity of the mates and hepatosplenomegaly per worm pair ( r = 0.109 5, P > 0.05; r = 0.265 3, P > 0.05, respectively) and the average diameter of granuloma in the liver ( r = -0.272 7, P > 0.05), respectively. There was no correlation between the heterozygosity of the mates and all the pathological parameters of S. japonicum in the definitive host ( P > 0.05). There is the correlation between the genetic dissimilarity of the mates and the pathogenicity of S. japonicum in the definitive host, and the genetic dissimilarity is greater, pathogenicity is weaker. There is no correlation between heterozygosity of the mates and the pathogenicity of S. japonicum in the definitive host.

  8. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies

    Science.gov (United States)

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  9. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies.

    Science.gov (United States)

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  10. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Science.gov (United States)

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  11. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Directory of Open Access Journals (Sweden)

    Wendy Gibson

    2015-03-01

    Full Text Available Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr responsible for sleeping sickness (Human African Trypanosomiasis, HAT in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  12. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics.

    Directory of Open Access Journals (Sweden)

    Jason A Corwin

    2016-02-01

    Full Text Available The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs and nucleotide-binding site leucine-rich repeat proteins (NLRs, were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60% when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen

  13. Advances in genetic manipulation of obligate intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Paul eBeare

    2011-05-01

    Full Text Available Infections by obligate intracellular bacterial pathogens result in significant morbidity and mortality worldwide. These bacteria include Chlamydia spp., which causes millions of cases of sexually transmitted disease and blinding trachoma annually, and members of the α-proteobacterial genera Anaplasma, Ehrlichia, Orientia and Rickettsia, agents of serious human illnesses including epidemic typhus. Coxiella burnetii, the agent of human Q fever, has also been considered a prototypical obligate intracellular bacterium, but recent host cell-free (axenic growth has rescued it from obligatism. The historic genetic intractability of obligate intracellular bacteria has severely limited molecular dissection of their unique lifestyles and virulence factors involved in pathogenesis. Host cell restricted growth is a significant barrier to genetic transformation that can make simple procedures for free-living bacteria, such as cloning, exceedingly difficult. Low transformation efficiency requiring long term culture in host cells to expand small transformant populations is another obstacle. Despite numerous technical limitations, the last decade has witnessed significant gains in genetic manipulation of obligate intracellular bacteria including allelic exchange. Continued development of genetic tools should soon enable routine mutation and complementation strategies for virulence factor discovery and stimulate renewed interest in these refractory pathogens. In this review, we discuss the technical challenges associated with genetic transformation of obligate intracellular bacteria and highlight advances made with individual genera.

  14. ClinGen Pathogenicity Calculator: a configurable system for assessing pathogenicity of genetic variants.

    Science.gov (United States)

    Patel, Ronak Y; Shah, Neethu; Jackson, Andrew R; Ghosh, Rajarshi; Pawliczek, Piotr; Paithankar, Sameer; Baker, Aaron; Riehle, Kevin; Chen, Hailin; Milosavljevic, Sofia; Bizon, Chris; Rynearson, Shawn; Nelson, Tristan; Jarvik, Gail P; Rehm, Heidi L; Harrison, Steven M; Azzariti, Danielle; Powell, Bradford; Babb, Larry; Plon, Sharon E; Milosavljevic, Aleksandar

    2017-01-12

    The success of the clinical use of sequencing based tests (from single gene to genomes) depends on the accuracy and consistency of variant interpretation. Aiming to improve the interpretation process through practice guidelines, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) have published standards and guidelines for the interpretation of sequence variants. However, manual application of the guidelines is tedious and prone to human error. Web-based tools and software systems may not only address this problem but also document reasoning and supporting evidence, thus enabling transparency of evidence-based reasoning and resolution of discordant interpretations. In this report, we describe the design, implementation, and initial testing of the Clinical Genome Resource (ClinGen) Pathogenicity Calculator, a configurable system and web service for the assessment of pathogenicity of Mendelian germline sequence variants. The system allows users to enter the applicable ACMG/AMP-style evidence tags for a specific allele with links to supporting data for each tag and generate guideline-based pathogenicity assessment for the allele. Through automation and comprehensive documentation of evidence codes, the system facilitates more accurate application of the ACMG/AMP guidelines, improves standardization in variant classification, and facilitates collaborative resolution of discordances. The rules of reasoning are configurable with gene-specific or disease-specific guideline variations (e.g. cardiomyopathy-specific frequency thresholds and functional assays). The software is modular, equipped with robust application program interfaces (APIs), and available under a free open source license and as a cloud-hosted web service, thus facilitating both stand-alone use and integration with existing variant curation and interpretation systems. The Pathogenicity Calculator is accessible at http

  15. Genetic parameters of pathogen-specific incidence of clinical mastitis in dairy cows

    NARCIS (Netherlands)

    Haas, de Y.; Barkema, H.W.; Veerkamp, R.F.

    2002-01-01

    The objective of this study was to estimate heritabilities for and genetic correlations among different pathogen-specific mastitis traits. The traits were unspecific mastitis, which is all mastitis treatments regardless of the causative pathogen as well as mastitis caused by Streptococcus

  16. Ensuring privacy in the study of pathogen genetics.

    Science.gov (United States)

    Mehta, Sanjay R; Vinterbo, Staal A; Little, Susan J

    2014-08-01

    Rapid growth in the genetic sequencing of pathogens in recent years has led to the creation of large sequence databases. This aggregated sequence data can be very useful for tracking and predicting epidemics of infectious diseases. However, the balance between the potential public health benefit and the risk to personal privacy for individuals whose genetic data (personal or pathogen) are included in such work has been difficult to delineate, because neither the true benefit nor the actual risk to participants has been adequately defined. Existing approaches to minimise the risk of privacy loss to participants are based on de-identification of data by removal of a predefined set of identifiers. These approaches neither guarantee privacy nor protect the usefulness of the data. We propose a new approach to privacy protection that will quantify the risk to participants, while still maximising the usefulness of the data to researchers. This emerging standard in privacy protection and disclosure control, which is known as differential privacy, uses a process-driven rather than data-centred approach to protecting privacy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Molecular Epidemiology and Genetic Variation of Pathogenic Vibrio parahaemolyticus in Peru

    Science.gov (United States)

    Gavilan, Ronnie G.; Zamudio, Maria L.; Martinez-Urtaza, Jaime

    2013-01-01

    Vibrio parahaemolyticus is a foodborne pathogen that has become a public health concern at the global scale. The epidemiological significance of V. parahaemolyticus infections in Latin America received little attention until the winter of 1997 when cases related to the pandemic clone were detected in the region, changing the epidemic dynamics of this pathogen in Peru. With the aim to assess the impact of the arrival of the pandemic clone on local populations of pathogenic V. parahaemolyticus in Peru, we investigated the population genetics and genomic variation in a complete collection of non-pandemic strains recovered from clinical sources in Peru during the pre- and post-emergence periods of the pandemic clone. A total of 56 clinical strains isolated in Peru during the period 1994 to 2007, 13 strains from Chile and 20 strains from Asia were characterized by Multilocus Sequence Typing (MLST) and checked for the presence of Variable Genomic Regions (VGRs). The emergence of O3:K6 cases in Peru implied a drastic disruption of the seasonal dynamics of infections and a shift in the serotype dominance of pathogenic V. parahaemolyticus. After the arrival of the pandemic clone, a great diversity of serovars not previously reported was detected in the country, which supports the introduction of additional populations cohabitating with the pandemic group. Moreover, the presence of genomic regions characteristic of the pandemic clone in other non-pandemic strains may represent early evidence of genetic transfer from the introduced population to the local communities. Finally, the results of this study stress the importance of population admixture, horizontal genetic transfer and homologous recombination as major events shaping the structure and diversity of pathogenic V. parahaemolyticus. PMID:23696906

  18. Genetic islands in pome fruit pathogenic and nonpathogenic Erwinia species and related plasmids

    Directory of Open Access Journals (Sweden)

    Pablo eLlop

    2015-08-01

    Full Text Available New pathogenic bacteria species belonging to the genus Erwinia associated with pome fruit trees (Erwinia pyrifoliae, E. piriflorinigrans, E. uzenensis have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc. show a high intraspecies homogeneity (i.e. among E. amylovora strains and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with nonpathogenic species present in the same niche, and the role of the genes that are conserved in all of them.

  19. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    International Nuclear Information System (INIS)

    Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.

    2017-01-01

    We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  20. Pantoea ananatis Genetic Diversity Analysis Reveals Limited Genomic Diversity as Well as Accessory Genes Correlated with Onion Pathogenicity

    Directory of Open Access Journals (Sweden)

    Shaun P. Stice

    2018-02-01

    Full Text Available Pantoea ananatis is a member of the family Enterobacteriaceae and an enigmatic plant pathogen with a broad host range. Although P. ananatis strains can be aggressive on onion causing foliar necrosis and onion center rot, previous genomic analysis has shown that P. ananatis lacks the primary virulence secretion systems associated with other plant pathogens. We assessed a collection of fifty P. ananatis strains collected from Georgia over three decades to determine genetic factors that correlated with onion pathogenic potential. Previous genetic analysis studies have compared strains isolated from different hosts with varying diseases potential and isolation sources. Strains varied greatly in their pathogenic potential and aggressiveness on different cultivated Allium species like onion, leek, shallot, and chive. Using multi-locus sequence analysis (MLSA and repetitive extragenic palindrome repeat (rep-PCR techniques, we did not observe any correlation between onion pathogenic potential and genetic diversity among strains. Whole genome sequencing and pan-genomic analysis of a sub-set of 10 strains aided in the identification of a novel series of genetic regions, likely plasmid borne, and correlating with onion pathogenicity observed on single contigs of the genetic assemblies. We named these loci Onion Virulence Regions (OVR A-D. The OVR loci contain genes involved in redox regulation as well as pectate lyase and rhamnogalacturonase genes. Previous studies have not identified distinct genetic loci or plasmids correlating with onion foliar pathogenicity or pathogenicity on a single host pathosystem. The lack of focus on a single host system for this phytopathgenic disease necessitates the pan-genomic analysis performed in this study.

  1. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems.

    Science.gov (United States)

    Croll, Daniel; McDonald, Bruce A

    2017-04-01

    Local adaptation plays a key role in the evolutionary trajectory of host-pathogen interactions. However, the genetic architecture of local adaptation in host-pathogen systems is poorly understood. Fungal plant pathogens in agricultural ecosystems provide highly tractable models to quantify phenotypes and map traits to corresponding genomic loci. The outcome of crop-pathogen interactions is thought to be governed largely by gene-for-gene interactions. However, recent studies showed that virulence can be governed by quantitative trait loci and that many abiotic factors contribute to the outcome of the interaction. After introducing concepts of local adaptation and presenting examples from wild plant pathosystems, we focus this review on a major pathogen of wheat, Zymoseptoria tritici, to show how a multitude of traits can affect local adaptation. Zymoseptoria tritici adapted to different thermal environments across its distribution range, indicating that thermal adaptation may limit effective dispersal to different climates. The application of fungicides led to the rapid evolution of multiple, independent resistant populations. The degree of colony melanization showed strong pleiotropic effects with other traits, including trade-offs with colony growth rates and fungicide sensitivity. The success of the pathogen on its host can be assessed quantitatively by counting pathogen reproductive structures and measuring host damage based on necrotic lesions. Interestingly, these two traits can be weakly correlated and depend both on host and pathogen genotypes. Quantitative trait mapping studies showed that the genetic architecture of locally adapted traits varies from single loci with large effects to many loci with small individual effects. We discuss how local adaptation could hinder or accelerate the development of epidemics in agricultural ecosystems. © 2016 John Wiley & Sons Ltd.

  2. Genetic characteristics and pathogenic mechanisms of periodontal pathogens.

    Science.gov (United States)

    Amano, A; Chen, C; Honma, K; Li, C; Settem, R P; Sharma, A

    2014-05-01

    Periodontal disease is caused by a group of bacteria that utilize a variety of strategies and molecular mechanisms to evade or overcome host defenses. Recent research has uncovered new evidence illuminating interesting aspects of the virulence of these bacteria and their genomic variability. This paper summarizes some of the strategies utilized by the major species - Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, and Porphyromonas gingivalis - implicated in the pathogenesis of periodontal disease. Whole-genome sequencing of 14 diverse A. actinomycetemcomitans strains has revealed variations in their genetic content (ranging between 0.4% and 19.5%) and organization. Strikingly, isolates from human periodontal sites showed no genomic changes during persistent colonization. T. forsythia manipulates the cytokine responses of macrophages and monocytes through its surface glycosylation. Studies have revealed that bacterial surface-expressed O-linked glycans modulate T-cell responses during periodontal inflammation. Periodontal pathogens belonging to the "red complex" consortium express neuraminidases, which enables them to scavenge sialic acid from host glycoconjugates. Analysis of recent data has demonstrated that the cleaved sialic acid acts as an important nutrient for bacterial growth and a molecule for the decoration of bacteria surfaces to help evade the host immune attack. In addition, bacterial entry into host cells is also an important prerequisite for the lifestyle of periodontal pathogens such as P. gingivalis. Studies have shown that, after its entry into the cell, this bacterium uses multiple sorting pathways destined for autophagy, lysosomes, or recycling pathways. In addition, P. gingivalis releases outer membrane vesicles which enter cells via endocytosis and cause cellular functional impairment.

  3. Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens.

    Directory of Open Access Journals (Sweden)

    Matthew T G Holden

    2009-03-01

    Full Text Available The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus. These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A(2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci.

  4. Pathogenic and genetic diversity of Xanthomonas translucens pv. undulosa in North Dakota.

    Science.gov (United States)

    Adhikari, Tika B; Gurung, Suraj; Hansen, Jana M; Bonman, J Michael

    2012-04-01

    Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, has become more prevalent recently in North Dakota and neighboring states. From five locations in North Dakota, 226 strains of X. translucens pv. undulosa were collected and evaluated for pathogenicity and then selected strains were inoculated on a set of 12 wheat cultivars and other cereal hosts. The genetic diversity of all strains was determined using repetitive sequence-based polymerase chain reaction (rep-PCR) and insertion sequence-based (IS)-PCR. Bacterial strains were pathogenic on wheat and barley but symptom severity was greatest on wheat. Strains varied greatly in aggressiveness, and wheat cultivars also showed differential responses to several strains. The 16S ribosomal DNA sequences of the strains were identical, and distinct from those of the other Xanthomonas pathovars. Combined rep-PCR and IS-PCR data produced 213 haplotypes. Similar haplotypes were detected in more than one location. Although diversity was greatest (≈92%) among individuals within a location, statistically significant (P ≤ 0.001 or 0.05) genetic differentiation among locations was estimated, indicating geographic differentiation between pathogen populations. The results of this study provide information on the pathogen diversity in North Dakota, which will be useful to better identify and characterize resistant germplasm.

  5. Genetic diversity of citrus bacterial canker pathogens preserved in herbarium specimens.

    Science.gov (United States)

    Li, Wenbin; Song, Qijian; Brlansky, Ronald H; Hartung, John S

    2007-11-20

    Citrus bacterial canker (CBC) caused by Xanthomonas axonopodis pv. citri (Xac) was first documented in India and Java in the mid 19th century. Since that time, the known distribution of the disease has steadily increased. Concurrent with the dispersion of the pathogen, the diversity of described strains continues to increase, with novel strains appearing in Saudi Arabia, Iran, and Florida in the last decade. Herbarium specimens of infected plants provide an historical record documenting both the geographic distribution and genetic diversity of the pathogen in the past. However, no method was available to assess the genetic diversity within these herbarium samples. We have developed a method, insertion event scanning (IES), and applied the method to characterize the diversity present within CBC populations documented as herbarium specimens over the past century. IES is based on the specific amplification of junction fragments that define insertion events. The potential for IES in current forensic applications is demonstrated by finding an exact match of pathogen genotypes preserved in herbarium specimens from Japan and Florida, demonstrating the source of the original outbreak of citrus canker in Florida in 1911. IES is a very sensitive technique for differentiating bacterial strains and can be applied to any of the several hundred bacteria for which full genomic sequence data are available.

  6. High levels of genetic and genotypic diversity in field populations of the barley pathogen Ramularia collo-cygni

    DEFF Research Database (Denmark)

    Hjortshøj, Rasmus Lund; Ravnshøj, A.R.; Nyman, M.

    2013-01-01

    The ascomycete pathogen Ramularia collo-cygni causes Ramularia leaf spot (RLS) on barley. Although R. collo-cygni is considerd an emerging disease of barley, little is known about genetic diversity or population genetic structure of this pathogen. We applied a set of polymorphic AFLP (Amplified F...

  7. An Evaluation of Factors Associated With Pathogenic PRSS1, SPINK1, CTFR, and/or CTRC Genetic Variants in Patients With Idiopathic Pancreatitis.

    Science.gov (United States)

    Jalaly, Niloofar Y; Moran, Robert A; Fargahi, Farshid; Khashab, Mouen A; Kamal, Ayesha; Lennon, Anne Marie; Walsh, Christi; Makary, Martin A; Whitcomb, David C; Yadav, Dhiraj; Cebotaru, Liudmila; Singh, Vikesh K

    2017-08-01

    We evaluated factors associated with pathogenic genetic variants in patients with idiopathic pancreatitis. Genetic testing (PRSS1, CFTR, SPINK1, and CTRC) was performed in all eligible patients with idiopathic pancreatitis between 2010 to 2015. Patients were classified into the following groups based on a review of medical records: (1) acute recurrent idiopathic pancreatitis (ARIP) with or without underlying chronic pancreatitis; (2) idiopathic chronic pancreatitis (ICP) without a history of ARP; (3) an unexplained first episode of acute pancreatitis (AP)pancreatitis. Logistic regression analysis was used to determine the factors associated with pathogenic genetic variants. Among 197 ARIP and/or ICP patients evaluated from 2010 to 2015, 134 underwent genetic testing. A total of 88 pathogenic genetic variants were found in 64 (47.8%) patients. Pathogenic genetic variants were identified in 58, 63, and 27% of patients with ARIP, an unexplained first episode of AP <35 years of age, and ICP without ARP, respectively. ARIP (OR: 18.12; 95% CI: 2.16-151.87; P=0.008) and an unexplained first episode of AP<35 years of age (OR: 2.46; 95% CI: 1.18-5.15; P=0.017), but not ICP, were independently associated with pathogenic genetic variants in the adjusted analysis. Pathogenic genetic variants are most likely to be identified in patients with ARIP and an unexplained first episode of AP<35 years of age. Genetic testing in these patient populations may delineate an etiology and prevent unnecessary diagnostic testing and procedures.

  8. [Genetic diagnostics of pathogenic splicing abnormalities in the clinical laboratory--pitfalls and screening approaches].

    Science.gov (United States)

    Niimi, Hideki; Ogawa, Tomomi; Note, Rhougou; Hayashi, Shirou; Ueno, Tomohiro; Harada, Kenu; Uji, Yoshinori; Kitajima, Isao

    2010-12-01

    In recent years, genetic diagnostics of pathogenic splicing abnormalities are increasingly recognized as critically important in the clinical genetic diagnostics. It is reported that approximately 10% of pathogenic mutations causing human inherited diseases are splicing mutations. Nonetheless, it is still difficult to identify splicing abnormalities in routine genetic diagnostic settings. Here, we studied two different kinds of cases with splicing abnormalities. The first case is a protein S deficiency. Nucleotide analyses revealed that the proband had a previously reported G to C substitution in the invariant AG dinucleotide at the splicing acceptor site of intronl/exon2, which produces multiple splicing abnormalities resulting in protein S deficiency. The second case is an antithrombin (AT) deficiency. This proband had a previously reported G to A substitution, at nucleotide position 9788 in intron 4, 14 bp in front of exon 5, which created a de novo exon 5 splice site and resulted in AT deficiency. From a practical standpoint, we discussed the pitfalls, attentions, and screening approaches in genetic diagnostics of pathogenic splicing abnormalities. Due to the difficulty with full-length sequence analysis of introns, and the lack of RNA samples, splicing mutations may escape identification. Although current genetic testing remains to be improved, to screen for splicing abnormalities more efficiently, it is significant to use an appropriate combination of various approaches such as DNA and/or RNA samples, splicing mutation databases, bioinformatic tools to detect splice sites and cis-regulatory elements, and in vitro and/or in vivo experimentally methods as needed.

  9. The genetics of non-host resistance to the lettuce pathogen Bremia lactucae in Lactuca saligna

    NARCIS (Netherlands)

    Jeuken, M.J.W.

    2002-01-01

    Plants are continuously exposed to a wide variety of pathogens. However, all plant species are non-hosts for the majority of the potential plant pathogens. The genetic dissection of non-host resistance is hampered by the lack of segregating population from crosses between host and non-host

  10. Evolution and population genetics of exotic and reemerging pathogens: traditional and novel tools and approaches

    Science.gov (United States)

    N.J. Grünwald; E.M. Goss

    2011-01-01

    Given human population growth and accelerated global trade, the rate of emergence of exotic plant pathogens is bound to increase. Understanding the processes that lead to the emergence of new pathogens can help manage emerging epidemics. Novel tools for analyzing population genetic variation can be used to infer the evolutionary history of populations or species,...

  11. Trichoderma-plant-pathogen interactions: advances in genetics of biological control.

    Science.gov (United States)

    Mukherjee, Mala; Mukherjee, Prasun K; Horwitz, Benjamin A; Zachow, Christin; Berg, Gabriele; Zeilinger, Susanne

    2012-12-01

    Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.

  12. Genetic Evidence for Elevated Pathogenicity of Mitochondrial DNA Heteroplasmy in Autism Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Yiqin Wang

    2016-10-01

    Full Text Available Increasing clinical and biochemical evidence implicate mitochondrial dysfunction in the pathophysiology of Autism Spectrum Disorder (ASD, but little is known about the biological basis for this connection. A possible cause of ASD is the genetic variation in the mitochondrial DNA (mtDNA sequence, which has yet to be thoroughly investigated in large genomic studies of ASD. Here we evaluated mtDNA variation, including the mixture of different mtDNA molecules in the same individual (i.e., heteroplasmy, using whole-exome sequencing data from mother-proband-sibling trios from simplex families (n = 903 where only one child is affected by ASD. We found that heteroplasmic mutations in autistic probands were enriched at non-polymorphic mtDNA sites (P = 0.0015, which were more likely to confer deleterious effects than heteroplasmies at polymorphic mtDNA sites. Accordingly, we observed a ~1.5-fold enrichment of nonsynonymous mutations (P = 0.0028 as well as a ~2.2-fold enrichment of predicted pathogenic mutations (P = 0.0016 in autistic probands compared to their non-autistic siblings. Both nonsynonymous and predicted pathogenic mutations private to probands conferred increased risk of ASD (Odds Ratio, OR[95% CI] = 1.87[1.14-3.11] and 2.55[1.26-5.51], respectively, and their influence on ASD was most pronounced in families with probands showing diminished IQ and/or impaired social behavior compared to their non-autistic siblings. We also showed that the genetic transmission pattern of mtDNA heteroplasmies with high pathogenic potential differed between mother-autistic proband pairs and mother-sibling pairs, implicating developmental and possibly in utero contributions. Taken together, our genetic findings substantiate pathogenic mtDNA mutations as a potential cause for ASD and synergize with recent work calling attention to their unique metabolic phenotypes for diagnosis and treatment of children with ASD.

  13. Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry

    Science.gov (United States)

    Abdelwhab, El-Sayed M; Veits, Jutta; Mettenleiter, Thomas C

    2013-01-01

    Avian influenza viruses (AIV) of H5 and H7 subtypes exhibit two different pathotypes in poultry: infection with low pathogenic (LP) strains results in minimal, if any, health disturbances, whereas highly pathogenic (HP) strains cause severe morbidity and mortality. LPAIV of H5 and H7 subtypes can spontaneously mutate into HPAIV. Ten outbreaks caused by HPAIV are known to have been preceded by circulation of a predecessor LPAIV in poultry. Three of them were caused by H5N2 subtype and seven involved H7 subtype in combination with N1, N3, or N7. Here, we review those outbreaks and summarize the genetic changes which resulted in the transformation of LPAIV to HPAIV under natural conditions. Mutations that were found directly in those outbreaks are more likely to be linked to virulence, pathogenesis, and early adaptation of AIV. PMID:23863606

  14. Molecular Identification and Genetic Characterization of Macrophomina phaseolina Strains Causing Pathogenicity on Sunflower and Chickpea

    Directory of Open Access Journals (Sweden)

    Ali N. Khan

    2017-07-01

    Full Text Available Macrophomina phaseolina is the most devastating pathogen which causes charcoal rot and root rot diseases in various economically important crops. Three strains M. phaseolina 1156, M. phaseolina 1160, and M. phaseolina PCMC/F1 were tested for their virulence on sunflower (Helianthus annuus L. and chickpea (Cicer arietinum L.. The strains showed high virulence on both hosts with a disease score of 2 on chickpea and sunflower. The strains also increased the hydrogen per oxide (H2O2 content by 1.4- to 1.6-fold in root as well as shoot of chickpea and sunflower. A significant increase in antioxidant enzymes was observed in fungal infected plants which indicated prevalence of oxidative stress during pathogen propagation. The M. phaseolina strains also produced hydrolytic enzymes such as lipase, amylase, and protease with solubilization zone of 5–43 mm, 5–45 mm, and 12–35 mm, respectively. The M. phaseolina strains were identified by 18S rRNA and analyzed for genetic diversity by using random amplified polymorphic DNA (RAPD markers. The findings based on RAPD markers and 18S rRNA sequence analysis clearly indicate genetic variation among the strains collected from different hosts. The genetically diverse strains were found to be pathogenic to sunflower and chickpea.

  15. Temporal and spatial scaling of the genetic structure of a vector-borne plant pathogen.

    Science.gov (United States)

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Almeida, Rodrigo P P

    2014-02-01

    The ecology of plant pathogens of perennial crops is affected by the long-lived nature of their immobile hosts. In addition, changes to the genetic structure of pathogen populations may affect disease epidemiology and management practices; examples include local adaptation of more fit genotypes or introduction of novel genotypes from geographically distant areas via human movement of infected plant material or insect vectors. We studied the genetic structure of Xylella fastidiosa populations causing disease in sweet orange plants in Brazil at multiple scales using fast-evolving molecular markers (simple-sequence DNA repeats). Results show that populations of X. fastidiosa were regionally isolated, and that isolation was maintained for populations analyzed a decade apart from each other. However, despite such geographic isolation, local populations present in year 2000 were largely replaced by novel genotypes in 2009 but not as a result of migration. At a smaller spatial scale (individual trees), results suggest that isolates within plants originated from a shared common ancestor. In summary, new insights on the ecology of this economically important plant pathogen were obtained by sampling populations at different spatial scales and two different time points.

  16. Genetics of Resistance and Pathogenicity in the Maize/Setosphaeria turcica Pathosystem and Implications for Breeding

    Directory of Open Access Journals (Sweden)

    Ana L. Galiano-Carneiro

    2017-08-01

    Full Text Available Northern corn leaf blight (NCLB, the most devastating leaf pathogen in maize (Zea mays L., is caused by the heterothallic ascomycete Setosphaeria turcica. The pathogen population shows an extremely high genetic diversity in tropical and subtropical regions. Varietal resistance is the most efficient technique to control NCLB. Host resistance can be qualitative based on race-specific Ht genes or quantitative controlled by many genes with small effects. Quantitative resistance is moderately to highly effective and should be more durable combatting all races of the pathogen. Quantitative resistance must, however, be analyzed in many environments (= location × year combinations to select stable resistances. In the tropical and subtropical environments, quantitative resistance is the preferred option to manage NCLB epidemics. Resistance level can be increased in practical breeding programs by several recurrent selection cycles based on disease severity rating and/or by genomic selection. This review aims to address two important aspects of the NCLB pathosystem: the genetics of the fungus S. turcica and the modes of inheritance of the host plant maize, including successful breeding strategies regarding NCLB resistance. Both drivers of this pathosystem, pathogen, and host, must be taken into account to result in more durable resistance.

  17. Pathogenicity and genetic diversity of Fusarium oxysporum causing soybean root rot in northeast China

    Science.gov (United States)

    Soybean is an important edible legume cultivated around the world. However, soybean production is seriously impacted by the widespread occurrence of root rot disease. In this study, genetic diversity and pathogenicity of Fusarium oxysporum associated with root rot of soybean in Heilongjiang province...

  18. Novel genetic reassortants in H9N2 influenza A viruses and their diverse pathogenicity to mice

    Directory of Open Access Journals (Sweden)

    Bi Yuhai

    2011-11-01

    Full Text Available Abstract Background H9N2 influenza A viruses have undergone extensive reassortments in different host species, and could lead to the epidemics or pandemics with the potential emergence of novel viruses. Methods To understand the genetic and pathogenic features of early and current circulating H9N2 viruses, 15 representative H9N2 viruses isolated from diseased chickens in northern China between 1998 and 2010 were characterized and compared with all Chinese H9N2 viruses available in the NCBI database. Then, the representative viruses of different genotypes were selected to study the pathogenicity in mice with the aim to investigate the adaptation and the potential pathogenicity of the novel H9N2 reassortants to mammals. Results Our results demonstrated that most of the 15 isolates were reassortants and generated four novel genotypes (B62-B65, which incorporated the gene segments from Eurasian H9N2 lineage, North American H9N2 branch, and H5N1 viruses. It was noteworthy that the newly identified genotype B65 has been prevalent in China since 2007, and more importantly, different H9N2 influenza viruses displayed a diverse pathogenicity to mice. The isolates of the 2008-2010 epidemic (genotypes B55 and B65 were lowly infectious, while two representative viruses of genotypes B0 and G2 isolated from the late 1990s were highly pathogenic to mice. In addition, Ck/SD/LY-1/08 (genotype 63, containing H5N1-like NP and PA genes was able to replicate well in mouse lungs with high virus titers but caused mild clinical signs. Conclusion Several lines of evidence indicated that the H9N2 influenza viruses constantly change their genetics and pathogenicity. Thus, the genetic evolution of H9N2 viruses and their pathogenicity to mammals should be closely monitored to prevent the emergence of novel pandemic viruses.

  19. Global genetics and invasion history of the potato powdery scab pathogen, Spongospora subterranea f.sp. subterranea.

    Science.gov (United States)

    Gau, Rebecca D; Merz, Ueli; Falloon, Richard E; Brunner, Patrick C

    2013-01-01

    Spongospora subterranea f. sp. subterranea (Sss) causes two diseases on potato (Solanum tuberosum), lesions on tubers and galls on roots, which are economically important worldwide. Knowledge of global genetic diversity and population structure of pathogens is essential for disease management including resistance breeding. A combination of microsatellite and DNA sequence data was used to investigate the structure and invasion history of Sss. South American populations (four countries, 132 samples) were consistently more diverse than those from all other regions (15 countries, 566 samples), in agreement with the hypothesis that Sss originated in South America where potato was domesticated. A substantial genetic differentiation was found between root and tuber-derived samples from South America. Estimates of past and recent gene flow suggested that Sss was probably introduced from South America into Europe. Subsequently, Europe is likely to have been the recent source of migrants of the pathogen, acting as a "bridgehead" for further global dissemination. Quarantine measures must continue to be focussed on maintaining low global genetic diversity and avoiding exchange of genetic material between the native and introduced regions. Nevertheless, the current low global genetic diversity of Sss allows potato breeders to select for resistance, which is likely to be durable.

  20. Global genetics and invasion history of the potato powdery scab pathogen, Spongospora subterranea f.sp. subterranea.

    Directory of Open Access Journals (Sweden)

    Rebecca D Gau

    Full Text Available Spongospora subterranea f. sp. subterranea (Sss causes two diseases on potato (Solanum tuberosum, lesions on tubers and galls on roots, which are economically important worldwide. Knowledge of global genetic diversity and population structure of pathogens is essential for disease management including resistance breeding. A combination of microsatellite and DNA sequence data was used to investigate the structure and invasion history of Sss. South American populations (four countries, 132 samples were consistently more diverse than those from all other regions (15 countries, 566 samples, in agreement with the hypothesis that Sss originated in South America where potato was domesticated. A substantial genetic differentiation was found between root and tuber-derived samples from South America. Estimates of past and recent gene flow suggested that Sss was probably introduced from South America into Europe. Subsequently, Europe is likely to have been the recent source of migrants of the pathogen, acting as a "bridgehead" for further global dissemination. Quarantine measures must continue to be focussed on maintaining low global genetic diversity and avoiding exchange of genetic material between the native and introduced regions. Nevertheless, the current low global genetic diversity of Sss allows potato breeders to select for resistance, which is likely to be durable.

  1. Genetic Diversity of Tick-Borne Rickettsial Pathogens; Insights Gained from Distant Strains

    Directory of Open Access Journals (Sweden)

    Sebastián Aguilar Pierlé

    2014-01-01

    Full Text Available The ability to capture genetic variation with unprecedented resolution improves our understanding of bacterial populations and their ability to cause disease. The goal of the pathogenomics era is to define genetic diversity that results in disease. Despite the economic losses caused by vector-borne bacteria in the Order Rickettsiales, little is known about the genetic variants responsible for observed phenotypes. The tick-transmitted rickettsial pathogen Anaplasma marginale infects cattle in tropical and subtropical regions worldwide, including Australia. Genomic analysis of North American A. marginale strains reveals a closed core genome defined by high levels of Single Nucleotide Polymorphisms (SNPs. Here we report the first genome sequences and comparative analysis for Australian strains that differ in virulence and transmissibility. A list of genetic differences that segregate with phenotype was evaluated for the ability to distinguish the attenuated strain from virulent field strains. Phylogenetic analyses of the Australian strains revealed a marked evolutionary distance from all previously sequenced strains. SNP analysis showed a strikingly reduced genetic diversity between these strains, with the smallest number of SNPs detected between any two A. marginale strains. The low diversity between these phenotypically distinct bacteria presents a unique opportunity to identify the genetic determinants of virulence and transmission.

  2. Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds

    Science.gov (United States)

    Matsuu, Aya; Kobayashi, Tomoko; Patchimasiri, Tuangthong; Shiina, Takashi; Suzuki, Shingo; Chaichoune, Kridsada; Ratanakorn, Parntep; Hiromoto, Yasuaki; Abe, Haruka; Parchariyanon, Sujira; Saito, Takehiko

    2016-01-01

    Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV. PMID:27078641

  3. Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences

    Science.gov (United States)

    Tribble, Gena D; Kerr, Jennifer E; Wang, Bing-Yan

    2013-01-01

    Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that colonizes the human oral cavity. It is implicated in the development of periodontitis, a chronic periodontal disease affecting half of the adult population in the USA. To survive in the oral cavity, these bacteria must colonize dental plaque biofilms in competition with other bacterial species. Long-term survival requires P. gingivalis to evade host immune responses, while simultaneously adapting to the changing physiology of the host and to alterations in the plaque biofilm. In reflection of this highly variable niche, P. gingivalis is a genetically diverse species and in this review the authors summarize genetic diversity as it relates to pathogenicity in P. gingivalis. Recent studies revealing a variety of mechanisms by which adaptive changes in genetic content can occur are also reviewed. Understanding the genetic plasticity of P. gingivalis will provide a better framework for understanding the host–microbe interactions associated with periodontal disease. PMID:23642116

  4. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle.

    Science.gov (United States)

    Załuga, Joanna; Stragier, Pieter; Baeyen, Steve; Haegeman, Annelies; Van Vaerenbergh, Johan; Maes, Martine; De Vos, Paul

    2014-05-22

    The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and

  5. Phytophthora ramorum and sudden oak death in California: III. preliminary studies in pathogen genetics

    Science.gov (United States)

    Matteo Garbelotto; David M. Rizzo; Katie Hayden; Monica Meija-Chang; Jennifer M. Davidson; Steven Tjosvold

    2002-01-01

    Sudden oak death (SOD) has been shown to be caused by a new species of Phytophthora, P. ramorum. A basic understanding of the genetics of P. ramorum is critical to any management strategy. We have initiated a number of studies to examine species concepts, population biology and mating behavior of the pathogen....

  6. Genetic associations for pathogen-specific clinical mastitis and patterns of peaks in somatic cell count

    NARCIS (Netherlands)

    Haas, de Y.; Barkema, H.W.; Schukken, Y.H.; Veerkamp, R.F.

    2003-01-01

    Genetic associations were estimated between pathogen-specific cases of clinical mastitis (CM), lactational average somatic cell score (LACSCS), and patterns of peaks in somatic cell count (SCC) which were based on deviations from the typical lactation curve for SCC. The dataset contained test-day

  7. Pathogenicity for onion and genetic diversity of isolates of the pathogenic fungus Colletotrichum gloeosporioides (Phyllachoraceae) from the State of Pernambuco, Brazil.

    Science.gov (United States)

    Nova, M X Vila; Borges, L R; de Sousa, A C B; Brasileiro, B T R V; Lima, E A L A; da Costa, A F; de Oliveira, N T

    2011-02-22

    Onion anthracnose, caused by Colletotrichum gloeosporioides, is one of the main diseases of onions in the State of Pernambuco. We examined the pathogenicity of 15 C. gloeosporioides strains and analyzed their genetic variability using RAPDs and internal transcribed spacers (ITS) of the rDNA region. Ten of the strains were obtained from substrates and hosts other than onion, including chayote (Sechium edule), guava (Psidium guajava), pomegranate (Punica granatum), water from the Capibaribe River, maracock (Passiflora sp), coconut (Cocus nucifera), surinam cherry (Eugenia uniflora), and marine soil; five isolates came from onions collected from four different regions of the State of Pernambuco and one region of the State of Amazonas. Pathogenicity tests were carried out using onion leaves and bulbs. All strains were capable of causing disease in leaves, causing a variable degree of lesions on the leaves; four strains caused the most severe damage. In the onion bulb tests, only three of the above strains caused lesions. Seven primers of arbitrary sequences were used in the RAPD analysis, generating polymorphic bands that allowed the separation of the strains into three distinct groups. The amplification products generated with the primers ITS1 and ITS4 also showed polymorphism when digested with three restriction enzymes, DraI, HaeIII and MspI. Only the latter two demonstrated genetic variations among the strains. These two types of molecular markers were able to differentiate the strain from the State of Amazonas from those of the State of Pernambuco. However, there was no relationship between groups of strains, based on molecular markers, and degree of pathogenicity for onion leaves and bulbs.

  8. Malagasy bats shelter a considerable genetic diversity of pathogenic Leptospira suggesting notable host-specificity patterns.

    Science.gov (United States)

    Gomard, Yann; Dietrich, Muriel; Wieseke, Nicolas; Ramasindrazana, Beza; Lagadec, Erwan; Goodman, Steven M; Dellagi, Koussay; Tortosa, Pablo

    2016-04-01

    Pathogenic Leptospira are the causative agents of leptospirosis, a disease of global concern with major impact in tropical regions. Despite the importance of this zoonosis for human health, the evolutionary and ecological drivers shaping bacterial communities in host reservoirs remain poorly investigated. Here, we describe Leptospira communities hosted by Malagasy bats, composed of mostly endemic species, in order to characterize host-pathogen associations and investigate their evolutionary histories. We screened 947 individual bats (representing 31 species, 18 genera and seven families) for Leptospira infection and subsequently genotyped positive samples using three different bacterial loci. Molecular identification showed that these Leptospira are notably diverse and include several distinct lineages mostly belonging to Leptospira borgpetersenii and L. kirschneri. The exploration of the most probable host-pathogen evolutionary scenarios suggests that bacterial genetic diversity results from a combination of events related to the ecology and the evolutionary history of their hosts. Importantly, based on the data set presented herein, the notable host-specificity we have uncovered, together with a lack of geographical structuration of bacterial genetic diversity, indicates that the Leptospira community at a given site depends on the co-occurring bat species assemblage. The implications of such tight host-specificity on the epidemiology of leptospirosis are discussed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Horizontal transfer generates genetic variation in an asexual pathogen

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Huang

    2014-10-01

    Full Text Available There are major gaps in the understanding of how genetic variation is generated in the asexual pathogen Verticillium dahliae. On the one hand, V. dahliae is a haploid organism that reproduces clonally. On the other hand, single-nucleotide polymorphisms and chromosomal rearrangements were found between V. dahliae strains. Lineage-specific (LS regions comprising about 5% of the genome are highly variable between V. dahliae strains. Nonetheless, it is unknown whether horizontal gene transfer plays a major role in generating genetic variation in V. dahliae. Here, we analyzed a previously sequenced V. dahliae population of nine strains from various geographical locations and hosts. We found highly homologous elements in LS regions of each strain; LS regions of V. dahliae strain JR2 are much richer in highly homologous elements than the core genome. In addition, we discovered, in LS regions of JR2, several structural forms of nonhomologous recombination, and two or three homologous sequence types of each form, with almost each sequence type present in an LS region of another strain. A large section of one of the forms is known to be horizontally transferred between V. dahliae strains. We unexpectedly found that 350 kilobases of dynamic LS regions were much more conserved than the core genome between V. dahliae and a closely related species (V. albo-atrum, suggesting that these LS regions were horizontally transferred recently. Our results support the view that genetic variation in LS regions is generated by horizontal transfer between strains, and by chromosomal reshuffling reported previously.

  10. Accelerating dynamic genetic conservation efforts: Use of FT-IR spectroscopy for the rapid identification of trees resistant to destructive pathogens

    Science.gov (United States)

    C. Villari; R.A. Sniezko; L.E. Rodriguez-Saona; P. Bonello

    2017-01-01

    A strong focus on tree germplasm that can resist threats such as non-native insects and pathogens, or a changing climate, is fundamental for successful genetic conservation efforts. However, the unavailability of tools for rapid screening of tree germplasm for resistance to critical pathogens and insect pests is becoming an increasingly serious bottleneck. Here we...

  11. Decay Of Bacterial Pathogens, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure-Amended Soils

    Science.gov (United States)

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...

  12. Decay Of Bacterial Pathogen, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure Amended Soils

    Science.gov (United States)

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...

  13. Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages

    Science.gov (United States)

    Ali, Sajid; Rodriguez-Algaba, Julian; Thach, Tine; Sørensen, Chris K.; Hansen, Jens G.; Lassen, Poul; Nazari, Kumarse; Hodson, David P.; Justesen, Annemarie F.; Hovmøller, Mogens S.

    2017-01-01

    We investigated whether the recent worldwide epidemics of wheat yellow rust were driven by races of few clonal lineage(s) or populations of divergent races. Race phenotyping of 887 genetically diverse Puccinia striiformis isolates sampled in 35 countries during 2009–2015 revealed that these epidemics were often driven by races from few but highly divergent genetic lineages. PstS1 was predominant in North America; PstS2 in West Asia and North Africa; and both PstS1 and PstS2 in East Africa. PstS4 was prevalent in Northern Europe on triticale; PstS5 and PstS9 were prevalent in Central Asia; whereas PstS6 was prevalent in epidemics in East Africa. PstS7, PstS8 and PstS10 represented three genetic lineages prevalent in Europe. Races from other lineages were in low frequencies. Virulence to Yr9 and Yr27 was common in epidemics in Africa and Asia, while virulence to Yr17 and Yr32 were prevalent in Europe, corresponding to widely deployed resistance genes. The highest diversity was observed in South Asian populations, where frequent recombination has been reported, and no particular race was predominant in this area. The results are discussed in light of the role of invasions in shaping pathogen population across geographical regions. The results emphasized the lack of predictability of emergence of new races with high epidemic potential, which stresses the need for additional investments in population biology and surveillance activities of pathogens on global food crops, and assessments of disease vulnerability of host varieties prior to their deployment at larger scales. PMID:28676811

  14. Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages

    Directory of Open Access Journals (Sweden)

    Sajid Ali

    2017-06-01

    Full Text Available We investigated whether the recent worldwide epidemics of wheat yellow rust were driven by races of few clonal lineage(s or populations of divergent races. Race phenotyping of 887 genetically diverse Puccinia striiformis isolates sampled in 35 countries during 2009–2015 revealed that these epidemics were often driven by races from few but highly divergent genetic lineages. PstS1 was predominant in North America; PstS2 in West Asia and North Africa; and both PstS1 and PstS2 in East Africa. PstS4 was prevalent in Northern Europe on triticale; PstS5 and PstS9 were prevalent in Central Asia; whereas PstS6 was prevalent in epidemics in East Africa. PstS7, PstS8 and PstS10 represented three genetic lineages prevalent in Europe. Races from other lineages were in low frequencies. Virulence to Yr9 and Yr27 was common in epidemics in Africa and Asia, while virulence to Yr17 and Yr32 were prevalent in Europe, corresponding to widely deployed resistance genes. The highest diversity was observed in South Asian populations, where frequent recombination has been reported, and no particular race was predominant in this area. The results are discussed in light of the role of invasions in shaping pathogen population across geographical regions. The results emphasized the lack of predictability of emergence of new races with high epidemic potential, which stresses the need for additional investments in population biology and surveillance activities of pathogens on global food crops, and assessments of disease vulnerability of host varieties prior to their deployment at larger scales.

  15. Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication.

    Science.gov (United States)

    Wang, Biao; Wang, Ren-Rui; Cui, Zhen-Hua; Bi, Wen-Lu; Li, Jing-Wei; Li, Bai-Quan; Ozudogru, Elif Aylin; Volk, Gayle M; Wang, Qiao-Chun

    2014-01-01

    Rapid increases in human populations provide a great challenge to ensure that adequate quantities of food are available. Sustainable development of agricultural production by breeding more productive cultivars and by increasing the productive potential of existing cultivars can help meet this demand. The present paper provides information on the potential uses of cryogenic techniques in ensuring food security, including: (1) long-term conservation of a diverse germplasm and successful establishment of cryo-banks; (2) maintenance of the regenerative ability of embryogenic tissues that are frequently the target for genetic transformation; (3) enhancement of genetic transformation and plant regeneration of transformed cells, and safe, long-term conservation for transgenic materials; (4) production and maintenance of viable protoplasts for transformation and somatic hybridization; and (5) efficient production of pathogen-free plants. These roles demonstrate that cryogenic technologies offer opportunities to ensure food security. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Reverse genetics with animal viruses. NSV reverse genetics

    International Nuclear Information System (INIS)

    Mebatsion, T.

    2005-01-01

    New strategies to genetically manipulate the genomes of several important animal pathogens have been established in recent years. This article focuses on the reverse genetics techniques, which enables genetic manipulation of the genomes of non-segmented negative-sense RNA viruses. Recovery of a negative-sense RNA virus entirely from cDNA was first achieved for rabies virus in 1994. Since then, reverse genetic systems have been established for several pathogens of medical and veterinary importance. Based on the reverse genetics technique, it is now possible to design safe and more effective live attenuated vaccines against important viral agents. In addition, genetically tagged recombinant viruses can be designed to facilitate serological differentiation of vaccinated animals from infected animals. The approach of delivering protective immunogens of different pathogens using a single vector was made possible with the introduction of the reverse genetics system, and these novel broad-spectrum vaccine vectors have potential applications in improving animal health in developing countries. (author)

  17. Genetic and pathogenic characteristics of H1 avian and swine influenza A viruses.

    Science.gov (United States)

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jeong, Jipseol; Kim, Hye-Ryoung; Choi, Eun-Jin; Shin, Yeun-Kyung; Lee, Hee-Soo; Lee, Youn-Jeong

    2014-10-01

    This study examined the potential for cross-species transmission of influenza viruses by comparing the genetic and pathogenic characteristics of H1 avian influenza viruses (AIVs) with different host origins in Korea. Antigenic and phylogenetic analyses of H1 AIVs circulating in Korea provided evidence of genetic similarity between viruses that infect domestic ducks and those that infect wild birds, although there was no relationship between avian and swine viruses. However, there were some relationships between swine and human viral genes. The replication and pathogenicity of the H1 viruses was assessed in chickens, domestic ducks and mice. Viral shedding in chickens was relatively high. Virus was recovered from both oropharyngeal and cloacal swabs up to 5-10 days post-inoculation. The titres of domestic duck viruses in chickens were much higher than those of wild-bird viruses. Both domestic duck and wild-bird viruses replicated poorly in domestic ducks. None of the swine viruses replicated in chickens or domestic ducks; however, six viruses showed relatively high titres in mice, regardless of host origin, and induced clinical signs such as ruffled fur, squatting and weight loss. Thus, although the phylogenetic and antigenic analyses showed no evidence of interspecies transmission between birds and swine, the results suggest that Korean H1 viruses have the potential to cause disease in mammals. Therefore, we should intensify continuous monitoring of avian H1 viruses in mammals and seek to prevent interspecies transmission. © 2014 The Authors.

  18. Deconstructing host-pathogen interactions in Drosophila

    Directory of Open Access Journals (Sweden)

    Ethan Bier

    2012-01-01

    Full Text Available Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.

  19. Resequencing of the Phytophthora ramorum genome to characterize genetic variation and population dynamics of the invasive pathogen

    Science.gov (United States)

    Jennifer Yuzon; David M. Rizzo; Mathu Malar C; Sucheta Tripathy; Takao Kasuga

    2017-01-01

    Phytophthora ramorum has spread and diversified throughout California’s northwestern coast since its introduction in the 1990s. Tracking the spread of P. ramorum and the functional response of the pathogen to the environment is of particular interest to managing the epidemic. Using genetic tools such as microsatellite...

  20. Coping with genetic diversity: the contribution of pathogen and human genomics to modern vaccinology

    International Nuclear Information System (INIS)

    Lemaire, D.; Barbosa, T.; Rihet, P.

    2011-01-01

    Vaccine development faces major difficulties partly because of genetic variation in both infectious organisms and humans. This causes antigenic variation in infectious agents and a high interindividual variability in the human response to the vaccine. The exponential growth of genome sequence information has induced a shift from conventional culture-based to genome-based vaccinology, and allows the tackling of challenges in vaccine development due to pathogen genetic variability. Additionally, recent advances in immunogenetics and genomics should help in the understanding of the influence of genetic factors on the interindividual and interpopulation variations in immune responses to vaccines, and could be useful for developing new vaccine strategies. Accumulating results provide evidence for the existence of a number of genes involved in protective immune responses that are induced either by natural infections or vaccines. Variation in immune responses could be viewed as the result of a perturbation of gene networks; this should help in understanding how a particular polymorphism or a combination thereof could affect protective immune responses. Here we will present: i) the first genome-based vaccines that served as proof of concept, and that provided new critical insights into vaccine development strategies; ii) an overview of genetic predisposition in infectious diseases and genetic control in responses to vaccines; iii) population genetic differences that are a rationale behind group-targeted vaccines; iv) an outlook for genetic control in infectious diseases, with special emphasis on the concept of molecular networks that will provide a structure to the huge amount of genomic data

  1. Traditional genetic improvement and use of biotechnological techniques in searching of resistance to main fungi pathogens of Musa spp.

    Directory of Open Access Journals (Sweden)

    Michel Leiva-Mora

    2006-07-01

    Full Text Available Bananas and plantain are important food staple in human diet, even cooked or consumed fresh. Fungal diseases caused by Fusarium oxysporum f. sp. cubense (Foc and Mycosphaerella fijiensis have threated to distroy Musa spp. Those crops are difficult to breed genetically because they are steriles, do not produce fertil seeds and they are partenocarpic. Genetic crossing by hibridization have been used successfully in FHIA and IITA Musa breeding programs, they have released numerous improved hybrids to those diseases. Plant Biotechnology has developed a set of techniques for Musa micropropagation to increase multiplication rates, healthy and safety plant material for plantation. Mutagenic techniques, somaclonal variation, somatic embryogenesis and more recient genetic transformation have enabled advances and complementation with clasical Musa breeding for searching resistance to principal fungal pathogen of Musa spp. Field evaluation systems to find Musa resistant genotypes to Foc and M. fijiensis have demostrated to be usefull but laborious. Nevertheless to enhance eficacy in selection of promissory genotypes the development of reproducible early evaluation methodologies by using fungal pathogens or their derivates is needed. Key words: evaluation and selection, Fusarium oxysporum, improvement

  2. Global Genetics and Invasion History of the Potato Powdery Scab Pathogen, Spongospora subterranea f.sp. subterranea

    OpenAIRE

    Gau, Rebecca D.; Merz, Ueli; Falloon, Richard E.; Brunner, Patrick C.

    2013-01-01

    Spongospora subterranea f. sp. subterranea (Sss) causes two diseases on potato (Solanum tuberosum), lesions on tubers and galls on roots, which are economically important worldwide. Knowledge of global genetic diversity and population structure of pathogens is essential for disease management including resistance breeding. A combination of microsatellite and DNA sequence data was used to investigate the structure and invasion history of Sss. South American populations (four countries, 132 sam...

  3. Transient virulence of emerging pathogens.

    Science.gov (United States)

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  4. Genetic diversity of Phytophthora infestans sensu lato in Ecuador provides new insight into the origin of this important plant pathogen

    NARCIS (Netherlands)

    Adler, N.E.; Erselius, L.J.; Chacón, G.M.; Flier, W.G.; Ordonez, M.E.; Kroon, L.P.N.M.; Forbes, G.A.

    2004-01-01

    The metapopulation structure of Phytophthora infestans sensu lato is genetically diverse in the highlands of Ecuador. Previous reports documented the diversity associated with four putative clonal lineages of the pathogen collected from various hosts in the genus Solanum. This paper simultaneously

  5. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity.

    Directory of Open Access Journals (Sweden)

    Rongman Cai

    2011-08-01

    Full Text Available Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.

  6. Sexual Reproduction of Human Fungal Pathogens

    Science.gov (United States)

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  7. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    Directory of Open Access Journals (Sweden)

    Richards Vincent P

    2012-12-01

    Full Text Available Abstract Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection. A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs [plasmid, phage, integrative conjugative element (ICE] and comparison to other species provided convincing evidence for lateral gene transfer (LGT between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae, with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST of a subset of the isolates (n = 45 detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types], suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human

  8. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis.

    Science.gov (United States)

    Richards, Vincent P; Zadoks, Ruth N; Pavinski Bitar, Paulina D; Lefébure, Tristan; Lang, Ping; Werner, Brenda; Tikofsky, Linda; Moroni, Paolo; Stanhope, Michael J

    2012-12-18

    Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern

  9. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    Science.gov (United States)

    2012-01-01

    Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus

  10. AMPK in Pathogens.

    Science.gov (United States)

    Mesquita, Inês; Moreira, Diana; Sampaio-Marques, Belém; Laforge, Mireille; Cordeiro-da-Silva, Anabela; Ludovico, Paula; Estaquier, Jérôme; Silvestre, Ricardo

    2016-01-01

    During host-pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host-pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.

  11. Evolutionary biology of bacterial and fungal pathogens

    National Research Council Canada - National Science Library

    Baquero, F

    2008-01-01

    ... and Evolutionary Dynamics of Pathogens * 21 Keith A. Crandall and Marcos Pérez-Losada II. Evolutionary Genetics of Microbial Pathogens 4. Environmental and Social Influences on Infectious Disea...

  12. Exceptions to the rule: case studies in the prediction of pathogenicity for genetic variants in hereditary cancer genes.

    Science.gov (United States)

    Rosenthal, E T; Bowles, K R; Pruss, D; van Kan, A; Vail, P J; McElroy, H; Wenstrup, R J

    2015-12-01

    Based on current consensus guidelines and standard practice, many genetic variants detected in clinical testing are classified as disease causing based on their predicted impact on the normal expression or function of the gene in the absence of additional data. However, our laboratory has identified a subset of such variants in hereditary cancer genes for which compelling contradictory evidence emerged after the initial evaluation following the first observation of the variant. Three representative examples of variants in BRCA1, BRCA2 and MSH2 that are predicted to disrupt splicing, prematurely truncate the protein, or remove the start codon were evaluated for pathogenicity by analyzing clinical data with multiple classification algorithms. Available clinical data for all three variants contradicts the expected pathogenic classification. These variants illustrate potential pitfalls associated with standard approaches to variant classification as well as the challenges associated with monitoring data, updating classifications, and reporting potentially contradictory interpretations to the clinicians responsible for translating test outcomes to appropriate clinical action. It is important to address these challenges now as the model for clinical testing moves toward the use of large multi-gene panels and whole exome/genome analysis, which will dramatically increase the number of genetic variants identified. © 2015 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Bayesian estimation and use of high-throughput remote sensing indices for quantitative genetic analyses of leaf growth.

    Science.gov (United States)

    Baker, Robert L; Leong, Wen Fung; An, Nan; Brock, Marcus T; Rubin, Matthew J; Welch, Stephen; Weinig, Cynthia

    2018-02-01

    We develop Bayesian function-valued trait models that mathematically isolate genetic mechanisms underlying leaf growth trajectories by factoring out genotype-specific differences in photosynthesis. Remote sensing data can be used instead of leaf-level physiological measurements. Characterizing the genetic basis of traits that vary during ontogeny and affect plant performance is a major goal in evolutionary biology and agronomy. Describing genetic programs that specifically regulate morphological traits can be complicated by genotypic differences in physiological traits. We describe the growth trajectories of leaves using novel Bayesian function-valued trait (FVT) modeling approaches in Brassica rapa recombinant inbred lines raised in heterogeneous field settings. While frequentist approaches estimate parameter values by treating each experimental replicate discretely, Bayesian models can utilize information in the global dataset, potentially leading to more robust trait estimation. We illustrate this principle by estimating growth asymptotes in the face of missing data and comparing heritabilities of growth trajectory parameters estimated by Bayesian and frequentist approaches. Using pseudo-Bayes factors, we compare the performance of an initial Bayesian logistic growth model and a model that incorporates carbon assimilation (A max ) as a cofactor, thus statistically accounting for genotypic differences in carbon resources. We further evaluate two remotely sensed spectroradiometric indices, photochemical reflectance (pri2) and MERIS Terrestrial Chlorophyll Index (mtci) as covariates in lieu of A max , because these two indices were genetically correlated with A max across years and treatments yet allow much higher throughput compared to direct leaf-level gas-exchange measurements. For leaf lengths in uncrowded settings, including A max improves model fit over the initial model. The mtci and pri2 indices also outperform direct A max measurements. Of particular

  14. Genetic and Pathogenic Variability of Fusarium oxysporum f. sp. cepae Isolated from Onion and Welsh Onion in Japan.

    Science.gov (United States)

    Sasaki, Kazunori; Nakahara, Katsuya; Tanaka, Shuhei; Shigyo, Masayoshi; Ito, Shin-ichi

    2015-04-01

    Fusarium oxysporum f. sp. cepae causes Fusarium basal rot in onion (common onion) and Fusarium wilt in Welsh onion. Although these diseases have been detected in various areas in Japan, knowledge about the genetic and pathogenic variability of F. oxysporum f. sp. cepae is very limited. In this study, F. oxysporum f. sp. cepae was isolated from onion and Welsh onion grown in 12 locations in Japan, and a total of 55 F. oxysporum f. sp. cepae isolates (27 from onion and 28 from Welsh onion) were characterized based on their rDNA intergenic spacer (IGS) and translation elongation factor-1α (EF-1α) nucleotide sequences, vegetative compatibility groups (VCGs), and the presence of the SIX (secreted in xylem) homologs. Phylogenetic analysis of IGS sequences showed that these isolates were grouped into eight clades (A to H), and 20 onion isolates belonging to clade H were monophyletic and assigned to the same VCG. All the IGS-clade H isolates possessed homologs of SIX3, SIX5, and SIX7. The SIX3 homolog was located on a 4 Mb-sized chromosome in the IGS-clade H isolates. Pathogenicity tests using onion seedlings showed that all the isolates with high virulence were in the IGS-clade H. These results suggest that F. oxysporum f. sp. cepae isolates belonging to the IGS-clade H are genetically and pathogenically different from those belonging to the other IGS clades.

  15. Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages

    DEFF Research Database (Denmark)

    Ali, Sajid; Rodriguez Algaba, Julian; Thach, Tine

    2017-01-01

    population across geographical regions. The results emphasized the lack of predictability of emergence of new races with high epidemic potential, which stresses the need for additional investments in population biology and surveillance activities of pathogens on global food crops, and assessments of disease...... that these epidemics were often driven by races from few but highly divergent genetic lineages. PstS1 was predominant in North America; PstS2 in West Asia and North Africa; and both PstS1 and PstS2 in East Africa. PstS4 was prevalent in Northern Europe on triticale; PstS5 and PstS9 were prevalent in Central Asia......; whereas PstS6 was prevalent in epidemics in East Africa. PstS7, PstS8 and PstS10 represented three genetic lineages prevalent in Europe. Races from other lineages were in low frequencies. Virulence to Yr9 and Yr27 was common in epidemics in Africa and Asia, while virulence to Yr17 and Yr32 were prevalent...

  16. Comparative Genomics and Identification of an Enterotoxin-Bearing Pathogenicity Island, SEPI-1/SECI-1, in Staphylococcus epidermidis Pathogenic Strains.

    Science.gov (United States)

    Argemi, Xavier; Nanoukon, Chimène; Affolabi, Dissou; Keller, Daniel; Hansmann, Yves; Riegel, Philippe; Baba-Moussa, Lamine; Prévost, Gilles

    2018-02-25

    Staphylococcus epidermidis is a leading cause of nosocomial infections, majorly resistant to beta-lactam antibiotics, and may transfer several mobile genetic elements among the members of its own species, as well as to Staphylococcus aureus ; however, a genetic exchange from S. aureus to S. epidermidis remains controversial. We recently identified two pathogenic clinical strains of S. epidermidis that produce a staphylococcal enterotoxin C3-like (SEC) similar to that by S. aureus pathogenicity islands. This study aimed to determine the genetic environment of the SEC-coding sequence and to identify the mobile genetic elements. Whole-genome sequencing and annotation of the S. epidermidis strains were performed using Illumina technology and a bioinformatics pipeline for assembly, which provided evidence that the SEC-coding sequences were located in a composite pathogenicity island that was previously described in the S. epidermidis strain FRI909, called SePI-1/SeCI-1, with 83.8-89.7% nucleotide similarity. Various other plasmids were identified, particularly p_3_95 and p_4_95, which carry antibiotic resistance genes ( hsrA and dfrG , respectively), and share homologies with SAP085A and pUSA04-2-SUR11, two plasmids described in S. aureus . Eventually, one complete prophage was identified, ΦSE90, sharing 30 out of 52 coding sequences with the Acinetobacter phage vB_AbaM_IME200. Thus, the SePI-1/SeCI-1 pathogenicity island was identified in two pathogenic strains of S. epidermidis that produced a SEC enterotoxin causing septic shock. These findings suggest the existence of in vivo genetic exchange from S. aureus to S. epidermidis .

  17. Comparative Genomics and Identification of an Enterotoxin-Bearing Pathogenicity Island, SEPI-1/SECI-1, in Staphylococcus epidermidis Pathogenic Strains

    Directory of Open Access Journals (Sweden)

    Xavier Argemi

    2018-02-01

    Full Text Available Staphylococcus epidermidis is a leading cause of nosocomial infections, majorly resistant to beta-lactam antibiotics, and may transfer several mobile genetic elements among the members of its own species, as well as to Staphylococcus aureus; however, a genetic exchange from S. aureus to S. epidermidis remains controversial. We recently identified two pathogenic clinical strains of S. epidermidis that produce a staphylococcal enterotoxin C3-like (SEC similar to that by S. aureus pathogenicity islands. This study aimed to determine the genetic environment of the SEC-coding sequence and to identify the mobile genetic elements. Whole-genome sequencing and annotation of the S. epidermidis strains were performed using Illumina technology and a bioinformatics pipeline for assembly, which provided evidence that the SEC-coding sequences were located in a composite pathogenicity island that was previously described in the S. epidermidis strain FRI909, called SePI-1/SeCI-1, with 83.8–89.7% nucleotide similarity. Various other plasmids were identified, particularly p_3_95 and p_4_95, which carry antibiotic resistance genes (hsrA and dfrG, respectively, and share homologies with SAP085A and pUSA04-2-SUR11, two plasmids described in S. aureus. Eventually, one complete prophage was identified, ΦSE90, sharing 30 out of 52 coding sequences with the Acinetobacter phage vB_AbaM_IME200. Thus, the SePI-1/SeCI-1 pathogenicity island was identified in two pathogenic strains of S. epidermidis that produced a SEC enterotoxin causing septic shock. These findings suggest the existence of in vivo genetic exchange from S. aureus to S. epidermidis.

  18. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution.

    Directory of Open Access Journals (Sweden)

    Matteo Fumagalli

    2011-11-01

    Full Text Available Previous genome-wide scans of positive natural selection in humans have identified a number of non-neutrally evolving genes that play important roles in skin pigmentation, metabolism, or immune function. Recent studies have also shown that a genome-wide pattern of local adaptation can be detected by identifying correlations between patterns of allele frequencies and environmental variables. Despite these observations, the degree to which natural selection is primarily driven by adaptation to local environments, and the role of pathogens or other ecological factors as selective agents, is still under debate. To address this issue, we correlated the spatial allele frequency distribution of a large sample of SNPs from 55 distinct human populations to a set of environmental factors that describe local geographical features such as climate, diet regimes, and pathogen loads. In concordance with previous studies, we detected a significant enrichment of genic SNPs, and particularly non-synonymous SNPs associated with local adaptation. Furthermore, we show that the diversity of the local pathogenic environment is the predominant driver of local adaptation, and that climate, at least as measured here, only plays a relatively minor role. While background demography by far makes the strongest contribution in explaining the genetic variance among populations, we detected about 100 genes which show an unexpectedly strong correlation between allele frequencies and pathogenic environment, after correcting for demography. Conversely, for diet regimes and climatic conditions, no genes show a similar correlation between the environmental factor and allele frequencies. This result is validated using low-coverage sequencing data for multiple populations. Among the loci targeted by pathogen-driven selection, we found an enrichment of genes associated to autoimmune diseases, such as celiac disease, type 1 diabetes, and multiples sclerosis, which lends credence to the

  19. Two Genetically Similar H9N2 Influenza A Viruses Show Different Pathogenicity in Mice

    Directory of Open Access Journals (Sweden)

    Qingtao Liu

    2016-11-01

    Full Text Available H9N2 Avian influenza virus has repeatedly infected humans and other mammals, which highlights the need to determine the pathogenicity and the corresponding mechanism of this virus for mammals. In this study, we found two H9N2 viruses with similar genetic background but with different pathogenicity in mice. The A/duck/Nanjing/06/2003 (NJ06 virus was highly pathogenic for mice, with a 50% mouse lethal dose of 102.83 50% egg infectious dose, whereas the A/duck/Nanjing/01/1999 (NJ01 virus was low pathogenic for mice, with a 50% mouse lethal dose of >106.81 50% egg infectious dose. Further studies showed that the NJ06 virus grew faster and reached significantly higher titers than NJ01 in vivo and in vitro. Moreover, the NJ06 virus induced more severe lung lesions, and higher levels of inflammatory cellular infiltration and cytokine response in lungs than NJ01 did. However, only twelve different amino acid residues (HA-K157E, NA-A9T, NA-R435K, PB2-T149P, PB2-K627E, PB1-R187K, PA-L548M, PA-M550L, NP-G127E, NP-P277H, NP-D340N, NS1-D171N were found between the two viruses, and all these residues except for NA-R435K were located in the known functional regions involved in interaction of viral proteins or between the virus and host factors. Summary, our results suggest that multiple amino acid differences may be responsible for the higher pathogenicity of the NJ06 virus for mice, resulting in lethal infection, enhanced viral replication, severe lung lesions, and excessive inflammatory cellular infiltration and cytokine response in lungs. These observations will be helpful for better understanding the pathogenic potential and the corresponding molecular basis of H9N2 viruses that might pose threats to human health in the future.

  20. Genetic reprogramming of host cells by bacterial pathogens.

    Science.gov (United States)

    Tran Van Nhieu, Guy; Arbibe, Laurence

    2009-10-29

    During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.

  1. Genetic signatures of variation in population size in a native fungal pathogen after the recent intensive plantation of its host tree

    NARCIS (Netherlands)

    Labbé, Frédéric; Fontaine, Michael Christophe; Robin, Cécile; Dutech, Cyril

    2017-01-01

    Historical fluctuations in forests’ distribution driven by past climate changes and anthropogenic activities can have large impacts on the demographic history of pathogens that have a long co-evolution history with these host trees. Using a population genetic approach, we investigated that

  2. USING OF MOUSE MODEL TO ANALYZE IMMUNE RESPONSE TO INFECTIOUS PATHOGENS BY THE METHODS OF CLASSICAL GENETICS

    Directory of Open Access Journals (Sweden)

    A. Poltorak

    2011-01-01

    Full Text Available Abstract. Identification and studying of numerous functions of all genes of the human beings is one of the main objects of modern biological science. Due to high level of homology between mouse and human genomes the important role to reach above mentioned goal belongs to the mouse model which using in the classical genetics increase in connection with appearance of different inbred mouse lines. For instance, the differences in immune response to infectious pathogens in various mouse lines were used many times to determine immunologically competent genes. That is why the contribution of mouse model in understanding of the mechanisms of immune response to infectious pathogens is difficult to overestimate. In the current review some of the most successful and well known examples of mouse using in studies of anti-infectious response are described.

  3. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert

    2012-12-24

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  4. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert; Hall, Joanna M.; Rangkuti, Farania; Ho, YungShwen; Almond, Neil M.; Mitchell, Graham Howard; Pain, Arnab; Holder, Anthony A.; Blackman, Michael J.

    2012-01-01

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  5. Evolution of microbial pathogens.

    OpenAIRE

    Morschhäuser, J; Köhler, G; Ziebuhr, W; Blum-Oehler, G; Dobrindt, U; Hacker, J

    2000-01-01

    Various genetic mechanisms including point mutations, genetic rearrangements and lateral gene transfer processes contribute to the evolution of microbes. Long-term processes leading to the development of new species or subspecies are termed macroevolution, and short-term developments, which occur during days or weeks, are considered as microevolution. Both processes, macro- and microevolution need horizontal gene transfer, which is particularly important for the development of pathogenic micr...

  6. Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality

    Science.gov (United States)

    Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR) disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population ma...

  7. Construction of a Recyclable Genetic Marker and Serial Gene Deletions in the Human Pathogenic Mucorales Mucor circinelloides.

    Science.gov (United States)

    Garcia, Alexis; Adedoyin, Gloria; Heitman, Joseph; Lee, Soo Chan

    2017-07-05

    Mucor circinelloides is a human pathogen, biofuel producer, and model system that belongs to a basal fungal lineage; however, the genetics of this fungus are limited. In contrast to ascomycetes and basidiomycetes, basal fungal lineages have been understudied. This may be caused by a lack of attention given to these fungi, as well as limited tools for genetic analysis. Nonetheless, the importance of these fungi as pathogens and model systems has increased. M. circinelloides is one of a few genetically tractable organisms in the basal fungi, but it is far from a robust genetic system when compared to model fungi in the subkingdom Dikarya. One problem is the organism is resistant to drugs utilized to select for dominant markers in other fungal transformation systems. Thus, we developed a blaster recyclable marker system by using the pyrG gene (encoding an orotidine-5'-phosphate decarboxylase, ortholog of URA3 in Saccharomyces cerevisiae ). A 237-bp fragment downstream of the pyrG gene was tandemly incorporated into the upstream region of the gene, resulting in construction of a pyrG-dpl237 marker. To test the functionality of the pyrG-dpl237 marker, we disrupted the carRP gene that is involved in carotenoid synthesis in pyrG - mutant background. The resulting carRP :: pyrG-dpl237 mutants exhibit a white colony phenotype due to lack of carotene, whereas wild type displays yellowish colonies. The pyrG marker was then successfully excised, generating carRP-dpl237 on 5-FOA medium. The mutants became auxotrophic and required uridine for growth. We then disrupted the calcineurin B regulatory subunit cnbR gene in the carRP :: dpl237 strain, generating mutants with the alleles carRP :: dpl237 and cnbR :: pyrG These results demonstrate that the recyclable marker system is fully functional, and therefore the pyrG-dpl237 marker can be used for sequential gene deletions in M. circinelloides . Copyright © 2017 Garcia et al.

  8. Construction of a Recyclable Genetic Marker and Serial Gene Deletions in the Human Pathogenic Mucorales Mucor circinelloides

    Directory of Open Access Journals (Sweden)

    Alexis Garcia

    2017-07-01

    Full Text Available Mucor circinelloides is a human pathogen, biofuel producer, and model system that belongs to a basal fungal lineage; however, the genetics of this fungus are limited. In contrast to ascomycetes and basidiomycetes, basal fungal lineages have been understudied. This may be caused by a lack of attention given to these fungi, as well as limited tools for genetic analysis. Nonetheless, the importance of these fungi as pathogens and model systems has increased. M. circinelloides is one of a few genetically tractable organisms in the basal fungi, but it is far from a robust genetic system when compared to model fungi in the subkingdom Dikarya. One problem is the organism is resistant to drugs utilized to select for dominant markers in other fungal transformation systems. Thus, we developed a blaster recyclable marker system by using the pyrG gene (encoding an orotidine-5′-phosphate decarboxylase, ortholog of URA3 in Saccharomyces cerevisiae. A 237-bp fragment downstream of the pyrG gene was tandemly incorporated into the upstream region of the gene, resulting in construction of a pyrG-dpl237 marker. To test the functionality of the pyrG-dpl237 marker, we disrupted the carRP gene that is involved in carotenoid synthesis in pyrG− mutant background. The resulting carRP::pyrG-dpl237 mutants exhibit a white colony phenotype due to lack of carotene, whereas wild type displays yellowish colonies. The pyrG marker was then successfully excised, generating carRP-dpl237 on 5-FOA medium. The mutants became auxotrophic and required uridine for growth. We then disrupted the calcineurin B regulatory subunit cnbR gene in the carRP::dpl237 strain, generating mutants with the alleles carRP::dpl237 and cnbR::pyrG. These results demonstrate that the recyclable marker system is fully functional, and therefore the pyrG-dpl237 marker can be used for sequential gene deletions in M. circinelloides.

  9. Using the Pathogen-Host Interactions database (PHI-base to investigate plant pathogen genomes and genes implicated in virulence

    Directory of Open Access Journals (Sweden)

    Martin eUrban

    2015-08-01

    Full Text Available New pathogen-host interaction mechanisms can be revealed by integrating mutant phenotype data with genetic information. PHI-base is a multi-species manually curated database combining peer-reviewed published phenotype data from plant and animal pathogens and gene/protein information in a single database.

  10. Genetic Diversity Studies Based on Morphological Variability, Pathogenicity and Molecular Phylogeny of the Sclerotinia sclerotiorum Population From Indian Mustard (Brassica juncea

    Directory of Open Access Journals (Sweden)

    Pankaj Sharma

    2018-06-01

    Full Text Available White mold or stem rot disease are ubiquitously distributed throughout the world and the causal organism of this disease Sclerotinia sclerotiorum (Lib. de Bary, is known to infect over 400 plant species. Sclerotinia stem rot is one of the most devastating fungal diseases and poses a serious threat to the worldwide cultivation of oilseed Brassica including India. S. sclerotiorum pathogen usually infects the stem but in severe cases leaves and pods also affected at different developmental stages that deteriorate not only the oil quality but also causing the seed and oil yield losses up to 90% depending on the severity of the disease infestation. This study investigated the morphological and molecular characterization of pathogenic S. sclerotiorum (Lib de Bary geographical isolates from oilseed Brassica including Brassica juncea (Indian mustard. The aim of this study was to compare isolates of S. sclerotiorum originated from different agro-climatic conditions and to analyse similarity or differences between them as well as to examine the virulence of this pathogen specifically in Brassica for the first time. The collection of S. sclerotiorum isolates from symptomatic Brassica plants was done and analyzed for morphological features, and molecular characterization. The virulence evaluation test of 65 isolates on four Brassica cultivars has shown 5 of them were highly virulent, 46 were virulent and 14 were moderately virulent. Phylogenetic analysis encompassing all the morphological features, SSR polymorphism, and ITS sequencing has shown the existence of high genetic diversity among the isolates that categorized all the isolates in three evolutionary lineages in the derived dendrogram. Further, genetic variability analysis based on sequences variation in ITS region of all the isolates has shown the existence of either insertions or deletions of the nucleotides in the ITS region has led to the interspecies variability and observed the variation were

  11. Mechanisms of antimicrobial resistance among hospital-associated pathogens.

    Science.gov (United States)

    Khan, Ayesha; Miller, William R; Arias, Cesar A

    2018-04-01

    The introduction of antibiotics revolutionized medicine in the 20th-century permitting the treatment of once incurable infections. Widespread use of antibiotics, however, has led to the development of resistant organisms, particularly in the healthcare setting. Today, the clinician is often faced with pathogens carrying a cadre of resistance determinants that severely limit therapeutic options. The genetic plasticity of microbes allows them to adapt to stressors via genetic mutations, acquisition or sharing of genetic material and modulation of genetic expression leading to resistance to virtually any antimicrobial used in clinical practice. Areas covered: This is a comprehensive review that outlines major mechanisms of resistance in the most common hospital-associated pathogens including bacteria and fungi. Expert commentary: Understanding the genetic and biochemical mechanisms of such antimicrobial adaptation is crucial to tackling the rapid spread of resistance, can expose unconventional therapeutic targets to combat multidrug resistant pathogens and lead to more accurate prediction of antimicrobial susceptibility using rapid molecular diagnostics. Clinicians making treatment decisions based on the molecular basis of resistance may design therapeutic strategies that include de-escalation of broad spectrum antimicrobial usage, more focused therapies or combination therapies. These strategies are likely to improve patient outcomes and decrease the risk of resistance in hospital settings.

  12. Pathogen-driven selection in the human genome.

    Science.gov (United States)

    Cagliani, Rachele; Sironi, Manuela

    2013-01-01

    Infectious diseases and epidemics have always accompanied and characterized human history, representing one of the main causes of death. Even today, despite progress in sanitation and medical research, infections are estimated to account for about 15% of deaths. The hypothesis whereby infectious diseases have been acting as a powerful selective pressure was formulated long ago, but it was not until the availability of large-scale genetic data and the development of novel methods to study molecular evolution that we could assess how pervasively infectious agents have shaped human genetic diversity. Indeed, recent evidences indicated that among the diverse environmental factors that acted as selective pressures during the evolution of our species, pathogen load had the strongest influence. Beside the textbook example of the major histocompatibility complex, selection signatures left by pathogen-exerted pressure can be identified at several human loci, including genes not directly involved in immune response. In the future, high-throughput technologies and the availability of genetic data from different populations are likely to provide novel insights into the evolutionary relationships between the human host and its pathogens. Hopefully, this will help identify the genetic determinants modulating the susceptibility to infectious diseases and will translate into new treatment strategies.

  13. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  14. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis).

    Science.gov (United States)

    VanderWaal, Kimberly L; Atwill, Edward R; Isbell, Lynne A; McCowan, Brenda

    2014-03-01

    Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in

  15. Prevalence and distribution of principal periodontal pathogens worldwide

    DEFF Research Database (Denmark)

    Rylev, Mette; Kilian, Mogens

    2008-01-01

    putative periodontal pathogens and particular subsets of these species vary between ethnic groups. Few of these differences can, with the limited information available, be directly related to differences in periodontal disease prevalence. Asian populations are regularly colonized with Actinobacillus...... actinomycetemcomitans serotype c with questionable pathogenic potential. Conversely, the JP2 clone of A. actinomycetemcomitans has enhanced virulence and causes significantly higher prevalence of aggressive periodontitis in adolescents whose descent can be traced back to the Mediterranean and Western parts of Africa....... Some genetically distinct types of Porphyromonas gingivalis are more associated with disease than others, but additional work is required to relate this to clinical differences. CONCLUSIONS: Studies that take into account differences linked to the genetics of both patients and potential pathogens...

  16. A Spectral Mapping Signature for the Rapid Ohia Death (ROD) Pathogen in Hawaiian Forests

    Science.gov (United States)

    Pathogenic invasions are a major disruptive source of change in both agricultural and natural ecosystems. In forests, fungal pathogens can kill habitat-generating plant species such as canopy trees, but methods for remote detection, mapping and monitoring of such outbreaks are poorly developed. Cera...

  17. Study on association between genetic polymorphisms of haem oxygenase-1, tumour necrosis factor, cadmium exposure and malaria pathogenicity and severity

    Directory of Open Access Journals (Sweden)

    Ruangweerayut Ronnatrai

    2010-09-01

    Full Text Available Abstract Background Malaria is the most important public health problems in tropical and sub-tropical countries. Haem oxygenase (HO enzyme and the pro-inflammatory cytokine tumour necrosis factor (TNF have been proposed as one of the factors that may play significant role in pathogenicity/severity of malaria infection. HO is the enzyme of the microsomal haem degradation pathway that yields biliverdin, carbon monoxide, and iron. In this study, the association between malaria disease pathogenicity/severity and (GTn repeat polymorphism in the promoter region of the inducible HO-1 including the effect of cadmium exposure (potent inducer of HO-1 transcription as well as polymorphism of TNF were investigated. Methods Blood samples were collected from 329 cases non-severe malaria with acute uncomplicated Plasmodium falciparum malaria (UM and 80 cases with Plasmodium vivax malaria (VM, and 77 cases with severe or cerebral malaria (SM for analysis of genetic polymorphisms of HO-1 and TNF and cadmium levels. These patients consisted of 123 (25.3% Thai, 243 (50.0% Burmese and 120 (24.7% Karen who were present at Mae Sot General Hospital, Mae Sot, Tak Province, Thailand. Results The number of (GTn repeats of the HO-1 gene in all patients varied between 16 and 39 and categorized to short (S, medium (M and long (L GTn repeats. The genotype of (GTn repeat of HO-1 was found to be significantly different among the three ethnic groups of patients. Significantly higher frequency of S/L genotype was found in Burmese compared with Thai patients, while significantly lower frequencies of S/S and M/L but higher frequency of M/M genotype was observed in Burmese compared with Karen patients. No significant association between HO-1 and TNF polymorphisms including the inducing effect of cadmium and malaria pathogenicity/severity was observed. Conclusions Difference in the expression of HO-1 genotype in different ethnic groups may contribute to different severity of malaria

  18. A Next-Generation Sequencing Data Analysis Pipeline for Detecting Unknown Pathogens from Mixed Clinical Samples and Revealing Their Genetic Diversity.

    Directory of Open Access Journals (Sweden)

    Yu-Nong Gong

    Full Text Available Forty-two cytopathic effect (CPE-positive isolates were collected from 2008 to 2012. All isolates could not be identified for known viral pathogens by routine diagnostic assays. They were pooled into 8 groups of 5-6 isolates to reduce the sequencing cost. Next-generation sequencing (NGS was conducted for each group of mixed samples, and the proposed data analysis pipeline was used to identify viral pathogens in these mixed samples. Polymerase chain reaction (PCR or enzyme-linked immunosorbent assay (ELISA was individually conducted for each of these 42 isolates depending on the predicted viral types in each group. Two isolates remained unknown after these tests. Moreover, iteration mapping was implemented for each of these 2 isolates, and predicted human parechovirus (HPeV in both. In summary, our NGS pipeline detected the following viruses among the 42 isolates: 29 human rhinoviruses (HRVs, 10 HPeVs, 1 human adenovirus (HAdV, 1 echovirus and 1 rotavirus. We then focused on the 10 identified Taiwanese HPeVs because of their reported clinical significance over HRVs. Their genomes were assembled and their genetic diversity was explored. One novel 6-bp deletion was found in one HPeV-1 virus. In terms of nucleotide heterogeneity, 64 genetic variants were detected from these HPeVs using the mapped NGS reads. Most importantly, a recombination event was found between our HPeV-3 and a known HPeV-4 strain in the database. Similar event was detected in the other HPeV-3 strains in the same clade of the phylogenetic tree. These findings demonstrated that the proposed NGS data analysis pipeline identified unknown viruses from the mixed clinical samples, revealed their genetic identity and variants, and characterized their genetic features in terms of viral evolution.

  19. Remote memories are enhanced by COMT activity through dysregulation of the endocannabinoid system in the prefrontal cortex.

    Science.gov (United States)

    Scheggia, D; Zamberletti, E; Realini, N; Mereu, M; Contarini, G; Ferretti, V; Managò, F; Margiani, G; Brunoro, R; Rubino, T; De Luca, M A; Piomelli, D; Parolaro, D; Papaleo, F

    2018-04-01

    The prefrontal cortex (PFC) is a crucial hub for the flexible modulation of recent memories (executive functions) as well as for the stable organization of remote memories. Dopamine in the PFC is implicated in both these processes and genetic variants affecting its neurotransmission might control the unique balance between cognitive stability and flexibility present in each individual. Functional genetic variants in the catechol-O-methyltransferase (COMT) gene result in a different catabolism of dopamine in the PFC. However, despite the established role played by COMT genetic variation in executive functions, its impact on remote memory formation and recall is still poorly explored. Here we report that transgenic mice overexpressing the human COMT-Val gene (COMT-Val-tg) present exaggerated remote memories (>50 days) while having unaltered recent memories (remote memories as silencing COMT Val overexpression starting from 30 days after the initial aversive conditioning normalized remote memories. COMT genetic overactivity produced a selective overdrive of the endocannabinoid system within the PFC, but not in the striatum and hippocampus, which was associated with enhanced remote memories. Indeed, acute pharmacological blockade of CB1 receptors was sufficient to rescue the altered remote memory recall in COMT-Val-tg mice and increased PFC dopamine levels. These results demonstrate that COMT genetic variations modulate the retrieval of remote memories through the dysregulation of the endocannabinoid system in the PFC.

  20. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides.

    Science.gov (United States)

    Lee, Soo Chan; Li, Alicia; Calo, Silvia; Inoue, Makoto; Tonthat, Nam K; Bain, Judith M; Louw, Johanna; Shinohara, Mari L; Erwig, Lars P; Schumacher, Maria A; Ko, Dennis C; Heitman, Joseph

    2015-09-01

    Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi. © 2015 John Wiley & Sons Ltd.

  1. Phylogeographic Diversity of Pathogenic and Non-Pathogenic Hantaviruses in Slovenia

    Science.gov (United States)

    Korva, Miša; Knap, Nataša; Resman Rus, Katarina; Fajs, Luka; Grubelnik, Gašper; Bremec, Matejka; Knapič, Tea; Trilar, Tomi; Avšič Županc, Tatjana

    2013-01-01

    Slovenia is a very diverse country from a natural geography point of view, with many different habitats within a relatively small area, in addition to major geological and climatic differences. It is therefore not surprising that several small mammal species have been confirmed to harbour hantaviruses: A. flavicollis (Dobrava virus), A. agrarius (Dobrava virus–Kurkino), M. glareolus (Puumala virus), S. areanus (Seewis virus), M. agrestis, M. arvalis and M. subterraneus (Tula virus). Three of the viruses, namely the Dobrava, Dobrava–Kurkino and Puumala viruses, cause disease in humans, with significant differences in the severity of symptoms. Due to changes in haemorrhagic fever with renal syndrome cases (HFRS) epidemiology, a detailed study on phylogenetic diversity and molecular epidemiology of pathogenic and non-pathogenic hantaviruses circulating in ecologically diverse endemic regions was performed. The study presents one of the largest collections of hantavirus L, M and S sequences obtained from hosts and patients within a single country. Several genetic lineages were determined for each hantavirus species, with higher diversity among non-pathogenic compared to pathogenic viruses. For pathogenic hantaviruses, a significant geographic clustering of human- and rodent-derived sequences was confirmed. Several geographic and ecological factors were recognized as influencing and limiting the formation of endemic areas. PMID:24335778

  2. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Gopaljee Jha

    2009-01-01

    Full Text Available Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed.

  3. Prevalence and distribution of principal periodontal pathogens worldwide

    DEFF Research Database (Denmark)

    Rylev, Mette; Kilian, Mogens

    2008-01-01

    . Some genetically distinct types of Porphyromonas gingivalis are more associated with disease than others, but additional work is required to relate this to clinical differences. CONCLUSIONS: Studies that take into account differences linked to the genetics of both patients and potential pathogens...

  4. Genetic data provide evidence for wind-mediated transmission of highly pathogenic avian influenza.

    Science.gov (United States)

    Ypma, Rolf J F; Jonges, Marcel; Bataille, Arnaud; Stegeman, Arjan; Koch, Guus; van Boven, Michiel; Koopmans, Marion; van Ballegooijen, W Marijn; Wallinga, Jacco

    2013-03-01

    Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a public health threat. Development of efficient containment measures requires an understanding of how these influenza viruses are transmitted between farms. However, the actual mechanisms of interfarm transmission are largely unknown. Dispersal of infectious material by wind has been suggested, but never demonstrated, as a possible cause of transmission between farms. Here we provide statistical evidence that the direction of spread of avian influenza A(H7N7) is correlated with the direction of wind at date of infection. Using detailed genetic and epidemiological data, we found the direction of spread by reconstructing the transmission tree for a large outbreak in the Netherlands in 2003. We conservatively estimate the contribution of a possible wind-mediated mechanism to the total amount of spread during this outbreak to be around 18%.

  5. A single genetic locus in the phytopathogen Pantoea stewartii enables gut colonization and pathogenicity in an insect host.

    Science.gov (United States)

    Stavrinides, John; No, Alexander; Ochman, Howard

    2010-01-01

    Aphids are typically exposed to a variety of epiphytic and phytopathogenic bacteria, many of which have entomopathogenic potential. Here we describe the interaction between Pantoea stewartii ssp. stewartii DC283 (DC283), an enteric phytopathogen and causal agent of Stewart's wilt, and the pea aphid, Acyrthosiphon pisum. When ingested by aphids, DC283 establishes and aggregates in the crop and gut, preventing honeydew flow and excretion, resulting in aphid death in 72 h. A mutagenesis screen identified a single locus, termed ucp1 (youcannot pass), whose disruption abolishes aphid pathogenicity. Moreover, the expression of ucp1 in Escherichia coli is sufficient to mediate the hindgut aggregation phenotype by this normally avirulent species. Ucp1 is related to six other proteins in the DC283 genome, each having a common N-terminal region and a divergent C-terminus, but only ucp1 has a role in pathogenicity. Based on predicted motifs and secondary structure, Ucp1 is a membrane-bound protein that functions in bacterial adhesion and promotes the formation of aggregates that are lethal to the insect host. These results illustrate that the enteric plant pathogenic bacteria have the capacity to exploit alternative non-plant hosts, and retain genetic determinants for colonizing the gut.

  6. Genetic Factors and Host Traits Predict Spore Morphology for a Butterfly Pathogen

    Directory of Open Access Journals (Sweden)

    Jacobus C. de Roode

    2013-08-01

    Full Text Available Monarch butterflies (Danaus plexippus throughout the world are commonly infected by the specialist pathogen Ophryocystis elektroscirrha (OE. This protozoan is transmitted when larvae ingest infectious stages (spores scattered onto host plant leaves by infected adults. Parasites replicate internally during larval and pupal stages, and adult monarchs emerge covered with millions of dormant spores on the outsides of their bodies. Across multiple monarch populations, OE varies in prevalence and virulence. Here, we examined geographic and genetic variation in OE spore morphology using clonal parasite lineages derived from each of four host populations (eastern and western North America, South Florida and Hawaii. Spores were harvested from experimentally inoculated, captive-reared adult monarchs. Using light microscopy and digital image analysis, we measured the size, shape and color of 30 replicate spores per host. Analyses examined predictors of spore morphology, including parasite source population and clone, parasite load, and the following host traits: family line, sex, wing area, and wing color (orange and black pigmentation. Results showed significant differences in spore size and shape among parasite clones, suggesting genetic determinants of morphological variation. Spore size also increased with monarch wing size, and monarchs with larger and darker orange wings tended to have darker colored spores, consistent with the idea that parasite development depends on variation in host quality and resources. We found no evidence for effects of source population on variation in spore morphology. Collectively, these results provide support for heritable variation in spore morphology and a role for host traits in affecting parasite development.

  7. SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection.

    Directory of Open Access Journals (Sweden)

    Charlotte Tollenaere

    Full Text Available Molecular tools may greatly improve our understanding of pathogen evolution and epidemiology but technical constraints have hindered the development of genetic resources for parasites compared to free-living organisms. This study aims at developing molecular tools for Podosphaera plantaginis, an obligate fungal pathogen of Plantago lanceolata. This interaction has been intensively studied in the Åland archipelago of Finland with epidemiological data collected from over 4,000 host populations annually since year 2001.A cDNA library of a pooled sample of fungal conidia was sequenced on the 454 GS-FLX platform. Over 549,411 reads were obtained and annotated into 45,245 contigs. Annotation data was acquired for 65.2% of the assembled sequences. The transcriptome assembly was screened for SNP loci, as well as for functionally important genes (mating-type genes and potential effector proteins. A genotyping assay of 27 SNP loci was designed and tested on 380 infected leaf samples from 80 populations within the Åland archipelago. With this panel we identified 85 multilocus genotypes (MLG with uneven frequencies across the pathogen metapopulation. Approximately half of the sampled populations contain polymorphism. Our genotyping protocol revealed mixed-genotype infection within a single host leaf to be common. Mixed infection has been proposed as one of the main drivers of pathogen evolution, and hence may be an important process in this pathosystem.The developed SNP panel offers exciting research perspectives for future studies in this well-characterized pathosystem. Also, the transcriptome provides an invaluable novel genomic resource for powdery mildews, which cause significant yield losses on commercially important crops annually. Furthermore, the features that render genetic studies in this system a challenge are shared with the majority of obligate parasitic species, and hence our results provide methodological insights from SNP calling to field

  8. Expression Study of Banana Pathogenic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Fenny M. Dwivany

    2016-10-01

    Full Text Available Banana is one of the world's most important trade commodities. However, infection of banana pathogenic fungi (Fusarium oxysporum race 4 is one of the major causes of decreasing production in Indonesia. Genetic engineering has become an alternative way to control this problem by isolating genes that involved in plant defense mechanism against pathogens. Two of the important genes are API5 and ChiI1, each gene encodes apoptosis inhibitory protein and chitinase enzymes. The purpose of this study was to study the expression of API5 and ChiI1 genes as candidate pathogenic resistance genes. The amplified fragments were then cloned, sequenced, and confirmed with in silico studies. Based on sequence analysis, it is showed that partial API5 gene has putative transactivation domain and ChiI1 has 9 chitinase family GH19 protein motifs. Data obtained from this study will contribute in banana genetic improvement.

  9. Mixtures of genetically modified wheat lines outperform monocultures

    OpenAIRE

    Zeller, Simon L; Kalinina, Olena; Flynn, Dan F B; Schmid, Bernhard

    2012-01-01

    Biodiversity research shows that diverse plant communities are more stable and productive than monocultures. Similarly, populations in which genotypes with different pathogen resistance are mixed may have lower pathogen levels and thus higher productivity than genetically uniform populations. We used genetically modified (GM) wheat as a model system to test this prediction, because it allowed us to use genotypes that differed only in the trait pathogen resistance but were otherwise identical....

  10. Annotating pathogenic non-coding variants in genic regions.

    Science.gov (United States)

    Gelfman, Sahar; Wang, Quanli; McSweeney, K Melodi; Ren, Zhong; La Carpia, Francesca; Halvorsen, Matt; Schoch, Kelly; Ratzon, Fanni; Heinzen, Erin L; Boland, Michael J; Petrovski, Slavé; Goldstein, David B

    2017-08-09

    Identifying the underlying causes of disease requires accurate interpretation of genetic variants. Current methods ineffectively capture pathogenic non-coding variants in genic regions, resulting in overlooking synonymous and intronic variants when searching for disease risk. Here we present the Transcript-inferred Pathogenicity (TraP) score, which uses sequence context alterations to reliably identify non-coding variation that causes disease. High TraP scores single out extremely rare variants with lower minor allele frequencies than missense variants. TraP accurately distinguishes known pathogenic and benign variants in synonymous (AUC = 0.88) and intronic (AUC = 0.83) public datasets, dismissing benign variants with exceptionally high specificity. TraP analysis of 843 exomes from epilepsy family trios identifies synonymous variants in known epilepsy genes, thus pinpointing risk factors of disease from non-coding sequence data. TraP outperforms leading methods in identifying non-coding variants that are pathogenic and is therefore a valuable tool for use in gene discovery and the interpretation of personal genomes.While non-coding synonymous and intronic variants are often not under strong selective constraint, they can be pathogenic through affecting splicing or transcription. Here, the authors develop a score that uses sequence context alterations to predict pathogenicity of synonymous and non-coding genetic variants, and provide a web server of pre-computed scores.

  11. Genetic, antigenic and pathogenic characterization of four infectious bursal disease virus isolates from China suggests continued evolution of very virulent viruses.

    Science.gov (United States)

    Li, Kai; Courtillon, Céline; Guionie, Olivier; Allée, Chantal; Amelot, Michel; Qi, Xiaole; Gao, Yulong; Wang, Xiaomei; Eterradossi, Nicolas

    2015-03-01

    Infectious bursal disease virus (IBDV) causes an economically significant disease of young chickens worldwide. The emergence of very virulent IBDV (vvIBDV) strains has brought more challenges for effective prevention and control of this disease. The aim of the present study was to characterize four IBDV isolates from various regions of China between late 1990s and recent years and to compare them with previously isolated European IBDV strains. In this study, one Chinese vvIBDV strain isolated in 1999 and three strains isolated between 2005 and 2011 were analyzed at the genetic, antigenic and pathogenic levels. Strain SH99 was closely related and clustered in the same genetic lineage as the typical vvIBDV based on the genomic sequences of segments A and B. However, the three more recent Chinese vvIBDV (HLJ0504, HeB10 and HuN11) showed several genetic changes in both segments and clustered in a distinct lineage from the typical vvIBDV and the previously known Chinese vvIBDV. Based on the binding to a panel of neutralizing monoclonal antibodies in antigen capture enzyme-linked immunosorbent assays, all Chinese vvIBDVs exhibited similar antigenicity with the European typical vvIBDV strains. Nonetheless, the pathogenicity caused by the recent Chinese vvIBDV was higher than that induced by the European typical vvIBDV. This study calls for a sustained surveillance of IBD situation in China in order to support a better prevention and control of the disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Economic optimization and evolutionary programming when using remote sensing data

    OpenAIRE

    Shamin Roman; Alberto Gabriel Enrike; Uryngaliyeva Ayzhana; Semenov Aleksandr

    2018-01-01

    The article considers the issues of optimizing the use of remote sensing data. Built a mathematical model to describe the economic effect of the use of remote sensing data. It is shown that this model is incorrect optimisation task. Given a numerical method of solving this problem. Also discusses how to optimize organizational structure by using genetic algorithm based on remote sensing. The methods considered allow the use of remote sensing data in an optimal way. The proposed mathematical m...

  13. Determination of foodborne pathogenic bacteria by multiplex PCR-microchip capillary electrophoresis with genetic algorithm-support vector regression optimization.

    Science.gov (United States)

    Li, Yongxin; Li, Yuanqian; Zheng, Bo; Qu, Lingli; Li, Can

    2009-06-08

    A rapid and sensitive method based on microchip capillary electrophoresis with condition optimization of genetic algorithm-support vector regression (GA-SVR) was developed and applied to simultaneous analysis of multiplex PCR products of four foodborne pathogenic bacteria. Four pairs of oligonucleotide primers were designed to exclusively amplify the targeted gene of Vibrio parahemolyticus, Salmonella, Escherichia coli (E. coli) O157:H7, Shigella and the quadruplex PCR parameters were optimized. At the same time, GA-SVR was employed to optimize the separation conditions of DNA fragments in microchip capillary electrophoresis. The proposed method was applied to simultaneously detect the multiplex PCR products of four foodborne pathogenic bacteria under the optimal conditions within 8 min. The levels of detection were as low as 1.2 x 10(2) CFU mL(-1) of Vibrio parahemolyticus, 2.9 x 10(2) CFU mL(-1) of Salmonella, 8.7 x 10(1) CFU mL(-1) of E. coli O157:H7 and 5.2 x 10(1) CFU mL(-1) of Shigella, respectively. The relative standard deviation of migration time was in the range of 0.74-2.09%. The results demonstrated that the good resolution and less analytical time were achieved due to the application of the multivariate strategy. This study offers an efficient alternative to routine foodborne pathogenic bacteria detection in a fast, reliable, and sensitive way.

  14. The quantitative basis of the Arabidopsis innate immune system to endemic pathogens depends on pathogen genetics

    DEFF Research Database (Denmark)

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie

    2016-01-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabido......The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used....... cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence...... genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance...

  15. Burkholderia thailandensis: Genetic Manipulation.

    Science.gov (United States)

    Garcia, Erin C

    2017-05-16

    Burkholderia thailandensis is a Gram-negative bacterium endemic to Southeast Asian and northern Australian soils. It is non-pathogenic; therefore, it is commonly used as a model organism for the related human pathogens Burkholderia mallei and Burkholderia pseudomallei. B. thailandensis is relatively easily genetically manipulated and a variety of robust genetic tools can be used in this organism. This unit describes protocols for conjugation, natural transformation, mini-Tn7 insertion, and allelic exchange in B. thailandensis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  16. Some problems on remote sensing geology for uranium prospecting

    International Nuclear Information System (INIS)

    Yang Tinghuai.

    1988-01-01

    Remote sensing is a kind of very effective method which can be used in all stages of geological prospecting. Geological prospecting with remote sensing method must be based on different genetic models of ore deposits, characteristics of geology-landscape and comprehensive analysis for geophysical and geochemical data, that is, by way of conceptual model prospecting. The prospecting results based on remote sensing geology should be assessed from three aspects such as direct, indirect and potential ones

  17. Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality

    OpenAIRE

    Ali, Shahin S.; Shao, Jonathan; Strem, Mary D.; Phillips-Mora, Wilberth; Zhang, Dapeng; Meinhardt, Lyndel W.; Bailey, Bryan A.

    2015-01-01

    Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR) disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population may allow the population to adapt to changing environmental conditions and adapt to enhanced resistance in the host plant. The present study developed single nucleotide polymorphism (SNP) markers fro...

  18. Genetic manipulation of Francisella tularensis

    Directory of Open Access Journals (Sweden)

    Xhavit eZogaj

    2011-01-01

    Full Text Available Francisella tularensis is a facultative intracellular pathogen that causes the disease tularemia. F. tularensis subsp. tularensis causes the most severe disease in humans and has been classified as a select A agent and potential bioweapon. There is currently no vaccine approved for human use, making genetic manipulation of this organism critical to unraveling the genetic basis of pathogenesis and developing countermeasures against tularemia. The development of genetic techniques applicable to F. tularensis have lagged behind those routinely used for other bacteria, primarily due to lack of research and the restricted nature of the biocontainment required for studying this pathogen. However, in recent years, genetic techniques, such as transposon mutagenesis and targeted gene disruption, have been developed, that have had a dramatic impact on our understanding of the genetic basis of F. tularensis virulence. In this review, we describe some of the methods developed for genetic manipulation of F. tularensis.

  19. Development of Decision Support System for Remote Monitoring of PIP Corn

    Science.gov (United States)

    The EPA is developing a multi-level approach that utilizes satellite and airborne remote sensing to locate and monitor genetically modified corn in the agricultural landscape and pest infestation. The current status of the EPA IRM monitoring program based on remote sensed imager...

  20. Lectins in human pathogenic fungi.

    Science.gov (United States)

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  1. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission

    Directory of Open Access Journals (Sweden)

    Sarah I. Bonnet

    2017-06-01

    Full Text Available Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP, with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella, and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most Coxiella, Francisella, and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies.

  2. A reservoir of drug-resistant pathogenic bacteria in asymptomatic hosts.

    Directory of Open Access Journals (Sweden)

    Gabriel G Perron

    Full Text Available The population genetics of pathogenic bacteria has been intensively studied in order to understand the spread of disease and the evolution of virulence and drug resistance. However, much less attention has been paid to bacterial carriage populations, which inhabit hosts without producing disease. Since new virulent strains that cause disease can be recruited from the carriage population of bacteria, our understanding of infectious disease is seriously incomplete without knowledge on the population structure of pathogenic bacteria living in an asymptomatic host. We report the first extensive survey of the abundance and diversity of a human pathogen in asymptomatic animal hosts. We have found that asymptomatic swine from livestock productions frequently carry populations of Salmonella enterica with a broad range of drug-resistant strains and genetic diversity greatly exceeding that previously described. This study shows how agricultural practice and human intervention may lead and influence the evolution of a hidden reservoir of pathogens, with important implications for human health.

  3. Genetics: A New Landscape for Medical Geography

    Science.gov (United States)

    Carrel, Margaret; Emch, Michael

    2014-01-01

    The emergence and re-emergence of human pathogens resistant to medical treatment will present a challenge to the international public health community in the coming decades. Geography is uniquely positioned to examine the progressive evolution of pathogens across space and through time, and to link molecular change to interactions between population and environmental drivers. Landscape as an organizing principle for the integration of natural and cultural forces has a long history in geography, and, more specifically, in medical geography. Here, we explore the role of landscape in medical geography, the emergent field of landscape genetics, and the great potential that exists in the combination of these two disciplines. We argue that landscape genetics can enhance medical geographic studies of local-level disease environments with quantitative tests of how human-environment interactions influence pathogenic characteristics. In turn, such analyses can expand theories of disease diffusion to the molecular scale and distinguish the important factors in ecologies of disease that drive genetic change of pathogens. PMID:24558292

  4. Pathogen Causing Disease of Diagnosis PCR Tecnology

    OpenAIRE

    SEVİNDİK, Emre; KIR, A. Çağrı; BAŞKEMER, Kadir; UZUN, Veysel

    2013-01-01

    Polimerase chain reaction (PCR) with which, the development of recombinant DNA tecnology, a technique commonly used in field of moleculer biology and genetic. Duplication of the target DNA is provided with this technique without the need for cloning. Some fungus species, bacteria, viruses constitutent an important group of pathogenicity in human, animals and plants. There are routinely applied types of PCR in the detection of pathogens infections diseases. These Nested- PCR, Real- Time PCR, M...

  5. Genetic characterization of mango anthracnose pathogen ...

    African Journals Online (AJOL)

    Isolate specific RAPD fingerprints were obtained. Out of eight primers in RAPD, OPA-1, 3 and 18 were able to produce reproducible banding pattern. Each of these primers generated a short spectrum of amplicons, located between 661 and 2291-bp markers, indicative of genetic polymorphism. Dendogram revealed more ...

  6. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus.

    Science.gov (United States)

    Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil

    2014-03-01

    Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci. Published by Elsevier B.V.

  7. A Global Overview of the Genetic and Functional Diversity in the Helicobacter pylori cag Pathogenicity Island

    Science.gov (United States)

    Moodley, Yoshan; Uhr, Markus; Stamer, Christiana; Vauterin, Marc; Suerbaum, Sebastian; Achtman, Mark

    2010-01-01

    The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown. PMID:20808891

  8. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  9. Method of inhibiting plant virus pathogen infections by crispr/cas9-mediated interference

    KAUST Repository

    Mahfouz, Magdy Mahmoud

    2016-11-24

    A genetically modified tobacco plant or tomato plant resistant to at least one pathogenic geminiviridae virus species is provided. The plant comprises a heterologous CRISPR/Cas9 system and at least one heterologous nucleotide sequence that is capable of hybridizing to a nucleotide sequence of the pathogenic virus and that directs inactivation of the pathogenic virus species or plurality of viral species by the CRISPR/Cas9 system. The heterologous nucleotide sequence can be complementary to, but not limited to an Intergenic Region (IR) of the Tomato Yellow Leaf Curl Virus (TYLCV), Further provided are methods of generating a genetically modified plant that is resistant to a virus pathogen by a heterologous CRISPR/Cas9 system and expression of a gRNA specifically targeting the virus.

  10. Population Genetic Analyses of the Fungal Pathogen Colletotrichum fructicola on Tea-Oil Trees in China.

    Directory of Open Access Journals (Sweden)

    He Li

    Full Text Available The filamentous fungus Colletotrichum fructicola is found in all five continents and is capable of causing severe diseases in a number of economically important plants such as avocado, fig, cocoa, pear, and tea-oil trees. However, almost nothing is known about its patterns of genetic variation and epidemiology on any of its host plant species. Here we analyzed 167 isolates of C. fructicola obtained from the leaves of tea-oil tree Camellia oleifera at 15 plantations in seven Chinese provinces. Multilocus sequence typing was conducted for all isolates based on DNA sequences at fragments of four genes: the internal transcribed spacers of the nuclear ribosomal RNA gene cluster (539 bp, calmodulin (633 bp, glutamine synthetase (711 bp, and glyceraldehyde-3-phosphate dehydrogenase (190 bp, yielding 3.52%, 0.63%, 8.44%, and 7.89% of single nucleotide polymorphic sites and resulting in 15, 5, 12 and 11 alleles respectively at the four gene fragments in the total sample. The combined allelic information from all four loci identified 53 multilocus genotypes with the most frequent represented by 21 isolates distributed in eight tea-oil plantations in three provinces, consistent with long-distance clonal dispersal. However, despite evidence for clonal dispersal, statistically significant genetic differentiation among geographic populations was detected. In addition, while no evidence of recombination was found within any of the four gene fragments, signatures of recombination were found among the four gene fragments in most geographic populations, consistent with sexual mating of this species in nature. Our study provides the first insights into the population genetics and epidemiology of the important plant fungal pathogen C. fructicola.

  11. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici

    Science.gov (United States)

    Nirmaladevi, D.; Venkataramana, M.; Srivastava, Rakesh K.; Uppalapati, S. R.; Gupta, Vijai Kumar; Yli-Mattila, T.; Clement Tsui, K. M.; Srinivas, C.; Niranjana, S. R.; Chandra, Nayaka S.

    2016-01-01

    The present study aimed at the molecular characterization of pathogenic and non pathogenic F. oxysporum f. sp. lycopersici strains isolated from tomato. The causal agent isolated from symptomatic plants and soil samples was identified based on morphological and molecular analyses. Pathogenicity testing of 69 strains on five susceptible tomato varieties showed 45% of the strains were highly virulent and 30% were moderately virulent. Molecular analysis based on the fingerprints obtained through ISSR indicated the presence of wide genetic diversity among the strains. Phylogenetic analysis based on ITS sequences showed the presence of at least four evolutionary lineages of the pathogen. The clustering of F. oxysporum with non pathogenic isolates and with the members of other formae speciales indicated polyphyletic origin of F. oxysporum f. sp. lycopersici. Further analysis revealed intraspecies variability and nucleotide insertions or deletions in the ITS region among the strains in the study and the observed variations were found to be clade specific. The high genetic diversity in the pathogen population demands for development of effective resistance breeding programs in tomato. Among the pathogenic strains tested, toxigenic strains harbored the Fum1 gene clearly indicating that the strains infecting tomato crops have the potential to produce Fumonisin. PMID:26883288

  12. Identification and genetic mapping of highly polymorphic microsatellite loci from an EST database of the septoria tritici blotch pathogen Mycosphaerella graminicola.

    Science.gov (United States)

    Goodwin, Stephen B; van der Lee, Theo A J; Cavaletto, Jessica R; Te Lintel Hekkert, Bas; Crane, Charles F; Kema, Gert H J

    2007-05-01

    A database of 30,137 EST sequences from Mycosphaerella graminicola, the septoria tritici blotch fungus of wheat, was scanned with a custom software pipeline for di- and trinucleotide units repeated tandemly six or more times. The bioinformatics analysis identified 109 putative SSR loci, and for 99 of them, flanking primers were developed successfully and tested for amplification and polymorphism by PCR on five field isolates of diverse origin, including the parents of the standard M. graminicola mapping population. Seventy-seven of the 99 primer pairs generated an easily scored banding pattern and 51 were polymorphic, with up to four alleles per locus, among the isolates tested. Among these 51 loci, 23 were polymorphic between the parents of the mapping population. Twenty-one of these as well as two previously published microsatellite loci were positioned on the existing genetic linkage map of M. graminicola on 13 of the 24 linkage groups. Most (66%) of the primer pairs also amplified bands in the closely related barley pathogen Septoria passerinii, but only six were polymorphic among four isolates tested. A subset of the primer pairs also revealed polymorphisms when tested with DNA from the related banana black leaf streak (Black Sigatoka) pathogen, M. fijiensis. The EST database provided an excellent source of new, highly polymorphic microsatellite markers that can be multiplexed for high-throughput genetic analyses of M. graminicola and related species.

  13. Whole-genome sequencing of veterinary pathogens

    DEFF Research Database (Denmark)

    Ronco, Troels

    -electrophoresis and single-locus sequencing has been widely used to characterize such types of veterinary pathogens. However, DNA sequencing techniques have become fast and cost effective in recent years and whole-genome sequencing data provide a much higher discriminative power and reproducibility than any...... genetic background. This indicates that dairy cows can be natural carriers of S. aureus subtypes that in certain cases lead to CM. A group of isolates that mostly belonged to ST151 carried three pathogenicity islands that were primarily found in this group. The prevalence of resistance genes was generally...

  14. Task 1.5 Genomic Shift and Drift Trends of Emerging Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Borucki, M

    2010-01-05

    The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to conduct analyses of genomic shift and drift trends of emerging pathogens, with a focused eye on select agent pathogens, as well as antibiotic and virulence markers. Most emerging human pathogens are zoonotic viruses with a genome composed of RNA. The high mutation rate of the replication enzymes of RNA viruses contributes to sequence drift and provides one mechanism for these viruses to adapt to diverse hosts (interspecies transmission events) and cause new human and zoonotic diseases. Additionally, new viral pathogens frequently emerge due to genetic shift (recombination and segment reassortment) which allows for dramatic genotypic and phenotypic changes to occur rapidly. Bacterial pathogens also evolve via genetic drift and shift, although sequence drift generally occurs at a much slower rate for bacteria as compared to RNA viruses. However, genetic shift such as lateral gene transfer and inter- and intragenomic recombination enables bacteria to rapidly acquire new mechanisms of survival and antibiotic resistance. New technologies such as rapid whole genome sequencing of bacterial genomes, ultra-deep sequencing of RNA virus populations, metagenomic studies of environments rich in antibiotic resistance genes, and the use of microarrays for the detection and characterization of emerging pathogens provide mechanisms to address the challenges posed by the rapid emergence of pathogens. Bioinformatic algorithms that enable efficient analysis of the massive amounts of data generated by these technologies as well computational modeling of protein structures and evolutionary processes need to be developed to allow the technology to fulfill its potential.

  15. Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    2015-08-01

    Full Text Available Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population may allow the population to adapt to changing environmental conditions and adapt to enhanced resistance in the host plant. The present study developed SNP markers from RNASeq results for 13 M. roreri isolates and validated the markers for their ability to reveal genetic diversity in an international M. roreri collection. The SNP resources reported herein represent the first study of RNASeq-derived SNP validation in M. roreri and demonstrates the utility of RNASeq as an approach for de novo SNP identification in M. roreri. A total of 88 polymorphic SNPs were used to evaluate the genetic diversity of 172 M. roreri cacao isolates resulting in 37 distinct genotypes (including 14 synonymous groups. Absence of heterozygosity for the 88 SNP markers indicates reproduction in M. roreri is clonal and likely due to a homothallic life style. The upper Magdalena Valley of Colombia showed the highest levels of genetic diversity with 20 distinct genotypes of which 13 were limited to this region, and indicates this region as the possible center of origin for M. roreri.

  16. Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality.

    Science.gov (United States)

    Ali, Shahin S; Shao, Jonathan; Strem, Mary D; Phillips-Mora, Wilberth; Zhang, Dapeng; Meinhardt, Lyndel W; Bailey, Bryan A

    2015-01-01

    Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR) disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population may allow the population to adapt to changing environmental conditions and adapt to enhanced resistance in the host plant. The present study developed single nucleotide polymorphism (SNP) markers from RNASeq results for 13 M. roreri isolates and validated the markers for their ability to reveal genetic diversity in an international M. roreri collection. The SNP resources reported herein represent the first study of RNA sequencing (RNASeq)-derived SNP validation in M. roreri and demonstrates the utility of RNASeq as an approach for de novo SNP identification in M. roreri. A total of 88 polymorphic SNPs were used to evaluate the genetic diversity of 172 M. roreri cacao isolates resulting in 37 distinct genotypes (including 14 synonymous groups). Absence of heterozygosity for the 88 SNP markers indicates reproduction in M. roreri is clonal and likely due to a homothallic life style. The upper Magdalena Valley of Colombia showed the highest levels of genetic diversity with 20 distinct genotypes of which 13 were limited to this region, and indicates this region as the possible center of origin for M. roreri.

  17. Reproduction in Leishmania: A focus on genetic exchange.

    Science.gov (United States)

    Rougeron, V; De Meeûs, T; Bañuls, A-L

    2017-06-01

    One key process of the life cycle of pathogens is their mode of reproduction. Indeed, this fundamental biological process conditions the multiplication and the transmission of genes and thus the propagation of diseases in the environment. Reproductive strategies of protozoan parasites have been a subject of debate for many years, principally due to the difficulty in making direct observations of sexual reproduction (i.e. genetic recombination). Traditionally, these parasites were considered as characterized by a preeminent clonal structure. Nevertheless, with the development of elaborate culture experiments, population genetics and evolutionary and population genomics, several studies suggested that most of these pathogens were also characterized by constitutive genetic recombination events. In this opinion, we focused on Leishmania parasites, pathogens responsible of leishmaniases, a major public health issue. We first discuss the evolutionary advantages of a mixed mating reproductive strategy, then we review the evidence of genetic exchange, and finally we detail available tools to detect naturally occurring genetic recombination in Leishmania parasites and more generally in protozoan parasites. Copyright © 2016. Published by Elsevier B.V.

  18. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Science.gov (United States)

    Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-04-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  19. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Albor Dobón

    2015-04-01

    Full Text Available Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  20. MOLECULAR-GENETIC BASIS OF PHYSIOLOGY AND PATHOGENICITY OF COXIELLA BURNETII

    Directory of Open Access Journals (Sweden)

    Yu. A. Panpherova

    2012-01-01

    Full Text Available Abstract. The agent of Q-fever Coxiella burnetii is unusual intracellular pathogen which is possessed of biggest transporting and metabolic abilities in compare with microorganisms with similar parasitic strategy. It is supposed that different strains of the pathogen exist in various stages of pathological adaption and have different potential of virulence. The structure of C. burnetii genome, characteristics of metabolic routes, mechanisms of interaction with host cells and possible virulence factors are discussed in the review. The special attention is paid to Coxiella genotyping methods and possible correlations between genomic polymorphism of different strains and their virulence potential.

  1. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens.

    Science.gov (United States)

    Powell, Jennifer R; Ausubel, Frederick M

    2008-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the relationship between the animal innate immune system and a variety of bacterial and fungal pathogens. Extensive genetic and molecular tools are available in C. elegans, facilitating an in-depth analysis of host defense factors and pathogen virulence factors. Many of these factors are conserved in insects and mammals, indicating the relevance of the nematode model to the vertebrate innate immune response. Here, we describe pathogen assays for a selection of the most commonly studied bacterial and fungal pathogens using the C. elegans model system.

  2. Improvement of remote monitoring on water quality in a subtropical reservoir by incorporating grammatical evolution with parallel genetic algorithms into satellite imagery.

    Science.gov (United States)

    Chen, Li; Tan, Chih-Hung; Kao, Shuh-Ji; Wang, Tai-Sheng

    2008-01-01

    Parallel GEGA was constructed by incorporating grammatical evolution (GE) into the parallel genetic algorithm (GA) to improve reservoir water quality monitoring based on remote sensing images. A cruise was conducted to ground-truth chlorophyll-a (Chl-a) concentration longitudinally along the Feitsui Reservoir, the primary water supply for Taipei City in Taiwan. Empirical functions with multiple spectral parameters from the Landsat 7 Enhanced Thematic Mapper (ETM+) data were constructed. The GE, an evolutionary automatic programming type system, automatically discovers complex nonlinear mathematical relationships among observed Chl-a concentrations and remote-sensed imageries. A GA was used afterward with GE to optimize the appropriate function type. Various parallel subpopulations were processed to enhance search efficiency during the optimization procedure with GA. Compared with a traditional linear multiple regression (LMR), the performance of parallel GEGA was found to be better than that of the traditional LMR model with lower estimating errors.

  3. Variable host-pathogen compatibility in Mycobacterium tuberculosis.

    NARCIS (Netherlands)

    Gagneux, Sebastien; DeRiemer, Kathryn; Van, Tran; Kato-Maeda, Midori; Jong, Bouke C de; Narayanan, Sujatha; Nicol, Mark; Niemann, Stefan; Kremer, Kristin; Gutierrez, M Cristina; Hilty, Markus; Hopewell, Philip C; Small, Peter M

    2006-01-01

    Mycobacterium tuberculosis remains a major cause of morbidity and mortality worldwide. Studies have reported human pathogens to have geographically structured population genetics, some of which have been linked to ancient human migrations. However, no study has addressed the potential evolutionary

  4. Genome-Wide Screen for Saccharomyces cerevisiae Genes Contributing to Opportunistic Pathogenicity in an Invertebrate Model Host

    Directory of Open Access Journals (Sweden)

    Sujal S. Phadke

    2018-01-01

    Full Text Available Environmental opportunistic pathogens can exploit vulnerable hosts through expression of traits selected for in their natural environments. Pathogenicity is itself a complicated trait underpinned by multiple complex traits, such as thermotolerance, morphology, and stress response. The baker’s yeast, Saccharomyces cerevisiae, is a species with broad environmental tolerance that has been increasingly reported as an opportunistic pathogen of humans. Here we leveraged the genetic resources available in yeast and a model insect species, the greater waxmoth Galleria mellonella, to provide a genome-wide analysis of pathogenicity factors. Using serial passaging experiments of genetically marked wild-type strains, a hybrid strain was identified as the most fit genotype across all replicates. To dissect the genetic basis for pathogenicity in the hybrid isolate, bulk segregant analysis was performed which revealed eight quantitative trait loci significantly differing between the two bulks with alleles from both parents contributing to pathogenicity. A second passaging experiment with a library of deletion mutants for most yeast genes identified a large number of mutations whose relative fitness differed in vivo vs. in vitro, including mutations in genes controlling cell wall integrity, mitochondrial function, and tyrosine metabolism. Yeast is presumably subjected to a massive assault by the innate insect immune system that leads to melanization of the host and to a large bottleneck in yeast population size. Our data support that resistance to the innate immune response of the insect is key to survival in the host and identifies shared genetic mechanisms between S. cerevisiae and other opportunistic fungal pathogens.

  5. Genetic engineering of microbial pesticides

    Science.gov (United States)

    Bruce C. Carlton

    1985-01-01

    Recent advances in genetics and molecular biology make possible the cloning and genetic manipulation of genes for insecticidal activities from natural insect pathogens. Using recombinant DNA methods and site-directed mutagenesis of specific gene regions, production of new and improved biorationals should be possible.

  6. A possible tradeoff between developmental rate and pathogen ...

    Indian Academy of Sciences (India)

    related tradeoffs is that they are mediated via the conflict- ... Keywords. life-history evolution; tradeoff; development time; immune function; pathogen; Drosophila. Journal of Genetics .... This work was supported in parts by funds from Depart-.

  7. Genetic diversity and antifungal susceptibility profiles in causative agents of sporotrichosis

    Science.gov (United States)

    2014-01-01

    Background Sporotrichosis is a chronic subcutaneous mycosis of humans and animals, which is typically acquired by traumatic inoculation of plant material contaminated with Sporothrix propagules, or via animals, mainly felines. Sporothrix infections notably occur in outbreaks, with large epidemics currently taking place in southeastern Brazil and northeastern China. Pathogenic species include Sporothrix brasiliensis, Sporothrix schenckii s. str., Sporothrix globosa, and Sporothrix luriei, which exhibit differing geographical distribution, virulence, and resistance to antifungals. The phylogenetically remote species Sporothrix mexicana also shows a mild pathogenic potential. Methods We assessed a genetically diverse panel of 68 strains. Susceptibility profiles of medically important Sporothrix species were evaluated by measuring the MICs and MFCs for amphotericin B (AMB), fluconazole (FLC), itraconazole (ITC), voriconazole (VRC), posaconazole (PCZ), flucytosine (5FC), and caspofungin (CAS). Haplotype networks were constructed to reveal interspecific divergences within clinical Sporothrix species to evaluate genetically deviant isolates. Results ITC and PCZ were moderately effective against S. brasiliensis (MIC90 = 2 and 2 μg/mL, respectively) and S. schenckii (MIC90 = 4 and 2 μg/mL, respectively). PCZ also showed low MICs against the rare species S. mexicana. 5FC, CAS, and FLC showed no antifungal activity against any Sporothrix species. The minimum fungicidal concentration ranged from 2 to >16 μg/mL for AMB against S. brasiliensis and S. schenckii, while the MFC90 was >16 μg/mL for ITC, VRC, and PCZ. Conclusion Sporothrix species in general showed high degrees of resistance against antifungals. Evaluating a genetically diverse panel of strains revealed evidence of multidrug resistant phenotypes, underlining the need for molecular identification of etiologic agents to predict therapeutic outcome. PMID:24755107

  8. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. RAMZI M. MOHAMMAD. Articles written in Journal of Genetics. Volume 96 Issue 2 June 2017 pp 383-387 RESEARCH NOTE. Molecular genetic analysis of consanguineous families with primary microcephaly identified pathogenic variants in the ASPM gene · MUZAMMIL AHMAD KHAN ...

  9. Genetic anaylsis of a disease resistance gene from loblolly pine

    Science.gov (United States)

    Yinghua Huang; Nili Jin; Alex Diner; Chuck Tauer; Yan Zhang; John Damicone

    2003-01-01

    Rapid advances in molecular genetics provide great opportunities for studies of host defense mechanisms. Examination of plant responses to disease at the cellular and molecular level permits both discovery of changes in gene expression in the tissues attacked by pathogens, and identification of genetic components involved in the interaction between host and pathogens....

  10. Normal mitochondrial respiratory function is essential for spatial remote memory in mice

    Directory of Open Access Journals (Sweden)

    Tanaka Daisuke

    2008-12-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA with pathogenic mutations has been found in patients with cognitive disorders. However, little is known about whether pathogenic mtDNA mutations and the resultant mitochondrial respiration deficiencies contribute to the expression of cognitive alterations, such as impairments of learning and memory. To address this point, we used two groups of trans-mitochondrial mice (mito-mice with heteroplasmy for wild-type and pathogenically deleted (Δ mtDNA; the "low" group carried 50% or less ΔmtDNA, and the "high" group carried more than 50% ΔmtDNA. Results Both groups had normal phenotypes for not only spatial learning, but also memory at short retention delays, indicating that ΔmtDNA load did not affect learning and temporal memory. The high group, however, showed severe impairment of memory at long retention delays. In the visual cortex and dentate gyrus of these mice, we observed mitochondrial respiration deficiencies, and reduced Ca2+/calmodulin-dependent kinase II-α (α-CaMKII, a protein important for the establishment of spatial remote memory. Conclusion Our results indicated that normal mitochondrial respiratory function is necessary for retention and consolidation of memory trace; deficiencies in this function due to high loads of pathogenically mutated mtDNA are responsible for the preferential impairment of spatial remote memory.

  11. Genetics and Psychiatry: Myth or Reality?

    Science.gov (United States)

    Juli, Giada; Juli, Rebecca; Juli, Luigi

    2017-09-01

    Greek mythology and philosophical speculations were the first human productions on madness and psychiatry. Likewise, the origins of genetics sink their roots in a very remote and difficult time. This work tries to give an idea of the relationship between genetics and psychiatry through the myth and reality.

  12. Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli

    Science.gov (United States)

    2018-01-01

    ABSTRACT Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental (“dairy-farm” E. coli [DFEC]) strains, we found that only the fec locus (fecIRABCDE) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes (P mastitis, whereas the fec+ DFEC K71 mutant was able to trigger intramammary inflammation. For the first time, a single molecular locus was shown to be crucial in MPEC pathogenicity. PMID:29615502

  13. Proteomics of Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Raquel González-Fernández

    2010-01-01

    Full Text Available Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.

  14. The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen.

    Science.gov (United States)

    Croll, Daniel; Lendenmann, Mark H; Stewart, Ethan; McDonald, Bruce A

    2015-11-01

    Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host. Copyright © 2015 by the Genetics Society of America.

  15. GENETIC, PATHOGENIC AND TOXIGENIC VARIABILITY OF F

    African Journals Online (AJOL)

    Vesna Krnjaja

    2012-03-08

    Mar 8, 2012 ... The same authors concluded that natural populations of F. proliferatum in Iran were probably genetically divergent and included isolates representing a potential risk for disease development. Elmer (1991) and Elmer et al. (1999) collected 110 and. 77 isolates of F. proliferatum from asparagus originating.

  16. Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Schade, Franziska M; Shama, Lisa N S; Wegner, K Mathias

    2014-07-26

    Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found

  17. Pathogen-Induced Defense Signaling and Signal Crosstalk in Arabidopsis

    OpenAIRE

    Kariola, Tarja

    2006-01-01

    Erwinia carotovora subsp. carotovora is a bacterial phytopathogen that causes soft rot in various agronomically important crop plants. A genetically specified resistance to E. carotovora has not been defined, and plant resistance to this pathogen is established through nonspecific activation of basal defense responses. This, together with the broad host range, makes this pathogen a good model for studying the activation of plant defenses. Production and secretion of plant cell wall-degrading ...

  18. A New Selectable Marker System for Genetic Studies of Bacteria: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, D; Tolmasky, M; Chain, P; Segelke, B W

    2011-03-18

    Genetic manipulations in bacteria currently rely on the introduction of antibiotic resistance genes into a bacterial strain; for those organisms that will be used for commercial or industrial applications, the genetic cassette encoding the antibiotic resistance is sometimes removed after selection. it is clear that if alternative technologies could obviate the need to introduce antibiotic resistance into bacteria, they would most certainly become a standard tool in molecular micriobiology for commercial, industrial as well as research applications. Here, they present the development of a novel genetic engineering technology based on toxin-antitoxin systems to modify bacterial genomes without the use of antibiotic resistance in the mutagenesis process. The primary goal is to develop antibiotic-free selection for genetically altered select agent pathogens. They are adapting the toxinc-antitoxin system to enable gene replacement in select agent pathogens since the NIH restrictions introducing antibiotic resistance into select agent pathogens have hindered research with select agent pathogens.

  19. DANN: a deep learning approach for annotating the pathogenicity of genetic variants.

    Science.gov (United States)

    Quang, Daniel; Chen, Yifei; Xie, Xiaohui

    2015-03-01

    Annotating genetic variants, especially non-coding variants, for the purpose of identifying pathogenic variants remains a challenge. Combined annotation-dependent depletion (CADD) is an algorithm designed to annotate both coding and non-coding variants, and has been shown to outperform other annotation algorithms. CADD trains a linear kernel support vector machine (SVM) to differentiate evolutionarily derived, likely benign, alleles from simulated, likely deleterious, variants. However, SVMs cannot capture non-linear relationships among the features, which can limit performance. To address this issue, we have developed DANN. DANN uses the same feature set and training data as CADD to train a deep neural network (DNN). DNNs can capture non-linear relationships among features and are better suited than SVMs for problems with a large number of samples and features. We exploit Compute Unified Device Architecture-compatible graphics processing units and deep learning techniques such as dropout and momentum training to accelerate the DNN training. DANN achieves about a 19% relative reduction in the error rate and about a 14% relative increase in the area under the curve (AUC) metric over CADD's SVM methodology. All data and source code are available at https://cbcl.ics.uci.edu/public_data/DANN/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome.

    Directory of Open Access Journals (Sweden)

    Tim van Opijnen

    2016-09-01

    Full Text Available The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic's mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable.

  1. Molecular genetic analysis of the pathogenicity of the potato cyst nematode Globodera rostochiensis

    NARCIS (Netherlands)

    Qin, L.

    2001-01-01

    A new strategy to identify pathogenicity factors from the potato cyst nematode Globodera rostochiensis is developed. cDNA-AFLP technology and in situ hybridization allowed us to efficiently select putative pathogenicity factors among thousands of

  2. Highly Pathogenic H5N1 Avian Influenza Viruses Exhibit Few Barriers to Gene Flow in Vietnam

    Science.gov (United States)

    Carrel, Margaret; Wan, Xiu-Feng; Nguyen, Tung; Emch, Michael

    2013-01-01

    Locating areas where genetic change is inhibited can illuminate underlying processes that drive evolution of pathogens. The persistence of highly pathogenic H5N1 avian influenza in Vietnam since 2003, and the continuous molecular evolution of Vietnamese avian influenza viruses, indicates that local environmental factors are supportive not only of incidence but also of viral adaptation. This article explores whether gene flow is constant across Vietnam, or whether there exist boundary areas where gene flow exhibits discontinuity. Using a dataset of 125 highly pathogenic H5N1 avian influenza viruses, principal components analysis and wombling analysis are used to indicate the location, magnitude, and statistical significance of genetic boundaries. Results show that a small number of geographically minor boundaries to gene flow in highly pathogenic H5N1 avian influenza viruses exist in Vietnam, but that overall there is little division in genetic exchange. This suggests that differences in genetic characteristics of viruses from one region to another are not the result of barriers to H5N1 viral exchange in Vietnam, and that H5N1 avian influenza is able to spread relatively unimpeded across the country. PMID:22350419

  3. Colonization history, host distribution, anthropogenic influence and landscape features shape populations of white pine blister rust, an invasive alien tree pathogen.

    Directory of Open Access Journals (Sweden)

    Simren Brar

    Full Text Available White pine blister rust is caused by the fungal pathogen Cronartium ribicola J.C. Fisch (Basidiomycota, Pucciniales. This invasive alien pathogen was introduced into North America at the beginning of the 20th century on pine seedlings imported from Europe and has caused serious economic and ecological impacts. In this study, we applied a population and landscape genetics approach to understand the patterns of introduction and colonization as well as population structure and migration of C. ribicola. We characterized 1,292 samples of C. ribicola from 66 geographic locations in North America using single nucleotide polymorphisms (SNPs and evaluated the effect of landscape features, host distribution, and colonization history on the structure of these pathogen populations. We identified eastern and western genetic populations in North America that are strongly differentiated. Genetic diversity is two to five times higher in eastern populations than in western ones, which can be explained by the repeated accidental introductions of the pathogen into northeastern North America compared with a single documented introduction into western North America. These distinct genetic populations are maintained by a barrier to gene flow that corresponds to a region where host connectivity is interrupted. Furthermore, additional cryptic spatial differentiation was identified in western populations. This differentiation corresponds to landscape features, such as mountain ranges, and also to host connectivity. We also detected genetic differentiation between the pathogen populations in natural stands and plantations, an indication that anthropogenic movement of this pathogen still takes place. These results highlight the importance of monitoring this invasive alien tree pathogen to prevent admixture of eastern and western populations where different pathogen races occur.

  4. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/Botrytis Pathosystem.

    Science.gov (United States)

    Zhang, Wei; Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Eshbaugh, Robert; Chen, Fang; Atwell, Susana; Kliebenstein, Daniel J

    2017-11-01

    To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis thaliana - Botrytis cinerea pathosystem to test how the host's defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1 , individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in B. cinerea This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen. © 2017 American Society of Plant Biologists. All rights reserved.

  5. Pathogenic microbial ancient DNA: a problem or an opportunity?

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2006-01-01

    cloning. Yet these studies have used mobile insertion elements (e.g. IS 6110 in tuberculosis) or conserved loci (e.g. 16S) to detect the presence of pathogens, and very similar or identical sequences have been reported from environmental bacteria (Gilbert et al. 2004). For example, Rollo & Marota (1999......We agree with Donoghue & Spigelman (2005) that, although pathogen studies hold great potential, any discussion requires a critical assessment of the results to date. However, we did note, as did Pääbo et al. (2004), that the field of ancient pathogen DNA still lacks a series of well......-controlled and rigorous studies that address technical issues and reliability criteria. This is unfortunate, as the rapid evolutionary rate of many pathogens offers a unique means to establish the authenticity of ancient pathogen sequences-since they should clearly be ancestral to modern genetic diversity (e.g. Reid et...

  6. Feasible introgression of an anti-pathogen transgene into an urban mosquito population without using gene-drive.

    Directory of Open Access Journals (Sweden)

    Kenichi W Okamoto

    2014-07-01

    Full Text Available Introgressing anti-pathogen constructs into wild vector populations could reduce disease transmission. It is generally assumed that such introgression would require linking an anti-pathogen gene with a selfish genetic element or similar technologies. Yet none of the proposed transgenic anti-pathogen gene-drive mechanisms are likely to be implemented as public health measures in the near future. Thus, much attention now focuses instead on transgenic strategies aimed at mosquito population suppression, an approach generally perceived to be practical. By contrast, aiming to replace vector competent mosquito populations with vector incompetent populations by releasing mosquitoes carrying a single anti-pathogen gene without a gene-drive mechanism is widely considered impractical.Here we use Skeeter Buster, a previously published stochastic, spatially explicit model of Aedes aegypti to investigate whether a number of approaches for releasing mosquitoes with only an anti-pathogen construct would be efficient and effective in the tropical city of Iquitos, Peru. To assess the performance of such releases using realistic release numbers, we compare the transient and long-term effects of this strategy with two other genetic control strategies that have been developed in Ae. aegypti: release of a strain with female-specific lethality, and a strain with both female-specific lethality and an anti-pathogen gene. We find that releasing mosquitoes carrying only an anti-pathogen construct can substantially decrease vector competence of a natural population, even at release ratios well below that required for the two currently feasible alternatives that rely on population reduction. Finally, although current genetic control strategies based on population reduction are compromised by immigration of wild-type mosquitoes, releasing mosquitoes carrying only an anti-pathogen gene is considerably more robust to such immigration.Contrary to the widely held view that

  7. Genetic Diversity of the Leptospiral Immunoglobulin-like (Lig) Genes in Pathogenic Leptospira spp.

    Science.gov (United States)

    Recent serologic, immunoprotection, and pathogenesis studies implicate the Lig proteins as key virulence determinants in interactions of leptospiral pathogens with the mammalian host. We examined the sequence variation and recombination patterns of ligA, ligB, and ligC among 10 pathogenic strains. M...

  8. The arable plant ecosystem as battleground for emergence of human pathogens

    Directory of Open Access Journals (Sweden)

    Leo eVan Overbeek

    2014-03-01

    Full Text Available Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh vegetables, sprouts and occasionally fruits made clear that these pathogens are not only transmitted to humans via the ‘classical’ routes of meat, eggs and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure, water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.

  9. Origin, Migration Routes and Worldwide Population Genetic Structure of the Wheat Yellow Rust Pathogen Puccinia striiformis f.sp. tritici

    Science.gov (United States)

    Ali, Sajid; Gladieux, Pierre; Leconte, Marc; Gautier, Angélique; Justesen, Annemarie F.; Hovmøller, Mogens S.; Enjalbert, Jérôme; de Vallavieille-Pope, Claude

    2014-01-01

    Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of

  10. Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux.

    Directory of Open Access Journals (Sweden)

    Nicola K Petty

    2011-04-01

    Full Text Available Citrobacter rodentium is a natural mouse pathogen that causes attaching and effacing (A/E lesions. It shares a common virulence strategy with the clinically significant human A/E pathogens enteropathogenic E. coli (EPEC and enterohaemorrhagic E. coli (EHEC and is widely used to model this route of pathogenesis. We previously reported the complete genome sequence of C. rodentium ICC168, where we found that the genome displayed many characteristics of a newly evolved pathogen. In this study, through PFGE, sequencing of isolates showing variation, whole genome transcriptome analysis and examination of the mobile genetic elements, we found that, consistent with our previous hypothesis, the genome of C. rodentium is unstable as a result of repeat-mediated, large-scale genome recombination and because of active transposition of mobile genetic elements such as the prophages. We sequenced an additional C. rodentium strain, EX-33, to reveal that the reference strain ICC168 is representative of the species and that most of the inactivating mutations were common to both isolates and likely to have occurred early on in the evolution of this pathogen. We draw parallels with the evolution of other bacterial pathogens and conclude that C. rodentium is a recently evolved pathogen that may have emerged alongside the development of inbred mice as a model for human disease.

  11. Functions and origin of plasmids in Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees.

    Science.gov (United States)

    Llop, Pablo; Barbé, Silvia; López, María M

    The genus Erwinia includes plant-associated pathogenic and non-pathogenic species. Among them, all species pathogenic to pome fruit trees ( E. amylovora, E. pyrifoliae, E. piriflorinigrans, Erwinia sp. from Japan) cause similar symptoms, but differ in their degrees of aggressiveness, i.e. in symptoms, host range or both. The presence of plasmids of similar size, in the range of 30 kb, is a common characteristic that they possess. Besides, they share some genetic content with high homology in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes. Knowledge of the content of these plasmids and comparative genetic analyses may provide interesting new clues to understanding the origin and evolution of these pathogens and the level of symptoms they produce. Furthermore, genetic similarities observed among some of the plasmids (and genomes) from the above indicated pathogenic species and E. tasmaniensis or E. billingiae , which are epiphytic on the same hosts, may reveal associations that could expose the mechanisms of origin of pathogens. A summary of the current information on their plasmids and the relationships among them is presented here.

  12. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security.

    Science.gov (United States)

    McDonald, Bruce A; Stukenbrock, Eva H

    2016-12-05

    Agricultural ecosystems are composed of genetically depauperate populations of crop plants grown at a high density and over large spatial scales, with the regional composition of crop species changing little from year to year. These environments are highly conducive for the emergence and dissemination of pathogens. The uniform host populations facilitate the specialization of pathogens to particular crop cultivars and allow the build-up of large population sizes. Population genetic and genomic studies have shed light on the evolutionary mechanisms underlying speciation processes, adaptive evolution and long-distance dispersal of highly damaging pathogens in agro-ecosystems. These studies document the speed with which pathogens evolve to overcome crop resistance genes and pesticides. They also show that crop pathogens can be disseminated very quickly across and among continents through human activities. In this review, we discuss how the peculiar architecture of agro-ecosystems facilitates pathogen emergence, evolution and dispersal. We present four example pathosystems that illustrate both pathogen specialization and pathogen speciation, including different time frames for emergence and different mechanisms underlying the emergence process. Lastly, we argue for a re-design of agro-ecosystems that embraces the concept of dynamic diversity to improve their resilience to pathogens. This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  13. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This noticeable hot spot regions hold higher frequency (50%) of pathogenic / likely pathogenic genetic variants constituting single nucleotide variants than large deletion and insertion that actually represents only 41.08% of coding sequence ofPKD2. Statistically significant association for IVS3-22AA genotype was observed ...

  14. A replicative plasmid vector allows efficient complementation of pathogenic Leptospira strains.

    Science.gov (United States)

    Pappas, Christopher J; Benaroudj, Nadia; Picardeau, Mathieu

    2015-05-01

    Leptospirosis, an emerging zoonotic disease, remains poorly understood because of a lack of genetic manipulation tools available for pathogenic leptospires. Current genetic manipulation techniques include insertion of DNA by random transposon mutagenesis and homologous recombination via suicide vectors. This study describes the construction of a shuttle vector, pMaORI, that replicates within saprophytic, intermediate, and pathogenic leptospires. The shuttle vector was constructed by the insertion of a 2.9-kb DNA segment including the parA, parB, and rep genes into pMAT, a plasmid that cannot replicate in Leptospira spp. and contains a backbone consisting of an aadA cassette, ori R6K, and oriT RK2/RP4. The inserted DNA segment was isolated from a 52-kb region within Leptospira mayottensis strain 200901116 that is not found in the closely related strain L. mayottensis 200901122. Because of the size of this region and the presence of bacteriophage-like proteins, it is possible that this region is a result of a phage-related genomic island. The stability of the pMaORI plasmid within pathogenic strains was tested by passaging cultures 10 times without selection and confirming the presence of pMaORI. Concordantly, we report the use of trans complementation in the pathogen Leptospira interrogans. Transformation of a pMaORI vector carrying a functional copy of the perR gene in a null mutant background restores the expression of PerR and susceptibility to hydrogen peroxide comparable to that of wild-type cells. In conclusion, we demonstrate the replication of a stable plasmid vector in a large panel of Leptospira strains, including pathogens. The shuttle vector described will expand our ability to perform genetic manipulation of Leptospira spp. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Antimicrobial-Resistance Genetic Markers in Potentially Pathogenic Gram Positive Cocci Isolated from Brazilian Soft Cheese.

    Science.gov (United States)

    Resende, Juliana Alves; Fontes, Cláudia Oliveira; Ferreira-Machado, Alessandra Barbosa; Nascimento, Thiago César; Silva, Vânia Lúcia; Diniz, Cláudio Galuppo

    2018-02-01

    Although most Brazilian dairy products meet high technological standards, there are quality issues regarding milk production, which may reduce the final product quality. Several microbial species may contaminate milk during manufacture and handling. If antimicrobial usage remains uncontrolled in dairy cattle, the horizontal transfer of antimicrobial resistance genes in foodstuffs may be of particular concern for both food producers and dairy industry. This study focused on the evaluation of putative Gram positive cocci in Minas cheese and of antimicrobial and biocide resistance genes among the isolated bacteria. Representative samples of 7 different industrially trademarked Minas cheeses (n = 35) were processed for selective culture and isolation of Gram positive cocci. All isolated bacteria were identified by DNA sequencing of the 16S rRNA gene. Antimicrobial resistance genes were screened by PCR. Overall, 208 strains were isolated and identified as follows: Enterococcus faecalis (47.6%), Macrococcus caseolyticus (18.3%), Enterococcus faecium (11.5%), Enterococcus caseliflavus (7.7%), Staphylococcus haemolyticus (7.2%), Staphylococcus aureus (4.3%), Staphylococcus epidermidis (2.9%), and Enterococcus hirae (0.5%). The genetic markers mecA (78.0%) and smr (71.4%) were the most prevalent, but others were also detected, such as blaZ (65.2%), msrA (60.9%), msrB (46.6%), linA (54.7%), and aacA-aphD (47.6%). The occurrence of opportunist pathogenic bacteria harboring antimicrobial resistance markers in the cheese samples are of special concern, since these bacteria are not considered harmful contaminating agents according to the Brazilian sanitary regulations. However, they are potentially pathogenic bacteria and the cheese may be considered a reservoir for antimicrobial resistance genes available for horizontal transfer through the food chain, manufacturing personnel and consumers. © 2018 Institute of Food Technologists®.

  16. Comparative Genomics of Smut Pathogens: Insights From Orphans and Positively Selected Genes Into Host Specialization

    NARCIS (Netherlands)

    Benevenuto, J.; Texeira-Silva, N.S.; Kuramae, E.E.; Croll, D.; Vitorello, C.B.M.

    2018-01-01

    Host specialization is a key evolutionary process for the diversification and emergence of new pathogens. However, the molecular determinants of host range are poorly understood. Smut fungi are biotrophic pathogens that have distinct and narrow host ranges based on largely unknown genetic

  17. Expanding the Genetic Toolbox for Leptospira Species by Generation of Fluorescent Bacteria ▿

    OpenAIRE

    Aviat, Florence; Slamti, Leyla; Cerqueira, Gustavo M.; Lourdault, Kristel; Picardeau, Mathieu

    2010-01-01

    Our knowledge of the genetics and molecular basis of the pathogenesis associated with Leptospira, in comparison to those of other bacterial species, is very limited. An improved understanding of pathogenic mechanisms requires reliable genetic tools for functional genetic analysis. Here, we report the expression of gfp and mRFP1 genes under the control of constitutive spirochetal promoters in both saprophytic and pathogenic Leptospira strains. We were able to reliably measure the fluorescence ...

  18. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2016-01-01

    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  19. Type IV pili in Francisella – A virulence trait in an intracellular pathogen

    Directory of Open Access Journals (Sweden)

    Emelie eNäslund Salomonsson

    2011-02-01

    Full Text Available Francisella tularensis is a highly virulent intracellular human pathogen that is capable of rapid proliferation in the infected host. Mutants affected in intracellular survival and growth are highly attenuated which highlights the importance of the intracellular phase of the infection. Genomic analysis has revealed that Francisella encodes all genes required for expression of functional type IV pili (Tfp, and in this focused review we summarise recent findings regarding this system in the pathogenesis of tularemia. Tfp are dynamic adhesive structures that have been identified as major virulence determinants in several human pathogens, but it is not obvious what role these structures could have in an intracellular pathogen like Francisella. In the human pathogenic strains, genes required for secretion and assembly of Tfp and one pilin, PilA, have shown to be required for full virulence. Importantly, specific genetic differences have been identified between the different Francisella subspecies where in the most pathogenic type A variants all genes are intact while several Tfp genes are pseudogenes in the less pathogenic type B strains. This suggests that there has been a selection for expression of Tfp with different properties in the different subspecies. There is also a possibility that the genetic differences reflect adaption to different environmental niches of the subspecies and plays a role in transmission of tularemia. This is also in line with recent findings where Tfp pilins are found to be glycosylated which could reflect a role for Tfp in the environment to promote survival and transmission. We are still far from understanding the role of Tfp in virulence and transmission of tularemia, but with the genomic information and genetic tools available we are in a good position to address these issues in the future.

  20. Genome sequencing and comparative genomics analysis revealed pathogenic potential in Penicillium capsulatum as a novel fungal pathogen belonging to Eurotiales

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2016-10-01

    Full Text Available Penicillium capsulatum is a rare Penicillium species used in paper manufacturing, but recently it has been reported to cause invasive infection. To research the pathogenicity of the clinical Penicillium strain, we sequenced the genomes and transcriptome of the clinical and environmental strains of P. capsulatum. Comparative analyses of these two P. capsulatum strains and close related strains belonging to Eurotiales were performed. The assembled genome sizes of P. capsulatum are approximately 34.4 Mbp in length and encode 11,080 predicted genes. The different isolates of P. capsulatum are highly similar, with the exception of several unique genes, INDELs or SNP in the genes coding for glycosyl hydrolases, amino acid transporters and circumsporozoite protein. A phylogenomic analysis was performed based on the whole genome data of 38 strains belonging to Eurotiales. By comparing the whole genome sequences and the virulence-related genes from 20 important related species, including fungal pathogens and non-human pathogens belonging to Eurotiales, we found meaningful pathogenicity characteristics between P. capsulatum and its closely related species. Our research indicated that P. capsulatum may be a neglected opportunistic pathogen. This study is beneficial for mycologists, geneticists and epidemiologists to achieve a deeper understanding of the genetic basis of the role of P. capsulatum as a newly reported fungal pathogen.

  1. Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions

    Science.gov (United States)

    2016-12-01

    Award Number: W81XWH-11-2-0175 TITLE: Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions PRINCIPAL...Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions 5b. GRANT NUMBER W81XWH-11-2-0175 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...genetic diversity in the population, in hospitalized children with severe dengue illness and cluster investigation of their neighborhoods, and by using

  2. Genomic Analysis of Pathogenicity Determinants in Mycobacterium kansasii Type I

    KAUST Repository

    Guan, Qingtian

    2016-05-01

    Mycobacteria, a genus within Actinobacteria Phylum, are well known for two pathogens that cause human diseases: leprosy and tuberculosis. Other than the obligate human mycobacteria, there is a group of bacteria that are present in the environment and occasionally cause diseases in immunocompromised persons: the non-tuberculosis mycobacteria (NTM). Mycobacterium kansasii, which was first discovered in the Kansas state, is the main etiologic agent responsible for lung infections caused by NTM and raises attention because of its co-infection with human immunodeficiency virus (HIV). Five subspecies of M. kansasii (Type I-V) were described and only M. kansasii Type I is pathogenic to humans. M. kansasii is a Gram-positive bacteria that has a unique cell wall and secretion system, which is essential for its pathogenicity. We undertook a comparative genomics and transcriptomic approach to identify components of M. kansasii Type I pathogenicity. Our previous study showed that espA (ESX-1 essential protein) operon, a major component of the secretion system, is exclusively present in M. kansasii Type I. The purpose of this study was to test the functional role of the espA operon in pathogenicity and identify other components that may also be involved in pathogenicity. This study provides a new molecular diagnostic method for M. kansasii Type I infection using PCR (Polymerase Chain Reaction) technique to target the espAoperon. With detailed manual curation of the comparative genomics datasets, we found several genes exclusively present in M. kansasii Type I including ppsA/ppsC and whiB6, that we believe are involved, or have an effect on ESX-mediated secretion system. We have also highlighted, in our study, the differences in genetic components coding for the cell membrane composition between the five subspecies of M. kansasii. These results shed light on genetic components that are responsible for pathogenicity determinants in Type I M. kansasii and may help to design better

  3. Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape

    Science.gov (United States)

    Lee, Justin S.; Ruell, Emily W.; Boydston, Erin E.; Lyren, Lisa M.; Alonso, Robert S.; Troyer, Jennifer L.; Crooks, Kevin R.; VandeWoude, Sue

    2012-01-01

    Urbanization can result in the fragmentation of once contiguous natural landscapes into a patchy habitat interspersed within a growing urban matrix. Animals living in fragmented landscapes often have reduced movement among habitat patches because of avoidance of intervening human development, which potentially leads to both reduced gene flow and pathogen transmission between patches. Mammalian carnivores with large home ranges, such as bobcats (Lynx rufus), may be particularly sensitive to habitat fragmentation. We performed genetic analyses on bobcats and their directly transmitted viral pathogen, feline immunodeficiency virus (FIV), to investigate the effects of urbanization on bobcat movement. We predicted that urban development, including major freeways, would limit bobcat movement and result in genetically structured host and pathogen populations. We analysed molecular markers from 106 bobcats and 19 FIV isolates from seropositive animals in urban southern California. Our findings indicate that reduced gene flow between two primary habitat patches has resulted in genetically distinct bobcat subpopulations separated by urban development including a major highway. However, the distribution of genetic diversity among FIV isolates determined through phylogenetic analyses indicates that pathogen genotypes are less spatially structured--exhibiting a more even distribution between habitat fragments. We conclude that the types of movement and contact sufficient for disease transmission occur with enough frequency to preclude structuring among the viral population, but that the bobcat population is structured owing to low levels of effective bobcat migration resulting in gene flow. We illustrate the utility in using multiple molecular markers that differentially detect movement and gene flow between subpopulations when assessing connectivity.

  4. Evolutionary genetics of highly pathogenic H5N1 avian influenza viruses isolated from whooper swans in northern Japan in 2008.

    Science.gov (United States)

    Usui, Tatsufumi; Yamaguchi, Tsuyoshi; Ito, Hiroshi; Ozaki, Hiroichi; Murase, Toshiyuki; Ito, Toshihiro

    2009-12-01

    In April and May 2008, highly pathogenic avian influenza viruses subtype H5N1 were isolated from dead or moribund whooper swans in Aomori, Akita and Hokkaido prefectures in northern Japan. To trace the genetic lineage of the isolates, the nucleotide sequences of all eight genes were determined and phylogenetically analyzed. The Japanese strains were nearly identical to chicken viruses isolated in Russia in April 2008 and closely related to viruses isolated from dead wild birds in Hong Kong in 2007-2008. Their HA genes clustered in clade 2.3.2. On the other hand, NA and the other internal genes were closely related to those of clade 2.3.4 viruses (genotype V) whose NP genes originated from an HA clade 2.3.2 virus. In conclusion, the H5N1 viruses isolated in Japan, Russia and Hong Kong were derived from a common ancestor virus belonging to genotype V that was generated from genetic reassortment events between viruses of HA clades 2.3.2 and 2.3.4.

  5. Forest pathogens and diseases under changing climate-A review

    International Nuclear Information System (INIS)

    Raza, M. M.; Khan, M. A.; Aslam, H. M. U.; Riaz, K.

    2015-01-01

    Changing climate threatens tree health by affecting the likelihood, frequency of occurrence, types and severity of forest diseases caused by diverse pests, resultantly altering the forest ecosystems. The present review covers the relationship between climate and diverse cases of forest diseases and potential shocks of climate change on pathogens and diseases. Biotic diseases, cankers, decays, declines, foliar diseases, root diseases and stem rust of pine have been reviewed with some illustrations of potential disease effects with predicted changing climate. The impact of changing climate on host, pathogen, and their interaction will have frequent and mostly unsympathetic outcomes to forest ecosystems. By employing the proactive and modern scientific management strategies like monitoring, modeling prediction, risk rating, planning, genetic diversity and facilitated migration, genetic protection and breeding for disease resistance and relating results to forest policy, planning as well as decision making, the suspicions innate to climate change effects can be minimized. (author)

  6. Pathogenicity gene variations within the order Entomophthorales

    DEFF Research Database (Denmark)

    Grell, Morten Nedergaard; Jensen, Annette Bruun; Lange, Lene

    Fungi within the order Entomophthorales (subphylum Entomophthoromycotina) are obligate biotrophic pathogens of arthropods with a remarkable narrow host range. Infection takes place through the cuticle when conidia hit a susceptible host, facilitated by enzymatic and mechanical mechanisms. In the ...... pathogenicity genes within genera Entomophthora and Pandora, using fungal genomic DNA originating from field-collected, infected insect host species of dipteran (flies, mosquitoes) or hemipteran (aphid) origin.......Fungi within the order Entomophthorales (subphylum Entomophthoromycotina) are obligate biotrophic pathogens of arthropods with a remarkable narrow host range. Infection takes place through the cuticle when conidia hit a susceptible host, facilitated by enzymatic and mechanical mechanisms......, conidia are produced and discharged when humidity gets high—usually during night. In an earlier secretome study of field-collected grain aphids (Sitobion avenae) infected with entomophthoralean fungi, a number of pathogenesis-related, secreted enzymes were discovered (Fungal Genetics and Biology 2011, vol...

  7. mirVAFC: A Web Server for Prioritizations of Pathogenic Sequence Variants from Exome Sequencing Data via Classifications.

    Science.gov (United States)

    Li, Zhongshan; Liu, Zhenwei; Jiang, Yi; Chen, Denghui; Ran, Xia; Sun, Zhong Sheng; Wu, Jinyu

    2017-01-01

    Exome sequencing has been widely used to identify the genetic variants underlying human genetic disorders for clinical diagnoses, but the identification of pathogenic sequence variants among the huge amounts of benign ones is complicated and challenging. Here, we describe a new Web server named mirVAFC for pathogenic sequence variants prioritizations from clinical exome sequencing (CES) variant data of single individual or family. The mirVAFC is able to comprehensively annotate sequence variants, filter out most irrelevant variants using custom criteria, classify variants into different categories as for estimated pathogenicity, and lastly provide pathogenic variants prioritizations based on classifications and mutation effects. Case studies using different types of datasets for different diseases from publication and our in-house data have revealed that mirVAFC can efficiently identify the right pathogenic candidates as in original work in each case. Overall, the Web server mirVAFC is specifically developed for pathogenic sequence variant identifications from family-based CES variants using classification-based prioritizations. The mirVAFC Web server is freely accessible at https://www.wzgenomics.cn/mirVAFC/. © 2016 WILEY PERIODICALS, INC.

  8. Fecundity compensation and tolerance to a sterilizing pathogen in Daphnia.

    Science.gov (United States)

    Vale, P F; Little, T J

    2012-09-01

    Hosts are armed with several lines of defence in the battle against parasites: they may prevent the establishment of infection, reduce parasite growth once infected or persevere through mechanisms that reduce the damage caused by infection, called tolerance. Studies on tolerance in animals have focused on mortality, and sterility tolerance has not been investigated experimentally. Here, we tested for genetic variation in the multiple steps of defence when the invertebrate Daphnia magna is infected with the sterilizing bacterial pathogen Pasteuria ramosa: anti-infection resistance, anti-growth resistance and the ability to tolerate sterilization once infected. When exposed to nine doses of a genetically diverse pathogen inoculum, six host genotypes varied in their average susceptibility to infection and in their parasite loads once infected. How host fecundity changed with increasing parasite loads did not vary between genotypes, indicating that there was no genetic variation for this measure of fecundity tolerance. However, genotypes differed in their level of fecundity compensation under infection, and we discuss how, by increasing host fitness without targeting parasite densities, fecundity compensation is consistent with the functional definition of tolerance. Such infection-induced life-history shifts are not traditionally considered to be part of the immune response, but may crucially reduce harm (in terms of fitness loss) caused by disease, and are a distinct source of selection on pathogens. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  9. Magnetogenetics: Remote Control of Cellular Signaling with Magnetic Fields

    Science.gov (United States)

    Sauer, Jeremy P.

    Means for temporally regulating gene expression and cellular activity are invaluable for elucidating the underlying physiological processes and have therapeutic implications. Here we report the development of a system for remote regulation of gene expression by low frequency radiowaves (RF) or by a static magnetic field. We accomplished this by first adding iron oxide nanoparticles - either exogenously or as genetically encoded ferritin/ferric oxyhydroxide particle. These particles have been designed with affinity to the plasma membrane ion channel Transient Receptor Potential Vanilloid 1 (TRPV1) by a conjugated antibody. Application of a magnetic field stimulates the particle to gate the ion channel and this, in turn, initiates calcium-dependent transgene expression. We first demonstrated in vitro that TRPV1 can be actuated to cause calcium flux into the cell by directly applying a localized magnetic field. In mice expressing these genetically encoded components, application of external magnetic field caused remote stimulation of insulin transgene expression and significantly lowered blood glucose. In addition, we are investigating mechanisms by which iron oxide nanoparticles can absorb RF, and transduce this energy to cause channel opening. This robust, repeatable method for remote cellular regulation in vivo may ultimately have applications in basic science, as well as in technology and therapeutics.

  10. Estimation of genetic structure of a Mycosphaerella musicola population using inter-simple sequence repeat markers.

    Science.gov (United States)

    Peixouto, Y S; Dórea Bragança, C A; Andrade, W B; Ferreira, C F; Haddad, F; Oliveira, S A S; Darosci Brito, F S; Miller, R N G; Amorim, E P

    2015-07-17

    Among the diseases affecting banana (Musa sp), yellow Sigatoka, caused by the fungal pathogen Mycosphaerella musicola Leach, is considered one of the most important in Brazil, causing losses throughout the year. Understanding the genetic structure of pathogen populations will provide insight into the life history of pathogens, including the evolutionary processes occurring in agrosystems. Tools for estimating the possible emergence of pathogen variants with altered pathogenicity, virulence, or aggressiveness, as well as resistance to systemic fungicides, can also be developed from such data. The objective of this study was to analyze the genetic diversity and population genetics of M. musicola in the main banana-producing regions in Brazil. A total of 83 isolates collected from different banana cultivars in the Brazilian states of Bahia, Rio Grande do Norte, and Minas Gerais were evaluated using inter-simple sequence repeat markers. High variability was detected between the isolates, and 85.5% of the haplotypes were singletons in the populations. The highest source of genetic diversity (97.22%) was attributed to variations within populations. Bayesian cluster analysis revealed the presence of 2 probable ancestral groups, however, showed no relationship to population structure in terms of collection site, state of origin, or cultivar. Similarly, we detected noevidence of genetic recombination between individuals within different states, indicating that asexual cycles play a major role in M. musicola reproduction and that long-distance dispersal of the pathogen is the main factor contributing to the lack of population structure in the fungus.

  11. In Vivo Differences in the Virulence, Pathogenicity, and Induced Protective Immunity of wboA Mutants from Genetically Different Parent Brucella spp.

    Science.gov (United States)

    Wang, Zhen; Niu, Jianrui; Wang, Shuangshan

    2013-01-01

    To explore the effects of the genetic background on the characteristics of wboA gene deletion rough mutants generated from different parent Brucella sp. strains, we constructed the rough-mutant strains Brucella melitensis 16 M-MB6, B. abortus 2308-SB6, B. abortus S19-RB6, and B. melitensis NI-NB6 and evaluated their survival, pathogenicity, and induced protective immunity in mice and sheep. In mice, the survival times of the four mutants were very different in the virulence assay, from less than 6 weeks for B. abortus S19-RB6 to 11 weeks for B. abortus 2308-SB6 and B. melitensis NI-NB6. However, B. abortus S19-RB6 and B. melitensis 16 M-MB6, with a shorter survival time in mice, offered better protection against challenges with B. abortus 2308 in protection tests than B. abortus 2308-SB6 and B. melitensis NI-NB6. It seems that the induced protective immunity of each mutant might not be associated with its survival time in vivo. In the cross-protection assay, both B. melitensis 16 M-MB6 and B. abortus S19-RB6 induced greater protection against homologous challenges than heterologous challenges. When pregnant sheep were inoculated with B. abortus S19-RB6 and B. melitensis 16 M-MB6, B. abortus S19-RB6 did not induce abortion, whereas B. melitensis 16 M-MB6 did. These results demonstrated the differences in virulence, pathogenicity, and protective immunity in vivo in the wboA deletion mutants from genetically different parent Brucella spp. and also indicated that future rough vaccine strain development could be promising if suitable parent Brucella strains and/or genes were selected. PMID:23239800

  12. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    Science.gov (United States)

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  13. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt.

    Science.gov (United States)

    Kandeil, Ahmed; Kayed, Ahmed; Moatasim, Yassmin; Webby, Richard J; McKenzie, Pamela P; Kayali, Ghazi; Ali, Mohamed A

    2017-07-01

    A newly emerged H5N8 influenza virus was isolated from green-winged teal in Egypt during December 2016. In this study, we provide a detailed characterization of full genomes of Egyptian H5N8 viruses and some virological features. Genetic analysis demonstrated that the Egyptian H5N8 viruses are highly pathogenic avian influenza viruses. Phylogenetic analysis revealed that the genome of the Egyptian H5N8 viruses was related to recently characterized reassortant H5N8 viruses of clade 2.3.4.4 isolated from different Eurasian countries. Multiple peculiar mutations were characterized in the Egyptian H5N8 viruses, which probably permits transmission and virulence of these viruses in mammals. The Egyptian H5N8 viruses preferentially bound to avian-like receptors rather than human-like receptors. Also, the Egyptian H5N8 viruses were fully sensitive to amantadine and neuraminidase inhibitors. Chicken sera raised against commercial inactivated avian influenza-H5 vaccines showed no or very low reactivity with the currently characterized H5N8 viruses in agreement with the genetic dissimilarity. Surveillance of avian influenza in waterfowl provides early warning of specific threats to poultry and human health and hence should be continued.

  14. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    Science.gov (United States)

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. © FASEB.

  15. [Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].

    Science.gov (United States)

    Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V

    2014-01-01

    Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.

  16. Expansive phenotypic landscape of Botrytis cinerea shows differential contribution of genetic diversity and plasticity

    DEFF Research Database (Denmark)

    Corwin, Jason A; Subedy, Anushriya; Eshbaugh, Robert

    2016-01-01

    and genetic diversity for virulence-associated phenotypes in a generalist plant pathogen, we grew a population of 15 isolates of Botrytis cinerea from throughout the world, under a variety of in vitro and in planta conditions. Under in planta conditions, phenotypic differences between the isolates were......The modern evolutionary synthesis suggests that both environmental variation and genetic diversity are critical determinants of pathogen success. However, the relative contribution of these two sources of variation is not routinely measured. To estimate the relative contribution of plasticity...... determined by the combination of genotypic variation within the pathogen and environmental variation. In contrast, phenotypic differences between the isolates under in vitro conditions were predominantly determined by genetic variation in the pathogen. Using a correlation network approach, we link...

  17. A Systematic Bayesian Integration of Epidemiological and Genetic Data

    Science.gov (United States)

    Lau, Max S. Y.; Marion, Glenn; Streftaris, George; Gibson, Gavin

    2015-01-01

    Genetic sequence data on pathogens have great potential to inform inference of their transmission dynamics ultimately leading to better disease control. Where genetic change and disease transmission occur on comparable timescales additional information can be inferred via the joint analysis of such genetic sequence data and epidemiological observations based on clinical symptoms and diagnostic tests. Although recently introduced approaches represent substantial progress, for computational reasons they approximate genuine joint inference of disease dynamics and genetic change in the pathogen population, capturing partially the joint epidemiological-evolutionary dynamics. Improved methods are needed to fully integrate such genetic data with epidemiological observations, for achieving a more robust inference of the transmission tree and other key epidemiological parameters such as latent periods. Here, building on current literature, a novel Bayesian framework is proposed that infers simultaneously and explicitly the transmission tree and unobserved transmitted pathogen sequences. Our framework facilitates the use of realistic likelihood functions and enables systematic and genuine joint inference of the epidemiological-evolutionary process from partially observed outbreaks. Using simulated data it is shown that this approach is able to infer accurately joint epidemiological-evolutionary dynamics, even when pathogen sequences and epidemiological data are incomplete, and when sequences are available for only a fraction of exposures. These results also characterise and quantify the value of incomplete and partial sequence data, which has important implications for sampling design, and demonstrate the abilities of the introduced method to identify multiple clusters within an outbreak. The framework is used to analyse an outbreak of foot-and-mouth disease in the UK, enhancing current understanding of its transmission dynamics and evolutionary process. PMID:26599399

  18. Determinants of the Sympatric Host-Pathogen Relationship in Tuberculosis

    Science.gov (United States)

    David, Susana; Mateus, A. R. A.; Duarte, Elsa L.; Albuquerque, José; Portugal, Clara; Sancho, Luísa; Lavinha, João; Gonçalves, Guilherme

    2015-01-01

    Major contributions from pathogen genome analysis and host genetics have equated the possibility of Mycobacterium tuberculosis co-evolution with its human host leading to more stable sympatric host–pathogen relationships. However, the attribution to either sympatric or allopatric categories depends on the resolution or grain of genotypic characterization. We explored the influence on the sympatric host-pathogen relationship of clinical (HIV infection and multidrug-resistant tuberculosis [MDRTB]) and demographic (gender and age) factors in regards to the genotypic grain by using spacer oligonucleotide typing (spoligotyping) for classification of M. tuberculosis strains within the Euro-American lineage. We analyzed a total of 547 tuberculosis (TB) cases, from six year consecutive sampling in a setting with high TB-HIV coinfection (32.0%). Of these, 62.0% were caused by major circulating pathogen genotypes. The sympatric relationship was defined according to spoligotype in comparison to the international spoligotype database SpolDB4. While no significant association with Euro-American lineage was observed with any of the factors analyzed, increasing the resolution with spoligotyping evidenced a significant association of MDRTB with sympatric strains, regardless of the HIV status. Furthermore, distribution curves of the prevalence of sympatric and allopatric TB in relation to patients’ age showed an accentuation of the relevance of the age of onset in the allopatric relationship, as reflected in the trimodal distribution. On the contrary, sympatric TB was characterized by the tendency towards a typical (standard) distribution curve. Our results suggest that within the Euro-American lineage a greater degree of genotyping fine-tuning is necessary in modeling the biological processes behind the host-pathogen interplay. Furthermore, prevalence distribution of sympatric TB to age was suggestive of host genetic determinisms driven by more common variants. PMID:26529092

  19. Real-world clinical applicability of pathogenicity predictors assessed on SERPINA1 mutations in alpha-1-antitrypsin deficiency.

    Science.gov (United States)

    Giacopuzzi, Edoardo; Laffranchi, Mattia; Berardelli, Romina; Ravasio, Viola; Ferrarotti, Ilaria; Gooptu, Bibek; Borsani, Giuseppe; Fra, Annamaria

    2018-06-07

    The growth of publicly available data informing upon genetic variations, mechanisms of disease and disease sub-phenotypes offers great potential for personalised medicine. Computational approaches are likely required to assess large numbers of novel genetic variants. However, the integration of genetic, structural and pathophysiological data still represents a challenge for computational predictions and their clinical use. We addressed these issues for alpha-1-antitrypsin deficiency, a disease mediated by mutations in the SERPINA1 gene encoding alpha-1-antitrypsin. We compiled a comprehensive database of SERPINA1 coding mutations and assigned them apparent pathological relevance based upon available data. 'Benign' and 'Pathogenic' mutations were used to assess performance of 31 pathogenicity predictors. Well-performing algorithms clustered the subset of variants known to be severely pathogenic with high scores. Eight new mutations identified in the ExAC database and achieving high scores were selected for characterisation in cell models and showed secretory deficiency and polymer formation, supporting the predictive power of our computational approach. The behaviour of the pathogenic new variants and consistent outliers were rationalised by considering the protein structural context and residue conservation. These findings highlight the potential of computational methods to provide meaningful predictions of the pathogenic significance of novel mutations and identify areas for further investigation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Systematic detection of positive selection in the human-pathogen interactome and lasting effects on infectious disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Erik Corona

    Full Text Available Infectious disease has shaped the natural genetic diversity of humans throughout the world. A new approach to capture positive selection driven by pathogens would provide information regarding pathogen exposure in distinct human populations and the constantly evolving arms race between host and disease-causing agents. We created a human pathogen interaction database and used the integrated haplotype score (iHS to detect recent positive selection in genes that interact with proteins from 26 different pathogens. We used the Human Genome Diversity Panel to identify specific populations harboring pathogen-interacting genes that have undergone positive selection. We found that human genes that interact with 9 pathogen species show evidence of recent positive selection. These pathogens are Yersenia pestis, human immunodeficiency virus (HIV 1, Zaire ebolavirus, Francisella tularensis, dengue virus, human respiratory syncytial virus, measles virus, Rubella virus, and Bacillus anthracis. For HIV-1, GWAS demonstrate that some naturally selected variants in the host-pathogen protein interaction networks continue to have functional consequences for susceptibility to these pathogens. We show that selected human genes were enriched for HIV susceptibility variants (identified through GWAS, providing further support for the hypothesis that ancient humans were exposed to lentivirus pandemics. Human genes in the Italian, Miao, and Biaka Pygmy populations that interact with Y. pestis show significant signs of selection. These results reveal some of the genetic footprints created by pathogens in the human genome that may have left lasting marks on susceptibility to infectious disease.

  1. Sieve analysis using the number of infecting pathogens.

    Science.gov (United States)

    Follmann, Dean; Huang, Chiung-Yu

    2017-12-14

    Assessment of vaccine efficacy as a function of the similarity of the infecting pathogen to the vaccine is an important scientific goal. Characterization of pathogen strains for which vaccine efficacy is low can increase understanding of the vaccine's mechanism of action and offer targets for vaccine improvement. Traditional sieve analysis estimates differential vaccine efficacy using a single identifiable pathogen for each subject. The similarity between this single entity and the vaccine immunogen is quantified, for example, by exact match or number of mismatched amino acids. With new technology, we can now obtain the actual count of genetically distinct pathogens that infect an individual. Let F be the number of distinct features of a species of pathogen. We assume a log-linear model for the expected number of infecting pathogens with feature "f," f=1,…,F. The model can be used directly in studies with passive surveillance of infections where the count of each type of pathogen is recorded at the end of some interval, or active surveillance where the time of infection is known. For active surveillance, we additionally assume that a proportional intensity model applies to the time of potentially infectious exposures and derive product and weighted estimating equation (WEE) estimators for the regression parameters in the log-linear model. The WEE estimator explicitly allows for waning vaccine efficacy and time-varying distributions of pathogens. We give conditions where sieve parameters have a per-exposure interpretation under passive surveillance. We evaluate the methods by simulation and analyze a phase III trial of a malaria vaccine. © 2017, The International Biometric Society.

  2. Tick-Pathogen Ensembles: Do Molecular Interactions Lead Ecological Innovation?

    Czech Academy of Sciences Publication Activity Database

    Cabezas Cruz, Alejandro; Estrada-Peňa, A.; Rego, Ryan O. M.; de la Fuente, J.

    2017-01-01

    Roč. 7, 13 March (2017), č. článku 74. ISSN 2235-2988 Institutional support: RVO:60077344 Keywords : tick-pathogen interactions * transcriptional reprogramming * epigenetics * ecological adaptation * Anaplasma phagocytophilum Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 4.300, year: 2016

  3. Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen Erwinia Tracheiphila

    Science.gov (United States)

    Shapiro, Lori R.; Scully, Erin D.; Straub, Timothy J.; Park, Jihye; Stephenson, Andrew G.; Beattie, Gwyn A.; Gleason, Mark L.; Kolter, Roberto; Coelho, Miguel C.; De Moraes, Consuelo M.; Mescher, Mark C.; Zhaxybayeva, Olga

    2016-01-01

    Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila’s current ecological niche. PMID:26992913

  4. The Collaborative Cross Resource for Systems Genetics Research of Infectious Diseases.

    Science.gov (United States)

    Maurizio, Paul L; Ferris, Martin T

    2017-01-01

    An increasing body of evidence highlights the role of host genetic variation in driving susceptibility to severe disease following pathogen infection. In order to fully appreciate the importance of host genetics on infection susceptibility and resulting disease, genetically variable experimental model systems should be employed. These systems allow for the identification, characterization, and mechanistic dissection of genetic variants that cause differential disease responses. Herein we discuss application of the Collaborative Cross (CC) panel of recombinant inbred strains to study viral pathogenesis, focusing on practical considerations for experimental design, assessment and analysis of disease responses within the CC, as well as some of the resources developed for the CC. Although the focus of this chapter is on viral pathogenesis, many of the methods presented within are applicable to studies of other pathogens, as well as to case-control designs in genetically diverse populations.

  5. Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen.

    Directory of Open Access Journals (Sweden)

    Jes Johannesen

    Full Text Available Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a and its vector (Hyalesthes obsoletus: Cixiidae affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.

  6. Ecosystem screening approach for pathogen-associated microorganisms affecting host disease.

    Science.gov (United States)

    Galiana, Eric; Marais, Antoine; Mura, Catherine; Industri, Benoît; Arbiol, Gilles; Ponchet, Michel

    2011-09-01

    The microbial community in which a pathogen evolves is fundamental to disease outcome. Species interacting with a pathogen on the host surface shape the distribution, density, and genetic diversity of the inoculum, but the role of these species is rarely determined. The screening method developed here can be used to characterize pathogen-associated species affecting disease. This strategy involves three steps: (i) constitution of the microbial community, using the pathogen as a trap; (ii) community selection, using extracts from the pathogen as the sole nutrient source; and (iii) molecular identification and the screening of isolates focusing on their effects on the growth of the pathogen in vitro and host disease. This approach was applied to a soilborne plant pathogen, Phytophthora parasitica, structured in a biofilm, for screening the microbial community from the rhizosphere of Nicotiana tabacum (the host). Two of the characterized eukaryotes interfered with the oomycete cycle and may affect the host disease. A Vorticella species acted through a mutualistic interaction with P. parasitica, disseminating pathogenic material by leaving the biofilm. A Phoma species established an amensal interaction with P. parasitica, strongly suppressing disease by inhibiting P. parasitica germination. This screening method is appropriate for all nonobligate pathogens. It allows the definition of microbial species as promoters or suppressors of a disease for a given biotope. It should also help to identify important microbial relationships for ecology and evolution of pathogens.

  7. Comparative studies on the genetic, antigenic and pathogenic characteristics of Bokeloh bat lyssavirus.

    Science.gov (United States)

    Nolden, Tobias; Banyard, Ashley C; Finke, Stefan; Fooks, Anthony R; Hanke, Dennis; Höper, Dirk; Horton, Daniel L; Mettenleiter, Thomas C; Müller, Thomas; Teifke, Jens P; Freuling, Conrad M

    2014-08-01

    Bokeloh bat lyssavirus (BBLV), a novel lyssavirus, was isolated from a Natterer's bat (Myotis nattererii), a chiropteran species with a widespread and abundant distribution across Europe. As a novel lyssavirus, the risks of BBLV to animal and human health are unknown and as such characterization both in vitro and in vivo was required to assess pathogenicity and vaccine protection. Full genome sequence analysis and antigenic cartography demonstrated that the German BBLV isolates are most closely related to European bat lyssavirus type 2 (EBLV-2) and Khujand virus and can be characterized within phylogroup I. In vivo characterization demonstrated that BBLV was pathogenic in mice when inoculated peripherally causing clinical signs typical for rabies encephalitis, with higher pathogenicity observed in juvenile mice. A limited vaccination-challenge experiment in mice was conducted and suggested that current vaccines would afford some protection against BBLV although further studies are warranted to determine a serological cut-off for protection. © 2014 The Authors.

  8. Pathogen reduction requirements for direct potable reuse in Antarctica: evaluating human health risks in small communities.

    Science.gov (United States)

    Barker, S Fiona; Packer, Michael; Scales, Peter J; Gray, Stephen; Snape, Ian; Hamilton, Andrew J

    2013-09-01

    Small, remote communities often have limited access to energy and water. Direct potable reuse of treated wastewater has recently gained attention as a potential solution for water-stressed regions, but requires further evaluation specific to small communities. The required pathogen reduction needed for safe implementation of direct potable reuse of treated sewage is an important consideration but these are typically quantified for larger communities and cities. A quantitative microbial risk assessment (QMRA) was conducted, using norovirus, giardia and Campylobacter as reference pathogens, to determine the level of treatment required to meet the tolerable annual disease burden of 10(-6) DALYs per person per year, using Davis Station in Antarctica as an example of a small remote community. Two scenarios were compared: published municipal sewage pathogen loads and estimated pathogen loads during a gastroenteritis outbreak. For the municipal sewage scenario, estimated required log10 reductions were 6.9, 8.0 and 7.4 for norovirus, giardia and Campylobacter respectively, while for the outbreak scenario the values were 12.1, 10.4 and 12.3 (95th percentiles). Pathogen concentrations are higher under outbreak conditions as a function of the relatively greater degree of contact between community members in a small population, compared with interactions in a large city, resulting in a higher proportion of the population being at risk of infection and illness. While the estimates of outbreak conditions may overestimate sewage concentration to some degree, the results suggest that additional treatment barriers would be required to achieve regulatory compliance for safe drinking water in small communities. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Development of genetic methods for detection of pathogenic microorganisms in irradiated food

    International Nuclear Information System (INIS)

    2010-01-01

    The existence of injured microorganisms in food and their recovery during culturing procedures is critical. Injured microorganisms present a potential threat in food safety since they may repair themselves under suitable conditions. This study provides development of recovery methods for detection of injured foodborne microorganisms, after irradiation treatment at different doses. For this purpose, iniatially the methods of recovery were compared at different irradiation doses. At the second step, antibiotic resistance of foodborne pathogens was determined. After determination of antibiotic resistance, recovery methods were modified for reversibly injured foodborne pathogens at different doses after irradiation treatment . Finally, damages of DNA were detected by a spectrophotometric method after 1.0 kGy irradiation treatment

  10. The pathogen-actin connection: A platform for defense signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Day, B; Henty, Jessica L; Porter, K J; Staiger, Chris J

    2011-09-08

    The cytoskeleton, a dynamic network of cytoplasmic polymers, plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. As a platform for innate immune responses in mammalian cells, the actin cytoskeleton is a central component in the organization and activation of host defenses, including signaling and cellular repair. In plants, our understanding of the genetic and biochemical responses in both pathogen and host that are required for virulence and resistance has grown enormously. Additional advances in live-cell imaging of cytoskeletal dynamics have markedly altered our view of actin turnover in plants. In this review, we outline current knowledge of host resistance following pathogen perception, both in terms of the genetic interactions that mediate defense signaling, as well as the biochemical and cellular processes that are required for defense signaling.

  11. Pathogenic Streptomyces spp. abundance affected by potato cultivars.

    Science.gov (United States)

    Nahar, Kamrun; Goyer, Claudia; Zebarth, Bernie J; Burton, David L; Whitney, Sean

    2018-04-16

    Potato cultivars vary in their tolerance to common scab (CS), however how they affect CS-causing Streptomyces spp. populations over time is poorly understood. This study investigated the effects of potato cultivar on pathogenic Streptomyces spp. abundance, measured using quantitative PCR, in three spatial locations in a CS-infested field: 1) soil close to the plant (SCP); 2) rhizosphere (RS); and 3) geocaulosphere (GS) soils. Two tolerant (Gold Rush, Hindenburg) and two susceptible cultivars (Green Mountain, Agria) were tested. The abundance of pathogenic Streptomyces spp. significantly increased in late August compared with other dates in RS of susceptible cultivars in both years. Abundance of pathogenic Streptomyces spp., when averaged over locations and time, was significantly greater in susceptible cultivars compared with tolerant cultivars in 2014. Principal coordinates analysis showed that SCP and RS soil properties (pH, organic carbon and nitrogen concentrations) explained 68% and 76% of total variation in Streptomyces spp. abundance among cultivars in 2013, respectively, suggesting that cultivars influenced CS pathogen growth conditions. The results suggested that the genetic background of potato cultivars influenced the abundance of pathogenic Streptomyces spp., with 5 to 6 times more abundant Streptomyces spp. in RS of susceptible cultivars compared with tolerant cultivars, which would result in substantially more inoculum left in the field after harvest.  .

  12. Comparative Genomics of a Plant-Pathogenic Fungus, Pyrenophora tritici-repentis, Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Viola A.; Pandelova, Iovanna; Dhillon, Braham; Wilhelm, Larry J.; Goodwin, Stephen B.; Berlin, Aaron M.; Figueroa, Melania; Freitag, Michael; Hane, James K.; Henrissat, Bernard; Holman, Wade H.; Kodira, Chinnappa D.; Martin, Joel; Oliver, Richard P.; Robbertse, Barbara; Schackwitz, Wendy; Schwartz, David C.; Spatafora, Joseph W.; Turgeon, B. Gillian; Yandava, Chandri; Young, Sarah; Zhou, Shiguo; Zeng, Qiandong; Grigoriev, Igor V.; Ma, Li-Jun; Ciuffetti, Lynda M.

    2012-08-16

    Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.

  13. Rapid Gene Turnover as a Significant Source of Genetic Variation in a Recently Seeded Population of a Healthcare-Associated Pathogen

    Directory of Open Access Journals (Sweden)

    Lucía Graña-Miraglia

    2017-09-01

    Full Text Available Genome sequencing has been useful to gain an understanding of bacterial evolution. It has been used for studying the phylogeography and/or the impact of mutation and recombination on bacterial populations. However, it has rarely been used to study gene turnover at microevolutionary scales. Here, we sequenced Mexican strains of the human pathogen Acinetobacter baumannii sampled from the same locale over a 3 year period to obtain insights into the microevolutionary dynamics of gene content variability. We found that the Mexican A. baumannii population was recently founded and has been emerging due to a rapid clonal expansion. Furthermore, we noticed that on average the Mexican strains differed from each other by over 300 genes and, notably, this gene content variation has accrued more frequently and faster than the accumulation of mutations. Moreover, due to its rapid pace, gene content variation reflects the phylogeny only at very short periods of time. Additionally, we found that the external branches of the phylogeny had almost 100 more genes than the internal branches. All in all, these results show that rapid gene turnover has been of paramount importance in producing genetic variation within this population and demonstrate the utility of genome sequencing to study alternative forms of genetic variation.

  14. Evolution of Drosophila resistance against different pathogens and infection routes entails no detectable maintenance costs.

    Science.gov (United States)

    Faria, Vítor G; Martins, Nelson E; Paulo, Tânia; Teixeira, Luís; Sucena, Élio; Magalhães, Sara

    2015-11-01

    Pathogens exert a strong selective pressure on hosts, entailing host adaptation to infection. This adaptation often affects negatively other fitness-related traits. Such trade-offs may underlie the maintenance of genetic diversity for pathogen resistance. Trade-offs can be tested with experimental evolution of host populations adapting to parasites, using two approaches: (1) measuring changes in immunocompetence in relaxed-selection lines and (2) comparing life-history traits of evolved and control lines in pathogen-free environments. Here, we used both approaches to examine trade-offs in Drosophila melanogaster populations evolving for over 30 generations under infection with Drosophila C Virus or the bacterium Pseudomonas entomophila, the latter through different routes. We find that resistance is maintained after up to 30 generations of relaxed selection. Moreover, no differences in several classical life-history traits between control and evolved populations were found in pathogen-free environments, even under stresses such as desiccation, nutrient limitation, and high densities. Hence, we did not detect any maintenance costs associated with resistance to pathogens. We hypothesize that extremely high selection pressures commonly used lead to the disproportionate expression of costs relative to their actual occurrence in natural systems. Still, the maintenance of genetic variation for pathogen resistance calls for an explanation. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  15. Directed genetic modification of African horse sickness virus by reverse genetics

    Directory of Open Access Journals (Sweden)

    Elaine Vermaak

    2015-07-01

    Full Text Available African horse sickness virus (AHSV, a member of the Orbivirus genus in the family Reoviridae, is an arthropod-transmitted pathogen that causes a devastating disease in horses with a mortality rate greater than 90%. Fundamental research on AHSV and the development of safe, efficacious vaccines could benefit greatly from an uncomplicated genetic modification method to generate recombinant AHSV. We demonstrate that infectious AHSV can be recovered by transfection of permissive mammalian cells with transcripts derived in vitro from purified AHSV core particles. These findings were expanded to establish a genetic modification system for AHSV that is based on transfection of the cells with a mixture of purified core transcripts and a synthetic T7 transcript. This approach was applied successfully to recover a directed cross-serotype reassortant AHSV and to introduce a marker sequence into the viral genome. The ability to manipulate the AHSV genome and engineer specific mutants will increase understanding of AHSV replication and pathogenicity, as well as provide a tool for generating designer vaccine strains.

  16. Genetics Home Reference: caudal regression syndrome

    Science.gov (United States)

    ... umbilical artery: Further support for a caudal regression-sirenomelia spectrum. Am J Med Genet A. 2007 Dec ... AK, Dickinson JE, Bower C. Caudal dysgenesis and sirenomelia-single centre experience suggests common pathogenic basis. Am ...

  17. Characterisation of bacterial brown spot pathogen from dry bean ...

    African Journals Online (AJOL)

    Pseudomonas syringae pv. syringae (Pss) causes bacterial brown spot (BBS) of beans (Phaseolus vulgaris L.), with yield losses of up to 55% in South Africa. Pss has a wide host range and for many of these, the pathogen has been biochemically and genetically characterised. However, few studies have been conducted on ...

  18. Molecular Mechanisms of Bacterial Pathogenicity

    Science.gov (United States)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  19. Bacteriophage interactions with marine pathogenic Vibrios

    DEFF Research Database (Denmark)

    Kalatzis, Panagiotis

    development and spreading of antibiotic resistant bacteria in the environment. Bacteriophage therapy, constitutes a potent alternative not only for treatment but also for prevention of vibriosis in aquaculture and the current thesis addresses the potential and challenges of using phages to control Vibrio...... pathogens. The combinatory administration of virulent bacteriophages φSt2 and φGrn1, isolated against Vibrio alginolyticus significantly reduced the Vibrio load in cultures of Artemia salina live prey, decreasing subsequently the risk of a vibriosis outbreak in the marine hatchery. During infection...... therapy applications. Lytic phage vB_VspP_pVa5 that has been isolated against the rapidly emerging pathogen V. splendidus is also a promising candidate for phage therapy application according to its gene content and in vitro performance against its host. The genetic features of vB_VspP_pVa5 provide also...

  20. Differential divergences of obligately insect-pathogenic Entomophthora species from fly and aphid hosts.

    Science.gov (United States)

    Jensen, Annette Bruun; Eilenberg, Jørgen; López Lastra, Claudia

    2009-11-01

    Three DNA regions (ITS 1, LSU rRNA and GPD) of isolates from the insect-pathogenic fungus genus Entomophthora originating from different fly (Diptera) and aphid (Hemiptera) host taxa were sequenced. The results documented a large genetic diversity among the fly-pathogenic Entomophthora and only minor differences among aphid-pathogenic Entomophthora. The evolutionary time of divergence of the fly and the aphid host taxa included cannot account for this difference. The host-driven divergence of Entomophthora, therefore, has been much greater in flies than in aphids. Host-range differences or a recent host shift to aphid are possible explanations.

  1. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  2. Pathogenicity and diversity of vegetative compatibility of Fusarium verticillioides

    Directory of Open Access Journals (Sweden)

    Krnjaja Vesna S.

    2007-01-01

    Full Text Available Pathogenicity of 10 Fusarium verticillioides isolates, originated from grain of wheat (five isolates and maize (five isolates, were studied under greenhouse conditions. Based on different parameters of the pathogenicity estimate (a scale for % of nonemerged plants, % of survived plants, plant vigour - the growth and dry weight of roots and epicotyls and disease severity it was determined that all F. verticillioides isolates expressed a different degree of pathogenicity. According to % of nonemerged plants six three and one F. verticillioides isolates expressed low, moderate and high degree of pathogenicity, respectively. All F. verticillioides isolates reduced the plant survival rate and vigour, while the disease severity ranged from 2.0 to 3.54. Two types of nit mutants, nit1 and NitM, were obtained by the use of the method of vegetative compatibility. The frequency of nit1 mutants was greater (58.79% than the frequency of NitM mutants (5.77%. A total of 10 vegetative compatibility groups (VCGs of F. verticillioides were established in the complementation tests. These results point out to a high genetic diversity of F. verticillioides population.

  3. Genetic screens to identify pathogenic gene variants in the common cancer predisposition Lynch syndrome

    DEFF Research Database (Denmark)

    Drost, Mark; Lützen, Anne; van Hees, Sandrine

    2013-01-01

    In many individuals suspected of the common cancer predisposition Lynch syndrome, variants of unclear significance (VUS), rather than an obviously pathogenic mutations, are identified in one of the DNA mismatch repair (MMR) genes. The uncertainty of whether such VUS inactivate MMR, and therefore...... function. When a residue identified as mutated in an individual suspected of Lynch syndrome is listed as critical in such a reverse diagnosis catalog, there is a high probability that the corresponding human VUS is pathogenic. To investigate the applicability of this approach, we have generated....... Nearly half of these critical residues match with VUS previously identified in individuals suspected of Lynch syndrome. This aids in the assignment of pathogenicity to these human VUS and validates the approach described here as a diagnostic tool. In a wider perspective, this work provides a model...

  4. Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network

    Science.gov (United States)

    Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao

    2018-03-01

    Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.

  5. Community acquired pneumonia: genetic variants influencing systemic inflammation.

    Science.gov (United States)

    Ferrer Agüero, J M; Millán, S; Rodríguez de Castro, F; Martín-Loeches, I; Solé Violán, J

    2014-01-01

    The inflammatory response depends on several factors, including pathogenicity and duration of the stimulus, and also on the balance between inflammatory and antiinflammatory response. Several studies have presented evidence of the importance of genetic factors in severe infections. The innate immune response prevents the invasion and spread of pathogens during the first hours after infection. Each of the different processes involved in innate immunity may be affected by genetic polymorphisms, which can result in susceptibility or resistance to infection. The results obtained in the different studies do not irrefutably prove the role or function of a gene in the pathogenesis of respiratory infections. However, they can generate new hypotheses, suggest new candidate genes based on their role in the inflammatory response, and constitute a first step in understanding the underlying genetic factors. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  6. [Genetics factors in pathogenesis and clinical genetics of binge eating disorder].

    Science.gov (United States)

    Kibitov, А О; Мazo, G E

    2016-01-01

    Genetic studies have shown that binge eating disorder (ВЕD) aggregates in families, heritability was estimated as about 60% and additive genetic influences on BED up to 50%. Using a genetic approach has proved useful for verifying the diagnostic categories of BED using DSM-IV criteria and supporting the validity of considering this pathology as a separate nosological category. The results confirmed the genetic and pathogenic originality of BED as a separate psychopathological phenomenon, but not a subtype of obesity. It seems fruitful to considerate BED as a disease with hereditary predisposition with significant genetic influence and a complex psychopathological syndrome, including not only eating disorders, but also depressive and addictive component. A possible mechanism of pathogenesis of BED may be the interaction of the neuroendocrine and neurotransmitters systems including the active involvement of the reward system in response to a variety of chronic stress influences with the important modulatory role of specific personality traits. The high level of genetic influence on the certain clinical manifestations of BED confirms the ability to identify the subphenotypes of BED on genetic basis involving clinical criteria. It can not only contribute to further genetic studies, taking into account more homogeneous samples, but also help in finding differentiated therapeutic approaches.

  7. Chapter VIII. Contributions of propagation techniques and genetic modification to breeding - genetic engineering for disease resistance

    Science.gov (United States)

    Genetic engineering offers an opportunity to develop flower bulb crops with resistance to fungal, viral, and bacterial pathogens. Several of the flower bulb crops, Lilium spp., Gladiolus, Zantedeschia, Muscari, Hyacinthus, Narcissus, Ornithogalum, Iris, and Alstroemeria, have been transformed with t...

  8. Co-occurrence and hybridization of anther-smut pathogens specialized on Dianthus hosts.

    Science.gov (United States)

    Petit, Elsa; Silver, Casey; Cornille, Amandine; Gladieux, Pierre; Rosenthal, Lisa; Bruns, Emily; Yee, Sarah; Antonovics, Janis; Giraud, Tatiana; Hood, Michael E

    2017-04-01

    Host specialization has important consequences for the diversification and ecological interactions of obligate pathogens. The anther-smut disease of natural plant populations, caused by Microbotryum fungi, has been characterized by specialized host-pathogen interactions, which contribute in part to the isolation among these numerous fungal species. This study investigated the molecular variation of Microbotryum pathogens within the geographic and host-specific distributions on wild Dianthus species in southern European Alps. In contrast to prior studies on this pathogen genus, a range of overlapping host specificities was observed for four delineated Microbotryum lineages on Dianthus hosts, and their frequent co-occurrence within single-host populations was quantified at local and regional scales. In addition to potential consequences for direct pathogen competition, the sympatry of Microbotryum lineages led to hybridization between them in many populations, and these admixed genotypes suffered significant meiotic sterility. Therefore, this investigation of the anther-smut fungi reveals how variation in the degrees of host specificity can have major implications for ecological interactions and genetic integrity of differentiated pathogen lineages. © 2017 John Wiley & Sons Ltd.

  9. Hard ticks and their bacterial endosymbionts (or would be pathogens)

    Czech Academy of Sciences Publication Activity Database

    Ahantarig, A.; Trinachartvanit, W.; Baimai, V.; Grubhoffer, Libor

    2013-01-01

    Roč. 58, č. 5 (2013), s. 419-428 ISSN 0015-5632 Institutional support: RVO:60077344 Keywords : Ixodes ricinus * Candidatus Midichloria mitochondrii * Francisella-like endosymbionts * vector Ambylomma americanum * fever group Rickettsiae * Dermacentor and ersoni * spotted fever * borne pathogens Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.145, year: 2013

  10. Mixtures of genetically modified wheat lines outperform monocultures.

    Science.gov (United States)

    Zeller, Simon L; Kalinina, Olena; Flynn, Dan F B; Schmid, Bernhard

    2012-09-01

    Biodiversity research shows that diverse plant communities are more stable and productive than monocultures. Similarly, populations in which genotypes with different pathogen resistance are mixed may have lower pathogen levels and thus higher productivity than genetically uniform populations. We used genetically modified (GM) wheat as a model system to test this prediction, because it allowed us to use genotypes that differed only in the trait pathogen resistance but were otherwise identical. We grew three such genotypes or lines in monocultures or two-line mixtures. Phenotypic measurements were taken at the level of individual plants and of entire plots (population level). We found that resistance to mildew increased with both GM richness (0, 1, or 2 Pm3 transgenes with different resistance specificities per plot) and GM concentration (0%, 50%, or 100% of all plants in a plot with a Pm3 transgene). Plots with two transgenes had 34.6% less mildew infection and as a consequence 7.3% higher seed yield than plots with one transgene. We conclude that combining genetic modification with mixed cropping techniques could be a promising approach to increase sustainability and productivity in agricultural systems, as the fitness cost of stacking transgenes within individuals may thus be avoided.

  11. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis.

    Directory of Open Access Journals (Sweden)

    Christopher A Desjardins

    2011-10-01

    Full Text Available Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18 and one strain of Paracoccidioides lutzii (Pb01. These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic

  12. The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations.

    Science.gov (United States)

    Stam, Remco; Scheikl, Daniela; Tellier, Aurélien

    2017-01-01

    Wild tomatoes are a valuable source of disease resistance germplasm for tomato ( Solanum lycopersicum ) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense , both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense . We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens ( Alternaria solani , Phytophthora infestans and a Fusarium sp .) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense , resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.

  13. Adaptive value of sex in microbial pathogens.

    Science.gov (United States)

    Michod, Richard E; Bernstein, Harris; Nedelcu, Aurora M

    2008-05-01

    Explaining the adaptive value of sex is one of the great outstanding problems in biology. The challenge comes from the difficulty in identifying the benefits provided by sex, which must outweigh the substantial costs of sex. Here, we consider the adaptive value of sex in viruses, bacteria and fungi, and particularly the information available on the adaptive role of sex in pathogenic microorganisms. Our general theme is that the varied aspects of sex in pathogens illustrate the varied issues surrounding the evolution of sex generally. These include, the benefits of sex (in the short- and long-term), as well as the costs of sex (both to the host and to the pathogen). For the benefits of sex (that is, its adaptive value), we consider three hypotheses: (i) sex provides for effective and efficient recombinational repair of DNA damages, (ii) sex provides DNA for food, and (iii) sex produces variation and reduces genetic associations among alleles under selection. Although the evolution of sex in microbial pathogens illustrates these general issues, our paper is not a general review of theories for the evolution of sex in all organisms. Rather, we focus on the adaptive value of sex in microbial pathogens and conclude that in terms of short-term benefits, the DNA repair hypothesis has the most support and is the most generally applicable hypothesis in this group. In particular, recombinational repair of DNA damages may substantially benefit pathogens when challenged by the oxidative defenses of the host. However, in the long-term, sex may help get rid of mutations, increase the rate of adaptation of the population, and, in pathogens, may infrequently create new infective strains. An additional general issue about sex illustrated by pathogens is that some of the most interesting consequences of sex are not necessarily the reasons for which sex evolved. For example, antibiotic resistance may be transferred by bacterial sex, but this transfer is probably not the reason sex

  14. Method of inhibiting plant virus pathogen infections by crispr/cas9-mediated interference

    KAUST Repository

    Mahfouz, Magdy M.; Ali, Zahir

    2016-01-01

    A genetically modified tobacco plant or tomato plant resistant to at least one pathogenic geminiviridae virus species is provided. The plant comprises a heterologous CRISPR/Cas9 system and at least one heterologous nucleotide sequence

  15. Amplification of the cap20 pathogenicity gene and genetic characterization using different markers molecular in Colletotrichum gloeosporioides isolates

    Directory of Open Access Journals (Sweden)

    Danielli Barreto Maciel

    2010-12-01

    Full Text Available Studies were performed to analyze the genetic characterization using RFLP-ITS and Intron (primer EI1 markers and the amplification of the cap20 pathogenicity gene by PCR in Colletotrichum gloeosporioides isolates of different hosts plant. The genetic variability was accessed using RFLP-ITS and Intron markers and grouping by UPGMA method. Primers to cap20 gene were constructed using selected sequences of the GenBank (National Center of Biotechnology Information, http://www.ncbi.nlm.nih.gov with the Primer 3 program. The dendrograms analysis showed that the RFLP-ITS marker was more informative to separate the Colletotrichum sp, and that primer EI1 demonstrated greater genetic diversity. The amplification of the DNA of the Colletotrichum isolates to the cap20 gene with primers P1 and P2 indicated that this gene could present variations into C. gloeosporioides related with the host, and also that it was present in other Colletotrichum sp.Estudos foram realizados para analisar a caracterização genética usando marcadores de RFLP-ITS e ISSP e a amplicação do gene de patogenicidade cap20 por PCR em isolados de Colletotrichum gloeosporioides de diferentes hospedeiros. Primers para o gene cap20 foram construídos a partir de seqüências selecionadas do GenBank (National Center of Biotechnology Information, http://www.ncbi.nlm.nih.gov com o programa Primer 3. A análise dos dendrogramas revelou que o marcador RFLP-ITS foi mais informativo em separar as espécies de Colletotrichum, e que o primer EI1 evidenciou maior diversidade genética. A amplificação do DNA dos isolados de Colletotrichum para o gene cap20 com os primers P1 e P2 indicou que este gene pode apresentar variações dentro de C. gloeosporioides relacionada ao hospedeiro, e que também está presente em outras espécies de Colletotrichum.

  16. Expanding the genetic toolbox for Leptospira species by generation of fluorescent bacteria.

    Science.gov (United States)

    Aviat, Florence; Slamti, Leyla; Cerqueira, Gustavo M; Lourdault, Kristel; Picardeau, Mathieu

    2010-12-01

    Our knowledge of the genetics and molecular basis of the pathogenesis associated with Leptospira, in comparison to those of other bacterial species, is very limited. An improved understanding of pathogenic mechanisms requires reliable genetic tools for functional genetic analysis. Here, we report the expression of gfp and mRFP1 genes under the control of constitutive spirochetal promoters in both saprophytic and pathogenic Leptospira strains. We were able to reliably measure the fluorescence of Leptospira by fluorescence microscopy and a fluorometric microplate reader-based assay. We showed that the expression of the gfp gene had no significant effects on growth in vivo and pathogenicity in L. interrogans. We constructed an expression vector for L. biflexa that contains the lacI repressor, an inducible lac promoter, and gfp as the reporter, demonstrating that the lac system is functional in Leptospira. Green fluorescent protein (GFP) expression was induced by the addition of isopropyl-β-d-thiogalactopyranoside (IPTG) in L. biflexa transformants harboring the expression vector. Finally, we showed that GFP can be used as a reporter to assess promoter activity in different environmental conditions. These results may facilitate further advances for studying the genetics of Leptospira spp.

  17. Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii

    Science.gov (United States)

    Da Silva, Gabriela Jorge; Domingues, Sara

    2016-01-01

    Horizontal gene transfer (HGT) is a driving force to the evolution of bacteria. The fast emergence of antimicrobial resistance reflects the ability of genetic adaptation of pathogens. Acinetobacter baumannii has emerged in the last few decades as an important opportunistic nosocomial pathogen, in part due to its high capacity of acquiring resistance to diverse antibiotic families, including to the so-called last line drugs such as carbapenems. The rampant selective pressure and genetic exchange of resistance genes hinder the effective treatment of resistant infections. A. baumannii uses all the resistance mechanisms to survive against carbapenems but production of carbapenemases are the major mechanism, which may act in synergy with others. A. baumannii appears to use all the mechanisms of gene dissemination. Beyond conjugation, the mostly reported recent studies point to natural transformation, transduction and outer membrane vesicles-mediated transfer as mechanisms that may play a role in carbapenemase determinants spread. Understanding the genetic mobilization of carbapenemase genes is paramount in preventing their dissemination. Here we review the carbapenemases found in A. baumannii and present an overview of the current knowledge of contributions of the various HGT mechanisms to the molecular epidemiology of carbapenem resistance in this relevant opportunistic pathogen. PMID:27681923

  18. Integrated oxide graphene based device for laser inactivation of pathogenic microorganisms

    Science.gov (United States)

    Grishkanich, Alexsandr; Ruzankina, Julia; Afanasyev, Mikhail; Paklinov, Nikita; Hafizov, Nail

    2018-02-01

    We develop device for virus disinfection of pathogenic microorganisms. Viral decontamination can be carried out due to hard ultraviolet irradiation and singlet oxygen destroying the genetic material of a virus capsid. UV rays can destroy DNA, leading to the formation of dimers of nucleic acids. This practically does not occur in tissues, tk. UV rays penetrate badly through them, however, the viral particles are small and UV can destroy their genetic material, RNA / DNA and the virus can not replicate. It is with the construction of the ultraviolet laser water disinfection system (UFLOV) based on the continuous and periodic pulsed ultraviolet laser sources (pump) binds to solve sterility and depyrogenation of water. It has been established that small doses of UV irradiation stimulate reproduction, and large doses cause the death of pathogenic microorganisms. The effect of a dose of ultraviolet is the result of photochemical action on the substance of a living bacterial cell or virion. Also complex photodynamic laser inactivation on graphene oxide is realized.

  19. Genetically Engineering Entomopathogenic Fungi.

    Science.gov (United States)

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Delineating the genetic heterogeneity of OCA in Hungarian patients.

    Science.gov (United States)

    Fábos, Beáta; Farkas, Katalin; Tóth, Lola; Sulák, Adrienn; Tripolszki, Kornélia; Tihanyi, Mariann; Németh, Réka; Vas, Krisztina; Csoma, Zsanett; Kemény, Lajos; Széll, Márta; Nagy, Nikoletta

    2017-06-19

    Oculocutaneous albinism (OCA) is a clinically and genetically heterogenic group of pigmentation abnormalities characterized by variable hair, skin, and ocular hypopigmentation. Six known genes and a locus on human chromosome 4q24 have been implicated in the etiology of isolated OCA forms (OCA 1-7). The most frequent OCA types among Caucasians are OCA1, OCA2, and OCA4. We aimed to investigate genes responsible for the development of these OCA forms in Hungarian OCA patients (n = 13). Mutation screening and polymorphism analysis were performed by direct sequencing on TYR, OCA2, SLC45A2 genes. Although the clinical features of the investigated Hungarian OCA patients were identical, the molecular genetic data suggested OCA1 subtype in eight cases and OCA4 subtype in two cases. The molecular diagnosis was not clearly identifiable in three cases. In four patients, two different heterozygous known pathogenic or predicted to be pathogenic mutations were present. Seven patients had only one pathogenic mutation, which was associated with non-pathogenic variants in six cases. In two patients no pathogenic mutation was identified. Our results suggest that the concomitant screening of the non-pathogenic variants-which alone do not cause the development of OCA, but might have clinical significance in association with a pathogenic variant-is important. Our results also show significant variation in the disease spectrum compared to other populations. These data also confirm that the concomitant analysis of OCA genes is critical, providing new insights to the phenotypic diversity of OCA and expanding the mutation spectrum of OCA genes in Hungarian patients.

  1. Immunity traits in pigs: substantial genetic variation and limited covariation.

    Directory of Open Access Journals (Sweden)

    Laurence Flori

    Full Text Available BACKGROUND: Increasing robustness via improvement of resistance to pathogens is a major selection objective in livestock breeding. As resistance traits are difficult or impossible to measure directly, potential indirect criteria are measures of immune traits (ITs. Our underlying hypothesis is that levels of ITs with no focus on specific pathogens define an individual's immunocompetence and thus predict response to pathogens in general. Since variation in ITs depends on genetic, environmental and probably epigenetic factors, our aim was to estimate the relative importance of genetics. In this report, we present a large genetic survey of innate and adaptive ITs in pig families bred in the same environment. METHODOLOGY/PRINCIPAL FINDINGS: Fifty four ITs were studied on 443 Large White pigs vaccinated against Mycoplasma hyopneumoniae and analyzed by combining a principal component analysis (PCA and genetic parameter estimation. ITs include specific and non specific antibodies, seric inflammatory proteins, cell subsets by hemogram and flow cytometry, ex vivo production of cytokines (IFNα, TNFα, IL6, IL8, IL12, IFNγ, IL2, IL4, IL10, phagocytosis and lymphocyte proliferation. While six ITs had heritabilities that were weak or not significantly different from zero, 18 and 30 ITs had moderate (0.10.4 heritability values, respectively. Phenotypic and genetic correlations between ITs were weak except for a few traits that mostly include cell subsets. PCA revealed no cluster of innate or adaptive ITs. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that variation in many innate and adaptive ITs is genetically controlled in swine, as already reported for a smaller number of traits by other laboratories. A limited redundancy of the traits was also observed confirming the high degree of complementarity between innate and adaptive ITs. Our data provide a genetic framework for choosing ITs to be included as selection criteria in multitrait selection

  2. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    Science.gov (United States)

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Population Genetics and Natural Selection in Rheumatic Disease.

    Science.gov (United States)

    Ramos, Paula S

    2017-08-01

    Human genetic diversity is the result of population genetic forces. This genetic variation influences disease risk and contributes to health disparities. Natural selection is an important influence on human genetic variation. Because immune and inflammatory function genes are enriched for signals of positive selection, the prevalence of rheumatic disease-risk alleles seen in different populations is partially the result of differing selective pressures (eg, due to pathogens). This review summarizes the genetic regions associated with susceptibility to different rheumatic diseases and concomitant evidence for natural selection, including known agents of selection exerting selective pressure in these regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    KAUST Repository

    Weynberg, Karen D.

    2015-12-08

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements.

  5. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    KAUST Repository

    Weynberg, Karen D.; Voolstra, Christian R.; Neave, Matthew J.; Buerger, Patrick; van Oppen, Madeleine J. H.

    2015-01-01

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements.

  6. Persistence of Pathogenic and Non-Pathogenic Escherichia coli Strains in Various Tropical Agricultural Soils of India.

    Directory of Open Access Journals (Sweden)

    S Naganandhini

    Full Text Available The persistence of Shiga-like toxin producing E. coli (STEC strains in the agricultural soil creates serious threat to human health through fresh vegetables growing on them. However, the survival of STEC strains in Indian tropical soils is not yet understood thoroughly. Additionally how the survival of STEC strain in soil diverges with non-pathogenic and genetically modified E. coli strains is also not yet assessed. Hence in the present study, the survival pattern of STEC strain (O157-TNAU was compared with non-pathogenic (MTCC433 and genetically modified (DH5α strains on different tropical agricultural soils and on a vegetable growing medium, cocopeat under controlled condition. The survival pattern clearly discriminated DH5α from MTCC433 and O157-TNAU, which had shorter life (40 days than those compared (60 days. Similarly, among the soils assessed, the red laterite and tropical latosol supported longer survival of O157-TNAU and MTCC433 as compared to wetland and black cotton soils. In cocopeat, O157 recorded significantly longer survival than other two strains. The survival data were successfully analyzed using Double-Weibull model and the modeling parameters were correlated with soil physico-chemical and biological properties using principal component analysis (PCA. The PCA of all the three strains revealed that pH, microbial biomass carbon, dehydrogenase activity and available N and P contents of the soil decided the survival of E. coli strains in those soils and cocopeat. The present research work suggests that the survival of O157 differs in tropical Indian soils due to varied physico-chemical and biological properties and the survival is much shorter than those reported in temperate soils. As the survival pattern of non-pathogenic strain, MTCC433 is similar to O157-TNAU in tropical soils, the former can be used as safe model organism for open field studies.

  7. Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli.

    Science.gov (United States)

    Blum, Shlomo E; Goldstone, Robert J; Connolly, James P R; Répérant-Ferter, Maryline; Germon, Pierre; Inglis, Neil F; Krifucks, Oleg; Mathur, Shubham; Manson, Erin; Mclean, Kevin; Rainard, Pascal; Roe, Andrew J; Leitner, Gabriel; Smith, David G E

    2018-04-03

    Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental ("dairy-farm" E. coli [DFEC]) strains, we found that only the fec locus ( fecIRABCDE ) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes ( P price of dairy products on supermarket shelves and the financial hardships suffered by dairy farmers. Mastitis is also the leading reason for the use of antibiotics in dairy farms. Good farm management practices in many countries have dramatically reduced the incidence of contagious mastitis; however, the problems associated with the incidence of environmental mastitis caused by bacteria such as Escherichia coli have proven intractable. E. coli bacteria cause acute mastitis, which affects the health and welfare of cows and in extreme cases may be fatal. Here we show for the first time that the pathogenicity of E. coli causing mastitis in cows is highly dependent on the fecIRABCDE ferric citrate uptake system that allows the bacterium to capture iron from citrate. The Fec system is highly expressed during infection in the bovine udder and is ubiquitous in and necessary for the E. coli bacteria that cause mammary infections in cattle. These results have far-reaching implications, raising the possibility that mastitis may be controllable by targeting this system. Copyright © 2018 Blum et al.

  8. First report of an Armillaria root disease pathogen, Armillaria gallica, associated with several new hosts in Hawaii

    Science.gov (United States)

    M.-S. Kim; J. W. Hanna; N. B. Klopfenstein

    2010-01-01

    The loss and decline of native tree species caused by invasive plant pathogens is a major threat to the endangered endemic forests of the Hawaiian Islands (3). Thus, it is critical to characterize existing pathogens to evaluate potential invasiveness. In August 2005, rhizomorphs and mycelial bark fans of genet HI-4 were collected from dead/declining, mature trees of...

  9. Genetics of Pathogen Fitness: Correlations with Virulence and Effects of Host Genotype

    Science.gov (United States)

    In plant pathology, a large body of work has focused on changes in virulence, the traits allowing infection of otherwise resistant hosts, while relatively few studies have examined changes in quantitative fitness traits, those affecting the reproductive success of the pathogen after infection has oc...

  10. Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence.

    Science.gov (United States)

    Sandino, Juan; Pegg, Geoff; Gonzalez, Felipe; Smith, Grant

    2018-03-22

    The environmental and economic impacts of exotic fungal species on natural and plantation forests have been historically catastrophic. Recorded surveillance and control actions are challenging because they are costly, time-consuming, and hazardous in remote areas. Prolonged periods of testing and observation of site-based tests have limitations in verifying the rapid proliferation of exotic pathogens and deterioration rates in hosts. Recent remote sensing approaches have offered fast, broad-scale, and affordable surveys as well as additional indicators that can complement on-ground tests. This paper proposes a framework that consolidates site-based insights and remote sensing capabilities to detect and segment deteriorations by fungal pathogens in natural and plantation forests. This approach is illustrated with an experimentation case of myrtle rust ( Austropuccinia psidii ) on paperbark tea trees ( Melaleuca quinquenervia ) in New South Wales (NSW), Australia. The method integrates unmanned aerial vehicles (UAVs), hyperspectral image sensors, and data processing algorithms using machine learning. Imagery is acquired using a Headwall Nano-Hyperspec ® camera, orthorectified in Headwall SpectralView ® , and processed in Python programming language using eXtreme Gradient Boosting (XGBoost), Geospatial Data Abstraction Library (GDAL), and Scikit-learn third-party libraries. In total, 11,385 samples were extracted and labelled into five classes: two classes for deterioration status and three classes for background objects. Insights reveal individual detection rates of 95% for healthy trees, 97% for deteriorated trees, and a global multiclass detection rate of 97%. The methodology is versatile to be applied to additional datasets taken with different image sensors, and the processing of large datasets with freeware tools.

  11. Virulence on the fly: Drosophila melanogaster as a model genetic organism to decipher host-pathogen interactions.

    NARCIS (Netherlands)

    Limmer, S.; Quintin, J.; Hetru, C.; Ferrandon, D.

    2011-01-01

    To gain an in-depth grasp of infectious processes one has to know the specific interactions between the virulence factors of the pathogen and the host defense mechanisms. A thorough understanding is crucial for identifying potential new drug targets and designing drugs against which the pathogens

  12. High Yield of Pathogenic Germline Mutations Causative or Likely Causative of the Cancer Phenotype in Selected Children with Cancer

    NARCIS (Netherlands)

    Diets, Illja J.; Waanders, Esme; Ligtenberg, Marjolijn J.; van Bladel, Diede A. G.; Kamping, Eveline J.; Hoogerbrugge, Peter M.; Hopman, Saskia; Olderode-Berends, Maran J.; Gerkes, Erica H.; Koolen, David A.; Marcelis, Carlo; Santen, Gijs W.; van Belzen, Martine J.; Mordaunt, Dylan; McGregor, Lesley; Thompson, Elizabeth; Kattamis, Antonis; Pastorczak, Agata; Mlynarski, Wojciech; Ilencikova, Denisa; Vulto-van Silfhout, Anneke; Gardeitchik, Thatjana; de Bont, Eveline S.; Loeffen, Jan; Wagner, Anja; Mensenkamp, Arjen R.; Kuiper, Roland P.; Hoogerbrugge, Nicoline; Jongmans, Marjolijn C.

    2018-01-01

    Purpose: In many children with cancer and characteristics suggestive of a genetic predisposition syndrome, the genetic cause is still unknown. We studied the yield of pathogenic mutations by applying whole-exome sequencing on a selected cohort of children with cancer. Experimental Design: To

  13. Short Rotations in Forest Plantations Accelerate Virulence Evolution in Root-Rot Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Jean-Paul Soularue

    2017-06-01

    Full Text Available As disease outbreaks in forest plantations are causing concern worldwide, a clear understanding of the influence of silvicultural practices on the development of epidemics is still lacking. Importantly, silvicultural practices are likely to simultaneously affect epidemiological and evolutionary dynamics of pathogen populations. We propose a genetically explicit and individual-based model of virulence evolution in a root-rot pathogenic fungus spreading across forest landscapes, taking the Armillaria ostoyae–Pinus pinaster pathosystem as reference. We used the model to study the effects of rotation length on the evolution of virulence and the propagation of the fungus within a forest landscape composed of even-aged stands regularly altered by clear-cutting and thinning operations. The life cycle of the fungus modeled combines asexual and sexual reproduction modes, and also includes parasitic and saprotrophic phases. Moreover, the tree susceptibility to the pathogen is primarily determined by the age of the stand. Our simulations indicated that the shortest rotation length accelerated both the evolution of virulence and the development of the epidemics, whatever the genetic variability in the initial fungal population and the asexuality rate of the fungal species

  14. Marburg Virus Reverse Genetics Systems

    Directory of Open Access Journals (Sweden)

    Kristina Maria Schmidt

    2016-06-01

    Full Text Available The highly pathogenic Marburg virus (MARV is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.

  15. Bacteriophages for detection of bacterial pathogens

    International Nuclear Information System (INIS)

    Kutateladze, M.

    2009-01-01

    The G. Eliava Institute of Bacteriophages, Microbiology and Virology (Tbilisi, Georgia) is one of the most famous institutions focused on bacteriophage research for the elaboration of appropriate phage methodologies for human and animal protection. The main direction of the institute is the study and production of bacteriophages against intestinal disorders (dysentery, typhoid, intesti) and purulent-septic infections (staphylococcus, streptococcus, pyophage, etc.). These preparations were successfully introduced during the Soviet era, and for decades were used throughout the former Soviet Union and in other Socialist countries for the treatment, prophylaxis, and diagnosis of various infectious diseases, including those caused by antibiotic-resistant bacterial strains. Bacteriophages were widely used for identifying and detecting infections caused by the most dangerous pathogens and causative agents of epidemiological outbreaks. The specific topic of this presentation is the phage typing of bacterial species, which can be an important method for epidemiological diagnostics. Together with different genetic methodologies - such as PCR-based methods, PFGE, plasmid fingerprinting, and ribosomal typing - phage typing is one method for identifying bacterial pathogens. The method has a high percentage of determination of phage types, high specificity of reaction, and is easy for interpretation and use by health workers. Phage typing was applied for inter-species differentiation of different species of Salmonella, S. typhi, Brucella spp, Staphylococcus aureus, E. col,i Clostridium deficile, Vibrio cholerae, Yersinia pestis, Yersinia enterocolitica, Lysteria monocytogenes, Clostridium perfringens, Clostridium tetani, plant pathogens, and other bacterial pathogens. In addition to addressing the utility and efficacy of phage typing, the paper will discuss the isolation and selection of diagnostic typing phages for interspecies differentiation of pathogens that is necessary

  16. Monomorphic pathogens: The case of Candidatus Xenohaliotis californiensis from abalone in California, USA and Baja California, Mexico.

    Science.gov (United States)

    Cicala, Francesco; Moore, James D; Cáceres-Martínez, Jorge; Del Río-Portilla, Miguel A; Hernández-Rodríguez, Mónica; Vásquez-Yeomans, Rebeca; Rocha-Olivares, Axayácatl

    2018-05-01

    Withering syndrome (WS) is a chronic wasting disease affecting abalone species attributed to the pathogen Candidatus Xenohaliotis californiensis (CXc). Wild populations of blue (Haliotis fulgens) and yellow (H. corrugata) abalone have experienced unusual mortality rates since 2009 off the peninsula of Baja California and WS has been hypothesized as a possible cause. Currently, little information is available about the genetic diversity of CXc and particularly the possible existence of strains differing in pathogenicity. In a recent phylogenetic analysis, we characterized five coding genes from this rickettsial pathogen. Here, we analyze those genes and two additional intergenic non-coding regions following multi-locus sequence typing (MLST) and multi-spacer typing (MST) approaches to assess the genetic variability of CXc and its relationship with blue, yellow and red (H. rufescens) abalone. Moreover, we used 16S rRNA pyrosequencing reads from gut microbiomes of blue and yellow abalone to complete the genetic characterization of this prokaryote. The presence of CXc was investigated in more than 150 abalone of the three species; furthermore, a total of 385 DNA sequences and 7117 16S rRNA reads from Candidatus Xenohaliotis californiensis were used to evaluate its population genetic structure. Our findings suggest the absence of polymorphism in the DNA sequences of analyzed loci and the presence of a single lineage of CXc infecting abalone from California (USA) and Baja California (Mexico). We posit that the absence of genetic variably in this marine rickettsia may be the result of evolutionary and ecological processes. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. A Spectral Mapping Signature for the Rapid Ohia Death (ROD Pathogen in Hawaiian Forests

    Directory of Open Access Journals (Sweden)

    Gregory P. Asner

    2018-03-01

    Full Text Available Pathogenic invasions are a major source of change in both agricultural and natural ecosystems. In forests, fungal pathogens can kill habitat-generating plant species such as canopy trees, but methods for remote detection, mapping and monitoring of such outbreaks are poorly developed. Two novel species of the fungal genus Ceratocystis have spread rapidly across humid and mesic forests of Hawaiʻi Island, causing widespread mortality of the keystone endemic canopy tree species, Metrosideros polymorpha (common name: ʻōhiʻa. The process, known as Rapid Ohia Death (ROD, causes browning of canopy leaves in weeks to months following infection by the pathogen. An operational mapping approach is needed to track the spread of the disease. We combined field studies of leaf spectroscopy with laboratory chemical studies and airborne remote sensing to develop a spectral signature for ROD. We found that close to 80% of ROD-infected plants undergo marked decreases in foliar concentrations of chlorophyll, water and non-structural carbohydrates, which collectively result in strong consistent changes in leaf spectral reflectance in the visible (400–700 nm and shortwave-infrared (1300–2500 nm wavelength regions. Leaf-level results were replicated at the canopy level using airborne laser-guided imaging spectroscopy, with quantitative spectral separability of normal green-leaf canopies from suspected ROD-infected brown-leaf canopies in the visible and shortwave-infrared spectrum. Our results provide the spectral–chemical basis for detection, mapping and monitoring of the spread of ROD in native Hawaiian forests.

  18. Analysis of Fungicide Sensitivity and Genetic Diversity among Colletotrichum Species in Sweet Persimmon.

    Science.gov (United States)

    Gang, Geun-Hye; Cho, Hyun Ji; Kim, Hye Sun; Kwack, Yong-Bum; Kwak, Youn-Sig

    2015-06-01

    Anthracnose, caused by Colletotrichum gloeosporioides (C. gloeosporioides; Teleomorph: Glomerella cingulata), is the most destructive disease that affects sweet persimmon production worldwide. However, the biology, ecology, and genetic variations of C. gloeosporioides remain largely unknown. Therefore, in this study, the development of fungicide resistance and genetic diversity among an anthracnose pathogen population with different geographical origins and the exposure of this population to different cultivation strategies were investigated. A total of 150 pathogen isolates were tested in fungicide sensitivity assays. Five of the tested fungicides suppressed mycelial pathogen growth effectively. However, there were significant differences in the sensitivities exhibited by the pathogen isolates examined. Interestingly, the isolates obtained from practical management orchards versus organic cultivation orchards showed no differences in sensitivity to the same fungicide. PCR-restriction fragment length polymorphism (RFLP) analyses were performed to detect internal transcribed spacer regions and the β-tubulin and glutamine synthetase genes of the pathogens examined. Both the glutamine synthetase and β-tubulin genes contained a complex set of polymorphisms. Based on these results, the pathogens isolated from organic cultivation orchards were found to have more diversity than the isolates obtained from the practical management orchards.

  19. Analysis of Fungicide Sensitivity and Genetic Diversity among Colletotrichum Species in Sweet Persimmon

    Directory of Open Access Journals (Sweden)

    Geun-Hye Gang

    2015-06-01

    Full Text Available Anthracnose, caused by Colletotrichum gloeosporioides (C. gloeosporioides; Teleomorph: Glomerella cingulata, is the most destructive disease that affects sweet persimmon production worldwide. However, the biology, ecology, and genetic variations of C. gloeosporioides remain largely unknown. Therefore, in this study, the development of fungicide resistance and genetic diversity among an anthracnose pathogen population with different geographical origins and the exposure of this population to different cultivation strategies were investigated. A total of 150 pathogen isolates were tested in fungicide sensitivity assays. Five of the tested fungicides suppressed mycelial pathogen growth effectively. However, there were significant differences in the sensitivities exhibited by the pathogen isolates examined. Interestingly, the isolates obtained from practical management orchards versus organic cultivation orchards showed no differences in sensitivity to the same fungicide. PCR-restriction fragment length polymorphism (RFLP analyses were performed to detect internal transcribed spacer regions and the β-tubulin and glutamine synthetase genes of the pathogens examined. Both the glutamine synthetase and β-tubulin genes contained a complex set of polymorphisms. Based on these results, the pathogens isolated from organic cultivation orchards were found to have more diversity than the isolates obtained from the practical management orchards.

  20. Variation in host and pathogen in the Neonectria/Malus interaction; towards an understanding of the genetic basis of resistance to European canker

    Directory of Open Access Journals (Sweden)

    Antonio Gomez-Cortecero

    2016-09-01

    Full Text Available Apple canker caused by the phytopathogenic fungus Neonectria ditissima is an economically important disease, which has spread in recent years to almost all pome-producing regions of the world. N. ditissima is able to cross-infect a wide range of apple varieties and causes branch and trunk lesions, known as cankers. Most modern apple varieties are susceptible and in extreme cases suffer from high mortality (up to 50% in the early phase of orchard establishment. There is no known race structure of the pathogen and the global level of genetic diversity of the pathogen population is unknown. Resistance breeding is underway in many global breeding programmes, but nevertheless, a total resistance to canker has not yet been demonstrated. Here we present preliminary data from a survey of the phylogenetic relationships between global isolates of N. ditissima which reveals only slight evidence for population structure. In addition we report the results of four rapid screening tests to assess the response to N. ditissima in different apple scion and rootstock varieties, which reveals abundant variation in resistance responses in both cultivar and rootstock material. Further seedling tests show that the segregation patterns of resistance and susceptibility vary widely between crosses. We discuss inconsistencies in test performance with field observations and discuss future research opportunities in this area.

  1. Antigenic, genetic, and pathogenic characterization of H5N1 highly pathogenic avian influenza viruses isolated from dead whooper swans (Cygnus cygnus) found in northern Japan in 2008.

    Science.gov (United States)

    Okamatsu, Masatoshi; Tanaka, Tomohisa; Yamamoto, Naoki; Sakoda, Yoshihiro; Sasaki, Takashi; Tsuda, Yoshimi; Isoda, Norikazu; Kokumai, Norihide; Takada, Ayato; Umemura, Takashi; Kida, Hiroshi

    2010-12-01

    In April and May 2008, whooper swans (Cygnus cygnus) were found dead in Hokkaido in Japan. In this study, an adult whooper swan found dead beside Lake Saroma was pathologically examined and the identified H5N1 influenza virus isolates were genetically and antigenically analyzed. Pathological findings indicate that the swan died of severe congestive edema in the lungs. Phylogenetic analysis of the HA genes of the isolates revealed that they are the progeny viruses of isolates from poultry and wild birds in China, Russia, Korea, and Hong Kong. Antigenic analyses indicated that the viruses are distinguished from the H5N1 viruses isolated from wild birds and poultry before 2007. The chickens vaccinated with A/duck/Hokkaido/Vac-1/2004 (H5N1) survived for 14 days after challenge with A/whooper swan/Hokkaido/1/2008 (H5N1), although a small amount of the challenge virus was recovered from the tissues of the birds. These findings indicate that H5N1 highly pathogenic avian influenza viruses are circulating in wild birds in addition to domestic poultry in Asia and exhibit antigenic variation that may be due to vaccination.

  2. The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations

    Directory of Open Access Journals (Sweden)

    Remco Stam

    2017-01-01

    Full Text Available Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp. and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.

  3. The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations

    Science.gov (United States)

    Scheikl, Daniela; Tellier, Aurélien

    2017-01-01

    Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved. PMID:28133579

  4. Prevalence of pathogenic germline variants detected by multigene sequencing in unselected Japanese patients with ovarian cancer.

    Science.gov (United States)

    Hirasawa, Akira; Imoto, Issei; Naruto, Takuya; Akahane, Tomoko; Yamagami, Wataru; Nomura, Hiroyuki; Masuda, Kiyoshi; Susumu, Nobuyuki; Tsuda, Hitoshi; Aoki, Daisuke

    2017-12-22

    Pathogenic germline BRCA1 , BRCA2 ( BRCA1/2 ), and several other gene variants predispose women to primary ovarian, fallopian tube, and peritoneal carcinoma (OC), although variant frequency and relevance information is scarce in Japanese women with OC. Using targeted panel sequencing, we screened 230 unselected Japanese women with OC from our hospital-based cohort for pathogenic germline variants in 75 or 79 OC-associated genes. Pathogenic variants of 11 genes were identified in 41 (17.8%) women: 19 (8.3%; BRCA1 ), 8 (3.5%; BRCA2 ), 6 (2.6%; mismatch repair genes), 3 (1.3%; RAD51D ), 2 (0.9%; ATM ), 1 (0.4%; MRE11A ), 1 ( FANCC ), and 1 ( GABRA6 ). Carriers of BRCA1/2 or any other tested gene pathogenic variants were more likely to be diagnosed younger, have first or second-degree relatives with OC, and have OC classified as high-grade serous carcinoma (HGSC). After adjustment for these variables, all 3 features were independent predictive factors for pathogenic variants in any tested genes whereas only the latter two remained for variants in BRCA1/2 . Our data indicate similar variant prevalence in Japanese patients with OC and other ethnic groups and suggest that HGSC and OC family history may facilitate genetic predisposition prediction in Japanese patients with OC and referring high-risk patients for genetic counseling and testing.

  5. High Yield of Pathogenic Germline Mutations Causative or Likely Causative of the Cancer Phenotype in Selected Children with Cancer

    NARCIS (Netherlands)

    Diets, I.J.; Waanders, E.; Ligtenberg, M.J.L.; Bladel, D.A.G. van; Kamping, E.J.; Hoogerbrugge, P.M.; Hopman, S.; Olderode-Berends, M.J.; Gerkes, E.H.; Koolen, D.A.; Marcelis, C.L.; Santen, G.W.E.; Belzen, M.J. van; Mordaunt, D.; McGregor, L.; Thompson, E.; Kattamis, A.; Pastorczak, A.; Mlynarski, W.; Ilencikova, D.; Vulto-van Silfhout, A.T.; Gardeitchik, T.; Bont, E.S. de; Loeffen, J.; Wagner, A.; Mensenkamp, A.R.; Kuiper, R.P.; Hoogerbrugge, N.; Jongmans, M.C.

    2018-01-01

    Purpose: In many children with cancer and characteristics suggestive of a genetic predisposition syndrome, the genetic cause is still unknown. We studied the yield of pathogenic mutations by applying whole-exome sequencing on a selected cohort of children with cancer.Experimental Design: To identify

  6. Conservation and restoration of forest trees impacted by non-native pathogens: the role of genetics and tree improvement

    Science.gov (United States)

    R.A. Sniezko; L.A. Winn

    2017-01-01

    North American native tree species in forest ecosystems, as well as managed forests and urban plantings, are being severely impacted by pathogens and insects. The impacts of these pathogens and insects often increase over time, and they are particularly acute for those species affected by non-native pathogens and insects. For restoration of affected tree species or for...

  7. Evolutionary history of the plant pathogenic bacterium Xanthomonas axonopodis.

    Directory of Open Access Journals (Sweden)

    Nadia Mhedbi-Hajri

    Full Text Available Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes--geographical and ecological speciation--that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25,000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.

  8. Genetic Evidence for Modifying Oceanic Boundaries Relative to Fiji.

    Science.gov (United States)

    Shipley, Gerhard P; Taylor, Diana A; N'Yeurt, Antoine D R; Tyagi, Anand; Tiwari, Geetanjali; Redd, Alan J

    2016-07-01

    We present the most comprehensive genetic characterization to date of five Fijian island populations: Viti Levu, Vanua Levu, Kadavu, the Lau Islands, and Rotuma, including nonrecombinant Y (NRY) chromosome and mitochondrial DNA (mtDNA) haplotypes and haplogroups. As a whole, Fijians are genetically intermediate between Melanesians and Polynesians, but the individual Fijian island populations exhibit significant genetic structure reflecting different settlement experiences in which the Rotumans and the Lau Islanders were more influenced by Polynesians, and the other Fijian island populations were more influenced by Melanesians. In particular, Rotuman and Lau Islander NRY chromosomal and mtDNA haplogroup frequencies and Rotuman mtDNA hypervariable segment 1 region haplotypes more closely resemble those of Polynesians, while genetic markers of the other populations more closely resemble those of the Near Oceanic Melanesians. Our findings provide genetic evidence supportive of modifying regional boundaries relative to Fiji, as has been suggested by others based on a variety of nongenetic evidence. Specifically, for the traditional Melanesia/Polynesia/Micronesia scheme, our findings support moving the Melanesia-Polynesia boundary to include Rotuma and the Lau Islands in Polynesia. For the newer Near/Remote Oceania scheme, our findings support keeping Rotuma and the Lau Islands in Remote Oceania and locating the other Fijian island populations in an intermediate or "Central Oceania" region to better reflect the great diversity of Oceania.

  9. The complex biogeography of the plant pathogen Xylella fastidiosa: genetic evidence of introductions and Subspecific introgression in Central America.

    Science.gov (United States)

    Nunney, Leonard; Ortiz, Beatriz; Russell, Stephanie A; Ruiz Sánchez, Rebeca; Stouthamer, Richard

    2014-01-01

    The bacterium Xylella fastidiosa is a plant pathogen with a history of economically damaging introductions of subspecies to regions where its other subspecies are native. Genetic evidence is presented demonstrating the introduction of two new taxa into Central America and their introgression into the native subspecies, X. fastidiosa subsp. fastidiosa. The data are from 10 genetic outliers detected by multilocus sequence typing (MLST) of isolates from Costa Rica. Six (five from oleander, one from coffee) defined a new sequence type (ST53) that carried alleles at six of the eight loci sequenced (five of the seven MLST loci) diagnostic of the South American subspecies Xylella fastidiosa subsp. pauca which causes two economically damaging plant diseases, citrus variegated chlorosis and coffee leaf scorch. The two remaining loci of ST53 carried alleles from what appears to be a new South American form of X. fastidiosa. Four isolates, classified as X. fastidiosa subsp. fastidiosa, showed a low level of introgression of non-native DNA. One grapevine isolate showed introgression of an allele from X. fastidiosa subsp. pauca while the other three (from citrus and coffee) showed introgression of an allele with similar ancestry to the alleles of unknown origin in ST53. The presence of X. fastidiosa subsp. pauca in Central America is troubling given its disease potential, and establishes another route for the introduction of this economically damaging subspecies into the US or elsewhere, a threat potentially compounded by the presence of a previously unknown form of X. fastidiosa.

  10. The complex biogeography of the plant pathogen Xylella fastidiosa: genetic evidence of introductions and Subspecific introgression in Central America.

    Directory of Open Access Journals (Sweden)

    Leonard Nunney

    Full Text Available The bacterium Xylella fastidiosa is a plant pathogen with a history of economically damaging introductions of subspecies to regions where its other subspecies are native. Genetic evidence is presented demonstrating the introduction of two new taxa into Central America and their introgression into the native subspecies, X. fastidiosa subsp. fastidiosa. The data are from 10 genetic outliers detected by multilocus sequence typing (MLST of isolates from Costa Rica. Six (five from oleander, one from coffee defined a new sequence type (ST53 that carried alleles at six of the eight loci sequenced (five of the seven MLST loci diagnostic of the South American subspecies Xylella fastidiosa subsp. pauca which causes two economically damaging plant diseases, citrus variegated chlorosis and coffee leaf scorch. The two remaining loci of ST53 carried alleles from what appears to be a new South American form of X. fastidiosa. Four isolates, classified as X. fastidiosa subsp. fastidiosa, showed a low level of introgression of non-native DNA. One grapevine isolate showed introgression of an allele from X. fastidiosa subsp. pauca while the other three (from citrus and coffee showed introgression of an allele with similar ancestry to the alleles of unknown origin in ST53. The presence of X. fastidiosa subsp. pauca in Central America is troubling given its disease potential, and establishes another route for the introduction of this economically damaging subspecies into the US or elsewhere, a threat potentially compounded by the presence of a previously unknown form of X. fastidiosa.

  11. Does genetic diversity hinder parasite evolution in social insect colonies?

    DEFF Research Database (Denmark)

    Hughes, William Owen Hamar; Boomsma, Jacobus Jan

    2006-01-01

    of host genetic diversity on parasite evolution by carrying out serial passages of a virulent fungal pathogen through leaf-cutting ant workers of known genotypes. Parasite virulence increased over the nine-generation span of the experiment while spore production decreased. The effect of host relatedness...... upon virulence appeared limited. However, parasites cycled through more genetically diverse hosts were more likely to go extinct during the experiment and parasites cycled through more genetically similar hosts had greater spore production. These results indicate that host genetic diversity may indeed...

  12. Comparison and optimization of in silico algorithms for predicting the pathogenicity of sodium channel variants in epilepsy.

    Science.gov (United States)

    Holland, Katherine D; Bouley, Thomas M; Horn, Paul S

    2017-07-01

    Variants in neuronal voltage-gated sodium channel α-subunits genes SCN1A, SCN2A, and SCN8A are common in early onset epileptic encephalopathies and other autosomal dominant childhood epilepsy syndromes. However, in clinical practice, missense variants are often classified as variants of uncertain significance when missense variants are identified but heritability cannot be determined. Genetic testing reports often include results of computational tests to estimate pathogenicity and the frequency of that variant in population-based databases. The objective of this work was to enhance clinicians' understanding of results by (1) determining how effectively computational algorithms predict epileptogenicity of sodium channel (SCN) missense variants; (2) optimizing their predictive capabilities; and (3) determining if epilepsy-associated SCN variants are present in population-based databases. This will help clinicians better understand the results of indeterminate SCN test results in people with epilepsy. Pathogenic, likely pathogenic, and benign variants in SCNs were identified using databases of sodium channel variants. Benign variants were also identified from population-based databases. Eight algorithms commonly used to predict pathogenicity were compared. In addition, logistic regression was used to determine if a combination of algorithms could better predict pathogenicity. Based on American College of Medical Genetic Criteria, 440 variants were classified as pathogenic or likely pathogenic and 84 were classified as benign or likely benign. Twenty-eight variants previously associated with epilepsy were present in population-based gene databases. The output provided by most computational algorithms had a high sensitivity but low specificity with an accuracy of 0.52-0.77. Accuracy could be improved by adjusting the threshold for pathogenicity. Using this adjustment, the Mendelian Clinically Applicable Pathogenicity (M-CAP) algorithm had an accuracy of 0.90 and a

  13. Polymorphic DNA sequences of the fungal honey bee pathogen Ascosphaera apis

    DEFF Research Database (Denmark)

    Jensen, Annette B; Welker, Dennis L; Kryger, Per

    2012-01-01

    The pathogenic fungus Ascosphaera apis is ubiquitous in honey bee populations. We used the draft genome assembly of this pathogen to search for polymorphic intergenic loci that could be used to differentiate haplotypes. Primers were developed for five such loci, and the species specificities were...... verified using DNA from nine closely related species. The sequence variation was compared among 12 A. apis isolates at each of these loci, and two additional loci, the internal transcribed spacer of the ribosomal RNA (ITS) and a variable part of the elongation factor 1α (Ef1α). The degree of variation...... was then compared among the different loci, and three were found to have the greatest detection power for identifying A. apis haplotypes. The described loci can help to resolve strain differences and population genetic structures, to elucidate host–pathogen interaction and to test evolutionary hypotheses...

  14. Remote sensing of suspended sediment water research: principles, methods, and progress

    Science.gov (United States)

    Shen, Ping; Zhang, Jing

    2011-12-01

    In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.

  15. Generalizing genetical genomics: getting added value from environmental perturbation.

    Science.gov (United States)

    Li, Yang; Breitling, Rainer; Jansen, Ritsert C

    2008-10-01

    Genetical genomics is a useful approach for studying the effect of genetic perturbations on biological systems at the molecular level. However, molecular networks depend on the environmental conditions and, thus, a comprehensive understanding of biological systems requires studying them across multiple environments. We propose a generalization of genetical genomics, which combines genetic and sensibly chosen environmental perturbations, to study the plasticity of molecular networks. This strategy forms a crucial step toward understanding why individuals respond differently to drugs, toxins, pathogens, nutrients and other environmental influences. Here we outline a strategy for selecting and allocating individuals to particular treatments, and we discuss the promises and pitfalls of the generalized genetical genomics approach.

  16. Genetic Architecture of Group A Streptococcal Necrotizing Soft Tissue Infections in the Mouse

    DEFF Research Database (Denmark)

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Alagarsamy, Jeyashree

    2016-01-01

    Host genetic variations play an important role in several pathogenic diseases, and we have previously provided strong evidences that these genetic variations contribute significantly to differences in susceptibility and clinical outcomes of invasive Group A Streptococcus (GAS) infections, includi...

  17. Impact of the mitochondrial genetic background in complex III deficiency.

    Directory of Open Access Journals (Sweden)

    Mari Carmen Gil Borlado

    Full Text Available BACKGROUND: In recent years clinical evidence has emphasized the importance of the mtDNA genetic background that hosts a primary pathogenic mutation in the clinical expression of mitochondrial disorders, but little experimental confirmation has been provided. We have analyzed the pathogenic role of a novel homoplasmic mutation (m.15533 A>G in the cytochrome b (MT-CYB gene in a patient presenting with lactic acidosis, seizures, mild mental delay, and behaviour abnormalities. METHODOLOGY: Spectrophotometric analyses of the respiratory chain enzyme activities were performed in different tissues, the whole muscle mitochondrial DNA of the patient was sequenced, and the novel mutation was confirmed by PCR-RFLP. Transmitochondrial cybrids were constructed to confirm the pathogenicity of the mutation, and assembly/stability studies were carried out in fibroblasts and cybrids by means of mitochondrial translation inhibition in combination with blue native gel electrophoresis. PRINCIPAL FINDINGS: Biochemical analyses revealed a decrease in respiratory chain complex III activity in patient's skeletal muscle, and a combined enzyme defect of complexes III and IV in fibroblasts. Mutant transmitochondrial cybrids restored normal enzyme activities and steady-state protein levels, the mutation was mildly conserved along evolution, and the proband's mother and maternal aunt, both clinically unaffected, also harboured the homoplasmic mutation. These data suggested a nuclear genetic origin of the disease. However, by forcing the de novo functioning of the OXPHOS system, a severe delay in the biogenesis of the respiratory chain complexes was observed in the mutants, which demonstrated a direct functional effect of the mitochondrial genetic background. CONCLUSIONS: Our results point to possible pitfalls in the detection of pathogenic mitochondrial mutations, and highlight the role of the genetic mtDNA background in the development of mitochondrial disorders.

  18. Molecular Diversity of Anthracnose Pathogen Populations Associated with UK Strawberry Production Suggests Multiple Introductions of Three Different Colletotrichum Species

    Science.gov (United States)

    Baroncelli, Riccardo; Zapparata, Antonio; Sarrocco, Sabrina; Sukno, Serenella A.; Lane, Charles R.; Thon, Michael R.; Vannacci, Giovanni; Holub, Eric; Sreenivasaprasad, Surapareddy

    2015-01-01

    Fragaria × ananassa (common name: strawberry) is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l.) is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production. PMID:26086351

  19. Molecular Diversity of Anthracnose Pathogen Populations Associated with UK Strawberry Production Suggests Multiple Introductions of Three Different Colletotrichum Species.

    Directory of Open Access Journals (Sweden)

    Riccardo Baroncelli

    Full Text Available Fragaria × ananassa (common name: strawberry is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l. is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production.

  20. Immunogenetic variation and differential pathogen exposure in free-ranging cheetahs across Namibian farmlands.

    Directory of Open Access Journals (Sweden)

    Aines Castro-Prieto

    Full Text Available Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses and extracellular (e.g. helminths origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs.Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found.Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species.

  1. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens

    Science.gov (United States)

    Kiryluk, Krzysztof; Li, Yifu; Scolari, Francesco; Sanna-Cherchi, Simone; Choi, Murim; Verbitsky, Miguel; Fasel, David; Lata, Sneh; Prakash, Sindhuri; Shapiro, Samantha; Fischman, Clara; Snyder, Holly J.; Appel, Gerald; Izzi, Claudia; Viola, Battista Fabio; Dallera, Nadia; Vecchio, Lucia Del; Barlassina, Cristina; Salvi, Erika; Bertinetto, Francesca Eleonora; Amoroso, Antonio; Savoldi, Silvana; Rocchietti, Marcella; Amore, Alessandro; Peruzzi, Licia; Coppo, Rosanna; Salvadori, Maurizio; Ravani, Pietro; Magistroni, Riccardo; Ghiggeri, Gian Marco; Caridi, Gianluca; Bodria, Monica; Lugani, Francesca; Allegri, Landino; Delsante, Marco; Maiorana, Mariarosa; Magnano, Andrea; Frasca, Giovanni; Boer, Emanuela; Boscutti, Giuliano; Ponticelli, Claudio; Mignani, Renzo; Marcantoni, Carmelita; Di Landro, Domenico; Santoro, Domenico; Pani, Antonello; Polci, Rosaria; Feriozzi, Sandro; Chicca, Silvana; Galliani, Marco; Gigante, Maddalena; Gesualdo, Loreto; Zamboli, Pasquale; Maixnerová, Dita; Tesar, Vladimir; Eitner, Frank; Rauen, Thomas; Floege, Jürgen; Kovacs, Tibor; Nagy, Judit; Mucha, Krzysztof; Pączek, Leszek; Zaniew, Marcin; Mizerska-Wasiak, Małgorzata; Roszkowska-Blaim, Maria; Pawlaczyk, Krzysztof; Gale, Daniel; Barratt, Jonathan; Thibaudin, Lise; Berthoux, Francois; Canaud, Guillaume; Boland, Anne; Metzger, Marie; Panzer, Ulf; Suzuki, Hitoshi; Goto, Shin; Narita, Ichiei; Caliskan, Yasar; Xie, Jingyuan; Hou, Ping; Chen, Nan; Zhang, Hong; Wyatt, Robert J.; Novak, Jan; Julian, Bruce A.; Feehally, John; Stengel, Benedicte; Cusi, Daniele; Lifton, Richard P.; Gharavi, Ali G.

    2014-01-01

    We performed a genome-wide association study (GWAS) of IgA nephropathy (IgAN), the most common form of glomerulonephritis, with discovery and follow-up in 20,612 individuals of European and East Asian ancestry. We identified six novel genome-wide significant associations, four in ITGAM-ITGAX, VAV3 and CARD9 and two new independent signals at HLA-DQB1 and DEFA. We replicated the nine previously reported signals, including known SNPs in the HLA-DQB1 and DEFA loci. The cumulative burden of risk alleles is strongly associated with age at disease onset. Most loci are either directly associated with risk of inflammatory bowel disease (IBD) or maintenance of the intestinal epithelial barrier and response to mucosal pathogens. The geo-spatial distribution of risk alleles is highly suggestive of multi-locus adaptation and the genetic risk correlates strongly with variation in local pathogens, particularly helminth diversity, suggesting a possible role for host-intestinal pathogen interactions in shaping the genetic landscape of IgAN. PMID:25305756

  2. Quantitative trait loci for resistance to two fungal pathogens in Quercus robur

    Science.gov (United States)

    Cécile Robin; Amira Mougou-Hamdane; Jean-Marc Gion; Antoine Kremer; Marie-Laure. Desprez-Loustau

    2012-01-01

    Powdery mildew, caused by Erysiphe alphitoides (Ascomycete), is the most frequent disease of oaks, which are also known to be host plants for Phytophthora cinnamomi (Oomycete), the causal agent of ink disease. Components of genetic resistance to these two pathogens, infecting either leaves or root and collar, were...

  3. Genetic determinants of heart failure: facts and numbers.

    Science.gov (United States)

    Czepluch, Frauke S; Wollnik, Bernd; Hasenfuß, Gerd

    2018-06-01

    The relevance of gene mutations leading to heart diseases and hence heart failure has become evident. The risk for and the course of heart failure depends on genomic variants and mutations underlying the so-called genetic predisposition. Genetic contribution to heart failure is highly heterogenous and complex. For any patient with a likely inherited heart failure syndrome, genetic counselling is recommended and important. In the last few years, novel sequencing technologies (named next-generation sequencing - NGS) have dramatically improved the availability of molecular testing, the efficiency of genetic analyses, and moreover reduced the cost for genetic testing. Due to this development, genetic testing has become increasingly accessible and NGS-based sequencing is now applied in clinical routine diagnostics. One of the most common reasons of heart failure are cardiomyopathies such as the dilated or the hypertrophic cardiomyopathy. Nearly 100 disease-associated genes have been identified for cardiomyopathies. The knowledge of a pathogenic mutation can be used for genetic counselling, risk and prognosis determination, therapy guidance and hence for a more effective treatment. Besides, family cascade screening for a known familial, pathogenic mutation can lead to an early diagnosis in affected individuals. At that timepoint, a preventative intervention could be used to avoid or delay disease onset or delay disease progression. Understanding the cellular basis of genetic heart failure syndromes in more detail may provide new insights into the molecular biology of physiological and impaired cardiac (cell) function. As our understanding of the molecular and genetic pathophysiology of heart failure will increase, this might help to identify novel therapeutic targets and may lead to the development of new and specific treatment options in patients with heart failure. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European

  4. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis

    DEFF Research Database (Denmark)

    Carlton, Jane M.; Hirt, Robert P.; Silva, Joana C.

    2007-01-01

    We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion...... environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria....

  5. Transcriptional plant responses critical for resistance towards necrotrophic pathogens

    Directory of Open Access Journals (Sweden)

    Rainer P. Birkenbihl

    2011-11-01

    Full Text Available Plant defenses aimed at necrotrophic pathogens appear to be genetically complex. Despite the apparent lack of a specific recognition of such necrotrophs by products of major R genes, biochemical, molecular, and genetic studies, in particular using the model plant Arabidopsis, have uncovered numerous host components critical for the outcome of such interactions. Although the JA signaling pathway plays a central role in plant defense towards necrotrophs additional signaling pathways contribute to the plant response network. Transcriptional reprogramming is a vital part of the host defense machinery and several key regulators have recently been identified. Some of these transcription factors positively affect plant resistance whereas others play a role in enhancing host susceptibility towards these phytopathogens.

  6. [Progress in research on pathogenic genes and gene therapy for inherited retinal diseases].

    Science.gov (United States)

    Zhu, Ling; Cao, Cong; Sun, Jiji; Gao, Tao; Liang, Xiaoyang; Nie, Zhipeng; Ji, Yanchun; Jiang, Pingping; Guan, Minxin

    2017-02-10

    Inherited retinal diseases (IRDs), including retinitis pigmentosa, Usher syndrome, Cone-Rod degenerations, inherited macular dystrophy, Leber's congenital amaurosis, Leber's hereditary optic neuropathy are the most common and severe types of hereditary ocular diseases. So far more than 200 pathogenic genes have been identified. With the growing knowledge of the genetics and mechanisms of IRDs, a number of gene therapeutic strategies have been developed in the laboratory or even entered clinical trials. Here the progress of IRD research on the pathogenic genes and therapeutic strategies, particularly gene therapy, are reviewed.

  7. Determinants of Virulence and In Vitro Development Colocalize on a Genetic Map of Setosphaeria turcica.

    Science.gov (United States)

    Mideros, Santiago X; Chung, Chia-Lin; Wiesner-Hanks, Tyr; Poland, Jesse A; Wu, Dongliang; Fialko, Ariel A; Turgeon, B Gillian; Nelson, Rebecca J

    2018-02-01

    Generating effective and stable strategies for resistance breeding requires an understanding of the genetics of host-pathogen interactions and the implications for pathogen dynamics and evolution. Setosphaeria turcica causes northern leaf blight (NLB), an important disease of maize for which major resistance genes have been deployed. Little is known about the evolutionary dynamics of avirulence (AVR) genes in S. turcica. To test the hypothesis that there is a genetic association between avirulence and in vitro development traits, we (i) created a genetic map of S. turcica, (ii) located candidate AVRHt1 and AVRHt2 regions, and (iii) identified genetic regions associated with several in vitro development traits. A cross was generated between a race 1 and a race 23N strain, and 221 progeny were isolated. Genotyping by sequencing was used to score 2,078 single-nucleotide polymorphism markers. A genetic map spanning 1,981 centimorgans was constructed, consisting of 21 linkage groups. Genetic mapping extended prior evidence for the location and identity of the AVRHt1 gene and identified a region of interest for AVRHt2. The genetic location of AVRHt2 colocalized with loci influencing radial growth and mycelial abundance. Our data suggest a trade-off between virulence on Ht1 and Ht2 and the pathogen's vegetative growth rate. In addition, in-depth analysis of the genotypic data suggests the presence of significant duplication in the genome of S. turcica.

  8. Genetic epidemiology of the Sudden Oak Death pathogen Phytophthora ramorum in California

    Science.gov (United States)

    S. Mascheretti; P.J.P. Croucher; M. Kozanitas; L. Baker; M. Garbelotto

    2009-01-01

    A total of 669 isolates of Phytophthora ramorum, the pathogen responsible for Sudden Oak Death, were collected from 34 Californian forests and from the ornamental plant-trade. Seven microsatellite markers revealed 82 multilocus genotypes (MGs) of which only three were abundant (>10%). Iteratively collapsing based upon minimum ΦST, yielded five meta-samples and five...

  9. Automatic Tracking Of Remote Sensing Precipitation Data Using Genetic Algorithm Image Registration Based Automatic Morphing: September 1999 Storm Floyd Case Study

    Science.gov (United States)

    Chiu, L.; Vongsaard, J.; El-Ghazawi, T.; Weinman, J.; Yang, R.; Kafatos, M.

    U Due to the poor temporal sampling by satellites, data gaps exist in satellite derived time series of precipitation. This poses a challenge for assimilating rain- fall data into forecast models. To yield a continuous time series, the classic image processing technique of digital image morphing has been used. However, the digital morphing technique was applied manually and that is time consuming. In order to avoid human intervention in the process, an automatic procedure for image morphing is needed for real-time operations. For this purpose, Genetic Algorithm Based Image Registration Automatic Morphing (GRAM) model was developed and tested in this paper. Specifically, automatic morphing technique was integrated with Genetic Algo- rithm and Feature Based Image Metamorphosis technique to fill in data gaps between satellite coverage. The technique was tested using NOWRAD data which are gener- ated from the network of NEXRAD radars. Time series of NOWRAD data from storm Floyd that occurred at the US eastern region on September 16, 1999 for 00:00, 01:00, 02:00,03:00, and 04:00am were used. The GRAM technique was applied to data col- lected at 00:00 and 04:00am. These images were also manually morphed. Images at 01:00, 02:00 and 03:00am were interpolated from the GRAM and manual morphing and compared with the original NOWRAD rainrates. The results show that the GRAM technique outperforms manual morphing. The correlation coefficients between the im- ages generated using manual morphing are 0.905, 0.900, and 0.905 for the images at 01:00, 02:00,and 03:00 am, while the corresponding correlation coefficients are 0.946, 0.911, and 0.913, respectively, based on the GRAM technique. Index terms ­ Remote Sensing, Image Registration, Hydrology, Genetic Algorithm, Morphing, NEXRAD

  10. pH Dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum

    Science.gov (United States)

    The devastating plant pathogen Sclerotinia sclerotiorum produces copious (up to 50mM) amounts of oxalic acid, which, for over a quarter century, has been claimed as the pathogenicity determinant based on UV-induced mutants that concomitantly lost oxalate production and pathogenicity. Such a claim wa...

  11. Balancing Selection at the Tomato RCR3 Guardee Gene Family Maintains Variation in Strength of Pathogen Defense

    Science.gov (United States)

    Hörger, Anja C.; Ilyas, Muhammad; Stephan, Wolfgang; Tellier, Aurélien; van der Hoorn, Renier A. L.; Rose, Laura E.

    2012-01-01

    Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant–pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the “Guard-Hypothesis,” R proteins (the “guards”) can sense modification of target molecules in the host (the “guardees”) by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the “guardee-effector” interface for pathogen recognition, natural selection acts on the “guard-guardee” interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto

  12. Balancing selection at the tomato RCR3 Guardee gene family maintains variation in strength of pathogen defense.

    Directory of Open Access Journals (Sweden)

    Anja C Hörger

    Full Text Available Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors and host resistance genes such as the major histocompatibility complex (MHC in mammals or resistance (R genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the "Guard-Hypothesis," R proteins (the "guards" can sense modification of target molecules in the host (the "guardees" by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3 and its guard (Cf-2. We conclude that, in addition to coevolution at the "guardee-effector" interface for pathogen recognition, natural selection acts on the "guard-guardee" interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in

  13. Genetic Data Provide Evidence for Wind-Mediated Transmission of Highly Pathogenic Avian Influenza

    NARCIS (Netherlands)

    Ypma, R.J.F.; Jonges, M.; Bataille, A.M.A.; Stegeman, J.A.; Koch, G.; van Boven, R.M.; Koopmans, M.; van Ballegooijen, W.M.; Wallinga, J.

    2013-01-01

    Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a public health threat. Development of efficient containment measures requires an understanding of how these influenza viruses are transmitted between farms. However, the actual mechanisms of

  14. Genetic correlations between pathogen-specific mastitis and somatic cell count in Danish Holsteins

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Mark, Thomas; Madsen, P.

    2009-01-01

    _170) or 300 d (LASCC_300) after calving, and the mastitis traits were unspecific mastitis (all mastitis treatments, both clinical and subclinical, regardless of the causative pathogen) and mastitis caused by either Streptococcus dysgalactiae, Escherichia coli, coagulase-negative staphylococci (CNS...

  15. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    Science.gov (United States)

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  16. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    Science.gov (United States)

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  17. MODELING HOST-PATHOGEN INTERACTIONS: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS FOR INFECTIOUS DISEASE RESEARCH (Session introduction)

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Braun, Pascal; Bonneau, Richard A.; Hyduke, Daniel R.

    2011-12-01

    Pathogenic infections are a major cause of both human disease and loss of crop yields and animal stocks and thus cause immense damage to the worldwide economy. The significance of infectious diseases is expected to increase in an ever more connected warming world, in which new viral, bacterial and fungal pathogens can find novel hosts and ecologic niches. At the same time, the complex and sophisticated mechanisms by which diverse pathogenic agents evade defense mechanisms and subvert their hosts networks to suit their lifestyle needs is still very incompletely understood especially from a systems perspective [1]. Thus, understanding host-pathogen interactions is both an important and a scientifically fascinating topic. Recently, technology has offered the opportunity to investigate host-pathogen interactions on a level of detail and scope that offers immense computational and analytical possibilities. Genome sequencing was pioneered on some of these pathogens, and the number of strains and variants of pathogens sequenced to date vastly outnumbers the number of host genomes available. At the same time, for both plant and human hosts more and more data on population level genomic variation becomes available and offers a rich field for analysis into the genetic interactions between host and pathogen.

  18. Remediating Viking Origins: Genetic Code as Archival Memory of the Remote Past.

    Science.gov (United States)

    Scully, Marc; King, Turi; Brown, Steven D

    2013-10-01

    This article introduces some early data from the Leverhulme Trust-funded research programme, 'The Impact of the Diasporas on the Making of Britain: evidence, memories, inventions'. One of the interdisciplinary foci of the programme, which incorporates insights from genetics, history, archaeology, linguistics and social psychology, is to investigate how genetic evidence of ancestry is incorporated into identity narratives. In particular, we investigate how 'applied genetic history' shapes individual and familial narratives, which are then situated within macro-narratives of the nation and collective memories of immigration and indigenism. It is argued that the construction of genetic evidence as a 'gold standard' about 'where you really come from' involves a remediation of cultural and archival memory, in the construction of a 'usable past'. This article is based on initial questionnaire data from a preliminary study of those attending DNA collection sessions in northern England. It presents some early indicators of the perceived importance of being of Viking descent among participants, notes some emerging patterns and considers the implications for contemporary debates on migration, belonging and local and national identity.

  19. Molecular Genetics of Beauveria bassiana Infection of Insects.

    Science.gov (United States)

    Ortiz-Urquiza, A; Keyhani, N O

    2016-01-01

    Research on the insect pathogenic filamentous fungus, Beauveria bassiana has witnessed significant growth in recent years from mainly physiological studies related to its insect biological control potential, to addressing fundamental questions regarding the underlying molecular mechanisms of fungal development and virulence. This has been in part due to a confluence of robust genetic tools and genomic resources for the fungus, and recognition of expanded ecological interactions with which the fungus engages. Beauveria bassiana is a broad host range insect pathogen that has the ability to form intimate symbiotic relationships with plants. Indeed, there is an increasing realization that the latter may be the predominant environmental interaction in which the fungus participates, and that insect parasitism may be an opportunist lifestyle evolved due to the carbon- and nitrogen-rich resources present in insect bodies. Here, we will review progress on the molecular genetics of B. bassiana, which has largely been directed toward identifying genetic pathways involved in stress response and virulence assumed to have practical applications in improving the insect control potential of the fungus. Important strides have also been made in understanding aspects of B. bassiana development. Finally, although increasingly apparent in a number of studies, there is a need for progressing beyond phenotypic mutant characterization to sufficiently investigate the molecular mechanisms underlying B. bassiana's unique and diverse lifestyles as saprophyte, insect pathogen, and plant mutualist. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Genetic variation underlying resistance to infectious hematopoietic necrosis virus in a steelhead trout (Oncorhynchus mykiss) population

    Science.gov (United States)

    Brieuc, Marine S. O.; Purcell, Maureen K.; Palmer, Alexander D.; Naish, Kerry A.

    2015-01-01

    Understanding the mechanisms of host resistance to pathogens will allow insights into the response of wild populations to the emergence of new pathogens. Infectious hematopoietic necrosis virus (IHNV) is endemic to the Pacific Northwest and infectious to Pacific salmon and trout (Oncorhynchus spp.). Emergence of the M genogroup of IHNV in steelhead trout O. mykiss in the coastal streams of Washington State, between 2007 and 2011, was geographically heterogeneous. Differences in host resistance due to genetic change were hypothesized to be a factor influencing the IHNV emergence patterns. For example, juvenile steelhead trout losses at the Quinault National Fish Hatchery (QNFH) were much lower than those at a nearby facility that cultures a stock originally derived from the same source population. Using a classical quantitative genetic approach, we determined the potential for the QNFH steelhead trout population to respond to selection caused by the pathogen, by estimating the heritability for 2 traits indicative of IHNV resistance, mortality (h2 = 0.377 (0.226 - 0.550)) and days to death (h2 = 0.093 (0.018 - 0.203)). These results confirm that there is a genetic basis for resistance and that this population has the potential to adapt to IHNV. Additionally, genetic correlation between days to death and fish length suggests a correlated response in these traits to selection. Reduction of genetic variation, as well as the presence or absence of resistant alleles, could affect the ability of populations to adapt to the pathogen. Identification of the genetic basis for IHNV resistance could allow the assessment of the susceptibility of other steelhead populations.

  1. The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish potato famine pathogen, P. infestans.

    Directory of Open Access Journals (Sweden)

    Erica M Goss

    Full Text Available Emerging plant pathogens have largely been a consequence of the movement of pathogens to new geographic regions. Another documented mechanism for the emergence of plant pathogens is hybridization between individuals of different species or subspecies, which may allow rapid evolution and adaptation to new hosts or environments. Hybrid plant pathogens have traditionally been difficult to detect or confirm, but the increasing ease of cloning and sequencing PCR products now makes the identification of species that consistently have genes or alleles with phylogenetically divergent origins relatively straightforward. We investigated the genetic origin of Phytophthora andina, an increasingly common pathogen of Andean crops Solanum betaceum, S. muricatum, S. quitoense, and several wild Solanum spp. It has been hypothesized that P. andina is a hybrid between the potato late blight pathogen P. infestans and another Phytophthora species. We tested this hypothesis by cloning four nuclear loci to obtain haplotypes and using these loci to infer the phylogenetic relationships of P. andina to P. infestans and other related species. Sequencing of cloned PCR products in every case revealed two distinct haplotypes for each locus in P. andina, such that each isolate had one allele derived from a P. infestans parent and a second divergent allele derived from an unknown species that is closely related but distinct from P. infestans, P. mirabilis, and P. ipomoeae. To the best of our knowledge, the unknown parent has not yet been collected. We also observed sequence polymorphism among P. andina isolates at three of the four loci, many of which segregate between previously described P. andina clonal lineages. These results provide strong support that P. andina emerged via hybridization between P. infestans and another unknown Phytophthora species also belonging to Phytophthora clade 1c.

  2. Novel organisms: comparing invasive species, GMOs, and emerging pathogens.

    Science.gov (United States)

    Jeschke, Jonathan M; Keesing, Felicia; Ostfeld, Richard S

    2013-09-01

    Invasive species, range-expanding species, genetically modified organisms (GMOs), synthetic organisms, and emerging pathogens increasingly affect the human environment. We propose a framework that allows comparison of consecutive stages that such novel organisms go through. The framework provides a common terminology for novel organisms, facilitating knowledge exchange among researchers, managers, and policy makers that work on, or have to make effective decisions about, novel organisms. The framework also indicates that knowledge about the causes and consequences of stage transitions for the better studied novel organisms, such as invasive species, can be transferred to more poorly studied ones, such as GMOs and emerging pathogens. Finally, the framework advances understanding of how climate change can affect the establishment, spread, and impacts of novel organisms, and how biodiversity affects, and is affected by, novel organisms.

  3. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  4. An evaluation of indices for quantifying tuberculosis transmission using genotypes of pathogen isolates

    Directory of Open Access Journals (Sweden)

    Phong Renault

    2006-06-01

    Full Text Available Abstract Background Infectious diseases are often studied by characterising the population structure of the pathogen using genetic markers. An unresolved problem is the effective quantification of the extent of transmission using genetic variation data from such pathogen isolates. Methods It is important that transmission indices reflect the growth of the infectious population as well as account for the mutation rate of the marker and the effects of sampling. That is, while responding to this growth rate, indices should be unresponsive to the sample size and the mutation rate. We use simulation methods taking into account both the mutation and sampling processes to evaluate indices designed to quantify transmission of tuberculosis. Results Previously proposed indices generally perform inadequately according to the above criteria, with the partial exception of the recently proposed Transmission-Mutation Index. Conclusion Any transmission index needs to take into account mutation of the marker and the effects of sampling. Simple indices are unlikely to capture the full complexity of the underlying processes.

  5. Development of a transformation system for Mycosphaerella pathogens of banana: a tool for the study of host/pathogen interactions.

    Science.gov (United States)

    Balint-Kurti, P J; May, G D; Churchill, A C

    2001-02-05

    A genetic transformation system has been developed for three Mycosphaerella pathogens of banana and plantain (Musa spp.). Mycosphaerella fijiensis and Mycosphaerella musicola, the causal agents of black and yellow Sigatoka, respectively, and Mycosphaerella eumusae, which causes Septoria leaf spot of banana, were transformed with a construct carrying a synthetic gene encoding green fluorescent protein (GFP). Most single-spored transformants that expressed GFP constitutively were mitotically stable in the absence of selection for hygromycin B resistance. Transformants of all three species were pathogenic on the susceptible banana cultivar Grand Nain, and growth in planta was comparable to wild-type strains. GFP expression by transformants allowed us to observe extensive fungal growth within leaf tissue that eventually turned necrotic, at which point the fungi grew saprophytically on the dead tissue. Leaf chlorosis and necrosis were often observed in advance of saprophytic growth of the mycelium on necrotic tissue, which supports previous reports suggesting secretion of a phytotoxin.

  6. Gaps in Incorporating Germline Genetic Testing Into Treatment Decision-Making for Early-Stage Breast Cancer.

    Science.gov (United States)

    Kurian, Allison W; Li, Yun; Hamilton, Ann S; Ward, Kevin C; Hawley, Sarah T; Morrow, Monica; McLeod, M Chandler; Jagsi, Reshma; Katz, Steven J

    2017-07-10

    Purpose Genetic testing for breast cancer risk is evolving rapidly, with growing use of multiple-gene panels that can yield uncertain results. However, little is known about the context of such testing or its impact on treatment. Methods A population-based sample of patients with breast cancer diagnosed in 2014 to 2015 and identified by two SEER registries (Georgia and Los Angeles) were surveyed about genetic testing experiences (N = 3,672; response rate, 68%). Responses were merged with SEER data. A patient subgroup at higher pretest risk of pathogenic mutation carriage was defined according to genetic testing guidelines. Patients' attending surgeons were surveyed about genetic testing and results management. We examined patterns and correlates of genetic counseling and testing and the impact of results on bilateral mastectomy (BLM) use. Results Six hundred sixty-six patients reported genetic testing. Although two thirds of patients were tested before surgical treatment, patients without private insurance more often experienced delays. Approximately half of patients (57% at higher pretest risk, 42% at average risk) discussed results with a genetic counselor. Patients with pathogenic mutations in BRCA1/2 or another gene had the highest rates of BLM (higher risk, 80%; average risk, 85%); however, BLM was also common among patients with genetic variants of uncertain significance (VUS; higher risk, 43%; average risk, 51%). Surgeons' confidence in discussing testing increased with volume of patients with breast cancer, but many surgeons (higher volume, 24%; lower volume, 50%) managed patients with BRCA1/2 VUS the same as patients with BRCA1/2 pathogenic mutations. Conclusion Many patients with breast cancer are tested without ever seeing a genetic counselor. Half of average-risk patients with VUS undergo BLM, suggesting a limited understanding of results that some surgeons share. These findings emphasize the need to address challenges in personalized communication

  7. Whole genome analysis of Leptospira licerasiae provides insight into leptospiral evolution and pathogenicity.

    Directory of Open Access Journals (Sweden)

    Jessica N Ricaldi

    Full Text Available The whole genome analysis of two strains of the first intermediately pathogenic leptospiral species to be sequenced (Leptospira licerasiae strains VAR010 and MMD0835 provides insight into their pathogenic potential and deepens our understanding of leptospiral evolution. Comparative analysis of eight leptospiral genomes shows the existence of a core leptospiral genome comprising 1547 genes and 452 conserved genes restricted to infectious species (including L. licerasiae that are likely to be pathogenicity-related. Comparisons of the functional content of the genomes suggests that L. licerasiae retains several proteins related to nitrogen, amino acid and carbohydrate metabolism which might help to explain why these Leptospira grow well in artificial media compared with pathogenic species. L. licerasiae strains VAR010(T and MMD0835 possess two prophage elements. While one element is circular and shares homology with LE1 of L. biflexa, the second is cryptic and homologous to a previously identified but unnamed region in L. interrogans serovars Copenhageni and Lai. We also report a unique O-antigen locus in L. licerasiae comprised of a 6-gene cluster that is unexpectedly short compared with L. interrogans in which analogous regions may include >90 such genes. Sequence homology searches suggest that these genes were acquired by lateral gene transfer (LGT. Furthermore, seven putative genomic islands ranging in size from 5 to 36 kb are present also suggestive of antecedent LGT. How Leptospira become naturally competent remains to be determined, but considering the phylogenetic origins of the genes comprising the O-antigen cluster and other putative laterally transferred genes, L. licerasiae must be able to exchange genetic material with non-invasive environmental bacteria. The data presented here demonstrate that L. licerasiae is genetically more closely related to pathogenic than to saprophytic Leptospira and provide insight into the genomic bases for

  8. Pathogen-induced Caenorhabditis elegans developmental plasticity has a hormetic effect on the resistance to biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Leroy Magali

    2012-09-01

    Full Text Available Abstract Background Phenotypic plasticity, i.e. the capacity to change the phenotype in response to changes in the environment without alteration of the genotype, is important for coping with unstable environments. In spite of the ample evidence that microorganisms are a major environmental component playing a significant role in eukaryotic organisms health and disease, there is not much information about the effect of microorganism-induced developmental phenotypic plasticity on adult animals’ stress resistance and longevity. Results We examined the consequences of development of Caenorhabditis elegans larvae fed with different bacterial strains on stress resistance and lifespan of adult nematodes. Bacterial strains used in this study were either pathogenic or innocuous to nematodes. Exposure to the pathogen during development did not affect larval survival. However, the development of nematodes on the pathogenic bacterial strains increased lifespan of adult nematodes exposed to the same or a different pathogen. A longer nematode lifespan, developed on pathogens and exposed to pathogens as adults, did not result from an enhanced capacity to kill bacteria, but is likely due to an increased tolerance to the damage inflicted by the pathogenic bacteria. We observed that adult nematodes developed on a pathogen induce higher level of expression of the hsp-16.2 gene and have higher resistance to heat shock than nematodes developed on an innocuous strain. Therefore, the increased resistance to pathogens could be, at least partially, due to the early induction of the heat shock response in nematodes developed on pathogens. The lifespan increase is controlled by the DBL-1 transforming growth factor beta-like, DAF-2/DAF-16 insulin-like, and p38 MAP kinase pathways. Therefore, the observed modulation of adult nematode lifespans by developmental exposure to a pathogen is likely a genetically controlled response. Conclusions Our study shows that development

  9. Nonhost resistance to rust pathogens - a continuation of continua.

    Science.gov (United States)

    Bettgenhaeuser, Jan; Gilbert, Brian; Ayliffe, Michael; Moscou, Matthew J

    2014-01-01

    The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant-pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens.

  10. Comparative genetic diversity of Lyme disease bacteria in Northern Californian ticks and their vertebrate hosts.

    Science.gov (United States)

    Swei, Andrea; Bowie, Verna C; Bowie, Rauri C K

    2015-04-01

    Vector-borne pathogens are transmitted between vertebrate hosts and arthropod vectors, two immensely different environments for the pathogen. There is further differentiation among vertebrate hosts that often have complex, species-specific immunological responses to the pathogen. All this presents a heterogeneous environmental and immunological landscape with possible consequences on the population genetic structure of the pathogen. We evaluated the differential genetic diversity of the Lyme disease pathogen, Borrelia burgdorferi, in its vector, the western black-legged tick (Ixodes pacificus), and in its mammal host community using the 5S-23S rRNA intergenic spacer region. We found differences in haplotype distribution of B. burgdorferi in tick populations from two counties in California as well as between a sympatric tick and vertebrate host community. In addition, we found that three closely related haplotypes consistently occurred in high frequency in all sample types. Lastly, our study found lower species diversity of the B. burgdorferi species complex, known as B. burgdorferi sensu lato, in small mammal hosts versus the tick populations in a sympatric study area. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae

    Directory of Open Access Journals (Sweden)

    Klein Cátia S

    2009-12-01

    Full Text Available Abstract Background Mycoplasma hyopneumoniae is a highly infectious swine pathogen and is the causative agent of enzootic pneumonia (EP. Following the previous report of a proteomic survey of the pathogenic 7448 strain of swine pathogen, Mycoplasma hyopneumoniae, we performed comparative protein profiling of three M. hyopneumoniae strains, namely the non-pathogenic J strain and the two pathogenic strains 7448 and 7422. Results In 2DE comparisons, we were able to identify differences in expression levels for 67 proteins, including the overexpression of some cytoadherence-related proteins only in the pathogenic strains. 2DE immunoblot analyses allowed the identification of differential proteolytic cleavage patterns of the P97 adhesin in the three strains. For more comprehensive protein profiling, an LC-MS/MS strategy was used. Overall, 35% of the M. hyopneumoniae genome coding capacity was covered. Partially overlapping profiles of identified proteins were observed in the strains with 81 proteins identified only in one strain and 54 proteins identified in two strains. Abundance analysis of proteins detected in more than one strain demonstrates the relative overexpression of 64 proteins, including the P97 adhesin in the pathogenic strains. Conclusions Our results indicate the physiological differences between the non-pathogenic strain, with its non-infective proliferate lifestyle, and the pathogenic strains, with its constitutive expression of adhesins, which would render the bacterium competent for adhesion and infection prior to host contact.

  12. Elevated Genetic Diversity in the Emerging Blueberry Pathogen Exobasidium maculosum.

    Science.gov (United States)

    Stewart, Jane E; Brooks, Kyle; Brannen, Phillip M; Cline, William O; Brewer, Marin T

    2015-01-01

    Emerging diseases caused by fungi are increasing at an alarming rate. Exobasidium leaf and fruit spot of blueberry, caused by the fungus Exobasidium maculosum, is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA, severely reducing fruit quality in some plantings. The objectives of this study were to determine the genetic diversity of E. maculosum in the southeastern USA to elucidate the basis of disease emergence and to investigate if populations of E. maculosum are structured by geography, host species, or tissue type. We sequenced three conserved loci from 82 isolates collected from leaves and fruit of rabbiteye blueberry (Vaccinium virgatum), highbush blueberry (V. corymbosum), and southern highbush blueberry (V. corymbosum hybrids) from commercial fields in Georgia and North Carolina, USA, and 6 isolates from lowbush blueberry (V. angustifolium) from Maine, USA, and Nova Scotia, Canada. Populations of E. maculosum from the southeastern USA and from lowbush blueberry in Maine and Nova Scotia are distinct, but do not represent unique species. No difference in genetic structure was detected between different host tissues or among different host species within the southeastern USA; however, differentiation was detected between populations in Georgia and North Carolina. Overall, E. maculosum showed extreme genetic diversity within the conserved loci with 286 segregating sites among the 1,775 sequenced nucleotides and each isolate representing a unique multilocus haplotype. However, 94% of the nucleotide substitutions were silent, so despite the high number of mutations, selective constraints have limited changes to the amino acid sequences of the housekeeping genes. Overall, these results suggest that the emergence of Exobasidium leaf and fruit spot is not due to a recent introduction or host shift, or the recent evolution of aggressive genotypes of E. maculosum, but more likely as a result of an increasing host population

  13. Elevated Genetic Diversity in the Emerging Blueberry Pathogen Exobasidium maculosum

    Science.gov (United States)

    Stewart, Jane E.; Brooks, Kyle; Brannen, Phillip M.; Cline, William O.; Brewer, Marin T.

    2015-01-01

    Emerging diseases caused by fungi are increasing at an alarming rate. Exobasidium leaf and fruit spot of blueberry, caused by the fungus Exobasidium maculosum, is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA, severely reducing fruit quality in some plantings. The objectives of this study were to determine the genetic diversity of E. maculosum in the southeastern USA to elucidate the basis of disease emergence and to investigate if populations of E. maculosum are structured by geography, host species, or tissue type. We sequenced three conserved loci from 82 isolates collected from leaves and fruit of rabbiteye blueberry (Vaccinium virgatum), highbush blueberry (V. corymbosum), and southern highbush blueberry (V. corymbosum hybrids) from commercial fields in Georgia and North Carolina, USA, and 6 isolates from lowbush blueberry (V. angustifolium) from Maine, USA, and Nova Scotia, Canada. Populations of E. maculosum from the southeastern USA and from lowbush blueberry in Maine and Nova Scotia are distinct, but do not represent unique species. No difference in genetic structure was detected between different host tissues or among different host species within the southeastern USA; however, differentiation was detected between populations in Georgia and North Carolina. Overall, E. maculosum showed extreme genetic diversity within the conserved loci with 286 segregating sites among the 1,775 sequenced nucleotides and each isolate representing a unique multilocus haplotype. However, 94% of the nucleotide substitutions were silent, so despite the high number of mutations, selective constraints have limited changes to the amino acid sequences of the housekeeping genes. Overall, these results suggest that the emergence of Exobasidium leaf and fruit spot is not due to a recent introduction or host shift, or the recent evolution of aggressive genotypes of E. maculosum, but more likely as a result of an increasing host population

  14. Elevated Genetic Diversity in the Emerging Blueberry Pathogen Exobasidium maculosum.

    Directory of Open Access Journals (Sweden)

    Jane E Stewart

    Full Text Available Emerging diseases caused by fungi are increasing at an alarming rate. Exobasidium leaf and fruit spot of blueberry, caused by the fungus Exobasidium maculosum, is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA, severely reducing fruit quality in some plantings. The objectives of this study were to determine the genetic diversity of E. maculosum in the southeastern USA to elucidate the basis of disease emergence and to investigate if populations of E. maculosum are structured by geography, host species, or tissue type. We sequenced three conserved loci from 82 isolates collected from leaves and fruit of rabbiteye blueberry (Vaccinium virgatum, highbush blueberry (V. corymbosum, and southern highbush blueberry (V. corymbosum hybrids from commercial fields in Georgia and North Carolina, USA, and 6 isolates from lowbush blueberry (V. angustifolium from Maine, USA, and Nova Scotia, Canada. Populations of E. maculosum from the southeastern USA and from lowbush blueberry in Maine and Nova Scotia are distinct, but do not represent unique species. No difference in genetic structure was detected between different host tissues or among different host species within the southeastern USA; however, differentiation was detected between populations in Georgia and North Carolina. Overall, E. maculosum showed extreme genetic diversity within the conserved loci with 286 segregating sites among the 1,775 sequenced nucleotides and each isolate representing a unique multilocus haplotype. However, 94% of the nucleotide substitutions were silent, so despite the high number of mutations, selective constraints have limited changes to the amino acid sequences of the housekeeping genes. Overall, these results suggest that the emergence of Exobasidium leaf and fruit spot is not due to a recent introduction or host shift, or the recent evolution of aggressive genotypes of E. maculosum, but more likely as a result of an increasing

  15. Genetic basis of arrhythmogenic cardiomyopathy.

    Science.gov (United States)

    Karmouch, Jennifer; Protonotarios, Alexandros; Syrris, Petros

    2018-05-01

    To date 16 genes have been associated with arrhythmogenic cardiomyopathy (ACM). Mutations in these genes can lead to a broad spectrum of phenotypic expression ranging from disease affecting predominantly the right or left ventricle, to biventricular subtypes. Understanding the genetic causes of ACM is important in diagnosis and management of the disorder. This review summarizes recent advances in molecular genetics and discusses the application of next-generation sequencing technology in genetic testing in ACM. Use of next-generation sequencing methods has resulted in the identification of novel causative variants and genes for ACM. The involvement of filamin C in ACM demonstrates the genetic overlap between ACM and other types of cardiomyopathy. Putative pathogenic variants have been detected in cadherin 2 gene, a protein involved in cell adhesion. Large genomic rearrangements in desmosome genes have been systematically investigated in a cohort of ACM patients. Recent studies have identified novel causes of ACM providing new insights into the genetic spectrum of the disease and highlighting an overlapping phenotype between ACM and dilated cardiomyopathy. Next-generation sequencing is a useful tool for research and genetic diagnostic screening but interpretation of identified sequence variants requires caution and should be performed in specialized centres.

  16. Genetic analysis of Mexican Criollo cattle populations.

    Science.gov (United States)

    Ulloa-Arvizu, R; Gayosso-Vázquez, A; Ramos-Kuri, M; Estrada, F J; Montaño, M; Alonso, R A

    2008-10-01

    The objective of this study was to evaluate the genetic structure of Mexican Criollo cattle populations using microsatellite genetic markers. DNA samples were collected from 168 animals from four Mexican Criollo cattle populations, geographically isolated in remote areas of Sierra Madre Occidental (West Highlands). Also were included samples from two breeds with Iberian origin: the fighting bull (n = 24) and the milking central American Criollo (n = 24) and one Asiatic breed: Guzerat (n = 32). Genetic analysis consisted of the estimation of the genetic diversity in each population by the allele number and the average expected heterozygosity found in nine microsatellite loci. Furthermore, genetic relationships among the populations were defined by their genetic distances. Our data shows that Mexican cattle populations have a relatively high level of genetic diversity based either on the mean number of alleles (10.2-13.6) and on the expected heterozygosity (0.71-0.85). The degree of observed homozygosity within the Criollo populations was remarkable and probably caused by inbreeding (reduced effective population size) possibly due to reproductive structure within populations. Our data shows that considerable genetic differentiation has been occurred among the Criollo cattle populations in different regions of Mexico.

  17. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae : Implications for the microbial "pan-genome"

    NARCIS (Netherlands)

    Tettelin, H; Masignani, [No Value; Cieslewicz, MJ; Donati, C; Medini, D; Ward, NL; Angiuoli, SV; Crabtree, J; Jones, AL; Durkin, AS; DeBoy, RT; Davidsen, TM; Mora, M; Scarselli, M; Ros, IMY; Peterson, JD; Hauser, CR; Sundaram, JP; Nelson, WC; Madupu, R; Brinkac, LM; Dodson, RJ; Rosovitz, MJ; Sullivan, SA; Daugherty, SC; Haft, DH; Selengut, J; Gwinn, ML; Zhou, LW; Zafar, N; Khouri, H; Radune, D; Dimitrov, G; Watkins, K; O'Connor, KJB; Smith, S; Utterback, TR; White, O; Rubens, CE; Grandi, G; Madoff, LC; Kasper, DL; Telford, JL; Wessels, MR; Rappuoli, R; Fraser, CM

    2005-01-01

    The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and

  18. Remote Sensing in Human Health: A 10-Year Bibliometric Analysis

    Directory of Open Access Journals (Sweden)

    João Viana

    2017-11-01

    Full Text Available A mixed methods bibliometric analysis was performed to ascertain the characteristic of scientific literature published in a 10-year period (2007–2016 regarding the application of remote sensing data in human health. A search was performed on the Scopus database, followed by manual revision using synthesis studies’ techniques, requiring the authors to sort through more than 8000 medical concepts to create the query, and to manually select relevant papers from over 2000 documents. From the initial 2752 papers identified, 520 articles were selected for analysis, showing that the United States ranked first, with a total of 250 (48.1% of the total documents, followed by France and the United Kingdom, with 67 (12.9% of the total and 54 (10.4% of the total documents, respectively. When considering authorship, the top three authors were Vounatsou P (22 articles, Utzinger J (19 articles, and Vignolles C (13 articles. Regarding disease-specific keywords, malaria, dengue, and schistosomiasis were the most frequent keywords, occurring 142, 34, and 24 times, respectively. For some infectious diseases and other highly pathogenic or emerging infectious diseases, remote sensing has become a very powerful instrument. Also, several studies relate different environmental factors retrieved by remote sensing data with other diseases, such as asthma exacerbations. Health-related remote sensing publications are increasing and this paper highlights the importance of these related technologies toward better information and, ideally, better provision of healthcare. On the other hand, this paper provides an overall picture of the state of the research regarding the application of remote sensing data in human health and identifies the most active stakeholders e.g., authors and institutions in the field, informing possible new collaboration research groups.

  19. A historical review of the key bacterial and viral pathogens of Scottish wild fish.

    Science.gov (United States)

    Wallace, I S; McKay, P; Murray, A G

    2017-12-01

    Thousands of Scottish wild fish were screened for pathogens by Marine Scotland Science. A systematic review of published and unpublished data on six key pathogens (Renibacterium salmoninarum, Aeromonas salmonicida, IPNV, ISAV, SAV and VHSV) found in Scottish wild and farmed fish was undertaken. Despite many reported cases in farmed fish, there was a limited number of positive samples from Scottish wild fish, however, there was evidence for interactions between wild and farmed fish. A slightly elevated IPNV prevalence was reported in wild marine fish caught close to Atlantic salmon, Salmo salar L., farms that had undergone clinical IPN. Salmonid alphavirus was isolated from wild marine fish caught near Atlantic salmon farms with a SAV infection history. Isolations of VHSV were made from cleaner wrasse (Labridae) used on Scottish Atlantic salmon farms and VHSV was detected in local wild marine fish. However, these pathogens have been detected in wild marine fish caught remotely from aquaculture sites. These data suggest that despite the large number of samples taken, there is limited evidence for clinical disease in wild fish due to these pathogens (although BKD and furunculosis historically occurred) and they are likely to have had a minimal impact on Scottish wild fish. © 2017 Crown Copyright. Journal of Fish Diseases © 2017 John Wiley & Sons Ltd.

  20. Heterogeneous pathogenicity of retroviruses: lessons from birds, primates, and rodents

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jan; Geryk, Josef; Elleder, Daniel

    2003-01-01

    Roč. 87, - (2003), s. 59-126 ISSN 0065-230X R&D Projects: GA ČR GV312/96/K205; GA ČR GA524/01/0866; GA ČR GA204/01/0632; GA ČR GA204/02/0407 Institutional research plan: CEZ:AV0Z5052915 Keywords : pathogenicity of retroviruses * heterotransmission of retroviruses Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.938, year: 2003

  1. Development of a Selective Medium for the Fungal Pathogen Fusarium graminearum Using Toxoflavin Produced by the Bacterial Pathogen Burkholderia glumae

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-12-01

    Full Text Available The ascomycete fungus Fusarium graminearum is a major causal agent for Fusarium head blight in cereals and produces mycotoxins such as trichothecenes and zearalenone. Isolation of the fungal strains from air or cereals can be hampered by various other airborne fungal pathogens and saprophytic fungi. In this study, we developed a selective medium specific to F. graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. F. graminearum was resistant to toxoflavin, while other fungi were sensitive to this toxin. Supplementing toxoflavin into medium enhanced the isolation of F. graminearum from rice grains by suppressing the growth of saprophytic fungal species. In addition, a medium with or without toxoflavin exposed to wheat fields for 1 h had 84% or 25%, respectively, of colonies identified as F. graminearum. This selection medium provides an efficient tool for isolating F. graminearum, and can be adopted by research groups working on genetics and disease forecasting.

  2. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalactiae capsular type Ib: is genetic resistance correlated?

    Science.gov (United States)

    Streptococcus (S.) iniae and S. agalactiae are both economically important Gram positive bacterial pathogens affecting the globally farmed tilapia (Oreochromis spp.). Historically control of these bacteria in tilapia culture has included biosecurity, therapeutants and vaccination strategies. Genet...

  3. Genetic Diversity and Origins of the Homoploid-Type Hybrid Phytophthora ×alni.

    Science.gov (United States)

    Aguayo, Jaime; Halkett, Fabien; Husson, Claude; Nagy, Zoltán Á; Szigethy, András; Bakonyi, József; Frey, Pascal; Marçais, Benoit

    2016-12-15

    Assessing the process that gives rise to hybrid pathogens is central to understanding the evolution of emerging plant diseases. Phytophthora ×alni, a pathogen of alder, results from the homoploid hybridization of two related species, Phytophthora uniformis and Phytophthora ×multiformis Describing the genetic characteristics of P ×alni should help us understand how reproductive mechanisms and historical processes shaped the population structure of this emerging hybrid pathogen. The population genetic structure of P ×alni and the relationship with its parental species were investigated using 12 microsatellites and one mitochondrial DNA (mtDNA) marker on a European collection of 379 isolates. Populations of P ×alni were dominated by one multilocus genotype (MLG). The frequency of this dominant MLG increased after the disease emergence together with a decline in diversity, suggesting that it was favored by a genetic mechanism such as drift or selection. Combined microsatellite and mtDNA results confirmed that P ×alni originated from multiple hybridization events that involved different genotypes of the progenitors. Our detailed analyses point to a geographic structure that mirrors that observed for P. uniformis in Europe. The study provides more insights on the contribution of P. uniformis, an invasive species in Europe, to the emergence of Phytophthora-induced alder decline. Our study describes an original approach to assess the population genetics of polyploid organisms using microsatellite markers. By studying the parental subgenomes present in the interspecific hybrid P. ×alni, we were able to assess the geographical and temporal structure of European populations of the hybrid, shedding new light on the evolution of an emerging plant pathogen. In turn, the study of the parental subgenomes permitted us to assess some genetic characteristics of the parental species of P. ×alni, P. uniformis, and P ×multiformis, which are seldom sampled in nature. The

  4. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities

    Science.gov (United States)

    Balakireva, Anastasia V.; Zamyatnin, Andrey A.

    2016-01-01

    Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders. PMID:27763541

  5. Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities

    Directory of Open Access Journals (Sweden)

    Anastasia V. Balakireva

    2016-10-01

    Full Text Available Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD, allergy to wheat and non-celiac gluten sensitivity (NCGS. Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD, which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders.

  6. Genetic variants in post myocardial infarction patients presenting with electrical storm of unstable ventricular tachycardia.

    Science.gov (United States)

    Rangaraju, Advithi; Krishnan, Shuba; Aparna, G; Sankaran, Satish; Mannan, Ashraf U; Rao, B Hygriv

    2018-01-30

    Electrical storm (ES) is a life threatening clinical situation. Though a few clinical pointers exist, the occurrence of ES in a patient with remote myocardial infarction (MI) is generally unpredictable. Genetic markers for this entity have not been studied. In the present study, we carried out genetic screening in patients with remote myocardial infarction presenting with ES by next generation sequencing and identified 25 rare variants in 19 genes predominantly in RYR2, SCN5A, KCNJ11, KCNE1 and KCNH2, CACNA1B, CACNA1C, CACNA1D and desmosomal genes - DSP and DSG2 that could potentially be implicated in electrical storm. These genes have been previously reported to be associated with inherited syndromes of Sudden Cardiac Death. The present study suggests that the genetic architecture in patients with remote MI and ES of unstable ventricular tachycardia may be similar to that of Ion channelopathies. Identification of these variants may identify post MI patients who are predisposed to develop electrical storm and help in risk stratification. Copyright © 2018 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  7. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    Science.gov (United States)

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  8. COXIELLA BURNETII PATHOGENICITY MOLECULAR BASIS

    Directory of Open Access Journals (Sweden)

    Yu. A. Panferova

    2016-01-01

    Full Text Available Coxiella burnetii is an obligate intracellular gram-negative bacterial pathogen, an ethiological agent of Q-fever, a zoonotic disease, elapsing as an acute (mostly atypical pneumonia or a chronic (mostly endocarditis form. The host range is represented by wide range of mammal, avian and arthropod species, but the main source of human infection are farm animals. The main route of infection is aerosolic. In case of contact with organism pathogen binds with phagocytal monocytic-macrophagal cell line. C. burnetii promotes maturation of specific phagolysosome-like compartment in host cell, called coxiella-containing vacuole, within this vacuole pathogen becames metabolically activated and actively replicates. Coxiella persists as metabolically inactive spore-like form in environment. Internalisation of C. burnetii occurs using actin-mediated phagocytosis and zipper mechanism. After internalization of bacteria maturation of phagolysosome-like compartment and large coxiella-containing vacuole formation occure, and vacuole can occupy nearly the whole cytoplasm of the host cell. Survivance of infected cells is important for chronic infection with C. burnetii. C. burnetii elongate the viability of host cell by two ways: it actively inhibits apoptotic signal cascades and induce pro-survival factors. Exceptthat C. burnetii involves autophagic pathway during coxiella-containing vacuole formation, and induction of autophagy promotes pathogen replication. During infection C. burnetii translocates effector substrates from bacterial cytosole to euca ryotic host cell cytosole using type IV secretion system, where effectors modulate host cell proteins. Overall approximately 130 secreted effectors of type IV transport system, but function of most of them remains unknown to date. Specific sec reted proteins for variety of strains and isolates were identified, confirmed that certain pathotypes of C. burnetii can exist. Identification and

  9. Analysis of the Threat of Genetically Modified Organisms for Biological Warfare

    Science.gov (United States)

    2011-05-01

    biological warfare. The primary focus of the framework are those aspects of the technology directly affecting humans by inducing virulent infectious disease...applications. Simple organisms such as fruit flies have been used to study the effects of genetic changes across generations. Transgenic mice are...Analysis * Multi-cell pathogens * Toxins (Chemical products of living cells.) * Fungi (Robust organism; no genetic manipulation needed

  10. Remote transient Lactobacillus animalis bacteremia causing prosthetic hip joint infection: a case report.

    Science.gov (United States)

    Somayaji, R; Lynch, T; Powell, J N; Gregson, D

    2016-11-04

    Lactobacillus spp. are uncommon pathogens in immunocompetent hosts, and even rarer causes of prosthetic device infections. A case of chronic hip prosthetic joint infection (PJI) caused by L. animalis is described. This occurred 5 years after a transient bacteremia with the same organism. Whole genome sequencing of both isolates proved this PJI infection resulted from this remote bacteremia. We document that prosthetic joint infections may be a consequence of bacteremia as much as 3 years before the onset of symptoms.

  11. Amyotrophic Lateral Sclerosis: A Genetic Point of View.

    Science.gov (United States)

    Carlesi, C; Ienco, E Caldarazzo; Mancuso, M; Siciliano, G

    2014-01-01

    In the last twenty years the rapid advances in neurogenetic have revolutionized not only the molecular, pathological, inheritance but also the clinical concept of ALS. Here we review the current genetic breakthrough in familial and sporadic ALS, considering how this knowledge has allowed widening of the scenario on the possible pathogenic disease mechanisms and better understanding of the relationship between the genetic, pathological and clinical subtypes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen.

    Directory of Open Access Journals (Sweden)

    David E L Cooke

    Full Text Available Pest and pathogen losses jeopardise global food security and ever since the 19(th century Irish famine, potato late blight has exemplified this threat. The causal oomycete pathogen, Phytophthora infestans, undergoes major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen population. Here, we used molecular markers to document the emergence of a lineage, termed 13_A2, in the European P. infestans population, and its rapid displacement of other lineages to exceed 75% of the pathogen population across Great Britain in less than three years. We show that isolates of the 13_A2 lineage are among the most aggressive on cultivated potatoes, outcompete other aggressive lineages in the field, and overcome previously effective forms of plant host resistance. Genome analyses of a 13_A2 isolate revealed extensive genetic and expression polymorphisms particularly in effector genes. Copy number variations, gene gains and losses, amino-acid replacements and changes in expression patterns of disease effector genes within the 13_A2 isolate likely contribute to enhanced virulence and aggressiveness to drive this population displacement. Importantly, 13_A2 isolates carry intact and in planta induced Avrblb1, Avrblb2 and Avrvnt1 effector genes that trigger resistance in potato lines carrying the corresponding R immune receptor genes Rpi-blb1, Rpi-blb2, and Rpi-vnt1.1. These findings point towards a strategy for deploying genetic resistance to mitigate the impact of the 13_A2 lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the management of devastating disease epidemics.

  13. Bacterial community structure in experimental methanogenic bioreactors and search for pathogenic clostridia as community members.

    Science.gov (United States)

    Dohrmann, Anja B; Baumert, Susann; Klingebiel, Lars; Weiland, Peter; Tebbe, Christoph C

    2011-03-01

    Microbial conversion of organic waste or harvested plant material into biogas has become an attractive technology for energy production. Biogas is produced in reactors under anaerobic conditions by a consortium of microorganisms which commonly include bacteria of the genus Clostridium. Since the genus Clostridium also harbors some highly pathogenic members in its phylogenetic cluster I, there has been some concern that an unintended growth of such pathogens might occur during the fermentation process. Therefore this study aimed to follow how process parameters affect the diversity of Bacteria in general, and the diversity of Clostridium cluster I members in particular. The development of both communities was followed in model biogas reactors from start-up during stable methanogenic conditions. The biogas reactors were run with either cattle or pig manures as substrates, and both were operated at mesophilic and thermophilic conditions. The structural diversity was analyzed independent of cultivation using a PCR-based detection of 16S rRNA genes and genetic profiling by single-strand conformation polymorphism (SSCP). Genetic profiles indicated that both bacterial and clostridial communities evolved in parallel, and the community structures were highly influenced by both substrate and temperature. Sequence analysis of 16S rRNA genes recovered from prominent bands from SSCP profiles representing Clostridia detected no pathogenic species. Thus, this study gave no indication that pathogenic clostridia would be enriched as dominant community members in biogas reactors fed with manure.

  14. Population History and Pathways of Spread of the Plant Pathogen Phytophthora plurivora

    Science.gov (United States)

    Schoebel, Corine N.; Stewart, Jane; Gruenwald, Niklaus J.; Rigling, Daniel; Prospero, Simone

    2014-01-01

    Human activity has been shown to considerably affect the spread of dangerous pests and pathogens worldwide. Therefore, strict regulations of international trade exist for particularly harmful pathogenic organisms. Phytophthora plurivora, which is not subject to regulations, is a plant pathogen frequently found on a broad range of host species, both in natural and artificial environments. It is supposed to be native to Europe while resident populations are also present in the US. We characterized a hierarchical sample of isolates from Europe and the US and conducted coalescent-, migration, and population genetic analysis of sequence and microsatellite data, to determine the pathways of spread and the demographic history of this pathogen. We found P. plurivora populations to be moderately diverse but not geographically structured. High levels of gene flow were observed within Europe and unidirectional from Europe to the US. Coalescent analyses revealed a signal of a recent expansion of the global P. plurivora population. Our study shows that P. plurivora has most likely been spread around the world by nursery trade of diseased plant material. In particular, P. plurivora was introduced into the US from Europe. International trade has allowed the pathogen to colonize new environments and/or hosts, resulting in population growth. PMID:24427303

  15. The relationship between host lifespan and pathogen reservoir potential: an analysis in the system Arabidopsis thaliana--cucumber mosaic virus.

    Directory of Open Access Journals (Sweden)

    Jean Michel Hily

    2014-11-01

    Full Text Available Identification of the determinants of pathogen reservoir potential is central to understand disease emergence. It has been proposed that host lifespan is one such determinant: short-lived hosts will invest less in costly defenses against pathogens, so that they will be more susceptible to infection, more competent as sources of infection and/or will sustain larger vector populations, thus being effective reservoirs for the infection of long-lived hosts. This hypothesis is sustained by analyses of different hosts of multihost pathogens, but not of different genotypes of the same host species. Here we examined this hypothesis by comparing two genotypes of the plant Arabidopsis thaliana that differ largely both in life-span and in tolerance to its natural pathogen Cucumber mosaic virus (CMV. Experiments with the aphid vector Myzus persicae showed that both genotypes were similarly competent as sources for virus transmission, but the short-lived genotype was more susceptible to infection and was able to sustain larger vector populations. To explore how differences in defense against CMV and its vector relate to reservoir potential, we developed a model that was run for a set of experimentally-determined parameters, and for a realistic range of host plant and vector population densities. Model simulations showed that the less efficient defenses of the short-lived genotype resulted in higher reservoir potential, which in heterogeneous host populations may be balanced by the longer infectious period of the long-lived genotype. This balance was modulated by the demography of both host and vector populations, and by the genetic composition of the host population. Thus, within-species genetic diversity for lifespan and defenses against pathogens will result in polymorphisms for pathogen reservoir potential, which will condition within-population infection dynamics. These results are relevant for a better understanding of host-pathogen co-evolution, and of

  16. Pathogenicity variation in two west coast forest Phytophthoras, Phytophthora nemorosa and P. pseudosyringae, to bay laurel

    Science.gov (United States)

    R.E. Linzer; M. Garbelotto

    2008-01-01

    Two recently described pathogenic oomycetes, Phytophthora nemorosa and P. pseudosyringae, have overlapping host and geographic ranges in California and Oregon forests with P. ramorum, causal agent of ?sudden oak death? disease. Preliminary genetic evidence indicates P. nemorosa and P....

  17. Ancestral seed zones and genetic mixture of tanoak

    Science.gov (United States)

    Richard Dodd; Zara Rafii; Wasima Mayer

    2010-01-01

    Understanding the genetic structure of tanoak (Lithocarpus densiflorus) is necessary to pathologists seeking natural variation in resistance to Phytophthora ramorum, cause of sudden oak death (SOD), and to resource managers who need indications of conservation priorities for this species now threatened by this introduced pathogen. We investigated...

  18. Bacterial genome engineering and synthetic biology: combating pathogens.

    Science.gov (United States)

    Krishnamurthy, Malathy; Moore, Richard T; Rajamani, Sathish; Panchal, Rekha G

    2016-11-04

    The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.

  19. Nonhost resistance to rust pathogens – a continuation of continua

    Directory of Open Access Journals (Sweden)

    Jan eBettgenhaeuser

    2014-12-01

    Full Text Available The rust fungi (order: Pucciniales are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina, which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant-pathogen interactions in this intermediate state are characterized either by (1 the majority of accessions of a species being resistant to the rust or (2 the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host to complete immunity within a species (nonhost. In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens.

  20. Nonhost resistance to rust pathogens – a continuation of continua

    Science.gov (United States)

    Bettgenhaeuser, Jan; Gilbert, Brian; Ayliffe, Michael; Moscou, Matthew J.

    2014-01-01

    The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant–pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens. PMID:25566270

  1. Cryptosporidium,Giardia, Cryptococcus, Pneumocystis genetic variability: cryptic biological species or clonal near-clades?

    Directory of Open Access Journals (Sweden)

    Michel Tibayrenc

    2014-04-01

    Full Text Available An abundant literature dealing with the population genetics and taxonomy of Giardia duodenalis, Cryptosporidium spp., Pneumocystis spp., and Cryptococcus spp., pathogens of high medical and veterinary relevance, has been produced in recent years. We have analyzed these data in the light of new population genetic concepts dealing with predominant clonal evolution (PCE recently proposed by us. In spite of the considerable phylogenetic diversity that exists among these pathogens, we have found striking similarities among them. The two main PCE features described by us, namely highly significant linkage disequilibrium and near-clading (stable phylogenetic clustering clouded by occasional recombination, are clearly observed in Cryptococcus and Giardia, and more limited indication of them is also present in Cryptosporidium and Pneumocystis. Moreover, in several cases, these features still obtain when the near-clades that subdivide the species are analyzed separately ("Russian doll pattern". Lastly, several sets of data undermine the notion that certain microbes form clonal lineages simply owing to a lack of opportunity to outcross due to low transmission rates leading to lack of multiclonal infections ("starving sex hypothesis". We propose that the divergent taxonomic and population genetic inferences advanced by various authors about these pathogens may not correspond to true evolutionary differences and could be, rather, the reflection of idiosyncratic practices among compartmentalized scientific communities. The PCE model provides an opportunity to revise the taxonomy and applied research dealing with these pathogens and others, such as viruses, bacteria, parasitic protozoa, and fungi.

  2. How often do they have sex? A comparative analysis of the population structure of seven eukaryotic microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Nicolás Tomasini

    Full Text Available The model of predominant clonal evolution (PCE proposed for micropathogens does not state that genetic exchange is totally absent, but rather, that it is too rare to break the prevalent PCE pattern. However, the actual impact of this "residual" genetic exchange should be evaluated. Multilocus Sequence Typing (MLST is an excellent tool to explore the problem. Here, we compared online available MLST datasets for seven eukaryotic microbial pathogens: Trypanosoma cruzi, the Fusarium solani complex, Aspergillus fumigatus, Blastocystis subtype 3, the Leishmania donovani complex, Candida albicans and Candida glabrata. We first analyzed phylogenetic relationships among genotypes within each dataset. Then, we examined different measures of branch support and incongruence among loci as signs of genetic structure and levels of past recombination. The analyses allow us to identify three types of genetic structure. The first was characterized by trees with well-supported branches and low levels of incongruence suggesting well-structured populations and PCE. This was the case for the T. cruzi and F. solani datasets. The second genetic structure, represented by Blastocystis spp., A. fumigatus and the L. donovani complex datasets, showed trees with weakly-supported branches but low levels of incongruence among loci, whereby genetic structuration was not clearly defined by MLST. Finally, trees showing weakly-supported branches and high levels of incongruence among loci were observed for Candida species, suggesting that genetic exchange has a higher evolutionary impact in these mainly clonal yeast species. Furthermore, simulations showed that MLST may fail to show right clustering in population datasets even in the absence of genetic exchange. In conclusion, these results make it possible to infer variable impacts of genetic exchange in populations of predominantly clonal micro-pathogens. Moreover, our results reveal different problems of MLST to determine the

  3. The importance of genetics in the diagnosis of animal diseases - A ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-25

    Jan 25, 2010 ... Veterinary and genetic research has been successfully used in diagnosis and ... pathogen sequencing programmes in which scientists are ..... Selectively nonselective drugs for mood disorders and schizophrenia. Nature Rev ...

  4. Mission Planning for Unmanned Aircraft with Genetic Algorithms

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær

    unmanned aircraft are used for aerial surveying of the crops. The farmer takes the role of the analyst above, who does not necessarily have any specific interest in remote controlled aircraft but needs the outcome of the survey. The recurring method in the study is the genetic algorithm; a flexible...... contributions are made in the area of the genetic algorithms. One is a method to decide on the right time to stop the computation of the plan, when the right balance is stricken between using the time planning and using the time flying. The other contribution is a characterization of the evolutionary operators...... used in the genetic algorithm. The result is a measure based on entropy to evaluate and control the diversity of the population of the genetic algorithm, which is an important factor its effectiveness....

  5. The challenges and promises of genetic approaches for ballast water management

    Science.gov (United States)

    Rey, Anaïs; Basurko, Oihane C.; Rodríguez-Ezpeleta, Naiara

    2018-03-01

    Ballast water is a main vector of introduction of Harmful Aquatic Organisms and Pathogens, which includes Non-Indigenous Species. Numerous and diversified organisms are transferred daily from a donor to a recipient port. Developed to prevent these introduction events, the International Convention for the Control and Management of Ships' Ballast Water and Sediments will enter into force in 2017. This international convention is asking for the monitoring of Harmful Aquatic Organisms and Pathogens. In this review, we highlight the urgent need to develop cost-effective methods to: (1) perform the biological analyses required by the convention; and (2) assess the effectiveness of two main ballast water management strategies, i.e. the ballast water exchange and the use of ballast water treatment systems. We have compiled the biological analyses required by the convention, and performed a comprehensive evaluation of the potential and challenges of the use of genetic tools in this context. Following an overview of the studies applying genetic tools to ballast water related research, we present metabarcoding as a relevant approach for early detection of Harmful Aquatic Organisms and Pathogens in general and for ballast water monitoring and port risk assessment in particular. Nonetheless, before implementation of genetic tools in the context of the ballast water management convention, benchmarked tests against traditional methods should be performed, and standard, reproducible and easy to apply protocols should be developed.

  6. Genetics of mechanisms controlling responses to two major pathogens in broiler and layer chickens

    DEFF Research Database (Denmark)

    Hamzic, Edin

    The objective of this thesis was to improve the understanding of molecular mechanisms controlling the response to two major pathogens, Eimeria maxima (coccidiosis) and infectious bronchitis virus (IBV), in broiler and layer chickens, respectively. Breeding for the improved response to the two...

  7. Genetics and epigenetics of rheumatoid arthritis

    Science.gov (United States)

    Viatte, Sebastien; Plant, Darren; Raychaudhuri, Soumya

    2013-01-01

    Investigators have made key advances in rheumatoid arthritis (RA) genetics in the past 10 years. Although genetic studies have had limited influence on clinical practice and drug discovery, they are currently generating testable hypotheses to explain disease pathogenesis. Firstly, we review here the major advances in identifying RA genetic susceptibility markers both within and outside of the MHC. Understanding how genetic variants translate into pathogenic mechanisms and ultimately into phenotypes remains a mystery for most of the polymorphisms that confer susceptibility to RA, but functional data are emerging. Interplay between environmental and genetic factors is poorly understood and in need of further investigation. Secondly, we review current knowledge of the role of epigenetics in RA susceptibility. Differences in the epigenome could represent one of the ways in which environmental exposures translate into phenotypic outcomes. The best understood epigenetic phenomena include post-translational histone modifications and DNA methylation events, both of which have critical roles in gene regulation. Epigenetic studies in RA represent a new area of research with the potential to answer unsolved questions. PMID:23381558

  8. Remote Research

    CERN Document Server

    Tulathimutte, Tony

    2011-01-01

    Remote studies allow you to recruit subjects quickly, cheaply, and immediately, and give you the opportunity to observe users as they behave naturally in their own environment. In Remote Research, Nate Bolt and Tony Tulathimutte teach you how to design and conduct remote research studies, top to bottom, with little more than a phone and a laptop.

  9. A genetic code alteration is a phenotype diversity generator in the human pathogen Candida albicans.

    Directory of Open Access Journals (Sweden)

    Isabel Miranda

    Full Text Available BACKGROUND: The discovery of genetic code alterations and expansions in both prokaryotes and eukaryotes abolished the hypothesis of a frozen and universal genetic code and exposed unanticipated flexibility in codon and amino acid assignments. It is now clear that codon identity alterations involve sense and non-sense codons and can occur in organisms with complex genomes and proteomes. However, the biological functions, the molecular mechanisms of evolution and the diversity of genetic code alterations remain largely unknown. In various species of the genus Candida, the leucine CUG codon is decoded as serine by a unique serine tRNA that contains a leucine 5'-CAG-3'anticodon (tRNA(CAG(Ser. We are using this codon identity redefinition as a model system to elucidate the evolution of genetic code alterations. METHODOLOGY/PRINCIPAL FINDINGS: We have reconstructed the early stages of the Candida genetic code alteration by engineering tRNAs that partially reverted the identity of serine CUG codons back to their standard leucine meaning. Such genetic code manipulation had profound cellular consequences as it exposed important morphological variation, altered gene expression, re-arranged the karyotype, increased cell-cell adhesion and secretion of hydrolytic enzymes. CONCLUSION/SIGNIFICANCE: Our study provides the first experimental evidence for an important role of genetic code alterations as generators of phenotypic diversity of high selective potential and supports the hypothesis that they speed up evolution of new phenotypes.

  10. The Natural Evolutionary Potential of Tree Populations to Cope with Newly Introduced Pests and Pathogens

    DEFF Research Database (Denmark)

    Budde, Katharina Birgit; Nielsen, Lene Rostgaard; Ravn, Hans Peter

    2016-01-01

    Emerging diseases often originate from host shifts of introduced pests or pathogens. Genetic resistance of the host to such diseases might be limited or absent due to the lack of coevolutionary history. We review six examples of major disease outbreaks on native tree species caused by different...

  11. Morphological and molecular characterization of Fusarium spp pathogenic to pecan tree in Brazil.

    Science.gov (United States)

    Lazarotto, M; Milanesi, P M; Muniz, M F B; Reiniger, L R S; Beltrame, R; Harakava, R; Blume, E

    2014-11-11

    The occurrence of Fusarium spp associated with pecan tree (Carya illinoinensis) diseases in Brazil has been observed in recent laboratory analyses in Rio Grande do Sul State. Thus, in this study, we i) obtained Fusarium isolates from plants with disease symptoms; ii) tested the pathogenicity of these Fusarium isolates to pecan; iii) characterized and grouped Fusarium isolates that were pathogenic to the pecan tree based on morphological characteristics; iv) identified Fusarium spp to the species complex level through TEF-1α sequencing; and v) compared the identification methods used in the study. Fifteen isolates collected from the inflorescences, roots, and seeds of symptomatic plants (leaf necrosis or root rot) were used for pathogenicity tests. Morphological characterization was conducted using only pathogenic isolates, for a total of 11 isolates, based on the mycelial growth rate, sporulation, colony pigmentation, and conidial length and width variables. Pathogenic isolates were grouped based on morphological characteristics, and molecular characterization was performed by sequencing TEF-1α genes. Pathogenic isolates belonging to the Fusarium chlamydosporum species complex, Fusarium graminearum species complex, Fusarium proliferatum, and Fusarium oxysporum were identified based on the TEF-1α region. Morphological characteristics were used to effectively differentiate isolates and group the isolates according to genetic similarity, particularly conidial width, which emerged as a key morphological descriptor in this study.

  12. Characterization of Microsatellites in Pseudogymnoascus destructans for White-nose Syndrome Genetic Analysis.

    Science.gov (United States)

    Drees, Kevin P; Parise, Katy L; Rivas, Stephanie M; Felton, Lindsey L; Puechmaille, Sébastien J; Keim, Paul; Foster, Jeffrey T

    2017-10-01

    Despite only emerging in the past decade, white-nose syndrome has become among the most devastating wildlife diseases known. The pathogenic fungus Pseudogymnoascus destructans infects hibernating bats and typically leads to high rates of mortality at hibernacula during winter in North America. We developed a set of genetic markers to better differentiate P. destructans isolates. We designed and successfully characterized these 23 microsatellite markers of P. destructans for use in disease ecology and epidemiology research. We validated these loci with DNA extracted from a collection of P. destructans isolates from the US and Canada, as well as from Europe (the likely introduction source based on currently available data). Genetic diversity calculated for each locus and for the multilocus panel as a whole indicates sufficient allelic diversity to differentiate among and between samples from both Europe and North America. Indices of genetic diversity indicate a loss of allelic diversity that is consistent with the recent introduction and rapid spread of an emerging pathogen.

  13. Ecological genetics of the Bromus tectorum (Poaceae) - Ustilago Bullata (Ustilaginaceae): A role for frequency dependent selection?

    Science.gov (United States)

    Susan E. Meyer; David L. Nelson; Suzette Clement; Alisa Ramakrishnan

    2010-01-01

    Evolutionary processes that maintain genetic diversity in plants are likely to include selection imposed by pathogens. Negative frequency-dependent selection is a mechanism for maintenance of resistance polymorphism in plant - pathogen interactions. We explored whether such selection operates in the Bromus tectorum - Ustilago bullata pathosystem. Gene-for-gene...

  14. Quantification of disease progression of several microbial pathogens on Arabidopsis thaliana using real-time fluorescence PCR

    NARCIS (Netherlands)

    Brouwer, M.; Lievens, B.; Hemelrijck, van W.; Ackerveken, van den G.; Cammue, B.P.A.; Thomma, B.P.H.J.

    2003-01-01

    An accurate monitoring of disease progression is important to evaluate disease susceptibility phenotypes. Over the years, Arabidopsis thaliana has become the model species to serve as a host in plant-pathogen interactions. Despite the efforts to study genetic mechanisms of host defense, little

  15. Avian influenza prevalence among hunter-harvested birds in a remote Canadian First Nation community.

    Science.gov (United States)

    Liberda, Eric N; Meldrum, Richard; Charania, Nadia A; Davey, Robert; Tsuji, Leonard Js

    2017-01-01

    Avian influenza virus (AIV) prevalence has been associated with wild game and other bird species. The contamination of these birds may pose a greater risk to those who regularly hunt and consumed infected species. Due to resident concerns communicated by local Band Council, hunter-harvested birds from a remote First Nation community in subArctic Ontario, Canada were assessed for AIV. Hunters, and especially those who live a subsistence lifestyle, are at higher risk of AIV exposure due to their increased contact with wild birds, which represent an important part of their diet. Cloacal swabs from 304 harvested game birds representing several species of wild birds commonly hunted and consumed in this First Nation community were analyzed for AIV using real-time reverse transcription polymerase chain reaction. Subtyping was performed using reverse transcription polymerase chain reaction. Sequences were assembled using Lasergene, and the sequences were compared to Genbank. In total, 16 of the 304 cloacal swab samples were positive for AIV. Of the 16 positive samples, 12 were found in mallard ducks, 3 were found in snow geese (wavies), and 1 positive sample was found in partridge. The AIV samples were subtyped, when possible, and found to be positive for the low pathogenic avian influenza virus subtypes H3 and H4. No samples were positive for subtypes of human concern, namely H5 and H7. This work represents the first AIV monitoring program results of hunter-harvested birds in a remote subsistence First Nation community. Community-level surveillance of AIV in remote subsistence hunting communities may help to identify future risks, while educating those who may have the highest exposure about proper handling of hunted birds. Ultimately, only low pathogenic strains of AIV were found, but monitoring should be continued and expanded to safeguard those with the highest exposure risk to AIV.

  16. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci

    Science.gov (United States)

    Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of thre...

  17. Genetic Divergence and Chemotype Diversity in the Fusarium Head Blight Pathogen Fusarium poae.

    Science.gov (United States)

    Vanheule, Adriaan; De Boevre, Marthe; Moretti, Antonio; Scauflaire, Jonathan; Munaut, Françoise; De Saeger, Sarah; Bekaert, Boris; Haesaert, Geert; Waalwijk, Cees; van der Lee, Theo; Audenaert, Kris

    2017-08-23

    Fusarium head blight is a disease caused by a complex of Fusarium species. F. poae is omnipresent throughout Europe in spite of its low virulence. In this study, we assessed a geographically diverse collection of F. poae isolates for its genetic diversity using AFLP (Amplified Fragment Length Polymorphism). Furthermore, studying the mating type locus and chromosomal insertions, we identified hallmarks of both sexual recombination and clonal spread of successful genotypes in the population. Despite the large genetic variation found, all F. poae isolates possess the nivalenol chemotype based on Tri7 sequence analysis. Nevertheless, Tri gene clusters showed two layers of genetic variability. Firstly, the Tri1 locus was highly variable with mostly synonymous mutations and mutations in introns pointing to a strong purifying selection pressure. Secondly, in a subset of isolates, the main trichothecene gene cluster was invaded by a transposable element between Tri5 and Tri6 . To investigate the impact of these variations on the phenotypic chemotype, mycotoxin production was assessed on artificial medium. Complex blends of type A and type B trichothecenes were produced but neither genetic variability in the Tri genes nor variability in the genome or geography accounted for the divergence in trichothecene production. In view of its complex chemotype, it will be of utmost interest to uncover the role of trichothecenes in virulence, spread and survival of F. poae .

  18. Genetic shifting: a novel approach for controlling vector-borne diseases

    OpenAIRE

    Powell, Jeffrey R.; Tabachnick, Walter J.

    2014-01-01

    Rendering populations of vectors of diseases incapable of transmitting pathogens through genetic methods has long been a goal of vector geneticists. We outline a method to achieve this goal that does not involve introduction of any new genetic variants to the target population. Rather we propose that shifting the frequencies of naturally occurring alleles that confer refractoriness to transmission can reduce transmission below a sustainable level. The program employs methods successfully used...

  19. Genetic Characterization Of Syrian Erwinia Amylovora Strains By Amplified Fragment Length Polymorphism Technique

    International Nuclear Information System (INIS)

    Ammouneh, H.; Arabi, M.; Shoaib, A.

    2011-01-01

    Thirty Erwinia amylovora strains, collected from the main rosaceous crop-growing regions in Syria, were chosen as representatives of all major pathogenicity groups and were genetically studied by AFLP. Eight primer combinations were utilized and approximately 300 scorable bands in total were generated. Based on similarity coefficient, E. amylovora strains were placed into a main cluster containing two sub clusters, indicating very low genetic variations among the studied pathogen. The existence of two plasmids, pEA29 (present in nearly all E. amylovora isolates) and pEL60 (present mainly in Lebanese strains), was confirmed using multiplex PCR in all tested Syrian E. amylovora strains, indicating that Lebanese and Syrian isolates may share a common origin.(author)

  20. Splicing analysis of 14 BRCA1 missense variants classifies nine variants as pathogenic

    DEFF Research Database (Denmark)

    Ahlborn, Lise B; Dandanell, Mette; Steffensen, Ane Y

    2015-01-01

    by functional analysis at the protein level. Results from a validated mini-gene splicing assay indicated that nine BRCA1 variants resulted in splicing aberrations leading to truncated transcripts and thus can be considered pathogenic (c.4987A>T/p.Met1663Leu, c.4988T>A/p.Met1663Lys, c.5072C>T/p.Thr1691Ile, c......Pathogenic germline mutations in the BRCA1 gene predispose carriers to early onset breast and ovarian cancer. Clinical genetic screening of BRCA1 often reveals variants with uncertain clinical significance, complicating patient and family management. Therefore, functional examinations are urgently...... needed to classify whether these uncertain variants are pathogenic or benign. In this study, we investigated 14 BRCA1 variants by in silico splicing analysis and mini-gene splicing assay. All 14 alterations were missense variants located within the BRCT domain of BRCA1 and had previously been examined...

  1. The development of remote repairing system, decontamination and in-cell remote inspection equipment

    International Nuclear Information System (INIS)

    Ishibashi, Yuzo; Toyoda, Osamu; Haginoya, Isao; Yamamoto, Ryuichi; Tanaka, Yasumasa

    1993-01-01

    PNC has been developing remote repair and inspection technologies for in-cell components in reprocessing Plants. In this report, several remote technologies such as remote dismantling and removal, decontamination, remote pipe maintenance and remote in-cell inspection equipment are described. (author)

  2. Stream Flow Prediction by Remote Sensing and Genetic Programming

    Science.gov (United States)

    Chang, Ni-Bin

    2009-01-01

    A genetic programming (GP)-based, nonlinear modeling structure relates soil moisture with synthetic-aperture-radar (SAR) images to present representative soil moisture estimates at the watershed scale. Surface soil moisture measurement is difficult to obtain over a large area due to a variety of soil permeability values and soil textures. Point measurements can be used on a small-scale area, but it is impossible to acquire such information effectively in large-scale watersheds. This model exhibits the capacity to assimilate SAR images and relevant geoenvironmental parameters to measure soil moisture.

  3. From orphan virus to pathogen: the path to the clinical lab.

    Science.gov (United States)

    Li, Linlin; Delwart, Eric

    2011-10-01

    Viral metagenomics has recently yielded numerous previously uncharacterized viral genomes from human and animal samples. We review some of the metagenomics tools and strategies to determine which orphan viruses are likely pathogens. Disease association studies compare viral prevalence in patients with unexplained symptoms versus healthy individuals but require these case and control groups to be closely matched epidemiologically. The development of an antibody response in convalescent serum can temporarily link symptoms with a recent infection. Neutralizing antibody detection require often difficult cell culture virus amplification. Antibody binding assays require proper antigen synthesis and positive control sera to set assay thresholds. High levels of viral genetic diversity within orphan viral groups, frequent co-infections, low or rare pathogenicity, and chronic virus shedding, can all complicate disease association studies. The limited availability of matched cases and controls sample sets from different age groups and geographic origins is a major block for estimating the pathogenic potential of recently characterized orphan viruses. Current limitations on the practical use of deep sequencing for viral diagnostics are listed.

  4. Genetic aspects of ash dieback caused by the pathogenic fungus Chalara fraxinea on Fraxinus excelsior

    DEFF Research Database (Denmark)

    McKinney, Lea Vig

    and the evidence of genetic variation in susceptibility and inheritance of resistance and discusses the potential for preserving the species through management of genetic resources. Paper II confirms the invasiveness of H. pseudoalbidus in Denmark by comparing collections of the native H. albidus and H....... pseudoalbidus. Paper III estimates the inherent resistance in Danish populations of F. excelsior. A strong genetic variation in susceptibility to C. fraxinea was observed among 39 tested clones. The susceptibility was highly genetically correlated with leaf senescence suggesting that the observed resistance...... could be an effect of disease escape. The results suggest that a small fraction of the natural population may be able to resist the epidemic and proposes prospects for maintenance of the species through selection of highly resistant trees....

  5. Ethical genetic research in Indigenous communities: challenges and successful approaches.

    Science.gov (United States)

    McWhirter, Rebekah E; Mununggirritj, Djapirri; Marika, Dipililnga; Dickinson, Joanne L; Condon, John R

    2012-12-01

    Indigenous populations, in common with all populations, stand to benefit from the potential of genetic research to lead to improvements in diagnostic and therapeutic tools for a wide range of complex diseases. However, many Indigenous communities, especially ones that are isolated, are not included in genetic research efforts. This situation is largely a consequence of the challenges of ethically conducting genetic research in Indigenous communities and compounded by Indigenous peoples' negative past experiences with genetic issues. To examine ways of addressing these challenges, we review one investigation of a cancer cluster in remote Aboriginal communities in Arnhem Land, Australia. Our experiences demonstrate that genetic research can be both ethically and successfully conducted with Indigenous communities by respecting the authority of the community, involving community members, and including regular community review throughout the research process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A practical guideline to remote biopsy darting of wildebeests for genetic sampling

    Directory of Open Access Journals (Sweden)

    Domnic Mijele

    2016-12-01

    Full Text Available The use of biopsy darts for remote collection of tissue samples from free-ranging terrestrial and aquatic animal species has gained popularity in the recent past. The success of darting is very important since scientists may not have many chances to re-dart the same animal, especially with the free-ranging elusive wildlife species. We used wildebeest (Connochaetes taurinus as a model to estimate the optimum shooting distance, pressure and the shot part of the body through which a researcher can optimize the success and amount of tissue collected from similar wild land mammalian species. Wildebeests were darted at six categories of distances ranging between 10 and 45 m and dart gun pressures of 5–14 millibar. The number of failed darts increased by increasing the darting distance: 0% (10 m, 0% (20 m, 6% (30 m, 20% (35 m, 71% (40 m, and 67% (45 m. There was a notable effect of the distances on the amount of tissue collected 20 m offered the best results. Dart gun pressure had no effect on the amount of tissue samples obtained. The amount of tissue obtained from successful darts was the same whether the animal was darted on the shoulder or thigh. In this paper, we present a practical guideline for remote biopsy darting of wildebeest to obtain optimum amount of tissue samples, which could be generalized for similar wild land mammalian species.

  7. Comparative Genomics of Smut Pathogens: Insights From Orphans and Positively Selected Genes Into Host Specialization

    Directory of Open Access Journals (Sweden)

    Juliana Benevenuto

    2018-04-01

    Full Text Available Host specialization is a key evolutionary process for the diversification and emergence of new pathogens. However, the molecular determinants of host range are poorly understood. Smut fungi are biotrophic pathogens that have distinct and narrow host ranges based on largely unknown genetic determinants. Hence, we aimed to expand comparative genomics analyses of smut fungi by including more species infecting different hosts and to define orphans and positively selected genes to gain further insights into the genetics basis of host specialization. We analyzed nine lineages of smut fungi isolated from eight crop and non-crop hosts: maize, barley, sugarcane, wheat, oats, Zizania latifolia (Manchurian rice, Echinochloa colona (a wild grass, and Persicaria sp. (a wild dicot plant. We assembled two new genomes: Ustilago hordei (strain Uhor01 isolated from oats and U. tritici (strain CBS 119.19 isolated from wheat. The smut genomes were of small sizes, ranging from 18.38 to 24.63 Mb. U. hordei species experienced genome expansions due to the proliferation of transposable elements and the amount of these elements varied among the two strains. Phylogenetic analysis confirmed that Ustilago is not a monophyletic genus and, furthermore, detected misclassification of the U. tritici specimen. The comparison between smut pathogens of crop and non-crop hosts did not reveal distinct signatures, suggesting that host domestication did not play a dominant role in shaping the evolution of smuts. We found that host specialization in smut fungi likely has a complex genetic basis: different functional categories were enriched in orphans and lineage-specific selected genes. The diversification and gain/loss of effector genes are probably the most important determinants of host specificity.

  8. An emerging avian influenza A virus H5N7 is a genetic reassortant of highly pathogenic genes

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt

    2006-01-01

    We full genome characterised the newly discovered avian influenza virus H5N7 subtype combination isolated from a stock of Danish game ducks to investigate the composition of the genome and possible features of high pathogenicity. It was found that the haemagglutinin and the acidic polymerase gene...... low pathogenic avian influenza A viruses. (c) 2006 Elsevier Ltd. All rights reserved....

  9. Identification of factors involved in dimorphism and pathogenicity of Zymoseptoria tritici.

    Directory of Open Access Journals (Sweden)

    Alexander Yemelin

    Full Text Available A forward genetics approach was applied in order to investigate the molecular basis of morphological transition in the wheat pathogenic fungus Zymoseptoria tritici. Z. tritici is a dimorphic plant pathogen displaying environmentally regulated morphogenetic transition between yeast-like and hyphal growth. Considering the infection mode of Z. tritici, the switching to hyphal growth is essential for pathogenicity allowing the fungus the host invasion through natural openings like stomata. We exploited a previously developed Agrobacterium tumefaciens-mediated transformation (ATMT to generate a mutant library by insertional mutagenesis including more than 10,000 random mutants. To identify genes involved in dimorphic switch, a plate-based screening system was established. With this approach eleven dimorphic switch deficient random mutants were recovered, ten of which exhibited a yeast-like mode of growth and one mutant predominantly growing filamentously, producing high amount of mycelium under different incubation conditions. Using genome walking approach previously established, the T-DNA integration sites were recovered and the disrupted genomic loci of corresponding mutants were identified and validated within reverse genetics approach. As prove of concept, two of the random mutants obtained were selected for further investigation using targeted gene inactivation. Both genes deduced were found to encode known factors, previously characterized in other fungi: Ssk1p being constituent of HOG pathway and Ade5,7p involved in de novo purine biosynthesis. The targeted mutant strains defective in these genes exhibit a drastically impaired virulence within infection assays on whole wheat plants. Moreover exploiting further physiological assays the predicted function for both gene products could be confirmed in concordance with conserved biological role of homologous proteins previously described in other fungal organisms.

  10. Disease resistance in Atlantic salmon (Salmo salar: coinfection of the intracellular bacterial pathogen Piscirickettsia salmonis and the sea louse Caligus rogercresseyi.

    Directory of Open Access Journals (Sweden)

    Jean Paul Lhorente

    Full Text Available BACKGROUND: Naturally occurring coinfections of pathogens have been reported in salmonids, but their consequences on disease resistance are unclear. We hypothesized that 1 coinfection of Caligus rogercresseyi reduces the resistance of Atlantic salmon to Piscirickettsia salmonis; and 2 coinfection resistance is a heritable trait that does not correlate with resistance to a single infection. METHODOLOGY: In total, 1,634 pedigreed Atlantic salmon were exposed to a single infection (SI of P. salmonis (primary pathogen or coinfection with C. rogercresseyi (secondary pathogen. Low and high level of coinfection were evaluated (LC = 44 copepodites per fish; HC = 88 copepodites per fish. Survival and quantitative genetic analyses were performed to determine the resistance to the single infection and coinfections. MAIN FINDINGS: C. rogercresseyi significantly increased the mortality in fish infected with P. salmonis (SI mortality = 251/545; LC mortality = 544/544 and HC mortality = 545/545. Heritability estimates for resistance to P. salmonis were similar and of medium magnitude in all treatments (h2SI = 0.23 ± 0.07; h2LC = 0.17 ± 0.08; h2HC = 0.24 ± 0.07. A large and significant genetic correlation with regard to resistance was observed between coinfection treatments (rg LC-HC = 0.99 ± 0.01 but not between the single and coinfection treatments (rg SI-LC = -0.14 ± 0.33; rg SI-HC = 0.32 ± 0.34. CONCLUSIONS/SIGNIFICANCE: C. rogercresseyi, as a secondary pathogen, reduces the resistance of Atlantic salmon to the pathogen P. salmonis. Resistance to coinfection of Piscirickettsia salmonis and Caligus rogercresseyi in Atlantic salmon is a heritable trait. The absence of a genetic correlation between resistance to a single infection and resistance to coinfection indicates that different genes control these processes. Coinfection of different pathogens and resistance to coinfection needs to be considered in future

  11. Disease resistance in Atlantic salmon (Salmo salar): coinfection of the intracellular bacterial pathogen Piscirickettsia salmonis and the sea louse Caligus rogercresseyi.

    Science.gov (United States)

    Lhorente, Jean Paul; Gallardo, José A; Villanueva, Beatriz; Carabaño, María J; Neira, Roberto

    2014-01-01

    Naturally occurring coinfections of pathogens have been reported in salmonids, but their consequences on disease resistance are unclear. We hypothesized that 1) coinfection of Caligus rogercresseyi reduces the resistance of Atlantic salmon to Piscirickettsia salmonis; and 2) coinfection resistance is a heritable trait that does not correlate with resistance to a single infection. In total, 1,634 pedigreed Atlantic salmon were exposed to a single infection (SI) of P. salmonis (primary pathogen) or coinfection with C. rogercresseyi (secondary pathogen). Low and high level of coinfection were evaluated (LC = 44 copepodites per fish; HC = 88 copepodites per fish). Survival and quantitative genetic analyses were performed to determine the resistance to the single infection and coinfections. C. rogercresseyi significantly increased the mortality in fish infected with P. salmonis (SI mortality = 251/545; LC mortality = 544/544 and HC mortality = 545/545). Heritability estimates for resistance to P. salmonis were similar and of medium magnitude in all treatments (h2SI = 0.23 ± 0.07; h2LC = 0.17 ± 0.08; h2HC = 0.24 ± 0.07). A large and significant genetic correlation with regard to resistance was observed between coinfection treatments (rg LC-HC = 0.99 ± 0.01) but not between the single and coinfection treatments (rg SI-LC = -0.14 ± 0.33; rg SI-HC = 0.32 ± 0.34). C. rogercresseyi, as a secondary pathogen, reduces the resistance of Atlantic salmon to the pathogen P. salmonis. Resistance to coinfection of Piscirickettsia salmonis and Caligus rogercresseyi in Atlantic salmon is a heritable trait. The absence of a genetic correlation between resistance to a single infection and resistance to coinfection indicates that different genes control these processes. Coinfection of different pathogens and resistance to coinfection needs to be considered in future research on salmon farming, selective breeding and conservation.

  12. Remote transient Lactobacillus animalis bacteremia causing prosthetic hip joint infection: a case report

    Directory of Open Access Journals (Sweden)

    R. Somayaji

    2016-11-01

    Full Text Available Abstract Background Lactobacillus spp. are uncommon pathogens in immunocompetent hosts, and even rarer causes of prosthetic device infections. Case presentation A case of chronic hip prosthetic joint infection (PJI caused by L. animalis is described. This occurred 5 years after a transient bacteremia with the same organism. Whole genome sequencing of both isolates proved this PJI infection resulted from this remote bacteremia. Conclusions We document that prosthetic joint infections may be a consequence of bacteremia as much as 3 years before the onset of symptoms.

  13. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    Science.gov (United States)

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  14. Phenotypic and genetic spectrum of Danish patients with ABCA4-related retinopathy

    DEFF Research Database (Denmark)

    Duno, Morten; Schwartz, Marianne; Larsen, Pernille L.

    2012-01-01

    Pathogenic variations in the ABCA4 gene were originally recognized as genetic background for the autosomal recessive disorders Stargardt disease and fundus flavimaculatus, but have expanded to embrace a diversity of retinal diseases, giving rise to the new diagnostic term, ABCA4-related retinopathy...... diagnosis must rely on a comprehensive genetic screening as the mutation spectrum of ABCA4-related retinopathies continues to expand....

  15. Host Resistance and Temperature-Dependent Evolution of Aggressiveness in the Plant Pathogen Zymoseptoria tritici

    Directory of Open Access Journals (Sweden)

    Fengping Chen

    2017-06-01

    Full Text Available Understanding how habitat heterogeneity may affect the evolution of plant pathogens is essential to effectively predict new epidemiological landscapes and manage genetic diversity under changing global climatic conditions. In this study, we explore the effects of habitat heterogeneity, as determined by variation in host resistance and local temperature, on the evolution of Zymoseptoria tritici by comparing the aggressiveness development of five Z. tritici populations originated from different parts of the world on two wheat cultivars varying in resistance to the pathogen. Our results show that host resistance plays an important role in the evolution of Z. tritici. The pathogen was under weak, constraining selection on a host with quantitative resistance but under a stronger, directional selection on a susceptible host. This difference is consistent with theoretical expectations that suggest that quantitative resistance may slow down the evolution of pathogens and therefore be more durable. Our results also show that local temperature interacts with host resistance in influencing the evolution of the pathogen. When infecting a susceptible host, aggressiveness development of Z. tritici was negatively correlated to temperatures of the original collection sites, suggesting a trade-off between the pathogen’s abilities of adapting to higher temperature and causing disease and global warming may have a negative effect on the evolution of pathogens. The finding that no such relationship was detected when the pathogen infected the partially resistant cultivars indicates the evolution of pathogens in quantitatively resistant hosts is less influenced by environments than in susceptible hosts.

  16. Pathogen inactivation techniques.

    Science.gov (United States)

    Pelletier, J P R; Transue, S; Snyder, E L

    2006-01-01

    The desire to rid the blood supply of pathogens of all types has led to the development of many technologies aimed at the same goal--eradication of the pathogen(s) without harming the blood cells or generating toxic chemical agents. This is a very ambitious goal, and one that has yet to be achieved. One approach is to shun the 'one size fits all' concept and to target pathogen-reduction agents at the Individual component types. This permits the development of technologies that might be compatible with, for example, plasma products but that would be cytocidal and thus incompatible with platelet concentrates or red blood cell units. The technologies to be discussed include solvent detergent and methylene blue treatments--designed to inactivate plasma components and derivatives; psoralens (S-59--amotosalen) designed to pathogen-reduce units of platelets; and two products aimed at red blood cells, S-303 (a Frale--frangible anchor-linker effector compound) and Inactine (a binary ethyleneimine). A final pathogen-reduction material that might actually allow one material to inactivate all three blood components--riboflavin (vitamin B2)--is also under development. The sites of action of the amotosalen (S-59), the S-303 Frale, Inactine, and riboflavin are all localized in the nucleic acid part of the pathogen. Solvent detergent materials act by dissolving the plasma envelope, thus compromising the integrity of the pathogen membrane and rendering it non-infectious. By disrupting the pathogen's ability to replicate or survive, its infectivity is removed. The degree to which bacteria and viruses are affected by a particular pathogen-reducing technology relates to its Gram-positive or Gram-negative status, to the sporulation characteristics for bacteria, and the presence of lipid or protein envelopes for viruses. Concerns related to photoproducts and other breakdown products of these technologies remain, and the toxicology of pathogen-reduction treatments is a major ongoing area

  17. The genetics of Alzheimer's disease.

    Science.gov (United States)

    Bertram, Lars; Tanzi, Rudolph E

    2012-01-01

    Genetic factors play a major role in determining a person's risk to develop Alzheimer's disease (AD). Rare mutations transmitted in a Mendelian fashion within affected families, for example, APP, PSEN1, and PSEN2, cause AD. In the absence of mutations in these genes, disease risk is largely determined by common polymorphisms that, in concert with each other and nongenetic risk factors, modestly impact risk for AD (e.g., the ε4-allele in APOE). Recent genome-wide screening approaches have revealed several additional AD susceptibility loci and more are likely to be discovered over the coming years. In this chapter, we review the current state of AD genetics research with a particular focus on loci that now can be considered established disease genes. In addition to reviewing the potential pathogenic relevance of these genes, we provide an outlook into the future of AD genetics research based on recent advances in high-throughput sequencing technologies. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Genetic diagnosis in Hemophilia A from southern China: five novel mutations and one preimplantation genetic analysis.

    Science.gov (United States)

    Chen, J; Wang, J; Lin, X Y; Xu, Y W; He, Z H; Li, H Y; Chen, S Q; Jiang, W Y

    2017-04-01

    As there is currently no complete cure for hemophilia A (HA), the identification of pathogenic mutations in factor VIII (FVIII) gene from HA patients and carriers, which can contribute to genetic counseling prenatal diagnosis, and preimplantation genetic diagnosis (PGD), is an important step to prevent HA. A total of 14 unrelated Chinese HA subjects (FVIII activity C, c.304_305insA, c.1594T>A, c.6045G>A, and c.2645_2646insG) were found. The real-time PCR showed that the expression of FVIII mRNAs was lower in HA patients than in normal subjects. Prenatal diagnosis and PGD were successfully performed: Two of three fetuses and four of eight blastomeres were confirmed to be normal. In conclusion, genetic diagnosis of 14 unrelated HA subjects, 20 carrier subjects, three fetuses, and one PGD was successfully performed in our study. © 2016 John Wiley & Sons Ltd.

  19. AMPK in Pathogens

    OpenAIRE

    Mesquita, Inês Morais; Moreira, Diana; Marques, Belém Sampaio; Laforge, Mireille; Cordeiro-da-Silva, Anabela; Ludovico, Paula; Estaquier, Jérôme; Silvestre, Ricardo Jorge Leal

    2016-01-01

    During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recogn...

  20. Variable virulence among isolates of Ascosphaera apis: testing the parasite-pathogen hypothesis for the evolution of polyandry in social insects

    Science.gov (United States)

    Lee, G. M.; McGee, P. A.; Oldroyd, B. P.

    2013-03-01

    The queens of many eusocial insect species are polyandrous. The evolution of polyandry from ancestral monoandry is intriguing because polyandry undermines the kin-selected benefits of high intracolonial relatedness that are understood to have been central to the evolution of eusociality. An accumulating body of evidence suggests that polyandry evolved from monoandry in part because genetically diverse colonies better resist infection by pathogens. However, a core assumption of the "parasite-pathogen hypothesis", that there is variation in virulence among strains of pathogens, remains largely untested in vivo. Here, we demonstrate variation in virulence among isolates of Ascosphaera apis, the causative organism of chalkbrood disease in its honey bee ( Apis mellifera) host. More importantly, we show a pathogen-host genotypic interaction for resistance and pathogenicity. Our findings therefore support the parasite-parasite hypothesis as a factor in the evolution of polyandry among eusocial insects.

  1. Tree health monitoring: perspectives from the visible and near infrared remote sensing

    Directory of Open Access Journals (Sweden)

    Gonthier P

    2012-05-01

    Full Text Available Based on a comprehensive literature analysis, we present a critical review of those optical remote sensing techniques operating with the visible (VIS and near infrared (NIR bands for the assessment of health in forest trees. Physical, biological and physio-pathological issues of VIS-NIR reflectance of leaves are described pointing out that a decrease of NIR reflectance is highly influenced by stress conditions on tree caused by abiotic and biotic factors. In many cases the NIR spectral band is more sensitive than the VIS one, allowing to detect plant stress long before the appearance of visible symptoms. A description of the main remote sensing methods is provided, including radiometric measurements and multispectral imaging approaches. False colour infrared (FCIR images collection and their photointerpretation and processing are shown as they represent the most relevant means to acquire information of canopy from its reflectance properties. The amount and the quality of the obtainable data depend on: (i field conditions; (ii the type of the adopted instrument (camera, radiometer; (iii the recording system position (ground platforms, aircraft, satellite; (iv the format of the data (analogical, digitalised or digital; and (v the photointerpretation technique. Results from literature are discussed stressing the limits of remote sensing methods. Remote sensing in VIS and NIR spectral bands is generally a powerful classification tool to detect and score tree stress. Nevertheless, it is not a diagnostic tool in that it does not provide information on the cause of stress. Moreover, the method should be adequately tested at single tree level for many important pathogens, in particular root rot, butt rot and stem rot fungi. In perspective, new high spatial resolution satellite images and their GIS software elaboration might be suitable to improve remote sensing analysis.

  2. Genetic structure and demographic history of Colletotrichum gloeosporioides sensu lato and C. truncatum isolates from Trinidad and Mexico.

    Science.gov (United States)

    Rampersad, Sephra N; Perez-Brito, Daisy; Torres-Calzada, Claudia; Tapia-Tussell, Raul; Carrington, Christine V F

    2013-06-22

    C. gloeosporioides sensu lato is one of the most economically important post-harvest diseases affecting papaya production worldwide. There is currently no information concerning the genetic structure or demographic history of this pathogen in any of the affected countries. Knowledge of molecular demographic parameters for different populations will improve our understanding of the biogeographic history as well as the evolutionary and adaptive potential of these pathogens. In this study, sequence data for ACT, GPDH, β-TUB and ITS gene regions were analyzed for C. gloeosporioides sensu lato and C. truncatum isolates infecting papaya in Trinidad and Mexico in order to determine the genetic structure and demographic history of these populations. The data indicated that Mexico is the ancestral C. gloeosporioides sensu lato population with asymmetrical migration to Trinidad. Mexico also had the larger effective population size but, both Mexico and Trinidad populations exhibited population expansion. Mexico also had greater nucleotide diversity and high levels of diversity for each gene. There was significant sub-division of the Trinidad and Mexico populations and low levels of genetic divergence among populations for three of the four gene regions; β-TUB was shown to be under positive selection. There were also dissimilar haplotype characteristics for both populations. Mutation may play a role in shaping the population structure of C. gloeosporioides sensu lato isolates from Trinidad and from Mexico, especially with respect to the ACT and GPDH gene regions. There was no evidence of gene flow between the C. truncatum populations and it is possible that the Mexico and Trinidad populations emerged independently of each other. The study revealed relevant information based on the genetic structure as well as the demographic history of two fungal pathogens infecting papaya, C. gloeosporioides sensu lato and C. truncatum, in Trinidad and Mexico. Understanding the genetic

  3. Language continuity despite population replacement in Remote Oceania.

    Science.gov (United States)

    Posth, Cosimo; Nägele, Kathrin; Colleran, Heidi; Valentin, Frédérique; Bedford, Stuart; Kami, Kaitip W; Shing, Richard; Buckley, Hallie; Kinaston, Rebecca; Walworth, Mary; Clark, Geoffrey R; Reepmeyer, Christian; Flexner, James; Maric, Tamara; Moser, Johannes; Gresky, Julia; Kiko, Lawrence; Robson, Kathryn J; Auckland, Kathryn; Oppenheimer, Stephen J; Hill, Adrian V S; Mentzer, Alexander J; Zech, Jana; Petchey, Fiona; Roberts, Patrick; Jeong, Choongwon; Gray, Russell D; Krause, Johannes; Powell, Adam

    2018-04-01

    Recent genomic analyses show that the earliest peoples reaching Remote Oceania-associated with Austronesian-speaking Lapita culture-were almost completely East Asian, without detectable Papuan ancestry. However, Papuan-related genetic ancestry is found across present-day Pacific populations, indicating that peoples from Near Oceania have played a significant, but largely unknown, ancestral role. Here, new genome-wide data from 19 ancient South Pacific individuals provide direct evidence of a so-far undescribed Papuan expansion into Remote Oceania starting ~2,500 yr BP, far earlier than previously estimated and supporting a model from historical linguistics. New genome-wide data from 27 contemporary ni-Vanuatu demonstrate a subsequent and almost complete replacement of Lapita-Austronesian by Near Oceanian ancestry. Despite this massive demographic change, incoming Papuan languages did not replace Austronesian languages. Population replacement with language continuity is extremely rare-if not unprecedented-in human history. Our analyses show that rather than one large-scale event, the process was incremental and complex, with repeated migrations and sex-biased admixture with peoples from the Bismarck Archipelago.

  4. Three-dimensional spatial analysis of missense variants in RTEL1 identifies pathogenic variants in patients with Familial Interstitial Pneumonia.

    Science.gov (United States)

    Sivley, R Michael; Sheehan, Jonathan H; Kropski, Jonathan A; Cogan, Joy; Blackwell, Timothy S; Phillips, John A; Bush, William S; Meiler, Jens; Capra, John A

    2018-01-23

    Next-generation sequencing of individuals with genetic diseases often detects candidate rare variants in numerous genes, but determining which are causal remains challenging. We hypothesized that the spatial distribution of missense variants in protein structures contains information about function and pathogenicity that can help prioritize variants of unknown significance (VUS) and elucidate the structural mechanisms leading to disease. To illustrate this approach in a clinical application, we analyzed 13 candidate missense variants in regulator of telomere elongation helicase 1 (RTEL1) identified in patients with Familial Interstitial Pneumonia (FIP). We curated pathogenic and neutral RTEL1 variants from the literature and public databases. We then used homology modeling to construct a 3D structural model of RTEL1 and mapped known variants into this structure. We next developed a pathogenicity prediction algorithm based on proximity to known disease causing and neutral variants and evaluated its performance with leave-one-out cross-validation. We further validated our predictions with segregation analyses, telomere lengths, and mutagenesis data from the homologous XPD protein. Our algorithm for classifying RTEL1 VUS based on spatial proximity to pathogenic and neutral variation accurately distinguished 7 known pathogenic from 29 neutral variants (ROC AUC = 0.85) in the N-terminal domains of RTEL1. Pathogenic proximity scores were also significantly correlated with effects on ATPase activity (Pearson r = -0.65, p = 0.0004) in XPD, a related helicase. Applying the algorithm to 13 VUS identified from sequencing of RTEL1 from patients predicted five out of six disease-segregating VUS to be pathogenic. We provide structural hypotheses regarding how these mutations may disrupt RTEL1 ATPase and helicase function. Spatial analysis of missense variation accurately classified candidate VUS in RTEL1 and suggests how such variants cause disease. Incorporating

  5. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites.

    Science.gov (United States)

    Badirzadeh, Alireza; Taheri, Tahereh; Taslimi, Yasaman; Abdossamadi, Zahra; Heidari-Kharaji, Maryam; Gholami, Elham; Sedaghat, Baharehsadat; Niyyati, Maryam; Rafati, Sima

    2017-07-01

    Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite

  6. Remote detection system

    International Nuclear Information System (INIS)

    Nixon, K.V.; France, S.W.; Garcia, C.; Hastings, R.D.

    1981-05-01

    A newly designed remote detection system has been developed at Los Alamos that allows the collection of high-resolution gamma-ray spectra and neutron data from a remote location. The system consists of the remote unit and a command unit. The remote unit collects data in a potentially hostile environment while the operator controls the unit by either radio or wire link from a safe position. Both units are battery powered and are housed in metal carrying cases

  7. Clinical and genetic assessment of pediatric patients with Gaucher's ...

    African Journals Online (AJOL)

    Background: Gaucher's disease (GD) is an autosomal recessive genetic disorder that results from pathogenic mutations of GBA gene encoding the enzyme glucocerebrosidase (acid b-glucosidase). Of the approximately 300 mutations associated with GD, 4 accounts for the majority of mutations seen in GD patients: N370S, ...

  8. A holistic approach to genetic conservation of Pinus strobiformis

    Science.gov (United States)

    K.M. Waring; R. Sniezko; B.A. Goodrich; C. Wehenkel; J.J. Jacobs

    2017-01-01

    Pinus strobiformis (southwestern white pine) is threatened by both a rapidly changing climate and the tree disease white pine blister rust, caused by an introduced fungal pathogen, Cronartium ribicola. We began a proactive program in ~2009 to sustain P. strobiformis that includes genetic conservation, research, and management strategies. Research...

  9. First records of aphid-pathogenic Entomophthorales in the sub-Antarctic archipelagos of Crozet and Kerguelen

    Directory of Open Access Journals (Sweden)

    Bernard Papierok

    2016-07-01

    Full Text Available Since the 20th century, the sub-Antarctic islands have suffered an increasing number of biological invasions. Despite the large number of publications on this topic, there is a lack of knowledge on parasitism rates of invasive species and on the role of parasites and pathogens to regulate their populations. Six aphid species have been introduced in the archipelagos of Crozet (Île de la Possession, 46° 25’ S–51° 51’ E and Kerguelen (49° 21’ S–70° 13’ E. Five of these species were found infected by entomopathogenic fungi of the order Entomophthorales. All these fungal species are cosmopolitan. Conidiobolus obscurus and Entomophthora planchoniana were the most frequently observed on Île de la Possession and in Archipel des Kerguelen, respectively. This is the first report of pathogenic fungi of aphids on the sub-Antarctic islands. We discuss these results in the light of our current knowledge of these insect pathogens. Their introduction by aphids surviving on plants during transportation is the most likely hypothesis to explain their presence on these remote islands.

  10. Pathogenicity of Virulent Species of Group C Streptococci in Human

    Directory of Open Access Journals (Sweden)

    Marta Kłos

    2017-01-01

    Full Text Available Group C streptococci (GCS are livestock pathogens and they often cause zoonotic diseases in humans. They are Gram-positive, in mostly β-hemolytic and facultative anaerobes. Because of their close evolutionary kinship with group A streptococci (GAS, GCS share many common virulence factors with GAS and cause a similar range of diseases. Due to the exchange of genetic material with GAS, GCS belong to bacteria that are difficult to be distinguished from group A streptococci; GCS are often treated in microbiological diagnostics as contamination of the culture. This report focuses mainly on the pathogenicity of virulent species of GCS and their association with human diseases. The condition that is most frequently quoted is pharyngitis. In this paper, the virulence factors have also been mentioned and an interesting link has been made between GCS and the pathogenesis of rheumatic diseases among the native people of India and Aboriginal populations.

  11. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions

    Science.gov (United States)

    2013-06-23

    equine hosts. Thus, the genes retained in B. mallei share a high sequence similarity to genes common to B. pseudomallei (3), and many virulence...oppor- tunistic infections in mammalian hosts. Even for the equine - adapted and, thus, more genetically constrained, B. mallei pathogen, we cannot...BioDrugs: Clin. Immunotherapeut., Biopharmaceut. Gene Therapy 17, 413–424 88. Anderson, D. M., and Frank, D. W. (2012) Five mechanisms of manipula

  12. Cordova: web-based management of genetic variation data.

    Science.gov (United States)

    Ephraim, Sean S; Anand, Nikhil; DeLuca, Adam P; Taylor, Kyle R; Kolbe, Diana L; Simpson, Allen C; Azaiez, Hela; Sloan, Christina M; Shearer, A Eliot; Hallier, Andrea R; Casavant, Thomas L; Scheetz, Todd E; Smith, Richard J H; Braun, Terry A

    2014-12-01

    Cordova is an out-of-the-box solution for building and maintaining an online database of genetic variations integrated with pathogenicity prediction results from popular algorithms. Our primary motivation for developing this system is to aid researchers and clinician-scientists in determining the clinical significance of genetic variations. To achieve this goal, Cordova provides an interface to review and manually or computationally curate genetic variation data as well as share it for clinical diagnostics and the advancement of research. Cordova is open source under the MIT license and is freely available for download at https://github.com/clcg/cordova. Published by Oxford University Press. This work is written by US Government employees and is in the public domain in the US.

  13. Evidence of Two Lyssavirus Phylogroups with Distinct Pathogenicity and Immunogenicity

    Science.gov (United States)

    Badrane, Hassan; Bahloul, Chokri; Perrin, Pierre; Tordo, Noël

    2001-01-01

    The genetic diversity of representative members of the Lyssavirus genus (rabies and rabies-related viruses) was evaluated using the gene encoding the transmembrane glycoprotein involved in the virus-host interaction, immunogenicity, and pathogenicity. Phylogenetic analysis distinguished seven genotypes, which could be divided into two major phylogroups having the highest bootstrap values. Phylogroup I comprises the worldwide genotype 1 (classic Rabies virus), the European bat lyssavirus (EBL) genotypes 5 (EBL1) and 6 (EBL2), the African genotype 4 (Duvenhage virus), and the Australian bat lyssavirus genotype 7. Phylogroup II comprises the divergent African genotypes 2 (Lagos bat virus) and 3 (Mokola virus). We studied immunogenic and pathogenic properties to investigate the biological significance of this phylogenetic grouping. Viruses from phylogroup I (Rabies virus and EBL1) were found to be pathogenic for mice when injected by the intracerebral or the intramuscular route, whereas viruses from phylogroup II (Mokola and Lagos bat viruses) were only pathogenic by the intracerebral route. We showed that the glycoprotein R333 residue essential for virulence was naturally replaced by a D333 in the phylogroup II viruses, likely resulting in their attenuated pathogenicity. Moreover, cross-neutralization distinguished the same phylogroups. Within each phylogroup, the amino acid sequence of the glycoprotein ectodomain was at least 74% identical, and antiglycoprotein virus-neutralizing antibodies displayed cross-neutralization. Between phylogroups, the identity was less than 64.5% and the cross-neutralization was absent, explaining why the classical rabies vaccines (phylogroup I) cannot protect against lyssaviruses from phylogroup II. Our tree-axial analysis divided lyssaviruses into two phylogroups that more closely reflect their biological characteristics than previous serotypes and genotypes. PMID:11238853

  14. Comparative genomics of transport proteins in probiotic and pathogenic Escherichia coli and Salmonella enterica strains.

    Science.gov (United States)

    Do, Jimmy; Zafar, Hassan; Saier, Milton H

    2017-06-01

    Escherichia coli is a genetically diverse species that can be pathogenic, probiotic, commensal, or a harmless laboratory strain. Pathogenic strains of E. coli cause urinary tract infections, diarrhea, hemorrhagic colitis, and pyelonephritis, while the two known probiotic E. coli strains combat inflammatory bowel disease and play a role in immunomodulation. Salmonella enterica, a close relative of E. coli, includes two important pathogenic serovars, Typhi and Typhimurium, causing typhoid fever and enterocolitis in humans, respectively, with the latter strain also causing a lethal typhoid fever-like disease in mice. In this study, we identify the transport systems and their substrates within seven E. coli strains: two probiotic strains, two extracellular pathogens, two intracellular pathogens, and K-12, as well as the two intracellular pathogenic S. enterica strains noted above. Transport systems characteristic of each probiotic or pathogenic species were thus identified, and the tabulated results obtained with all of these strains were compared. We found that the probiotic and pathogenic strains generally contain more iron-siderophore and sugar transporters than E. coli K-12. Pathogens have increased numbers of pore-forming toxins, protein secretion systems, decarboxylation-driven Na + exporters, electron flow-driven monovalent cation exporters, and putative transporters of unknown function compared to the probiotic strains. Both pathogens and probiotic strains encode metabolite transporters that reflect their intracellular versus extracellular environments. The results indicate that the probiotic strains live extracellularly. It seems that relatively few virulence factors can convert a beneficial or commensal microorganism into a pathogen. Taken together, the results reveal the distinguishing features of these strains and provide a starting point for future engineering of beneficial enteric bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The genetic architecture of defence as resistance to and tolerance of bacterial infection in Drosophila melanogaster.

    Science.gov (United States)

    Howick, Virginia M; Lazzaro, Brian P

    2017-03-01

    Defence against pathogenic infection can take two forms: resistance and tolerance. Resistance is the ability of the host to limit a pathogen burden, whereas tolerance is the ability to limit the negative consequences of infection at a given level of infection intensity. Evolutionarily, a tolerance strategy that is independent of resistance could allow the host to avoid mounting a costly immune response and, theoretically, to avoid a co-evolutionary arms race between pathogen virulence and host resistance. Biomedically, understanding the mechanisms of tolerance and how they relate to resistance could potentially yield treatment strategies that focus on health improvement instead of pathogen elimination. To understand the impact of tolerance on host defence and identify genetic variants that determine host tolerance, we defined genetic variation in tolerance as the residual deviation from a binomial regression of fitness under infection against infection intensity. We then performed a genomewide association study to map the genetic basis of variation in resistance to and tolerance of infection by the bacterium Providencia rettgeri. We found a positive genetic correlation between resistance and tolerance, and we demonstrated that the level of resistance is highly predictive of tolerance. We identified 30 loci that predict tolerance, many of which are in genes involved in the regulation of immunity and metabolism. We used RNAi to confirm that a subset of mapped genes have a role in defence, including putative wound repair genes grainy head and debris buster. Our results indicate that tolerance is not an independent strategy from resistance, but that defence arises from a collection of physiological processes intertwined with canonical immunity and resistance. © 2017 John Wiley & Sons Ltd.

  16. Genetic characterization of resistance to Sclerotinia in lettuce cultivar Eruption

    Science.gov (United States)

    Lettuce drop caused by the fungal pathogens Sclerotinia minor and S. sclerotiorum is a serious disease of lettuce. The use of genetic resistance as part of an integrated lettuce drop management strategy should have a significant economic advantage in mitigating yield loss. Sclerotinia resistance is ...

  17. Clinical isolates of Yersinia enterocolitica Biotype 1A represent two phylogenetic lineages with differing pathogenicity-related properties

    Directory of Open Access Journals (Sweden)

    Sihvonen Leila M

    2012-09-01

    Full Text Available Abstract Background Y. enterocolitica biotype (BT 1A strains are often isolated from human clinical samples but their contribution to disease has remained a controversial topic. Variation and the population structure among the clinical Y. enterocolitica BT 1A isolates have been poorly characterized. We used multi-locus sequence typing (MLST, 16S rRNA gene sequencing, PCR for ystA and ystB, lipopolysaccharide analysis, phage typing, human serum complement killing assay and analysis of the symptoms of the patients to characterize 298 clinical Y. enterocolitica BT 1A isolates in order to evaluate their relatedness and pathogenic potential. Results A subset of 71 BT 1A strains, selected based on their varying LPS patterns, were subjected to detailed genetic analyses. The MLST on seven house-keeping genes (adk, argA, aroA, glnA, gyrB, thrA, trpE conducted on 43 of the strains discriminated them into 39 MLST-types. By Bayesian analysis of the population structure (BAPS the strains clustered conclusively into two distinct lineages, i.e. Genetic groups 1 and 2. The strains of Genetic group 1 were more closely related (97% similarity to the pathogenic bio/serotype 4/O:3 strains than Genetic group 2 strains (95% similarity. Further comparison of the 16S rRNA genes of the BT 1A strains indicated that altogether 17 of the 71 strains belong to Genetic group 2. On the 16S rRNA analysis, these 17 strains were only 98% similar to the previously identified subspecies of Y. enterocolitica. The strains of Genetic group 2 were uniform in their pathogenecity-related properties: they lacked the ystB gene, belonged to the same LPS subtype or were of rough type, were all resistant to the five tested yersiniophages, were largely resistant to serum complement and did not ferment fucose. The 54 strains in Genetic group 1 showed much more variation in these properties. The most commonly detected LPS types were similar to the LPS types of reference strains with serotypes O

  18. Carrier screening in the era of expanding genetic technology.

    Science.gov (United States)

    Arjunan, Aishwarya; Litwack, Karen; Collins, Nick; Charrow, Joel

    2016-12-01

    The Center for Jewish Genetics provides genetic education and carrier screening to individuals of Jewish descent. Carrier screening has traditionally been performed by targeted mutation analysis for founder mutations with an enzyme assay for Tay-Sachs carrier detection. The development of next-generation sequencing (NGS) allows for higher detection rates regardless of ethnicity. Here, we explore differences in carrier detection rates between genotyping and NGS in a primarily Jewish population. Peripheral blood samples or saliva samples were obtained from 506 individuals. All samples were analyzed by sequencing, targeted genotyping, triplet-repeat detection, and copy-number analysis; the analyses were carried out at Counsyl. Of 506 individuals screened, 288 were identified as carriers of at least 1 condition and 8 couples were carriers for the same disorder. A total of 434 pathogenic variants were identified. Three hundred twelve variants would have been detected via genotyping alone. Although no additional mutations were detected by NGS in diseases routinely screened for in the Ashkenazi Jewish population, 26.5% of carrier results and 2 carrier couples would have been missed without NGS in the larger panel. In a primarily Jewish population, NGS reveals a larger number of pathogenic variants and provides individuals with valuable information for family planning.Genet Med 18 12, 1214-1217.

  19. Remote Monitoring Transparency Program

    International Nuclear Information System (INIS)

    Sukhoruchkin, V.K.; Shmelev, V.M.; Roumiantsev, A.N.

    1996-01-01

    The objective of the Remote Monitoring Transparency Program is to evaluate and demonstrate the use of remote monitoring technologies to advance nonproliferation and transparency efforts that are currently being developed by Russia and the United States without compromising the national security to the participating parties. Under a lab-to-lab transparency contract between Sandia National Laboratories (SNL) and the Kurchatov Institute (KI RRC), the Kurchatov Institute will analyze technical and procedural aspects of the application of remote monitoring as a transparency measure to monitor inventories of direct- use HEU and plutonium (e.g., material recovered from dismantled nuclear weapons). A goal of this program is to assist a broad range of political and technical experts in learning more about remote monitoring technologies that could be used to implement nonproliferation, arms control, and other security and confidence building measures. Specifically, this program will: (1) begin integrating Russian technologies into remote monitoring systems; (2) develop remote monitoring procedures that will assist in the application of remote monitoring techniques to monitor inventories of HEU and Pu from dismantled nuclear weapons; and (3) conduct a workshop to review remote monitoring fundamentals, demonstrate an integrated US/Russian remote monitoring system, and discuss the impacts that remote monitoring will have on the national security of participating countries

  20. Fusarium spp. associated with rice Bakanae: ecology, genetic diversity, pathogenicity and toxigenicity

    DEFF Research Database (Denmark)

    Wulff, E.G.; Sørensen, Jens Laurids; Lubeck, M.

    2010-01-01

    symptoms of Bakanae on rice, some species (i.e. F. fujikuroi) being more pathogenic than others. The ability to produce fumonisins (FB1 and FB2) and gibberellin A3 in vitro also differed according to the Fusarium species. While fumonisins were produced by most of the strains of F. verticillioides and F....... proliferatum, gibberellin A3 was only produced by F. fujikuroi. Neither fumonisin nor gibberellin was synthesized by most of the strains of F. andiyazi. These findings provide new information on the variation within the G. fujikuroi species complex associated with rice seed and Bakanae disease....

  1. Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents

    Science.gov (United States)

    The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To decipher the cosmopolitan distribution of this fungus, the population genetic structure of 17 geographic samples was investigated from four continental regions (Australia, California, Europ...

  2. Population structure of the ash dieback pathogen, Hymenoscyphus fraxineus, in relation to its mode of arrival in the UK.

    Science.gov (United States)

    Orton, E S; Brasier, C M; Bilham, L J; Bansal, A; Webber, J F; Brown, J K M

    2018-02-01

    The ash dieback fungus, Hymenoscyphus fraxineus , a destructive, alien pathogen of common ash ( Fraxinus excelsior ), has spread across Europe over the past 25 years and was first observed in the UK in 2012. To investigate the relationship of the pathogen's population structure to its mode of arrival, isolates were obtained from locations in England and Wales, either where established natural populations of ash had been infected by wind-dispersed ascospores or where the fungus had been introduced on imported planting stock. Population structure was determined by tests for vegetative compatibility (VC), mating type and single-nucleotide polymorphisms (SNPs). VC heterogeneity was high at all locations, with 96% of isolate pairings being incompatible. Frequencies of the MAT1-1-1 and MAT1-2-1 idiomorphs were approximately equal, consistent with H. fraxineus being an obligate outbreeder. Most SNP variation occurred within study location and there was little genetic differentiation between the two types of location in the UK, or between pathogen populations in the UK and continental Europe. There was modest differentiation between UK subpopulations, consistent with genetic variation between source populations in continental Europe. However, there was no evidence of strong founder effects, indicating that numerous individuals of H. fraxineus initiated infection at each location, regardless of the route of pathogen transmission. The ssRNA virus HfMV1 was present at moderate to high frequencies in all UK subpopulations. The results imply that management of an introduced plant pathogen requires action against its spread at the continental level involving coordinated efforts by European countries.

  3. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd

    2015-01-01

    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  4. Advanced biosensors for detection of pathogens related to livestock and poultry.

    Science.gov (United States)

    Vidic, Jasmina; Manzano, Marisa; Chang, Chung-Ming; Jaffrezic-Renault, Nicole

    2017-02-21

    Infectious animal diseases caused by pathogenic microorganisms such as bacteria and viruses threaten the health and well-being of wildlife, livestock, and human populations, limit productivity and increase significantly economic losses to each sector. The pathogen detection is an important step for the diagnostics, successful treatment of animal infection diseases and control management in farms and field conditions. Current techniques employed to diagnose pathogens in livestock and poultry include classical plate-based methods and conventional biochemical methods as enzyme-linked immunosorbent assays (ELISA). These methods are time-consuming and frequently incapable to distinguish between low and highly pathogenic strains. Molecular techniques such as polymerase chain reaction (PCR) and real time PCR (RT-PCR) have also been proposed to be used to diagnose and identify relevant infectious disease in animals. However these DNA-based methodologies need isolated genetic materials and sophisticated instruments, being not suitable for in field analysis. Consequently, there is strong interest for developing new swift point-of-care biosensing systems for early detection of animal diseases with high sensitivity and specificity. In this review, we provide an overview of the innovative biosensing systems that can be applied for livestock pathogen detection. Different sensing strategies based on DNA receptors, glycan, aptamers and antibodies are presented. Besides devices still at development level some are validated according to standards of the World Organization for Animal Health and are commercially available. Especially, paper-based platforms proposed as an affordable, rapid and easy to perform sensing systems for implementation in field condition are included in this review.

  5. Characterization of Clade 2.3.2.1 H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Wild Birds (Mandarin Duck and Eurasian Eagle Owl in 2010 in Korea

    Directory of Open Access Journals (Sweden)

    Youn-Jeong Lee

    2013-04-01

    Full Text Available Starting in late November 2010, the H5N1 highly pathogenic avian influenza (HPAI virus was isolated from many types of wild ducks and raptors and was subsequently isolated from poultry in Korea. We assessed the genetic and pathogenic properties of the HPAI viruses isolated from a fecal sample from a mandarin duck and a dead Eurasian eagle owl, the most affected wild bird species during the 2010/2011 HPAI outbreak in Korea. These viruses have similar genetic backgrounds and exhibited the highest genetic similarity with recent Eurasian clade 2.3.2.1 HPAI viruses. In animal inoculation experiments, regardless of their originating hosts, the two Korean isolates produced highly pathogenic characteristics in chickens, ducks and mice without pre-adaptation. These results raise concerns about veterinary and public health. Surveillance of wild birds could provide a good early warning signal for possible HPAI infection in poultry as well as in humans.

  6. Migrating microbes: what pathogens can tell us about population movements and human evolution.

    Science.gov (United States)

    Houldcroft, Charlotte J; Ramond, Jean-Baptiste; Rifkin, Riaan F; Underdown, Simon J

    2017-08-01

    The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen's genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. Three stories are then presented of germs on a journey. The first is the story of HIV's spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.

  7. Genetic Attributes of E. coli Isolates from Chlorinated Drinking Water.

    Science.gov (United States)

    Blyton, Michaela D J; Gordon, David M

    2017-01-01

    Escherichia coli, is intimately associated with both human health and water sanitation. E. coli isolates from water can either be (i) host associated commensals, indicating recent faecal contamination; (ii) diarrheal pathogens or (iii) extra-intestinal pathogens that pose a direct health risk; or (iv) free-living. In this study we genetically characterised 28 E. coli isolates obtained from treated drinking water in south eastern Australia to ascertain their likely source. We used full genome sequencing to assign the isolates to their phylogenetic group and multi-locus sequence type. The isolates were also screened in silico for several virulence genes and genes involved in acquired antibiotic resistance. The genetic characteristics of the isolates indicated that four isolates were likely human pathogens. However, these isolates were not detected in sufficient numbers to present a health risk to the public. An additional isolate was a human associated strain. Nine isolates were water associated free-living strains that were unlikely to pose a health risk. Only 14% of the isolates belonged to the host associated phylogenetic group (B2) and only a single isolate had any antibiotic resistance genes. This suggests that the primary source of the drinking water E. coli isolates may not have been recent human faecal contamination.

  8. Genetic Attributes of E. coli Isolates from Chlorinated Drinking Water.

    Directory of Open Access Journals (Sweden)

    Michaela D J Blyton

    Full Text Available Escherichia coli, is intimately associated with both human health and water sanitation. E. coli isolates from water can either be (i host associated commensals, indicating recent faecal contamination; (ii diarrheal pathogens or (iii extra-intestinal pathogens that pose a direct health risk; or (iv free-living. In this study we genetically characterised 28 E. coli isolates obtained from treated drinking water in south eastern Australia to ascertain their likely source. We used full genome sequencing to assign the isolates to their phylogenetic group and multi-locus sequence type. The isolates were also screened in silico for several virulence genes and genes involved in acquired antibiotic resistance. The genetic characteristics of the isolates indicated that four isolates were likely human pathogens. However, these isolates were not detected in sufficient numbers to present a health risk to the public. An additional isolate was a human associated strain. Nine isolates were water associated free-living strains that were unlikely to pose a health risk. Only 14% of the isolates belonged to the host associated phylogenetic group (B2 and only a single isolate had any antibiotic resistance genes. This suggests that the primary source of the drinking water E. coli isolates may not have been recent human faecal contamination.

  9. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island.

    Science.gov (United States)

    Iribarren, María Josefina; Pascuan, Cecilia; Soto, Gabriela; Ayub, Nicolás Daniel

    2015-11-01

    Phytophthora capsici is a virulent oomycete pathogen of many vegetable crops. Recently, it has been demonstrated that the recognition of the RXLR effector AVR3a1 of P. capsici (PcAVR3a1) triggers a hypersensitive response and plays a critical role in mediating non-host resistance. Here, we analyzed the occurrence of PcAVR3a1 in 57 isolates of P. capsici derived from globe squash, eggplant, tomato and bell pepper cocultivated in a small geographical area. The occurrence of PcAVR3a1 in environmental strains of P. capsici was confirmed by PCR in only 21 of these pathogen isolates. To understand the presence-absence pattern of PcAVR3a1 in environmental strains, the flanking region of this gene was sequenced. PcAVR3a1 was found within a genetic element that we named PcAVR3a1-GI (PcAVR3a1 genomic island). PcAVR3a1-GI was flanked by a 22-bp direct repeat, which is related to its site-specific recombination site. In addition to the PcAVR3a1 gene, PcAVR3a1-GI also encoded a phage integrase probably associated with the excision and integration of this mobile element. Exposure to plant induced the presence of an episomal circular intermediate of PcAVR3a1-GI, indicating that this mobile element is functional. Collectively, these findings provide evidence of PcAVR3a1 evolution via mobile elements in environmental strains of Phytophthora. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Population genetic structure of Rhizoctonia solani AG 3-PT from potatoes in South Africa.

    Science.gov (United States)

    Muzhinji, Norman; Woodhall, James W; Truter, Mariette; van der Waals, Jacquie E

    2016-05-01

    Rhizoctonia solani AG 3-PT is an important potato pathogen causing significant yield and quality losses in potato production. However, little is known about the levels of genetic diversity and structure of this pathogen in South Africa. A total of 114 R. solani AG 3-PT isolates collected from four geographic regions were analysed for genetic diversity and structure using eight microsatellite loci. Microsatellite analysis found high intra-population genetic diversity, population differentiation and evidence of recombination. A total of 78 multilocus genotypes were identified with few shared among populations. Low levels of clonality (13-39 %) and high levels of population differentiation were observed among populations. Most of the loci were in Hardy-Weinberg equilibrium and all four populations showed evidence of a mixed reproductive mode of both clonality and recombination. The PCoA clustering method revealed genetically distinct geographic populations of R. solani AG 3-PT in South Africa. This study showed that populations of R. solani AG 3-PT in South Africa are genetically differentiated and disease management strategies should be applied accordingly. This is the first study of the population genetics of R. solani AG 3-PT in South Africa and results may help to develop knowledge-based disease management strategies. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  11. Resistance to cereal rusts at the plant cell wall - what can we learn from other host-pathogen systems?

    NARCIS (Netherlands)

    Collins, N.C.; Niks, R.E.; Schulze-Lefert, P.

    2007-01-01

    The ability of plant cells to resist invasion by pathogenic fungi at the cell periphery (pre-invasion resistance) differs from other types of resistance that are generally triggered after parasite entry and during differentiation of specialised intracellular feeding structures. Genetic sources of

  12. A Natural Mutation Involving both Pathogenicity and Perithecium Formation in the Fusarium graminearum Species Complex

    Directory of Open Access Journals (Sweden)

    Haruhisha Suga

    2016-12-01

    Full Text Available Members of the Fusarium graminearum species complex (Fg complex or FGSC are the primary pathogens causing Fusarium head blight in wheat and barley worldwide. A natural pathogenicity mutant (strain 0225022 was found in a sample of the Fg complex collected in Japan. The mutant strain did not induce symptoms in wheat spikes beyond the point of inoculation, and did not form perithecia. No segregation of phenotypic deficiencies occurred in the progenies of a cross between the mutant and a fully pathogenic wild-type strain, which suggested that a single genetic locus controlled both traits. The locus was mapped to chromosome 2 by using sequence-tagged markers; and a deletion of ∼3 kb was detected in the mapped region of the mutant strain. The wild-type strain contains the FGSG_02810 gene, encoding a putative glycosylphosphatidylinositol anchor protein, in this region. The contribution of FGSG_02810 to pathogenicity and perithecium formation was confirmed by complementation in the mutant strain using gene transfer, and by gene disruption in the wild-type strain.

  13. Remote docking apparatus

    International Nuclear Information System (INIS)

    Dent, T.H.; Sumpman, W.C.; Wilhelm, J.J.

    1981-01-01

    The remote docking apparatus comprises a support plate with locking devices mounted thereon. The locking devices are capable of being inserted into tubular members for suspending the support plate therefrom. A vertical member is attached to the support plate with an attachment mechanism attached to the vertical member. A remote access manipulator is capable of being attached to the attachment mechanism so that the vertical member can position the remote access manipulator so that the remote access manipulator can be initially attached to the tubular members in a well defined manner

  14. An Investigation of Information Technology-Enabled Remote Management and Remote Work Issues

    Directory of Open Access Journals (Sweden)

    D. Sandy Staples

    1997-05-01

    Full Text Available A two phase research study was done to investigate remote work and remote management issues. In Phase 1, focus groups were carried out with remote managers and remote employees to identify key issues. The most common key issues dealt with communications, information technology, leadership and coaching, teamwork, building trust, and performance management. In the second phase, a questionnaire was used to test hypotheses developed from phase 1. The findings supported that higher trust leads to higher job satisfaction and lower job stress, and that more communication between the manager and the remote employee develops higher levels of employee organizational commitment.

  15. Population genetic structure of a common host predicts the spread of white-nose syndrome, an emerging infectious disease in bats.

    Science.gov (United States)

    Wilder, Aryn P; Kunz, Thomas H; Sorenson, Michael D

    2015-11-01

    Landscape complexity influences patterns of animal dispersal, which in turn may affect both gene flow and the spread of pathogens. White-nose syndrome (WNS) is an introduced fungal disease that has spread rapidly throughout eastern North America, causing massive mortality in bat populations. We tested for a relationship between the population genetic structure of the most common host, the little brown myotis (Myotis lucifugus), and the geographic spread of WNS to date by evaluating logistic regression models of WNS risk among hibernating colonies in eastern North America. We hypothesized that risk of WNS to susceptible host colonies should increase with both geographic proximity and genetic similarity, reflecting historical connectivity, to infected colonies. Consistent with this hypothesis, inclusion of genetic distance between infected and susceptible colonies significantly improved models of disease spread, capturing heterogeneity in the spatial expansion of WNS despite low levels of genetic differentiation among eastern populations. Expanding our genetic analysis to the continental range of little brown myotis reveals strongly contrasting patterns of population structure between eastern and western North America. Genetic structure increases markedly moving westward into the northern Great Plains, beyond the current distribution of WNS. In western North America, genetic differentiation of geographically proximate populations often exceeds levels observed across the entire eastern region, suggesting infrequent and/or locally restricted dispersal, and thus relatively limited opportunities for pathogen introduction in western North America. Taken together, our analyses suggest a possibly slower future rate of spread of the WNS pathogen, at least as mediated by little brown myotis. © 2015 John Wiley & Sons Ltd.

  16. Life history tradeoffs of pathogens and the treatment principle of antibiogenesis

    Directory of Open Access Journals (Sweden)

    Rui-An Wang

    2017-09-01

    Full Text Available There are no eternal individual lives so life continues by relaying with reproduction. Consequently, lifespan and fecundity are two essential genetic traits of life. The life history tradeoffs theory holds that there is an inverse relationship between lifespan and fecundity. This paper proposes two new concepts, i.e., “lifespan of pathogens” and treatment of infections by “antibiogenesis”. The lifespan of pathogens is the time limitation of those tiny lives just as other large creatures. Notably, the lifespan of bacterium is the time interval from the cell division by which it is produced to next division by then its life ends and transforms to two new lives, or dies. Antibiogenesis means inhibiting generation of new lives. By the principle of life history tradeoffs, the lifespan of pathogens determines the speed of their proliferations and consequently the modality of infection. The treatment principle of antibiogenesis requires the duration of treatment to be determined by the lifespan of infected pathogens. The life history tradeoffs theory and the two concepts are helpful to understanding the pathobiology and shaping the clinical aspects of infectious diseases.

  17. Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen Phytophthora capsici

    Energy Technology Data Exchange (ETDEWEB)

    Lamour, Kurt H.; Mudge, Joann; Gobena, Daniel; Hurtado-Gonzales, Oscar P.; Schmutz, Jeremy; Kuo, Alan; Miller, Neil A.; Rice, Brandon J.; Raffaele, Sylvain; Cano, Liliana M.; Bharti, Arvind K.; Donahoo, Ryan S.; Finely, Sabra; Huitema, Edgar; Hulvey, Jon; Platt, Darren; Salamov, Asaf; Savidor, Alon; Sharma, Rahul; Stam, Remco; Sotrey, Dylan; Thines, Marco; Win, Joe; Haas, Brian J.; Dinwiddie, Darrell L.; Jenkins, Jerry; Knight, James R.; Affourtit, Jason P.; Han, Cliff S.; Chertkov, Olga; Lindquist, Erika A.; Detter, Chris; Grigoriev, Igor V.; Kamoun, Sophien; Kingsmore, Stephen F.

    2012-02-07

    The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic or genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) in diverse isolates. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30percent of the genome. LOH altered genotypes for more than 11,000 single-nucleotide variant sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.

  18. Gut microbiomes of free-ranging and captive Namibian cheetahs: Diversity, putative functions and occurrence of potential pathogens.

    Science.gov (United States)

    Wasimuddin; Menke, Sebastian; Melzheimer, Jörg; Thalwitzer, Susanne; Heinrich, Sonja; Wachter, Bettina; Sommer, Simone

    2017-10-01

    Although the significance of the gut microbiome for host health is well acknowledged, the impact of host traits and environmental factors on the interindividual variation of gut microbiomes of wildlife species is not well understood. Such information is essential; however, as changes in the composition of these microbial communities beyond the natural range might cause dysbiosis leading to increased susceptibility to infections. We examined the potential influence of sex, age, genetic relatedness, spatial tactics and the environment on the natural range of the gut microbiome diversity in free-ranging Namibian cheetahs (Acinonyx jubatus). We further explored the impact of an altered diet and frequent contact with roaming dogs and cats on the occurrence of potential bacterial pathogens by comparing free-ranging and captive individuals living under the same climatic conditions. Abundance patterns of particular bacterial genera differed between the sexes, and bacterial diversity and richness were higher in older (>3.5 years) than in younger individuals. In contrast, male spatial tactics, which probably influence host exposure to environmental bacteria, had no discernible effect on the gut microbiome. The profound resemblance of the gut microbiome of kin in contrast to nonkin suggests a predominant role of genetics in shaping bacterial community characteristics and functional similarities. We also detected various Operational Taxonomic Units (OTUs) assigned to potential pathogenic bacteria known to cause diseases in humans and wildlife species, such as Helicobacter spp., and Clostridium perfringens. Captive individuals did not differ in their microbial alpha diversity but exhibited higher abundances of OTUs related to potential pathogenic bacteria and shifts in disease-associated functional pathways. Our study emphasizes the need to integrate ecological, genetic and pathogenic aspects to improve our comprehension of the main drivers of natural variation and shifts in

  19. Forward Genetics Approach Reveals Host Genotype-Dependent Importance of Accessory Chromosomes in the Fungal Wheat Pathogen Zymoseptoria tritici

    Directory of Open Access Journals (Sweden)

    Michael Habig

    2017-11-01

    Full Text Available The fungal wheat pathogen Zymoseptoria tritici possesses a large complement of accessory chromosomes showing presence/absence polymorphism among isolates. These chromosomes encode hundreds of genes; however, their functional role and why the chromosomes have been maintained over long evolutionary times are so far not known. In this study, we addressed the functional relevance of eight accessory chromosomes in reference isolate IPO323. We induced chromosome losses by inhibiting the β-tubulin assembly during mitosis using carbendazim and generated several independent isogenic strains, each lacking one of the accessory chromosomes. We confirmed chromosome losses by electrophoretic karyotyping and whole-genome sequencing. To assess the importance of the individual chromosomes during host infection, we performed in planta assays comparing disease development results in wild-type and chromosome mutant strains. Loss of the accessory chromosomes 14, 16, 18, 19, and 21 resulted in increased virulence on wheat cultivar Runal but not on cultivars Obelisk, Titlis, and Riband. Moreover, some accessory chromosomes affected the switch from biotrophy to necrotrophy as strains lacking accessory chromosomes 14, 18, 19, and 21 showed a significantly earlier onset of necrosis than the wild type on the Runal cultivar. In general, we observed that the timing of the lifestyle switch affects the fitness of Z. tritici. Taking the results together, this study was the first to use a forward-genetics approach to demonstrate a cultivar-dependent functional relevance of the accessory chromosomes of Z. tritici during host infection.

  20. Technical Evaluation: Identification of Pathogenic Mutations in PKD1 and PKD2 in Patients with Autosomal Dominant Polycystic Kidney Disease by Next-Generation Sequencing and Use of a Comprehensive New Classification System.

    Science.gov (United States)

    Kinoshita, Moritoshi; Higashihara, Eiji; Kawano, Haruna; Higashiyama, Ryo; Koga, Daisuke; Fukui, Takafumi; Gondo, Nobuhisa; Oka, Takehiko; Kawahara, Kozo; Rigo, Krisztina; Hague, Tim; Katsuragi, Kiyonori; Sudo, Kimiyoshi; Takeshi, Masahiko; Horie, Shigeo; Nutahara, Kikuo

    2016-01-01

    Genetic testing of PKD1 and PKD2 is expected to play an increasingly important role in determining allelic influences in autosomal dominant polycystic kidney disease (ADPKD) in the near future. However, to date, genetic testing is not commonly employed because it is expensive, complicated because of genetic heterogeneity, and does not easily identify pathogenic variants. In this study, we developed a genetic testing system based on next-generation sequencing (NGS), long-range polymerase chain reaction, and a new software package. The new software package integrated seven databases and provided access to five cloud-based computing systems. The database integrated 241 polymorphic nonpathogenic variants detected in 140 healthy Japanese volunteers aged >35 years, who were confirmed by ultrasonography as having no cysts in either kidney. Using this system, we identified 60 novel and 30 known pathogenic mutations in 101 Japanese patients with ADPKD, with an overall detection rate of 89.1% (90/101) [95% confidence interval (CI), 83.0%-95.2%]. The sensitivity of the system increased to 93.1% (94/101) (95% CI, 88.1%-98.0%) when combined with multiplex ligation-dependent probe amplification analysis, making it sufficient for use in a clinical setting. In 82 (87.2%) of the patients, pathogenic mutations were detected in PKD1 (95% CI, 79.0%-92.5%), whereas in 12 (12.8%) patients pathogenic mutations were detected in PKD2 (95% CI, 7.5%-21.0%); this is consistent with previously reported findings. In addition, we were able to reconfirm our pathogenic mutation identification results using Sanger sequencing. In conclusion, we developed a high-sensitivity NGS-based system and successfully employed it to identify pathogenic mutations in PKD1 and PKD2 in Japanese patients with ADPKD.

  1. [Clinical genealogical and molecular genetic study of patients with mental retardation].

    Science.gov (United States)

    Hryshchenko, N V; B'ichkova, A M; Lyvshyts, A B; Kravchenko, S A; Pampukha, V N; Solov'ev, A A; Kucherenko, A M; Tatarskiĭ, P F; Afanas'eva, N A; Dubrovskaia, E V; Patskun, Ie Y; Zymak-Zakutnaia, N O; Nykytchina, T V; Lohysh, S Iu; Lyvshyts, L A

    2012-01-01

    The results of clinical, genealogical, cytogenetic and molecular genetic studies of 113 patients from 96 families with different forms of mental retardation from Ukraine are presented. This study was held as part of the CHERISH project of the 7-th Framework Program. The aim of the project is to improve diagnostics of mental retardation in children in Eastern Europe and Central Asia through detailed analysis of known chromosomal and gene's aberrations and to find the new gene-candidates that cause mental retardation. All patients have normal chromosome number (46XY or 46XX). The cases with fragile-X syndrome were eliminated using molecular genetic methods. Genome rearrangements were found among 28 patients using cytogenetic analysis, multiplex ligation-dependent probe amplification (MLPA analysis) ofsubtelomeric regions and array-based comparative genomic hybridisation (array CGH screening). In 10 cases known pathogenic CNV's were identified, 11 cases are unknown aberrations; their pathogenicity is being determined. The rest cases are known nonpathogenic gene rearrangements. Obtained results show the strong genetic heterogeneity of hereditary forms of mental retardation. The further studies will allow to identificate genes candidates and certain mutations in these genes that may be associated with this pathology.

  2. Smallpox virus plaque phenotypes: genetic, geographical and case fatality relationships.

    Science.gov (United States)

    Olson, Victoria A; Karem, Kevin L; Smith, Scott K; Hughes, Christine M; Damon, Inger K

    2009-04-01

    Smallpox (infection with Orthopoxvirus variola) remains a feared illness more than 25 years after its eradication. Historically, case-fatality rates (CFRs) varied between outbreaks (<1 to approximately 40 %), the reasons for which are incompletely understood. The extracellular enveloped virus (EEV) form of orthopoxvirus progeny is hypothesized to disseminate infection. Investigations with the closely related Orthopoxvirus vaccinia have associated increased comet formation (EEV production) with increased mouse mortality (pathogenicity). Other vaccinia virus genetic manipulations which affect EEV production inconsistently support this association. However, antisera against vaccinia virus envelope protect mice from lethal challenge, further supporting a critical role for EEV in pathogenicity. Here, we show that the increased comet formation phenotypes of a diverse collection of variola viruses associate with strain phylogeny and geographical origin, but not with increased outbreak-related CFRs; within clades, there may be an association of plaque size with CFR. The mechanisms for variola virus pathogenicity probably involves multiple host and pathogen factors.

  3. Molecular genetic characterization of the koa-wilt pathogen (Fusarium oxysporum): Application of molecular genetic tools toward improving koa restoration in Hawai'i

    Science.gov (United States)

    Mee-Sook Kim; Jane E. Stewart; Nicklos Dudley; John Dobbs; Tyler Jones; Phil G. Cannon; Robert L. James; Kas Dumroese; Ned B. Klopfenstein

    2015-01-01

    Several forest diseases are causing serious threats to the native Hawaiian forest. Among them, koawilt disease (caused by Fusarium oxysporum) is damaging to native populations of koa (Acacia koa), and it also hinders koa restoration/reforestation. Because F. oxysporum likely represents a complex of species with distinct pathogenic activities, more detailed...

  4. Streptococcus suis, an emerging drug-resistant animal and human pathogen

    Directory of Open Access Journals (Sweden)

    Claudio ePalmieri

    2011-11-01

    Full Text Available Streptococcus suis, a major porcine pathogen, has been receiving growing attention not only for its role in severe and increasingly reported infections in humans, but also for its involvement in drug resistance. Recent studies and the analysis of sequenced genomes have been providing important insights into the S. suis resistome, and have resulted in the identification of resistance determinants for tetracyclines, macrolides, aminoglycosides, chloramphenicol, antifolate drugs, streptothricin, and cadmium salts. Resistance gene-carrying genetic elements described so far include integrative and conjugative elements, transposons, genomic islands, phages, and chimeric elements. Some of these elements are similar to those reported in major streptococcal pathogens such as Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae and share the same chromosomal insertion sites. The available information strongly suggests that S. suis is an important antibiotic resistance reservoir that can contribute to the spread of resistance genes to the above-mentioned streptococci. S. suis is thus a paradigmatic example of possible intersections between animal and human resistomes.

  5. Evolution of pathogenicity and sexual reproduction in eight Candida genomes

    Science.gov (United States)

    Butler, Geraldine; Rasmussen, Matthew D.; Lin, Michael F.; Santos, Manuel A.S.; Sakthikumar, Sharadha; Munro, Carol A.; Rheinbay, Esther; Grabherr, Manfred; Forche, Anja; Reedy, Jennifer L.; Agrafioti, Ino; Arnaud, Martha B.; Bates, Steven; Brown, Alistair J.P.; Brunke, Sascha; Costanzo, Maria C.; Fitzpatrick, David A.; de Groot, Piet W. J.; Harris, David; Hoyer, Lois L.; Hube, Bernhard; Klis, Frans M.; Kodira, Chinnappa; Lennard, Nicola; Logue, Mary E.; Martin, Ronny; Neiman, Aaron M.; Nikolaou, Elissavet; Quail, Michael A.; Quinn, Janet; Santos, Maria C.; Schmitzberger, Florian F.; Sherlock, Gavin; Shah, Prachi; Silverstein, Kevin; Skrzypek, Marek S.; Soll, David; Staggs, Rodney; Stansfield, Ian; Stumpf, Michael P H; Sudbery, Peter E.; Thyagarajan, Srikantha; Zeng, Qiandong; Berman, Judith; Berriman, Matthew; Heitman, Joseph; Gow, Neil A. R.; Lorenz, Michael C.; Birren, Bruce W.; Kellis, Manolis; Cuomo, Christina A.

    2009-01-01

    Candida species are the most common cause of opportunistic fungal infection worldwide. We report the genome sequences of six Candida species and compare these and related pathogens and nonpathogens. There are significant expansions of cell wall, secreted, and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the Mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/alpha2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine to serine genetic code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the C. albicans gene catalog, identifying many new genes. PMID:19465905

  6. Mechanisms of Surface Antigenic Variation in the Human Pathogenic Fungus Pneumocystis jirovecii.

    Science.gov (United States)

    Schmid-Siegert, Emanuel; Richard, Sophie; Luraschi, Amanda; Mühlethaler, Konrad; Pagni, Marco; Hauser, Philippe M

    2017-11-07

    Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different. IMPORTANCE Pneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms

  7. The effect of pathogens and pests on honey bee gene expression

    OpenAIRE

    Navajas Navarro, Maria; Martin, Jean-François; Le Conte, Yves; Queen's University Belfast

    2008-01-01

    The effect of pathogens and pests on honey bee gene expression is a fascinating area of research in itself and can lead to new molecular tools for diagnostics and selection in beekeeping. In this framework, we first investigated Varroa-bee interactions by using a combination of nuc1ear and mitochondrial DNA markers of Varroa destructor to trace the parasite invasion of Apis mellifera since it shifted from A. cerana. The extremely low worldwide mite genetic diversity found on A. ...

  8. Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Abramyan, John; Stajich, Jason E

    2012-01-01

    spread and associated decline in amphibian populations, it is imperative to incorporate novel genomic and genetic techniques into the study of this species. In this study, we present the first reported potential pathogenicity factors in B. dendrobatidis. In silico studies such as this allow us to identify putative targets for more specific molecular analyses, furthering our hope for the control of this pathogen.

  9. Remote Sensing of Suspended Sediment Dynamics in the Mississippi Sound

    Science.gov (United States)

    Merritt, D. N.; Skarke, A. D.; Silwal, S.; Dash, P.

    2016-02-01

    The Mississippi Sound is a semi-enclosed estuary between the coast of Mississippi and a chain of offshore barrier islands with relatively shallow water depths and high marine biodiversity that is wildly utilized for commercial fishing and public recreation. The discharge of sediment-laden rivers into the Mississippi Sound and the adjacent Northern Gulf of Mexico creates turbid plumes that can extend hundreds of square kilometers along the coast and persist for multiple days. The concentration of suspended sediment in these coastal waters is an important parameter in the calculation of regional sediment budgets as well as analysis of water-quality factors such as primary productivity, nutrient dynamics, and the transport of pollutants as well as pathogens. The spectral resolution, sampling frequency, and regional scale spatial domain associated with satellite based sensors makes remote sensing an ideal tool to monitor suspended sediment dynamics in the Northern Gulf of Mexico. Accordingly, the presented research evaluates the validity of published models that relate remote sensing reflectance with suspended sediment concentrations (SSC), for similar environmental settings, with 51 in situ observations of SSC from the Mississippi Sound. Additionally, regression analysis is used to correlate additional in situ observations of SSC in Mississippi Sound with coincident observations of visible and near-infrared band reflectance collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Aqua satellite, in order to develop a site-specific empirical predictive model for SSC. Finally, specific parameters of the sampled suspended sediment such as grain size and mineralogy are analyzed in order to quantify their respective contributions to total remotely sensed reflectance.

  10. A highly pathogenic avian influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrated increased replication and transmission in pigs

    Science.gov (United States)

    This study investigated the pathogenicity and transmissibility of a reverse-genetics derived highly pathogenic avian influenza (HPAI) H5N1 influenza A virus (IAV), A/Iraq/775/06, and a reassortant virus comprised of the HA and NA from A/Iraq/775/06 and the internal genes of a 2009 pandemic H1N1, A/N...

  11. Exploiting Genetic Interference for Antiviral Therapy.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Tanner

    2016-05-01

    Full Text Available Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus's inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles-the evolution of drug resistance and targeting therapy to high-risk populations-both of which impede treatment in resource-poor settings.

  12. A novel approach for differentiating pathogenic and non-pathogenic Leptospira based on molecular fingerprinting.

    Science.gov (United States)

    Xiao, Di; Zhang, Cuicai; Zhang, Huifang; Li, Xiuwen; Jiang, Xiugao; Zhang, Jianzhong

    2015-04-24

    Leptospirosis is a worldwide, deadly zoonotic disease. Pathogenic Leptospira causes leptospirosis. The rapid and accurate identification of pathogenic and non-pathogenic Leptospira strains is essential for appropriate therapeutic management and timely intervention for infection control. The molecular fingerprint is a simple and rapid alternative tool for microorganisms identification, which is based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In this study, molecular fingerprint was performed to identify pathogenic strains of Leptospira. Phylogenetic analysis based on 16S rRNA gene sequences was used as the reference method. In addition, a label-free technique was used to reveal the different proteins of pathogenic or non-pathogenic Leptospira. A reference database was constructed using 30 Leptospira strains, including 16 pathogenic strains and 14 non-pathogenic strains. Two super reference spectra that were associated with pathogenicity were established. Overall, 33 Leptospira strains were used for validation, and 32 of 33 Leptospira strains could be identified on the species level and all the 33 could be classified as pathogenic or non-pathogenic. The super reference spectra and the major spectra projection (MSP) dendrogram correctly categorized the Leptospira strains into pathogenic and non-pathogenic groups, which was consistent with the 16S rRNA reference methods. Between the pathogenic and non-pathogenic strains, 108 proteins were differentially expressed. molecular fingerprint is an alternative to conventional molecular identification and can rapidly distinguish between pathogenic and non-pathogenic Leptospira strains. Therefore, molecular fingerprint may play an important role in the clinical diagnosis, treatment, surveillance, and tracking of epidemic outbreaks of leptospirosis. Leptospirosis is a worldwide zoonosis that is caused by spirochetes of the genus Leptospira. Leptospirosis is a serious zoonotic

  13. Carbapenem-resistance and pathogenicity of bovine Acinetobacter indicus-like isolates.

    Directory of Open Access Journals (Sweden)

    Peter Klotz

    revealing genetic relatedness to isolates from human clinical sources requires further investigations regarding the pathogenic potential, genomic characteristics, zoonotic risk and putative additional sources of this new Acinetobacter species.

  14. The m.3291T>C mt-tRNALeu(UUR) mutation is definitely pathogenic and causes multisystem mitochondrial disease

    Science.gov (United States)

    Yarham, John W.; Blakely, Emma L.; Alston, Charlotte L.; Roberts, Mark E.; Ealing, John; Pal, Piyali; Turnbull, Douglass M.; McFarland, Robert; Taylor, Robert W.

    2013-01-01

    Mitochondrial tRNA point mutations are important causes of human disease, and have been associated with a diverse range of clinical phenotypes. Definitively proving the pathogenicity of any given mt-tRNA mutation requires combined molecular, genetic and functional studies. Subsequent evaluation of the mutation using a pathogenicity scoring system is often very helpful in concluding whether or not the mutation is causing disease. Despite several independent reports linking the m.3291T>C mutation to disease in humans, albeit in association with several different phenotypes, its pathogenicity remains controversial. A lack of conclusive functional evidence and an over-emphasis on the poor evolutionary conservation of the affected nucleotide have contributed to this controversy. Here we describe an adult patient who presented with deafness and lipomas and evidence of mitochondrial abnormalities in his muscle biopsy, who harbours the m.3291T > C mutation, providing conclusive evidence of pathogenicity through analysis of mutation segregation with cytochrome c oxidase (COX) deficiency in single muscle fibres, underlining the importance of performing functional studies when assessing pathogenicity. PMID:23273904

  15. Microevolution due to pollution in amphibians: A review on the genetic erosion hypothesis

    International Nuclear Information System (INIS)

    Fasola, E.; Ribeiro, R.; Lopes, I.

    2015-01-01

    The loss of genetic diversity, due to exposure to chemical contamination (genetic erosion), is a major threat to population viability. Genetic erosion is the loss of genetic variation: the loss of alleles determining the value of a specific trait or set of traits. Almost a third of the known amphibian species is considered to be endangered and a decrease of genetic variability can push them to the verge of extinction. This review indicates that loss of genetic variation due to chemical contamination has effects on: 1) fitness, 2) environmental plasticity, 3) co-tolerance mechanisms, 4) trade-off mechanisms, and 5) tolerance to pathogens in amphibian populations. - Highlights: • Effects of environmental stressors on the genetic diversity of natural populations of amphibians have usually been underestimated. • Environmental pollution may reduce the genetic diversity of exposed amphibian populations. • Genetic erosion can lead to reduced fitness and lack of adaptability to a changing environment. - Contaminant-driven genetic erosion is a major threat to population viability in amphibians

  16. A prospective study of the impact of genetic susceptibility testing for BRCA1/2 or HNPCC on family relationships

    NARCIS (Netherlands)

    van Oostrom, Iris; Meijers-Heijboer, Hanne; Duivenvoorden, Hugo J.; Brocker-Vriends, Annette H. J. T.; van Asperen, Chhstl J.; Sijmons, Rolf H.; Seynaeve, Caroline; Van Gool, Arthur R.; Klijn, Jan G. M.; Riedijk, Samantha R.; van Dooren, Silvia; Tibben, Aad

    This study assessed the impact of genetic testing for cancer susceptibility on family relationships and determinants of adverse consequences for family relationships. Applicants for genetic testing of a known familial pathogenic mutation in BRCA1/2 or a HNPCC related gene (N = 271) rated the

  17. A prospective study of the impact of genetic susceptibility testing for BRCA1/2 or HNPCC on family relationships

    NARCIS (Netherlands)

    van Oostrom, Iris; Meijers-Heijboer, Hanne; Duivenvoorden, Hugo J.; Bröcker-Vriends, Annette H. J. T.; van Asperen, Christi J.; Sijmons, Rolf H.; Seynaeve, Caroline; van Gool, Arthur R.; Klijn, Jan G. M.; Riedijk, Samantha R.; van Dooren, Silvia; Tibben, Aad

    2007-01-01

    This study assessed the impact of genetic testing for cancer susceptibility on family relationships and determinants of adverse consequences for family relationships. Applicants for genetic testing of a known familial pathogenic mutation in BRCA1/2 or a HNPCC related gene (N=271) rated the

  18. A prospective study of the impact of genetic susceptibility testing for BRCA1/2 or HNPCC on family relationships.

    NARCIS (Netherlands)

    Oostrom, I.I.H. van; Meijers-Heijboer, H.; Duivenvoorden, H.J.; Brocker-Vriends, A.H.; Asperen, C.J. van; Sijmons, R.H.; Seynaeve, C.; Gool, A.R. van; Klijn, J.G.M.; Riedijk, S.R.; Dooren, S. van; Tibben, A.

    2007-01-01

    This study assessed the impact of genetic testing for cancer susceptibility on family relationships and determinants of adverse consequences for family relationships. Applicants for genetic testing of a known familial pathogenic mutation in BRCA1/2 or a HNPCC related gene (N=271) rated the

  19. Plant pathogen culture collections: it takes a village to preserve these resources vital to the advancement of agricultural security and plant pathology.

    Science.gov (United States)

    Kang, Seogchan; Blair, Jaime E; Geiser, David M; Khang, Chang-Hyun; Park, Sook-Young; Gahegan, Mark; O'Donnell, Kerry; Luster, Douglas G; Kim, Seong H; Ivors, Kelly L; Lee, Yong-Hwan; Lee, Yin-Won; Grünwald, Niklaus J; Martin, Frank M; Coffey, Michael D; Veeraraghavan, Narayanan; Makalowska, Izabela

    2006-09-01

    ABSTRACT Plant pathogen culture collections are essential resources in our fight against plant disease and for connecting discoveries of the present with established knowledge of the past. However, available infrastructure in support of culture collections is in serious need of improvement, and we continually face the risk of losing many of these collections. As novel and reemerging plant pathogens threaten agriculture, their timely identification and monitoring depends on rapid access to cultures representing the known diversity of plant pathogens along with genotypic, phenotypic, and epidemiological data associated with them. Archiving such data in a format that can be easily accessed and searched is essential for rapid assessment of potential risk and can help track the change and movement of pathogens. The underexplored pathogen diversity in nature further underscores the importance of cataloguing pathogen cultures. Realizing the potential of pathogen genomics as a foundation for developing effective disease control also hinges on how effectively we use the sequenced isolate as a reference to understand the genetic and phenotypic diversity within a pathogen species. In this letter, we propose a number of measures for improving pathogen culture collections.

  20. Evolution of a Pathogen: A Comparative Genomics Analysis Identifies a Genetic Pathway to Pathogenesis in Acinetobacter

    Science.gov (United States)

    Sahl, Jason W.; Gillece, John D.; Schupp, James M.; Waddell, Victor G.; Driebe, Elizabeth M.; Engelthaler, David M.; Keim, Paul

    2013-01-01

    Acinetobacter baumannii is an emergent and global nosocomial pathogen. In addition to A. baumannii, other Acinetobacter species, especially those in the Acinetobacter calcoaceticus-baumannii (Acb) complex, have also been associated with serious human infection. Although mechanisms of attachment, persistence on abiotic surfaces, and pathogenesis in A. baumannii have been identified, the genetic mechanisms that explain the emergence of A. baumannii as the most widespread and virulent Acinetobacter species are not fully understood. Recent whole genome sequencing has provided insight into the phylogenetic structure of the genus Acinetobacter. However, a global comparison of genomic features between Acinetobacter spp. has not been described in the literature. In this study, 136 Acinetobacter genomes, including 67 sequenced in this study, were compared to identify the acquisition and loss of genes in the expansion of the Acinetobacter genus. A whole genome phylogeny confirmed that A. baumannii is a monophyletic clade and that the larger Acb complex is also a well-supported monophyletic group. The whole genome phylogeny provided the framework for a global genomic comparison based on a blast score ratio (BSR) analysis. The BSR analysis demonstrated that specific genes have been both lost and acquired in the evolution of A. baumannii. In addition, several genes associated with A. baumannii pathogenesis were found to be more conserved in the Acb complex, and especially in A. baumannii, than in other Acinetobacter genomes; until recently, a global analysis of the distribution and conservation of virulence factors across the genus was not possible. The results demonstrate that the acquisition of specific virulence factors has likely contributed to the widespread persistence and virulence of A. baumannii. The identification of novel features associated with transcriptional regulation and acquired by clades in the Acb complex presents targets for better understanding the

  1. Adaptive potential of maritime pine (Pinus pinaster populations to the emerging pitch canker pathogen, Fusarium circinatum.

    Directory of Open Access Journals (Sweden)

    Margarita Elvira-Recuenco

    Full Text Available There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3-7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43-0.58 and 0.51-0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival. These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease.

  2. Adaptive potential of maritime pine (Pinus pinaster) populations to the emerging pitch canker pathogen, Fusarium circinatum.

    Science.gov (United States)

    Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa

    2014-01-01

    There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3-7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43-0.58 and 0.51-0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease.

  3. Corn and sorghum phenotyping using a fixed-wing UAV-based remote sensing system

    Science.gov (United States)

    Shi, Yeyin; Murray, Seth C.; Rooney, William L.; Valasek, John; Olsenholler, Jeff; Pugh, N. Ace; Henrickson, James; Bowden, Ezekiel; Zhang, Dongyan; Thomasson, J. Alex

    2016-05-01

    Recent development of unmanned aerial systems has created opportunities in automation of field-based high-throughput phenotyping by lowering flight operational cost and complexity and allowing flexible re-visit time and higher image resolution than satellite or manned airborne remote sensing. In this study, flights were conducted over corn and sorghum breeding trials in College Station, Texas, with a fixed-wing unmanned aerial vehicle (UAV) carrying two multispectral cameras and a high-resolution digital camera. The objectives were to establish the workflow and investigate the ability of UAV-based remote sensing for automating data collection of plant traits to develop genetic and physiological models. Most important among these traits were plant height and number of plants which are currently manually collected with high labor costs. Vegetation indices were calculated for each breeding cultivar from mosaicked and radiometrically calibrated multi-band imagery in order to be correlated with ground-measured plant heights, populations and yield across high genetic-diversity breeding cultivars. Growth curves were profiled with the aerial measured time-series height and vegetation index data. The next step of this study will be to investigate the correlations between aerial measurements and ground truth measured manually in field and from lab tests.

  4. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2010-01-01

    Full Text Available Abstract Background Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. Results The genome of the type strain of E. pyrifoliae strain DSM 12163T, was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163T genome. Conclusions The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria.

  5. Molecular variability in the maize grey leaf spot pathogens in Brazil

    Directory of Open Access Journals (Sweden)

    Kátia R. Brunelli

    2008-01-01

    Full Text Available Isolates of Cercospora species from leaves displaying symptoms of grey leaf spot were collected in maize-producing areas of south-central Brazil in 2001 and 2002. Restriction digests of the internal transcribed spacer region of rDNA detected the presence of the same two Cercospora species described on maize in the United States, namely C. zeae-maydis and the recently described species, C. zeina . Genetic variability among isolates was assessed by analysing 104 amplified fragment length polymorphism loci. Cluster analysis confirmed the genetic separation of isolates into two species with a mean similarity of 35%. Similarity levels within species were high, averaging 93% and 92% among isolates of C. zeae-maydis and C. zeina , respectively. The mean genetic similarity between C. zeae-maydis and C. zeina and two isolates of C. sorghi f. sp. maydis was 45% and 35%, respectively. Results of this study showed that populations of the grey leaf spot pathogens in Brazil are similar to those in the United States regarding species composition and that C. zeina is also present in Brazil.

  6. Rapid screening for entry inhibitors of highly pathogenic viruses under low-level biocontainment.

    Directory of Open Access Journals (Sweden)

    Aparna Talekar

    Full Text Available Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus, after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses.

  7. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Alex Wong

    2012-09-01

    Full Text Available Adaptation is likely to be an important determinant of the success of many pathogens, for example when colonizing a new host species, when challenged by antibiotic treatment, or in governing the establishment and progress of long-term chronic infection. Yet, the genomic basis of adaptation is poorly understood in general, and for pathogens in particular. We investigated the genetics of adaptation to cystic fibrosis-like culture conditions in the presence and absence of fluoroquinolone antibiotics using the opportunistic pathogen Pseudomonas aeruginosa. Whole-genome sequencing of experimentally evolved isolates revealed parallel evolution at a handful of known antibiotic resistance genes. While the level of antibiotic resistance was largely determined by these known resistance genes, the costs of resistance were instead attributable to a number of mutations that were specific to individual experimental isolates. Notably, stereotypical quinolone resistance mutations in DNA gyrase often co-occurred with other mutations that, together, conferred high levels of resistance but no consistent cost of resistance. This result may explain why these mutations are so prevalent in clinical quinolone-resistant isolates. In addition, genes involved in cyclic-di-GMP signalling were repeatedly mutated in populations evolved in viscous culture media, suggesting a shared mechanism of adaptation to this CF-like growth environment. Experimental evolutionary approaches to understanding pathogen adaptation should provide an important complement to studies of the evolution of clinical isolates.

  8. Genetic variant of canine distemper virus from clinical cases in ...

    African Journals Online (AJOL)

    Canine distemper virus (CDV) is a highly contagious viral pathogen of worldwide distribution that can cause lethal disease in domestic dogs and other members of the family Canidae. Genetic diversity is found among reference strains and isolates of CDV, mainly in the haemagglutinin (H) protein, and this may be ...

  9. METHODS FOR INOCULATION WITH Fusarium guttiforme AND GENETIC RESISTANCE OF PINEAPPLE ( Ananas comosus var. comosus )

    OpenAIRE

    WANDREILLA MOREIRA GARCIA; WILLIAN KRAUSE; DEJÂNIA VIEIRA DE ARAÚJO; ISANE VERA KARSBURG; RIVANILDO DALLACORT

    2017-01-01

    The objective of this work was to evaluate Fusarium guttiforme inoculation methods and genetic resistance of pineapple accessions. Thus, three experiments were conducted: pathogen inoculation of different leaf types ( B, D and F ) of pineapple (1), pathogen inoculation of pineapple cuttings and detached D leaves (2), and identification of resistance to fusariosis in 19 pineapple accessions (3) sampled in the State of Mato Grosso, Brazil. The cultivars Pérola (susceptible...

  10. Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization.

    Science.gov (United States)

    Chen, Quan; Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Li, Siheng; Kumar, Amit; Yu, Fei; Chen, Haoqing; Cai, Chengzhi; Zhang, Lijuan

    2017-03-01

    Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, a non-pathogenic bacterial biofilm is used as a live, protective barrier to fence off pathogen colonization. In this work, biofilms formed by probiotic Escherichia coli strain Nissle 1917 (EcN) are investigated for their potential for long-term bacterial interference against infections associated with silicone-based urinary catheters and indwelling catheters used in the digestive system, such as feeding tubes and voice prostheses. We have shown that EcN can form stable biofilms on silicone substrates, particularly those modified with a biphenyl mannoside derivative. These biofilms greatly reduced the colonization by pathogenic Enterococcus faecalis in Lysogeny broth (LB) for 11days. Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, we use non-pathogenic bacteria to form a biofilm that serves as a live, protective barrier against pathogen colonization. Herein, we report the first use of preformed probiotic E. coli Nissle 1917 biofilms on the mannoside-presenting silicone substrates to prevent pathogen colonization. The biofilms serve as a live, protective barrier to fence off the pathogens, whereas current antimicrobial/antifouling coatings are subjected to gradual coverage by the biomass from the rapidly growing pathogens in a high-nutrient environment. It should be noted that E. coli Nissle 1917 is commercially available and has been used in many clinical trials. We also demonstrated that this probiotic strain performed significantly better than the non-commercial, genetically modified E. coli strain that we previously reported. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil.

    Science.gov (United States)

    Góes, Luiz Gustavo Bentim; Campos, Angélica Cristine de Almeida; Carvalho, Cristiano de; Ambar, Guilherme; Queiroz, Luzia Helena; Cruz-Neto, Ariovaldo Pereira; Munir, Muhammad; Durigon, Edison Luiz

    2016-10-01

    Bats are notorious reservoirs of genetically-diverse and high-profile pathogens, and are playing crucial roles in the emergence and re-emergence of viruses, both in human and in animals. In this report, we identified and characterized previously unknown and diverse genetic clusters of bat coronaviruses in the Atlantic Forest Biome, Brazil. These results highlight the virus richness of bats and their possible roles in the public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Genetic testing of the FBN1 gene in Chinese patients with Marfan/Marfan-like syndrome.

    Science.gov (United States)

    Yang, Hang; Luo, Mingyao; Chen, Qianlong; Fu, Yuanyuan; Zhang, Jing; Qian, Xiangyang; Sun, Xiaogang; Fan, Yuxin; Zhou, Zhou; Chang, Qian

    2016-08-01

    Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder typically involving the ocular, skeletal and cardiovascular systems, and aortic aneurysms/dissection mainly contributes to its mortality. Here, we performed genetic testing of the FBN1 gene in 39 Chinese probands with Marfan/Marfan-like syndrome and their related family members by Sanger sequencing. In total, 29 pathogenic/likely pathogenic FBN1 mutations, including 17 novel ones, were identified. In addition, most MFS patients with aortic disease (62%) had a truncating or splicing mutation. These results expand the FBN1 mutation spectrum and enrich our knowledge of genotype-phenotype correlations. Genetic testing for MFS and its related aortic diseases is increasingly important for early intervention and treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Draft whole genome sequence of groundnut stem rot fungus Athelia rolfsii revealing genetic architect of its pathogenicity and virulence.

    Science.gov (United States)

    Iquebal, M A; Tomar, Rukam S; Parakhia, M V; Singla, Deepak; Jaiswal, Sarika; Rathod, V M; Padhiyar, S M; Kumar, Neeraj; Rai, Anil; Kumar, Dinesh

    2017-07-13

    Groundnut (Arachis hypogaea L.) is an important oil seed crop having major biotic constraint in production due to stem rot disease caused by fungus, Athelia rolfsii causing 25-80% loss in productivity. As chemical and biological combating strategies of this fungus are not very effective, thus genome sequencing can reveal virulence and pathogenicity related genes for better understanding of the host-parasite interaction. We report draft assembly of Athelia rolfsii genome of ~73 Mb having 8919 contigs. Annotation analysis revealed 16830 genes which are involved in fungicide resistance, virulence and pathogenicity along with putative effector and lethal genes. Secretome analysis revealed CAZY genes representing 1085 enzymatic genes, glycoside hydrolases, carbohydrate esterases, carbohydrate-binding modules, auxillary activities, glycosyl transferases and polysaccharide lyases. Repeat analysis revealed 11171 SSRs, LTR, GYPSY and COPIA elements. Comparative analysis with other existing ascomycotina genome predicted conserved domain family of WD40, CYP450, Pkinase and ABC transporter revealing insight of evolution of pathogenicity and virulence. This study would help in understanding pathogenicity and virulence at molecular level and development of new combating strategies. Such approach is imperative in endeavour of genome based solution in stem rot disease management leading to better productivity of groundnut crop in tropical region of world.

  14. Evolution of two distinct phylogenetic lineages of the emerging human pathogen Mycobacterium ulcerans

    Directory of Open Access Journals (Sweden)

    Portaels Francoise

    2007-09-01

    Full Text Available Abstract Background Comparative genomics has greatly improved our understanding of the evolution of pathogenic mycobacteria such as Mycobacterium tuberculosis. Here we have used data from a genome microarray analysis to explore insertion-deletion (InDel polymorphism among a diverse strain collection of Mycobacterium ulcerans, the causative agent of the devastating skin disease, Buruli ulcer. Detailed analysis of large sequence polymorphisms in twelve regions of difference (RDs, comprising irreversible genetic markers, enabled us to refine the phylogenetic succession within M. ulcerans, to define features of a hypothetical M. ulcerans most recent common ancestor and to confirm its origin from Mycobacterium marinum. Results M. ulcerans has evolved into five InDel haplotypes that separate into two distinct lineages: (i the "classical" lineage including the most pathogenic genotypes – those that come from Africa, Australia and South East Asia; and (ii an "ancestral" M. ulcerans lineage comprising strains from Asia (China/Japan, South America and Mexico. The ancestral lineage is genetically closer to the progenitor M. marinum in both RD composition and DNA sequence identity, whereas the classical lineage has undergone major genomic rearrangements. Conclusion Results of the InDel analysis are in complete accord with recent multi-locus sequence analysis and indicate that M. ulcerans has passed through at least two major evolutionary bottlenecks since divergence from M. marinum. The classical lineage shows more pronounced reductive evolution than the ancestral lineage, suggesting that there may be differences in the ecology between the two lineages. These findings improve the understanding of the adaptive evolution and virulence of M. ulcerans and pathogenic mycobacteria in general and will facilitate the development of new tools for improved diagnostics and molecular epidemiology.

  15. Pathogen detection by the polymerase chain reaction

    Energy Technology Data Exchange (ETDEWEB)

    Chitpatima, S T; Settachan, D; Pornsilpatip, J; Visawapoka, U [Pramongkutklao College of Medicine, Bangkok (Thailand). Molecular Biology Lab.; Dvorak, D R [Amersham International Ltd., Singapore (Singapore)

    1994-05-01

    In recent years, significant advances in the knowledge of DNA and its make up have led to the development of a powerful technique called polymerase chain reaction (PCR). Since the advent of PCR, laboratories around the globe have been exploiting this technology to bridge limitations or to overcome common problems encountered in molecular biology techniques. In addition, this technology has been employed successfully in diagnostic and basic scientific research and development. The true potentials of this technology is realized in early detection of pathogens and genetic abnormalities. In this paper two PCR protocols are described. The first is for detection of HIV-1 DNA in blood, the other for detection of rabies virus RNA in brain cells. 6 refs, 3 figs, 1 tab.

  16. Two Theobroma cacao genotypes with contrasting pathogen tolerance show aberrant transcriptional and ROS responses after salicylic acid treatment.

    Science.gov (United States)

    Fister, Andrew S; O'Neil, Shawn T; Shi, Zi; Zhang, Yufan; Tyler, Brett M; Guiltinan, Mark J; Maximova, Siela N

    2015-10-01

    Understanding the genetic basis of pathogen susceptibility in various crop plants is crucial to increasing the stability of food, feed, and fuel production. Varietal differences in defence responses provide insights into the mechanisms of resistance and are a key resource for plant breeders. To explore the role of salicylic acid in the regulation of defence in cacao, we demonstrated that SA treatment decreased susceptibility to a pod rot pathogen, Phytophthora tropicalis in two genotypes, Scavina 6 and Imperial College Selection 1, which differ in their resistance to several agriculturally important pathogens. Transient overexpression of TcNPR1, a major transcriptional regulator of the SA-dependent plant immune system, also increased pathogen tolerance in cacao leaves. To explore further the genetic basis of resistance in cacao, we used microarrays to measure gene expression profiles after salicylic acid (SA) treatment in these two cacao genotypes. The two genotypes displayed distinct transcriptional responses to SA. Unexpectedly, the expression profile of the susceptible genotype ICS1 included a larger number of pathogenesis-related genes that were induced by SA at 24h after treatment, whereas genes encoding many chloroplast and mitochondrial proteins implicated in reactive oxygen species production were up-regulated in the resistant genotype, Sca6. Sca6 accumulated significantly more superoxide at 24h after treatment of leaves with SA. These experiments revealed critical insights regarding the molecular differences between cacao varieties, which will allow a better understanding of defence mechanisms to help guide breeding programmes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.

    Science.gov (United States)

    Chakravarthy, Vajhala S K; Reddy, Tummala Papi; Reddy, Vudem Dashavantha; Rao, Khareedu Venkateswara

    2014-06-01

    Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz., early maturity, improved fiber quality, heat tolerance, etc. have been successfully incorporated into cotton varieties employing conventional hybridization and mutation breeding. Crop losses, due to biotic factors, are substantial and may be reduced through certain crop protection strategies. In recent years, pioneering success has been achieved through the adoption of modern biotechnological approaches. Genetically engineered cotton varieties, expressing Bacillus thuringiensis cry genes, proved to be highly successful in controlling the bollworm complex. Various other candidate genes responsible for resistance to insect pests and pathogens, tolerance to major abiotic stress factors such as temperature, drought and salinity, have been introduced into cotton via genetic engineering methods to enhance the agronomic performance of cotton cultivars. Furthermore, genes for improving the seed oil quality and fiber characteristics have been identified and introduced into cotton cultivars. This review provides a brief overview of the various advancements made in cotton through genetic engineering approaches.

  18. Molecular Biosensors for Electrochemical Detection of Infectious Pathogens in Liquid Biopsies: Current Trends and Challenges.

    Science.gov (United States)

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José Manuel

    2017-11-03

    Rapid and reliable diagnosis of infectious diseases caused by pathogens, and timely initiation of appropriate treatment are critical determinants to promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in electrochemical affinity biosensors have demonstrated to surpass conventional standards in regards to time, simplicity, accuracy and cost in this field. The tremendous potential offered by electrochemical affinity biosensors to detect on-site infectious pathogens at clinically relevant levels in scarcely treated body fluids is clearly stated in this review. The development and application of selected examples using different specific receptors, assay formats and electrochemical approaches focusing on the determination of specific circulating biomarkers of different molecular (genetic, regulatory and functional) levels associated with bacterial and viral pathogens are critically discussed. Existing challenges still to be addressed and future directions in this rapidly advancing and highly interesting field are also briefly pointed out.

  19. Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity

    Directory of Open Access Journals (Sweden)

    Fuchs Thilo M

    2008-01-01

    Full Text Available Abstract Background Photorhabdus luminescens and Yersinia enterocolitica are both enteric bacteria which are associated with insects. P. luminescens lives in symbiosis with soil nematodes and is highly pathogenic towards insects but not to humans. In contrast, Y. enterocolitica is widely found in the environment and mainly known to cause gastroenteritis in men, but has only recently been shown to be also toxic for insects. It is expected that both pathogens share an overlap of genetic determinants that play a role within the insect host. Results A selective genome comparison was applied. Proteins belonging to the class of two-component regulatory systems, quorum sensing, universal stress proteins, and c-di-GMP signalling have been analysed. The interorganismic synopsis of selected regulatory systems uncovered common and distinct signalling mechanisms of both pathogens used for perception of signals within the insect host. Particularly, a new class of LuxR-like regulators was identified, which might be involved in detecting insect-specific molecules. In addition, the genetic overlap unravelled a two-component system that is unique for the genera Photorhabdus and Yersinia and is therefore suggested to play a major role in the pathogen-insect relationship. Our analysis also highlights factors of both pathogens that are expressed at low temperatures as encountered in insects in contrast to higher (body temperature, providing evidence that temperature is a yet under-investigated environmental signal for bacterial adaptation to various hosts. Common degradative metabolic pathways are described that might be used to explore nutrients within the insect gut or hemolymph, thus enabling the proliferation of P. luminescens and Y. enterocolitica in their invertebrate hosts. A strikingly higher number of genes encoding insecticidal toxins and other virulence factors in P. luminescens compared to Y. enterocolitica correlates with the higher virulence of P

  20. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing.

    Science.gov (United States)

    Schuurs-Hoeijmakers, Janneke H M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; van de Vondervoort, Ilse I G M; van Bon, Bregje W M; de Ligt, Joep; Gilissen, Christian; Hehir-Kwa, Jayne Y; Neveling, Kornelia; del Rosario, Marisol; Hira, Gausiya; Reitano, Santina; Vitello, Aurelio; Failla, Pinella; Greco, Donatella; Fichera, Marco; Galesi, Ornella; Kleefstra, Tjitske; Greally, Marie T; Ockeloen, Charlotte W; Willemsen, Marjolein H; Bongers, Ernie M H F; Janssen, Irene M; Pfundt, Rolph; Veltman, Joris A; Romano, Corrado; Willemsen, Michèl A; van Bokhoven, Hans; Brunner, Han G; de Vries, Bert B A; de Brouwer, Arjan P M

    2013-12-01

    Intellectual disability (ID) is a common neurodevelopmental disorder affecting 1-3% of the general population. Mutations in more than 10% of all human genes are considered to be involved in this disorder, although the majority of these genes are still unknown. We investigated 19 small non-consanguineous families with two to five affected siblings in order to identify pathogenic gene variants in known, novel and potential ID candidate genes. Non-consanguineous families have been largely ignored in gene identification studies as small family size precludes prior mapping of the genetic defect. Using exome sequencing, we identified pathogenic mutations in three genes, DDHD2, SLC6A8, and SLC9A6, of which the latter two have previously been implicated in X-linked ID phenotypes. In addition, we identified potentially pathogenic mutations in BCORL1 on the X-chromosome and in MCM3AP, PTPRT, SYNE1, and ZNF528 on autosomes. We show that potentially pathogenic gene variants can be identified in small, non-consanguineous families with as few as two affected siblings, thus emphasising their value in the identification of syndromic and non-syndromic ID genes.

  1. Processes for managing pathogens.

    Science.gov (United States)

    Godfree, Alan; Farrell, Joseph

    2005-01-01

    Wastewater contains human, animal, and plant pathogens capable of causing viral, bacterial, or parasitic infections. There are several routes whereby sewage pathogens may affect human health, including direct contact, contamination of food crops, zoonoses, and vectors. The range and numbers of pathogens in municipal wastewater vary with the level of endemic disease in the community, discharges from commercial activities, and seasonal factors. Regulations to control pathogen risk in the United States and Europe arising from land application of biosolids are based on the concept of multiple barriers to the prevention of transmission. The barriers are (i) treatment to reduce pathogen content and vector attraction, (ii) restrictions on crops grown on land to which biosolids have been applied, and (iii) minimum intervals following application and grazing or harvesting. Wastewater treatment reduces number of pathogens in the wastewater by concentrating them with the solids in the sludge. Although some treatment processes are designed specifically to inactivate pathogens, many are not, and the actual mechanisms of microbial inactivation are not fully understood for all processes. Vector attraction is reduced by stabilization (reduction of readily biodegradable material) and/or incorporation immediately following application. Concerns about health risks have renewed interest in the effects of treatment (on pathogens) and advanced treatment methods, and work performed in the United States suggests that Class A pathogen reduction can be achieved less expensively than previously thought. Effective pathogen risk management requires control to the complete chain of sludge treatment, biosolids handling and application, and post-application activities. This may be achieved by adherence to quality management systems based on hazard analysis critical control point (HACCP) principles.

  2. Plant-pathogen interactions: what microarray tells about it?

    Science.gov (United States)

    Lodha, T D; Basak, J

    2012-01-01

    Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant-pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.

  3. Homologous genetic recombination in the yellow head complex of nidoviruses infecting Penaeus monodon shrimp.

    Science.gov (United States)

    Wijegoonawardane, Priyanjalie K M; Sittidilokratna, Nusra; Petchampai, Natthida; Cowley, Jeff A; Gudkovs, Nicholas; Walker, Peter J

    2009-07-20

    Yellow head virus (YHV) is a highly virulent pathogen of Penaeus monodon shrimp. It is one of six known genotypes in the yellow head complex of nidoviruses which also includes mildly pathogenic gill-associated virus (GAV, genotype 2) and four other genotypes (genotypes 3-6) that have been detected only in healthy shrimp. In this study, comparative phylogenetic analyses conducted on replicase- (ORF1b) and glycoprotein- (ORF3) gene amplicons identified 10 putative natural recombinants amongst 28 viruses representing all six genotypes from across the Indo-Pacific region. The approximately 4.6 kb genomic region spanning the two amplicons was sequenced for three putative recombinant viruses from Vietnam (genotype 3/5), the Philippines (genotype 5/2) and Indonesia (genotype 3/2). SimPlot analysis using these and representative parental virus sequences confirmed that each was a recombinant genotype and identified a recombination hotspot in a region just upstream of the ORF1b C-terminus. Maximum-likelihood breakpoint analysis predicted identical crossover positions in the Vietnamese and Indonesian recombinants, and a crossover position 12 nt upstream in the Philippine recombinant. Homologous genetic recombination in the same genome region was also demonstrated in recombinants generated experimentally in shrimp co-infected with YHV and GAV. The high frequency with which natural recombinants were identified indicates that genetic exchange amongst genotypes is occurring commonly in Asia and playing a significant role in expanding the genetic diversity in the yellow head complex. This is the first evidence of genetic recombination in viruses infecting crustaceans and has significant implications for the pathogenesis of infection and diagnosis of these newly emerging invertebrate pathogens.

  4. Multi-Probe Investigation of Proteomic Structure of Pathogens

    International Nuclear Information System (INIS)

    Malkin, A J; Plomp, M; Leighton, T J; Vogelstein, B; Wheeler, K E

    2008-01-01

    found to significantly improve the efficacy of chemotherapeutic drugs and radiotherapy (2,3). Currently, there is no understanding of the structure-function relationships of Clostridium novyi-NT spores. As well as their therapeutic interest, studies of Clostridium noyii spores could provide a model for further studies of human pathogenic spore formers including Clostridium botulinum and Clostridium perfringens. This project involved a multi-institutional collaboration of our LLNL group with the groups of Prof. T.J. Leighton (Children's Hospital Oakland Research Institute) and Prof. B. Vogelstein (The Howard Hughes Medical Institute and the Ludwig Center for Cancer Genetics and Therapeutics at The John Hopkins Sidney Kimmel Comprehensive Cancer Center)

  5. the genetic and molecular basis of bacterial invasion of epithelial cells

    African Journals Online (AJOL)

    DR. AMINU

    The pathogenic species of bacteria are of great medical importance as causative agents of infectious diseases. Moreover, as the condition of human existence have changed, so have the bacterial species that produce diseases. It is against this background that molecular genetics have now entered the field of microbial ...

  6. Preliminary molecular characterization of the human pathogen Angiostrongylus cantonensis

    Directory of Open Access Journals (Sweden)

    He Ai

    2009-10-01

    Full Text Available Abstract Background Human angiostrongyliasis is an emerging food-borne public health problem, with the number of cases increasing worldwide, especially in mainland China. Angiostrongylus cantonensis is the causative agent of this severe disease. However, little is known about the genetics and basic biology of A. cantonensis. Results A cDNA library of A. cantonensis fourth-stage larvae was constructed, and ~1,200 clones were sequenced. Bioinformatic analyses revealed 378 cDNA clusters, 54.2% of which matched known genes at a cutoff expectation value of 10-20. Of these 378 unique cDNAs, 168 contained open reading frames encoding proteins containing an average of 238 amino acids. Characterization of the functions of these encoded proteins by Gene Ontology analysis showed enrichment in proteins with binding and catalytic activity. The observed pattern of enzymes involved in protein metabolism, lipid metabolism and glycolysis may reflect the central nervous system habitat of this pathogen. Four proteins were tested for their immunogenicity using enzyme-linked immunosorbent assays and histopathological examinations. The specificity of each of the four proteins was superior to that of crude somatic and excretory/secretory antigens of larvae, although their sensitivity was relatively low. We further showed that mice immunized with recombinant cystatin, a product of one of the four cDNA candidate genes, were partially protected from A. cantonensis infection. Conclusion The data presented here substantially expand the available genetic information about the human pathogen A. cantonensis, and should be a significant resource for angiostrongyliasis researchers. As such, this work serves as a starting point for molecular approaches for diagnosing and controlling human angiostrongyliasis.

  7. Whole-Proteome Analysis of Twelve Species of Alphaproteobacteria Links Four Pathogens

    Directory of Open Access Journals (Sweden)

    Yunyun Zhou

    2013-11-01

    Full Text Available Thousands of whole-genome and whole-proteome sequences have been made available through advances in sequencing technology, and sequences of millions more organisms will become available in the coming years. This wealth of genetic information will provide numerous opportunities to enhance our understanding of these organisms including a greater understanding of relationships among species. Researchers have used 16S rRNA and other gene sequences to study the evolutionary origins of bacteria, but these strategies do not provide insight into the sharing of genes among bacteria via horizontal transfer. In this work we use an open source software program called pClust to cluster proteins from the complete proteomes of twelve species of Alphaproteobacteria and generate a dendrogram from the resulting orthologous protein clusters. We compare the results with dendrograms constructed using the 16S rRNA gene and multiple sequence alignment of seven housekeeping genes. Analysis of the whole proteomes of these pathogens grouped Rickettsia typhi with three other animal pathogens whereas conventional sequence analysis failed to group these pathogens together. We conclude that whole-proteome analysis can give insight into relationships among species beyond their phylogeny, perhaps reflecting the effects of horizontal gene transfer and potentially providing insight into the functions of shared genes by means of shared phenotypes.

  8. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  9. Analyses between Reproductive Behavior, Genetic Diversity and Pythium Responsiveness in Zingiber spp. Reveal an Adaptive Significance for Hemiclonality

    Science.gov (United States)

    Thomas, Geethu E.; Geetha, Kiran A.; Augustine, Lesly; Mamiyil, Sabu; Thomas, George

    2016-01-01

    Mode of reproduction is generally considered to have long-range evolutionary implications on population survival. Because sexual reproduction produces genetically diverse genotypes, this mode of reproduction is predicted to positively influence the success potential of offspring in evolutionary arms race with parasites (Red queen) whereas, without segregation and recombination, the obligate asexual multiplication may push a species into extinction due to the steady accumulation of deleterious mutations (Muller’s ratchet). However, the extent of linearity between reproductive strategies, genetic diversity and population fitness, and the contributions of different breeding strategies to population fitness are yet to be understood clearly. Genus Zingiber belonging to the pan-tropic family Zingiberaceae represents a good system to study contributions of different breeding behavior on genetic diversity and population fitness, as this genus comprises species with contrasting breeding systems. In this study, we analyzed breeding behavior, amplified fragment length polymorphism diversity and response to the soft-rot pathogen Pythium aphanidermatum in 18 natural populations of three wild Zingiber spp.: Z. neesanum, Z. nimmonii, and Z. zerumbet, together with the obligately asexual cultivated congener, ginger (Z. officinale). Ginger showed an exceptionally narrow genetic base, and adding to this, all the tested cultivars were uniformly susceptible to soft-rot. Concordant with the postulates of Muller’s ratchet, the background selection may be continuously pushing ginger into the ancestral state, rendering it inefficient in host-pathogen coevolution. Z. neesanum and Z. nimmonii populations were sexual and genetically diverse; however, contrary to Red Queen expectations, the populations were highly susceptible to soft-rot. Z. zerumbet showed a hemiclonal breeding behavior. The populations inhabiting forest understory were large and continuous, sexual and genetically

  10. Immune Evasion Strategies of Pathogens in Macrophages: the Potential for Limiting Pathogen Transmission.

    Science.gov (United States)

    Ren, Yuwei; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Zhang, Shujun

    2017-01-01

    Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges. The lipid and glycogen metabolic pathways work together with the lysosome to help the mature phagosome to degrade and eliminate intracellular pathogens in macrophages. The viral evasion strategies are even more complex due to the interplay between autophagy and apoptosis. However, pathogens evolve several strategies to camouflage themselves against immune responses in order to ensure their survival, replication and transmission. These strategies include the muting of PRRs initiated inflammatory responses, attenuation of M1 and/or induction of M2 macrophages, suppression of autophago-lysosomal formation, interference with lipid and glycogen metabolism, and viral mediation of autophagy and apoptosis cross-talk to enhance viral replication. This review focuses on pathogen immune evasion methods and on the strategies used by the host against camouflaged pathogens.

  11. Involvement of genetic variants associated with primary open-angle glaucoma in pathogenic mechanisms and family history of glaucoma.

    Science.gov (United States)

    Mabuchi, Fumihiko; Sakurada, Yoichi; Kashiwagi, Kenji; Yamagata, Zentaro; Iijima, Hiroyuki; Tsukahara, Shigeo

    2015-03-01

    To investigate the associations between the non-intraocular pressure (IOP)-related genetic variants (genetic variants associated with vulnerability of the optic nerve independent of IOP) and primary open-angle glaucoma (POAG), including normal-tension glaucoma (NTG) and high-tension glaucoma (HTG), and between the non-IOP-related genetic variants and a family history of glaucoma. Case-control study. Japanese patients with NTG (n = 213) and HTG (n = 212) and 191 control subjects were genotyped for 5 non-IOP-related genetic variants predisposing to POAG near the SRBD1, ELOVL5, CDKN2B/CDKN2B-AS1, SIX1/SIX6, and ATOH7 genes. The load of these genetic variants was compared between the control subjects and patients with NTG or HTG and between the POAG patients with and without a family history of glaucoma. The total number of POAG risk alleles and the product of the odds ratios (POAG risk) of these genetic variants were significantly larger (P product of the odds ratios increased (P = .012 and P = .047, respectively). Non-IOP-related genetic variants contribute to the pathogenesis of HTG as well as NTG. A positive family history of glaucoma in cases of POAG is thought to reflect the influence of genetic variants predisposing to POAG. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Telegenetics use in presymptomatic genetic counselling : patient evaluations on satisfaction and quality of care

    NARCIS (Netherlands)

    Otten, Ellen; Birnie, Erwin; Ranchor, Adelita V.; van Langen, Irene M.

    In recent years, online counselling has been introduced in clinical genetics to increase patients' access to care and to reduce time and cost for both patients and professionals. Most telegenetics reports so far evaluated online oncogenetic counselling at remote health centres in regions with large

  13. Genetics of frontotemporal lobar degeneration

    Directory of Open Access Journals (Sweden)

    Aswathy P

    2010-10-01

    Full Text Available Frontotemporal lobar degeneration (FTLD is a highly heterogenous group of progressive neurodegenerative disorders characterized by atrophy of prefrontal and anterior temporal cortices. Recently, the research in the field of FTLD has gained increased attention due to the clinical, neuropathological, and genetic heterogeneity and has increased our understanding of the disease pathogenesis. FTLD is a genetically complex disorder. It has a strong genetic basis and 50% of patients show a positive family history for FTLD. Linkage studies have revealed seven chromosomal loci and a number of genes including MAPT, PGRN, VCP, and CHMB-2B are associated with the disease. Neuropathologically, FTLD is classified into tauopathies and ubiquitinopathies. The vast majority of FTLD cases are characterized by pathological accumulation of tau or TDP-43 positive inclusions, each as an outcome of mutations in MAPT or PGRN, respectively. Identification of novel proteins involved in the pathophysiology of the disease, such as progranulin and TDP-43, may prove to be excellent biomarkers of disease progression and thereby lead to the development of better therapeutic options through pharmacogenomics. However, much more dissections into the causative pathways are needed to get a full picture of the etiology. Over the past decade, advances in research on the genetics of FTLD have revealed many pathogenic mutations leading to different clinical manifestations of the disease. This review discusses the current concepts and recent advances in our understanding of the genetics of FTLD.

  14. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  15. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer’s Disease

    Science.gov (United States)

    Harris, Steven A.; Harris, Elizabeth A.

    2015-01-01

    Abstract This review focuses on research in epidemiology, neuropathology, molecular biology, and genetics regarding the hypothesis that pathogens interact with susceptibility genes and are causative in sporadic Alzheimer’s disease (AD). Sporadic AD is a complex multifactorial neurodegenerative disease with evidence indicating coexisting multi-pathogen and inflammatory etiologies. There are significant associations between AD and various pathogens, including Herpes simplex virus type 1 (HSV-1), Cytomegalovirus, and other Herpesviridae, Chlamydophila pneumoniae, spirochetes, Helicobacter pylori, and various periodontal pathogens. These pathogens are able to evade destruction by the host immune system, leading to persistent infection. Bacterial and viral DNA and RNA and bacterial ligands increase the expression of pro-inflammatory molecules and activate the innate and adaptive immune systems. Evidence demonstrates that pathogens directly and indirectly induce AD pathology, including amyloid-β (Aβ) accumulation, phosphorylation of tau protein, neuronal injury, and apoptosis. Chronic brain infection with HSV-1, Chlamydophila pneumoniae, and spirochetes results in complex processes that interact to cause a vicious cycle of uncontrolled neuroinflammation and neurodegeneration. Infections such as Cytomegalovirus, Helicobacter pylori, and periodontal pathogens induce production of systemic pro-inflammatory cytokines that may cross the blood-brain barrier to promote neurodegeneration. Pathogen-induced inflammation and central nervous system accumulation of Aβ damages the blood-brain barrier, which contributes to the pathophysiology of AD. Apolipoprotein E4 (ApoE4) enhances brain infiltration by pathogens including HSV-1 and Chlamydophila pneumoniae. ApoE4 is also associated with an increased pro-inflammatory response by the immune system. Potential antimicrobial treatments for AD are discussed, including the rationale for antiviral and antibiotic clinical trials. PMID

  16. Genetic Diversity in Natural Populations of New World Leishmania

    Directory of Open Access Journals (Sweden)

    Cupolillo Elisa

    1998-01-01

    Full Text Available Our results have shown the wide diversity of parasites within New World Leishmania. Biochemical and molecular characterization of species within the genus has revealed that much of the population heterogeneity has a genetic basis. The source of genetic diversity among Leishmania appears to arise from predominantly asexual, clonal reproduction, although occasional bouts of sexual reproduction can not be ruled out. Genetic variation is extensive with some clones widely distributed and others seemingly unique and localized to a particular endemic focus. Epidemiological studies of leishmaniasis has been directed to the ecology and dynamics of transmission of Leishmania species/variants, particularly in localized areas. Future research using molecular techniques should aim to identify and follow Leishmania types in nature and correlate genetic typing with important clinical characteristics such as virulence, pathogenicity, drug resistance and antigenic variation. The epidemiological significance of such variation not only has important implications for the control of the leishmaniases, but would also help to elucidate the evolutionary biology of the causative agents.

  17. Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Yixin H Ye

    2009-04-01

    Full Text Available Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide changes in expression in the selected flies relative to unselected controls, both of which had been infected with the pathogen. This powerful combination of techniques allowed us to specifically identify the genetic basis of the evolved immune response. In response to selection, population-level survivorship to infection increased from 15% to 70%. The evolved capacity for defense was costly, however, as evidenced by reduced longevity and larval viability and a rapid loss of the trait once selection pressure was removed. Counter to expectation, we observed more rapid developmental rates in the selected flies. Selection-associated changes in expression of genes with dual involvement in developmental and immune pathways suggest pleiotropy as a possible mechanism for the positive correlation. We also found that both the Toll and the Imd pathways work synergistically to limit infectivity and that cellular immunity plays a more critical role in overcoming P. aeruginosa infection than previously reported. This work reveals novel pathways by which Drosophila can survive infection with a virulent pathogen that may be rare in wild populations, however, due to their cost.

  18. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1997-01-01

    This paper both describes the overall design concept of the ITER remote maintenance system, which has been developed mainly for use with in-vessel components such as divertor and blanket, and outlines of the ITER R and D program, which has been established to develop remote handling equipment/tools and radiation hard components. In ITER, the reactor structures inside cryostat have to be maintained remotely because of activation due to DT operation. Therefore, remote-handling technology is fundamental, and the reactor-structure design must be made consistent with remote maintainability. The overall maintenance scenario and design concepts of the required remote handling equipment/tools have been developed according to their maintenance classification. Technologies are also being developed to verify the feasibility of the maintenance design and include fabrication and testing of a fullscale remote-handling equipment/tools for in-vessel maintenance. (author)

  19. Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen.

    Science.gov (United States)

    Iguchi, Atsushi; Nagaya, Yutaka; Pradel, Elizabeth; Ooka, Tadasuke; Ogura, Yoshitoshi; Katsura, Keisuke; Kurokawa, Ken; Oshima, Kenshiro; Hattori, Masahira; Parkhill, Julian; Sebaihia, Mohamed; Coulthurst, Sarah J; Gotoh, Naomasa; Thomson, Nicholas R; Ewbank, Jonathan J; Hayashi, Tetsuya

    2014-08-01

    Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Family system characteristics and psychological adjustment to cancer susceptibility genetic testing: a prospective study.

    NARCIS (Netherlands)

    Oostrom, I.I.H. van; Meijers-Heijboer, H.; Duivenvoorden, H.J.; Brocker-Vriends, A.H.; Asperen, C.J. van; Sijmons, R.H.; Seynaeve, C.; Gool, A.R. van; Klijn, J.G.M.; Tibben, A.

    2007-01-01

    This study examined prospectively the contribution of family functioning, differentiation to parents, family communication and support from relatives to psychological distress in individuals undergoing genetic susceptibility testing for a known familial pathogenic BRCA1/2 or Hereditary nonpolyposis

  1. Family system characteristics and psychological adjustment to cancer susceptibility genetic testing: a prospective study

    NARCIS (Netherlands)

    van Oostrom, I.; Meijers-Heijboer, H.; Duivenvoorden, H. J.; Bröcker-Vriends, A. H. J. T.; van Asperen, C. J.; Sijmons, R. H.; Seynaeve, C.; van Gool, A. R.; Klijn, J. G. M.; Tibben, A.

    2007-01-01

    This study examined prospectively the contribution of family functioning, differentiation to parents, family communication and support from relatives to psychological distress in individuals undergoing genetic susceptibility testing for a known familial pathogenic BRCA1/2 or Hereditary nonpolyposis

  2. Family system characteristics and psychological adjustment to cancer susceptibility genetic testing : a prospective study

    NARCIS (Netherlands)

    van Oostrom, I.; Meijers-Heijboer, H.; Duivenvoorden, H. J.; Brocker-Vriends, A. H. J. T.; van Asperen, C. J.; Sijmons, R. H.; Seynaeve, C.; Van Gool, A. R.; Klijn, J. G. M.; Tibben, A.

    This study examined prospectively the contribution of family functioning, differentiation to parents, family communication and support from relatives to psychological distress in individuals undergoing genetic susceptibility testing for a known familial pathogenic BRCA1/2 or Hereditary nonpolyposis

  3. Remote Systems Design & Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  4. Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza viruses in Vietnam.

    Science.gov (United States)

    Carrel, Margaret A; Emch, Michael; Jobe, R Todd; Moody, Aaron; Wan, Xiu-Feng

    2010-01-08

    Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic isolation by

  5. Role of genetics in the development of pediatric nephrology

    Directory of Open Access Journals (Sweden)

    M. S. Ignatova

    2015-01-01

    Full Text Available Generalized data on the role of medical genetics in the development of pediatric nephrology are given on the basis of the authors’ observations and modern literature. It is shown that the introduction of genetic researches into the practice of a pediatric nephrologist can change the view of the etiology of many diseases, decipher the essence of a number of nephropathies, the cause of which was unclear, and reduce the number of idiopathic diseases. This is particularly important for the determination of therapeutic tactics and the emergence of new pathogenic agents that can improve prognosis and quality of life in patients in a number of genetic diseases. Particular attention is drawn to hereditary nephropathy accompanied by hematuria and particularly to Alport syndrome characterized by a progressive course. The development of genetics and clinical introduction of its advances have recently led to the identification of a new nosological entity — hereditary C3 glomerulonephritis as a result of CFHR5 gene mutation. Thanks to the development of genetic technologies, new genetic kidney diseases are certain to be disclosed in the next future. 

  6. Conservation genetics and genomics of amphibians and reptiles.

    Science.gov (United States)

    Shaffer, H Bradley; Gidiş, Müge; McCartney-Melstad, Evan; Neal, Kevin M; Oyamaguchi, Hilton M; Tellez, Marisa; Toffelmier, Erin M

    2015-01-01

    Amphibians and reptiles as a group are often secretive, reach their greatest diversity often in remote tropical regions, and contain some of the most endangered groups of organisms on earth. Particularly in the past decade, genetics and genomics have been instrumental in the conservation biology of these cryptic vertebrates, enabling work ranging from the identification of populations subject to trade and exploitation, to the identification of cryptic lineages harboring critical genetic variation, to the analysis of genes controlling key life history traits. In this review, we highlight some of the most important ways that genetic analyses have brought new insights to the conservation of amphibians and reptiles. Although genomics has only recently emerged as part of this conservation tool kit, several large-scale data sources, including full genomes, expressed sequence tags, and transcriptomes, are providing new opportunities to identify key genes, quantify landscape effects, and manage captive breeding stocks of at-risk species.

  7. Genetic characterization of Australian Mycoplasma bovis isolates through whole genome sequencing analysis

    DEFF Research Database (Denmark)

    Parker, Alysia M.; Shukla, Ankit; House, John K.

    2016-01-01

    Mycoplasma bovis is a major pathogen in cattle causing mastitis, arthritis and pneumonia. First isolated in Australian cattle in 1970, M. bovis has persisted causing serious disease in infected herds. To date, genetic analysis of Australian M. bovis isolates has not been performed. With whole gen...

  8. A Genetic Linkage Map of Mycosphaerella Fijiensis, using SSR and DArT Markers

    Science.gov (United States)

    Mycosphaerella fijiensis is the causal agent of black leaf streak or Black Sigatoka disease in bananas. This pathogen threatens global banana production as the main export Cavendish cultivars are highly susceptible. Previously a genetic linkage map was generated predominantly using anonymous AFLP ma...

  9. Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile

    Science.gov (United States)

    Boudry, Pierre; Semenova, Ekaterina; Monot, Marc; Datsenko, Kirill A.; Lopatina, Anna; Sekulovic, Ognjen; Ospina-Bedoya, Maicol; Fortier, Louis-Charles; Severinov, Konstantin; Dupuy, Bruno

    2015-01-01

    ABSTRACT Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. PMID:26330515

  10. Pathogen intelligence

    Directory of Open Access Journals (Sweden)

    Michael eSteinert

    2014-01-01

    Full Text Available Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behaviour, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behaviour, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies.

  11. Remote handling at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1983-01-01

    Experimental area A at the Clinton P. Anderson Meson Physics Facility (LAMPF) encompasses a large area. Presently there are four experimental target cells along the main proton beam line that have become highly radioactive, thus dictating that all maintenance be performed remotely. The Monitor remote handling system was developed to perform in situ maintenance at any location within area A. Due to the complexity of experimental systems and confined space, conventional remote handling methods based upon hot cell and/or hot bay concepts are not workable. Contrary to conventional remote handling which require special tooling for each specifically planned operation, the Monitor concept is aimed at providing a totally flexible system capable of remotely performing general mechanical and electrical maintenance operations using standard tools. The Monitor system is described

  12. Pathogenic Leptospira: Advances in understanding the molecular pathogenesis and virulence

    Science.gov (United States)

    Ghazaei, Ciamak

    2018-01-01

    Leptospirosis is a common zoonotic disease has emerged as a major public health problem, with developing countries bearing disproportionate burdens. Although the diverse range of clinical manifestations of the leptospirosis in humans is widely documented, the mechanisms through which the pathogen causes disease remain undetermined. In addition, leptospirosis is a much-neglected life-threatening disease although it is one of the most important zoonoses occurring in a diverse range of epidemiological distribution. Recent advances in molecular profiling of pathogenic species of the genus Leptospira have improved our understanding of the evolutionary factors that determine virulence and mechanisms that the bacteria employ to survive. However, a major impediment to the formulation of intervention strategies has been the limited understanding of the disease determinants. Consequently, the association of the biological mechanisms to the pathogenesis of Leptospira, as well as the functions of numerous essential virulence factors still remain implicit. This review examines recent advances in genetic screening technologies, the underlying microbiological processes, the virulence factors and associated molecular mechanisms driving pathogenesis of Leptospira species. PMID:29445617

  13. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Directory of Open Access Journals (Sweden)

    Martin Meyer

    2016-08-01

    Full Text Available We here compared pathogenic (p and non-pathogenic (np isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12 derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12 derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  14. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Science.gov (United States)

    Meyer, Martin; Fehling, Helena; Matthiesen, Jenny; Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ernst, Thomas; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-08-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12) derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  15. Genetic Diversity Among Colletotrichum falcatum Isolates Causing Red Rot of Sugarcane in Subtropical Region of India

    Directory of Open Access Journals (Sweden)

    Ratinderbir KAUR

    2014-09-01

    Full Text Available Silver Genetic diversity of Colletotrichum falcatum causing red rot of sugarcane was assessed based on morphological, pathological and molecular characteristics especially from sub-tropical Indian conditions. Sixteen isolates of this pathogen were collected based on the extensive survey on prominent varieties grown in the region along with some elite selections. Morphological observations (colony colour, mycelium pattern and sporulation grouped the isolates into two distinct types (C1: light type and C2: dark type. However, quantitative data on colony diameter showed five clusters for these isolates. Pathogenic characterization of these isolates on fourteen standard differentials formed six groups, ingroup 1: (CF-Pb-1 isolates Cf-157, Cf-249 and Cf-248 were the most virulent while group 6 (CF-Pb-6 isolates Cf-60 and Cf-247 were the least one. The genetic relatedness among the isolates using Random Amplified Polymorphic DNA (RAPD analysis revealed sufficient molecular polymorphism, which in turn confirmed the variation in virulence of different isolates. The data categorized different isolates into two major clusters and five independent lineages. Polymorphic information content (PIC ranged from 0.701 to 0.929. Isolate Cf-223 was found to be genetically most diverse among all the isolates. Present study inferred that morphological grouping of most of the isolates showed positive correlation with the pathogenic variability while molecular diversity did not showed such associations.

  16. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1998-01-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  18. Remote maintenance development for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Shibanuma, Kiyoshi

    1998-04-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  19. Molecular Genetic Methods Implementation for Phytopathogen Identification in Forest Stands and Nurseries of the Russian Federation

    Directory of Open Access Journals (Sweden)

    T. S. Alimova

    2014-08-01

    Full Text Available The results of the application of molecular genetics methods for the analysis of the plant pathogens present in forest plantations and nurseries of the Russian Federation, including doughnut fungus and annosum root rot are presented. The prospects and benefits of using DNA analysis for early diagnosis of plant diseases without isolation of the pathogen in pure culture, shortening time of analysis, and the possibility of mass screening are discussed.

  20. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus.

    Science.gov (United States)

    Sobel Leonard, Ashley; Weissman, Daniel B; Greenbaum, Benjamin; Ghedin, Elodie; Koelle, Katia

    2017-07-15

    The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors. IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent