WorldWideScience

Sample records for genetically increased antioxidative

  1. Genetically increased antioxidative protection and decreased chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Juul, Klaus; Tybjærg-Hansen, Anne; Marklund, Stefan

    2006-01-01

    RATIONALE: Increased oxidative stress is involved in chronic obstructive pulmonary disease (COPD); however, plasma and bronchial lining fluid contains the antioxidant extracellular superoxide dismutase. Approximately 2% of white individuals carry the R213G polymorphism in the gene encoding extrac...

  2. Genetically increased antioxidative protection and decreased chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Juul, Klaus; Tybjærg-Hansen, Anne; Marklund, Stefan

    2006-01-01

    RATIONALE: Increased oxidative stress is involved in chronic obstructive pulmonary disease (COPD); however, plasma and bronchial lining fluid contains the antioxidant extracellular superoxide dismutase. Approximately 2% of white individuals carry the R213G polymorphism in the gene encoding......-sectionally and prospectively (during 24 yr) 9,258 individuals from the Danish general population genotyped for R213G. MEASUREMENTS: We determined plasma extracellular superoxide dismutase concentration, pulmonary function and COPD diagnosed by means of spirometry or through national hospitalization and death registers. MAIN...... extracellular superoxide dismutase, which increases plasma extracellular superoxide dismutase 10-fold and presumably also renders bronchial lining fluid high in extracellular superoxide dismutase. OBJECTIVE: We tested the hypothesis that R213G reduces the risk of COPD. METHODS: We studied cross...

  3. Effect of genetic type and casein haplotype on antioxidant activity of yogurts during storage.

    Science.gov (United States)

    Perna, A; Intaglietta, I; Simonetti, A; Gambacorta, E

    2013-06-01

    The aim of this work was to investigate the antioxidant activity of yogurt made from the milk of 2 breeds-Italian Brown and Italian Holstein-characterized by different casein haplotypes (αS1-, β-, and κ-caseins) during storage up to 15 d. The casein haplotype was determined by isoelectric focusing; antioxidant activity of yogurt was measured using 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid). The statistical analysis showed a significant effect of the studied factors. Antioxidant activity increased during storage of both yogurt types, but yogurt produced with Italian Brown milk showed higher antioxidant activity than those produced with Italian Holstein milk. A high scavenging activity was present in yogurts with the allelic combination of BB-A(2)A(2)-BB. The results of this study suggest that the genetic type and the haplotype make a significant contribution in the production of yogurts with high nutraceutical value. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Acute Exercise Increases Plasma Total Antioxidant Status and Antioxidant Enzyme Activities in Untrained Men

    Directory of Open Access Journals (Sweden)

    C. Berzosa

    2011-01-01

    Full Text Available Antioxidant defences are essential for cellular redox regulation. Since free-radical production may be enhanced by physical activity, herein, we evaluated the effect of acute exercise on total antioxidant status (TAS and the plasma activities of catalase, glutathione reductase, glutathione peroxidase, and superoxide dismutase and its possible relation to oxidative stress resulting from exercise. Healthy untrained male subjects (=34 performed three cycloergometric tests, including maximal and submaximal episodes. Venous blood samples were collected before and immediately after each different exercise. TAS and enzyme activities were assessed by spectrophotometry. An increase of the antioxidant enzyme activities in plasma was detected after both maximal and submaximal exercise periods. Moreover, under our experimental conditions, exercise also led to an augmentation of TAS levels. These findings are consistent with the idea that acute exercise may play a beneficial role because of its ability to increase antioxidant defense mechanisms through a redox sensitive pathway.

  5. Food Stabilizing Antioxidants Increase Nutrient Bioavailability in the in Vitro Model.

    Science.gov (United States)

    Mika, Magdalena; Wikiera, Agnieszka; Antończyk, Anna; Grabacka, Maja

    2017-01-01

    We investigated whether antioxidants may enhance bioavailability of lipids and carbohydrates and therefore increase the risk of obesity development. We tested how supplementation with antioxidants (0.01% butylated hydroxytoluene [BHT], α-tocopherol, and green tea catechins) of a diet containing butter and wheat bread affects bioavailability of fats and carbohydrates. The absorption of the in vitro digested diet was estimated in the intestinal epithelia model of the Caco-2 cells cultured in Transwell chambers. In the case of the antioxidant-supplemented diets, we observed increased bioavailability of glucose, cholesterol, and lipids, as well as elevated secretion of the main chylomicron protein apoB-48 to the basal compartment. Importantly, we did not detect any rise in the concentrations of lipid peroxidation products (malondialdehyde, MDA) in the control samples prepared without antioxidants. Addition of antioxidants (in particular BHT) to the diet increases bioavailability of lipids and carbohydrates, which consequently may increase the risk of obesity development. The dose of antioxidants is a factor of fundamental importance, particularly for catechins: low doses increase absorption of lipids, whereas high doses exert the opposite effect.

  6. Decreased total antioxidant levels and increased oxidative stress in ...

    African Journals Online (AJOL)

    21–25 ... Decreased total antioxidant levels and increased oxidative stress in South ... antioxidant-rich diet and lifestyle changes in T2DM patients would help to avert the .... glycation of proteins and the formation of advanced glycosylation.

  7. Effects of Genetic, Pre- and Post-Harvest Factors on Phenolic Content and Antioxidant Capacity of White Asparagus Spears

    Science.gov (United States)

    Papoulias, Eleftherios; Siomos, Anastasios S.; Koukounaras, Athanasios; Gerasopoulos, Dimitrios; Kazakis, Evangelos

    2009-01-01

    The effects of genetic, pre-harvest (season of harvest, spear diameter, spear portion and spear tip color) and post-harvest factors (storage and domestic preparation practices, e.g., peeling and cooking) on total phenolic, flavonoid and ascorbic acid content of white asparagus spears and their correlation with antioxidant capacity (DPPH and FRAP) were studied. Results showed that genetic material was important for the total phenolic content but not season of harvest, spear diameter or storage. Violet spear tips and apical spear portions showed the largest amount of total phenolics. Peeling did not affect total phenolics in fresh asparagus, whereas it reduced their content in stored asparagus, while cooking resulted in an increase in both fresh and stored asparagus. However, the soluble extract of total phenolics and flavonoids were minor and the missing significance of phenolics and flavonoids in antioxidant capacity of white asparagus spears depends on these small amounts. PMID:20054475

  8. Effects of Genetic, Pre- and Post-Harvest Factors on Phenolic Content and Antioxidant Capacity of White Asparagus Spears

    Directory of Open Access Journals (Sweden)

    Evangelos Kazakis

    2009-12-01

    Full Text Available The effects of genetic, pre-harvest (season of harvest, spear diameter, spear portion and spear tip color and post-harvest factors (storage and domestic preparation practices, e.g., peeling and cooking on total phenolic, flavonoid and ascorbic acid content of white asparagus spears and their correlation with antioxidant capacity (DPPH and FRAP were studied. Results showed that genetic material was important for the total phenolic content but not season of harvest, spear diameter or storage. Violet spear tips and apical spear portions showed the largest amount of total phenolics. Peeling did not affect total phenolics in fresh asparagus, whereas it reduced their content in stored asparagus, while cooking resulted in an increase in both fresh and stored asparagus. However, the soluble extract of total phenolics and flavonoids were minor and the missing significance of phenolics and flavonoids in antioxidant capacity of white asparagus spears depends on these small amounts.

  9. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L.

    Directory of Open Access Journals (Sweden)

    Mohamed A. El-Esawi

    2017-01-01

    Full Text Available Lactuca serriola L. is a herbaceous species, used for human nutrition and medicinal purposes. The high antioxidant capacity of L. serriola indicates the possibility of enhancing its edible and health potential by increasing the flavonoid and phenolic contents. The present study aimed at enhancing the production of phenolics and flavonoids by hairy root cultures in Lactuca serriola transformed with Agrobacterium rhizogenes strain AR15834 harbouring the rolB gene. The genetic transformation of rolB in transformed roots was validated, and rolB expression level was evaluated using real-time qPCR analysis. Expression levels of flavonoid biosynthesis genes (CHI, PAL, FLS, and CHS were assessed in the hairy and nontransformed roots. Results showed higher expression levels in the transgenic roots than in the nontransformed ones (p<0.01. Transgenic hairy roots exhibited a 54.8–96.7% increase in the total phenolic content, 38.1–76.2% increase in the total flavonoid content, and 56.7–96.7% increase in the total reducing power when compared with the nontransgenic roots (p<0.01. DPPH results also revealed that the transgenic hairy roots exhibited a 31.6–50% increase in antioxidant potential, when compared to normal roots. This study addressed the enhancement of secondary metabolite biosynthesis by hairy root induction in L. serriola.

  10. Pregnancy Exercise Increase Enzymatic Antioxidant In Pregnant Women

    Directory of Open Access Journals (Sweden)

    Wagey Freddy Wagey

    2012-01-01

    Full Text Available Objectives: Pregnancy is a vulnerable condition to all kinds of "stress", resulting in changes of physiological and metabolic functions. This research aims to determine effect of exercise during pregnancy in increasing enzymatic antioxidant marked by increase of superoxide dismutase (SOD, gluthation peroxidase (GSHPx, and catalase (CAT levels. Methods: Randomized pre and posttest control group design was employed in this study. A number of 66 pregnant women were recruited in this study and grouped into two groups, i.e 30 of them as control group and the rest as treatment group. Pregnancy exercise was performed to all 36 pregnant women from 20 weeks gestation on treatment group. The exercise was performed in the morning for about 30 minutes, twice a weeks. On the other hand, daily activities was sugested for control group. Student’s t-test was then applied to determine the mean different of treatment and control group with 5 % of significant value. Results: This study reveals that there were significantly higher increase of (superoxide dismutase (SOD, gluthation peroxidase (GSHPx, and catalse (CAT levels of treatment group compare to control group. These enzymatic antioxidant increase among these two group were around 1.36 mg/gHb for SOD; 1.14 IU/gHb for GSHPx; and 0.97 IU/gHb for CAT, (p < 0.05.  Clinical outcomes, such as strengten of pelvic muscle and quality of life of treatment group were significantly better compared to control group (p < 0.05. Conclusions: This means that exercise during pregnancy ages of 20 weeks increase enzymatic antioxidant levels SOD, GSHPx, and CAT higher compare to control group without exercise.  

  11. Pregnancy Exercise Increase Enzymatic Antioxidant In Pregnant Women

    Directory of Open Access Journals (Sweden)

    Wagey Freddy Wagey

    2012-01-01

    Full Text Available Objectives: Pregnancy is a vulnerable condition to all kinds of "stress", resulting in changes of physiological and metabolic functions. This research aims to determine effect of exercise during pregnancy in increasing enzymatic antioxidant marked by increase of superoxide dismutase (SOD, gluthation peroxidase (GSHPx, and catalase (CAT levels. Methods: Randomized pre and posttest control group design was employed in this study. A number of 66 pregnant women were recruited in this study and grouped into two groups, i.e 30 of them as control group and the rest as treatment group. Pregnancy exercise was performed to all 36 pregnant women from 20 weeks gestation on treatment group. The exercise was performed in the morning for about 30 minutes, twice a weeks. On the other hand, daily activities was sugested for control group. Student’s t-test was then applied to determine the mean different of treatment and control group with 5 % of significant value. Results: This study reveals that there were significantly higher increase of (superoxide dismutase (SOD, gluthation peroxidase (GSHPx, and catalse (CAT levels of treatment group compare to control group. These enzymatic antioxidant increase among these two group were around 1.36 mg/gHb for SOD; 1.14 IU/gHb for GSHPx; and 0.97 IU/gHb for CAT, (p < 0.05. Clinical outcomes, such as strengten of pelvic muscle and quality of life of treatment group were significantly better compared to control group (p < 0.05. Conclusions: This means that exercise during pregnancy ages of 20 weeks increase enzymatic antioxidant levels SOD, GSHPx, and CAT higher compare to control group without exercise.

  12. Dietary supplementation with apple juice concentrate alleviates the compensatory increase in glutathione synthase transcription and activity that accompanies dietary- and genetically-induced oxidative stress.

    Science.gov (United States)

    Tchantchou, F; Graves, M; Ortiz, D; Rogers, E; Shea, T B

    2004-01-01

    Increased oxidative stress, which can arise from dietary, environmental and/or genetic sources, contributes to the decline in cognitive performance during normal aging and in neurodegenerative conditions such as Alzheimer's disease. Supplementation with fruits and vegetables that are high in antioxidant potential can compensate for dietary and/or genetic deficiencies that promote increased oxidative stress. We have recently demonstrated that apple juice concentrate (AJC) prevents the increase in oxidative damage to brain tissue and decline in cognitive performance observed when transgenic mice lacking apolipoprotein E (ApoE-/-) are maintained on a vitamin-deficient diet and challenged with excess iron (included in the diet as a pro-oxidant). However, the mechanism by which AJC provided neuroprotection was not conclusively determined. Herein, we demonstrate that supplementation with AJC also prevents the compensatory increases in glutathione synthase transcription and activity that otherwise accompany maintenance of ApoE-/- mice on this vitamin-free diet in the presence of iron. Inclusion of the equivalent composition and concentration of sugars of AJC did not prevent these increases. These findings provide further evidence that the antioxidant potential of AJC can compensate for dietary and genetic deficiencies that otherwise promote neurodegeneration.

  13. Metabolic engineering of β-carotene in orange fruit increases its in vivo antioxidant properties.

    Science.gov (United States)

    Pons, Elsa; Alquézar, Berta; Rodríguez, Ana; Martorell, Patricia; Genovés, Salvador; Ramón, Daniel; Rodrigo, María Jesús; Zacarías, Lorenzo; Peña, Leandro

    2014-01-01

    Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit's health benefits. In this work, we have afforded enhancing the β-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous β-carotene hydroxylase gene (Csβ-CHX) that is involved in the conversion of β-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csβ-CHX gene resulted in oranges with a deep yellow ('golden') phenotype and significant increases (up to 36-fold) in β-carotene content in the pulp. The capacity of β-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the β-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Increased antioxidant efficacy of tocopherols by surfactant solubilization in oil-in-water emulsions.

    Science.gov (United States)

    Kiralan, S Sezer; Doğu-Baykut, Esra; Kittipongpittaya, Ketinun; McClements, David Julian; Decker, Eric A

    2014-10-29

    The physical location of antioxidants in oil-in-water emulsions can have significant influence on their free radical scavenging activity and ability to inhibit lipid oxidation. We aimed to determine the effect of the surfactant concentration on the partitioning behavior of tocopherols (α, γ, and δ) in oil-in-water emulsions. Tween 20 (0.1, 0.5, and 1%) increased the partitioning of the tocopherols into the aqueous phase via the formation of Tween 20-tocopherol comicelles. Partitioning behavior of antioxidants was dependent upon the number of methyl groups and, thus, polarity of the tocopherols. δ-Tocopherol (one methyl group) exhibited the most partitioning into the aqueous phase, while α-tocopherol (three methyl groups) had the lowest partitioning. Lipid oxidation studies showed that the antioxidant activity of δ- and α-tocopherols was enhanced by adding Tween 20 to oil-in-water emulsions. This work suggests that surfactant micelles could increase the antioxidant activity of tocopherols by changing their physical location.

  15. Genetic variability in chronic irradiated plant populations - Polymorphism and activity of antioxidant enzymes in chronic irradiated plant populations

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, Polina Y.; Geras' kin, Stanislav A. [Russian Institute of Agricultural Radiology and Agroecology, 249030, Obninsk, Kievskoe shosse 109 km (Russian Federation)

    2014-07-01

    Introduction: The gene pool of natural population is constantly changing in order to provide the greatest fitness at this time. Ability of population to adapt to changing environmental conditions depends on genetic polymorphism of traits which are operates by selection. Chronic stress exposure can change amount or structure intra-population variability. Therefore, it is necessary to analyze the relationships between genetic polymorphism and stress factors, such as radiation exposure. This studies my assist in the development of new bio-indication methods. Materials and methods: Studying sites: Bryansk region is the most contaminated region of Russia as a result of Chernobyl accident. The initial activity by {sup 137}Cs on this territory reached 1 MBq/m{sup 2} above surface. Our study conducted in several districts of Bryansk region, which are characterized the most dose rate. Experimental sites similar to climate characteristics, stand of trees is homogeneous, pine trees take up a significant part of phytocenosis. Heavy metals content in soils and cones be within background. Dose rates vary from 0.14 to 130 mGy/year. Object: Pinus sylvestris L.,the dominant tree species in North European and Asian boreal forests. Scots pine has a long maturation period (18-20 month), which means that significant DNA damage may accumulate in the undifferentiated stem cells, even at low doses (or dose rates) during exposure to low concentrations of contaminants Isozyme analysis: We evaluated isozyme polymorphism of three antioxidant enzymes: superoxide dismutase, glutatione reductase and glutatione peroxidase. Analysis of enzymes activities: We chose key enzymes of antioxidant system for this experiment: superoxide dismutase, catalase and peroxidase. Results and conclusions: We estimated frequency of each allele in reference and experimental populations. based It was showed that frequency of rare alleles increase in chronic irradiated populations, i.e. increase the sampling variance

  16. Decreased total antioxidant levels and increased oxidative stress in ...

    African Journals Online (AJOL)

    Background: Chronic hyperglycaemia in diabetes mellitus leads to increased lipid peroxidation in the body, followed by the development of chronic complications due to oxidative stress. Objective: The aim of this study was to compare total antioxidant (TAO) levels and oxidative stress in type 2 diabetes mellitus (T2DM) ...

  17. A High Antioxidant Spice Blend Attenuates Postprandial Insulin and Triglyceride Responses and Increases Some Plasma Measures of Antioxidant Activity in Healthy, Overweight Men123

    Science.gov (United States)

    Skulas-Ray, Ann C.; Kris-Etherton, Penny M.; Teeter, Danette L.; Chen, C-Y. Oliver; Vanden Heuvel, John P.; West, Sheila G.

    2011-01-01

    There is much interest in the potential of dietary antioxidants to attenuate in vivo oxidative stress, but little characterization of the time course of plasma effects exists. Culinary spices have demonstrated potent in vitro antioxidant properties. The objective of this study was to examine whether adding 14 g of a high antioxidant spice blend to a 5060-kJ (1200 kcal) meal exerted significant postprandial effects on markers of plasma antioxidant status and metabolism. Healthy overweight men (n = 6) consumed a control and spiced meal in a randomized crossover design with 1 wk between testing sessions. Blood was sampled prior to the meal and at 30-min intervals for 3.5 h (total of 8 samples). Mixed linear models demonstrated a treatment × time interaction (P spiced meal, respectively. Adding spices to the meal significantly increased the ferric reducing antioxidant power, such that postprandial increases following the spiced meal were 2-fold greater than after the control meal (P = 0.009). The hydrophilic oxygen radical absorbance capacity (ORAC) of plasma also was increased by spices (P = 0.02). There were no treatment differences in glucose, total thiols, lipophilic ORAC, or total ORAC. The incorporation of spices into the diet may help normalize postprandial insulin and TG and enhance antioxidant defenses. PMID:21697300

  18. Increase of rutin antioxidant activity by generating Maillard reaction products with lysine.

    Science.gov (United States)

    Zhang, Ru; Zhang, Bian-Ling; He, Ting; Yi, Ting; Yang, Ji-Ping; He, Bin

    2016-06-01

    Rutin exists in medicinal herbs, fruits, vegetables, and a number of plant-derived sources. Dietary sources containing rutin are considered beneficial because of their potential protective roles in multiple diseases related to oxidative stresses. In the present study, the change and antioxidation activity of rutin in Maillard reaction with lysine through a heating process were investigated. There is release of glucose and rhamnose that interact with lysine to give Maillard reaction products (MRPs), while rutin is converted to less-polar quercetin and a small quantity of isoquercitrin. Because of their high cell-membrane permeability, the rutin-lysine MRPs increase the free radical-scavenging activity in HepG2 cells, showing cellular antioxidant activity against Cu(2+)-induced oxidative stress higher than that of rutin. Furthermore, the MRPs significantly increased the Cu/Zn SOD (superoxide dismutase) activity and Cu/Zn SOD gene expression of HepG2 cells, consequently enhancing antioxidation activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evaluation of Oxidative Stress Response Related Genetic Variants, Pro-oxidants, Antioxidants and Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Nicole Lavender

    2015-09-01

    Full Text Available Background: Oxidative stress and detoxification mechanisms have been commonly studied in Prostate Cancer (PCa due to their function in the detoxification of potentially damaging reactive oxygen species (ROS and carcinogens. However, findings have been either inconsistent or inconclusive. These mixed findings may, in part, relate to failure to consider interactions among oxidative stress response related genetic variants along with pro- and antioxidant factors. Methods: We examined the effects of 33 genetic and 26 environmental oxidative stress and defense factors on PCa risk and disease aggressiveness among 2,286 men from the Cancer Genetic Markers of Susceptibility project (1,175 cases, 1,111 controls. Single and joint effects were analyzed using a comprehensive statistical approach involving logistic regression, multi-dimensionality reduction, and entropy graphs. Results: Inheritance of one CYP2C8 rs7909236 T or two SOD2 rs2758331 A alleles was linked to a 1.3- and 1.4-fold increase in risk of developing PCa, respectively (p-value = 0.006-0.013. Carriers of CYP1B1 rs1800440GG, CYP2C8 rs1058932TC and, NAT2 (rs1208GG, rs1390358CC, rs7832071TT genotypes were associated with a 1.3 to 2.2-fold increase in aggressive PCa [p-value = 0.04-0.001, FDR 0.088-0.939]. We observed a 23% reduction in aggressive disease linked to inheritance of one or more NAT2 rs4646247 A alleles (p = 0.04, FDR = 0.405. Only three NAT2 sequence variants remained significant after adjusting for multiple hypotheses testing, namely NAT2 rs1208, rs1390358, and rs7832071. Lastly, there were no significant gene-environment or gene-gene interactions associated with PCa outcomes. Conclusions: Variations in genes involved in oxidative stress and defense pathways may modify PCa. Our findings do not firmly support the role of oxidative stress genetic variants combined with lifestyle/environmental factors as modifiers of PCa and disease progression. However, additional multi

  20. Electrochemical study of the increased antioxidant capacity of flavonoids through complexation with iron(II) ions

    International Nuclear Information System (INIS)

    Porfírio, Demóstenes Amorim; Ferreira, Rafael de Queiroz; Malagutti, Andréa Renata; Valle, Eliana Maíra Agostini

    2014-01-01

    Highlights: • Metal-Flavonoid complexes exhibit greater antioxidant capacity than the free flavonoid;. • Voltammetric profile is an additional information for determining antioxidant capacity;. • Pyrogallol group is a stronger complex-forming group than the catechol;. • Morin, quercetin and fisetin increased their antioxidant capacity in 15%, 32% and 28%, respectively. - Abstract: Flavonoids are polyphenolic compounds that act as natural antioxidants in the human body through various mechanisms, with an emphasis on suppressing reactive oxygen species (ROS) formation by inhibiting enzymes, the direct capture of ROS, and the regulation/protection of antioxidant defenses. Additionally, flavonoids can coordinate with transition metals to catalyze electron transport and promote free radical capture. Recently, metal ion chelation mechanisms have generated considerable interest, as experimental data show that flavonoids in metal complexes exhibit greater antioxidant activity than free flavonoids. However, few studies have correlated the complexing properties of flavonoids with their antioxidant capacity. Thus, the aim of this study was to use the CRAC (Ceric Reducing Antioxidant Capacity) electrochemical assay to measure the antioxidant capacity of five free flavonoids and Fe 2+ -flavonoid complexes. In addition, the interactions between the flavonoids and Fe 2+ were analyzed based on the oxidation peaks formed in their cyclic voltammograms

  1. Antioxidant responses to an acute ultra-endurance exercise: impact on DNA stability and indications for an increased need for nutritive antioxidants in the early recovery phase.

    Science.gov (United States)

    Neubauer, Oliver; Reichhold, Stefanie; Nics, Lukas; Hoelzl, Christine; Valentini, Judit; Stadlmayr, Barbara; Knasmüller, Siegfried; Wagner, Karl-Heinz

    2010-10-01

    Antioxidant requirements have neither been defined for endurance nor been defined for ultra-endurance athletes. To verify whether an acute bout of ultra-endurance exercise modifies the need for nutritive antioxidants, we aimed (1) to investigate the changes of endogenous and exogenous antioxidants in response to an Ironman triathlon; (2) to particularise the relevance of antioxidant responses to the indices of oxidatively damaged blood lipids, blood cell compounds and lymphocyte DNA and (3) to examine whether potential time-points of increased susceptibility to oxidative damage are associated with alterations in the antioxidant status. Blood that was collected from forty-two well-trained male athletes 2 d pre-race, immediately post-race, and 1, 5 and 19 d later was sampled. The key findings of the present study are as follows: (1) Immediately post-race, vitamin C, α-tocopherol, and levels of the Trolox equivalent antioxidant capacity, the ferric reducing ability of plasma and the oxygen radical absorbance capacity (ORAC) assays increased significantly. Exercise-induced changes in the plasma antioxidant capacity were associated with changes in uric acid, bilirubin and vitamin C. (2) Significant inverse correlations between ORAC levels and indices of oxidatively damaged DNA immediately and 1 d post-race suggest a protective role of the acute antioxidant responses in DNA stability. (3) Significant decreases in carotenoids and γ-tocopherol 1 d post-race indicate that the antioxidant intake during the first 24 h of recovery following an acute ultra-endurance exercise requires specific attention. Furthermore, the present study illustrates the importance of a diversified and well-balanced diet to maintain a physiological antioxidant status in ultra-endurance athletes in reference to recommendations.

  2. Antioxidative activity of red wine with the in-creased share of phenolic compounds from solid parts of grape

    Directory of Open Access Journals (Sweden)

    VESNA TUMBAS

    2010-03-01

    Full Text Available The structure and amount of phenolic compounds in the wine depend on the grapevine variety, agroecologic conditions and a way of vinification. The influence of pomace enrichment with solid parts of grape (stem and grape seeds during maceration on the antioxidative activity of red wines was investigated. The antioxidative activity of red wines towards DPPH• and hydroxyl (•OH radicals was determined by the electron spin resonance (ESR spectroscopy. The addition of stem to the pomace had no significant influence on the antioxidative wine activity increase, whereas enriching of pomace with 120 g seeds/kg of pomace resulted in the increase of antioxidative capacity of a wine. In the wine enriched with tannins and flavan-3-ols from the seeds, the antioxidative activity towards DPPH• (AADPPH• was 100%. None of the applied clarifiers showed a significant influence on the antioxidative activity of these wine samples. The antioxidative activity, measured as DPPH• scavenging activity, of the wine supplemented by seeds remained unchanged, showing 100% efficiency after the treatment by all tested fining agents. A significant difference in antioxidative activities towards hydroxyl radicals (AA•OH between the two wines was found. The antioxidative activity of the wine Merlot was higher than the antioxidative activity of the wine Cabernet sauvignon.

  3. Anti-oxidant defence mechanism in vitiliginous skin increases with skin type

    NARCIS (Netherlands)

    Briganti, S.; Caron-Schreinemachers, A.-L. D. B.; Picardo, M.; Westerhof, W.

    2012-01-01

    Background Vitiligo skin shows different burning capacity in people with different phototype. In normal skin antioxidant status is correlated to skin phototype, but unexpectedly it appears that there is a gradual decrease in burning susceptibility of depigmented skin of individuals with increasing

  4. Supplementation of xanthophylls increased antioxidant capacity and decreased lipid peroxidation in hens and chicks.

    Science.gov (United States)

    Gao, Yu-Yun; Xie, Qing-Mei; Ma, Jing-Yun; Zhang, Xiang-Bin; Zhu, Ji-Mei; Shu, Ding-Ming; Sun, Bao-Li; Jin, Ling; Bi, Ying-Zuo

    2013-03-28

    The present study investigated the effects of xanthophyll supplementation on production performance, antioxidant capacity (measured by glutathione peroxidase, superoxide dismutase (SOD), catalase, total antioxidant capacity (T-AOC), and reduced glutathione:oxidised glutathione ratio (GSH:GSSG)) and lipid peroxidation (measured by malondialdehyde (MDA)) in breeding hens and chicks. In Expt 1, 432 hens were fed diets supplemented with 0 (control group), 20 or 40 mg xanthophyll/kg diet. Blood samples were taken at 7, 14, 21, 28 and 35 d of the trial. Liver and jejunal mucosa were sampled at 35 d. Both xanthophyll groups improved serum SOD at 21 and 28 d, serum T-AOC at 21 d and liver T-AOC, and serum GSH:GSSG at 21, 28 and 35 d and liver GSH:GSSG. Xanthophylls also decreased serum MDA at 21 d in hens. Expt 2 was a 2 × 2 factorial design. Male chicks hatched from 0 or 40 mg in ovo xanthophyll/kg diet of hens were fed a diet containing either 0 or 40 mg xanthophyll/kg diet. Liver samples were collected at 0, 7, 14 and 21 d after hatching. Blood samples were also collected at 21 d. In ovo-deposited xanthophylls increased antioxidant capacity and decreased MDA in the liver mainly within 1 week after hatching. Maternal effects gradually vanished during 1-2 weeks after hatching. Dietary xanthophylls increased antioxidant capacity and decreased MDA in the liver and serum mainly from 2 weeks onwards. Data suggested that xanthophyll supplementation enhanced antioxidant capacity and reduced lipid peroxidation in different tissues of hens and chicks.

  5. Drinking orange juice increases total antioxidant status and decreases lipid peroxidation in adults.

    Science.gov (United States)

    Foroudi, Shahrzad; Potter, Andrew S; Stamatikos, Alexis; Patil, Bhimanagouda S; Deyhim, Farzad

    2014-05-01

    Cardiovascular disease (CVD) is the leading cause of death in the world and is the primary cause of mortality among Americans. One of the many reasons for the pathogenesis of CVD is attributed to eating diets high in saturated fat and refined carbohydrates and low in fruits and vegetables. Epidemiological evidence has supported a strong association between eating diets rich in fruits and vegetables and cardiovascular health. An experiment was conducted utilizing 24 adults with hypercholesterolemia and hypertriglyceridemia to evaluate the impact of drinking 20 fl oz of freshly squeezed orange juice daily for 90 days on blood pressure, lipid panels, plasma antioxidant capacity, metabolic hormones, lipid peroxidation, and inflammatory markers. Except for addition of drinking orange juice, subjects did not modify their eating habits. The findings suggested that drinking orange juice does not affect (P>.1) blood pressure, lipid panels, metabolic hormones, body fat percentage, or inflammatory markers. However, total plasma antioxidant capacity was significantly increased (Pjuice consumption. Drinking orange juice may protect the cardiovascular system by increasing total plasma antioxidant status and by lowering lipid peroxidation independent of other cardiovascular risk markers evaluated in this study.

  6. In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids

    International Nuclear Information System (INIS)

    Lademann, J; Richter, H; Patzelt, A; Darvin, M; Sterry, W; Fluhr, J W; Caspers, P J; Van der Pol, A; Zastrow, L

    2009-01-01

    In the present study, the distribution of the carotenoids as a marker for the complete antioxidative potential in human skin was investigated before and after the topical application of carotenoids by in vivo Raman spectroscopy with an excitation wavelength of 785 nm. The carotenoid profile was assessed after a short term topical application in 4 healthy volunteers. In the untreated skin, the highest concentration of natural carotenoids was detected in different layers of the stratum corneum (SC) close to the skin surface. After topical application of carotenoids, an increase in the antioxidative potential in the skin could be observed. Topically applied carotenoids penetrate deep into the epidermis down to approximately 24 μm. This study supports the hypothesis that antioxidative substances are secreted via eccrine sweat glands and/or sebaceous glands to the skin surface. Subsequently they penetrate into the different layers of the SC

  7. Altered Antioxidant Status and Increased Lipid Per-Oxidation in Seminal Plasma of Tunisian Infertile Men

    Science.gov (United States)

    Atig, Fatma; Raffa, Monia; Ali, Habib Ben; Abdelhamid, Kerkeni; Saad, Ali; Ajina, Mounir

    2012-01-01

    Human seminal plasma is a natural reservoir of antioxidants that protect spermatozoa from oxidative damages. There is evidence in literature supports the fact that impairments in seminal antioxidant and lipid per-oxidation status play important roles in the physiopathology of male infertility. Our present study forms the first one which was carried out in Tunisia. We evaluated the antioxidant status in the seminal plasma of 120 infertile men programmed to In Vitro Fertilization (IVF) for the first tentative. Patients were characterized by an idiopathic infertility. They were divided into three groups: normozoospermics who were considered as controls (n=40), asthenozoospermics (Astheno; n=45) and oligoasthenoteratozoospermics (OAT; n=35). Seminal activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) and the levels of glutathione (GSH), zinc (Zn) and malondialdehyde (MDA) were measured. With the significant increase of the seminal activities of SOD and GPX in normozoospermics group, there were positive correlations observed between this enzymes and sperm quality. Also, significant elevated rates of seminal zinc and GSH were observed in control group, but there was contradictory associations reflecting the effects of these antioxidants on semen parameters. However, we noted significant increase of MDA levels in groups with abnormal seminogram. We showed negative associations between this per-oxidative marker and sperm parameters. These results obviously suggested that impairment on seminal antioxidants is an important risk factor for low sperm quality associated to idiopathic infertility and as a result can lead to poor IVF outcome. PMID:22211112

  8. Genetic polymorphisms in antioxidative enzymes are associated to FEV(1) in smokers independently of asthma

    DEFF Research Database (Denmark)

    Malling, T H; Sigsgaard, Torben; Andersen, Charlotte Brasch

    2012-01-01

    ), GSTT1 (gene copy number), and GSTM1 (gene copy number). We found no associations between these genotypes and the asthma phenotypes. For the 201 subjects identified as current smokers and recruited via random sampling, an association was seen between increasing number of genotypes coding for high...... of genotypes coding for low antioxidative enzyme activity. The present study does not support the hypothesis that asthma is associated with genotypes of these major antioxidative enzymes. However, we speculate that since we see an impact of these genotypes on lung function in young adult smokers, polymorphisms...... in antioxidative enzymes may contribute to the range of susceptibility of smokers have to COPD....

  9. Antioxidative Diet Supplementation Reverses High-Fat Diet-Induced Increases of Cardiovascular Risk Factors in Mice

    Directory of Open Access Journals (Sweden)

    Hilda Vargas-Robles

    2015-01-01

    Full Text Available Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD. Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications.

  10. The influence of virus infections on antioxidant levels in the genetically modified plum variety "Honeysweet" (Prunus domestica L.

    Directory of Open Access Journals (Sweden)

    Jiri Sochor

    2015-08-01

    Full Text Available It is well-known that polyphenolic compounds are found abundantly in fruit, but various kinds of diseases  lower these levels. This work measures total polyphenolic content, antioxidant activity and the levels of specific important antioxidants in fruits of the genetically modified (GM plum variety HoneySweet, trees  which were previously inoculated with a range of different virus infections.  These were the Plum Pox virus (PPV, Prune Dwarf virus (PDV and Apple Chlorotic Leaf-Spot virus (ACLSV. Uninoculated trees were used as controls. Antioxidant activity was measured using four different photometric  methods – DPPH (2,2-diphenyl-1-picrylhydrazyl, DMPD (N-dimethyl-p-phenylenediamine, ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid and FRAP (Ferric reducing antioxidant power. Total polyphenol content was measured using the Folin–Ciocalteau method. The profiles of 10 specific antioxidant constituents in the fruits of the GM plum variety HoneySweet were detected and analyzed, since these are of interest for their role in human diets and could play a role in the resistance of plants to viruses. Detection was made using HPLC with UV-VIS detection.  They were: gallic acid, p-coumaric acid, 4-aminobenzoic acid, chlorogenic acid, caffeic acid, ferulic acid, vanillin, rutin and quercetin. The compound with the highest concentration was chlorogenic acid (587 mg/100 g, and that with the lowest was p-coumaric acid (0.95 mg/100 g. Of the four methods of antioxidant activity used, in three the lowest levels of antioxidant activity were seen where the PPV virus was combined with ACLSV, and in three the highest levels were seen in the un-inoculated control without any infection. The highest values of total polyphenols were seen in the control (65.3 mg/100 g, followed by infection of PPV, then treatment PPV, PDV and ACLSV, then treatment PPV and PDV and finally the lowest levels were seen in treatment PPV and ACLSV (44.2 mg/100 g, which

  11. Association between Polymorphisms in Antioxidant Genes and Inflammatory Bowel Disease.

    Directory of Open Access Journals (Sweden)

    Cristiana Costa Pereira

    Full Text Available Inflammation is the driving force in inflammatory bowel disease (IBD and its link to oxidative stress and carcinogenesis has long been accepted. The antioxidant system of the intestinal mucosa in IBD is compromised resulting in increased oxidative injury. This defective antioxidant system may be the result of genetic variants in antioxidant genes, which can represent susceptibility factors for IBD, namely Crohn's disease (CD and ulcerative colitis (UC. Single nucleotide polymorphisms (SNPs in the antioxidant genes SOD2 (rs4880 and GPX1 (rs1050450 were genotyped in a Portuguese population comprising 436 Crohn's disease and 367 ulcerative colitis patients, and 434 healthy controls. We found that the AA genotype in GPX1 is associated with ulcerative colitis (OR = 1.93, adjusted P-value = 0.037. Moreover, we found nominal significant associations between SOD2 and Crohn's disease susceptibility and disease subphenotypes but these did not withstand the correction for multiple testing. These findings indicate a possible link between disease phenotypes and antioxidant genes. These results suggest a potential role for antioxidant genes in IBD pathogenesis and should be considered in future association studies.

  12. Spirogyra varians mutant generated by high dose gamma-irradiation shows increased antioxidant properties

    International Nuclear Information System (INIS)

    Lee, Hak-Jyung; Yoon, Minchul; Sung, Nak-Yun; Choi, Jong-il

    2012-01-01

    The aim of this study was to evaluate the antioxidant properties of a Spirogyra varians mutant (Mut) produced by gamma irradiation. Methanol extracts were prepared from Spirogyra varians wild-type and Mut plants, and their antioxidant activities and total phenolic content (TPC) were determined. Antioxidant parameters, including the 2-diphenyl-1-picrylhydrazyl radical-scavenging activity and ferric-reducing/antioxidant power, were higher in the Mut extract. Moreover, the TPC level was higher (P<0.05) in the Mut methanol extract. Therefore, these results suggest that gamma irradiation-induced S. varians Mut has superior antioxidant properties. - Highlights: ► The antioxidative properties of a Spirogyra varians mutant produced by gamma-irradiation was investiated. ► The antioxidant activities and total phenolic content levels were higher in mutant strain. ► These results suggest that gamma-irradiation induced algae mutant with superior antioxidant properties.

  13. Red wine consumption increases antioxidant status and decreases oxidative stress in the circulation of both young and old humans

    Science.gov (United States)

    Micallef, Michelle; Lexis, Louise; Lewandowski, Paul

    2007-01-01

    Background Red wine contains a naturally rich source of antioxidants, which may protect the body from oxidative stress, a determinant of age-related disease. The current study set out to determine the in vivo effects of moderate red wine consumption on antioxidant status and oxidative stress in the circulation. Methods 20 young (18–30 yrs) and 20 older (≥ 50 yrs) volunteers were recruited. Each age group was randomly divided into treatment subjects who consumed 400 mL/day of red wine for two weeks, or control subjects who abstained from alcohol for two weeks, after which they crossed over into the other group. Blood samples were collected before and after red wine consumption and were used for analysis of whole blood glutathione (GSH), plasma malondialdehyde (MDA) and serum total antioxidant status. Results Results from this study show consumption of red wine induced significant increases in plasma total antioxidant status (P < 0.03), and significant decreases in plasma MDA (P < 0.001) and GSH (P < 0.004) in young and old subjects. The results show that the consumption of 400 mL/day of red wine for two weeks, significantly increases antioxidant status and decreases oxidative stress in the circulation Conclusion It may be implied from this data that red wine provides general oxidative protection and to lipid systems in circulation via the increase in antioxidant status. PMID:17888186

  14. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    International Nuclear Information System (INIS)

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.; Laskin, Debra L.; Heck, Diane E.; Laskin, Jeffrey D.

    2008-01-01

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity

  15. Decreased total antioxidant capacity and increased oxidative stress in passive smoker infants and their mothers.

    Science.gov (United States)

    Aycicek, Ali; Erel, Ozcan; Kocyigit, Abdurrahim

    2005-12-01

    Smoking has many adverse health effects in infants and adults. The purpose of the study was to study the effect of passive cigarette smoking on oxidative and antioxidative status of plasma in passive smoker infants and their mothers and to compare with those of non-smokers. Subjects were randomly chosen from infants aged 8-26 weeks and their mothers aged 20-34 years. Passive smoker infants (n = 29) and their mothers (n = 29) were defined as having other family members who smoked six or more cigarettes per day continually for at least 8 weeks. Non-smokers were defined as infants (n = 30) and their mothers (n = 24) who had never been exposed to passive smoking. The antioxidative status of plasma were perused by measuring the total antioxidant capacity. Oxidative status was evaluated by predicating total peroxide level, oxidative stress index, protein oxidation and lipid peroxidation. Plasma concentrations of total antioxidant capacity were significantly lower in passive smoker infants and their mothers than non-passive smoker infants and their mothers. However, lipid peroxidation and oxidative stress index were remarkably higher in passive smoker infants and their mothers than those of non-passive smoker infants and their mothers. There were significant correlations between the oxidative and antioxidative parameters of the passive smoker infants and their mothers. Oxidants are increased and antioxidants are decreased in passive smoker infants and their mothers than those of non-smokers. Passive smoker infants and their mothers are exposed to potent oxidative stress.

  16. Reproducing butterflies do not increase intake of antioxidants when they could benefit from them.

    Science.gov (United States)

    Beaulieu, Michaël; Bischofberger, Ines; Lorenz, Isabel; Scheelen, Lucie; Fischer, Klaus

    2016-02-01

    The significance of dietary antioxidants may be limited by the ability of animals to exploit them. However, past studies have focused on the effects of dietary antioxidants after 'antioxidant forced-feeding', and have overlooked spontaneous antioxidant intake. Here, we found that reproducing female Bicyclus anynana butterflies had higher antioxidant defences and enhanced fecundity when forced to consume antioxidants (polyphenols). Interestingly, these positive effects were not constant across the oviposition period. When given the choice between food resources with and without antioxidants, reproducing butterflies did not target antioxidants when they could have benefited the most from them. Moreover, they did not consume more antioxidants than non-reproducing butterflies. These results emphasize that, despite potential positive effects of dietary antioxidants, the ability of animals to exploit them is likely to restrict their ecological significance. © 2016 The Author(s).

  17. Phenolic content and antioxidant activity of Armenian cultivated and wild grapes

    Directory of Open Access Journals (Sweden)

    Margaryan Kristine

    2017-01-01

    Full Text Available Nowadays the mobilization and conservation of Armenian grapevine genetic resources is becoming global concern and has crucial importance. Armenia is regarded as homeland of viticulture and earliest ‘wine culture’. Being studied enough by the methods of ampelography, Armenian grapevine diversity needs to be investigated in accordance with the modern European requirements. In recent years, grape phenolics have been a theme of major scientific and applied interest. These metabolites contribute to grapes and wine sensory properties, such as color, flavor, astringency, and determines the strong antioxidant capacity. The purpose of the presented research was the evaluation of total phenolic content and antioxidant property of forty Armenian aboriginal varieties, interspecific and intraspecific hybrids and wild species with different genetic background and geographic origin. The realized research has revealed a notable difference among the cultivated varieties and wild species in the total phenolic content and antioxidant activity, increased the scientific knowledge about the aboriginal varieties and wild genotypes. Obtained results will support the importance of preserving the biological diversity and favor the reintroduction of grape cultivars and wild genotypes thanks to the present valorization.

  18. Red wine consumption increases antioxidant status and decreases oxidative stress in the circulation of both young and old humans

    Directory of Open Access Journals (Sweden)

    Lexis Louise

    2007-09-01

    Full Text Available Abstract Background Red wine contains a naturally rich source of antioxidants, which may protect the body from oxidative stress, a determinant of age-related disease. The current study set out to determine the in vivo effects of moderate red wine consumption on antioxidant status and oxidative stress in the circulation. Methods 20 young (18–30 yrs and 20 older (≥ 50 yrs volunteers were recruited. Each age group was randomly divided into treatment subjects who consumed 400 mL/day of red wine for two weeks, or control subjects who abstained from alcohol for two weeks, after which they crossed over into the other group. Blood samples were collected before and after red wine consumption and were used for analysis of whole blood glutathione (GSH, plasma malondialdehyde (MDA and serum total antioxidant status. Results Results from this study show consumption of red wine induced significant increases in plasma total antioxidant status (P Conclusion It may be implied from this data that red wine provides general oxidative protection and to lipid systems in circulation via the increase in antioxidant status.

  19. Antioxidant deficit in gills of Pacific oyster (Crassostrea gigas) exposed to chlorodinitrobenzene increases menadione toxicity

    International Nuclear Information System (INIS)

    Trevisan, Rafael; Arl, Miriam; Sacchet, Cássia Lopes; Engel, Cristiano Severino; Danielli, Naissa Maria; Mello, Danielle Ferraz; Brocardo, Caroline; Maris, Angelica Francesca; Dafre, Alcir Luiz

    2012-01-01

    Disturbances in antioxidant defenses decrease cellular protection against oxidative stress and jeopardize cellular homeostasis. To knock down the antioxidant defenses of Pacific oyster Crassostrea gigas, animals were pre-treated with 1-chloro-2,4-dinitrobenzene (CDNB) and further challenged with pro-oxidant menadione (MEN). CDNB pre-treatment (10 μM for 18 h) was able to consume cellular thiols in gills, decreasing GSH (53%) and decrease protein thiols (25%). CDNB pre-treatment also disrupted glutathione reductase and thioredoxin reductase activity in the gills, but likewise strongly induced glutathione S-transferase activity (270% increase). Surprisingly, hemocyte viability was greatly affected 24 h after CDNB removal, indicating a possible vulnerability of the oyster immune system to electrophilic attack. New in vivo approaches were established, allowing the identification of higher rates of GSH–CDNB conjugate export to the seawater and enabling the measurement of the organic peroxide consumption rate. CDNB-induced impairment in antioxidant defenses decreased the peroxide removal rate from seawater. After showing that CDNB decreased gill antioxidant defenses and increased DNA damage in hemocytes, oysters were further challenged with 1 mM MEN over 24 h. MEN treatment did not affect thiol homeostasis in gills, while CDNB pre-treated animals recovered GSH and PSH to the control level after 24 h of depuration. Interestingly, MEN intensified GSH and PSH loss and mortality in CDNB-pre-treated animals, showing a clear synergistic effect. The superoxide-generating one-electron reduction of MEN was predominant in gills and may have contributed to MEN toxicity. These results support the idea that antioxidant-depleted animals are more susceptible to oxidative attack, which can compromise survival. Data also corroborate the idea that gills are an important detoxifying organ, able to dispose of organic peroxides, induce phase II enzymes, and efficiently export GSH

  20. Antioxidant deficit in gills of Pacific oyster (Crassostrea gigas) exposed to chlorodinitrobenzene increases menadione toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, Rafael; Arl, Miriam [Departamento de Bioquimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Sacchet, Cassia Lopes [Universidade do Oeste do Estado de Santa Catarina, 89600-000 Joacaba, SC (Brazil); Engel, Cristiano Severino; Danielli, Naissa Maria; Mello, Danielle Ferraz [Departamento de Bioquimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Brocardo, Caroline [Universidade do Oeste do Estado de Santa Catarina, 89600-000 Joacaba, SC (Brazil); Maris, Angelica Francesca [Departamento de Biologia Celular, Embriologia e Genetica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Dafre, Alcir Luiz, E-mail: alcir@ccb.ufsc.br [Departamento de Bioquimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil)

    2012-02-15

    Disturbances in antioxidant defenses decrease cellular protection against oxidative stress and jeopardize cellular homeostasis. To knock down the antioxidant defenses of Pacific oyster Crassostrea gigas, animals were pre-treated with 1-chloro-2,4-dinitrobenzene (CDNB) and further challenged with pro-oxidant menadione (MEN). CDNB pre-treatment (10 {mu}M for 18 h) was able to consume cellular thiols in gills, decreasing GSH (53%) and decrease protein thiols (25%). CDNB pre-treatment also disrupted glutathione reductase and thioredoxin reductase activity in the gills, but likewise strongly induced glutathione S-transferase activity (270% increase). Surprisingly, hemocyte viability was greatly affected 24 h after CDNB removal, indicating a possible vulnerability of the oyster immune system to electrophilic attack. New in vivo approaches were established, allowing the identification of higher rates of GSH-CDNB conjugate export to the seawater and enabling the measurement of the organic peroxide consumption rate. CDNB-induced impairment in antioxidant defenses decreased the peroxide removal rate from seawater. After showing that CDNB decreased gill antioxidant defenses and increased DNA damage in hemocytes, oysters were further challenged with 1 mM MEN over 24 h. MEN treatment did not affect thiol homeostasis in gills, while CDNB pre-treated animals recovered GSH and PSH to the control level after 24 h of depuration. Interestingly, MEN intensified GSH and PSH loss and mortality in CDNB-pre-treated animals, showing a clear synergistic effect. The superoxide-generating one-electron reduction of MEN was predominant in gills and may have contributed to MEN toxicity. These results support the idea that antioxidant-depleted animals are more susceptible to oxidative attack, which can compromise survival. Data also corroborate the idea that gills are an important detoxifying organ, able to dispose of organic peroxides, induce phase II enzymes, and efficiently export GSH

  1. Aging increases oxidative stress and renal expression of oxidant and antioxidant enzymes that are associated with an increased trend in systolic blood pressure.

    Science.gov (United States)

    Gomes, Pedro; Simão, Sónia; Silva, Elisabete; Pinto, Vanda; Amaral, João S; Afonso, Joana; Serrão, Maria Paula; Pinho, Maria João; Soares-da-Silva, Patrício

    2009-01-01

    The aim of this study was to investigate whether the effects of aging on oxidative stress markers and expression of major oxidant and antioxidant enzymes associate with impairment of renal function and increases in blood pressure. To explore this, we determined age-associated changes in lipid peroxidation (urinary malondialdehyde), plasma and urinary hydrogen peroxide (H(2)O(2)) levels, as well as renal H(2)O(2) production, and the expression of oxidant and antioxidant enzymes in young (13 weeks) and old (52 weeks) male Wistar Kyoto (WKY) rats. Urinary lipid peroxidation levels and H(2)O(2) production by the renal cortex and medulla of old rats were higher than their young counterparts. This was accompanied by overexpression of NADPH oxidase components Nox4 and p22(phox) in the renal cortex of old rats. Similarly, expression of superoxide dismutase (SOD) isoforms 2 and 3 and catalase were increased in the renal cortex from old rats. Renal function parameters (creatinine clearance and fractional excretion of sodium), diastolic blood pressure and heart rate were not affected by aging, although slight increases in systolic blood pressure were observed during this 52-week period. It is concluded that overexpression of renal Nox4 and p22(phox) and the increases in renal H(2)O(2) levels in aged WKY does not associate with renal functional impairment or marked increases in blood pressure. It is hypothesized that lack of oxidative stress-associated effects in aged WKY rats may result from increases in antioxidant defenses that counteract the damaging effects of H(2)O(2).

  2. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml. Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide

  3. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase.

    Science.gov (United States)

    Abrahim, Noor Nazirahanie; Kanthimathi, M S; Abdul-Aziz, Azlina

    2012-11-15

    Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense

  4. Increased antioxidant activity and polyphenol metabolites in methyl jasmonate treated mung bean (Vigna radiata sprouts

    Directory of Open Access Journals (Sweden)

    Li LI

    Full Text Available Abstract Mung bean sprouts are a popular health food both in China and worldwide. We determined the optimal concentration of exogenous methyl jasmonate (MeJA for the promotion of the sprouting in mung beans (Vigna radiata. The 1,1-diphenyl-2- picrylhydrazyl radical (DPPH scavenging test showed that MeJA application resulted in significantly improved antioxidant capacity in the sprouts 72 h later. Measurement of total polyphenols in MeJA-treated beans from 0 to 168 h, using Folin–Ciocalteu colorimetry, showed that the polyphenols changing was significantly correlated with antioxidant activity. The main polyphenols isovitexin, kaempferol-3-O-rutinoside, daidzein, genistein, isoquercitrin, p-coumaric acid, and caffeic acid were quantified using high-performance liquid chromatography (HPLC/QqQ MS and partial least squares discriminant analysis (PLS-DA. MeJA promoted the production of polyphenols, metabolites, and antioxidants in the sprouts; therefore, its use may allow sprouts to be prepared more quickly or increase their nutritional value.

  5. Changes of antioxidative enzymes in Impatiens walleriana L. shoots in response to genetic transformation

    Directory of Open Access Journals (Sweden)

    Milošević Snežana

    2015-01-01

    Full Text Available Impatiens walleriana L. shoots were inoculated with Agrobacterium rhizogenes A4M70GUS and the effects of genetic transformation on the catalase (CAT, superoxide dismutase (SOD and peroxidase (POX activities in wounded region of stems and unwounded leaves were evaluated 10, 24, 240 and 720 hours after inoculation. Following Agrobacterum infection activities of plant antioxidative enzymes changed in a time-dependent manner indicating that dynamic processes occurred during plant-Agrobacterium interaction, plant cell transformation and formation of hairy roots. Appearance of hairy roots on wound sites of shoots was observed ten days after inoculation with A. rhizogenes and the root induction frequency was 100%. Among selected hairy root lines significant differences in growth rate and biomass production were observed and an average 3-fold increase in biomass production was observed for the best growing hairy root line compared with the untransformed roots. PCR analysis showed presence of uidA, rolB, rolC and rolD genes in all analyzed I. walleriana L. hairy root lines, while amplification fragment of rolA gene was detected in 83.3% transformed lines. Efficient transformation protocol for I. walleriana L described in this work offer possibilities to generate hairy root cultures for in vitro propagation of plant viruses. [Projekat Ministarstva nauke Republike Srbije, br. TR-31019

  6. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways.

    Science.gov (United States)

    Corrochano, Alberto R; Buckin, Vitaly; Kelly, Phil M; Giblin, Linda

    2018-03-28

    Oxidative stress contributes to cell injury and aggravates several chronic diseases. Dietary antioxidants help the body to fight against free radicals and, therefore, avoid or reduce oxidative stress. Recently, proteins from milk whey liquid have been described as antioxidants. This review summarizes the evidence that whey products exhibit radical scavenging activity and reducing power. It examines the processing and treatment attempts to increase the antioxidant bioactivity and identifies 1 enzyme, subtilisin, which consistently produces the most potent whey fractions. The review compares whey from different milk sources and puts whey proteins in the context of other known food antioxidants. However, for efficacy, the antioxidant activity of whey proteins must not only survive processing, but also upper gut transit and arrival in the bloodstream, if whey products are to promote antioxidant levels in target organs. Studies reveal that direct cell exposure to whey samples increases intracellular antioxidants such as glutathione. However, the physiological relevance of these in vitro assays is questionable, and evidence is conflicting from dietary intervention trials, with both rats and humans, that whey products can boost cellular antioxidant biomarkers. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Oxidation Stability of Pig Liver Pâté with Increasing Levels of Natural Antioxidants (Grape and Tea

    Directory of Open Access Journals (Sweden)

    Mirian Pateiro

    2015-01-01

    Full Text Available The present study investigated the effect of the addition of increasing levels of the natural antioxidants tea (TEA and grape seed extracts (GRA on the physiochemical and oxidative stability of refrigerated stored pig pâtés. In addition, a synthetic antioxidant and a control batch were used, thus a total of eight batches of liver pâté were prepared: CON, BHT, TEA (TEA50, TEA200 and TEA1000 and GRA (GRA50, GRA200 and GRA1000. Pâté samples were analyzed following 0, 4, 8 and 24 weeks of storage. Color parameters were affected by storage period and level of antioxidant extract. Samples with TEA200 and GRA1000 levels of extracts showed lower total color difference between 0 and 24 weeks. At the end of storage period, the lower TBARs values were obtained in samples with the highest concentration on natural extract. Overall, the evolution of volatile compounds showed an increase in those ones that arise from the lipid oxidation and samples with TEA1000 extract showed the lowest values.

  8. Drinking carrot juice increases total antioxidant status and decreases lipid peroxidation in adults

    Directory of Open Access Journals (Sweden)

    Patil Bhimanagouda S

    2011-09-01

    Full Text Available Abstract Background High prevalence of obesity and cardiovascular disease is attributable to sedentary lifestyle and eating diets high in fat and refined carbohydrate while eating diets low in fruit and vegetables. Epidemiological studies have confirmed a strong association between eating diets rich in fruits and vegetables and cardiovascular health. The aim of this pilot study was to determine whether drinking fresh carrot juice influences antioxidant status and cardiovascular risk markers in subjects not modifying their eating habits. Methods An experiment was conducted to evaluate the effects of consuming 16 fl oz of daily freshly squeezed carrot juice for three months on cardiovascular risk markers, C-reactive protein, insulin, leptin, interleukin-1α, body fat percentage, body mass index (BMI, blood pressure, antioxidant status, and malondialdehyde production. Fasting blood samples were collected pre-test and 90 days afterward to conclude the study. Results Drinking carrot juice did not affect (P > 0.1 the plasma cholesterol, triglycerides, Apo A, Apo B, LDL, HDL, body fat percentage, insulin, leptin, interleukin-1α, or C-reactive protein. Drinking carrot juice decreased (P = 0.06 systolic pressure, but did not influence diastolic pressure. Drinking carrot juice significantly (P Conclusion Drinking carrot juice may protect the cardiovascular system by increasing total antioxidant status and by decreasing lipid peroxidation independent of any of the cardiovascular risk markers measured in the study.

  9. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks׳ gestation in nulliparous women who subsequently develop preeclampsia.

    Science.gov (United States)

    Mistry, Hiten D; Gill, Carolyn A; Kurlak, Lesia O; Seed, Paul T; Hesketh, John E; Méplan, Catherine; Schomburg, Lutz; Chappell, Lucy C; Morgan, Linda; Poston, Lucilla

    2015-01-01

    Preeclampsia is a pregnancy-specific condition affecting 2-7% of women and a leading cause of perinatal and maternal morbidity and mortality. Deficiencies of specific micronutrient antioxidant activities associated with copper, selenium, zinc, and manganese have previously been linked to preeclampsia at the time of disease. Our aims were to investigate whether maternal plasma micronutrient concentrations and related antioxidant enzyme activities are altered before preeclampsia onset and to examine the dependence on genetic variations in these antioxidant enzymes. Predisease plasma samples (15±1 weeks׳ gestation) were obtained from women enrolled in the international Screening for Pregnancy Endpoints (SCOPE) study who subsequently developed preeclampsia (n=244) and from age- and BMI-matched normotensive controls (n=472). Micronutrient concentrations were measured by inductively coupled plasma mass spectrometry; associated antioxidant enzyme activities, selenoprotein-P, ceruloplasmin concentration and activity, antioxidant capacity, and markers of oxidative stress were measured by colorimetric assays. Sixty-four tag-single-nucleotide polymorphisms (SNPs) within genes encoding the antioxidant enzymes and selenoprotein-P were genotyped using allele-specific competitive PCR. Plasma copper and ceruloplasmin concentrations were modestly but significantly elevated in women who subsequently developed preeclampsia (both Ppreeclampsia. The modest elevation in copper may contribute to oxidative stress, later in pregnancy, in those women that go on to develop preeclampsia. The lack of evidence to support the hypothesis that functional SNPs influence antioxidant enzyme activity in pregnant women argues against a role for these genes in the etiology of preeclampsia. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa).

    Science.gov (United States)

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham Jj; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  11. Elicitor Mixtures Significantly Increase Bioactive Compounds, Antioxidant Activity, and Quality Parameters in Sweet Bell Pepper

    Directory of Open Access Journals (Sweden)

    Lina Garcia-Mier

    2015-01-01

    Full Text Available Sweet bell peppers are greatly appreciated for their taste, color, pungency, and aroma. Additionally, they are good sources of bioactive compounds with antioxidant activity, which can be improved by the use of elicitors. Elicitors act as metabolite-inducing factors (MIF by mimic stress conditions. Since plants rarely experience a single stress condition one by one but are more likely to be exposed to simultaneous stresses, it is important to evaluate the effect of elicitors on plant secondary metabolism as mixtures. Jasmonic acid (JA, hydrogen peroxide (HP, and chitosan (CH were applied to fruits and plants of bell pepper as mixtures. Bioactive compounds, antioxidant activity, and quality parameters were evaluated. The assessed elicitor cocktail leads to an increase in the variables evaluated (P ≤ 0.05 when applied to mature fruits after harvest, whereas the lowest values were observed in the treatment applied to immature fruits. Therefore, the application of the elicitor cocktail to harvested mature fruits is recommended in order to improve bioactive compounds and the antioxidant activity of sweet bell peppers.

  12. Physical Activity and Adherence to Mediterranean Diet Increase Total Antioxidant Capacity: The ATTICA Study

    Directory of Open Access Journals (Sweden)

    Stavros A. Kavouras

    2011-01-01

    Full Text Available We studied the association of physical activity and adherence to the Mediterranean diet, in total antioxidant capacity (TAC. A random sample of 1514 men and 1528 women was selected from Attica region. Physical activity was assessed with a translated version of the validated “International Physical Activity Questionnaire” (iPAQ, and dietary intake through a validated Food Frequency Questionnaire (FFQ. Adherence to the Mediterranean diet was assessed by the MedDietScore that incorporated the inherent characteristics of this diet. TAC was positively correlated with the degree of physical activity (P<.05. TAC was also positively correlated with MedDietScore (r=0.24, P<.001. Stratified analysis by diet status revealed that the most beneficial results were observed to highly active people as compared to inactive, who also followed the Mediterranean diet (288  ±  70 μmol/L, 230  ±  50 μmol/L, resp., after adjusting for various confounders. Increased physical activity and greater adherence to the Mediterranean diet were associated with increased total antioxidant capacity.

  13. The anti-aging and anti-oxidation effects of tea water extract in Caenorhabditis elegans.

    Science.gov (United States)

    Fei, Tianyi; Fei, Jian; Huang, Fang; Xie, Tianpei; Xu, Jifeng; Zhou, Yi; Yang, Ping

    2017-10-15

    Tea includes puer tea, black tea, green tea and many others. By using model organism Caenorhabditis elegans, the anti-aging and anti-oxidation effects of tea water extract were systemically examined in this study. We found that water extract of puer tea, black tea and green tea all increased the lifespan of worms, postponed Aβ-induced progressive paralysis in Alzheimer's disease transgenic worms, and improved the tolerance of worms to the oxidative stress induced by heavy metal Cr 6+ . Moreover, the anti-oxidation effects of tea water extract at low concentration were different among 4 kinds of brands of green tea. The underlying mechanisms were further explored using genetically manipulated-mutant worms. The anti-oxidative stress effects of green tea water extract depend on the dietary restriction and germline signaling pathways, but not the FOXO and mitochondrial respiratory chain signals. Therefore, tea water extract provides benefits of anti-aging, anti-AD and anti-oxidation. Copyright © 2017. Published by Elsevier Inc.

  14. Feed supplemented with byproducts from olive oil mill wastewater processing increases antioxidant capacity in broiler chickens.

    Science.gov (United States)

    Gerasopoulos, Konstantinos; Stagos, Dimitrios; Kokkas, Stylianos; Petrotos, Konstantinos; Kantas, Dimitrios; Goulas, Panagiotis; Kouretas, Dimitrios

    2015-08-01

    In the present study, a ceramic membrane microfiltration method was used for the separation of two liquid products, the downstream permeate and the upstream retentate, from olive mill wastewater (OMWW). These liquid products were examined for their antioxidant activity by incorporating them into broilers' feed. Twenty four broilers 13 d old were divided into two feeding groups receiving supplementation with OMWW retentate or permeate for 37 d. Blood was drawn at 17, 27 and 37 d, while tissues (muscle, heart, liver) were collected at 37 d. The antioxidant effects were assessed by measuring oxidative stress biomarkers in blood and tissues. The results showed that broilers given feed supplemented with OMWW retentate or permeate had significantly lower protein oxidation and lipid peroxidation levels and higher total antioxidant capacity in plasma and tissues compared to control group. In both OMWW groups, catalase activity in erythrocytes and tissues was significantly increased compared to control group. OMWW retentate administration increased significantly GSH in erythrocytes in broilers with low GSH, although both OMWW products significantly reduced GSH in broilers with high GSH. Thus, it has been demonstrated for the first time that supplementation with OMWW processing residues could be used for enhancing broilers' redox status. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. New Antioxidant Drugs for Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    2015-01-01

    Full Text Available The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.

  16. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches.

    Science.gov (United States)

    Balmus, Ioana Miruna; Ciobica, Alin; Antioch, Iulia; Dobrin, Romeo; Timofte, Daniel

    2016-01-01

    The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context.

  17. Oxidative stress increases internal calcium stores and reduces a key mitochondrial enzyme.

    Science.gov (United States)

    Gibson, Gary E; Zhang, Hui; Xu, Hui; Park, Larry C H; Jeitner, Thomas M

    2002-03-16

    Fibroblasts from patients with genetic and non-genetic forms of Alzheimer's disease (AD) show many abnormalities including increased bombesin-releasable calcium stores (BRCS), diminished activities of the mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC), and an altered ability to handle oxidative stress. The link between genetic mutations (and the unknown primary event in non-genetic forms) and these other cellular abnormalities is unknown. To determine whether oxidative stress could be a convergence point that produces the other AD-related changes, these experiments tested in fibroblasts the effects of H(2)O(2), in the presence or absence of select antioxidants, on BRCS and KGDHC. H(2)O(2) concentrations that elevated carboxy-dichlorofluorescein (c-H(2)DCF)-detectable ROS increased BRCS and decreased KGDHC activity. These changes are in the same direction as those in fibroblasts from AD patients. Acute treatments with the antioxidants Trolox, or DMSO decreased c-H(2)DCF-detectable ROS by about 90%, but exaggerated the H(2)O(2)-induced increases in BRCS by about 4-fold and did not alter the reduction in KGDHC. Chronic pretreatments with Trolox more than doubled the BRCS, tripled KGDHC activities, and reduced the effects of H(2)O(2). Pretreatment with DMSO or N-acetyl cysteine diminished the BRCS and either had no effect, or exaggerated the H(2)O(2)-induced changes in these variables. The results demonstrate that BRCS and KGDHC are more sensitive to H(2)O(2) derived species than c-H(2)DCF, and that oxidized derivatives of the antioxidants exaggerate the actions of H(2)O(2). The findings support the hypothesis that select abnormalities in oxidative processes are a critical part of a cascade that leads to the cellular abnormalities in cells from AD patients.

  18. Renoprotective effects of antioxidants against cisplatin nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Hajian Shabnam

    2014-04-01

    Full Text Available Nephrotoxicity is the major limitation for the clinical use of cisplatin as an anti-tumoural drug. Intracellular effects of cisplatin cause tubular damage and tubular dysfunction with sodium, potassium, and magnesium wasting. Renoperotective strategies against cisplatin are classified on 8 targets: 1 Decrease of cisplatin uptake by renal cell, 2 Inhibition of cisplatin metabolism, 3 Blocking cell death pathways, 4 Cyclin-dependent kinase inhibitors, 5 Pharmacologic, molecular, and genetic blockade of p53, 6 Inhibition of specific Mitogen-activated protein kinase, 7 Antioxidants usage for renoprotection against cisplatin injury and inhibit of oxidative stress, 8 Suppress of inflammation. The oxidation reactions can produce free radicals, which start chain reactions and subsequently can cause a large number of diseases in humans. Antioxidant from natural products have attracted the physicians’ attentions, nowadays. The natural product antioxidants detoxify reactive oxygen species (ROS in kidneys, without affecting the anticancer efficacy of cisplatin. Hence, antioxidants have potential therapeutic applications.

  19. Use of different spices as potential natural antioxidant additives on cooked beans (Phaseolus vulgaris). Increase of DPPH radical scavenging activity and total phenolic content.

    Science.gov (United States)

    Pereira, Marina Pelincer; Tavano, Olga Luisa

    2014-12-01

    Herbs and spices, excellent sources of phenolic compounds, can be considered potential antioxidant additives. The use of spices must strike a balance between their potential antioxidant capabilities during preparation and the flavor acceptance, in order to avoid rejection of the food. The aimed of this study is to evaluate the influence of different spices and their concentrations on cooked common beans, focusing its potential as antioxidant additives. Onion, parsley, spring onion, laurel and coriander increased the antioxidant activity of preparation when used at 7.96 g of onion, 1.06 g parsley, 3.43 g spring onion, 0.25 g laurel (dry leaves), and 0.43 g coriander/100 g of cooked beans. Besides, these spices concentrations enhance total phenolics and alter the mixture protein digestibility minimally. For garlic samples it was not possible to establish a concentration that increases the antioxidant activity of cooked beans.

  20. Genetically engineered plants with increased vegetative oil content

    Science.gov (United States)

    Benning, Christoph

    2017-05-23

    The invention relates to genetically modified agricultural plants with increased oil content in vegetative tissues, as well as to expression systems, plant cells, seeds and vegetative tissues related thereto.

  1. Dietary antioxidants and exercise.

    Science.gov (United States)

    Powers, Scott K; DeRuisseau, Keith C; Quindry, John; Hamilton, Karyn L

    2004-01-01

    Muscular exercise promotes the production of radicals and other reactive oxygen species in the working muscle. Growing evidence indicates that reactive oxygen species are responsible for exercise-induced protein oxidation and contribute to muscle fatigue. To protect against exercise-induced oxidative injury, muscle cells contain complex endogenous cellular defence mechanisms (enzymatic and non-enzymatic antioxidants) to eliminate reactive oxygen species. Furthermore, exogenous dietary antioxidants interact with endogenous antioxidants to form a cooperative network of cellular antioxidants. Knowledge that exercise-induced oxidant formation can contribute to muscle fatigue has resulted in numerous investigations examining the effects of antioxidant supplementation on human exercise performance. To date, there is limited evidence that dietary supplementation with antioxidants will improve human performance. Furthermore, it is currently unclear whether regular vigorous exercise increases the need for dietary intake of antioxidants. Clearly, additional research that analyses the antioxidant requirements of individual athletes is needed.

  2. Antioxidant Supplementation Reduces Genomic Aberrations in Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Junfeng Ji

    2014-01-01

    Full Text Available Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs using oncogenic transcription factors. However, this method leads to genetic aberrations in iPSCs via unknown mechanisms, which may limit their clinical use. Here, we demonstrate that the supplementation of growth media with antioxidants reduces the genome instability of cells transduced with the reprogramming factors. Antioxidant supplementation did not affect transgene expression level or silencing kinetics. Importantly, iPSCs made with antioxidants had significantly fewer de novo copy number variations, but not fewer coding point mutations, than iPSCs made without antioxidants. Our results suggest that the quality and safety of human iPSCs might be enhanced by using antioxidants in the growth media during the generation and maintenance of iPSCs.

  3. Combining ability of the antioxidant activity in extracts of jamaica calyces

    Directory of Open Access Journals (Sweden)

    Aguilar-Castillo, J.A.

    2014-07-01

    Full Text Available Hibiscus sabdariffa calyces present a significant percentage of phenolic compounds with high antioxidant capacity in its composition, and these appear to be associated with the prevention of diseases generated by oxidative stress and cardiovascular problems. These qualities may be increased through genetic improvement; the estimation of genetic parameters is useful in making decisions in an improvement program. The aim of this study was to determine the general combining ability (GCA, specific (SCA and heterosis of the antioxidant activity of extracts from hibiscus calyces. China (1 Reina (2 and Huajicori Creole (3 varieties and three single crosses (2x1, 2x3 and 3x1 were used. Four measurement methods were used: total phenolic compounds (TPC, the antioxidant activity was determined by the methods: chelating activity (CA, DPPH • and ABTS • +. A completely randomized design was used with three repetitions and an average comparison test (Tukey, 0.05 was performed. The dialelic analysis showed statistical differences (p<0.01 in the variation sources of crosses, GCA and SCA. The highest significant GCA effects (p<0.01 were shown by China for TPC, DPPH • and ABTS • +, whereas for SCA crosses 2x3 showed positive effects (p<0.01 and the rest expressed negative values. In the average tests, China presented the highest values for TPC, DPPH• and ABTS•+ with 306.4 ± 34.1 (GAE mg L-1, 1,598.8 ± 88.8 (μmol ET L-1 and 269.6 ± 6.7 (AE/100 mL respectively. Expressions of heterosis were not found. The samples did not show CA. For future genetic improvement studies, the use of selection methods is recommended.

  4. Genetics of Oxidative Stress in Obesity

    Directory of Open Access Journals (Sweden)

    Azahara I. Rupérez

    2014-02-01

    Full Text Available Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  5. Genetics of oxidative stress in obesity.

    Science.gov (United States)

    Rupérez, Azahara I; Gil, Angel; Aguilera, Concepción M

    2014-02-20

    Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  6. Chrysin-piperazine conjugates as antioxidant and anticancer agents

    Czech Academy of Sciences Publication Activity Database

    Patel, Rahul V.; Mistry, B.M.; Syed, R.; Rathi, A.K.; Lee, Y. J.; Sung, J.S.; Shinf, H.S.; Keum, Y.S.

    2016-01-01

    Roč. 88, JUN 10 (2016), s. 166-177 ISSN 0928-0987 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Chrysin * Antioxidant * Piperazines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.756, year: 2016

  7. Rye and Wheat Bran Extracts Isolated with Pressurized Solvents Increase Oxidative Stability and Antioxidant Potential of Beef Meat Hamburgers.

    Science.gov (United States)

    Šulniūtė, Vaida; Jaime, Isabel; Rovira, Jordi; Venskutonis, Petras Rimantas

    2016-02-01

    Rye and wheat bran extracts containing phenolic compounds and demonstrating high DPPH• (2,2-diphenyl-1-picrylhydrazyl), ABTS(•+) (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) scavenging and oxygen radical absorbance capacities (ORAC) were tested in beef hamburgers as possible functional ingredients. Bran extracts significantly increased the indicators of antioxidant potential of meat products and their global antioxidant response (GAR) during physiological in vitro digestion. The extracts also inhibited the formation of oxidation products, hexanal and malondialdehyde, of hamburgers during their storage; however, they did not have significant effect on the growth of microorganisms. Hamburgers with 0.8% wheat bran extract demonstrated the highest antioxidant potential. Some effects of bran extracts on other quality characteristics such as pH, color, formation of metmyoglobin were also observed, however, these effects did not have negative influence on the overall sensory evaluation score of hamburgers. Consequently, the use of bran extracts in meat products may be considered as promising means of increasing oxidative product stability and enriching with functional ingredients which might possess health benefits. © 2016 Institute of Food Technologists®

  8. Phenotypic and genotypic characterization of antioxidant enzyme system in human population exposed to radiation from mobile towers.

    Science.gov (United States)

    Gulati, Sachin; Yadav, Anita; Kumar, Neeraj; Priya, Kanu; Aggarwal, Neeraj K; Gupta, Ranjan

    2018-03-01

    In the present era, cellular phones have changed the life style of human beings completely and have become an essential part of their lives. The number of cell phones and cell towers are increasing in spite of their disadvantages. These cell towers transmit radiation continuously without any interruption, so people living within 100s of meters from the tower receive 10,000 to 10,000,000 times stronger signal than required for mobile communication. In the present study, we have examined superoxide dismutase (SOD) enzyme activity, catalase (CAT) enzyme activity, lipid peroxidation assay, and effect of functional polymorphism of SOD and CAT antioxidant genes against mobile tower-induced oxidative stress in human population. From our results, we have found a significantly lower mean value of manganese superoxide dismutase (MnSOD) enzyme activity, catalase (CAT) enzyme activity, and a high value of lipid peroxidation assay in exposed as compared to control subjects. Polymorphisms in antioxidant MnSOD and CAT genes significantly contributed to its phenotype. In the current study, a significant association of genetic polymorphism of antioxidant genes with genetic damage has been observed in human population exposed to radiations emitted from mobile towers.

  9. Antioxidant activity potential of gamma irradiated carrageenan

    International Nuclear Information System (INIS)

    Abad, Lucille V.; Relleve, Lorna S.; Racadio, Charles Darwin T.; Aranilla, Charito T.; De la Rosa, Alumanda M.

    2013-01-01

    The antioxidant capacity of irradiated κ-, ι-, λ-carrageenans were investigated using the hydroxyl radical scavenging assay, reducing power assay and DPPH radical scavenging capacity assay. The degree of oxidative inhibition increased with increasing concentration and dose. The type of carrageenan had also an influence on its antioxidant activity which followed the order of lambda< iota< kappa. Increase in oxidative property with radiation dose can be attributed mainly to the depolymerization of the carrageenans with corresponding increase in reducing sugar. The antioxidant properties of these carrageenan oligomers were lower than that of ascorbic acid and galactose sugar. - Highlights: • The antioxidant capacity of gamma irradiated κ-, ι-, λ-carrageenans increased with increasing concentration and dose. • The type of carrageenan had an influence on its antioxidant activity which followed the order of lambda< iota< kappa. • Increase in oxidative property with radiation dose can be attributed mainly to the depolymerization of the carrageenans with corresponding increase in reducing sugar

  10. Mitochondrial Dysfunction and Oxidative Stress in Asthma: Implications for Mitochondria-Targeted Antioxidant Therapeutics

    Directory of Open Access Journals (Sweden)

    P. Hemachandra Reddy

    2011-02-01

    Full Text Available Asthma is a complex, inflammatory disorder characterized by airflow obstruction of variable degrees, bronchial hyper-responsiveness, and airway inflammation. Asthma is caused by environmental factors and a combination of genetic and environmental stimuli. Genetic studies have revealed that multiple loci are involved in the etiology of asthma. Recent cellular, molecular, and animal-model studies have revealed several cellular events that are involved in the progression of asthma, including: increased Th2 cytokines leading to the recruitment of inflammatory cells to the airway, and an increase in the production of reactive oxygen species and mitochondrial dysfunction in the activated inflammatory cells, leading to tissue injury in the bronchial epithelium. Further, aging and animal model studies have revealed that mitochondrial dysfunction and oxidative stress are involved and play a large role in asthma. Recent studies using experimental allergic asthmatic mouse models and peripheral cells and tissues from asthmatic humans have revealed antioxidants as promising treatments for people with asthma. This article summarizes the latest research findings on the involvement of inflammatory changes, and mitochondrial dysfunction/oxidative stress in the development and progression of asthma. This article also addresses the relationship between aging and age-related immunity in triggering asthma, the antioxidant therapeutic strategies in treating people with asthma.

  11. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation.

    Science.gov (United States)

    Boestfleisch, Christian; Wagenseil, Niko B; Buhmann, Anne K; Seal, Charlotte E; Wade, Ellie Merrett; Muscolo, Adele; Papenbrock, Jutta

    2014-08-13

    Halophytes, salt-tolerant plants, are a source of valuable secondary metabolites with potential economic value. The steady-state pools of many stress-related metabolites are already enhanced in halophytes when compared with glycophytes, but growth under conditions away from the optimum can induce stress and consequently result in changes to secondary metabolites such as antioxidants. However, direct evidence for increasing the concentration of valuable secondary metabolites as a consequence of altering the salinity of the growing environment still remains equivocal. To address this, we analysed a range of metabolites with antioxidant capacity (including total phenols, flavonoids, ascorbate, reduced/oxidized glutathione and reactive oxygen species scavenging enzymes) in seedlings and plants from different families (Amaranthaceae, Brassicaceae, Plantaginaceae and Rhizophoraceae) and habitats grown under different salt concentrations. We show that it is possible to manipulate the antioxidant capacity of plants and seedlings by altering the saline growing environment, the length of time under saline cultivation and the developmental stage. Among the species studied, the halophytes Tripolium pannonicum, Plantago coronopus, Lepidium latifolium and Salicornia europaea demonstrated the most potential as functional foods or nutraceuticals. Published by Oxford University Press on behalf of the Annals of Botany Company.

  12. Unintended effects were investigated in antioxidant activity between ...

    African Journals Online (AJOL)

    Other than the targeted approach on compositional analysis, non-targeted approaches on genomics, proteomics and metabolomics are developing to search for unintended effects with respect to genetically modified (GM) food safety assessments. Antioxidant activity system was closely related with plant growth and ...

  13. Apolipoprotein M binds oxidized phospholipids and increases the antioxidant effect of HDL

    DEFF Research Database (Denmark)

    Elsøe, Sara; Ahnström, Josefin; Christoffersen, Christina

    2012-01-01

    Oxidation of LDL plays a key role in the development of atherosclerosis. HDL may, in part, protect against atherosclerosis by inhibiting LDL oxidation. Overexpression of HDL-associated apolipoprotein M (apoM) protects mice against atherosclerosis through a not yet clarified mechanism. Being a lip...... a lipocalin, apoM contains a binding pocket for small lipophilic molecules. Here, we report that apoM likely serves as an antioxidant in HDL by binding oxidized phospholipids, thus enhancing the antioxidant potential of HDL....

  14. Treatment of β-Thalassemia/Hemoglobin E with Antioxidant Cocktails Results in Decreased Oxidative Stress, Increased Hemoglobin Concentration, and Improvement of the Hypercoagulable State

    Directory of Open Access Journals (Sweden)

    Orn-uma Yanpanitch

    2015-01-01

    Full Text Available Studies on the antioxidant treatment for thalassemia have reported variable outcomes. However, treatment of thalassemia with a combination of hydrophobic and hydrophilic antioxidants and an iron chelator has not been studied. This study investigated the effects of antioxidant cocktails for the treatment of β-thalassemia/hemoglobin E (HbE, which is the most common form of β-thalassemia in Southeast Asia. Sixty patients were divided into two groups receiving N-acetylcysteine, deferiprone, and either curcuminoids (CUR or vitamin E (Vit-E, and their hematological parameters, iron load, oxidative stress, and blood coagulation potential were evaluated. Patients were classified as responders if they showed the improvements of the markers of iron load and oxidative stress, otherwise as nonresponders. During treatment, the responders in both groups had significantly decreased iron load, oxidative stress, and coagulation potential and significantly increased antioxidant capacity and hemoglobin concentration. The significantly maximum increase (P<0.01 in hemoglobin concentration was 11% at month 4 in CUR group responders and 10% at month 10 in Vit-E group responders. In conclusion, the two antioxidant cocktails can improve anemia, iron overload, oxidative stress, and hypercoagulable state in β-thalassemia/HbE.

  15. Antioxidants of Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Maja Kozarski

    2015-10-01

    Full Text Available Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  16. The proper time for antioxidant consumption.

    Science.gov (United States)

    Beaulieu, Michaël; Schaefer, H Martin

    2014-04-10

    Consuming food rich in antioxidants may help organisms to increase their antioxidant defences and avoid oxidative damage. Under the hypothesis that organisms actively consume food for its antioxidant properties, they would need to do so in view of other physiological requirements, such as energy requirements. Here, we observed that Gouldian finches (Erythrura gouldiae) consumed most seeds rich in antioxidants in the middle of the day, while their consumption of staple seeds more profitable in energy intake (and poor in antioxidants) was maximal in the morning and the evening. This consumption of seeds rich in antioxidants in the middle of the day may be explicable (1) because birds took advantage of a time window associated with relaxed energy requirements to ingest antioxidant resources, or (2) because birds consumed antioxidant resources as a response to the highest antioxidant requirements in the middle of the day. If the latter hypothesis holds true, having the possibility to ingest antioxidants should be most beneficial in terms of oxidative balance in the middle of the day. Even though feeding on seeds rich in antioxidants improved Gouldian finches' overall antioxidant capacity, we did not detect any diurnal effect of antioxidant intake on plasma oxidative markers (as measured by the d-ROM and the OXY-adsorbent tests). This indicates that the diurnal pattern of antioxidant intake that we observed was most likely constrained by the high consumption of staple food to replenish or build up body reserves in the morning and in the evening, and not primarily determined by elevated antioxidant requirements in the middle of the day. Consequently, animals appear to have the possibility to increase antioxidant defences by selecting food rich in antioxidants, only when energetic constraints are relaxed. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Strawberry polyphenols attenuate ethanol-induced gastric lesions in rats by activation of antioxidant enzymes and attenuation of MDA increase.

    Directory of Open Access Journals (Sweden)

    José M Alvarez-Suarez

    Full Text Available BACKGROUND AND AIM: Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. METHODS/PRINCIPAL FINDINGS: Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. CONCLUSIONS: Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in

  18. Strawberry Polyphenols Attenuate Ethanol-Induced Gastric Lesions in Rats by Activation of Antioxidant Enzymes and Attenuation of MDA Increase

    Science.gov (United States)

    Alvarez-Suarez, José M.; Dekanski, Dragana; Ristić, Slavica; Radonjić, Nevena V.; Petronijević, Nataša D.; Giampieri, Francesca; Astolfi, Paola; González-Paramás, Ana M.; Santos-Buelga, Celestino; Tulipani, Sara; Quiles, José L.; Mezzetti, Bruno; Battino, Maurizio

    2011-01-01

    Background and Aim Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. Methods/Principal Findings Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. Conclusions Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in strawberries might exert a

  19. Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells

    Science.gov (United States)

    Goszcz, Katarzyna; Deakin, Sherine J.; Duthie, Garry G.; Stewart, Derek

    2017-01-01

    Despite limited bioavailability and rapid degradation, dietary anthocyanins are antioxidants with cardiovascular benefits. This study tested the hypothesis that the antioxidant protection conferred by the anthocyanin, delphinidin, is mediated by modulation of endogenous antioxidant defences, driven by its degradation product, gallic acid. Delphinidin was found to degrade rapidly (t1/2 ~ 30 min), generating gallic acid as a major degradation product. Both delphinidin and gallic acid generated oxygen-centred radicals at high (100 μM) concentrations in vitro. In a cultured human umbilical vein endothelial cell model of oxidative stress, the antioxidant protective effects of both delphinidin and gallic acid displayed a hormesic profile; 100 μM concentrations of both were cytotoxic, but relatively low concentrations (100 nM–1 μM) protected the cells and were associated with increased intracellular glutathione. We conclude that delphinidin is intrinsically unstable and unlikely to confer any direct antioxidant activity in vivo yet it offered antioxidant protection to cells at low concentrations. This paradox might be explained by the ability of the degradation product, gallic acid, to confer benefit. The findings are important in understanding the mode of protection conferred by anthocyanins and reinforce the necessity to conduct in vitro experiments at biologically relevant concentrations. PMID:29081896

  20. Improved lipid profile and increased serum antioxidant capacity in healthy volunteers after Sambucus ebulus L. fruit infusion consumption.

    Science.gov (United States)

    Ivanova, Diana; Tasinov, Oskan; Kiselova-Kaneva, Yoana

    2014-09-01

    This study aimed to establish the effect of Sambucus ebulus L. (SE) ripe fruit infusion on body weight, blood pressure, glucose levels, lipid profile and antioxidant markers in healthy volunteers in respect of its possible protective activity against cardiovascular diseases and other oxidative stress-related diseases. The study involved 21 healthy volunteers, aged between 20 and 59, BMI 23.12 ± 1.31, who consumed 200 ml SE infusion/day for a period of 30 d. Blood samples were collected before and at the end of the intervention. Significant decrease in triglycerides (14.92%), total cholesterol (15.04%) and LDL-C (24.67%) was established at the end of the study. In addition, HDL-C/LDL-C ratio increased by 42.77%. Improved serum antioxidant capacity and total thiol levels were also established. The results presented in this first human intervention study with SE fruit infusion indicate the potential of the plant to improve lipid profile and serum antioxidant capacity in humans.

  1. pH dependent antioxidant activity of lettuce (L. sativa) and synergism with added phenolic antioxidants.

    Science.gov (United States)

    Altunkaya, Arzu; Gökmen, Vural; Skibsted, Leif H

    2016-01-01

    Influence of pH on the antioxidant activities of combinations of lettuce extract (LE) with quercetin (QC), green tea extract (GTE) or grape seed extract (GSE) was investigated for both reduction of Fremy's salt in aqueous solution using direct electron spin resonance (ESR) spectroscopy and in L-α-phosphatidylcholine liposome peroxidation assay measured following formation of conjugated dienes. All examined phenolic antioxidants showed increasing radical scavenging effect with increasing pH values by using both methods. QC, GTE and GSE acted synergistically in combination with LE against oxidation of peroxidating liposomes and with QC showing the largest effect. The pH dependent increase of the antioxidant activity of the phenols is due to an increase of their electron-donating ability upon deprotonation and to their stabilization in alkaline solutions leading to polymerization reaction. Such polymerization reactions of polyphenolic antioxidants can form new oxidizable -OH moieties in their polymeric products resulting in a higher radical scavenging activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. In Barrett's esophagus patients and Barrett's cell lines, ursodeoxycholic acid increases antioxidant expression and prevents DNA damage by bile acids.

    Science.gov (United States)

    Peng, Sui; Huo, Xiaofang; Rezaei, Davood; Zhang, Qiuyang; Zhang, Xi; Yu, Chunhua; Asanuma, Kiyotaka; Cheng, Edaire; Pham, Thai H; Wang, David H; Chen, Minhu; Souza, Rhonda F; Spechler, Stuart Jon

    2014-07-15

    Hydrophobic bile acids like deoxycholic acid (DCA), which cause oxidative DNA damage and activate NF-κB in Barrett's metaplasia, might contribute to carcinogenesis in Barrett's esophagus. We have explored mechanisms whereby ursodeoxycholic acid (UDCA, a hydrophilic bile acid) protects against DCA-induced injury in vivo in patients and in vitro using nonneoplastic, telomerase-immortalized Barrett's cell lines. We took biopsies of Barrett's esophagus from 21 patients before and after esophageal perfusion with DCA (250 μM) at baseline and after 8 wk of oral UDCA treatment. DNA damage was assessed by phospho-H2AX expression, neutral CometAssay, and phospho-H2AX nuclear foci formation. Quantitative PCR was performed for antioxidants including catalase and GPX1. Nrf2, catalase, and GPX1 were knocked down with siRNAs. Reporter assays were performed using a plasmid construct containing antioxidant responsive element. In patients, baseline esophageal perfusion with DCA significantly increased phospho-H2AX and phospho-p65 in Barrett's metaplasia. Oral UDCA increased GPX1 and catalase levels in Barrett's metaplasia and prevented DCA perfusion from inducing DNA damage and NF-κB activation. In cells, DCA-induced DNA damage and NF-κB activation was prevented by 24-h pretreatment with UDCA, but not by mixing UDCA with DCA. UDCA activated Nrf2 signaling to increase GPX1 and catalase expression, and protective effects of UDCA pretreatment were blocked by siRNA knockdown of these antioxidants. UDCA increases expression of antioxidants that prevent toxic bile acids from causing DNA damage and NF-κB activation in Barrett's metaplasia. Elucidation of this molecular pathway for UDCA protection provides rationale for clinical trials on UDCA for chemoprevention in Barrett's esophagus. Copyright © 2014 the American Physiological Society.

  3. Role of antioxidant therapy in ameliorating the side effects of post-operative radiotherapy on genetic material of cancer cervix patients

    International Nuclear Information System (INIS)

    Korraa, S.; Elmaghraby, T.; Arian, F.; Mahfouz, M.

    2003-01-01

    The oxidative stress found in cancer patients and radiotherapy was resulted from the increased production of oxidants in the body and the inefficiency of endogenous antioxidant system to eliminate such oxidants. The present study was carried out to investigated whether supplementation of cancer cervix patients during radiotherapy with antioxidants can ameliorate the damaging effects of radiation on DNA of circulating lymphocytes or not. Accordingly, apoptosis, DNA-fragmentation, lipid peroxidation and the frequency of micronuclei among cancer cervix patient undergoing post-operative radiotherapy (n=40) were measured with and without the administration course of antioxidant antox (including 60 mg vitamin C 10 mg vitamin E, 1000 U I vitamin A and 50 mg selenium). Patients were divided into 2 groups each of 20 patients. The first group was administered the antioxidant antox, 200 mg per day, during radiotherapy and one week more post-cessation of radiotherapy , while the second group did not supplemented with antox. All parameters were investigated in a control group of 20 normal healthy women and in the 40 patient ones

  4. Antioxidant enzymes activities in obese Tunisian children

    Directory of Open Access Journals (Sweden)

    Sfar Sonia

    2013-01-01

    Full Text Available Abstract Background The oxidant stress, expected to increase in obese adults, has an important role in the pathogenesis of many diseases. It results when free radical formation is greatly increased or protective antioxidant mechanisms are compromised. The main objective of this study is to evaluate the antioxidant response to obesity-related stress in healthy children. Methods A hundred and six healthy children (54 obese and 52 controls, aged 6–12 years old, participated in this study. The collected data included anthropometric measures, blood pressure, fasting glucose, total cholesterol, triglycerides and enzymatic antioxidants (Superoxide dismutase: SOD, Catalase: CAT and Glutathione peroxidase: GPx. Results The first step antioxidant response, estimated by the SOD activity, was significantly higher in obese children compared with normal-weight controls (p  Conclusions The obesity-related increase of the oxidant stress can be observed even in the childhood period. In addition to the complications of an increased BMI, obesity itself can be considered as an independent risk factor of free radical production resulting in an increased antioxidant response.

  5. Ripening-Dependent Changes in Antioxidants, Color Attributes, and Antioxidant Activity of Seven Tomato (Solanum lycopersicum L. Cultivars

    Directory of Open Access Journals (Sweden)

    Shiva Ram Bhandari

    2016-01-01

    Full Text Available To evaluate the ripening-dependent changes in phytonutrients, seven commercial cultivars (two general and five cherry of tomatoes were cultivated under greenhouse conditions. Fruits were harvested at breaker, turning, pink, light red, and red stages of each cultivar, and antioxidant contents, color attributes, and antioxidant activities were measured. During ripening process, lycopene content increased from the breaker to red stage, while lutein displayed the reverse accumulation pattern, with higher values during the breaker stage. In contrast, β-carotene showed the highest levels of synthesis in pink and light red stages. Furthermore, flavonoids (quercetin, rutin, naringenin, and luteolin also showed similar ripening-dependent changes, with higher quantities in pink and light red stages. Ascorbic acid showed continuously increasing patterns throughout ripening until the red stage, while the accumulation of total phenolics was cultivar-dependent. These results indicate that each antioxidant compound has a unique pattern of accumulation and degradation during the ripening process. “Unicon” exhibited highest total carotenoid (110.27 mg/100 g, total phenol (297.88 mg GAE/100 g and total flavonoid content (273.33 mg/100 g, and consequently highest antioxidant activity (2552.4 μmol TE/100 g compared to other cultivars. Throughout the ripening processes, total phenolics showed the highest correlation with antioxidant activity, followed by β-carotene and total flavonoids. In conclusion, ripening in tomatoes is accompanied by incremental increases in various antioxidant compounds to some extent, as well as by concomitant increases in antioxidant activity.

  6. Moringa Oleifera leaf extract increases plasma antioxidant status associated with reduced plasma malondialdehyde concentration without hypoglycemia in fasting healthy volunteers.

    Science.gov (United States)

    Ngamukote, Sathaporn; Khannongpho, Teerawat; Siriwatanapaiboon, Marent; Sirikwanpong, Sukrit; Dahlan, Winai; Adisakwattana, Sirichai

    2016-12-29

    To investigate the effect of Moringa Oleifera leaf extract (MOLE) on plasma glucose concentration and antioxidant status in healthy volunteers. A randomized crossover design was used in this study. Healthy volunteers were randomly assigned to receive either 200 mL of warm water (10 cases) or 200 mL of MOLE (500 mg dried extract, 10 cases). Blood samples were drawn at 0, 30, 60, 90, and 120 min for measuring fasting plasma glucose (FPG), ferric reducing ability of plasma (FRAP), Trolox equivalent antioxidant capacity (TEAC) and malondialdehyde (MDA). FPG concentration was not signifificantly different between warm water and MOLE. The consumption of MOLE acutely improved both FRAP and TEAC, with increases after 30 min of 30 μmol/L FeSO 4 equivalents and 0.18 μmol/L Trolox equivalents, respectively. The change in MDA level from baseline was signifificantly lowered after the ingestion of MOLE at 30, 60, and 90 min. In addition, FRAP level was negatively correlated with plasma MDA level after an intake of MOLE. MOLE increased plasma antioxidant capacity without hypoglycemia in human. The consumption of MOLE may reduce the risk factors associated with chronic degenerative diseases.

  7. The potential of shifting recombination hotspots to increase genetic gain in livestock breeding.

    Science.gov (United States)

    Gonen, Serap; Battagin, Mara; Johnston, Susan E; Gorjanc, Gregor; Hickey, John M

    2017-07-04

    This study uses simulation to explore and quantify the potential effect of shifting recombination hotspots on genetic gain in livestock breeding programs. We simulated three scenarios that differed in the locations of quantitative trait nucleotides (QTN) and recombination hotspots in the genome. In scenario 1, QTN were randomly distributed along the chromosomes and recombination was restricted to occur within specific genomic regions (i.e. recombination hotspots). In the other two scenarios, both QTN and recombination hotspots were located in specific regions, but differed in whether the QTN occurred outside of (scenario 2) or inside (scenario 3) recombination hotspots. We split each chromosome into 250, 500 or 1000 regions per chromosome of which 10% were recombination hotspots and/or contained QTN. The breeding program was run for 21 generations of selection, after which recombination hotspot regions were kept the same or were shifted to adjacent regions for a further 80 generations of selection. We evaluated the effect of shifting recombination hotspots on genetic gain, genetic variance and genic variance. Our results show that shifting recombination hotspots reduced the decline of genetic and genic variance by releasing standing allelic variation in the form of new allele combinations. This in turn resulted in larger increases in genetic gain. However, the benefit of shifting recombination hotspots for increased genetic gain was only observed when QTN were initially outside recombination hotspots. If QTN were initially inside recombination hotspots then shifting them decreased genetic gain. Shifting recombination hotspots to regions of the genome where recombination had not occurred for 21 generations of selection (i.e. recombination deserts) released more of the standing allelic variation available in each generation and thus increased genetic gain. However, whether and how much increase in genetic gain was achieved by shifting recombination hotspots depended

  8. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... and the nitroblue tetrazolium (NBT) assay. The cytotoxicity ... The antioxidant activity and cytotoxic effect of the extracts increased with increase ... supplements are concoctions of plants and/or plant .... In vitro antioxidant assay.

  9. The importance of antioxidants in the protection against mycotoxicoses in farm animals

    Directory of Open Access Journals (Sweden)

    Joksimović-Todorović Mirjana Ž.

    2011-01-01

    Full Text Available Mycotoxins are biologically active substances that are synthesized by saprophytic and parasitic fungi, and which, when taken into organism by ingestion, can provoke intoxications known as mycotoxicoses. Farm animals show different susceptibility to mycotoxins depending on various factors: genetic (species and breeds, physiological (age and obesity and environmental (hygienic and climatic. One of the mechanisms of mycotoxin activities is peroxidation of lipids brought about directly by the production of free radicals or by increased sensitivity of tissue to peroxidation. Peroxidation of lipids provoked by mycotoxins is caused by low level of natural antioxidants, so they have a crucial role in the protection against mycotoxins. Nutritive stress can influence negatively the relationship between antioxidants/pro-oxidants, and mycotoxins are nowadays regarded as leading factors of stress induced by nutrition. This optimal relationship can be regulated by the use of antioxidants in food (selenium, vitamin E, carotenoids, etc. known to prevent tissue damages caused by free radicals. Selenium and vitamin E are essential nutrients which contribute to the preservation of animal health by realizing mutual biological activities in the organism. This paper presents the findings on mechanisms of the action of different species of mycotoxins and the importance of antioxidative protection in farm animals, as well as the results of our investigations of influence of mycotoxins on the occurrence of some reproductive disorders in pigs.

  10. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women.

    Science.gov (United States)

    Wang, Ying; Yang, Meng; Lee, Sang-Gil; Davis, Catherine G; Kenny, Anne; Koo, Sung I; Chun, Ock K

    2012-12-01

    Increased plasma total antioxidant capacity (TAC) has been associated with a high consumption of fruits and vegetables. However, limited information is available on whether plasma TAC reflects the dietary intake of antioxidants and the levels of individual antioxidants in plasma. By using three different assays, the study aimed to determine if plasma TAC can effectively predict dietary intake of antioxidants and plasma antioxidant status. Forty overweight and apparently healthy postmenopausal women were recruited. Seven-day food records and 12-h fasting blood samples were collected for dietary and plasma antioxidant assessments. Plasma TAC was determined by vitamin C equivalent antioxidant capacity (VCEAC), ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) assays. TAC values determined by VCEAC were highly correlated with FRAP (r=0.79, Pantioxidants and represents more closely the plasma antioxidant levels than ORAC and FRAP. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Effect of dietary antioxidants, training, and performance correlates on antioxidant status in competitive rowers.

    Science.gov (United States)

    Braakhuis, Andrea J; Hopkins, Will G; Lowe, Timothy E

    2013-09-01

    The beneficial effects of exercise and a healthy diet are well documented in the general population but poorly understood in elite athletes. Previous research in subelite athletes suggests that regular training and an antioxidant-rich diet enhance antioxidant defenses but not performance. To investigate whether habitual diet and/or exercise (training status or performance) affect antioxidant status in elite athletes. Antioxidant blood biomarkers were assessed before and after a 30-min ergometer time trial in 28 male and 34 female rowers. The antioxidant blood biomarkers included ascorbic acid, uric acid, total antioxidant capacity (TAC), erythrocyte- superoxide dismutase, glutathione peroxidase (GPx), and catalase. Rowers completed a 7-d food diary and an antioxidant-intake questionnaire. Effects of diet, training, and performance on resting biomarkers were assessed with Pearson correlations, and their effect on exercise-induced changes in blood biomarkers was assessed by a method of standardization. With the exception of GPx, there were small to moderate increases with exercise for all markers. Blood resting TAC had a small correlation with total antioxidant intake (correlation .29; 90% confidence limits, ±.27), and the exercise-induced change in TAC had a trivial to small association with dietary antioxidant intake from vitamin C (standardized effect .19; ±.22), vegetables (.20; ±.23), and vitamin A (.25; ±.27). Most other dietary intakes had trivial associations with antioxidant biomarkers. Years of training had a small inverse correlation with TAC (-.32; ±.19) and a small association with the exercise-induced change in TAC (.27; ±.24). Training status correlates more strongly with antioxidant status than diet does.

  12. Antioxidants in bakery products: a review.

    Science.gov (United States)

    Nanditha, B; Prabhasankar, P

    2009-01-01

    Fats impart taste and texture to the product but it is susceptible to oxidation leading to the development of rancidity and off-flavor. Since ancient times it has been in practice to use antioxidants in foods. Discovery of synthetic antioxidants has revolutionized the use of antioxidants in food. The effect of these antioxidants in bakery products were reviewed and found to be effective in enhancing the shelf life. Animal experimental studies have shown that some of the synthetic antioxidants had toxigenic, mutagenic, and carcinogenic effects. Hence there is an increasing demand for the use of natural antioxidants in foods, especially in bakery products. Some of the natural antioxidants such as alpha-tocopherol, beta-carotene, and ascorbic acid were already used in bakery products. These natural antioxidants are found to be effective in enhancing the shelf life of bakery products but not to the extent of synthetic antioxidants. Baking processing steps may lower the antioxidative activity but techniques such as encapsulation of antioxidants can retain their activity. Antioxidative activity of the plant extracts such as garcinia, curcumin, vanillins, and mint were reviewed but studies on their role in bakery products were limited or very few. Hence there is a wide scope for study under this direction in depth.

  13. Management of Surface Drying Temperature to Increase Antioxidant Capacity of Thyme Leaf Extracts (Thymus vulgaris L.)

    OpenAIRE

    RODRIGUEZ CORTINA, JADER; Melo, E.C.; Mulet Pons, Antonio; Bon Corbín, José

    2014-01-01

    [EN] Thyme leaves are an important source of essential oils with antioxidant activity; these compounds are located in trichomes on the leaf surface. The drying conditions affect not only the drying time but also the antioxidant activity. In the literature, a drying temperature of 70 ºC appears to be the best for drying thyme leaves according to their antioxidant capacity. Considering drying periods at different temperature also could be quality beneficial. From these considerations, the goal ...

  14. Increasing global participation in genetics research through DNA barcoding.

    Science.gov (United States)

    Adamowicz, Sarah J; Steinke, Dirk

    2015-12-01

    DNA barcoding--the sequencing of short, standardized DNA regions for specimen identification and species discovery--has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003-2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources.

  15. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya; Challapalli, Srinivas; Chandraguthi, Shrinidhi Gururajarao; Jain, Navya; Krishnamurthy, Hanumanthappa; Kumar, Pratap; Adiga, Satish Kumar

    2014-01-01

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  16. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India); Challapalli, Srinivas [Department of Radiotherapy, Kasturba Medical College, Mangalore (India); Chandraguthi, Shrinidhi Gururajarao [Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal (India); Jain, Navya; Krishnamurthy, Hanumanthappa [National Centre for Biological Sciences, Bangalore (India); Kumar, Pratap [Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal (India); Adiga, Satish Kumar, E-mail: satish.adiga@manipal.edu [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India)

    2014-07-15

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  17. In vitro and in vivo antioxidant activities of inulin.

    Directory of Open Access Journals (Sweden)

    Hong-Mei Shang

    Full Text Available This study was designed to investigate the in vitro and in vivo antioxidant activities of inulin. The in vitro assays demonstrated that the antioxidant activities of inulin, including the DPPH radical scavenging activity, ABTS scavenging activity and ferric reducing power, were weak and significantly lower than those of Vitamin C (P < 0.05. The influence of dietary supplementation with inulin on the antioxidant status of laying hens was evaluated with in vivo antioxidant assays. The results indicated that inulin supplementation quadratically improved the egg production rate of the laying hens (P < 0.01. The antioxidant enzyme activities in the serum, including SOD, CAT, and GSH-Px, and the total antioxidant capacity increased quadratically as inulin levels increased (P < 0.001. The levels of MDA in the serum decreased quadratically as inulin levels increased (P < 0.001. These findings suggest that inulin has the potential to improve the antioxidant status of laying hens.

  18. The dipteran parasitoid Exorista bombycis induces pro- and anti-oxidative reactions in the silkworm Bombyx mori: Enzymatic and genetic analysis.

    Science.gov (United States)

    Makwana, Pooja; Pradeep, Appukuttan Nair R; Hungund, Shambhavi P; Ponnuvel, Kangayam M; Trivedy, Kanika

    2017-02-01

    Hymenopteran parasitoids inject various factors including polydnaviruses along with their eggs into their host insects that suppress host immunity reactions to the eggs and larvae. Less is known about the mechanisms evolved in dipteran parasitoids that suppress host immunity. Here we report that the dipteran, Exorista bombycis, parasitization leads to pro-oxidative reactions and activation of anti-oxidative enzymes in the silkworm Bombyx mori larva. We recorded increased activity of oxidase, superoxide dismutase, thioredoxin peroxidase, catalase, glutathione-S-transferase (GST), and peroxidases in the hemolymph plasma, hemocytes, and fat body collected from B. mori after E. bombycis parasitization. Microarray and qPCR showed differential expression of genes encoding pro- and anti-oxidant enzymes in the hemocytes. The significance of this work lies in increased understanding of dipteran parasitoid biology. © 2017 Wiley Periodicals, Inc.

  19. Effect of antioxidant on biodiesel properties under accelerated oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adriano Sant' ana; Carvalho, Maria Wilma N.C.; Silva, Flavio Luiz Honorato da; Lima, Ezenildo Emanuel de [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Centro de Ciencia e Tecnologia; Silva, Everson de Lima [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola; Dantas, Hermeval Jales [Universidade Federal de Campina Grande (CTRN/UFCG), PB (Brazil). Centro de Tecnologia e Recursos Naturais

    2008-07-01

    This work aimed to study the effect of antioxidant tert-butyl hydroquinone (TBHQ) on oxidative stability of biodiesel. The effect of antioxidant was analyzed under aspects such as acid value, specific gravity, dynamic viscosity and FTIR spectroscopy. According to the results, the degraded samples treated with antioxidant presented the lowest values for acid value, specific mass and dynamic viscosity. FTIR spectra showed that the degraded samples treated with antioxidant have increased their oxidative stability, while those without antioxidant had an increase in the stretch band of hydroxyl (OH). (author)

  20. Antioxidant activity of the inflorescents of Vernonia calvoana ...

    African Journals Online (AJOL)

    lipid, superoxide, phosphomolybdate activities of the inflorescents. However, the percentage antioxidant capacity was low in the inflorescents using FRAP, whereas the antioxidant capacity increased with increase in concentration compared to ...

  1. Mesenchymal stem cells increase antioxidant capacity in intestinal ischemia/reperfusion damage.

    Science.gov (United States)

    Inan, M; Bakar, E; Cerkezkayabekir, A; Sanal, F; Ulucam, E; Subaşı, C; Karaöz, E

    2017-07-01

    Mesenchymal stem cells (MSCs) may have beneficial effects in reversing intestinal damage resulting from circulatory disorders. The hypothesis of this study is that MSCs increase antioxidant capacity of small bowel tissue following intestinal ischemia reperfusion (I/R) damage. A total of 100 rats were used for the control group and three experimental groups, as follows: the sham control, local MSC, and systemic MSC groups. Each group consisted of 10 animals on days 1, 4, and 7 of the experiment. Ischemia was established by clamping the superior mesenteric artery (SMA) for 45min; following this, reperfusion was carried out for 1, 4, and 7days in all groups. In the local and systemic groups, MSCs were administered intravenously and locally just after the ischemia, and they were investigated after 1, 4, and 7days. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (Gpx) activities, as well as malondialdehyde (MDA) and total protein levels, were measured. Histopathological analysis was performed using light and electron microscopy. The indicators of proliferation from the effects of anti- and pro-inflammatory cytokines were evaluated using immunohistochemistry. MDA was increased (Pcytokines interleukin-1β (IL1β), transforming growth factor-β1 (TGFβ1), tumor necrosis factor-α (TNFα), IL6, MIP2, and MPO decreased (Pcytokines EP3 and IL1ra increased (poxygen radicals, suppression of pro-inflammatory cytokines, and increasing the expression of anti-inflammatory cytokines. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Electrophoretic characterization of D. melanogaster strains deficient in endogenous anti-oxidants in combination with gamma radiation

    International Nuclear Information System (INIS)

    Gomar A, S.

    2012-01-01

    The free radicals derived of the oxygen and other reactive species are generated by endogenous processes as sub-products of the aerobic metabolism or by exogenous factors as the environmental pollution, the biological half life of these free radicals is of microseconds, but they have the capacity of reacting with any atom or molecule to its around causing oxidant stress and damage to molecules, cellular membranes and tissues. To counteract them, there is endogenous and exogenous anti-oxidants, the first ones are synthesized by the organism for maintaining the cellular homeostasis as the superoxide dismutase and catalase. There are recent evidences that indicate that the sodium cooper chlorophyllin (SCC) presents a dual effect reducing and/or increasing the induced genetic damage by different mutagenic agents. One hypothesis for this effect is that the SCC can act as oxidant per se or through some of their metabolites. Results more recent indicated that a similar of the SCC, the protoporphyrin-Ix, can produce genetic damage. In this work exogenous anti-oxidants were used, as the SCC, protoporphyrin-Ix or the bilirubin in the induction of endogenous anti-oxidants enzymes to evaluate the supposed oxidant activity of the SCC and/or their metabolites. Drosophila melanogaster strains deficient in superoxide dismutase, catalase and withered were used and a rustic strain Canton-S as control. In the three experiments were treated 60 males of 1 day of age, with SCC, protoporphyrin-Ix or bilirubin to one concentration of 69 m M during 12 days. Every 4 days 10 males were isolated to measure them the induction of superoxide dismutase and catalase. The results showed that the SCC, protoporphyrin-Ix and bilirubin considered like anti-oxidants, were able to increase the induction of the superoxide dismutase and catalase enzymes. This result maybe is because they are able to generate reactive species of oxygen, as the anion superoxide and the hydrogen peroxide. Among the three

  3. Heritability of polyphenols, anthocyanins and antioxidant capacity of ...

    African Journals Online (AJOL)

    ALL

    They can increase the antioxidant capacity ... cytokines, while increasing the production of anti- inflammatory ...... Evaluation of bitterness and astringency of ... phytochemicals and a higher antioxidant capacity than teas and red wine. J. Agric.

  4. In vitro and in vivo antioxidant activities of inulin.

    Science.gov (United States)

    Shang, Hong-Mei; Zhou, Hai-Zhu; Yang, Jun-Yan; Li, Ran; Song, Hui; Wu, Hong-Xin

    2018-01-01

    This study was designed to investigate the in vitro and in vivo antioxidant activities of inulin. The in vitro assays demonstrated that the antioxidant activities of inulin, including the DPPH radical scavenging activity, ABTS scavenging activity and ferric reducing power, were weak and significantly lower than those of Vitamin C (P inulin on the antioxidant status of laying hens was evaluated with in vivo antioxidant assays. The results indicated that inulin supplementation quadratically improved the egg production rate of the laying hens (P inulin levels increased (P inulin levels increased (P inulin has the potential to improve the antioxidant status of laying hens.

  5. Increasing the reach of forensic genetics with massively parallel sequencing.

    Science.gov (United States)

    Budowle, Bruce; Schmedes, Sarah E; Wendt, Frank R

    2017-09-01

    The field of forensic genetics has made great strides in the analysis of biological evidence related to criminal and civil matters. More so, the discipline has set a standard of performance and quality in the forensic sciences. The advent of massively parallel sequencing will allow the field to expand its capabilities substantially. This review describes the salient features of massively parallel sequencing and how it can impact forensic genetics. The features of this technology offer increased number and types of genetic markers that can be analyzed, higher throughput of samples, and the capability of targeting different organisms, all by one unifying methodology. While there are many applications, three are described where massively parallel sequencing will have immediate impact: molecular autopsy, microbial forensics and differentiation of monozygotic twins. The intent of this review is to expose the forensic science community to the potential enhancements that have or are soon to arrive and demonstrate the continued expansion the field of forensic genetics and its service in the investigation of legal matters.

  6. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants.

    Science.gov (United States)

    Sanmartín-Suárez, Carolina; Soto-Otero, Ramón; Sánchez-Sellero, Inés; Méndez-Álvarez, Estefanía

    2011-01-01

    Dimethyl sulfoxide is an amphiphilic compound whose miscibility with water and its ability to dissolve lipophilic compounds make it an appreciated solvent in biomedical research. However, its reported antioxidant properties raise doubts about its use as a solvent in evaluating new antioxidants. The goal of this investigation was to evaluate its antioxidant properties and carry out a comparative study on the antioxidant properties of some known neuroprotective antioxidants in the presence and absence of dimethyl sulfoxide. The antioxidant properties of dimethyl sulfoxide were studied in rat brain homogenates by determining its ability to reduce both lipid peroxidation (TBARS formation) and protein oxidation (increase in protein carbonyl content and decrease in free thiol content) induced by ferrous chloride/hydrogen peroxide. Its ability to reduce the production of hydroxyl radicals by 6-hydroxydopamine autoxidation was also estimated. The same study was also performed with three known antioxidants (α-phenyl-N-tert-butylnitrone; 2-methyl-2-nitrosopropane; 5,5-dimethyl-1-pyrroline N-oxide) in the presence and absence of dimethyl sulfoxide. Our results showed that dimethyl sulfoxide is able to reduce both lipid peroxidation and protein carbonyl formation induced by ferrous chloride/hydrogen peroxide in rat brain homogenates. It can also reduce the production of hydroxyl radicals during 6-hydroxydopamine autoxidation. However, it increases the oxidation of protein thiol groups caused by ferrous chloride/hydrogen peroxide in rat brain homogenate. Despite the here reported antioxidant and pro-oxidant properties of dimethyl sulfoxide, the results obtained with α-phenyl-N-tert-butylnitrone, 2-methyl-2-nitrosopropane, and 5,5-dimethyl-1-pyrroline N-oxide corroborate the antioxidant properties attributed to these compounds and support the potential use of dimethyl sulfoxide as a solvent in the study of the antioxidant properties of lipophilic compounds. Dimethyl sulfoxide

  7. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  8. Evaluation of oxidant, antioxidant, and S100B levels in patients with conversion disorder.

    Science.gov (United States)

    Büyükaslan, Hasan; Kandemir, Sultan Basmacı; Asoğlu, Mehmet; Kaya, Halil; Gökdemir, Mehmet Tahir; Karababa, İbrahim Fatih; Güngörmez, Fatih; Kılıçaslan, Fethiye; Şavik, Emin

    2016-01-01

    Various psychodynamic, neurobiological, genetic, and sociocultural factors are believed to be involved in the etiology of conversion disorder (CD). Oxidative metabolism has been shown to deteriorate in association with many health problems and psychiatric disorders. We evaluated oxidative metabolism and S100B levels in the context of this multifactorial disease. Thirty-seven patients with CD (25 females and 12 males) and 42 healthy volunteers (21 females and 21 males), all matched for age and sex, were included in this study. The total oxidant status, total antioxidant status, oxidative stress index, and S100B levels were compared between the two groups. The total oxidant status, oxidative stress index, and S100B levels were significantly higher in patients with CD than in the control group, whereas the total antioxidant status was significantly lower. CD is associated with deterioration of oxidative metabolism and increased neuronal damage.

  9. Effect of gamma irradiation on antioxidant activity of Amoora rohitaka

    International Nuclear Information System (INIS)

    Rajurkar, N.S.; Gaikwad, K.N.

    2012-01-01

    The effect of a medium dose of gamma radiation on antioxidant activity of Amoora rohitaka was studied. Radiation doses were 0, 1, 3 and 5 kGy. Antioxidant activity was screened by using different assay. With increasing dose the formation of Maillard reaction products (MRPs) contributes to the increase in the antioxidant activity. MRPs are formed as a result of Maillard reaction. In ABTS [2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid di-ammonium salt] assay, ethanol extract showed increase in scavenging activity. It also showed a marked increase in polyphenolic contents. The present study reveals that gamma irradiation can be an efficient process to increase antioxidant activity of Amoora rohitaka. (author)

  10. Altered Antioxidant-Oxidant Status in the Aqueous Humor and Peripheral Blood of Patients with Retinitis Pigmentosa

    Science.gov (United States)

    Martínez-Fernández de la Cámara, Cristina; Salom, David; Sequedo, Ma Dolores; Hervás, David; Marín-Lambíes, Cristina; Aller, Elena; Jaijo, Teresa; Díaz-LLopis, Manuel; Millán, José María; Rodrigo, Regina

    2013-01-01

    Retinitis Pigmentosa is a common form of hereditary retinal degeneration constituting the largest Mendelian genetic cause of blindness in the developed world. It has been widely suggested that oxidative stress possibly contributes to its pathogenesis. We measured the levels of total antioxidant capacity, free nitrotyrosine, thiobarbituric acid reactive substances (TBARS) formation, extracellular superoxide dismutase (SOD3) activity, protein, metabolites of the nitric oxide/cyclic GMP pathway, heme oxygenase-I and inducible nitric oxide synthase expression in aqueous humor or/and peripheral blood from fifty-six patients with retinitis pigmentosa and sixty subjects without systemic or ocular oxidative stress-related disease. Multivariate analysis of covariance revealed that retinitis pigmentosa alters ocular antioxidant defence machinery and the redox status in blood. Patients with retinitis pigmentosa present low total antioxidant capacity including reduced SOD3 activity and protein concentration in aqueous humor. Patients also show reduced SOD3 activity, increased TBARS formation and upregulation of the nitric oxide/cyclic GMP pathway in peripheral blood. Together these findings confirmed the hypothesis that patients with retinitis pigmentosa present reduced ocular antioxidant status. Moreover, these patients show changes in some oxidative-nitrosative markers in the peripheral blood. Further studies are needed to clarify the relationship between these peripheral markers and retinitis pigmentosa. PMID:24069283

  11. Raman spectroscopic analysis of the increase of the carotenoid antioxidant concentration in human skin after a 1-week diet with ecological eggs

    Science.gov (United States)

    Hesterberg, Karoline; Lademann, Jürgen; Patzelt, Alexa; Sterry, Wolfram; Darvin, Maxim E.

    2009-03-01

    Skin aging is mainly caused by the destructive action of free radicals, produced by the UV light of the sun. The human skin has developed a protection system against these highly reactive molecules in the form of the antioxidative potential. Carotenoids are one of the main components of the antioxidants of the human skin. From former studies, it is known that skin aging is reduced in individuals with high levels of carotenoids. Because most of the antioxidants cannot be produced by the human organism, they must be up taken by nutrition. Using noninvasive Raman spectroscopic measurements it is demonstrated that not only fruits and vegetables but also eggs contain high concentrations of antioxidants including carotenoids, which are even doubled in the case of ecological eggs. After a 1-week diet with ecological eggs performed by six volunteers, it is found that the concentration of the carotenoids in the skin of the volunteers increased by approx. 20%. Our study does not intend to recommend exorbitant egg consumption, as eggs also contain harmful cholesterol. But in the case of egg consumption, ecological eggs from hens kept on pasture should be preferred to also receive a benefit for the skin.

  12. Plasma antioxidants from chocolate

    OpenAIRE

    Serafini, M.; Bugianesi, R.; Maiani, G.; Valtuena, S.; De Santis, S.; Crozier, A.

    2003-01-01

    There is some speculation that dietary flavonoids from chocolate, in particular (-)epicatechin, may promote cardiovascular health as a result of direct antioxidant effects or through antithrombotic mechanisms. Here we show that consumption of plain, dark chocolate results in an increase in both the total antioxidant capacity and the (-)epicatechin content of blood plasma, but that these effects are markedly reduced when the chocolate is consumed with milk or if milk is incorporated as milk ch...

  13. Real-Time H2 O2 Measurements in Bone Marrow Mesenchymal Stem Cells (MSCs) Show Increased Antioxidant Capacity in Cells From Osteoporotic Women.

    Science.gov (United States)

    Román, Flavia; Urra, Carla; Porras, Omar; Pino, Ana María; Rosen, Clifford J; Rodríguez, Juan Pablo

    2017-03-01

    Oxidative stress (OS) derived from an increase in intracellular reactive oxygen species (ROS) is a major determinant of aging and lifespan. It has also been associated with several age-related disorders, like postmenopausal osteoporosis of Mesenchymal stem cells (MSCs). MSCs are the common precursors for osteoblasts and adipocytes; appropriate commitment and differentiation of MSCs into a specific phenotype is modulated, among other factors, by ROS balance. MSCs have shown more resistance to ROS than differentiated cells, and their redox status depends on complex and abundant anti-oxidant mechanisms. The purpose of this work was to analyze in real time, H 2 O 2 signaling in individual h-MSCs, and to compare the kinetic parameters of H 2 O 2 management by cells derived from both control (c-) and osteoporotic (o-) women. For these purposes, cells were infected with a genetically encoded fluorescent biosensor named HyPer, which is specific for detecting H 2 O 2 inside living cells. Subsequently, cells were sequentially challenged with 50 and 500 μM H 2 O 2 pulses, and the cellular response was recorded in real time. The results demonstrated adequate expression of the biosensor allowing registering fluorescence from HyPer at a single cell level. Comparison of the response of c- and o-MSCs to the oxidant challenges demonstrated improved antioxidant activity in o-MSCs. This was further corroborated by measuring the relative expression of mRNAs for catalase, superoxide dismutase-1, thioredoxine, and peroxiredoxine, as well as by cell-surviving capacity under short-term H 2 O 2 treatment. We conclude that functional differences exist between healthy and osteoporotic human MSCs. The mechanism for these differences requires further study. J. Cell. Biochem. 118: 585-593, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway

    NARCIS (Netherlands)

    Verhoeyen, M.E.; Bovy, A.; Collins, G.; Muir, S.; Vos Robinson, S.; Vos, de C.H.R.; Colliver, S.

    2002-01-01

    Flavonoids are a diverse group of phenolic secondary metabolites that occur naturally in plants and therefore form an integral component of the human diet. Many of the compounds belonging to this group are potent antioxidants in vitro and epidemiological studies suggest a direct correlation between

  15. Transformation of Lactuca sativa L. with rol C gene results in increased antioxidant potential and enhanced analgesic, anti-inflammatory and antidepressant activities in vivo.

    Science.gov (United States)

    Ismail, Hammad; Dilshad, Erum; Waheed, Mohammad Tahir; Sajid, Moniba; Kayani, Waqas Khan; Mirza, Bushra

    2016-12-01

    Lettuce is an important edible crop which possesses various medicinal properties. In this study Lactuca sativa L. (cv Grand Rapids) was transformed by Agrobacterium-mediated transformation with rol C gene. Transgene integration and expression was confirmed through PCR and semiquantitative RT-PCR. The transformed extracts were evaluated for their in vitro antioxidant and in vivo analgesic, anti-inflammatory and antidepressant activities in rats. The transformed plants showed 53-98 % increase in total phenolic and 45-58 % increase in total flavonoid contents compared with untransformed plants. Results of total reducing power and total antioxidant capacity exhibited 90-118 and 61-75 % increase in transformed plants, respectively. In contrast to control, DPPH, lipid peroxidation and DNA protection assay showed up to 37, 20 and 50 % enhancement in transformed plants, respectively. The extracts showed similar but significant enhancement behavior in hot plate analgesic and carrageenan-induced hind paw edema test. The transformed extracts showed 72.1 and 78.5 % increase for analgesic and anti-inflammatory activities, respectively. The transformants of rol C gene exhibited prominent antidepressant activity with 64-73 % increase compared with untransformed plants. In conclusion, the present work suggests that transformation with rol C gene can be used to generate lettuce with enhanced medicinally important properties, such as antioxidant, analgesic, anti-inflammatory and antidepressant potential.

  16. Enhanced antioxidant activity of polyolefin films integrated with grape tannins.

    Science.gov (United States)

    Olejar, Kenneth J; Ray, Sudip; Kilmartin, Paul A

    2016-06-01

    A natural antioxidant derived from an agro-waste of the wine industry, grape tannin, was incorporated by melt blending into three different polyolefins (high-density polyethylene, linear low-density polyethylene and polypropylene) to introduce antioxidant functionality. Significant antioxidant activity was observed at 1% tannin inclusion in all polymer blends. The antioxidant activity was observed to increase steadily with a greater concentration of grape tannins, the highest increases being seen with polypropylene. The mechanical and thermal properties of the polymer films following antioxidant incorporation were minimally altered with up to 3% grape tannins. All of the polyolefin-grape tannin films successfully passed the leachability test following USP661 standard protocol. Superior antioxidant activity was established in polyolefin thin films by utilization of a bulk grape extract obtained from winery waste. Significant increases in antioxidant activity were seen with 1% extract inclusion. This not only demonstrates the potential for food packaging applications of the polyolefin blends, but also valorizes the agro-waste. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.

    Science.gov (United States)

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-07

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway.

  18. Genetically obese (ob/ob) mice are resistant to the lethal effects of thioacetamide hepatotoxicity

    International Nuclear Information System (INIS)

    Won, Young-Suk; Song, Ji-Won; Lim, Jong-Hwan; Lee, Mee-Young; Moon, Og-Sung; Kim, Hyoung-Chin; Son, Hwa-Young; Kwon, Hyo-Jung

    2016-01-01

    Obesity increases the risk of chronic liver diseases, including viral hepatitis, alcohol-induced liver disease, and non-alcoholic steatohepatitis. In this study, we investigated the effects of obesity in acute hepatic failure using a murine model of thioacetamide (TA)-induced liver injury. Genetically obese ob/ob mice, together with non-obese ob/+ littermates, were subjected to a single intraperitoneal injection of TA, and examined for signs of hepatic injury. ob/ob mice showed a significantly higher survival rate, lower levels of serum alanine aminotransferase and aspartate aminotransferase, and less hepatic necrosis and apoptosis, compared with ob/+ mice. In addition, ob/ob mice exhibited significantly lower levels of malondialdehyde and significantly higher levels of glutathione and antioxidant enzyme activities compared with their ob/+ counterparts. Bioactivation analyses revealed reduced plasma clearance of TA and covalent binding of [ 14 C]TA to liver macromolecules in ob/ob mice. Together, these data demonstrate that genetically obese mice are resistant to TA-induced acute liver injury through diminished bioactivation of TA and antioxidant effects. - Highlights: • ob/ob mice are resistant to lethal doses of thioacetamide, compared to ob/+ mice. • ob/ob mice show reduced oxidative stress and enhanced antioxidant enzyme activity. • ob/ob mice exhibit diminished bioactivation of thioacetamide.

  19. Genetically obese (ob/ob) mice are resistant to the lethal effects of thioacetamide hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Won, Young-Suk [Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk (Korea, Republic of); Song, Ji-Won [Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon (Korea, Republic of); Lim, Jong-Hwan [Huons Research Center, Gyonggido (Korea, Republic of); Lee, Mee-Young [Herbal Medicine Formulation Research Group, Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of); Moon, Og-Sung; Kim, Hyoung-Chin [Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk (Korea, Republic of); Son, Hwa-Young [Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon (Korea, Republic of); Kwon, Hyo-Jung, E-mail: hyojung@cnu.ac.kr [Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon (Korea, Republic of)

    2016-01-15

    Obesity increases the risk of chronic liver diseases, including viral hepatitis, alcohol-induced liver disease, and non-alcoholic steatohepatitis. In this study, we investigated the effects of obesity in acute hepatic failure using a murine model of thioacetamide (TA)-induced liver injury. Genetically obese ob/ob mice, together with non-obese ob/+ littermates, were subjected to a single intraperitoneal injection of TA, and examined for signs of hepatic injury. ob/ob mice showed a significantly higher survival rate, lower levels of serum alanine aminotransferase and aspartate aminotransferase, and less hepatic necrosis and apoptosis, compared with ob/+ mice. In addition, ob/ob mice exhibited significantly lower levels of malondialdehyde and significantly higher levels of glutathione and antioxidant enzyme activities compared with their ob/+ counterparts. Bioactivation analyses revealed reduced plasma clearance of TA and covalent binding of [{sup 14}C]TA to liver macromolecules in ob/ob mice. Together, these data demonstrate that genetically obese mice are resistant to TA-induced acute liver injury through diminished bioactivation of TA and antioxidant effects. - Highlights: • ob/ob mice are resistant to lethal doses of thioacetamide, compared to ob/+ mice. • ob/ob mice show reduced oxidative stress and enhanced antioxidant enzyme activity. • ob/ob mice exhibit diminished bioactivation of thioacetamide.

  20. Total antioxidant content of alternatives to refined sugar.

    Science.gov (United States)

    Phillips, Katherine M; Carlsen, Monica H; Blomhoff, Rune

    2009-01-01

    Oxidative damage is implicated in the etiology of cancer, cardiovascular disease, and other degenerative disorders. Recent nutritional research has focused on the antioxidant potential of foods, while current dietary recommendations are to increase the intake of antioxidant-rich foods rather than supplement specific nutrients. Many alternatives to refined sugar are available, including raw cane sugar, plant saps/syrups (eg, maple syrup, agave nectar), molasses, honey, and fruit sugars (eg, date sugar). Unrefined sweeteners were hypothesized to contain higher levels of antioxidants, similar to the contrast between whole and refined grain products. To compare the total antioxidant content of natural sweeteners as alternatives to refined sugar. The ferric-reducing ability of plasma (FRAP) assay was used to estimate total antioxidant capacity. Major brands of 12 types of sweeteners as well as refined white sugar and corn syrup were sampled from retail outlets in the United States. Substantial differences in total antioxidant content of different sweeteners were found. Refined sugar, corn syrup, and agave nectar contained minimal antioxidant activity (sugar had a higher FRAP (0.1 mmol/100 g). Dark and blackstrap molasses had the highest FRAP (4.6 to 4.9 mmol/100 g), while maple syrup, brown sugar, and honey showed intermediate antioxidant capacity (0.2 to 0.7 mmol FRAP/100 g). Based on an average intake of 130 g/day refined sugars and the antioxidant activity measured in typical diets, substituting alternative sweeteners could increase antioxidant intake an average of 2.6 mmol/day, similar to the amount found in a serving of berries or nuts. Many readily available alternatives to refined sugar offer the potential benefit of antioxidant activity.

  1. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients.

    Science.gov (United States)

    Andre, Christelle M; Ghislain, Marc; Bertin, Pierre; Oufir, Mouhssin; Herrera, María del Rosario; Hoffmann, Lucien; Hausman, Jean-François; Larondelle, Yvan; Evers, Danièle

    2007-01-24

    Potato tubers were evaluated as a source of antioxidants and minerals for the human diet. A genetically diverse sample of Solanum tuberosum L. cultivars native to the Andes of South America was obtained from a collection of nearly 1000 genotypes using microsatellite markers. This size-manageable collection of 74 landraces, representing at best the genetic diversity among potato germplasm, was analyzed for iron, zinc, calcium, total phenolic, total carotenoid, and total vitamin C contents. The hydrophilic antioxidant capacity of each genotype was also measured using the oxygen radical absorbance capacity (ORAC) assay. The iron content ranged from 29.87 to 157.96 microg g-1 of dry weight (DW), the zinc content from 12.6 to 28.83 microg g-1 of DW, and the calcium content from 271.09 to 1092.93 microg g-1 of DW. Total phenolic content varied between 1.12 and 12.37 mg of gallic acid equiv g-1 of DW, total carotenoid content between 2.83 and 36.21 microg g-1 of DW, and total vitamin C content between 217.70 and 689.47 microg g-1 of DW. The range of hydrophilic ORAC values was 28.25-250.67 micromol of Trolox equiv g-1 of DW. The hydrophilic antioxidant capacity and the total phenolic content were highly and positively correlated (r = 0.91). A strong relationship between iron and calcium contents was also found (r = 0.67). Principal component analysis on the studied nutritional contents of the core collection revealed that most potato genotypes were balanced in terms of antioxidant and mineral contents, but some of them could be distinguished by their high level in distinct micronutrients. Correlations between the micronutrient contents observed in the sample and the genetic distances assessed by microsatellites were weakly significant. However, this study demonstrated the wide variability of health-promoting micronutrient levels within the native potato germplasm as well as the significant contribution that distinct potato tubers may impart to the intake in dietary

  2. The Implications of Oxidative Stress and Antioxidant Therapies in Inflammatory Bowel Disease: Clinical Aspects and Animal Models

    Science.gov (United States)

    Balmus, Ioana Miruna; Ciobica, Alin; Trifan, Anca; Stanciu, Carol

    2016-01-01

    Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder characterized by alternating phases of clinical relapse and remission. The etiology of IBD remains largely unknown, although a combination of patient's immune response, genetics, microbiome, and environment plays an important role in disturbing intestinal homeostasis, leading to development and perpetuation of the inflammatory cascade in IBD. As chronic intestinal inflammation is associated with the formation of reactive oxygen and reactive nitrogen species (ROS and RNS), oxidative and nitrosative stress has been proposed as one of the major contributing factor in the IBD development. Substantial evidence suggests that IBD is associated with an imbalance between increased ROS and decreased antioxidant activity, which may explain, at least in part, many of the clinical pathophysiological features of both CD and UC patients. Hereby, we review the presently known oxidant and antioxidant mechanisms involved in IBD-specific events, the animal models used to determine these specific features, and also the antioxidant therapies proposed in IBD patients. PMID:26831601

  3. Antioxidant activity in cooked and simulated digested eggs.

    Science.gov (United States)

    Remanan, M K; Wu, J

    2014-07-25

    The avian egg is an excellent source of nutrients consisting of components with beneficial properties but there is limited knowledge on the effect of cooking methods and gastrointestinal digestion on the antioxidant activity of eggs. The present study was focused on the effect of cooking and simulated gastrointestinal digestion on antioxidant activity of eggs using ORAC, ABTS and DPPH assays. The results suggest that fresh egg yolk has higher antioxidant activity than fresh egg white and whole eggs. Cooking reduced whereas simulated gastrointestinal digestion increased the antioxidant activity of eggs. Boiled egg white hydrolysate showed the highest antioxidant activity; a total of 63 peptides were identified, indicative of the formation of novel antioxidant peptides upon simulated gastrointestinal digestion. This study suggests the potential role of eggs as a dietary source of antioxidants.

  4. Warburg effect increases steady-state ROS condition in cancer cells through decreasing their antioxidant capacities (anticancer effects of 3-bromopyruvate through antagonizing Warburg effect).

    Science.gov (United States)

    El Sayed, Salah Mohamed; Mahmoud, Ahmed Alamir; El Sawy, Samer Ahmed; Abdelaal, Esam Abdelrahim; Fouad, Amira Murad; Yousif, Reda Salah; Hashim, Marwa Shaban; Hemdan, Shima Badawy; Kadry, Zainab Mahmoud; Abdelmoaty, Mohamed Ahmed; Gabr, Adel Gomaa; Omran, Faten M; Nabo, Manal Mohamed Helmy; Ahmed, Nagwa Sayed

    2013-11-01

    Cancer cells undergo an increased steady-state ROS condition compared to normal cells. Among the major metabolic differences between cancer cells and normal cells is the dependence of cancer cells on glycolysis as a major source of energy even in the presence of oxygen (Warburg effect). In Warburg effect, glucose is catabolized to lactate that is extruded through monocarboxylate transporters to the microenvironment of cancer cells, while in normal cells, glucose is metabolized into pyruvate that is not extruded. Pyruvate is a potent antioxidant, while lactate has no antioxidant effect. Pyruvate in normal cells may be further metabolized to acetyl CoA and then through Krebs cycle with production of antioxidant intermediates e.g. citrate, malate and oxaloacetate together with the reducing equivalents (NADH.H+). Through activity of mitochondrial transhydrogenase, NADH.H+ replenishes NADPH.H+, coenzyme of glutathione reductase which replenishes reduced form of glutathione (potent antioxidant). This enhances antioxidant capacities of normal cells, while cancer cells exhibiting Warburg effect may be deprived of all that antioxidant capabilities due to loss of extruded lactate (substrate for Krebs cycle). Although intrinsic oxidative stress in cancer cells is high, it may be prevented from reaching progressively increasing levels that are cytotoxic to cancer cells. This may be due to some antioxidant effects exerted by hexokinase II (HK II) and NADPH.H+ produced through HMP shunt. Glycolytic phenotype in cancer cells maintains a high non-toxic oxidative stress in cancer cells and may be responsible for their malignant behavior. Through HK II, glycolysis fuels the energetic arm of malignancy, the mitotic arm of malignancy (DNA synthesis through HMP shunt pathway) and the metastatic arm of malignancy (hyaluronan synthesis through uronic acid pathway) in addition to the role of phosphohexose isomerase (autocrine motility factor). All those critical three arms start with the

  5. Genetically low vitamin D concentrations and increased mortality

    DEFF Research Database (Denmark)

    Afzal, Shoaib; Brøndum-Jacobsen, Peter; Bojesen, Stig E

    2014-01-01

    adjusted hazard ratios for a 20 nmol/L lower plasma 25-hydroxyvitamin D concentration were 1.19 (95% confidence interval 1.14 to 1.25) for all cause mortality, 1.18 (1.09 to 1.28) for cardiovascular mortality, 1.12 (1.03 to 1.22) for cancer mortality, and 1.27 (1.15 to 1.40) for other mortality. Each...... increase in DHCR7/CYP2R1 allele score was associated with a 1.9 nmol/L lower plasma 25-hydroxyvitamin D concentration and with increased all cause, cancer, and other mortality but not with cardiovascular mortality. The odds ratio for a genetically determined 20 nmol/L lower plasma 25-hydroxyvitamin D...

  6. Antioxidant capacity and physical exercise

    Directory of Open Access Journals (Sweden)

    A Marciniak

    2009-09-01

    Full Text Available The aim of this article is a presentation of current knowledge regarding the changes of plasma antioxidant capacity observed in response to physical exercise. Human body created the enzymatic and non-enzymatic systems, which play a protective role in the harmful impact of free radicals. Those two systems constitute what is known as the plasma total antioxidant capacity. The amount of reactive oxygen species (ROS and reactive nitrogen species (NOS in combination with oxidation processes increases in some tissues during physiological response to physical exercise. These changes are observed after single bout of exercise as well as after regular training. The response of human body to physical exercise can be analysed using various models of exercise test. Application of repeated type of exhaustion allows for characterizing the ability of human body to adjust to the increased energy loss and increased oxygen consumption. This article presents the characteristics of components of plasma antioxidant capacity, the mechanisms of free radicals production and their role in human body. It discusses also the currently used methods of detecting changes in total antioxidant capacity and its individual elements in response to single bout of exercise and regular training. It presents the review of literature about research performed in groups of both regularly training and low exercise activity individuals as well as in group of healthy subjects and patients with circulation diseases.

  7. Antioxidant capacity of anthocyanins from acerola genotypes

    Directory of Open Access Journals (Sweden)

    Vera Lúcia Arroxelas Galvão De Lima

    2011-03-01

    Full Text Available Anthocyanins from 12 acerola genotypes cultivated at the Active Germplasm Bank at Federal Rural University of Pernambuco were isolated for antioxidant potential evaluation. The antioxidant activity and radical scavenging capacity of the anthocyanin isolates were measured according to the β-carotene bleaching method and 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging assay, respectively. The antioxidant activity varied from 25.58 to 47.04% at 0.2 mg.mL-1, and it was measured using the β-carotene bleaching method. The free radical scavenging capacity increased according to the increase in concentration and reaction time by the DPPH assay. At 16.7 μg.mL-1 concentration and after 5 minutes and 2 hours reaction time, the percentage of scavenged radicals varied from 36.97 to 63.92% and 73.27 to 94.54%, respectively. Therefore, the antioxidant capacity of acerola anthocyanins varied amongst acerola genotypes and methods used. The anthocyanins present in this fruit may supply substantial dietary source of antioxidant which may promote health and produce disease prevention effects.

  8. miR-122 promotes hepatic antioxidant defense of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium by directly targeting a metallothionein gene

    International Nuclear Information System (INIS)

    Qiang, Jun; Tao, Yi-Fan; He, Jie; Xu, Pao; Bao, Jin-Wen; Sun, Yi-Lan

    2017-01-01

    Highlights: • MiR-122 regulated tilapia MT by directly targeting MT 3′UTR. • MiR-122 level was negatively related to MT level under Cd stress. • MiR-122 silencing caused up-regulation of MT expression. • MiR-122 loss relieved liver stress and stimulated antioxidant enzymes. - Abastract: MicroRNAs (miRNAs) are small, non-coding RNAs that regulate target gene expression by binding to the 3′untranslated region (3′UTR) of the target mRNA. MiRNAs regulate a large variety of genes, including those involved in liver homeostasis and energy metabolism. Down-regulated levels of hepatic miR-122 were found in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium (Cd) stress. Here, we report for the first time that reduction of miR-122 post-transcriptionally increased metallothionein (MT) mRNA levels by binding to its 3′UTR, as shown by a 3′ UTR luciferase reporter assay. The expression levels of miR-122 were negatively related to MT levels in GIFT under Cd stress. We performed in vivo functional analysis of miR-122 by injecting the fish with a miR-122 antagomir. Inhibition of miR-122 levels in GIFT liver caused a significant increase in MT expression, affected white blood cell and red blood cell counts, and serum alanine and aspartate aminotransferase activities, and glucose levels, all of which may help to relieve Cd stress-related liver stress. miR-122 silencing modulated oxidative stress and stimulated the activity of antioxidant enzymes. Our findings indicate that miR-122 regulated MT levels by binding to the 3′UTR of MT mRNA, and this interaction affected Cd stress induction and the resistance response in GIFT. We concluded that miR-122 plays an important role in regulating the stress response in GIFT liver. Our findings may contribute to understanding the mechanisms of miRNA-mediated gene regulation in tilapia in response to environmental stresses.

  9. miR-122 promotes hepatic antioxidant defense of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium by directly targeting a metallothionein gene

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Jun, E-mail: Qiangj@ffrc.cn [Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu (China); Tao, Yi-Fan [Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081 (China); He, Jie [Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu (China); Xu, Pao, E-mail: Xup@ffrc.cn [Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu (China); Bao, Jin-Wen [Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081 (China); Sun, Yi-Lan [Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu (China)

    2017-01-15

    Highlights: • MiR-122 regulated tilapia MT by directly targeting MT 3′UTR. • MiR-122 level was negatively related to MT level under Cd stress. • MiR-122 silencing caused up-regulation of MT expression. • MiR-122 loss relieved liver stress and stimulated antioxidant enzymes. - Abastract: MicroRNAs (miRNAs) are small, non-coding RNAs that regulate target gene expression by binding to the 3′untranslated region (3′UTR) of the target mRNA. MiRNAs regulate a large variety of genes, including those involved in liver homeostasis and energy metabolism. Down-regulated levels of hepatic miR-122 were found in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium (Cd) stress. Here, we report for the first time that reduction of miR-122 post-transcriptionally increased metallothionein (MT) mRNA levels by binding to its 3′UTR, as shown by a 3′ UTR luciferase reporter assay. The expression levels of miR-122 were negatively related to MT levels in GIFT under Cd stress. We performed in vivo functional analysis of miR-122 by injecting the fish with a miR-122 antagomir. Inhibition of miR-122 levels in GIFT liver caused a significant increase in MT expression, affected white blood cell and red blood cell counts, and serum alanine and aspartate aminotransferase activities, and glucose levels, all of which may help to relieve Cd stress-related liver stress. miR-122 silencing modulated oxidative stress and stimulated the activity of antioxidant enzymes. Our findings indicate that miR-122 regulated MT levels by binding to the 3′UTR of MT mRNA, and this interaction affected Cd stress induction and the resistance response in GIFT. We concluded that miR-122 plays an important role in regulating the stress response in GIFT liver. Our findings may contribute to understanding the mechanisms of miRNA-mediated gene regulation in tilapia in response to environmental stresses.

  10. Novel Trolox derivatives as antioxidant: A DFT investigation

    Directory of Open Access Journals (Sweden)

    Farmanzadeh Dvood

    2016-01-01

    Full Text Available In this paper the antioxidant activity of Trolox derivatives were investigated by density function theory and polarization continuum model as solvent model in order to propose the novel derivatives with higher antioxidant activity from a theoretical viewpoint. The effects of various ortho and meta substituents on the reaction enthalpies of antioxidant mechanisms of Trolox were investigated. Also the effect of reducing the number of atoms in the heterocyclic ring and effect of replacing the oxygen heteroatom of Trolox with other heteroatoms on the antioxidant activity of Trolox were evaluated. Results show that the NH2, OH and NHMe substituents in meta and ortho positions decrease the BDE and IP values and also increase the antioxidant activity of Trolox from the theoretical viewpoint. The derivatives e, c and d with NH, S and Se instead of O have higher antioxidant activity from the theoretical viewpoint. Obtained results show that reducing the number of atom in the heterocyclic ring (derivatives a and b decrease the BDE and IP values and also increase the antioxidant activity of Trolox from the theoretical viewpoint. The linear dependencies between BDE of OH bond and IP values of studied Trolox derivatives and corresponding EHOMO and R(O-H values can be useful to propose novel derivatives with higher antioxidant activity from the theoretical viewpoint.

  11. ANTIOXIDANT POTENCY OF WATER KEFIR

    Directory of Open Access Journals (Sweden)

    Muneer Alsayadi M.S.

    2013-06-01

    Full Text Available Reactive oxygen species (ROS have strong relationship with several diseases. Many fermented foods were reported to be important sources for antioxidant compounds. Antioxidant activity of water kefir never reported in the scientific literature. The objective of this study was to detect and investigate the antioxidant potency of water kefir. Water kefir was prepared by fermentation of sugar solution with kefir grains for 24h. Antioxidant activity of fresh water kefir drink and its extract with (0.125–5 mg/ml was evaluated using 2,2,-diphenyl-1-pricrylhydrozyl (DPPH scavenging method, and inhibition of ascorbate autoxidation and the reducing power of water kefir were determined, Butylated hydroxyanisole (BHA and ascorbic acid were used for comparison. Water kefir demonstrated great ability to DPPH scavenging ranged (9.88-63.17%. And inhibit ascorbate oxidation by (6.08-25.57% increased in consequent with concentration raising. These results prime to conclude that water kefir could be promisor source of natural antioxidants with good potency in health developing.

  12. Antioxidants and the Comet assay.

    Science.gov (United States)

    Cemeli, Eduardo; Baumgartner, Adolf; Anderson, Diana

    2009-01-01

    It is widely accepted that antioxidants, either endogenous or from the diet, play a key role in preserving health. They are able to quench radical species generated in situations of oxidative stress, either triggered by pathologies or xenobiotics, and they protect the integrity of DNA from genotoxicants. Nevertheless, there are still many compounds with unclear or unidentified prooxidant/antioxidant activities. This is of concern since there is an increase in the number of compounds synthesized or extracted from vegetables to which humans might be exposed. Despite the well-established protective effects of fruit and vegetables, the antioxidant(s) responsible have not all been clearly identified. There might also be alternative mechanisms contributing to the protective effects for which a comprehensive description is lacking. In the last two decades, the Comet assay has been extensively used for the investigation of the effects of antioxidants and many reports can be found in the literature. The Comet assay, a relatively fast, simple, and sensitive technique for the analysis of DNA damage in all cell types, has been applied for the screening of chemicals, biomonitoring and intervention studies. In the present review, several of the most well-known antioxidants are considered. These include: catalase, superoxide dismutase, glutathione peroxidase, selenium, iron chelators, melatonin, melanin, vitamins (A, B, C and E), carotenes, flavonoids, isoflavones, tea polyphenols, wine polyphenols and synthetic antioxidants. Investigations showing beneficial as well as non-beneficial properties of the antioxidants selected, either at the in vitro, ex vivo or in vivo level are discussed.

  13. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses

    Science.gov (United States)

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2015-01-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8 J/cm2) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  14. Antioxidant status of neonates exposed in utero to tobacco smoke.

    Science.gov (United States)

    Fayol, L; Gulian, J M; Dalmasso, C; Calaf, R; Simeoni, U; Millet, V

    2005-01-01

    To investigate the influence of maternal smoke exposure on neonatal and maternal antioxidant status, 39 mothers who were active smokers, 14 mothers exposed to environmental tobacco smoke (ETS), 17 controls, and their newborns were included in a prospective, controlled study. Plasma total antioxidant capacity, measured as total radical-trapping antioxidant parameter (TRAP) and ferric reducing antioxidant power (FRAP), and concentrations of specific antioxidants were measured in cord and in maternal blood. A similar, significant increase in ceruloplasmin concentration was observed in neonates born to actively smoking mothers and in those born to ETS exposed mothers. Uric acid and TRAP concentrations were significantly increased in ETS-exposed newborns and their mothers, compared to newborns and mothers from the active smoking and no-exposure groups with a trend towards increased uric acid, TRAP and FRAP concentrations being observed in the active smokers group. Neonatal and maternal antioxidant concentrations correlated significantly, except for ceruloplasmin. Cord blood vitamin A, E and C concentrations were unaffected by smoke exposure. These results show that maternal active smoking as well as ETS exposure significantly affect neonatal and maternal antioxidant status. Copyright (c) 2005 S. Karger AG, Basel

  15. Effect of antioxidants on aging of nuclear plant cable insulation

    International Nuclear Information System (INIS)

    Reynolds, A.B.; Ray, J.W.; Wlodkowski, P.A.

    1991-01-01

    The effects of various antioxidants and antioxidant concentrations on the radiation and thermal stability of EPDM and XLPE polymers used for insulation of electric cable in nuclear power plants were measured. The objective was to determine if particular antioxidants could be identified as being especially effective for stabilization against radiation aging and combined thermal and radiation aging. Elongation to rupture was used as the measure of stability. Materials were irradiated to doses up to 2 MGy (200 Mrad) at a dose rate of 200 to 300 Gy/h in the Cobalt-60 Gamma Irradiation Facility at the University of Virginia. All of the antioxidants tested, which were known to provide excellent thermal stability, also provided good stability for radiation aging and combined thermal/radiation aging, although small differences between antioxidants were noted. No antioxidant or antioxidant combination was identified as being especially outstanding. Stabilization against radiation increased with increasing antioxidant concentration, but this trend was not observed for thermal aging. Damage from thermal and radiation aging was superposable. 9 refs., 16 figs., 12 tabs

  16. The potential use of genetics to increase the effectiveness of treatment programs for criminal offenders.

    Science.gov (United States)

    Beaver, Kevin M; Jackson, Dylan B; Flesher, Dillon

    2014-01-01

    During the past couple of decades, the amount of research examining the genetic underpinnings to antisocial behaviors, including crime, has exploded. Findings from this body of work have generated a great deal of information linking genetics to criminal involvement. As a partial result, there is now a considerable amount of interest in how these findings should be integrated into the criminal justice system. In the current paper, we outline the potential ways that genetic information can be used to increase the effectiveness of treatment programs designed to reduce recidivism among offenders. We conclude by drawing attention to how genetic information can be used by rehabilitation programs to increase program effectiveness, reduce offender recidivism rates, and enhance public safety.

  17. Antioxidant Protection in Blood against Ionising Radiation

    International Nuclear Information System (INIS)

    Bognar, G.; Meszaros, G.; Koteles, G. J.

    2001-01-01

    Full text: The quantities of the antioxidants in the human blood are important indicators of health status. The routine determinations of activities/capacities of antioxidant compounds would be of great importance in assessing individual sensitivities against oxidative effects. We have investigated the sensitivities of those antioxidant elements against various doses of ionising radiation tested by the RANDOX assays. Our results show dose-dependent decreases of antioxidant activities caused by the different doses. The total antioxidant status value linearly decreased up to 1 Gy, but further increase of dose (2 Gy) did not influence the respective values although the test system still indicated their presence. It means that the human blood retains 60-70% of its total antioxidant capacity. Radiation induced alterations of the antioxidant enzymes: glutathione peroxidase and superoxide dismutase have been also investigated. The activities of glutathione peroxidase and superoxide dismutase decreased linearly upon the effects of various doses of ionising radiation till 1 Gy. Between 1 and 2 Gy only further mild decreases could be detected. In this case the human blood retained 40-60% of these two antioxidant enzymes. These observations suggest either the limited response of antioxidant system against ionising radiation, or the existence of protection system of various reactabilities. (author)

  18. Oxidative stress and antioxidant defenses in pregnant women.

    Science.gov (United States)

    Leal, Claudio A M; Schetinger, Maria R C; Leal, Daniela B R; Morsch, Vera M; da Silva, Aleksandro Schafer; Rezer, João F P; de Bairros, André Valle; Jaques, Jeandre Augusto Dos Santos

    2011-01-01

    Oxidative stress (OS) is defined as an imbalance in the production of reactive oxygen species and the capacity of antioxidant defenses. The objective of this work was to investigate OS and antioxidant capacity in pregnant women. Parameters of the oxidative status and antioxidant capacity in serum and whole blood were evaluated in thirty-nine women with normal pregnancy. The assessment of antioxidants indicated an increase in superoxide dismutase and catalase activities (P0.05) in protein carbonylation. This study demonstrates that there is a change in the pro-oxidant and antioxidant defenses associated with body and circulation changes that are inherent to the pregnancy process.

  19. Evaluation of the antioxidant properties of N-acetylcysteine in human platelets: prerequisite for bioconversion to glutathione for antioxidant and antiplatelet activity.

    Science.gov (United States)

    Gibson, Kyle R; Neilson, Ilene L; Barrett, Fiona; Winterburn, Tim J; Sharma, Sushma; MacRury, Sandra M; Megson, Ian L

    2009-10-01

    N-Acetylcysteine (NAC) is a frequently used "antioxidant" in vitro, but the concentrations applied rarely correlate with those encountered with oral dosing in vivo. Here, we investigated the in vitro antioxidant and antiplatelet properties of NAC at concentrations (10-100 microM) that are achievable in plasma with tolerable oral dosing. The impact of NAC pretreatment (2 hours) on aggregation of platelets from healthy volunteers in response to thrombin and adenosine diphosphate and on platelet-derived nitric oxide (NO) was examined. NAC was found to be a weak reducing agent and a poor antioxidant compared with glutathione (reduced form) (GSH). However, platelets treated with NAC showed enhanced antioxidant activity and depression of reactive oxygen species generation associated with increases in intraplatelet GSH levels. An approximately 2-fold increase in NO synthase-derived nitrite was observed with 10 microM NAC treatment, but the effect was not concentration dependent. Finally, NAC significantly reduced both thrombin-induced and adenosine diphosphate-induced platelet aggregation. NAC should be considered a weak antioxidant that requires prior conversion to GSH to convey antioxidant and antithrombotic benefit at therapeutically relevant concentrations. Our results suggest that NAC might be an effective antiplatelet agent in conditions where increased oxidative stress contributes to heightened risk of thrombosis but only if the intraplatelet machinery to convert it to GSH is functional.

  20. Antioxidants for female subfertility.

    Science.gov (United States)

    Showell, Marian G; Mackenzie-Proctor, Rebecca; Jordan, Vanessa; Hart, Roger J

    2017-07-28

    outcomes of live birth, clinical pregnancy and adverse events. We assessed the overall quality of the evidence by applying GRADE criteria. We included 50 trials involving 6510 women. Investigators compared oral antioxidants, including combinations of antioxidants, N-acetyl-cysteine, melatonin, L-arginine, myo-inositol, D-chiro-inositol, carnitine, selenium, vitamin E, vitamin B complex, vitamin C, vitamin D+calcium, CoQ10, pentoxifylline and omega-3-polyunsaturated fatty acids versus placebo, no treatment/standard treatment or another antioxidant.Very low-quality evidence suggests that antioxidants may be associated with an increased live birth rate compared with placebo or no treatment/standard treatment (OR 2.13, 95% CI 1.45 to 3.12, P > 0.001, 8 RCTs, 651 women, I 2 = 47%). This suggests that among subfertile women with an expected live birth rate of 20%, the rate among women using antioxidants would be between 26% and 43%.Very low-quality evidence suggests that antioxidants may be associated with an increased clinical pregnancy rate compared with placebo or no treatment/standard treatment (OR 1.52, 95% CI 1.31 to 1.76, P antioxidants would be between 27% and 33%. Heterogeneity was moderately high.There was insufficient evidence to determine whether there was a difference between the groups in rates of miscarriage (OR 0.79, 95% CI 0.58 to 1.08, P = 0.14, 18 RCTs, 2834 women, I 2 = 23%, very low quality evidence). This suggests that, among subfertile women with an expected miscarriage rate of 7%, use of antioxidants would be expected to result in a miscarriage rate of between 4% and 7%. There was also insufficient evidence to determine whether there was a difference between the groups in rates of multiple pregnancy (OR 1.00, 95% CI 0.73 to 1.38, P = 0.98, 8 RCTs, 2163 women, I 2 = 4%, very low quality evidence). This suggests that among subfertile women with an expected multiple pregnancy rate of 8%, use of antioxidants would be expected to result in a multiple pregnancy

  1. Controlled mass pollination in loblolly pine to increase genetic gains

    Science.gov (United States)

    F.E. Bridgwater; D.L. Bramlett; T.D. Byram; W.J. Lowe

    1998-01-01

    Controlled mass pollination (CMP) is one way to increase genetic gains from traditional wind-pollinated seed orchards. Methodology is under development by several forestry companies in the southern USA. Costs of CMP depend on the efficient installation, pollination, and removal of inexpensive paper bags. Even in pilot-scale studies these costs seem reasonable. Net...

  2. COMPARATIVE EFFICIENCY OF DIFFERENT ANTIOXIDANTS ON FAT STABILITY IN BROILER RATIONS: THIOBARBITURIC ACID VALUES

    Directory of Open Access Journals (Sweden)

    Ghulam Mustafa, Fawad Ahmad, Arfan Yousaf and Asad Ullah Hyder

    2002-04-01

    Full Text Available Thiobarbituric acid (TBA value was significantly (P< 0.05 affected by storage period, fat levels and antioxidants but the interaction of these factors was non significant. TBA value increased with the increase in storage period, however, the increase was relatively less during first 14 days of storage then a significant increase in TBA was observed as the storage period prolonged. Rations containing 4% fat have greater TBA value than the rations containing 2 or 3% fat. There was also a significant difference on TBA value due to antioxidant and their levels. TBA value was lower in the rations containing ethoxyquin than BHT containing rations and the rations supplemented with oxistat had greater TBA value. At higher level of any antioxidant, TBA value decreased, however, the difference between TBA values at both levels is non significant. With the increase in storage period there was increase in TBA value at both the antioxidant level. Antioxidant had a significant effect on fat stability in TBA test. Antioxidant level at 2 and 3% fat had a non significant effect but at 4% fat level. Antioxidant level had a significant effect. However, TBA values increased significantly at both levels of antioxidant with the increase in fat levels.

  3. Enhanced memory in Wistar rats by virgin coconut oil is associated with increased antioxidative, cholinergic activities and reduced oxidative stress.

    Science.gov (United States)

    Rahim, Nur Syafiqah; Lim, Siong Meng; Mani, Vasudevan; Abdul Majeed, Abu Bakar; Ramasamy, Kalavathy

    2017-12-01

    Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties. Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo. Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes. VCO-fed Wistar rats exhibited significant (p  33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT. VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.

  4. The study of antioxidant activity of white tea

    Directory of Open Access Journals (Sweden)

    O. V. Chernousova

    2018-01-01

    Full Text Available Antioxidants protect the organism from the harmful effects of free radicals. High content of antioxidants is characteristic for red wine, olive oil, tea. Today in Russia is well studied the antioxidant activity of black and green tea, but the choice of teas found in the sale, much wider. The aim of the work was to study antioxidant activity of white tea, as well as its comparison with the parameters of green tea and rooibos. Spectrophotometrically compared the antioxidant activity of aqueous extracts white, green tea, drink rooibos using the adrenaline autooxidation reaction in alkaline medium (pH 10.65. The correctness of the spectrophotometric determination was confirmed on the device “Tsvet Yauza-01-AA” (Russia. As a standard used quercetin. In the initial period of time (up to 5 min tea extracts “Java”, «Elixir immortality» and rooibos are equally affect the values of optical density. After 10 min the optical density takes different values for different extracts, however this time is recommended to determine antioxidant activity. The highest antioxidant activity of the extract has white tea «Greenfield». Rooibos extract antioxidant activity could be compared with “Elixir of immortality” white tea аctivity. The lowest value of antioxidant activity of green tea “Princess JAVA”. The effect of water temperature on the antioxidant activity of extracts was investigated. The highest value was found in tea «Greenfield» at a brewing temperature of 70 °C, which decreases with increasing temperature to 100 °C. The water temperature has a minimal effect on the antioxidant activity of the rooibos extract, but a small maximum at 80 °C is observed. The minimum value of antioxidant activity is the extract of green tea «Princess JAVA», but it increases with the temperature rise up to 100 °C. The study was conducted according to the content of antioxidants from the brewing time. For this, the device “Tsvet Yauza-01-AA” was

  5. Antioxidant Capacities of Fractions of Bamboo Shaving Extract and Their Antioxidant Components.

    Science.gov (United States)

    Gong, Jinyan; Huang, Jun; Xiao, Gongnian; Chen, Feng; Lee, Bolim; Ge, Qing; You, Yuru; Liu, Shiwang; Zhang, Ying

    2016-07-30

    This research was conducted for evaluation of antioxidant activities of four fractions from bamboo shavings extract (BSE) and their antioxidant components. The antioxidant capacities of BSE and four fractions on ABTS, DPPH, FRAP and total antioxidant capacity assays exhibited the following descending order: DF > n-butanol fraction (BF) > BSE ≈ ethyl acetate fraction (AF) > water fraction (WF). Among the identified phenolic compounds, caffeic acid exhibited the highest antioxidant capacities on DPPH, FRAP and total antioxidant capacity assays. An extremely significant positive correlation between the antioxidant activities with the contents of total flavonoids, total phenolic acids, or total phenolics was observed in this study. The result indicated that the bamboo shaving extract and its solvent fractions could act as natural antioxidants in light of their potent antioxidant activities.

  6. Antidiarrhea and Antioxidant Activities of Honokiol Extract from ...

    African Journals Online (AJOL)

    GSH-Px, 4.49 vs. 5.80). Additionally, total antioxidant capacity was increased by 60 % with 100 mg/kg ... honokiol extract on castor oil-induced diarrhea, on charcoal transit rate .... glutathione (GSH) concentration and total antioxidant capacity ...

  7. Oxidative Stress and Antioxidant System in Periodontitis

    Science.gov (United States)

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  8. Development of microalgae biomaterials with enhanced antioxidant activity using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younghwa; Park, Hyunjin; Choi, Soojeong; Lee, Jaehwa [Silla Univ., Busan (Korea, Republic of)

    2013-07-01

    By increasing the antioxidant products (e. g. antioxidant enzyme, carotenoid, phycobiliproteins, chlorophyll, lipid phenolic compounds, etc.) in microalgae, it could be useful for industry. In this study, mutants of fresh water microalgae Arthrospira platensis (A. platensis) by high energy electron beam were isolated and characterized. Those selected mutants showed higher growth rate than parental strain. The antioxidant enzyme activity (SOD and POD), flavonoid, phenolic compound and phycocyanin of mutants were increased about 2 times compared to wild type. Moreover, DPPH radical scavenging activity was increased about 20%. Microalgae species with improved growth rate and enhanced active compounds make the commercial process more feasible in industry. Using microalgae mutants with increased antioxidant products, it is useful to develop microalgae biomaterials for neutraceuticals.

  9. Development of microalgae biomaterials with enhanced antioxidant activity using electron beam

    International Nuclear Information System (INIS)

    Kim, Younghwa; Park, Hyunjin; Choi, Soojeong; Lee, Jaehwa

    2013-01-01

    By increasing the antioxidant products (e. g. antioxidant enzyme, carotenoid, phycobiliproteins, chlorophyll, lipid phenolic compounds, etc.) in microalgae, it could be useful for industry. In this study, mutants of fresh water microalgae Arthrospira platensis (A. platensis) by high energy electron beam were isolated and characterized. Those selected mutants showed higher growth rate than parental strain. The antioxidant enzyme activity (SOD and POD), flavonoid, phenolic compound and phycocyanin of mutants were increased about 2 times compared to wild type. Moreover, DPPH radical scavenging activity was increased about 20%. Microalgae species with improved growth rate and enhanced active compounds make the commercial process more feasible in industry. Using microalgae mutants with increased antioxidant products, it is useful to develop microalgae biomaterials for neutraceuticals

  10. Dietary Probiotic Bacillus subtilis Strain fmbj Increases Antioxidant Capacity and Oxidative Stability of Chicken Breast Meat during Storage

    Science.gov (United States)

    Bai, Wen Kai; Zhang, Fei Jing; He, Tian Jin; Su, Peng Wei; Ying, Xiong Zhi; Zhang, Li Li; Wang, Tian

    2016-01-01

    This study was aimed to measure the dietary effects of probiotic Bacillus subtilis strain fmbj (BS fmbj) on antioxidant capacity and oxidative stability of chicken breast meat during storage. Treatment groups were fed the basal diet with BS fmbj at 0 g/kg (CON), 0.2 g/kg (BS-1), 0.3 g/kg (BS-2), or 0.4 g/kg (BS-3) doses without antibiotics. During 8 days of storage at 4°C, BS-2 group showed a significant improvement (P Cooking loss, Shear force, color L*, a*, b*), free radical scavenging activity (DPPH, ABTS+, H2O2), tissues antioxidant enzyme capacity (SOD, CAT, GSH-Px, GSH, T-SH), mitochondria antioxidant enzyme capacity (MnSOD, GPx, GSH), mRNA expression of antioxidant genes (Nrf2, HO-1, SOD, CAT, GSH-Px) and mitochondrial function genes (avUCP, NRF1, NRF2, TFAM, PGC-1α), oxidative damage index (MDA, ROS, PC, 8-OHdG), and MMP level in chicken breast meat as compared to the CON group. These results indicate that dietary BS fmbj in broiler diets can protect breast meat against the storage-induced oxidative stress by improving their free radical scavenging capacity and antioxidant activity during 8 days of storage at 4°C. PMID:27907152

  11. Increasing the genetic variance of rice protein through mutation breeding techniques

    International Nuclear Information System (INIS)

    Ismachin, M.

    1975-01-01

    Recommended rice variety in Indonesia, Pelita I/1 was treated with gamma rays at the doses of 20 krad, 30 krad, and 40 krad. The seeds were also treated with EMS 1%. In M 2 generation, the protein content of seeds from the visible mutants and from the normal looking plants were analyzed by DBC method. No significant increase in the genetic variance was found on the samples treated with 20 krad gamma, and on the normal looking plants treated by EMS 1%. The mean value of the treated samples were mostly significant decrease compared with the mean value of the protein distribution in untreated samples (control). Since significant increase in genetic variance was also found in M 2 normal looking plants - treated with gamma at the doses of 30 krad and 40 krad -selection of protein among these materials could be more valuable. (author)

  12. Antioxidant defenses predict long-term survival in a passerine bird.

    Directory of Open Access Journals (Sweden)

    Nicola Saino

    2011-05-01

    Full Text Available Normal and pathological processes entail the production of oxidative substances that can damage biological molecules and harm physiological functions. Organisms have evolved complex mechanisms of antioxidant defense, and any imbalance between oxidative challenge and antioxidant protection can depress fitness components and accelerate senescence. While the role of oxidative stress in pathogenesis and aging has been studied intensively in humans and model animal species under laboratory conditions, there is a dearth of knowledge on its role in shaping life-histories of animals under natural selection regimes. Yet, given the pervasive nature and likely fitness consequences of oxidative damage, it can be expected that the need to secure efficient antioxidant protection is powerful in molding the evolutionary ecology of animals. Here, we test whether overall antioxidant defense varies with age and predicts long-term survival, using a wild population of a migratory passerine bird, the barn swallow (Hirundo rustica, as a model.Plasma antioxidant capacity (AOC of breeding individuals was measured using standard protocols and annual survival was monitored over five years (2006-2010 on a large sample of selection episodes. AOC did not covary with age in longitudinal analyses after discounting the effect of selection. AOC positively predicted annual survival independently of sex. Individuals were highly consistent in their relative levels of AOC, implying the existence of additive genetic variance and/or environmental (including early maternal components consistently acting through their lives.Using longitudinal data we showed that high levels of antioxidant protection positively predict long-term survival in a wild animal population. Present results are therefore novel in disclosing a role for antioxidant protection in determining survival under natural conditions, strongly demanding for more longitudinal eco-physiological studies of life-histories in

  13. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy.

    Science.gov (United States)

    Richter, Hans G; Hansell, Jeremy A; Raut, Shruti; Giussani, Dino A

    2009-05-01

    Melatonin participates in circadian, seasonal and reproductive physiology. Melatonin also acts as a potent endogenous antioxidant by scavenging free radicals and upregulating antioxidant pathways. The placenta expresses melatonin receptors and melatonin protects against oxidative damage induced in rat placenta by ischemia-reperfusion. One of the most common complications in pregnancy is a reduction in fetal nutrient delivery, which is known to promote oxidative stress. However, whether melatonin protects placental function and fetal development in undernourished pregnancy is unknown. Here, we investigated the effects of maternal treatment with melatonin on placental efficiency, fetal growth, birth weight and protein expression of placental oxidative stress markers in undernourished pregnancy. On day 15 of pregnancy, rats were divided into control and undernourished pregnancy (35% reduction in food intake), with and without melatonin treatment (5 microg/mL drinking water). On day 20 of gestation, fetal biometry was carried out, the placenta was weighed and subsequently analyzed by Western blot for xanthine oxidase, heat shock protein (HSP) 27 and 70, catalase, manganese superoxide dismutase (Mn-SOD) and glutathione peroxidase 1 (GPx-1). A separate cohort was allowed to deliver to assess effects on birth weight. Maternal undernutrition led to a fall in placental efficiency, disproportionate intrauterine growth retardation and a reduction in birth weight. Maternal treatment with melatonin in undernourished pregnancy improved placental efficiency and restored birth weight, and it increased the expression of placental Mn-SOD and catalase. The data show that in pregnancy complicated by undernutrition, melatonin may improve placental efficiency and birth weight by upregulating placental antioxidant enzymes.

  14. Effects of ozonated autohemotherapy on the antioxidant capacity of Thoroughbred horses.

    Science.gov (United States)

    Tsuzuki, Nao; Endo, Yoshiro; Kikkawa, Lisa; Korosue, Kenji; Kaneko, Yasuyuki; Kitauchi, Akira; Katamoto, Hiromu; Hidaka, Yuichi; Hagio, Mitsuyoshi; Torisu, Shidow

    2016-01-01

    The performance of horses undergoing regular intense exercise is adversely affected by oxidative stress. Thus, it is important to increase antioxidant production in horses in order to reduce oxidative stress. Ozonated autohemotherapy (OAHT) reportedly promotes antioxidant production. This study aimed to evaluate the effects of OAHT on antioxidant capacity. Ten Thoroughbred horses were used in this study. After the OAHT, we collected serum samples and measured biological antioxidant potential (BAP). We found that BAP began to increase after the OAHT and was significantly higher in the OAHT group than at 3 (Phorses.

  15. H(2 enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion.

    Directory of Open Access Journals (Sweden)

    Yanjie Xie

    Full Text Available BACKGROUND: The metabolism of hydrogen gas (H(2 in bacteria and algae has been extensively studied for the interesting of developing H(2-based fuel. Recently, H(2 is recognized as a therapeutic antioxidant and activates several signalling pathways in clinical trials. However, underlying physiological roles and mechanisms of H(2 in plants as well as its signalling cascade remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this report, histochemical, molecular, immunological and genetic approaches were applied to characterize the participation of H(2 in enhancing Arabidopsis salt tolerance. An increase of endogenous H(2 release was observed 6 hr after exposure to 150 mM NaCl. Arabidopsis pretreated with 50% H(2-saturated liquid medium, mimicking the induction of endogenous H(2 release when subsequently exposed to NaCl, effectively decreased salinity-induced growth inhibition. Further results showed that H(2 pretreatment modulated genes/proteins of zinc-finger transcription factor ZAT10/12 and related antioxidant defence enzymes, thus significantly counteracting the NaCl-induced reactive oxygen species (ROS overproduction and lipid peroxidation. Additionally, H(2 pretreatment maintained ion homeostasis by regulating the antiporters and H(+ pump responsible for Na(+ exclusion (in particular and compartmentation. Genetic evidence suggested that SOS1 and cAPX1 might be the target genes of H(2 signalling. CONCLUSIONS: Overall, our findings indicate that H(2 acts as a novel and cytoprotective regulator in coupling ZAT10/12-mediated antioxidant defence and maintenance of ion homeostasis in the improvement of Arabidopsis salt tolerance.

  16. Phenolipids as antioxidants in emulsified systems

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Bayrasy, Christelle; Laguerre, Mickäel

    Lipid oxidation is a major issue in foods containing LC PUFA and substantial efforts have been made to protect lipids against oxidation. Recent studies carried out with phenolipids (lipophilized phenolics) in emulsified systems have shown that increased lipophilicity did not necessarily lead...... antioxidant effect has been shown to be influenced by the specific phenolic compound and the type of emulsion. The overall aim for our work was to evaluate phenolipids with different lipophilicity as antioxidants in emulsified food. In the study presented here caffeic, ferulic and coumaric acid were selected...... along with their corresponding alkyl esters (C4-C20). The methods used to evaluate the antioxidative effect of the different phenolipids were the CAT assay (o/w emulsion), antioxidant assays (DPPH, Iron chelating and reducing power) and partitioning studies. Moreover, the results from the CAT assay...

  17. Gamma radiation effects on peanut skin antioxidants

    International Nuclear Information System (INIS)

    Camargo, Adriano Costa de; Canniatti-Brazaca, Solange Guidolin; Vieira, Thais Maria Ferreira de Souza; Regitano-d'Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia

    2011-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The viability of using natural sources of antioxidants to replace synthetic antioxidants was assessed. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays at a dose rate of 7.5 kGy/h using a 60 Co source. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached deodorized (RBD) soybean oil that was free from synthetic antioxidants. The oxidative stability of the oil samples was determined using the Rancimat method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. Ethanolic extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Rancimat method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT but lower than THBQ. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative level when added to soybean oil. The induction period of the control soybean oil was 5.7 h, while soybean oil with added ethanolic peanut skin extract had an induction period of 7.2 h, on average. (author)

  18. Gamma radiation effects on peanut skin antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Adriano Costa de [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Canniatti-Brazaca, Solange Guidolin; Vieira, Thais Maria Ferreira de Souza; Regitano-d' Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia, E-mail: sgcbraza@usp.b, E-mail: tvieira@esalq.usp.b, E-mail: mabra@esalq.usp.b, E-mail: macdomin@esalq.usp.b [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao

    2011-07-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The viability of using natural sources of antioxidants to replace synthetic antioxidants was assessed. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays at a dose rate of 7.5 kGy/h using a {sup 60}Co source. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached deodorized (RBD) soybean oil that was free from synthetic antioxidants. The oxidative stability of the oil samples was determined using the Rancimat method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. Ethanolic extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Rancimat method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT but lower than THBQ. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative level when added to soybean oil. The induction period of the control soybean oil was 5.7 h, while soybean oil with added ethanolic peanut skin extract had an induction period of 7.2 h, on average. (author)

  19. Genetic favouring of pheomelanin-based pigmentation limits physiological benefits of coloniality in lesser kestrels Falco naumanni.

    Science.gov (United States)

    Galván, Ismael; Moraleda, Virginia; Otero, Ignacio; Álvarez, Ernesto; Inácio, Ângela

    2017-10-01

    Pheomelanin contributes to the pigmentation phenotype of animals by producing orange and light brown colours in the integument. However, pheomelanin synthesis in melanocytes requires consumption of glutathione (GSH), the most important intracellular antioxidant. Therefore, a genetic control favouring the production of large amounts of pheomelanin for pigmentation may lead to physiological costs under environmental conditions that promote oxidative stress. We investigated this possibility in the context of breeding coloniality, a reproductive strategy that may affect oxidative stress. We found in lesser kestrel Falco naumanni nestlings that the GSH:GSSG ratio, which decreases with systemic oxidative stress, increased with the size of the colony where they were reared, but the expression in feather melanocytes of five genes involved in pheomelanin synthesis (Slc7a11, Slc45a2, CTNS, MC1R and AGRP) did not vary with colony size. The antioxidant capacity (TEAC) of lesser kestrel nestlings also increased with colony size, but in a manner that depended on Slc7a11 expression and not on the expression of the other genes. Thus, antioxidant capacity increased with colony size only in nestlings least expressing Slc7a11, a gene with a known role in mediating cysteine (a constituent amino acid of GSH) consumption for pheomelanin production. The main predictor of the intensity of pheomelanin-based feather colour was Slc45a2 expression followed in importance by Slc7a11 expression, hence suggesting that the genetic regulation of the pigmentation phenotype mediated by Slc7a11 and a lack of epigenetic lability in this gene limits birds from benefiting from the physiological benefits of coloniality. © 2017 John Wiley & Sons Ltd.

  20. Increase in plasma total antioxidant capacity of grazing Japanese Black heifers and cows in forestland in Japan.

    Science.gov (United States)

    Haga, Satoshi; Ishizaki, Hiroshi; Nakano, Miwa; Nakao, Seiji; Hirano, Kiyoshi; Yamamoto, Yoshito; Kitagawa, Miya; Sasaki, Hiroyuki; Kariya, Yoshihiro

    2014-02-01

    Blood total antioxidant capacity (TAC) has become a key bio-marker for animal health. Forest-grazing cattle are known to forage various native plants that have high TAC. This study evaluated differences of plasma TAC between forest-grazing (FG) and pasture-grazing cattle (PG). Experiment 1 monitored the plasma TAC levels of 32 Japanese Black cattle. The level in PG did not change throughout the grazing period. However, that in FG, which increased from summer, was significantly higher than that in PG through fall (P trees consumed by FG were higher than those in pasture grasses. Results of this study show that plasma TAC of grazing Japanese Black cattle in forestland increase from summer through fall. © 2013 Japanese Society of Animal Science.

  1. Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction.

    Directory of Open Access Journals (Sweden)

    Yiming Hu

    2017-06-01

    Full Text Available Accurate prediction of disease risk based on genetic factors is an important goal in human genetics research and precision medicine. Advanced prediction models will lead to more effective disease prevention and treatment strategies. Despite the identification of thousands of disease-associated genetic variants through genome-wide association studies (GWAS in the past decade, accuracy of genetic risk prediction remains moderate for most diseases, which is largely due to the challenges in both identifying all the functionally relevant variants and accurately estimating their effect sizes. In this work, we introduce PleioPred, a principled framework that leverages pleiotropy and functional annotations in genetic risk prediction for complex diseases. PleioPred uses GWAS summary statistics as its input, and jointly models multiple genetically correlated diseases and a variety of external information including linkage disequilibrium and diverse functional annotations to increase the accuracy of risk prediction. Through comprehensive simulations and real data analyses on Crohn's disease, celiac disease and type-II diabetes, we demonstrate that our approach can substantially increase the accuracy of polygenic risk prediction and risk population stratification, i.e. PleioPred can significantly better separate type-II diabetes patients with early and late onset ages, illustrating its potential clinical application. Furthermore, we show that the increment in prediction accuracy is significantly correlated with the genetic correlation between the predicted and jointly modeled diseases.

  2. Antioxidant Potential of Selected Korean Edible Plant Extracts

    Directory of Open Access Journals (Sweden)

    Yaejin Woo

    2017-01-01

    Full Text Available This study aimed to evaluate the antioxidant activity of various plant extracts. A total of 94 kinds of edible plant extracts obtained from the Korea Plant Extract Bank were screened for cytotoxicity, following which the total phenolic content of 24 shortlisted extracts was determined. Of these, extracts from three plants, namely, Castanea crenata (CC leaf, Camellia japonica (CJ fruit, and Viburnum dilatatum (VD leaf, were examined for antioxidant capabilities by measuring radical scavenging activity, ferric reducing/antioxidant power, and lipid peroxidation inhibitory activity. In addition, cellular antioxidant activities of the three extracts were assessed by a cell-based dichlorofluorescein assay and antioxidant response element (ARE reporter activity assay. The results demonstrated that all three extracts concentration-dependently scavenged free radicals, inhibited lipid peroxidation, reduced the cellular level of reactive oxygen species, and increased ARE-luciferase activity, indicating antioxidant enzyme-inducing potential. In particular, CJ extract showed significantly greater antioxidative activity and antimigratory effect in a breast cancer cell line compared to CC and VD extracts. Hence, CJ extract deserves further study for its in vivo functionality or biologically active constituents.

  3. Modified Folin-Ciocalteu antioxidant capacity assay for measuring lipophilic antioxidants.

    Science.gov (United States)

    Berker, Kadriye Isil; Ozdemir Olgun, F Ayca; Ozyurt, Dilek; Demirata, Birsen; Apak, Resat

    2013-05-22

    The Folin-Ciocalteu (FC) method of performing a total phenolics assay, originally developed for protein determination, has recently evolved as a total antioxidant capacity assay but was found to be incapable of measuring lipophilic antioxidants due to the high affinity of the FC chromophore, that is, multivalent-charged phospho-tungsto-molybdate(V), toward water. Thus, the FC method was modified and standardized so as to enable simultaneous measurement of lipophilic and hydrophilic antioxidants in NaOH-added isobutanol-water medium. Optimal conditions were as follows: dilution ratio of aqueous FC reagent with iso-BuOH (1:2, v/v), final NaOH concentration of 3.5 × 10(-2) M, reaction time of 20 min, and maximum absorption wavelength of 665 nm. The modified procedure was successfully applied to the total antioxidant capacity assay of trolox, quercetin, ascorbic acid, gallic acid, catechin, caffeic acid, ferulic acid, rosmarinic acid, glutathione, and cysteine, as well as of lipophilic antioxidants such as α-tocopherol (vitamin E), butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, lauryl gallate, and β-carotene. The modified FC method reliably quantified ascorbic acid, whereas the conventional method could not. The modified method was reproducible and additive in terms of total antioxidant capacity values of constituents of complex mixtures such as olive oil extract and herbal tea infusion. The trolox equivalent antioxidant capacities of the tested antioxidant compounds correlated well with those found by the Cupric Reducing Antioxidant Capacity reference method.

  4. Anticipating issues related to increasing preimplantation genetic diagnosis use: a research agenda.

    Science.gov (United States)

    Klitzman, Robert; Appelbaum, Paul S; Chung, Wendy; Sauer, Mark

    2008-01-01

    Increasing use of preimplantation genetic diagnosis (PGD) poses numerous clinical, social, psychological, ethical, legal and policy dilemmas, many of which have received little attention. Patients and providers are now considering and using PGD for a widening array of genetic disorders, and patients may increasingly seek 'designer babies.' In the USA, although governmental oversight policies have been discussed, few specific guidelines exist. Hence, increasingly, patients and providers will face challenging ethical and policy questions of when and for whom to use PGD, and how it should be financed. These issues should be better clarified and addressed through collection of data concerning the current use of PGD in the USA, including factors involved in decision making about PGD use, as well as the education of the various communities that are, and should be, involved in its implementation. Improved understanding of these issues will ultimately enhance the development and implementation of future clinical guidelines and policies.

  5. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus?

    Science.gov (United States)

    Theodorou, Anastasios A; Paschalis, Vassilis; Kyparos, Antonios; Panayiotou, George; Nikolaidis, Michalis G

    2014-11-07

    The current interpretative framework states that, for a certain experimental treatment (usually a chemical substance) to be classified as "anti-oxidant", it must possess the property of reducing (or even nullifying) exercise-induced oxidative stress. The aim of the study was to compare side by side, in the same experimental setup, redox biomarkers responses to an identical acute eccentric exercise session, before and after chronic passive smoking (considered a pro-oxidant stimulus) or vitamin C supplementation (considered an anti-oxidant stimulus). Twenty men were randomly assigned into either passive smoking or vitamin C group. All participants performed two acute eccentric exercise sessions, one before and one after either exposure to passive smoking or vitamin C supplementation for 12 days. Vitamin C, oxidant biomarkers (F2-isoprostanes and protein carbonyls) and the non-enzymatic antioxidant (glutathione) were measured, before and after passive smoking, vitamin C supplementation or exercise. It was found that chronic exposure to passive smoking increased the level of F2-isoprostanes and decreased the level of glutathione at rest, resulting in minimal increase or absence of oxidative stress after exercise. Conversely, chronic supplementation with vitamin C decreased the level of F2-isoprostanes and increased the level of glutathione at rest, resulting in marked exercise-induced oxidative stress. Contrary to the current scientific consensus, our results show that, when a pro-oxidant stimulus is chronically delivered, it is more likely that oxidative stress induced by subsequent exercise is decreased and not increased. Reversely, it is more likely to find greater exercise-induced oxidative stress after previous exposure to an anti-oxidant stimulus. We believe that the proposed framework will be a useful tool to reach more pragmatic explanations of redox biology phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Genetic variation of phytochemical compounds in progenies of Ilex paraguariensis St. Hil.

    Directory of Open Access Journals (Sweden)

    Euclides Lara Cardozo Junior

    2009-01-01

    Full Text Available Mate (Ilex paraguariensis St. Hil contains phytochemical compounds capable of preventing a number of healthproblems. Knowledge on the genetic contribution to the variability in these compounds can help to obtain mate progenies withhigher levels thereof in breeding programs. The composition of triterpene saponins, methylxanthines, chlorogenic acid andthe antioxidant activity of eight mate progenies were evaluated. Significant differences among progenies were verified incontents of triterpene saponins (0.003-0.080%, caffeine (0.226-1.377%, theobromine (0.176-0.831%, and chlorogenicacid (1.344-2.031% and in antioxidant activity (31.251-51.406%. The contents of theobromine were found to be negativelycorrelated with saponins and caffeine, and caffeine with chlorogenic acid, while theobromine was positively correlated withchlorogenic acid. The heritability values for saponins (75.09%, caffeine (75.19%, theobromine (66.87%, chlorogenic acid(52.86% and antioxidant activity (67.75% indicate the possibility of genetic gain in selection for these traits.

  7. Diffusion-weighted MRI for detecting prostate tumour in men at increased genetic risk

    International Nuclear Information System (INIS)

    Souza, Nandita M. de; Morgan, Veronica A.; Bancroft, Elizabeth; Sohaib, S. Aslam; Giles, Sharon L.; Kote-Jarai, Zsofia; Castro, Elena; Hazell, Steven; Jafar, Maysam; Eeles, Rosalind

    2014-01-01

    •Endorectal T2W + DW-MRI is potentially useful for prostate cancer screening.•MRI is specific for detecting prostate cancer in men with increased genetic risk.•Detection of prostate cancer in men at genetically low risk with MRI is limited. Endorectal T2W + DW-MRI is potentially useful for prostate cancer screening. MRI is specific for detecting prostate cancer in men with increased genetic risk. Detection of prostate cancer in men at genetically low risk with MRI is limited. Diffusion-weighted (DW)-MRI is invaluable in detecting prostate cancer. We determined its sensitivity and specificity and established interobserver agreement for detecting tumour in men with a family history of prostate cancer stratified by genetic risk. 51 men with a family history of prostate cancer underwent T2-W + DW-endorectal MRI at 3.0 T. Presence of tumour was noted at right and left apex, mid and basal prostate sextants by 2 independent observers, 1 experienced and the other inexperienced in endorectal MRI. Sensitivity and specificity against a 10-core sampling technique (lateral and medial cores at each level considered together) in men with >2× population risk based on 71 SNP analysis versus those with lower genetic risk scores was established. Interobserver agreement was determined at a subject level. Biopsies indicated cancer in 28 sextants in 13/51 men; 32 of 51 men had twice the population risk (>0.25) based on 71 SNP profiling. Sensitivity/specificity per-subject for patients was 90.0%/86.4% (high-risk) vs. 66.7%/100% (low-risk, observer 1) and 60.0%/86.3% (high-risk) vs. 33.3%/93.8% (low-risk, observer 2) with moderate overall inter-observer agreement (kappa = 0.42). Regional sensitivities/specificities for high-risk vs. low-risk for observer 1 apex 72.2%/100% [33.3%/100%], mid 100%/93.1% [100%/97.3%], base 16.7%/98.3% [0%/100%] and for observer 2 apex 36.4%/98.1% [0%/100%], mid 28.6%/96.5% [100%/100%], base 20%/100% [0%/97.3%] were poorer as they failed to detect

  8. Comparative evaluation of post-column free radical scavenging and ferric reducing antioxidant power assays for screening of antioxidants in strawberries.

    Science.gov (United States)

    Raudonis, Raimondas; Raudone, Lina; Jakstas, Valdas; Janulis, Valdimaras

    2012-04-13

    ABTS and FRAP post-column techniques evaluate the antioxidant characteristics of HPLC separated compounds with specific reagents. ABTS characterize their ability to scavenge free radicals by electron-donating antioxidants, resulting in the absorbance decrease of the chromophoric radical. FRAP - is based on the reduction of Fe(III)-tripyridyltriazine complex to Fe(II)-tripyridyltriazine at low pH by electron-donating antioxidants, resulting in an absorbance increase. Both post-column assays were evaluated and compared according to the following validation parameters: specificity, precision, limit of detection (LoD), limit of quantitation (LoQ) and linearity. ABTS and FRAP post-column assays were specific, repeatable and sensitive and thus can be used for the evaluation of antioxidant active compounds. Antioxidant active compounds were quantified according to TEAC for each assay and ABTS/FRAP ratio was derived. No previous records of antioxidative activity of leaves and fruits of strawberries (Fragaria viridis, Fragaria moschata) research have been found. The research results confirm the reliability of ABTS and FRAP post-column assays for screening of antioxidants in complex mixtures and the determination of radical scavenging and ferric reducing ability by their TEAC values. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Assessment of Antioxidant Properties of Allium cepa on Serum Antioxidants and Spermatogenesis After Consuming Tartrazine in Rat

    Directory of Open Access Journals (Sweden)

    Hoseinpouran Manuchehr

    2015-10-01

    Full Text Available Objective: The aim of this study is to assess the antioxidant properties of onion on biochemical serum factors, antioxidants and testicular tissues in Wistar rats after consuming tartrazine. Materials and Methods: Forty male Wistar were divided into four groups of 10. The first group was used as the control group and were given only water without additives, group 2 were given tartrazine, group 3 were given tartrazine plus onion juice and the fourth group which was given only onion juice through gastric gavage. The experiment was conducted for 60 days, then the antioxidant activities superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx and biochemical parameters namely high density lipoprotein (HDL, low density lipoprotein (LDL and testosterone together with the histopathological studies (sperm count and testicular weight were measured. Results: Tartrazine caused a decrease in the activity of antioxidant enzymes (SOD, CAT, GPX and a decrease in the level of testosterone and HDL and also a decrease in sperm count and testicular tissue weight. Tartrazine caused an increase in the LDL levels. Conclusion: Results showed that consumption of tartrazine is associated with production of free radicals and in turn causes significant decrease in antioxidant activities and biochemical serum factors which damage the cellular compartments of the testis. Onion as an antioxidant in this study reduces the damaging effects of tartrazine on the enzymatic activities of antioxidant and biochemical serum factors.

  10. Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light.

    Science.gov (United States)

    Nascimento, Luana B S; Leal-Costa, Marcos V; Coutinho, Marcela A S; Moreira, Nattacha dos S; Lage, Celso L S; Barbi, Nancy dos S; Costa, Sônia S; Tavares, Eliana S

    2013-01-01

    Antioxidant compounds protect plants against oxidative stress caused by environmental conditions. Different light qualities, such as UV-A radiation and blue light, have shown positive effects on the production of phenols in plants. Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) is used for treating wounds and inflammations. Some of these beneficial effects are attributed to the antioxidant activity of plant components. We investigated the effects of blue light and UV-A radiation supplementation on the total phenol content, antioxidant activity and chromatographic profile of aqueous extracts from leaves of K. pinnata. Monoclonal plants were grown under white light, white plus blue light and white plus UV-A radiation. Supplemental blue light improved the antioxidant activity and changed the phenolic profile of the extracts. Analysis by HPLC of supplemental blue-light plant extracts revealed a higher proportion of the major flavonoid quercetin 3-O-α-L-arabinopyranosyl (1→2) α-L-rhamnopyranoside, as well as the presence of a wide variety of other phenolic substances. These findings may explain the higher antioxidant activity observed for this extract. Blue light is proposed as a supplemental light source in the cultivation of K. pinnata, to improve its antioxidant activity. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  11. A High-Fat, High-Fructose Diet Induces Antioxidant Imbalance and Increases the Risk and Progression of Nonalcoholic Fatty Liver Disease in Mice

    Directory of Open Access Journals (Sweden)

    Kanokwan Jarukamjorn

    2016-01-01

    Full Text Available Excessive fat liver is an important manifestation of nonalcoholic fatty liver disease (NAFLD, associated with obesity, insulin resistance, and oxidative stress. In the present study, the effects of a high-fat, high-fructose diet (HFFD on mRNA levels and activities of the antioxidant enzymes, including superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx, were determined in mouse livers and brains. The histomorphology of the livers was examined and the state of nonenzymatic reducing system was evaluated by measuring the glutathione system and the lipid peroxidation. Histopathology of the liver showed that fat accumulation and inflammation depended on the period of the HFFD-consumption. The levels of mRNA and enzymatic activities of SOD, CAT, and GPx were raised, followed by the increases in malondialdehyde levels in livers and brains of the HFFD mice. The oxidized GSSG content was increased while the total GSH and the reduced GSH were decreased, resulting in the increase in the GSH/GSSG ratio in both livers and brains of the HFFD mice. These observations suggested that liver damage and oxidative stress in the significant organs were generated by continuous HFFD-consumption. Imbalance of antioxidant condition induced by long-term HFFD-consumption might increase the risk and progression of NAFLD.

  12. Multiple-Trait Genomic Selection Methods Increase Genetic Value Prediction Accuracy

    Science.gov (United States)

    Jia, Yi; Jannink, Jean-Luc

    2012-01-01

    Genetic correlations between quantitative traits measured in many breeding programs are pervasive. These correlations indicate that measurements of one trait carry information on other traits. Current single-trait (univariate) genomic selection does not take advantage of this information. Multivariate genomic selection on multiple traits could accomplish this but has been little explored and tested in practical breeding programs. In this study, three multivariate linear models (i.e., GBLUP, BayesA, and BayesCπ) were presented and compared to univariate models using simulated and real quantitative traits controlled by different genetic architectures. We also extended BayesA with fixed hyperparameters to a full hierarchical model that estimated hyperparameters and BayesCπ to impute missing phenotypes. We found that optimal marker-effect variance priors depended on the genetic architecture of the trait so that estimating them was beneficial. We showed that the prediction accuracy for a low-heritability trait could be significantly increased by multivariate genomic selection when a correlated high-heritability trait was available. Further, multiple-trait genomic selection had higher prediction accuracy than single-trait genomic selection when phenotypes are not available on all individuals and traits. Additional factors affecting the performance of multiple-trait genomic selection were explored. PMID:23086217

  13. Genetic vulnerability interacts with parenting and early care education to predict increasing externalizing behavior.

    Science.gov (United States)

    Lipscomb, Shannon T; Laurent, Heidemarie; Neiderhiser, Jenae M; Shaw, Daniel S; Natsuaki, Misaki N; Reiss, David; Leve, Leslie D

    2014-01-01

    The current study examined interactions among genetic influences and children's early environments on the development of externalizing behaviors from 18 months to 6 years of age. Participants included 233 families linked through adoption (birth parents and adoptive families). Genetic influences were assessed by birth parent temperamental regulation. Early environments included both family (overreactive parenting) and out-of-home factors (center-based Early Care and Education; ECE). Overreactive parenting predicted more child externalizing behaviors. Attending center-based ECE was associated with increasing externalizing behaviors only for children with genetic liability for dysregulation. Additionally, children who were at risk for externalizing behaviors due to both genetic variability and exposure to center-based ECE were more sensitive to the effects of overreactive parenting on externalizing behavior than other children.

  14. Films and edible coatings containing antioxidants - a review

    Directory of Open Access Journals (Sweden)

    Kaliana Sitonio Eça

    2014-06-01

    Full Text Available The incorporation of natural antioxidants into films and edible coatings can modify their structure, improving their functionality and applicability in foods, such as in fresh-cut fruits. This paper reviews the more recent literature on the incorporation of antioxidants from several sources into films and edible coatings, for application in fruits and vegetables. The use of synthetic antioxidants in foods has been avoided due to their possible toxic effects. Instead, a wide range of natural antioxidants (such as essential oils and plant extracts, as well as pure compounds, like ascorbic acid and α-tocopherol have been incorporated into edible films and coatings to improve their bioactive properties. Films and coatings containing added antioxidants help to preserve or enhance the sensory properties of foods and add value to the food products by increasing their shelf life.

  15. STRUCTURE – ANTIOXIDANT ACTIVITIES RELATIONSHIP ANALYSIS OF ISOEUGENOL, EUGENOL, VANILIN AND THEIR DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Nur Aini

    2010-06-01

    Full Text Available Structure Activity Relationship (SAR technique between the theoretical parameters and antioxidant activities of isoeugenol, eugenol, vanillin and their derivatives as Mannich reaction products, have been analyzed. Antioxidant activities were examined by oxidation reaction of oleic acid at 60 °C with b-carotene methods, whereas theoretical parameters of the activities were determined by calculating Bonding Dissociation Enthalpy (BDE and net charge of oxygen atom(-OH using AM1 semi empiric methods. The result from both test showed in the following orders: BHT > Mannich product of isoeugenol > isoeugenol > Mannich product of eugenol > eugenol > Mannich product of vanillin > vanillin. The antioxidant activities increase with small the BDE value and high the net charge. Electron donating groups will increase the antioxidants activity with lowering the BDE value and increasing the net charge, while electron-withdrawing groups will decrease antioxidants activity.   Keywords: SAR, antioxidants, Bonding Dissociation Entalphy, eugenol.

  16. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala).

    Science.gov (United States)

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli

    2016-04-01

    A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Light Intensity and Carbon Dioxide Availability Impact Antioxidant Activity in Green Onions (Allium fistulosumm L)

    Science.gov (United States)

    Levine, Lanfang; Bisbee, Patricia; Pare, Paul

    The prospect of long-duration manned space missions poses many challenges, including the development of a sustainable life support system and effective methods of space-radiation protection. To mitigate the risk of increased space-radiation, functional foods rich in antioxidant properties such as green onions are of particular interest. However it has yet to be established whether antioxidant properties can be preserved or enhanced in space environment where carbon dioxide, lighting intensity, gravity and pressure differ from which plants have acclimated to on earth. In this study, green onions (Allium fistulosumm L. cultivar Kinka) rich in antioxidant flavonoids are used as a model system to investigate variations in antioxidant capacity with plants grown under varying light intensities and CO2 concentrations. The antioxidant potential is determined using both radical cation scavenging and oxygen radical absorbance assays. For all light intensities assayed, antioxidant potential in water extract of green onions per gram biomass declined with CO2 increases up to 1200 ppm, and then leveled off with further CO2 increase to 4000 ppm. This inverse carbon dioxide versus antioxidant activity correlation suggests lower accumulation rates for water soluble antioxidant compounds compared to total biomass under increasing CO2 concentrations. The effect of increasing atmospheric CO2 concentration on antioxidant activity of ethanol extracts were light intensity dependent. The implications of these findings are discussed in the context of traditional plant antioxidants including vitamin C and the major onion flavonoid quercetin.

  18. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    DEFF Research Database (Denmark)

    Shekarforoush, Elhamalsadat; Mendes, Ana Carina Loureiro; Baj, Vanessa

    2017-01-01

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant...... capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin...

  19. Effects of smoking and antioxidant micronutrients on risk of colorectal cancer.

    Science.gov (United States)

    Hansen, Rikke Dalgaard; Albieri, Vanna; Tjønneland, Anne; Overvad, Kim; Andersen, Klaus Kaae; Raaschou-Nielsen, Ole

    2013-04-01

    Antioxidant intake has been reported to increase the risk of colorectal cancer (CRC) for smokers, yet reduce the risk for nonsmokers. We investigated the association between tobacco smoking and risk of colon or rectal cancer, and whether dietary and supplemental intake of the antioxidant vitamins A, C, E, β-carotene, selenium, zinc, and manganese affects the risk of CRC among smokers. Data on smoking habits and antioxidant intake were analyzed for 54,208 participants in the Danish Prospective Diet, Cancer and Health Study. Of these participants, 642 were diagnosed with colon cancer and 348 were diagnosed with rectal cancer. Hazard ratios and 95% confidence intervals were estimated using Cox proportional hazard models. Principal components were used to analyze intake of combinations of antioxidants. Ever smoking increased the risk for CRC (hazard ratio, 1.19; 95% confidence interval, 1.03-1.37), especially for rectal cancer. Smoking for at least 20 years was associated with a 26% increase in risk of CRC, compared with never smokers, and smoking 20 g tobacco or more each day was associated with a 30% increase in risk. Smoking for more than 30 years, or more than 20 g tobacco each day, was associated with a 48% increase in risk of rectal cancer. We did not observe an interaction between smoking and antioxidant consumption on risk of CRC. Tobacco smoking increases the risk for CRC. We did not observe that consumption of antioxidant micronutrients modulates the effects of smoking on CRC risk. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Soluble antioxidant compounds regenerate the antioxidants bound to insoluble parts of foods.

    Science.gov (United States)

    Çelik, Ecem Evrim; Gökmen, Vural; Fogliano, Vincenzo

    2013-10-30

    This study aimed to investigate the regeneration potential of antioxidant capacity of an insoluble food matrix. Investigations were performed in vitro with several food matrices rich in dietary fiber (DF) and bound antioxidants. After removal of the soluble fraction, the antioxidant capacity (AC) of the insoluble fraction was measured by the QUENCHER procedure using ABTS(•+) or DPPH(•) radicals. After measurement, the insoluble residue was washed out to remove the excess of radicals and treated with pure antioxidant solution or antioxidant-rich beverage to regenerate depleted antioxidants on the fiber. Results revealed that the antioxidant capacity of compounds chemically bound to the insoluble moiety could be reconstituted in the presence of other hydrogen-donating substances in the liquid phase. Regeneration efficiency was found to range between 21.5 and 154.3% depending on the type of insoluble food matrix and regeneration agent. Among the food matrices studied, cereal products were found to have slightly higher regeneration efficiency, whereas antioxidant-rich beverages were more effective than pure antioxidants as regeneration agents. Taking wheat bran as reference insoluble material, the regeneration abilities of beverages were in the following order: green tea > espresso coffee > black tea > instant coffee > orange juice > red wine. These results highlighted the possible physiological relevance of antioxidants bound to the insoluble food material in the gastrointestinal tract. During the digestion process they could react with the free radicals and at the same time they can be regenerated by other soluble antioxidant compounds present in the meal.

  1. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops.

    Science.gov (United States)

    Venneria, Eugenia; Fanasca, Simone; Monastra, Giovanni; Finotti, Enrico; Ambra, Roberto; Azzini, Elena; Durazzo, Alessandra; Foddai, Maria Stella; Maiani, Giuseppe

    2008-10-08

    The genetic modification in fruit and vegetables could lead to changes in metabolic pathways and, therefore, to the variation of the molecular pattern, with particular attention to antioxidant compounds not well-described in the literature. The aim of the present study was to compare the quality composition of transgenic wheat ( Triticum durum L.), corn ( Zea mays L.), and tomato ( Lycopersicum esculentum Mill.) to the nontransgenic control with a similar genetic background. In the first experiment, Ofanto wheat cultivar containing the tobacco rab1 gene and nontransgenic Ofanto were used. The second experiment compared two transgenic lines of corn containing Bacillus thuringiensis "Cry toxin" gene (PR33P67 and Pegaso Bt) to their nontransgenic forms. The third experiment was conducted on transgenic tomato ( Lycopersicum esculentum Mill.) containing the Agrobacterium rhizogenes rolD gene and its nontransgenic control (cv. Tondino). Conventional and genetically modified crops were compared in terms of fatty acids content, unsaponifiable fraction of antioxidants, total phenols, polyphenols, carotenoids, vitamin C, total antioxidant activity, and mineral composition. No significant differences were observed for qualitative traits analyzed in wheat and corn samples. In tomato samples, the total antioxidant activity (TAA), measured by FRAP assay, and the naringenin content showed a lower value in genetically modified organism (GMO) samples (0.35 mmol of Fe (2+) 100 g (-1) and 2.82 mg 100 g (-1), respectively), in comparison to its nontransgenic control (0.41 mmol of Fe (2+) 100 g (-1) and 4.17 mg 100 g (-1), respectively). On the basis of the principle of substantial equivalence, as articulated by the World Health Organization, the Organization for Economic Cooperation and Development, and the United Nations Food and Agriculture Organization, these data support the conclusion that GM events are nutritionally similar to conventional varieties of wheat, corn, and tomato on

  2. Biomarkers of oxidative stress and of antioxidative defense: Relationship to intervention with antioxidant-rich foods

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Young, Jette Feveile; Loft, Steffen

    2001-01-01

    polyphenol intake was observed. There was an increased oxidative stress response toward plasma proteins from food items rich in polyphenols and vitamin C and a decreased response when fruits and vegetables were omitted using a controlled diet. There also was a similar trend toward increased antioxidant...

  3. Antioxidant defence-related genetic variants are not associated with higher risk of secondary thyroid cancer after treatment of malignancy in childhood or adolescence

    International Nuclear Information System (INIS)

    Vodusek, Ana Lina; Goricar, Katja; Gazic, Barbara; Dolzan, Vita; Jazbec, Janez

    2016-01-01

    Thyroid cancer is one of the most common secondary cancers after treatment of malignancy in childhood or adolescence. Thyroid gland is very sensitive to the carcinogenic effect of ionizing radiation, especially in children. Imbalance between pro- and anti-oxidant factors may play a role in thyroid carcinogenesis. Our study aimed to assess the relationship between genetic variability of antioxidant defence-related genes and the risk of secondary thyroid cancer after treatment of malignancy in childhood or adolescence. In a retrospective study, we compared patients with childhood or adolescence primary malignancy between 1960 and 2006 that developed a secondary thyroid cancer (cases) with patients (controls), with the same primary malignancy but did not develop any secondary cancer. They were matched for age, gender, primary diagnosis and treatment (especially radiotherapy) of primary malignancy. They were all genotyped for SOD2 p.Ala16Val, CAT c.-262C>T, GPX1 p.Pro200Leu, GSTP1 p.Ile105Val, GSTP1 p.Ala114Val and GSTM1 and GSTT1 deletions. The influence of polymorphisms on occurrence of secondary cancer was examined by McNemar test and Cox proportional hazards model. Between 1960 and 2006 a total of 2641 patients were diagnosed with primary malignancy before the age of 21 years in Slovenia. Among them 155 developed a secondary cancer, 28 of which were secondary thyroid cancers. No significant differences in the genotype frequency distribution were observed between cases and controls. Additionally we observed no significant influence of investigated polymorphisms on time to the development of secondary thyroid cancer. We observed no association of polymorphisms in antioxidant genes with the risk for secondary thyroid cancer after treatment of malignancy in childhood or adolescence. However, thyroid cancer is one of the most common secondary cancers in patients treated for malignancy in childhood or adolescence and the lifelong follow up of these patients is of utmost

  4. Oregano (Lippia graveolens) essential oil added within pectin edible coatings prevents fungal decay and increases the antioxidant capacity of treated tomatoes.

    Science.gov (United States)

    Rodriguez-Garcia, Isela; Cruz-Valenzuela, M Reynaldo; Silva-Espinoza, Brenda A; Gonzalez-Aguilar, Gustavo A; Moctezuma, Edgar; Gutierrez-Pacheco, M Melissa; Tapia-Rodriguez, Melvin R; Ortega-Ramirez, Luis A; Ayala-Zavala, J Fernando

    2016-08-01

    Tomato is a fruit widely consumed due to its flavor and nutritional value; however, it is susceptible to fungi contamination. Oregano essential oil (OEO) is a fungicide whose constituents are volatile; therefore, their incorporation within edible coatings can protect them and maintain their efficacy. In this context, this study evaluated the effect of OEO applied within pectin coatings on the inhibition of Alternaria alternata growth, antioxidant content and sensorial acceptability of tomatoes. The major volatile compounds of OEO were carvacrol (47.41%), p-cymene (26.44%) and thymol (3.02%). All the applied OEO concentrations (15.7, 25.9 and 36.1 g L(-1) ) inhibited the in vitro growth of A. alternata, whereas the in vivo effective concentrations were 25.9 and 36.1 g L(-1) . Additionally, there was an increment of total phenols and antioxidant activity in coated tomatoes compared to controls. Aroma acceptability of tomatoes was not affected by the pectin-OEO coating; additionally, the pectin, pectin-OEO 15.7 g L(-1) treatments and control tomatoes showed higher flavor acceptability than those coated with pectin-OEO 25.9 and 36.1 g L(-1) . Pectin-OEO coatings showed antifungal effect and increased the antioxidant activity without negative effects on the sensorial acceptability of tomatoes. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Detection and measurement of antioxidant capacity in human sera

    International Nuclear Information System (INIS)

    Bognar, G.; Koeteles, G.J.; Otos, M.

    1998-01-01

    The total antioxidant capacity of human sera was measured by the Randox TAS assay and an average value of 1.55 mmol/L was found from 87 healthy adult persons. Exogenous antioxidant added to the blood could be measured additively. Upon X-irradiation of whole blood samples, the antioxidant value decreased down to 1 Gy linearly. Further decrease after higher doses, however, could not be detected. Reductions of radiation-induced human lymphocyte micronucleus frequency as a cytogenetic end-point were observed upon increasing the exogenous antioxidant level in serum with a water-soluble form of alpha-tocopherol, or a plant extract from Sylibum marianum L. in vitro. (author)

  6. Antioxidant therapy: myth or reality?

    International Nuclear Information System (INIS)

    Nunez-Selles, Alberto J.

    2005-01-01

    New terms such as oxidative stress, antioxidant products or pro-oxidant risks are becoming familiar and an increasing number of international scientific conferences and the publication of thousands of scientific articles is an indication of the growing interest that the subject awakens. The most publicized example is perhaps the French paradox, based on the apparent compatibility of a high fat diet with a low incidence of coronary atherosclerosis attributed to the regular consumption, by the French, of red wine and/or grape juice. Flavonoids, and other phenolic substances contained in red wine, are assigned with antioxidant properties, which lower the oxidation of low density lipoproteins and consequently, the risk of atherogenic diseases. Other examples are the aging process and its correlation with an increase of free radicals, and the correlation between the initiation and promotion of cancer and tissue injury by free radicals, which has induced the intake of antioxidant products as chemical factors that prevent the onset of the disease. Currently, the incidence of oxidative stress on the onset and evolution of more than 100 diseases is claimed by several researchers. All these are 'realities', which on the other hand, are lacking of more clinical evidence, are considered by both physicians and health regulatory bodies, either as 'myths' or of 'secondary' importance. In the attempts to destroy those myths, results of chemical, pre-clinical, and clinical works with a crude extract of mango (Mangifera indica L.) stem bark, which has been developed in Cuba, are reviewed, with a strong experimental evidence of its antioxidant, anti-inflammatory and immunomodulatory properties. (author)

  7. Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris.

    Science.gov (United States)

    Cha, Kwang Hyun; Kang, Suk Woo; Kim, Chul Young; Um, Byung Hun; Na, Ye Rim; Pan, Cheol-Ho

    2010-04-28

    Chlorella vulgaris is a green microalga that contains various antioxidants, such as carotenoids and chlorophylls. In this study, antioxidants from C. vulgaris were extracted using pressurized liquid extraction (PLE), which has been recently used for bioactive compound extraction. The antioxidant capacity of individual compounds in chlorella was determined by online HPLC ABTS(*+) analysis. According to the antioxidant analysis of total extracts, the extraction yield, radical scavenging activity, and phenolic compounds using PLE were relatively high compared to those obtained using maceration or ultrasound-assisted extraction. On the basis of online HPLC ABTS(*+) analysis, the 15 major antioxidants from chlorella extracts were identified as hydrophilic compounds, lutein and its isomers, chlorophylls, and chlorophyll derivatives. Using PLE at high temperature (85-160 degrees C) significantly increased antioxidant extraction from chlorella, improving the formation of hydrophilic compounds and yielding more antioxidative chlorophyll derivatives. Online HPLC ABTS(*+) analysis was a useful tool for the separation of main antioxidants from PLE extracts and allowed the simultaneous measurement of their antioxidant capacity, which clearly showed that PLE is an excellent method for extracting antioxidants from C. vulgaris.

  8. Nutraceutical Antioxidants as Novel Neuroprotective Agents

    Directory of Open Access Journals (Sweden)

    Daniel A. Linseman

    2010-11-01

    Full Text Available A variety of antioxidant compounds derived from natural products (nutraceuticals have demonstrated neuroprotective activity in either in vitro or in vivo models of neuronal cell death or neurodegeneration, respectively. These natural antioxidants fall into several distinct groups based on their chemical structures: (1 flavonoid polyphenols like epigallocatechin 3-gallate (EGCG from green tea and quercetin from apples; (2 non-flavonoid polyphenols such as curcumin from tumeric and resveratrol from grapes; (3 phenolic acids or phenolic diterpenes such as rosmarinic acid or carnosic acid, respectively, both from rosemary; and (4 organosulfur compounds including the isothiocyanate, L-sulforaphane, from broccoli and the thiosulfonate allicin, from garlic. All of these compounds are generally considered to be antioxidants. They may be classified this way either because they directly scavenge free radicals or they indirectly increase endogenous cellular antioxidant defenses, for example, via activation of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2 transcription factor pathway. Alternative mechanisms of action have also been suggested for the neuroprotective effects of these compounds such as modulation of signal transduction cascades or effects on gene expression. Here, we review the literature pertaining to these various classes of nutraceutical antioxidants and discuss their potential therapeutic value in neurodegenerative diseases.

  9. Phenolics and Lipophilized Phenolics as Antioxidants in Fish Oil Enriched Emulsions,

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Nielsen, Nina Skall; Jacobsen, Charlotte

    work better as antioxidants in bulk oil, whereas lipophilic compounds are better antioxidants in emulsions. This presentation is an overview of our previous work in the area of fish oil enriched emulsions with antioxidants. Our studies have shown that the lipophilicity of the compounds is not the only...... with increased lipophilicity. Instead a cut-off effect was observed in relation to the alkyl chain length lipophilized to the phenolic compound. Furthermore, the efficacy of lipophilic antioxidants is influenced by the type of food system. Thus, our results show that the antioxidant behavior may not be as simple...

  10. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Evolution of antioxidant capacity during storage of selected fruits and vegetables.

    Science.gov (United States)

    Kevers, Claire; Falkowski, Michael; Tabart, Jessica; Defraigne, Jean-Olivier; Dommes, Jacques; Pincemail, Joël

    2007-10-17

    Interest in the consumption of fresh fruits and vegetables is, to a large extent, due to its content of bioactive nutrients and their importance as dietary antioxidants. Among all of the selected fruits and vegetables, strawberries and black grapes have relatively high antioxidant capacities associated with high contents of total phenolic compounds, ascorbic acid, and flavonols. More interesting, the results of this study indicated that in most fruits and vegetables storage did not affect negatively the antioxidant capacity. Better, in some cases, an increase of the antioxidant capacity was observed in the days following their purchase, accompanied by an increase in phenolic compounds. In general, fruits and vegetables visually spoil before any significant antioxidant capacity loss occurs except in banana and broccoli. When ascorbic acid or flavonoids (aglycons of flavonols and anthocyanins) were concerned, the conclusions were similar. Their content was generally stable during storage.

  12. Antioxidant Capacity and Antimutagenic Potential of Murraya koenigii

    Directory of Open Access Journals (Sweden)

    Maryam Zahin

    2013-01-01

    Full Text Available It is well known that the intake of antioxidants with increased consumption of fruits and vegetables and medicinal herbs contributes towards reduced risk of certain diseases including cancers. This study aims to evaluate the broad-spectrum antioxidant and antimutagenic activities as well as to elucidate phytochemical profile of an Indian medicinal plant Murraya koenigii (curry leaves. Leaves of the plant were successively fractionated in various organic solvents. Benzene fraction demonstrated the highest phenolic content followed by petroleum ether. The benzene fraction showed maximum antioxidant activity in all tested assays, namely, phosphomolybdenum, 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical, ferric reducing antioxidant power (FRAP and cupric reducing antioxidant capacity (CUPRAC assays. Based on the promising broad-spectrum antioxidant activity, benzene fraction was further evaluated for antimutagenic activity and showed a dose-dependent antimutagenic response in Ames Salmonella mutagenicity assay. It inhibited 72–86% mutagenicity induced by sodium azide, methyl methanesulfonate, benzo(apyrene, and 2-aminoflourene at the maximum tested concentration (100 μg/mL in Salmonella typhimurium tester strains. At least 21 compounds were detected by GC/MS. The findings clearly demonstrated that phenolic-rich benzene fraction has promising broad-spectrum antioxidant and antimutagenic property and needs further evaluation to exploit its therapeutic potential.

  13. The Importance of Antioxidant Micronutrients in Pregnancy

    Directory of Open Access Journals (Sweden)

    Hiten D. Mistry

    2011-01-01

    Full Text Available Pregnancy places increased demands on the mother to provide adequate nutrition to the growing conceptus. A number of micronutrients function as essential cofactors for or themselves acting as antioxidants. Oxidative stress is generated during normal placental development; however, when supply of antioxidant micronutrients is limited, exaggerated oxidative stress within both the placenta and maternal circulation occurs, resulting in adverse pregnancy outcomes. The present paper summarises the current understanding of selected micronutrient antioxidants selenium, copper, zinc, manganese, and vitamins C and E in pregnancy. To summarise antioxidant activity of selenium is via its incorporation into the glutathione peroxidase enzymes, levels of which have been shown to be reduced in miscarriage and preeclampsia. Copper, zinc, and manganese are all essential cofactors for superoxide dismutases, which has reduced activity in pathological pregnancy. Larger intervention trials are required to reinforce or refute a beneficial role of micronutrient supplementation in disorders of pregnancies.

  14. Oxidative stress and antioxidants in athletes undertaking regular exercise training.

    Science.gov (United States)

    Watson, Trent A; MacDonald-Wicks, Lesley K; Garg, Manohar L

    2005-04-01

    Exercise has been shown to increase the production of reactive oxygen species to a point that can exceed antioxidant defenses to cause oxidative stress. Dietary intake of antioxidants, physical activity levels, various antioxidants and oxidative stress markers were examined in 20 exercise-trained "athletes" and 20 age- and sex-matched sedentary "controls." Plasma F2-isoprostanes, antioxidant enzyme activities, and uric acid levels were similar in athletes and sedentary controls. Plasma alpha-tocopherol and beta-carotene were higher in athletes compared with sedentary controls. Total antioxidant capacity tended to be lower in athletes, with a significant difference between male athletes and male controls. Dietary intakes of antioxidants were also similar between groups and well above recommended dietary intakes for Australians. These findings suggest that athletes who consume a diet rich in antioxidants have elevated plasma alpha-tocopherol and beta-carotene that were likely to be brought about by adaptive processes resulting from regular exercise.

  15. No increase in autism-associated genetic events in children conceived by assisted reproduction.

    Science.gov (United States)

    Ackerman, Sean; Wenegrat, Julia; Rettew, David; Althoff, Robert; Bernier, Raphael

    2014-08-01

    To understand the rate of genetic events in patients with autism spectrum disorder (ASD) who were exposed to assisted reproduction. Case control study using genetics data. Twelve collaborating data collection sites across North America as part of the Simons Simplex Collection. 2,760 children with ASD, for whom 1,994 had published copy number variation data and 424 had published gene mutation status available. None. Rates of autism-associated genetic events in children with ASD conceived with assisted reproduction versus those conceived naturally. No statistically significant differences in copy number variations or autism-associated gene-disrupting events were found when comparing ASD patients exposed to assisted reproduction with those not exposed to assisted reproduction. This is the first large genetic association to concurrently examine the genotype of individuals with ASD in relation to their exposure to ART versus natural conception, and it adds reassuring evidence to the argument that ART does not increase the risk of ASD. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Antioxidant capacity of chewing stick miswak Salvadora persica.

    Science.gov (United States)

    Mohamed, Saleh A; Khan, Jalaluddin A

    2013-02-21

    Chewing stick (miswak Salvadora persica L.) is an effective tool for oral hygiene. It possessed various biological properties including significant antibacterial and anti-fungal effects. In the present study, we evaluated the antioxidant compounds in miswak. Miswak root was extracted with 80% methanol. Methanol extract as antioxidant was evaluated by using DPPH, ABTS and phosphomolybdenum complex assays and analysis by GC-MS. Peroxidase, catalase and polyphenoloxidase assays were performed for crude extract of miswak root. The methanol extract of miswak contained the highest amount of crude extract among the various solvent extracts. The methanol extract showed a concentration dependent scavenging of DPPH and ABTS radicals with IC50 values 4.8 and 1.6 μg crude extract, respectively. The total antioxidant activities, based on the reduction of molybdenum (VI) to molybdenum (V), increased with increasing crude extract content. The correlation coefficients (R2) between total crude extract and DPPH, ABTS scavenging activities and the formation of phosphomolybdenum complex were 0.97, 0.99 and 0.95, respectively. The GC-MS analysis showed that the methanol extract doesn't contain phenolic and flavonoid compounds or under detected limit. After silylation of methanol extract, three compounds namely 2-furancarboxaldehyde-5-(hydroxymethyl), furan-2-carboxylic acid-3-methyl- trimethylsilyl ester and D-erythro-pentofuranose-2-deoxy-1,3,5-tris-O-(trimethylsilyl) were identified by GC-MS analysis. These furan derivatives as they contain hydroxyl groups could be possessed antioxidant activities. The antioxidant enzymes were also detected in the miswak extract with high level of peroxidase and low level of catalase and polyphenoloxidase. The synergistic actions of antioxidant compounds and antioxidant enzymes make miswak is a good chewing stick for oral hygiene and food purposes.

  17. Selected heterocyclic compounds as antioxidants. Synthesis and biological evaluation.

    Science.gov (United States)

    Tsolaki, E; Nobelos, P; Geronikaki, A; Rekka, E A

    2014-01-01

    Reactive oxygen species, oxidative stress, and oxidative damage are increasingly assigned important roles as harmful factors in pathological conditions and ageing. ROS are potentially reactive molecules derived from the reduction of molecular oxygen in the course of aerobic metabolism. ROS can also be produced through a variety of enzymes. Under normal circumstances, ROS concentrations are tightly controlled by physiological antioxidants. When excessively produced, or when antioxidants are depleted, ROS can impose oxidative damage to lipids, proteins, sugars and DNA. This reduction-oxidation imbalance, called oxidative stress, can subsequently contribute to the development and progression of tissue damage and play a role in the pathology of various diseases. An antioxidant is defined as "any substance that, when present at low concentrations compared with those of a substrate, significantly delays, prevents or removes oxidative damage to this target molecule". Despite evidence that oxidative damage contributes to a wide range of clinically important conditions, few antioxidants act as effective drugs in vivo. Inter alia, the difficulty of measuring antioxidant efficacy in vivo makes the interpretation of results from clinical trials difficult. A large number of synthetic compounds have been reported to possess antioxidant activity. Several of them derive from natural antioxidants, others have various structures. In this review, some of the most often reported classes of heterocyclic antioxidant compounds, as well as methods for evaluation of their antioxidant activity are discussed.

  18. Effects of Rhizobium inoculation on Trifolium resupinatum antioxidant system under sulfur dioxide pollution

    Directory of Open Access Journals (Sweden)

    Ladan Bayat

    2014-01-01

    Full Text Available Introduction: Plant growth stimulating rhizobacteria are beneficial bacteria that can cause resistance to various stresses in plants. One of these stresses is SO2 air pollution. SO2 is known as a strong damaging air pollutant that limits growth of plants. The aim of this study is evaluation of the effects of bacterial inoculation with native and standard Rhizobium on Persian clover root growth and antioxidants activity and capacity under air SO2 pollution. Materials and methods: In this study, 31 days plants (no-inoculated and inoculated with two strains of Rhizobium exposed to the different concentrations of SO2 (0 as a control, 0.5, 1, 1.5 and 2 ppm for 5 consecutive days and 2 hours per day. Results: Results showed different concentrations of SO2 had a significant effect on Persian clover root weight and antioxidant system. Increasing SO2 stress decreased root fresh and dry weight and antioxidant capacities (IC50 and increased antioxidant activities (I% of Persian clover leaves significantly in comparison to the control plants (under 0 ppm and increased SOD, CAT and GPX activity. Inoculation of Persian clover plants with native and standard Rhizobium increased root weight and did not show a significant effect on antioxidants activity and capacity, but interaction between Rhizobium inoculation and SO2 treatment reduced significantly the stress effects of high concentration of SO2 on root growth and antioxidants activity and capacity. In fact, level of this change of root growth and antioxidant system under SO2 pollution stress in inoculated plants was lower than in the non-inoculated plants. Discussion and conclusion: As a result, an increase in SO2 concentration caused a decrease in root weight, increase in antioxidants activity and capacity of Persian clover. Inoculation with Rhizobium strains could alleviate the effect of SO2 pollution on antioxidant system by effects on root growth.

  19. Characterization of bioactive compounds, antioxidant activity and minerals in landraces of pumpkin (Cucurbita moschata cultivated in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Daniela PRIORI

    2016-01-01

    Full Text Available Abstract The objective of this work was to evaluate the genetic variability for the synthesis of bioactive compounds and minerals in pumpkin (Cucurbita moschata landraces. Total phenolic compounds, carotenoids, antioxidant activity and minerals were evaluated in 10 accessions of Cucurbita moschata landraces from the Genebank of Embrapa Temperate Agriculture (Pelotas - RS, Brazil. Twenty plants of each accession were cultivated in the field during the spring/summer of 2013/2014. After harvesting of mature fruits, the seeds were discarded and opposite longitudinal portions of the pulp were manually prepared for analysis of the bioactive compounds. For the determination of minerals, pumpkin samples were frozen in plastic bags, and after freeze-dried and milled. All analysis were performed in triplicate. The data obtained showed high genetic variability for the synthesis of phenolic compounds, carotenoids, antioxidant activity and minerals. The accessions C52, C81, C267 e C389 showed high levels of antioxidants and minerals, being recommended for use in pumpkin breeding programs. The accessions C52 and C389 are promising, especially because they present the highest levels of total carotenoids.

  20. Characterization of bioactive compounds, antioxidant activity and minerals in landraces of pumpkin (Cucurbita moschata cultivated in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Daniela PRIORI

    Full Text Available Abstract The objective of this work was to evaluate the genetic variability for the synthesis of bioactive compounds and minerals in pumpkin (Cucurbita moschata landraces. Total phenolic compounds, carotenoids, antioxidant activity and minerals were evaluated in 10 accessions of Cucurbita moschata landraces from the Genebank of Embrapa Temperate Agriculture (Pelotas - RS, Brazil. Twenty plants of each accession were cultivated in the field during the spring/summer of 2013/2014. After harvesting of mature fruits, the seeds were discarded and opposite longitudinal portions of the pulp were manually prepared for analysis of the bioactive compounds. For the determination of minerals, pumpkin samples were frozen in plastic bags, and after freeze-dried and milled. All analysis were performed in triplicate. The data obtained showed high genetic variability for the synthesis of phenolic compounds, carotenoids, antioxidant activity and minerals. The accessions C52, C81, C267 e C389 showed high levels of antioxidants and minerals, being recommended for use in pumpkin breeding programs. The accessions C52 and C389 are promising, especially because they present the highest levels of total carotenoids.

  1. Epiphytic marine pigmented bacteria: A prospective source of natural antioxidants

    Directory of Open Access Journals (Sweden)

    Ravindra Pawar

    2015-03-01

    Full Text Available Awareness on antioxidants and its significance in human healthcare has increased many folds in recent time. Increased demand requisite on welcoming newer and alternative resources for natural antioxidants. Seaweed associated pigmented bacteria screened for its antioxidant potentials reveals 55.5% of the organisms were able to synthesize antioxidant compounds. DPPH assay showed 20% of the organisms to reach a antioxidant zone of 1 cm and 8.3% of the strains more than 3 cm. Pseudomonas koreensis (JX915782 a Sargassum associated yellowish brown pigmented bacteria have better activity than known commercial antioxidant butylated hydroxytoluene (BHT against DPPH scavenging. Serratia rubidaea (JX915783, an associate of Ulva sp. and Pseudomonas argentinensis (JX915781 an epiphyte of Chaetomorpha media, were also contributed significantly towards ABTS (7.2% ± 0.03 to 15.2 ± 0.09%; 1.8% ± 0.01 to 15.7 ± 0.22% and FRAP (1.81 ± 0.01 to 9.35 ± 0.98; 7.97 ± 0.12 to 18.70 ± 1.84 μg/mL of AsA Eq. respectively. 16S rRNA gene sequence analysis revealed bacteria that have higher antioxidant activity belongs to a bacterial class Gammaproteobacteria. Statistical analysis of phenolic contents in relation with other parameters like DPPH, ABTS, reducing power and FRAP are well correlated (p < 0.05. Results obtained from the current study inferred that the seaweed associated pigmented bacteria have enormous potential on antioxidant compounds and need to be extracted in a larger way for clinical applications.

  2. Exploring the Role of Genetic Variability and Lifestyle in Oxidative Stress Response for Healthy Aging and Longevity

    Directory of Open Access Journals (Sweden)

    Giuseppe Passarino

    2013-08-01

    Full Text Available Oxidative stress is both the cause and consequence of impaired functional homeostasis characterizing human aging. The worsening efficiency of stress response with age represents a health risk and leads to the onset and accrual of major age-related diseases. In contrast, centenarians seem to have evolved conservative stress response mechanisms, probably derived from a combination of a diet rich in natural antioxidants, an active lifestyle and a favorable genetic background, particularly rich in genetic variants able to counteract the stress overload at the level of both nuclear and mitochondrial DNA. The integration of these factors could allow centenarians to maintain moderate levels of free radicals that exert beneficial signaling and modulator effects on cellular metabolism. Considering the hot debate on the efficacy of antioxidant supplementation in promoting healthy aging, in this review we gathered the existing information regarding genetic variability and lifestyle factors which potentially modulate the stress response at old age. Evidence reported here suggests that the integration of lifestyle factors (moderate physical activity and healthy nutrition and genetic background could shift the balance in favor of the antioxidant cellular machinery by activating appropriate defense mechanisms in response to exceeding external and internal stress levels, and thus possibly achieving the prospect of living a longer life.

  3. Increased oxidative/nitrosative stress and decreased antioxidant enzyme activities in prostate cancer.

    Science.gov (United States)

    Arsova-Sarafinovska, Zorica; Eken, Ayse; Matevska, Nadica; Erdem, Onur; Sayal, Ahmet; Savaser, Ayhan; Banev, Saso; Petrovski, Daniel; Dzikova, Sonja; Georgiev, Vladimir; Sikole, Aleksandar; Ozgök, Yaşar; Suturkova, Ljubica; Dimovski, Aleksandar J; Aydin, Ahmet

    2009-08-01

    The study was aimed to evaluate the oxidative/nitrosative stress status in prostate cancer (CaP) and benign prostatic hyperplasia (BPH). 312 men from two different populations were included: 163 men from Macedonia (73 CaP patients, 67 BPH patients and 23 control subjects) and 149 men from Turkey (34 prostate cancer patients, 100 BPH patients and 15 control subjects). We measured erythrocyte malondialdehyde (MDA) levels, erythrocyte activities of superoxide dismutase (CuZn-SOD), glutathione peroxidase (GPX) and catalase (CAT); plasma nitrite/nitrate (NO(2)(-)/NO(3)(-)), cGMP and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. A similar pattern of alteration in the oxidative/nitrosative stress-related parameters was found in both, Macedonian and Turkish studied samples: higher MDA concentrations with lower GPX and CuZn-SOD activities in CaP patients versus controls and BPH groups. The CAT activity was decreased in the CaP patients versus controls in the Turkish studied sample. Furthermore, CaP patients had increased plasma NO(2)(-)/NO(3)(-) and cGMP levels versus controls and BPH groups in both studied samples. This study has confirmed an imbalance in the oxidative stress/antioxidant status and revealed an altered nitrosative status in prostate cancer patients.

  4. Alpha-Fetoprotein, Identified as a Novel Marker for the Antioxidant Effect of Placental Extract, Exhibits Synergistic Antioxidant Activity in the Presence of Estradiol

    Science.gov (United States)

    Choi, Hye Yeon; Kim, Seung Woo; Kim, BongWoo; Lee, Hae Na; Kim, Su-Jeong; Song, Minjung; Kim, Sol; Kim, Jungho; Kim, Young Bong; Kim, Jin-Hoi; Cho, Ssang-Goo

    2014-01-01

    Placenta, as a reservoir of nutrients, has been widely used in medical and cosmetic materials. Here, we focused on the antioxidant properties of placental extract and attempted to isolate and identify the main antioxidant factors. Porcine placental extracts were prepared through homogenization or acid hydrolysis, and their antioxidant activity was investigated in the human keratinocyte HaCaT cell line. Treatment with homogenized placental extract (H-PE) increased the cell viability of H2O2-treated HaCaT cells more than two-fold. H-PE treatment suppressed H2O2-induced apoptotic and necrotic cell death and decreased intracellular ROS levels in H2O2-treated HaCaT cells. The antioxidant factors in H-PE were found to be thermo-unstable and were thus expected to include proteins. The candidate antioxidant proteins were fractionated with cation-exchange, anion-exchange, and size-exclusion chromatography, and the antioxidant properties of the chromatographic fractions were investigated. We obtained specific antioxidant fractions that suppressed ROS generation and ROS-induced DNA strand breaks. From silver staining and MALDI-TOF analyses, alpha-fetoprotein (AFP) precursor was identified as a main marker for the antioxidant effect of H-PE. Purified AFP or ectopically expressed AFP exhibited synergistic antioxidant activity in the presence of estradiol. Taken together, our data suggest that AFP, a serum glycoprotein produced at high levels during fetal development, is a novel marker protein for the antioxidant effect of the placenta that exhibits synergistic antioxidant activity in the presence of estradiol. PMID:24922551

  5. Alpha-fetoprotein, identified as a novel marker for the antioxidant effect of placental extract, exhibits synergistic antioxidant activity in the presence of estradiol.

    Directory of Open Access Journals (Sweden)

    Hye Yeon Choi

    Full Text Available Placenta, as a reservoir of nutrients, has been widely used in medical and cosmetic materials. Here, we focused on the antioxidant properties of placental extract and attempted to isolate and identify the main antioxidant factors. Porcine placental extracts were prepared through homogenization or acid hydrolysis, and their antioxidant activity was investigated in the human keratinocyte HaCaT cell line. Treatment with homogenized placental extract (H-PE increased the cell viability of H2O2-treated HaCaT cells more than two-fold. H-PE treatment suppressed H2O2-induced apoptotic and necrotic cell death and decreased intracellular ROS levels in H2O2-treated HaCaT cells. The antioxidant factors in H-PE were found to be thermo-unstable and were thus expected to include proteins. The candidate antioxidant proteins were fractionated with cation-exchange, anion-exchange, and size-exclusion chromatography, and the antioxidant properties of the chromatographic fractions were investigated. We obtained specific antioxidant fractions that suppressed ROS generation and ROS-induced DNA strand breaks. From silver staining and MALDI-TOF analyses, alpha-fetoprotein (AFP precursor was identified as a main marker for the antioxidant effect of H-PE. Purified AFP or ectopically expressed AFP exhibited synergistic antioxidant activity in the presence of estradiol. Taken together, our data suggest that AFP, a serum glycoprotein produced at high levels during fetal development, is a novel marker protein for the antioxidant effect of the placenta that exhibits synergistic antioxidant activity in the presence of estradiol.

  6. Acetone Extract from Rhodomyrtus tomentosa: A Potent Natural Antioxidant

    Directory of Open Access Journals (Sweden)

    Goodla Lavanya

    2012-01-01

    Full Text Available Rhodomyrtus tomentosa (Myrtaceae has been employed in traditional Thai medicine to treat colic diarrhoea, dysentery, abscesses, haemorrhage, and gynaecopathy. In addition, it has been used to formulate skin-whitening, anti-aging and skin beautifying agents. Ethnomedical activities of this plant may be due its antioxidant property. Hence, the aim of this study was to evaluate both in vitro and in vivo antioxidant activities of R. tomentosa leaf extract. In vitro antioxidant activity of the extract was assessed by lipid peroxidation inhibition capacity, ferric reducing antioxidant power, and metal chelating activity. R. tomentosa extract demonstrated its free radical scavenging effects in concentration dependent manner. In vivo antioxidant activity of the extract was conducted in Swiss Albino mice. Levels of thio-barbituric acid reactive substances (TBARS, glutathione (GSH, and the activities of antioxidant enzymes including superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx in blood, liver, and kidney were analyzed using microtitre plate photometer. Administration of CCl4 caused significant increase in TBARS and decrease in GSH, SOD, CAT and GPx levels. In contrast, R. tomentosa extract (0.8 g/kg effectively prevented these alterations and maintained the antioxidant status. The results suggest that R. tomentosa extract can serve as a potent antioxidant.

  7. Limiting immunopathology: Interaction between carotenoids and enzymatic antioxidant defences.

    Science.gov (United States)

    Babin, A; Saciat, C; Teixeira, M; Troussard, J-P; Motreuil, S; Moreau, J; Moret, Y

    2015-04-01

    The release of reactive oxygen and nitrogen species (ROS and RNS) during the inflammatory response generates damages to host tissues, referred to as immunopathology, and is an important factor in ecological immunology. The integrated antioxidant system, comprising endogenous antioxidant enzymes (e.g. superoxide dismutase SOD, and catalase CAT) and dietary antioxidants (e.g. carotenoids), helps to cope with immune-mediated oxidative stress. Crustaceans store large amounts of dietary carotenoids for yet unclear reasons. While being immunostimulants and antioxidants, the interaction of these pigments with antioxidant enzymes remains unclear. Here, we tested the interaction between dietary supplementation with carotenoids and immune challenge on immune defences and the activity of the antioxidant enzymes SOD and CAT, in the amphipod crustacean Gammarus pulex. Dietary supplementation increased the concentrations of circulating carotenoids and haemocytes in the haemolymph, while the immune response induced the consumption of circulating carotenoids and a drop of haemocyte density. Interestingly, supplemented gammarids exhibited down-regulated SOD activity but high CAT activity compared to control ones. Our study reveals specific interactions of dietary carotenoids with endogenous antioxidant enzymes, and further underlines the potential importance of carotenoids in the evolution of immunity and/or of antioxidant mechanisms in crustaceans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Electrochemical behaviour of polyphenol rich fruit juices using disposable screen-printed carbon electrodes: towards a rapid sensor for antioxidant capacity and individual antioxidants.

    Science.gov (United States)

    Bordonaba, Jordi Giné; Terry, Leon A

    2012-02-15

    The analysis of antioxidants in different foodstuffs and especially fruits has become an active area of research which has lead to numerous antioxidant-assays being recently developed. Many antioxidants exhibit inherent electroactivity, and hence employing electrochemical methods could be a viable approach for evaluating the overall antioxidant capacity of a fresh produce matrix without the need for added reactive species. This work shows the possibility of using square wave voltammetry (SWV) and other electrochemical methods with disposable screen-printed carbon electrodes, to quantify and assess antioxidant activity and abundance of specific antioxidants, mainly polyphenols in selected soft fruit juices. Freshly squeezed black currant and strawberry juices of different cultivars and maturity stages were chosen according to known differences in their antioxidant profile. As a result of the increasing applied potential (0-1000 mV vs. Ag/AgCl) the electroactive compounds present in the juices were oxidised leading to a characteristic voltammetric profile for each of the samples analysed. Generally, black currant juices had greater oxidation peaks at lower potentials (<400 mV) which were indicators of higher antioxidant capacities. The relationship between sensor cumulative responses at different applied potentials and total or individual antioxidants, as determined by conventional spectrophotometric methods (FRAP, Folin-Ciocalteu) and HPLC (individual anthocyanins and ascorbate), respectively, are discussed in the context of the development of a rapid sensor for antioxidants. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Microbial production of antioxidant food ingredients via metabolic engineering.

    Science.gov (United States)

    Lin, Yuheng; Jain, Rachit; Yan, Yajun

    2014-04-01

    Antioxidants are biological molecules with the ability to protect vital metabolites from harmful oxidation. Due to this fascinating role, their beneficial effects on human health are of paramount importance. Traditional approaches using solvent-based extraction from food/non-food sources and chemical synthesis are often expensive, exhaustive, and detrimental to the environment. With the advent of metabolic engineering tools, the successful reconstitution of heterologous pathways in Escherichia coli and other microorganisms provides a more exciting and amenable alternative to meet the increasing demand of natural antioxidants. In this review, we elucidate the recent progress in metabolic engineering efforts for the microbial production of antioxidant food ingredients - polyphenols, carotenoids, and antioxidant vitamins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices.

    Science.gov (United States)

    Shekarforoush, Elhamalsadat; Mendes, Ana C; Baj, Vanessa; Beeren, Sophie R; Chronakis, Ioannis S

    2017-10-17

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  11. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    Directory of Open Access Journals (Sweden)

    Elhamalsadat Shekarforoush

    2017-10-01

    Full Text Available Electrospun phospholipid (asolectin microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC and the total phenolic content (TPC of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient and pressures (vacuum, ambient. 1H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  12. Antioxidant and antimutagenic activity of N-(2-carboxyethyl)chitosan

    International Nuclear Information System (INIS)

    Kogan, Grigorij; Skorik, Yury A.; Zitnanova, Ingrid; Krizkova, Livia; Durackova, Zdenka; Gomes, Carlos A.R.; Yatluk, Yury G.; Krajcovic, Juraj

    2004-01-01

    The antioxidant and antimutagenic activities of the novel carboxyethyl derivatives of chitosan with three different degrees of substitution have been assayed in vitro in the unicellular flagellate Euglena gracilis subjected to the action of genotoxic agents acridine orange and ofloxacin. It has been demonstrated that chitosan derivatives exhibit concentration-dependent protective antigenotoxic activity against both mutagens. It is suggested that different mechanisms may be involved in its protective action--antioxidant activity in case of ofloxacin-induced DNA damage, as well as possible interaction with the cell membrane that prevents acridine orange from reaching the genetic compartments and subsequent damaging DNA through intercalative binding. Direct adsorption of acridine orange on chitosan derivatives was ruled out as a possible mechanism of protection on the basis of spectrophotometric measurements. Dependence of the antimutagenic properties of the studied chitosan derivatives on the degree of substitution was reversed in experiments involving acridine orange and ofloxacin, which also indicated different mechanisms of protection involved in these two cases

  13. Antioxidant activity in selected Slovenian organic and conventional crops

    Directory of Open Access Journals (Sweden)

    Manca KNAP

    2015-12-01

    Full Text Available The demand for organically produced food is increasing. There is widespread belief that organic food is substantially healthier and safer than conventional food. According to literature organic food is free of phytopharmaceutical residues, contain less nitrates and more antioxidants. The aim of the present study was to verify if there are any differences in the antioxidant activity between selected Slovenian organic and conventional crops. Method of DPPH (2,2-diphenyl-1-picryhydrazyl was used to determine the antioxidant activity of 16 samples from organic and conventional farms. The same varieties of crops were analysed. DPPH method was employed to measure the antioxidant activity of polar antioxidants (AAp and antioxidant activity of fraction in ethyl acetate soluble antioxidants (EA AA. Descriptive statistics and variance analysis were used to describe differences between farming systems. Estimated differences between interactions for the same crop and different farming practice were mostly not statistically significant except for the AAp for basil and beetroot. Higher statistically significant values were estimated for conventional crops. For the EA AA in broccoli, cucumber, rocket and cherry statistically significant higher values were estimated for organic production.

  14. Rapid Increase of Genetically Diverse Methicillin-Resistant Staphylococcus aureus, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Bartels, Mette Damkjær; Boye, Kit; Larsen, Anders Rhod

    2007-01-01

    In Copenhagen, methicillin-resistant Staphylococcus aureus (MRSA) accounted for <15 isolates per year during 1980-2002. However, since 2003 an epidemic increase has been observed, with 33 MRSA cases in 2003 and 110 in 2004. We analyzed these 143 cases epidemiologically and characterized isolates ...... and soft tissue infections dominated. CO-MRSA with diverse genetic backgrounds is rapidly emerging in a low MRSA prevalence area. Udgivelsesdato: October...

  15. The Importance of Antioxidant Micronutrients in Pregnancy

    OpenAIRE

    Mistry, Hiten D.; Williams, Paula J.

    2011-01-01

    Pregnancy places increased demands on the mother to provide not only adequate nutrition to support her own health but also to enable the growth and development of the conceptus. A key role of a number of micronutrients and vitamins is their function as essential cofactors for or themselves acting as antioxidants. Oxidative stress is generated during normal placental development however expression of antioxidant enzymes within the placenta provides protection from undue damage. However, when s...

  16. Oxidative stress in bone remodeling: role of antioxidants.

    Science.gov (United States)

    Domazetovic, Vladana; Marcucci, Gemma; Iantomasi, Teresa; Brandi, Maria Luisa; Vincenzini, Maria Teresa

    2017-01-01

    ROS are highly reactive molecules which consist of a number of diverse chemical species, including radical and non-radical oxygen species. Oxidative stress occurs as a result of an overproduction of ROS not balanced by an adequate level of antioxidants. The natural antioxidants are: thiol compounds among which GSH is the most representative, and non-thiol compounds such as polyphenols, vitamins and also various enzymes. Many diseases have been linked to oxidative stress including bone diseases among which one of the most important is the osteoporosis. The redox state changes are also related to the bone remodeling process which allows the continuous bone regeneration through the coordinated action of bone cells: osteoclasts, osteoblasts and osteocytes. Changes in ROS and/or antioxidant systems seem to be involved in the pathogenesis of bone loss. ROS induce the apoptosis of osteoblasts and osteocytes, and this favours osteoclastogenesis and inhibits the mineralization and osteogenesis. Excessive osteocyte apoptosis correlates with oxidative stress causing an imbalance in favor of osteoclastogenesis which leads to increased turnover of bone remodeling and bone loss. Antioxidants either directly or by counteracting the action of oxidants contribute to activate the differentiation of osteoblasts, mineralization process and the reduction of osteoclast activity. In fact, a marked decrease in plasma antioxidants was found in aged or osteoporotic women. Some evidence shows a link among nutrients, antioxidant intake and bone health. Recent data demonstrate the antioxidant properties of various nutrients and their influence on bone metabolism. Polyphenols and anthocyanins are the most abundant antioxidants in the diet, and nutritional approaches to antioxidant strategies, in animals or selected groups of patients with osteoporosis or inflammatory bone diseases, suggest the antioxidant use in anti-resorptive therapies for the treatment and prevention of bone loss.

  17. Effects of Increasing Doses of UV-B on Main Phenolic Acids Content, Antioxidant Activity and Estimated Biomass in Lavandin (Lavandula x intermedia).

    Science.gov (United States)

    Usano-Alemany, Jaime; Panjai, Lachinee

    2015-07-01

    Lavandin is a well-known aromatic plant cultivated mainly for its valuable essential oil. Nonetheless, little attention has been paid so far to the quantification of other natural products such as polyphenols. Accordingly, we examined the effect of increasing doses of UV-B radiation on the main phenolic content, antioxidant activity and estimated biomass of one year old lavandin pots compared with pots grown outdoors. Significantly higher total phenolic content and concentration of main polyphenols have been found in outdoor plants. Rosmarinic acid has been described as the major phenolic compound in methanolic extracts (max. 25.9 ± 9.7 mg/g(-1) DW). Furthermore, we found that increasing doses of UV-B promote the plant growth of this species as well as the accumulation of phenolic compounds although with less antioxidant capacity in scavenging DPPH radicals. On the other hand, our results showed a remarkable variability among individual plants regarding the content of major phenolic acids. The application of UV-B doses during plant growth could be a method to promote biomass in this species along with the promotion of higher content of valuable secondary metabolites.

  18. Diabetic nephropathy and antioxidants.

    Science.gov (United States)

    Tavafi, Majid

    2013-01-01

    Oxidative stress has crucial role in pathogenesis of diabetic nephropathy (DN). Despite satisfactory results from antioxidant therapy in rodent, antioxidant therapy showed conflicting results in combat with DN in diabetic patients. Directory of Open Access Journals (DOAJ), Google Scholar,Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Treatment of DN in human are insufficient with rennin angiotensin system (RAS) blockers, so additional agent ought to combine with this management. Meanwhile based on DN pathogenesis and evidences in experimental and human researches, the antioxidants are the best candidate. New multi-property antioxidants may be improved human DN that show high power antioxidant capacity, long half-life time, high permeability to mitochondrion, improve body antioxidants enzymes activity and anti-inflammatory effects. Based on this review and our studies on diabetic rats, rosmarinic acid a multi-property antioxidant may be useful in DN patients, but of course, needs to be proven in clinical trials studies.

  19. Antioxidant activity of fermented broccoli and spinach by Kombucha culture

    Science.gov (United States)

    Artanti, Nina; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi Narrij; Maryati, Yati

    2017-11-01

    Broccoli (Brassica oleracea L.) and spinach (Amaranthus spp.) are vegetables that known to have many benefit for health. Previous studies on the fermentation of those vegetables using kombucha cultured showed increase in bioactive components such as total polyphenol content. The current studies was performed to evaluate the antioxidant activity of fermented spinach and broccoli before (feed) and after treatment with filtration (retentate and permeate). Filtration was conducted using Stirred Ultrafiltration Cell (SUFC) with UF membrane 100,000 MWCO mode at fixed condition (stirred rotation 300 rpm, room temperature, pressure 40 psia). Antioxidant evaluation was conducted using 2,2-diphenyl-1-picril hydrazyl (DPPH) free radical scavenging activity assay. The results showed that all samples from fermented broccoli showed antioxidant activity (feed 15.82% inhibition and retentate 15.29% inhibition), with the best antioxidant activity was obtained from permeate (75.98% inhibition). Whereas from fermented spinach only permeate showed antioxidant activity (21.84% inhibition) and it significantly lower than broccoli permeate. The mass spectrum of LCMS analysis on broccoli samples showed the present of several mass spectrum with (M+H) range from 148.1 to 442.5 in feed, retentate and permeate. In those samples (M+H) 360.4 always has the highest relative intensity. These results suggest that fermented broccoli has potential for development as functional drink for the source of antioxidant and the permeate obtained from filtration treatment significantly increased the antioxidant activity.

  20. Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel)

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Robert O. [Food and Industrial Oils Research, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604-3999 (United States)

    2005-06-25

    Biodiesel, an alternative diesel fuel derived from transesterification of vegetable oils or animal fats, is composed of saturated and unsaturated long-chain fatty acid alkyl esters. When exposed to air during storage, autoxidation of biodiesel can cause degradation of fuel quality by adversely affecting properties such as kinematic viscosity, acid value and peroxide value. One approach for increasing resistance of fatty derivatives against autoxidation is to treat them with oxidation inhibitors (antioxidants). This study examines the effectiveness of five such antioxidants, tert-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate (PrG) and {alpha}-Tocopherol in mixtures with soybean oil fatty acid methyl esters (SME). Antioxidant activity in terms of increasing oxidation onset temperature (OT) was determined by non-isothermal pressurized-differential scanning calorimetry (P-DSC). Analyses were conducted in static (zero gas flow) and dynamic (positive gas flow) mode under 2000 kPa (290 psig) pressure and 5 {sup o}C/min heating scan rate. Results showed that PrG, BHT and BHA were most effective and {alpha}-Tocopherol least effective in increasing OT. Increasing antioxidant loading (concentration) showed sharp increases in activity for loadings up to 1000 ppm followed by smaller increases in activity at higher loadings. Phase equilibrium studies were also conducted to test physical compatibility of antioxidants in SME-No. 2 diesel fuel (D2) blends. Overall, this study recommends BHA or TBHQ (loadings up to 3000 ppm) for safeguarding biodiesel from effects of autoxidation during storage. BHT is also suitable at relatively low loadings (210 ppm after blending). PrG showed some compatibility problems and may not be readily soluble in blends with larger SME ratios. Although {alpha}-Tocopherol showed very good compatibility in blends, it was significantly less effective than the synthetic antioxidants screened in this

  1. The Antioxidant Machinery of Young and Senescent Human Umbilical Vein Endothelial Cells and Their Microvesicles

    Directory of Open Access Journals (Sweden)

    Guillermo Bodega

    2017-01-01

    Full Text Available We examine the antioxidant role of young and senescent human umbilical vein endothelial cells (HUVECs and their microvesicles (MVs. Proteomic and Western blot studies have shown young HUVECs to have a complete and well-developed antioxidant system. Their MVs also contain antioxidant molecules, though of a smaller and more specific range, specialized in the degradation of hydrogen peroxide and the superoxide anion via the thioredoxin-peroxiredoxin system. Senescence was shown to be associated with a large increase in the size of the antioxidant machinery in both HUVECs and their MVs. These responses might help HUVECs and their MVs deal with the more oxidising conditions found in older cells. Functional analysis confirmed the antioxidant machinery of the MVs to be active and to increase in size with senescence. No glutathione or nonpeptide antioxidant (ascorbic acid and vitamin E activity was detected in the MVs. Endothelial cells and MVs seem to adapt to higher ROS concentrations in senescence by increasing their antioxidant machinery, although this is not enough to recover completely from the senescence-induced ROS increase. Moreover, MVs could be involved in the regulation of the blood plasma redox status by functioning as ROS scavengers.

  2. Antioxidant therapy: myth or reality?

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Selles, Alberto J. [Center of Pharmaceutical Chemistry, Havana (Cuba)]. E-mail: alberto@cqf.co.cu

    2005-07-15

    New terms such as oxidative stress, antioxidant products or pro-oxidant risks are becoming familiar and an increasing number of international scientific conferences and the publication of thousands of scientific articles is an indication of the growing interest that the subject awakens. The most publicized example is perhaps the French paradox, based on the apparent compatibility of a high fat diet with a low incidence of coronary atherosclerosis attributed to the regular consumption, by the French, of red wine and/or grape juice. Flavonoids, and other phenolic substances contained in red wine, are assigned with antioxidant properties, which lower the oxidation of low density lipoproteins and consequently, the risk of atherogenic diseases. Other examples are the aging process and its correlation with an increase of free radicals, and the correlation between the initiation and promotion of cancer and tissue injury by free radicals, which has induced the intake of antioxidant products as chemical factors that prevent the onset of the disease. Currently, the incidence of oxidative stress on the onset and evolution of more than 100 diseases is claimed by several researchers. All these are 'realities', which on the other hand, are lacking of more clinical evidence, are considered by both physicians and health regulatory bodies, either as 'myths' or of 'secondary' importance. In the attempts to destroy those myths, results of chemical, pre-clinical, and clinical works with a crude extract of mango (Mangifera indica L.) stem bark, which has been developed in Cuba, are reviewed, with a strong experimental evidence of its antioxidant, anti-inflammatory and immunomodulatory properties. (author)

  3. Antioxidant Generation during Coffee Roasting: A Comparison and Interpretation from Three Complementary Assays

    Directory of Open Access Journals (Sweden)

    Sebastian E. W. Opitz

    2014-11-01

    Full Text Available Coffee is a major source of dietary antioxidants; some are present in the green bean, whereas others are generated during roasting. However, there is no single accepted analytical method for their routine determination. This paper describes the adaption of three complementary assays (Folin-Ciocalteu (FC, ABTS and ORAC for the routine assessment of antioxidant capacity of beverages, their validation, and use for determining the antioxidant capacities of extracts from coffee beans at different stages in the roasting process. All assays showed a progressive increase in antioxidant capacity during roasting to a light roast state, consistent with the production of melanoidins having a higher antioxidant effect than the degradation of CGAs. However, the three assays gave different numbers for the total antioxidant capacity of green beans relative to gallic acid (GA, although the range of values was much smaller when chlorogenic acid (CGA was used as reference. Therefore, although all three assays indicated that there was an increase in antioxidant activity during coffee roasting, and the large differences in responses to GA and CGA illustrate their different sensitivities to different types of antioxidant molecule.

  4. Phenolic Profiles and Antioxidant Activity of Lotus Root Varieties

    Directory of Open Access Journals (Sweden)

    Yang Yi

    2016-06-01

    Full Text Available Lotus root attracts increasing attention mainly because of its phenolic compounds known as natural antioxidants. Its thirteen varieties were systematically analyzed on the content, distribution, composition and antioxidant activity of phenolic compounds for a better understanding of this aquatic vegetable. The respective mean contents of total phenolics in their flesh, peel and nodes were 1.81, 4.30 and 7.35 mg gallic acid equivalents (GAE/g fresh weight (FW, and those of total flavonoids were 3.35, 7.69 and 15.58 mg rutin equivalents/g FW. The phenolic composition determined by a high-performance liquid chromatography method varied significantly among varieties and parts. The phenolics of flesh were mainly composed of gallocatechin and catechin; those of peel and node were mainly composed of gallocatechin, gallic acid, catechin and epicatechin. The antioxidant activities of phenolic extracts in increasing order were flesh, peel and node; their mean concentrations for 50% inhibition of 2,2-diphenyl-1-picrylhydrazyl radical were 46.00, 26.43 and 21.72 µg GAE/mL, and their mean values representing ferric reducing antioxidant power were 75.91, 87.66 and 100.43 µg Trolox equivalents/100 µg GAE, respectively. “Zoumayang”, “Baheou”, “No. 5 elian” and “Guixi Fuou” were the hierarchically clustered varieties with relatively higher phenolic content and stronger antioxidant activity as compared with the others. Especially, their nodes and peels are promising sources of antioxidants for human nutrition.

  5. TORC1 Inhibition by Rapamycin Promotes Antioxidant Defences in a Drosophila Model of Friedreich's Ataxia.

    Directory of Open Access Journals (Sweden)

    Pablo Calap-Quintana

    Full Text Available Friedreich's ataxia (FRDA, the most common inherited ataxia in the Caucasian population, is a multisystemic disease caused by a significant decrease in the frataxin level. To identify genes capable of modifying the severity of the symptoms of frataxin depletion, we performed a candidate genetic screen in a Drosophila RNAi-based model of FRDA. We found that genetic reduction in TOR Complex 1 (TORC1 signalling improves the impaired motor performance phenotype of FRDA model flies. Pharmacologic inhibition of TORC1 signalling by rapamycin also restored this phenotype and increased the lifespan and ATP levels. Furthermore, rapamycin reduced the altered levels of malondialdehyde + 4-hydroxyalkenals and total glutathione of the model flies. The rapamycin-mediated protection against oxidative stress is due in part to an increase in the transcription of antioxidant genes mediated by cap-n-collar (Drosophila ortholog of Nrf2. Our results suggest that autophagy is indeed necessary for the protective effect of rapamycin in hyperoxia. Rapamycin increased the survival and aconitase activity of model flies subjected to high oxidative insult, and this improvement was abolished by the autophagy inhibitor 3-methyladenine. These results point to the TORC1 pathway as a new potential therapeutic target for FRDA and as a guide to finding new promising molecules for disease treatment.

  6. [Responses of antioxidation system of Cynodon dactylon to recirculated landfill leachate irrigation].

    Science.gov (United States)

    Wang, Ruyi; He, Pinjing; Shao, Liming; Zhang, Bin; Li, Guojian

    2005-05-01

    With pot experiment, this paper studied the membrane lipid peroxidation and the variations of antioxidation system in Cynodon dactylon under recirculated landfill leachate irrigation. The results showed that when irrigated with low dilution ratio ( 25%), there existed an obvious negative fect on Cynodon dactylon, i.e., the chlorophyll a/b ratio decreased, while cell membrane permeability and MDA and H2O2 contents increased, which meant that the membrane lipid peroxidation was accelerated. The contents antioxidants AsA, GSH and Car also showed the similar trend, i.e., they increased with increasing leachate dilution ratio when irrigated with low dilution ratio leachate, but decreased under medium or high dilution ratio leachate irrigation. Among three test anti-oxidative enzymes, SOD and POD activities showed a similar change test antioxidants, and POD activity was more sensitive, while CAT activity was on the contrary. The contents test antioxidants and the activities of SOD and POD were negatively and significantly correlated to MDA content, indicating that they might play an important role in preventing Cynodon dactylon from cell membrane lipid peroxdation.

  7. Soluble Antioxidant Compounds Regenerate the Antioxidants Bound to Insoluble Parts of Foods

    NARCIS (Netherlands)

    Celik, E.E.; Gökmen, V.; Fogliano, V.

    2013-01-01

    This study aimed to investigate the regeneration potential of antioxidant capacity of an insoluble food matrix. Investigations were performed in vitro with several food matrices rich in dietary fiber (DF) and bound antioxidants. After removal of the soluble fraction, the antioxidant capacity (AC) of

  8. Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.

    Science.gov (United States)

    Limpisophon, Kanokrat; Schleining, Gerhard

    2017-01-01

    This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film. © 2016 Institute of Food Technologists®.

  9. Influence of garlic extract on antioxidant status of chicken

    Directory of Open Access Journals (Sweden)

    Zuzana Jakubcova

    2014-02-01

    Full Text Available In 2006 the European Union banned the feeding of antibiotic growth promoters because of possible risk of drug resistance in human pathogens bacteria. This is the reason for the study of various phytogenic additives and their extracts as a natural source of biologically important compounds. Antimicrobial substances are a commonly included in chicken feed rations. They are used mainly as prevention against various diseases, and also to stimulate growth. The beneficial effects of garlic on animal organism resulting from their antimicrobial, antioxidative and antihypertensive properities. Studies focused on growth, conversion and meat quality of different types of animals indicate its positive effects. In our experiment we studied the influence of garlic extract in a dose of 0, 10 g and 15 g per 1 kg of chicken feed mixture. We focused on weight gains and antioxidant status of an organism. The experiment took 39 days. 54 seven-day-old chickens were included in the experiment. The chickens were weighed once a week, when aged 11, 17, 24, 31 and 38 days, at the same time of the day. The chickens had ad libitum access to feed ration and water. The chickens were taken blood sample at the end of the experiment when 39 days old. Their antioxidant status were measured using ABTS, FRAP and DPPH methods. Our results show that owing to higher concentration of garlic extract in feed ration the antioxidant status of observed chickens was increased. DPPH method showed an increase in antioxidant status of both experimental groups by 38% (a group with a dose of 10 g/kg of mixture and by 46% (a group with a dose of 15 g/kg of mixture compared to the control group. When using FRAP method, antioxidant status of both G10 and G15 groups increased by 24%, resp. 16%. No evidential differences in antioxidant activity between the experimental groups and control group were found using ABTS method. The supplement of garlic extract into a feed ration did not have any influence

  10. Antioxidant effect of green tea on polymer gel dosimeter

    International Nuclear Information System (INIS)

    Samuel, E J J; Sathiyaraj, P; Deena, T; Kumar, D S

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer

  11. Antiradical and antioxidant activities of new bio-antioxidants.

    Science.gov (United States)

    Kancheva, V D; Saso, L; Angelova, S E; Foti, M C; Slavova-Kasakova, A; Daquino, C; Enchev, V; Firuzi, O; Nechev, J

    2012-02-01

    Antioxidants could be promising agents for management of oxidative stress-related diseases. New biologically active compounds, belonging to a rare class of natural lignans with antiangiogenic, antitumoral and DNA intercalating properties, have been recently synthesized. These compounds are benzo[kl]xanthene lignans (1,2) and dihydrobenzofuran neolignans (3,4). The radical scavenging and chain-breaking antioxidant activities of compounds 1-4 were studied by applying different methods: radical scavenging activity by DPPH rapid test, chain-breaking antioxidant activity and quantum chemical calculations. All studied compounds were found to be active as DPPH scavengers but reaction time with DPPH and compounds' concentrations influenced deeply the evaluation. The highest values of radical scavenging activity (%RSAmax) and largest rate constants for reaction with DPPH were obtained for compounds 2 and 3. Comparison of %RSAmax with that of standard antioxidants DL-α-tocopherol (TOH), caffeic acid (CA) and butylated hydroxyl toluene (BHT) give the following new order of %RSA max: TOH (61.1%) > CA (58.6%) > 3 (36.3%) > 2 (28.1%) > 4 (6.7%) > 1 (3.6%) = BHT (3.6%). Chain-breaking antioxidant activities of individual compounds (0.1-1.0 mM) and of their equimolar binary mixtures (0.1 mM) with TOH were determined from the kinetic curves of lipid autoxidation at 80 °C. On the basis of a comparable kinetic analysis with standard antioxidants a new order of the antioxidant efficiency (i.e., protection factor, PF) of compounds 1-4 were obtained: 2 (7.2) ≥ TOH (7.0) ≥ CA (6.7) > 1 (3.1) > 3 (2.2) > ferulic acid FA (1.5) > 4 (0.6); and of the antioxidant reactivity (i.e. inhibition degree, ID): 2 (44.0) > TOH (18.7) > CA (9.3) > 1 (8.4) > 3 (2.8) > FA (1.0) > 4 (0.9). The important role of the catecholic structure in these compounds, which is responsible for the high chain-breaking antioxidant activity, is discussed and a reaction

  12. Rate of antioxidant degradation and color variations in dehydrated apples as related to water activity.

    Science.gov (United States)

    Lavelli, Vera; Vantaggi, Claudia

    2009-06-10

    Dehydrated apples were studied to evaluate the effects of water activity on the stability of their antioxidants and color. Apples were freeze-dried, ground, then equilibrated, and stored at eight water activity levels, ranging from 0.058 to 0.747, at 40 degrees C. Their contents of hydroxycinnamic acids, dihydrochalcones, catechin, epicatechin, polymeric flavan-3-ols, and hydroxymethylfurfural, their antioxidant activity values, and their Hunter colorimetric parameters were analyzed at different storage times. Antioxidant degradation followed pseudo-first-order kinetics and was accelerated by increasing the water activity. The order of antioxidant stability in the products at water activity levels below 0.316 was catechin, epicatechin, and ascorbic acid acid acid; however, in the products at water activity levels above 0.316, the degradation of all antioxidants was very fast. The hydroxymethylfurfural formation rate increased exponentially during storage, especially at high water activity levels. The antioxidant activity of the dehydrated apples decreased during storage, consistent with antioxidant loss. The variations of the colorimetric parameters, namely, lightness (L*), redness (a*), and yellowness (b*), followed pseudo-zero-order kinetics and were accelerated by increasing water activity. All analytical indices indicated that the dehydrated apples were stable at water activity levels below 0.316, with the degradation rate accelerating upon exposure to higher relative humidities. Above 0.316, a small increase in water activity of the product would sharply increase the degradation rate constants for both antioxidant and color variations.

  13. Increased Antioxidant Quality Versus Lower Quantity Of High Density Lipoprotein In Benign Prostatic Hyperplasia

    Directory of Open Access Journals (Sweden)

    Aydin Ozgur

    2015-10-01

    Full Text Available Background: Oxidative stress may be involved in the pathogenesis of every human disease. To understand its possible role in benign prostatic hyperplasia (BPH, we measured the overall oxidative status of patients with BPH and the serum activity of the high density lipoprotein (HDL-related antioxidant enzymes paraoxonase 1 (PON1 and arylesterase (ARE.

  14. Antioxidant responses in the polar marine sea-ice amphipod Gammarus wilkitzkii to natural and experimentally increased UV levels

    International Nuclear Information System (INIS)

    Krapp, Rupert H.; Bassinet, Thievery; Berge, Jorgen; Pampanin, Daniela M.; Camus, Lionel

    2009-01-01

    Polar marine surface waters are characterized by high levels of dissolved oxygen, seasonally intense UV irradiance and high levels of dissolved organic carbon. Therefore, the Arctic sea-ice habitat is regarded as a strongly pro-oxidant environment, even though its significant ice cover protects the ice-associated (=sympagic) fauna from direct irradiation to a large extent. In order to investigate the level of resistance to oxyradical stress, we sampled the sympagic amphipod species Gammarus wilkitzkii during both winter and summer conditions, as well as exposed specimens to simulated levels of near-natural and elevated levels of UV irradiation. Results showed that this amphipod species possessed a much stronger antioxidant capacity during summer than during winter. Also, the experimental UV exposure showed a depletion in antioxidant defences, indicating a negative effect of UV exposure on the total oxyradical scavenging capacity. Another sympagic organism, Onisimus nanseni, was sampled during summer conditions. When compared to G. wilkitzkii, the species showed even higher antioxidant scavenging capacity.

  15. Genetic Gain Increases by Applying the Usefulness Criterion with Improved Variance Prediction in Selection of Crosses.

    Science.gov (United States)

    Lehermeier, Christina; Teyssèdre, Simon; Schön, Chris-Carolin

    2017-12-01

    A crucial step in plant breeding is the selection and combination of parents to form new crosses. Genome-based prediction guides the selection of high-performing parental lines in many crop breeding programs which ensures a high mean performance of progeny. To warrant maximum selection progress, a new cross should also provide a large progeny variance. The usefulness concept as measure of the gain that can be obtained from a specific cross accounts for variation in progeny variance. Here, it is shown that genetic gain can be considerably increased when crosses are selected based on their genomic usefulness criterion compared to selection based on mean genomic estimated breeding values. An efficient and improved method to predict the genetic variance of a cross based on Markov chain Monte Carlo samples of marker effects from a whole-genome regression model is suggested. In simulations representing selection procedures in crop breeding programs, the performance of this novel approach is compared with existing methods, like selection based on mean genomic estimated breeding values and optimal haploid values. In all cases, higher genetic gain was obtained compared with previously suggested methods. When 1% of progenies per cross were selected, the genetic gain based on the estimated usefulness criterion increased by 0.14 genetic standard deviation compared to a selection based on mean genomic estimated breeding values. Analytical derivations of the progeny genotypic variance-covariance matrix based on parental genotypes and genetic map information make simulations of progeny dispensable, and allow fast implementation in large-scale breeding programs. Copyright © 2017 by the Genetics Society of America.

  16. The role of the antioxidant system during intense endurance exercise: lessons from migrating birds.

    Science.gov (United States)

    Cooper-Mullin, Clara; McWilliams, Scott R

    2016-12-01

    During migration, birds substantially increase their metabolic rate and burn fats as fuel and yet somehow avoid succumbing to overwhelming oxidative damage. The physiological means by which vertebrates such as migrating birds can counteract an increased production of reactive species (RS) are rather limited: they can upregulate their endogenous antioxidant system and/or consume dietary antioxidants (prophylactically or therapeutically). Thus, birds can alter different components of their antioxidant system to respond to the demands of long-duration flights, but much remains to be discovered about the complexities of RS production and antioxidant protection throughout migration. Here, we use bird migration as an example to discuss how RS are produced during endurance exercise and how the complex antioxidant system can protect against cellular damage caused by RS. Understanding how a bird's antioxidant system responds during migration can lend insights into how antioxidants protect birds during other life-history stages when metabolic rate may be high, and how antioxidants protect other vertebrates from oxidative damage during endurance exercise. © 2016. Published by The Company of Biologists Ltd.

  17. Antioxidant properties of catechins: Comparison with other antioxidants.

    Science.gov (United States)

    Grzesik, Michalina; Naparło, Katarzyna; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2018-02-15

    Antioxidant properties of five catechins and five other flavonoids were compared with several other natural and synthetic compounds and related to glutathione and ascorbate as key endogenous antioxidants in several in vitro tests and assays involving erythrocytes. Catechins showed the highest ABTS-scavenging capacity, the highest stoichiometry of Fe 3+ reduction in the FRAP assay and belonged to the most efficient compounds in protection against SIN-1 induced oxidation of dihydrorhodamine 123, AAPH-induced fluorescein bleaching and hypochlorite-induced fluorescein bleaching. Glutathione and ascorbate were less effective. (+)-catechin and (-)-epicatechin were the most effective compounds in protection against AAPH-induced erythrocyte hemolysis while (-)-epicatechin gallate, (-)-epigallocatechin gallate and (-)-epigallocatechin protected at lowest concentrations against hypochlorite-induced hemolysis. Catechins [(-)-epigallocatechin gallate and (-)-epicatechin gallate)] were most efficient in the inhibition of AAPH-induced oxidation of 2'7'-dichlorodihydroflurescein contained inside erythrocytes. Excellent antioxidant properties of catechins and other flavonoids make them ideal candidates for nanoformulations to be used in antioxidant therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Fisetin: A Dietary Antioxidant for Health Promotion

    OpenAIRE

    Khan, Naghma; Syed, Deeba N.; Ahmad, Nihal; Mukhtar, Hasan

    2013-01-01

    Significance: Diet-derived antioxidants are now being increasingly investigated for their health-promoting effects, including their role in the chemoprevention of cancer. In general, botanical antioxidants have received much attention, as they can be consumed for longer periods of time without any adverse effects. Flavonoids are a broadly distributed class of plant pigments that are regularly consumed in the human diet due to their abundance. One such flavonoid, fisetin (3,3′,4′,7-tetrahydrox...

  19. Elevated Carbon Dioxide Increases Contents of Flavonoids and Phenolic Compounds, and Antioxidant Activities in Malaysian Young Ginger (Zingiber officinale Roscoe. Varieties

    Directory of Open Access Journals (Sweden)

    Asmah Rahmat

    2010-11-01

    Full Text Available Zingiber officinale Roscoe. (Family Zingiberaceae is well known in Asia. The plant is widely cultivated in village gardens in the tropics for its medicinal properties and as a marketable spice in Malaysia. Ginger varieties are rich in physiologically active phenolics and flavonoids with a range of pharmacological activities. Experiments were conducted to determine the feasibility of increasing levels of flavonoids (quercetin, rutin, catechin, epicatechin, kaempferol, naringenin, fisetin and morin and phenolic acid (gallic acid, vanillic acid, ferulic acid, tannic acid, cinnamic acid and salicylic acid, and antioxidant activities in different parts of Malaysian young ginger varieties (Halia Bentong and Halia Bara with CO2 enrichment in a controlled environment system. Both varieties showed an increase in phenolic compounds and flavonoids in response to CO2 enrichment from 400 to 800 µmol mol-1 CO2. These increases were greater in rhizomes compared to leaves. High performance liquid chromatography (HPLC results showed that quercetin and gallic acid were the most abundant flavonoid and phenolic acid in Malaysian young ginger varieties. Under elevated CO2 conditions, kaempferol and fisetin were among the flavonoid compounds, and gallic acid and vanillic acid were among the phenolic compounds whose levels increased in both varieties. As CO2 concentration was increased from 400 to 800 µmol mol-1, free radical scavenging power (DPPH increased about 30% in Halia Bentong and 21.4% in Halia Bara; and the rhizomes exhibited more enhanced free radical scavenging power, with 44.9% in Halia Bentong and 46.2% in Halia Bara. Leaves of both varieties also displayed good levels of flavonoid compounds and antioxidant activities. These results indicate that the yield and pharmaceutical quality of Malaysian young ginger varieties can be enhanced by controlled environment production and CO2 enrichment.

  20. Supplementation of Superfine Powder Prepared from Chaenomeles speciosa Fruit Increases Endurance Capacity in Rats via Antioxidant and Nrf2/ARE Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ka Chen

    2014-01-01

    Full Text Available Chaenomeles speciosa fruit is a traditional herb medicine widely used in China. In this study, superfine powder of C. speciosa fruit (SCE, ground by supersonic nitrogen airflow at −140°C, was investigated to assess its in vitro antioxidant activity and in vivo antiphysical fatigue activity. SCE was homogenous (d<10 μm and rich in antioxidants like polyphenols, saponins, oleanolic acid, ursolic acid, ascorbic acid, and SOD. According to the in vitro experiments, SCE displayed promising antioxidant activity with powerful FARP, SC-DPPH, and SC-SAR activities. According to the in vivo experiments, rats supplemented with SCE had prolonged exhaustive swimming time (57% compared to the nonsupplemented rats. Meanwhile, compared to the nonsupplemented rats, the SCE-supplemented rats had higher levels of blood glucose and liver and muscular glycogen and lower levels of LA and BUN. Lower MDA, higher antioxidant enzymes (SOD, CAT, and GSH-Px activities, and upregulated Nrf2/ARE mediated antioxidant enzymes (HO-1, Trx, GCLM, and GCLC expression were also detected in the supplemented group. This study indicates that SCE is a potent antioxidant and antifatigue agent, and SCE could be a promising raw material for the food and pharmaceutical industries.

  1. The effect of microwave roasting on the antioxidant properties of the Bangladeshi groundnut cultivar.

    Science.gov (United States)

    Ali, Abbas; Islam, Anowarul; Pal, Tarun K

    2016-01-01

    Groundnut seeds are an important source of bioactive phenolic compounds with noteworthy antioxidant capacity, which may be enhanced by the microwave roasting process. The aim of this work is   to study the changes in antioxidant activity in groundnut seeds during microwave roasting, as a function of roasting time and extract concentration, in order to maximise the phenolic content and antioxidant activity of roasted seeds. The study was conducted to evaluate total phenolic content (TPC), total flavonoid content (TFC), and antioxidative activity of methanolic (GME), ethanolic (GEE), and chloroform (GCE) extracts and methanolic extract of oil (GMO) from groundnut seeds exposed to microwaves. The antioxidant activity was investigated using several assays, namely phosphomolybdenum assay, DPPH radical scavenging activity, H2O2 scavenging activity, hydroxyl radical scavenging activity and reducing power. The microwave roasting process significantly increased the TPC, whilst the TFC decreased with roasting time. Antioxidant activity increased with increased roasting time and extract concentration in all extracts. Antioxidant activity increased significantly at lower concentrations; however, the rate of increment decreased gradually as the concentration of the solvent extract increased. Thus, among all the extracts, methanol extracts at all roasting times and extract concentrations appeared to display the highest effectiveness. The various scavenging activities of the samples are ranked in the following order: GME > GEE > GCE > GMO, in both raw and roasted samples. Both roasting time and extract concentration were found to be critical factors in determining the overall quality of the product. This investigation is important to determine optimum roasting conditions, in order to maximise the anti-oxidative health benefits of the Bangladeshi groundnut cultivar.

  2. Effect of natural antioxidant mixtures on margarine stability

    International Nuclear Information System (INIS)

    Azizkhani, M.; Zandi, P.

    2010-01-01

    In spite of their efficiency, the use of synthetic antioxidants such as tert-butyl hydroquinone (TBHQ) has been questioned because of their possible carcinogenic effects. The purpose of this study was to establish a mixture of natural antioxidants that provides the optimum oxidative stability for margarine. Antioxidant treatments included 10 various mixtures (F1- F10) containing 100-500 ppm tocopherol mixture (Toc), 100-200 ppm ascorbyl palmitate (AP), 100-200 ppm rosemary extract (Ros) and 1000 ppm lecithin(Lec) along with a control or F0 (with no antioxidant) and F11 containing 120 ppm TBHQ. The effect of antioxidant mixtures on the stability of margarine samples during an oven test (60 +-1 deg. C), rancimat test at 110 deg. C and storage at 4 deg. C was evaluated. The final ranking of the natural antioxidant mixtures was as follows: F2, F10>F5, F9>F8>F1, F3, F4>F6, F7. Considering the results of this research and ranking criteria, F2 (200 ppmAp + 200 ppmRos) and F10 (200 ppmRos + 200 ppm Toc + 1000 ppm Lec) were recommended as substitutes for TBHQ to maintain the quality and increase the shelf-life of margarine. (author)

  3. Addition of anacardic acid as antioxidants in broiler chicken mortadella

    Directory of Open Access Journals (Sweden)

    Virgínia Kelly Gonçalves ABREU

    2015-09-01

    Full Text Available AbstractThe effect of anacardic acid on lipid stability and coloration of chicken mortadella was investigated. Antioxidants were added to chicken mortadellas, according to the treatments: no added antioxidant, 100 ppm butylated hydroxytoluene and 50, 100, 150 and 200 ppm anacardic acid. The mortadellas were stored for 90 days at 4 °C, and the analysis of lipid oxidation and color were performed. For TBARS, there was linear reduction with increased anacardic acid. According to the means test, 200 ppm anacardic acid provided the lower TBARS values. The redness decreased during storage, and, as reported by the means test, mortadella containing 200 ppm anacardic acid had lower values. The lightness of mortadellas decreased during storage. Also in accordance with the means test, mortadellas containing antioxidants had same lightness than control. The yellowness of mortadellas increased during storage. Thus, the anacardic acid is a potential natural antioxidant that could be included in chicken mortadella formulations before cooking.

  4. Electron microscopy study of antioxidant interaction with bacterial cells

    Science.gov (United States)

    Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.

    2000-10-01

    To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.

  5. Composition of antioxidants and amino acids in Stevia leaf infusions.

    Science.gov (United States)

    Periche, Angela; Koutsidis, Georgios; Escriche, Isabel

    2014-03-01

    Stevia, a non-caloric natural sweetener with beneficial properties and considerable antioxidants and amino acids, is increasingly consumed as an infusion. This work evaluates the influence of the conditions (temperature: 50, 70 or 90 °C and time: 1, 5, 20 or 40 min) applied to obtain Stevia infusions, on antioxidants (total phenols, flavonoids and antioxidant activity) and amino acids. The total concentration of the eleven amino acids found was 11.70 mg/g in dried leaves and from 6.84 to 9.11 mg/g per gram of Stevia in infusions. However, infusions showed higher levels of certain amino acids (alanine, asparagine, leucine and proline), and greater values of the three antioxidant parameters in comparison with dry leaves. Temperature had more influence (minimum values at 50 °C and maximum at 90 °C) than time in the case of antioxidants. At 90 °C there were no important increases in the extraction of antioxidant compounds after 5 min; each gram of Stevia had 117 mg trolox (total antioxidant activity), 90 mg gallic acid (total phenols) and 56 mg catechin equivalents (flavonoids). Varying the temperature and time conditions no notable differences were observed in the concentrations of the majority of amino acids. However, the infusion treatment at 90 °C for 5 min was the best, as it gave the highest yield of 8 of the 11 amino acids. Therefore, with respect to the compounds analyzed in this study, the best way to obtain Stevia leaf infusions is the same as the domestic process, almost boiling water for a short time.

  6. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery

    Science.gov (United States)

    McClung, Joseph M.; DeRuisseau, Keith C.; Whidden, Melissa A.; Van Remmen, Holly; Richardson, Arlan; Song, Wook; Vrabas, Ioannis S.; Powers, Scott K.

    2010-01-01

    Low levels of reactive oxygen species (ROS) production are necessary to optimize muscle force production in unfatigued muscle. In contrast, sustained high levels of ROS production have been linked to impaired muscle force production and contraction-induced skeletal muscle fatigue. Using genetically engineered mice, we tested the hypothesis that the independent transgenic overexpression of catalase (CAT), copper/zinc superoxide dismutase (CuZnSOD; SOD1) or manganese superoxide dismutase (MnSOD; SOD2) antioxidant enzymes would negatively affect force production in unfatigued diaphragm muscle but would delay the development of muscle fatigue and enhance force recovery after fatiguing contractions. Diaphragm muscle from wild-type littermates (WT) and from CAT, SOD1 and SOD2 overexpressing mice were subjected to an in vitro contractile protocol to investigate the force–frequency characteristics, the fatigue properties and the time course of recovery from fatigue. The CAT, SOD1 and SOD2 overexpressors produced less specific force (in N cm−2) at stimulation frequencies of 20–300 Hz and produced lower maximal tetanic force than WT littermates. The relative development of muscle fatigue and recovery from fatigue were not influenced by transgenic overexpression of any antioxidant enzyme. Morphologically, the mean cross-sectional area (in μm2) of diaphragm myofibres expressing myosin heavy chain type IIA was decreased in both CAT and SOD2 transgenic animals, and the percentage of non-contractile tissue increased in diaphragms from all transgenic mice. In conclusion, our results do not support the hypothesis that overexpression of independent antioxidant enzymes protects diaphragm muscle from contraction-induced fatigue or improves recovery from fatigue. Moreover, our data are consistent with the concept that a basal level of ROS is important to optimize muscle force production, since transgenic overexpression of major cellular antioxidants is associated with

  7. Comparison of the antioxidant effects of carnosic acid and synthetic antioxidants on tara seed oil.

    Science.gov (United States)

    Li, Zhan-Jun; Yang, Feng-Jian; Yang, Lei; Zu, Yuan-Gang

    2018-04-04

    In the present study, tara seed oil was obtained by supercritical fluid extraction and used to investigate the antioxidant strength of carnosic acid (CA) compared with conventional synthetic antioxidants. The antioxidants were added to the tara seed oil at 0.2 mg of antioxidant per gram of oil. The samples were then submitted to at 60 °C 15 days for an accelerated oxidation process, with samples taken regularly for analysis. After oxidation, the samples were analyzed to determine the peroxide value, thiobarbituric acid reactive substances, conjugated diene content, and free fatty acid content. CA was investigated at three purity levels (CA20, CA60, CA99), and compared with three synthetic antioxidants (butylatedhydroxyanisole, butylatedhydroxytoluene, and tert-butylhydroquinone). The oxidation indicators showed that CA was a strong antioxidant compared to the synthetic antioxidants. The antioxidant activities decreased in the order: tert-butylhydroquinone > CA99 > CA60 > CA20 > butylatedhydroxyanisole > butylatedhydroxytoluene. These results show that CA could be used to replace synthetic antioxidants in oil products, and should be safer for human consumption and the environment.

  8. Developing SyrinOX total antioxidant capacity assay for measuring antioxidants in humans.

    Science.gov (United States)

    Prasetyo, Endry N; Knes, Otto; Nyanhongo, Gibson S; Guebitz, Georg M

    2013-02-01

    Accurate monitoring of the antioxidant status or of oxidative stress in patients is still a big challenge in clinical laboratories. This study investigates the possibility of applying a newly developed total antioxidant capacity assay method based on laccase or peroxidase oxidized syringaldazine [Tetramethoxy azobismethylene quinone (TMAMQ)] which is referred to here as SyrinOX, as a diagnostic tool for monitoring both oxidative stress and antioxidant status in patients. Attempts to adapt the Randox total antioxidant procedure [simultaneous incubation of the radical generating system (metmyoglobin and H(2) O(2) ) and antioxidant sample] for SyrinOX were abandoned after it was discovered that the H(2) O(2) reacted with enzymatically generated TMAMQ and ABTS radicals at a rate of 6.4 × 10(-2) /μM/s and 5.7 × 10(-3) /μM/s respectively. Thus this study for the first time demonstrates the negative effects of H(2) O(2) in the Randox system. This leads to erroneous results because the total antioxidant values obtained are the sum of radicals reduced by antioxidants plus those reacting with the radical generating system. Therefore they should be avoided not only for this particular method but also when using other similar methods. Consequently, SyrinOX is best applied using a three-step approach involving, production of TMAMQ, recovery and purification (free from enzyme and other impurities) and then using TMAMQ for measuring the total antioxidant capacity of samples. Using this approach, the reaction conditions for application of SyrinOX when measuring the total antioxidant capacity of plasma sample were determined to be 50% (v/v) ethanol/50 mM sodium succinate buffer pH 5.5, between 20 and 25 °C for at least 1 h. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal of Experimental Pathology.

  9. Natural phenolic antioxidants in human fluids: analytical approaches and antioxidant capacity studies

    International Nuclear Information System (INIS)

    Zhang, K.; Zuo, Y.

    2006-01-01

    Phenolic compounds are the most abundant natural antioxidants in our diet. Epidemiological studies have shown the possible prevention effects of consumption of fruits and vegetables rich in phenolic compounds on degenerative diseases, such as cardiovascular diseases and cancers. However, there is a serious lack of fundamental knowledge on the uptake and metabolism of phenolic compounds in humans. It is clear that phenolic molecules, only absorbed by humans, can exert biological effects. This review presents a current knowledge on the analytical methods, antioxidant capacity measurements, as well as research strategies related to natural phenolic antioxidants on human health. Both GC-MS and LC-MS have proved to be very useful analytical techniques that can be employed to identify and quantitate targeted phenolic antioxidants and their metabolites in biofluids. Free radical quenching tests provide a direct measurement of antioxidant capacity but lack specificity and may oversimplify the in vivo human physiological environment. Research strategies are diverse and mainly focused on positive health effect of antioxidants. In the future studies, multiple potential bioactivities, both positive and negative, should be considered. (author)

  10. The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants

    Science.gov (United States)

    Wang, Gaohong; Hu, Chunxiang; Li, Dunhai; Zhang, Delu; Li, Xiaoyan; Chen, Kun; Liu, Yongding

    UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kütz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem II (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of MDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation.

  11. Natural antioxidants in chemoprevention

    Energy Technology Data Exchange (ETDEWEB)

    Dragsted, L.O. [Danish Veterinary and Food Administration, Soeberg (Denmark). Inst. of Toxicology

    1998-12-31

    It is well documented that diets rich in fruits and vegetables can reduce the risk of most common cancers, and that some food items from this class may be protective against heart disease. Several explanations have been offered, one of which relates to the natural presence of potent antioxidants in plant products. Destructive oxidation of lipids, proteins, DNA, and other important biomolecules, often involving radical chain reactions, affect vital cellular structures and their normal functions. Such processes are involved in the development of cancer as well as heart disease, and it seems logical to assume that antioxidants might be preventive. Large human trials with natural antioxidants have not provided a uniform support, however, for the hypothesis that antioxidation per se may prevent cancer or coronary heart disease (CHD). One reason is that other effects, unrelated to antioxidation, may compromise their preventive effects. Another reason may be that many potent antioxidants can also act as pro-oxidants under certain conditions. The interpretation of animal trials is likewise often compromised by the fact that most antioxidants have other physiological effects which might very well explain their protective action or lead to toxic side-effects. (orig.)

  12. Antioxidant potential of Viscum articulatum burm

    Directory of Open Access Journals (Sweden)

    Kannoth Mukundan Geetha

    2013-01-01

    Full Text Available Background: Free radical stress leads to tissue injury and progression of disease conditions such as arthritis, hemorrhagic shock, atherosclerosis, diabetes, hepatic injury, aging and ischemia, reperfusion injury of many tissues, gastritis, tumor promotion, neurodegenerative diseases, and carcinogenesis. Safer antioxidants suitable for long term use are needed to prevent or stop the progression of free radical mediated disorders. Viscum articulatum is traditionally used for various oxidative stress induced disorders including liver disorders. Aims: The present study investigated antioxidant activities of the methanolic extract of Viscum articulatum in in vivo and in vitro models to provide scientific basis for the traditional usage of this plant. Materials and Methods: The in vitro antioxidant activity was evaluated by determining the ability of the extract to scavenge 2, 2-diphenyl-2-picrylhydrazyl (DPPH, nitric oxide, 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS, and hydrogen peroxide (H 2 O 2 which were assessed using spectroscopic methods. Results: The extract showed promising dose dependant free radical scavenging property in all the methods used. The extract effectively increased the superoxide dismutase and catalase activity and decreased lipid peroxidation in the treated groups indicating in vivo antioxidant activity. The extract also effectively decreased the serum levels of SGOT, SGPT, SALP, and total protein levels compared to toxicant control rats. Conclusion: The results obtained from this study indicate that Viscum articulatum is a potential source of antioxidant which would help in preventing many free radical mediated diseases.

  13. Abscisic Acid Induced Changes in Production of Primary and Secondary Metabolites, Photosynthetic Capacity, Antioxidant Capability, Antioxidant Enzymes and Lipoxygenase Inhibitory Activity of Orthosiphon stamineus Benth.

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2013-07-01

    Full Text Available An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2−, phenylalanine ammonia lyase (PAL activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX, catalase (CAT, superoxide dismutase (SOD and Lipoxygenase inhibitory activity (LOX] under four levels of foliar abscisic acid (ABA application (0, 2, 4, 6 µM for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2−, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05 and O2− (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05. This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  14. Skin and antioxidants.

    Science.gov (United States)

    Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar

    2013-04-01

    It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.

  15. EFFECT OF SELENIUM SUPPLEMENTATION ON PIG PRODUCTION PROPERTIES, ANTIOXIDANT STATUS AND MEAT QUALITY

    Directory of Open Access Journals (Sweden)

    Tomislav Šperanda

    2013-12-01

    Full Text Available Food containing functional ingredients to achieve a positive effect on health and reducing the risk of infection is increasing production. It is also very important to improve the quality of pork with respect to change the genetic makeup of pigs that raised leanness, being inversely correlated with the quality of meat. This study monitored the effectiveness of addition of higher doses of organic selenium in the diet of fattening pigs in relation to their growth, immunity, antioxidant power, the quality of meat and possibility of meat enriching with selenium. The experiment was carried out on 100 pigs (crossbred WJxSLxP of both sexes, from 28 kg to 98 kg body weight during a period of 98 days. Piglets fed the finished feed mixture for fattening up to 60 kg (ST-1 and a mixture for fattening up to 100 kg (DM-2 in addition, by the groups as follows: K-0. 3 mg/kg organic selenium, P1-0.5 mg/kg inorganic selenium, P2-0.5 mg/kg organic selenium, P3-0.5 mg/ kg organic selenium +0.2% zeolite clinoptilolite treated vibrotehnology and P4-gradual increase in selenium so that the concentration of the last month was 0.7 mg/ kg diet of organic selenium. All groups of pigs fed high concentration of organic selenium had a higher proportion of lymphocytes, especially CD4 T lymphocytes. Glutathione peroxidase activity was higher in all groups fed elevated selenium levels and significantly higher in the P3 and P4 groups 71st and 98th days of the trials. Glutathione reductase was significantly higher in the P3 and P4 group 98th days compared to the control. Antioxidant indicators suggested increased antioxidant protection in groups supplemented with 0.5 ppm organic selenium and selenium formulations of the same with the addition of zeolite under stress intensive pig production. No differences were found in the products of lipid peroxidation (TBARS in raw meat or in meat after a week in refrigerator storage. By histological examination statistically higher level of

  16. Quality Characteristics and Antioxidant Activity of Yogurt Supplemented with Aronia (Aronia melanocarpa) Juice.

    Science.gov (United States)

    Nguyen, Linh; Hwang, Eun-Sun

    2016-12-01

    We investigated the quality characteristics and antioxidant activities of yogurt supplemented with 1%, 2%, and 3% aronia juice and fermented for 24 h at 37°C. The total acidity increased with increasing levels of aronia juice and incubation time. Lightness and yellowness of the yogurt decreased, but redness increased, with increasing aronia juice content and incubation time. The number of lactic acid bacteria (LAB) increased with increased incubation time, and yogurt containing 2% and 3% aronia juice showed higher LAB counts than 1% aroinia juice-supplemented yogurt. The total polyphenol and flavonoid contents increased proportionally with increasing levels of aronia juice. Antioxidant activity of aronia-containing yogurt was significantly higher than that of the control and increased proportionally with aronia juice concentration. Yogurt with 2% aronia juice had the best taste ( P antioxidant potential of yogurt.

  17. The Effect of Antioxidants on Antibiotic Sensitivity of Bacteria

    OpenAIRE

    Azade ATTAR; Akif İ. QURBANOV

    2007-01-01

    Objective: The effect of different concentrations of antioxidants (ascorbic acid, emoxipin, tocopherol acetate and ionol) on antibiotic sensitivity of bacteria was studied. Method: Bacteria belong to different respiration types: Pseudomonas aeruginosa as aerobe and Escherichia coli as facultative anaerobe were used. Antibiotic sensitivity of microorganisms was determined as minimum inhibitory concentration (MIC) by dilution test. Results: Different concentrations of antioxidants increased the...

  18. Determination of antioxidant activity of bioactive peptide fractions obtained from yogurt.

    Science.gov (United States)

    Aloğlu, H Sanlıdere; Oner, Z

    2011-11-01

    In this study, physicochemical and microbiological properties of traditional and commercial yogurt samples were determined during 4 wk of storage. Proteolytic activity, which occurs during the storage period of yogurt samples, was also determined. Peptide fractions obtained from yogurts were investigated and the effect of proteolysis on peptide release during storage was determined. The antioxidant activities of peptides released from yogurt water-soluble extracts (WSE) and from HPLC fractions were determined by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. The antioxidant activity of WSE from traditional yogurt was greater than that of WSE from commercial yogurts. In analysis by the ABTS method, mean values increased from 7.697 to 8.739 mM Trolox/g in commercial yogurts, and from 10.115 to 13.182 mM Trolox/g in traditional yogurts during storage. Antioxidant activities of peptides released from HPLC fractions of selected yogurt samples increased 10 to 200 times. In all yogurt samples, the greatest antioxidant activity was shown in the F2 fraction. After further fractionation of yogurt samples, the fractions coded as F2.2, F2.3, F4.3, and F4.4 had the highest antioxidant activity values. Total antioxidant activity of yogurts was low but after purification of peptides by fractionation in HPLC, peptide fractions with high antioxidant activity were obtained. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Oral antioxidant therapy for marginal dry eye.

    Science.gov (United States)

    Blades, K J; Patel, S; Aidoo, K E

    2001-07-01

    To assess the efficacy of an orally administered antioxidant dietary supplement for managing marginal dry eye. A prospective, randomised, placebo controlled trial with cross-over. Eye Clinic, Department of Vision Sciences, Glasgow Caledonian University. Forty marginal dry eye sufferers composed of 30 females and 10 males (median age 53 y; range 38-69 y). Baseline assessments were made of tear volume sufficiency (thread test), tear quality (stability), ocular surface status (conjunctival impression cytology) and dry eye symptoms (questionnaire). Each subject was administered courses of active treatment, placebo and no treatment, in random order for 1 month each and results compared to baseline. Tear stability and ocular surface status were significantly improved following active treatment (Ptreatment (P>0.05). Absolute increase in tear stability correlated with absolute change in goblet cell population density. Tear volume was not improved following any treatment period and dry eye symptom responses were subject to placebo effect. Oral antioxidants improved both tear stability and conjunctival health, although it is not yet understood whether increased ocular surface health mediates increased tear stability or vice versa. This study was supported by a PhD scholarship funded by the Department of Vision Sciences, Glasgow Caledonian University, Scotland. Antioxidant supplements and placebos were kindly donated by Vitabiotics.

  20. Effects of baking conditions, dough fermentation, and bran particle size on antioxidant properties of whole-wheat pizza crusts.

    Science.gov (United States)

    Moore, Jeffrey; Luther, Marla; Cheng, Zhihong; Yu, Liangli Lucy

    2009-02-11

    This study investigated the effects of processing conditions including bran particle size, dough fermentation time, and baking time and temperature on the extractable antioxidant properties of whole-wheat pizza crust. Experiments were carried out using two different varieties of hard white winter wheat, Trego and Lakin. Antioxidant properties examined included oxygen radical absorbing capacity (ORAC), hydroxyl radical scavenging capacity (HOSC), relative 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity (RDSC), cation 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging capacity, total phenolic contents (TPC), and ferulic acid contents. Results indicated that bran particle size had no effect on the antioxidant properties evaluated. Increasing dough fermentation time from 0 to 48 h had no significant influence on antioxidant properties except HOSC, which increased as much as 28%, possibly as a result of increase in soluble free ferulic acid, which increased as much as 130%. Increasing baking temperature from 204 to 288 degrees C with a 7 min bake time increased all evaluated antioxidant properties by as much as 82%. Increasing baking time from 7 to 14 min with 204 degrees C baking temperature might increase some antioxidant properties as much as 60%. The results from this study suggest that longer dough fermentation times and increased baking time or temperature may be potential approaches to increase the antioxidant availability in whole-wheat pizza crust.

  1. What can be offered to couples at (possibly) increased genetic risk?

    OpenAIRE

    Read, Andrew P.; Donnai, Dian

    2012-01-01

    We review the reasons why a couple might seek specialist genetic counselling about a possible reproductive risk and the options available to them. Most commonly, the couple will be concerned about the risk of recurrence of a medical condition that has already occurred in the family. Sometimes, the increased risk may come from their ethnicity or because of a consanguineous marriage, rather than because any problem has occurred previously. The geneticist must identify the exact nature of any pr...

  2. Preclinical evaluation of natural antioxidants for development of radioprotector

    International Nuclear Information System (INIS)

    Chaudhury, N.K.; Adhikary, J.S.; Mishra, K.

    2014-01-01

    Whole body gamma ray exposure is harmful to all organs and systems. Various health effects depend on the radiation dose and dose rate and nature of exposure. Natural antioxidants have desired properties for development of radioprotector. However poor bioavailability and relatively low efficacy require high dose for intended applications. Selection of appropriate antioxidant is an important step for undertaking detailed preclinical evaluation in recommended animal models. Our focus is on natural antioxidants for development of radioprotector. We have performed extensive studies on selection of antioxidants using standard assay methods and during the course of these studies we have modified a number of assays. A number of antioxidants were considered for screening of potential radioprotectors. The antioxidants studied are available commercially as chemically pure compound. The outcome was selection of sesamol, component of sesame oil. Toxicity studies were carried out using OECD 423 toxicity guideline and undertaken efficacy studies in C57BL/6 mice and compared with another antioxidant melatonin. Sesamol (250 mg/kg body weight) has shown survival about 76% which was comparable to 86% with melatonin at lethal radiation dose. Further evaluation studies have been performed using radiation doses at LD 50/30 and sub lethal range and the antioxidant dose was also lowered. Sesamol has increased antioxidant level in mice, lowered radiation induced damages in radiosensitive organs, facilitated recovery of haematopoietic and gastrointestinal systems. Sesamol also provided protection in germs cells. Bacterial translocation from GI in irradiated mice was also inhibited in the presence of sesamol. Chromosomal aberrations and micronuclei formation were lowered in bone marrow of mice and in human peripheral blood lymphocytes. Interestingly, both the antioxidants are from different origin but demonstrated similar trend in all measured parameters. Pharmacokinetic studies are in

  3. Correlations between plasma noradrenaline concentrations, antioxidants, and neutrophil counts after submaximal resistance exercise in men

    Science.gov (United States)

    Ramel, A; Wagner, K; Elmadfa, I

    2004-01-01

    Objectives: To investigate noradrenaline concentrations, neutrophil counts, plasma antioxidants, and lipid oxidation products before and after acute resistance exercise. Methods: 17 male participants undertook a submaximal resistance exercise circuit (10 exercises; 75% of the one repetition maximum; mean (SD) exercise time, 18.6 (1.1) minutes). Blood samples were taken before and immediately after exercise and analysed for plasma antioxidants, noradrenaline, neutrophils, and lipid oxidation products. Wilcoxon's signed-rank test and Pearson's correlation coefficient were used for calculations. Results: Neutrophils, noradrenaline, fat soluble antioxidants, and lipid oxidation products increased after exercise. Noradrenaline concentrations were associated with higher antioxidant concentrations. Neutrophils were related to higher concentrations of conjugated dienes. Conclusions: Submaximal resistance exercise increases plasma antioxidants. This might reflect enhanced antioxidant defence in response to the oxidative stress of exercise, though this is not efficient for inhibiting lipid oxidation. The correlation between noradrenaline concentrations and plasma antioxidants suggests a modulating role of the stress hormone. Neutrophils are a possible source of oxidative stress after resistance exercise. PMID:15388566

  4. Phenolic compounds and antioxidant activity of edible flowers

    Directory of Open Access Journals (Sweden)

    Marta Natalia Skrajda

    2017-08-01

    Full Text Available Introduction: Edible flowers has been used for thousands of years. They increase aesthetic appearance of food, but more often they are mentioned in connection with biologically active substances. The main ingredient of the flowers is water, which accounts for more than 80%. In small amounts, there are also proteins, fat, carbohydrates, fiber and minerals. Bioactive substances such as carotenoids and phenolic compounds determine the functional properties of edible flowers. Aim: The aim of this work was to characterize the phenolic compounds found in edible flowers and compare their antioxidant activity. Results: This review summarizes current knowledge about the usage of edible flowers for human nutrition. The work describes the antioxidant activity and phenolic compounds of some edible flowers. Based on literature data there is a significant difference both in content of phenolic compounds and antioxidant activity between edible flowers. These difference reaches up to 3075-fold in case of antioxidant potential. Among described edible flowers the most distinguishable are roses, peonies, osmanthus fragans and sambuco nero. Conclusions: Edible flowers are the new source of nutraceuticals due to nutritional and antioxidant values.

  5. Antioxidant properties of commercial alcoholic and nonalcoholic beverages.

    Science.gov (United States)

    Lugasi, Andrea; Hóvári, Judit

    2003-04-01

    Recent interest in food phenolics has increased greatly, because of their antioxidant and free radical scavenging abilities. Popular beverages in the world include tea, coffee, cocoa, beer, wine and fruit/vegetable juices. All of these beverages contain phenolic compounds. In present study total polyphenol content and in vitro antioxidant properties were investigated in 16 red wines, 5 white wines, 5 lager beers, 3 dark beers, 17 fruit juices and 5 vegetable juices. High polyphenol content was measured in red wines (1720 +/- 546 mg x L(-1)) and in some fruit juices such as elderberry and prunes (5,680 and 1,807 mg x L(-1), respectively). The concentration of polyphenols was between 159 and 5,680 mg x L(-1) in fruit juices and between 255 and 696 mg x L(-1) in vegetable ones, while low level of phenolics was observed in dark and lager beers and white wines (473, 376 and 392 mg x L(-1), respectively). All samples exhibited significant antioxidant properties such as hydrogen-donating ability, reducing power, chelating ability and total antioxidant status (TAS) value. These antioxidant properties strongly correlated with the total polyphenol content of the beverages.

  6. Effect Of GAMMA Irradiated Thyme As Natural Antioxidant On Hypercholesterolemia Senile Rats

    International Nuclear Information System (INIS)

    El-Shahat, A.N.; Hamza, R.G.

    2011-01-01

    Hypercholesterolemia, high cholesterol diet and oxidative stress increase serum total cholesterol and LDL-cholesterol levels resulting in increased risk for development of atherosclerosis. Thyme (as antioxidant) has been commonly used in foods mainly for the flavour and preservation and also as herbal medicinal products. Antioxidants play an important role in inhibiting and scavenging free radicals, thus, providing protection to humans against infectious and degenerative diseases. This study was carried out to determine the effect of using thyme as supplement on serum levels of lipids, glucose and lipid peroxidation in hypercholesterolemia senile rats. GC-MS analysis of essential oil showed that the number of identified compounds was 12, especially thymol and carvacrol (natural antioxidants). Senile male rats were fed on hypercholesterolemia diet (HCD) containing cholesterol (1% w/w) and sodium cholate (0.2% w/w). Twenty eight male rats were equally and randomly categorized into four groups. Rats of group (1) fed on balanced commercial diet, group (2) fed on high cholesterol diet for 8 weeks, groups (3) and (4) fed on high cholesterol diet supplemented with either raw or irradiated thyme (1% w/w) for 8 weeks. The results obtained revealed that rats fed on high cholesterol diet significantly showed increase in serum total lipids, TG, TC, LDL-C, VLDL-C as well as ratio risk, associated with remarkable decrease in HDL-C. A significant increase was observed in the level of lipid peroxidation (TBARS) associated with significant decrease in hepatic antioxidant enzymes (glutathion reductase; GSH and catalase; CAT) and total antioxidant capacity. Also, high cholesterol diet induced significant elevation in the level of glucose and liver enzymes (AST, ALT, ALP). The results obtained revealed that feeding rats on HCD containing either raw or irradiated thyme (1% w/w) induced significant improvement in the mentioned parameters. Also, the thyme suppressed lipid peroxidation

  7. [The effect of exogenous antioxidants on the antioxidant status of erythrocytes and hepcidin content in blood of patients with disorders of iron metabolism regulation].

    Science.gov (United States)

    Shcherbinina, S P; Levina, A A; Lisovskaia, I L; Ataullakhanov, F I

    2013-01-01

    In many diseases associated with impairments in iron metabolism, erythrocytes exhibit an increased sensitivity to oxidative stress induced in vitro. In this study, we have examined the antioxidant status of erythrocytes from healthy donors and from 12 patients with disorders of iron homeostasis by measuring the extent of t-BHP-induced hemolysis in vitro. The extent of hemolysis observed with patient erythrocytes was significantly higher than that observed in experiment with normal cells. After therapeutic infusions of the antioxidants mexidol or emoxypin, oxidative hemolysis in patients was restored to normal values and blood hepcidin content increased significantly. A significant correlation was observed between hepcidin concentration after treatment and t-BHP-induced hemolysis before treatment. These data suggest that antioxidants may exert a favorable effect under pathological conditions associated with iron overload disease.

  8. Investigation of wild species potential to increase genetic diversity useful for apple breeding

    Directory of Open Access Journals (Sweden)

    Dan Catalina

    2015-01-01

    Full Text Available The potential of testing new apple cultivars and the possibility to induce valuable traits is directly dependent on the availability of sufficient genetic diversity, while apple breeding has narrowed the genetic ground of commercial cultivars. Wild species were studied in regard to their influence upon progenies and their capacity to enlarge apple genetic diversity. The interspecific seedlings were framed in five biparental mating (paired crosses, in which Malus species were crossed with different cultivars, obtaining half-sib families. The number of F1 progenies per combination varied from 31 (Cluj 218/2 × M. floribunda up to 142 (Reinette Baumann × M. floribunda, with a total of 1650 hybrids F1. The influences upon vigour and juvenile period and possible correlation among fruit size and taste were analyzed. Juvenile period varied from 6.00 (M. zumi × Jonathan to 9.31 years (Cluj 218/2 × M. floribunda. Data based on correlation coefficient illustrated that the fructification year was not influenced by the vigour of trees. The highest value of correlation for fruit’s size and taste was obtained among M. coronaria hybrids. This result might suggest that once the fruit are larger, there is a high chance the taste is also more appreciative and fruit quality for mouth feels increase. Depending on the parental formula, additive effects may be inferior compared to genetic effects of dominance and epistasis. Although M. zumi and M. floribunda achieved the same genetic gain (0.31, M. zumi had a higher expected selection response for fruit size. The difficulty of obtaining seedlings with tasty and large fruit when wild Malus species are used as genitors is resulting from the values of expected selection response data, but in the same time results confirm that wild Malus species are suitable resources for genetic variability, both for dessert and ornamental apple cultivars.

  9. Uric acid contributes greatly to hepatic antioxidant capacity besides protein.

    Science.gov (United States)

    Mikami, T; Sorimachi, M

    2017-12-20

    Uric acid is the end-product of purine nucleotide metabolism and an increase in uric acid concentration in the body results in hyperuricemia, ultimately leading to gout. However, uric acid is a potent antioxidant and interacts with reactive oxygen species (ROS) to be non-enzymatically converted to allantoin. Uric acid accounts for approximately 60 % of antioxidant capacity in the plasma; however, its contribution to tissue antioxidant capacity is unknown. In this study, the contribution of uric acid to tissue antioxidant capacity and its conversion to allantoin by scavenging ROS in tissue were examined. The results showed that a decrease in hepatic uric acid content via allopurinol administration significantly reduced hepatic total-radical trapping antioxidant parameter (TRAP) content in protein-free cytosol. Additionally, treating protein-free cytosol with uricase led to a further reduction of hepatic TRAP content. Allantoin was also detected in the solution containing protein-free cytosol that reacted with ROS. These findings suggest that in the absence of protein, uric acid contributes greatly to antioxidant capacity in the liver, where uric acid is converted to allantoin by scavenging ROS.

  10. Toxicity tests, antioxidant activity, and antimicrobial activity of chitosan

    Science.gov (United States)

    Kurniasih, M.; Purwati; Dewi, R. S.

    2018-04-01

    Chitosan is a naturally occurring cationic biopolymer, obtained by alkaline deacetylation of chitin. This research aims to investigate the toxicity, antioxidant activity and antibacterial activity of chitosan from shrimp chitin. In this study, chitin extracted from shrimp waste material. Chitin is then deacetylation with 60% NaOH so that chitosan produced. Degrees of deacetylation, molecular weight, toxicity test, antioxidant activity and antimicrobial activity of chitosan then evaluated. Toxicity test using Brine Shrimp Lethality Test. The antioxidant analysis was performed using DPPH method (2, 2-diphenyl-1-picrylhydrazyl) and FTC method (ferric thiocyanate) in which the radical formed will reduce Ferro to Ferri resulting in a complex with thiocyanate. To determine the antibacterial activity of Staphylococcus aureus, antifungal in Candida albicans and Aspergillus niger by measuring antimicrobial effects and minimum inhibitory concentrations (MIC). Based on the result of research, the value of degrees of deacetylation, molecular weight, and LC50 values of chitosan synthesis was 94,32, 1052.93 g/mol and 1364.41 ppm, respectively. In general, the antioxidative activities increased as the concentration of chitosan increased. MIC value of chitosan against S. aureus, C. albicans, and A. niger was 10 ppm, 15.6 ppm, and 5 ppm, respectively.

  11. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Amy [Case Western Reserve University, Cleveland, OH (United States); Cleveland Clinic, Cleveland, OH (United States); Moore, Lee R. [Cleveland Clinic, Cleveland, OH (United States); Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas [Phycal Inc., Cleveland, OH (United States); Xue, Wei; Chalmers, Jeffrey J. [The Ohio State University, Columbus, OH (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Cleveland Clinic, Cleveland, OH (United States)

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl{sub 3} EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical.

  12. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    International Nuclear Information System (INIS)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-01-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl 3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical

  13. Effects of antioxidant supplementation on the aging process

    Directory of Open Access Journals (Sweden)

    Domenico Fusco

    2007-10-01

    Full Text Available Domenico Fusco1, Giuseppe Colloca1, Maria Rita Lo Monaco1, Matteo Cesari1,21Department of Gerontology, Geriatrics and Physiatry; Catholic University of Sacred Heart, Rome, Italy; 2Department of Aging and Geriatric Research, College of Medicine, Institute on Aging, University of Florida, Gainesville, FLAbstract: The free radical theory of aging hypothesizes that oxygen-derived free radicals are responsible for the age-related damage at the cellular and tissue levels. In a normal situation, a balanced-equilibrium exists among oxidants, antioxidants and biomolecules. Excess generation of free radicals may overwhelm natural cellular antioxidant defences leading to oxidation and further contributing to cellular functional impairment. The identification of free radical reactions as promoters of the aging process implies that interventions aimed at limiting or inhibiting them should be able to reduce the rate of formation of aging changes with a consequent reduction of the aging rate and disease pathogenesis. Even if antioxidant supplementation is receiving growing attention and is increasingly adopted in Western countries, supporting evidence is still scarce and equivocal. Major limitations in literature are still needed to be addressed to better evaluate the potential benefits from antioxidant supplementation: 1 an improved understanding of oxidation mechanisms possibly at the basis of the aging process, 2 the determination of reliable markers of oxidative damage and antioxidant status, 3 the identification of a therapeutic window in which an eventual antioxidant supplementation may be beneficial, 4 a deeper knowledge of the antioxidant molecules which in several conditions act as pro-oxidants. In the present paper, after a preliminary introduction to the free radical theory of aging and the rationale of antioxidant supplementation as an anti-aging intervention, we will present an overview of evidence relating antioxidant supplementations with

  14. Antioxidant status of interval-trained athletes in various sports.

    Science.gov (United States)

    Dékány, M; Nemeskéri, V; Györe, I; Harbula, I; Malomsoki, J; Pucsok, J

    2006-02-01

    Muscular exercise results in an increased production of free radicals and other forms of reactive oxygen species (ROS). Further, developing evidence implicates cytotoxins as an underlying etiology of exercise-induced stimuli in muscle redox status, which could result in muscle fatigue and/or injury. Two major classes of endogenous protective mechanisms (enzymatic and nonenzymatic antioxidants) work together to reduce the harmful effects of oxidants in the cell. This study examined the effects of acute physical exercise on the enzymatic antioxidant systems of different athletes and comparison was made to the mechanism of action of three main antioxidant enzymes in the blood. Handball players (n = 6), water-polo players (n = 20), hockey players (n = 22), basketball players (n = 24), and a sedentary control group (n = 10 female and n = 9 male) served as the subjects of this study. The athletes were divided into two groups according to the observed changes of activity of superoxide dismutase enzyme. The antioxidant enzyme systems were characterized by catalase (CAT), glutathione-peroxidase (GPX), and superoxide-dismutase (SOD) and measured by spectrophotometry. An important finding in the present investigation is that when the activities of SOD increased, the activities of GPX and CAT increased also and this finding related to the physical status of interval-trained athletes. Positive correlation between SOD and GPX activities was observed (r = 0.38 females, r = 0.56 males; p antioxidant enzyme systems of athletes are sport specific, and different from control subjects. Presumably, with interval-trained athletes, hydrogen-peroxide is significantly eliminated by glutathione-peroxidase. From these results it can be concluded that the blood redox status should be taken into consideration when establishing a fitness level for individual athletes.

  15. Antioxidants attenuate atherosclerotic plaque development in a balloon-denuded and -radiated hypercholesterolemic rabbit

    International Nuclear Information System (INIS)

    Leborgne, Laurent; Fournadjiev, Jana; Pakala, Rajbabu; Dilcher, Christian; Cheneau, Edouard; Wolfram, Roswitha; Hellinga, David; Seaborn, Rufus; O'Tio, Fermin; Waksman, Ron

    2003-01-01

    Background: Oxidation of lipoproteins is considered to be a key contributor to atherogenesis. Antioxidants are potential antiatherogenic agents because they can inhibit lipoprotein oxidation. Radiation has been shown to increase oxidative stress leading to increased atherogenesis. This study is designed to test the potential of antioxidants to inhibit atherosclerotic plaque progression in balloon-denuded and -radiated rabbits. Methods and Results: Two groups of New Zealand white rabbits (n=36) were fed with 1% cholesterol diet (control diet) or with 1% cholesterol diet containing a mixture of various antioxidants for 1 week. Iliac arteries in all the animals were balloon denuded and continued to fed with 0.15% cholesterol diet or 0.15% cholesterol diet containing antioxidants (antioxidant diet). Four weeks after balloon denudation one iliac artery in 12 animals from each group was radiated and all the animals were continued to be fed with the same diet. Four weeks after radiation animals were sacrificed and morphometric analysis of iliac arteries (n=12) in nonradiated and radiated animals were performed. Plaque area (PA) in the rabbits that were fed with cholesterol diet is 0.2±0.12 mm 2 , and it is increased by 2.75-fold (P<.05) in the radiated arteries of animals fed with cholesterol diet. Plaque area in the animals fed with antioxidant diet is 50% less then the one in the animals fed with cholesterol diet. Similarly, plaque area in radiated arteries of the animals fed with antioxidant diet is 50% less then the animals fed with cholesterol diet. Conclusion: Antioxidants significantly attenuate atherosclerotic plaque progression in balloon-injured and -radiated hypercholesterolemic rabbits

  16. Radiation hydrolysate of tuna cooking juice with enhanced antioxidant properties

    International Nuclear Information System (INIS)

    Choi, Jong-il; Sung, Nak-Yun; Lee, Ju-Woon

    2012-01-01

    Tuna protein hydrolysates are of increasing interest because of their potential application as a source of bioactive peptides. Large amounts of tuna cooking juice with proteins and extracts are produced during the process of tuna canning, and these cooking juice wastes cause environmental problems. Therefore, in this study, cooking juice proteins were hydrolyzed by irradiation for their utilization as functional additives. The degree of hydrolysis of tuna cooking juice protein increased from 0% to 15.1% at the absorbed doses of 50 kGy. To investigate the antioxidant activity of the hydrolysate, it was performed the ferric reducing antioxidant power (FRAP) assay, and the lipid peroxidation inhibitory and superoxide radical scavenging activities were measured. The FRAP values increased from 1470 μM to 1930 μM and IC 50 on superoxide anion was decreased from 3.91 μg/mL to 1.29 μg/mL at 50 kGy. All of the antioxidant activities were increased in the hydrolysate, suggesting that radiation hydrolysis, which is a simple process that does not require an additive catalysts or an inactivation step, is a promising method for food and environmental industries. - Highlights: ► Radiation was applied for the hydrolysis of tuna cooking juice protein. ► The degree of hydrolysis were increased by irradiation and the antioxidant activity of hydrolysate was higher than protein. ► This result suggest that radiation is useful method for the hydrolysis of protein.

  17. Effects of the nature of the antioxidant on the radiation crosslinking of polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Gal, O S; Markovic, V M; Novakovic, L R; Stannett, V T

    1985-01-01

    The effects of three antioxidants, a hindered phenolic, a secondary amine and a thioester on the radiation crosslinking efficiency of low-density polyethylene were studied. Both gel content and thermomechanical analysis were used to follow the crosslinking. All three antioxidants decreased the amount of crosslinking at a given dose, the thioester being the most effective. The ratios of G (scission) to G (X linking) increased with all three antioxidants. This is attributed to the antioxidants only interfering with the crosslinking reaction. (author).

  18. Swimming exercise enhances the hippocampal antioxidant status of female Wistar rats.

    Science.gov (United States)

    Stone, Vinícius; Kudo, Karen Yurika; Marcelino, Thiago Beltram; August, Pauline Maciel; Matté, Cristiane

    2015-05-01

    Moderate exercise is known to have health benefits, while both sedentarism and strenuous exercise have pro-oxidant effects. In this study, we assessed the effect of moderate exercise on the antioxidant homeostasis of rats' hippocampi. Female Wistar rats were submitted to a 30-minute swimming protocol on 5 days a week, for 4 weeks. Control rats were immersed in water and carefully dried. Production of hippocampal reactive species, activity of antioxidant enzymes, and glutathione levels in these animals were determined up to 30 days after completion of the 4-week protocol. Production of reactive species and hippocampal glutathione levels were increased 1 day after completion of the 4-week protocol, and returned to control levels after 7 days. Antioxidant enzyme activities were increased both 1 day (catalase) and 7 days (superoxide dismutase and glutathione peroxidase) after completion of the protocol. Thirty days after completion of the protocol, none of the antioxidant parameters evaluated differed from those of controls. Our results reinforce the benefits of aerobic exercise, which include positive modulation of antioxidant homeostasis in the hippocampi. The effects of exercise are not permanent; rather, an exercise regimen must be continued in order to maintain the neurometabolic adaptations.

  19. The effect of extra virgin olive oil and soybean on DNA, cytogenicity and some antioxidant enzymes in rats.

    Science.gov (United States)

    El-Kholy, Thanaa A; Abu Hilal, Mohammad; Al-Abbadi, Hatim Ali; Serafi, Abdulhalim Salim; Al-Ghamdi, Ahmad K; Sobhy, Hanan M; Richardson, John R C

    2014-06-23

    We investigated the effect of extra virgin (EV) olive oil and genetically modified (GM) soybean on DNA, cytogenicity and some antioxidant enzymes in rodents. Forty adult male albino rats were used in this study and divided into four groups. The control group of rodents was fed basal ration only. The second group was given basal ration mixed with EV olive oil (30%). The third group was fed basal ration mixed with GM (15%), and the fourth group survived on a combination of EV olive oil, GM and the basal ration for 65 consecutive days. On day 65, blood samples were collected from each rat for antioxidant enzyme analysis. In the group fed on basal ration mixed with GM soyabean (15%), there was a significant increase in serum level of lipid peroxidation, while glutathione transferase decreased significantly. Interestingly, GM soyabean increased not only the percentage of micronucleated polychromatic erythrocytes (MPCE), but also the ratio of polychromatic erythrocytes to normochromatic erythrocytes (PEC/NEC); however, the amount of DNA and NCE were significantly decreased. Importantly, the combination of EV olive oil and GM soyabean significantly altered the tested parameters towards normal levels. This may suggest an important role for EV olive oil on rodents' organs and warrants further investigation in humans.

  20. ANTIOXIDANT STATUS IN DIABETIC NEUROPATHY

    Directory of Open Access Journals (Sweden)

    Giriraja Vrushabaiah Kanakapura

    2017-09-01

    Full Text Available BACKGROUND Diabetic neuropathy, retinopathy and nephropathy are the chronic complications of diabetes mellitus. Neuropathy, retinopathy and nephropathy are microvascular complication of diabetes mellitus. Antioxidant status is reduced in DM-induced retinopathy and nephropathy. Present study is undertaken to evaluate the degree of oxidative stress in diabetic neuropathy patients. The aim of the study is to study on oxidative stress as measured by lipid peroxidation marker, malondialdehyde and antienzyme status in type II DM patients with neuropathy and compared them with a controlled nondiabetic group. MATERIALS AND METHODS The study included 100 subjects from Sapthagiri Medical College, Bangalore, from January 1, 2015, to December 31, 2015, of age group 50 to 70 yrs. out of which 50 patients were non-insulin-dependent DM with neuropathy and rest 50 age and sex matched apparently healthy individuals (control group. Antioxidant status was assessed by measuring superoxide dismutase (SOD, glutathione peroxidase (GPx, glutathione reductase (GR, Catalase and Reduced Glutathione (GSH. RESULTS It showed a significant increase p<0.001 in FBS, PPBS, TC, TG, LDL, VLDL, CAT, MDA, while HDL, GSH, GPX, GR and SOD were found to be decreased significantly (p 0.001. CONCLUSION MDA was significantly elevated in diabetic group, whereas antioxidant enzymes superoxide dismutase, glutathione peroxidase, glutathione reductase and reduced glutathione were significantly decreased, which might be helpful in risk assessment of various complications of DM. The data suggests that alteration in antioxidant status and MDA may help to predict the risk of diabetic neuropathy.

  1. Cranberry: A good source of natural antioxidants

    Directory of Open Access Journals (Sweden)

    Tumbas Vesna T.

    2006-01-01

    Full Text Available The influence of extracts of cranbeny fruit and mixed tea (containing 40% cranberry on stable 1,1-diphenyl-2-picrylhydrazyl (DPPH radicals has been investigated by electron spin resonance (ESR spectroscopy. All investigated extracts possess very high antioxidant activity, which increased dose-dependently at mass concentrations ranging from 0.5 to 3.5 mg/ml. The high contents of phenolic s (3.60-4.52 mg/g, anthocyanins (0.23-1.52 mg/g, flavan-3-ols (1.25-3.05 mg/g and vitamin C (0.07-0.15 mg/g in investigated extracts indicated that these compounds significantly contributed to the antioxidant activity. All these results show that the extracts of cranberry fruit and mixed tea can be used as easily accessible source of natural antioxidants and as a possible food supplement.

  2. Study on preparation of new antioxidants for radiation vulcanized natural rubber latex product. Antioxidant from keratin

    International Nuclear Information System (INIS)

    Nguyen Quoc Hien; Nguyen Van Toan; Vo Tan Thien; Le Hai

    2000-01-01

    The thermo-oxidative aging resistance of radiation vulcanization of natural rubber latex (RVNRL) products should be adequately by using suitable antioxidants or new kind of effective antioxidant. This work presents the results of preparation of natural antioxidant from hair keratin. Characteristics and effectiveness of resultant antioxidant are also presented. The results obtained indicates that antioxidant made from hair keratin is safe and effective for rubber products from RVNRL. (author)

  3. Antioxidant and antifungal activities of two spices of mangrove plant extract

    Directory of Open Access Journals (Sweden)

    Somayeh Rastegar

    2016-10-01

    Full Text Available Objective: To evaluate the antifungal and the radical scavenging capacity related to antioxidant potential of ethanol and water extracts of leaves of Rhizophora mucronata (R. mucronata and Avicennia marina (A. marina mangrove plant species against five postharvest pathogenic bacteria. Methods: In vitro assessment of antioxidant and antifungal activities was evaluated in this present study for both aqueous and ethanol extracts prepared from leaves of A. marina and R. mucronata. The antioxidant activities of these mangroves were evaluated by using reducing power and 1,1-diphenyl-2-picrylhydrazyl assays with butylated hydroxytoluene and L-(+- ascorbic acid as standards. Results: The result showed that the antioxidant activities of all extracts increased with increasing concentration of extracts. However, the ethanol extracts of both species showed the highest antioxidant activities. Antimicrobial tests were then carried out by the disk diffusion method. The ethanol extracts of both species showed antifungal activities on Penicillium purpurogenum, Penicillium chrysogenum, Penicillium notatum, Aspergillus niger, Alternaria alternata and Penicillium italicum. However, none of the water extracts exhibited antifungal activity on the studied fungi. Among all the pathogens, tested Aspergillus flavus was the most resistant fungi. Different concentrations of extracts from A. marina and R. mucronata showed different amounts of control against tested fungal strains. Conclusions: This study indicated that mangrove species has natural antioxidant and antifungal properties.

  4. Gamma irradiation improves the antioxidant activity of Aloe vera (Aloe barbadensis miller) extracts

    International Nuclear Information System (INIS)

    Lee, Eun Mi; Bai, Hyoung-Woo; Lee, Seung Sik; Hong, Sung Hyun; Cho, Jae-Young; Byung, Yeoup Chung

    2012-01-01

    Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  5. Gamma irradiation improves the antioxidant activity of Aloe vera (Aloe barbadensis miller) extracts

    Science.gov (United States)

    Mi Lee, Eun; Bai, Hyoung-Woo; Sik Lee, Seung; Hyun Hong, Sung; Cho, Jae-Young; Yeoup Chung, Byung

    2012-08-01

    Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  6. Effect of gamma irradiation on antioxidant properties of ber (Zizyphus mauritiana) fruit

    International Nuclear Information System (INIS)

    Kavitha, C.; Kuna, Aparna; Sagar, S.B.; Padmavati, T.V.N.; Supraja, T.; Prabhakar, N.

    2015-01-01

    Effect of gamma irradiation (0.25 to 1.0kGy) on antioxidant properties of ber fruit was studied. Antioxidant properties of ber fruits were determined by scavenging DPPH radical activity, reducing power assay, super oxide anion radical activity, TBARS, total phenolic content and total flavonoid content. Gamma irradiation treatment up to 1.0 kGy elevated the scavenging DPPH radical activity (9 %), super oxide anion radical activity (26 %) and total flavonoid content (208 %) compared to fresh ber fruit. On the other hand it brought down the reducing power activity (65 %) and total phenolic content (18 %) as compared to raw fruit. The TBARS activity statistically increased upon irradiation of ber fruit. It indicated that total antioxidant activity decreased as TBARS value increased. Therefore 0.25 to 0.5kGy is better dose to retain the natural antioxidant in fruit. (author)

  7. Antioxidant, antimicrobial, cell viability and enzymatic inhibitory of antioxidant polymers as biological macromolecules.

    Science.gov (United States)

    Hashemi Gahruie, Hadi; Niakousari, Mehrdad

    2017-11-01

    Polymeric antioxidants such as Catechinaldehyde Polycondensates, Catechin-acelaldehydepolycondensates, Flavonoid-grafted chitosan fibers, Ferulate hydrogel, Dextran ferulate hydrogel, Starch-quercetin conjugate, Gallic acid- and Caffeic acid-functionalized chitosan, Gallic acid - chitosan conjugate, Poly(rutin), Gallic acid grafted chitosan, Dextran-Catechin Conjugate belong to biological macromolecules. These kinds of compounds have stronger antioxidant potential and pharmacokinetic activities, as compared to similar low molecular weight preservatives. Most of these compounds sources are either antioxidants with low molecules polymerization, or polymers conjugation such as synthetic or natural preservatives. Additives are well known as being an important ingredient of food products due to their strong preservative potential. Many researchers and industries attempt to find synthesize materials with the same antioxidant potential and higher stability than the similar compounds with low molecular weight. Recently, macromolecular antioxidants have received wide attention as food additives and dietary supplements in functional foods. It seems that the main usage of these compounds is in the food packaging industry. Most of these compounds have strong antioxidant, antimicrobial, cell viability and enzymatic inhibitory properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Antioxidant synergistic effects of Osmanthus fragrans flowers with green tea and their major contributed antioxidant compounds

    OpenAIRE

    Mao, Shuqin; Wang, Kaidi; Lei, Yukun; Yao, Shuting; Lu, Baiyi; Huang, Weisu

    2017-01-01

    The antioxidant synergistic effects of Osmanthus fragrans flowers with green tea were evaluated, and their major antioxidant compounds contributed to the total amount of synergy were determined. The antioxidant compounds in O. fragrans flowers with green tea were identified by LC-MS and quantified by UPLC-PDA. The synergistic antioxidant interactions between O. fragrans flowers with green tea and their antioxidant compounds were tested using the Prieto?s model after the simulated digestion. T...

  9. Transcriptome-based identification of antioxidative gene expression after fish oil supplementation in normo- and dyslipidemic men

    Directory of Open Access Journals (Sweden)

    Schmidt Simone

    2012-05-01

    Full Text Available Abstract Background The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs, especially in dyslipidemic subjects with a high risk of cardiovascular disease, are widely described in the literature. A lot of effects of n-3 PUFAs and their oxidized metabolites are triggered by regulating the expression of genes. Currently, it is uncertain if the administration of n-3 PUFAs results in different expression changes of genes related to antioxidative mechanisms in normo- and dyslipidemic subjects, which may partly explain their cardioprotective effects. The aim of this study was to investigate the effects of n-3 PUFA supplementation on expression changes of genes involved in oxidative processes. Methods Ten normo- and ten dyslipidemic men were supplemented for twelve weeks with fish oil capsules, providing 1.14 g docosahexaenoic acid and 1.56 g eicosapentaenoic acid. Gene expression levels were determined by whole genome microarray analysis and quantitative real-time polymerase chain reaction (qRT-PCR. Results Using microarrays, we discovered an increased expression of antioxidative enzymes and a decreased expression of pro-oxidative and tissue enzymes, such as cytochrome P450 enzymes and matrix metalloproteinases, in both normo- and dyslipidemic men. An up-regulation of catalase and heme oxigenase 2 in both normo- and dyslipidemic subjects and an up-regulation of cytochrome P450 enzyme 1A2 only in dyslipidemic subjects could be observed by qRT-PCR analysis. Conclusions Supplementation of normo- and dyslipidemic subjects with n-3 PUFAs changed the expression of genes related to oxidative processes, which may suggest antioxidative and potential cardioprotective effects of n-3 PUFAs. Further studies combining genetic and metabolic endpoints are needed to verify the regulative effects of n-3 PUFAs in antioxidative gene expression to better understand their beneficial effects in health and disease prevention. Trial registration Clinical

  10. The effect of Chitosan on antioxidant activity and some secondary metabolites of Mentha piperita L.

    Directory of Open Access Journals (Sweden)

    Sima Salimgandomi

    2016-09-01

    Full Text Available Plants are almost reach sources of phenolic compounds such as flavonoids which are the most important natural antioxidants. Antioxidant compounds are essential for protecting human body against oxidative stress. However use elicitors could increase the antioxidant activity of plant. The purpose of this study was to evaluate the effects of Chitosan on the content of phenolic and flavonoid compounds and also antioxidant activity Mentha piperita L.In this study, firstly the Mentha piperita L. were grown up for 6-week period at greenhouse conditions and then were treated with 50-100 μm of chitosan, then total phenolic and flavonoid contents were determined using spectrophotometry and finally antioxidant activities of extracts were evaluated with 2,2-diphenyl-1-picryl hydrazyl (DPPH method and the results were analyzed with Excel software and Variance analysis testing method with SPSS software. The results showed the content of phenolic compounds in the methanol extract based on sample mg of Gallic acid /g for control with water, 50μm and 100μm treatments respectively were 146.8,233.1,339.1. Meanwhile the total volume of flavonoid content of the methanol extract per mg of Rutin/g respectively were 9.88,12.11,14.06 and concentration of the said extracts respectively were 196.3,147.7,128.62. In regard to the above results it can be concluded that due to having phenolic and flavonoid contents, Mentha piperita L showed that antioxidant activity could be stimulated upon Chitosan treatment moreover, antioxidant activity increased by increasing Chitosan treatment content. Therefore, this method can be used to increase antioxidant effect of plant as a natural antioxidant and all the phenolic and flavonoid contents.

  11. In vitro digestion of purified β-casein variants A(1), A(2), B, and I: effects on antioxidant and angiotensin-converting enzyme inhibitory capacity.

    Science.gov (United States)

    Petrat-Melin, B; Andersen, P; Rasmussen, J T; Poulsen, N A; Larsen, L B; Young, J F

    2015-01-01

    Genetic polymorphisms of bovine milk proteins affect the protein profile of the milk and, hence, certain technological properties, such as casein (CN) number and cheese yield. However, reports show that such polymorphisms may also affect the health-related properties of milk. Therefore, to gain insight into their digestion pattern and bioactive potential, β-CN was purified from bovine milk originating from cows homozygous for the variants A(1), A(2), B, and I by a combination of cold storage, ultracentrifugation, and acid precipitation. The purity of the isolated β-CN was determined by HPLC, variants were verified by mass spectrometry, and molar extinction coefficients at λ=280nm were determined. β-Casein from each of the variants was subjected to in vitro digestion using pepsin and pancreatic enzymes. Antioxidant and angiotensin-converting enzyme (ACE) inhibitory capacities of the hydrolysates were assessed at 3 stages of digestion and related to that of the undigested samples. Neither molar extinction coefficients nor overall digestibility varied significantly between these 4 variants; however, clear differences in digestion pattern were indicated by gel electrophoresis. In particular, after 60min of pepsin followed by 5min of pancreatic enzyme digestion, one ≈4kDa peptide with the N-terminal sequence (106)H-K-E-M-P-F-P-K- was absent from β-CN variant B. This is likely a result of the (122)Ser to (122)Arg substitution in variant B introducing a novel trypsin cleavage site, leading to the changed digestion pattern. All investigated β-CN variants exhibited a significant increase in antioxidant capacity upon digestion, as measured by the Trolox-equivalent antioxidant capacity assay. After 60min of pepsin + 120min of pancreatic enzyme digestion, the accumulated increase in antioxidant capacity was ≈1.7-fold for the 4 β-CN variants. The ACE inhibitory capacity was also significantly increased by digestion, with the B variant reaching the highest inhibitory

  12. Access to the substituted benzyl-1,2,3-triazolyl hesperetin derivatives expressing antioxidant and anticancer effects

    Czech Academy of Sciences Publication Activity Database

    Mistry, B.; Patel, Rahul V.; Keum, Y.S.

    2017-01-01

    Roč. 10, č. 2 (2017), s. 157-166 ISSN 1878-5352 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : free-radical method * oxidative stress * hesperidin * prevention * diseases * Hesperidin * Hesperetin * Cycloaddition * Click chemistry * Anticancer * Antioxidant Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Oncology Impact factor: 4.553, year: 2016

  13. Formulation and characterization of novel functional beverages with antioxidant and anti-acetylcholinesterase activities

    OpenAIRE

    Suree Nanasombat; Jidapa Thonglong; Jutharat Jitlakha

    2015-01-01

    Background: Nowadays, there is increased consumer demand for high-antioxidant foods. Drinking high-antioxidant beverages may help to protect against aging, Alzheimer’s disease, and other chronic diseases. Grapes and some plants including Phyllanthus emblica, Terminalia chebula, Kaempferia parviflora, Centella asiatica, Nelumbo nucifera, Rauvolfia serpentina, Ginkgo biloba, Crocus sativus, Clitoria ternatea and others are well-known to possess antioxidant, neuroprotective and other hea...

  14. Antidiabetic, Antihyperlipidemic and Antioxidant Activities of ...

    African Journals Online (AJOL)

    blood glucose level, serum lipid profile, and significantly (p < 0.05) increased antioxidant activity as evidenced by ... remove spots and blemishes from the face. The root is used as ... and the dry extract dissolved in normal saline prior to further ...

  15. Oxidant-Antioxidant Balance In Epileptic Children

    International Nuclear Information System (INIS)

    Moawad, A.T.; Mohammed, A.A.; El-Maghraby, D.M.F.

    2011-01-01

    Epilepsy is one of the most common neurological disorders which are characterized by recurrent unprovoked seizures. It is usually controlled, but cannot be cured with medications, although surgery may be considered in difficult cases. Over 30% of people with epilepsy don't have seizure control even with the best available medications. In epileptic children, oxidant-antioxidant balance is disturbed. Glutathione homeostasis may be altered as a consequence of reactive metabolites and/or reactive oxygen species produced during treatment with antiepileptic drugs. Per-oxidation of membrane lipid caused by an increase in generation of free radical or decrease in the activities of antioxidant defense systems have been suggested to be critically involved in seizure control. The effect of antiepileptic monotherapy as valproic acid (VPA) or carbamazepine (CBZ) or both on level of glutathione-S-transferase (GST) as an index of antioxidant and the plasma of malondialdehyde (MDA) as an index of oxidative stress were studied in this study. Forty children (18 males and 22 females) with idiopathic generalized epilepsy, diagnosed in the Pediatric Neurology Unit, Children Hospital, Ain Shams University, Cairo, Egypt, were selected to represent group (1) with mean age of 5.13 ± 4.36 years. Thirty healthy children (14 males and 16 females) matched in age, sex and social life status served as normal control group (2). The results revealed that there was high significant increase in the plasma level of MDA in patients with idiopathic epilepsy as compared to the control while the serum level of GST was significantly decreased in epileptic children as compared to the control group. Non-significant difference in plasma level of MDA and serum level of GST among the epileptic subgroups was observed. In uncontrolled epileptic patients (seizures more than 4/month), the plasma level of MDA displayed higher significant increase than in controlled epileptic patients. On the other hand, serum GST

  16. Microencapsulation of natural antioxidants for food application - The specific case of coffee antioxidants - A review

    OpenAIRE

    Joana Aguiar; Berta Nogueiro Estevinho; Lúcia Silveira Santos

    2016-01-01

    Background: Functional foods fortified with antioxidants are gaining more popularity since consumption alone of foods naturally rich in antioxidants is insufficient to reduce oxidative stress associated with various diseases. Despite their beneficial effects, natural antioxidants present in coffee are sensitive to heat, light and oxygen, limiting their application in the food industry. Although microencapsulation is able to protect the antioxidant from degradation, mask its taste and control ...

  17. Physicochemical Characteristics and Antioxidant Capacity in Yogurt Fortified with Red Ginseng Extract

    Science.gov (United States)

    Jung, Jieun; Paik, Hyun-Dong; Yoon, Hyun Joo; Jang, Hye Ji; Jeewanthi, Renda Kankanamge Chaturika; Jee, Hee-Sook; Lee, Na-Kyoung

    2016-01-01

    The objective of this study was to investigate characteristics and functionality of yogurt applied red ginseng extract. Yogurts added with red ginseng extract (0.5, 1, 1.5, and 2%) were produced using Lactobacillus acidophilus and Streptococcus thermophilus and stored at refrigerated temperature. During fermentation, pH was decreased whereas titratable aicidity and viable cell counts of L. acidophilus and S. thermophilus were increased. The composition of yogurt samples was measured on day 1, an increase of red ginseng extract content in yogurt resulted in an increase in lactose, protein, total solids, and ash content, whereas fat and moisture content decreased. The pH value and cell counts of L. acidophilus and S. thermophilus were declined, however titratable acidity was increased during storage period. The antioxidant capacity was measured as diverse methods. During refrigerated storage time, the value of antioxidant effect was decreased, however, yogurt fortified with red ginseng extract had higher capacity than plain yogurt. The antioxidant effect was improved in proportion to concentration of red ginseng extract. These data suggests that red ginseng extract could affect to reduce fermentation time of yogurt and enhance antioxidant capacity. PMID:27433113

  18. Physicochemical Characteristics and Antioxidant Capacity in Yogurt Fortified with Red Ginseng Extract.

    Science.gov (United States)

    Jung, Jieun; Paik, Hyun-Dong; Yoon, Hyun Joo; Jang, Hye Ji; Jeewanthi, Renda Kankanamge Chaturika; Jee, Hee-Sook; Li, Xiang; Lee, Na-Kyoung; Lee, Si-Kyung

    2016-01-01

    The objective of this study was to investigate characteristics and functionality of yogurt applied red ginseng extract. Yogurts added with red ginseng extract (0.5, 1, 1.5, and 2%) were produced using Lactobacillus acidophilus and Streptococcus thermophilus and stored at refrigerated temperature. During fermentation, pH was decreased whereas titratable aicidity and viable cell counts of L. acidophilus and S. thermophilus were increased. The composition of yogurt samples was measured on day 1, an increase of red ginseng extract content in yogurt resulted in an increase in lactose, protein, total solids, and ash content, whereas fat and moisture content decreased. The pH value and cell counts of L. acidophilus and S. thermophilus were declined, however titratable acidity was increased during storage period. The antioxidant capacity was measured as diverse methods. During refrigerated storage time, the value of antioxidant effect was decreased, however, yogurt fortified with red ginseng extract had higher capacity than plain yogurt. The antioxidant effect was improved in proportion to concentration of red ginseng extract. These data suggests that red ginseng extract could affect to reduce fermentation time of yogurt and enhance antioxidant capacity.

  19. Oxidative stress and antioxidant status in beta-thalassemia heterozygotes

    Directory of Open Access Journals (Sweden)

    Luciana de Souza Ondei

    2013-01-01

    Full Text Available Background: Several studies have evaluated the oxidant and antioxidant status of thalassemia patients but most focused mainly on the severe and intermediate states of the disease. Moreover, the oxidative status has not been evaluated for the different beta-thalassemia mutations. Objective: To evaluate lipid peroxidation and Trolox equivalent antioxidant capacity in relation to serum iron and ferritin in beta thalassemia resulting from two different mutations (CD39 and IVS-I-110 compared to individuals without beta-thalassemia. Methods: One hundred and thirty subjects were studied, including 49 who were heterozygous for beta-thalassemia and 81 controls. Blood samples were subjected to screening tests for hemoglobin. Allele-specific polymerase chain reaction was used to confirm mutations for beta-thalassemia, an analysis of thiobarbituric acid reactive species was used to determine lipid peroxidation, and Trolox equivalent antioxidant capacity evaluations were performed. The heterozygous beta-thalassemia group was also evaluated for serum iron and ferritin status. Results: Thiobarbituric acid reactive species (486.24 ± 119.64 ng/mL and Trolox equivalent antioxidant capacity values (2.23 ± 0.11 mM/L were higher in beta-thalassemia heterozygotes compared to controls (260.86 ± 92.40 ng/mL and 2.12 ± 0.10 mM/L, respectively; p-value < 0.01. Increased thiobarbituric acid reactive species values were observed in subjects with the CD39 mutation compared with those with the IVS-I-110 mutation (529.94 ± 115.60 ng/mL and 453.39 ± 121.10 ng/mL, respectively; p-value = 0.04. However, average Trolox equivalent antioxidant capacity values were similar for both mutations (2.20 ± 0.08 mM/L and 2.23 ± 0.12 mM/L, respectively; p-value = 0.39. There was no influence of serum iron and ferritin levels on thiobarbituric acid reactive species and Trolox equivalent antioxidant capacity values. Conclusion: This study shows an increase of oxidative stress and

  20. Polyphenols, Antioxidants and the Sympathetic Nervous System.

    Science.gov (United States)

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2018-01-01

    A high dietary intake of polyphenols has been associated with a reduced cardiovascular mortality, due to their antioxidant properties. However, growing evidence suggests that counteracting oxidative stress in cardiovascular disease might also reduce sympathetic nervous system overactivity. This article reviews the most commonly used techniques to measure sympathetic activity in humans; the role of sympathetic activation in the pathophysiology of cardiovascular diseases; current evidence demonstrating that oxidative stress is involved in the regulation of sympathetic activity and how antioxidants and polyphenols might counteract sympathetic overactivity, particularly focusing on preliminary data from human studies. The main mechanisms by which polyphenols are cardioprotective are related to the improvement of vascular function and their anti-atherogenic effect. Furthermore, a blood pressure-lowering effect was consistently demonstrated in randomized controlled trials in humans, when the effect of flavonoid-rich foods, such as tea and chocolate, was tested. More recent studies suggest that inhibition of sympathetic overactivity might be one of the mechanisms by which these substances exert their cardioprotective effects. Indeed, an increased adrenergic traffic to the vasculature is a major mechanism of disease in a number of cardiovascular and extra-cardiac diseases, including hypertension, obesity, metabolic syndrome and heart failure. A considerable body of evidence, mostly from experimental studies, support the hypothesis that reactive oxygen species might exert sympathoexcitatory effects both at the central and at the peripheral level. Accordingly, supplementation with antioxidants might reduce adrenergic overdrive to the vasculature and blunt cardiovascular reactivity to stress. While supplementation with "classical" antioxidants such as ROS-scavengers has many limitations, increasing the intake of polyphenol-rich foods seems to be a promising novel therapeutic

  1. Effect of antioxidant extract from cherries on diabetes.

    Science.gov (United States)

    Lachin, Tahsini

    2014-01-01

    Diabetes is a chronic metabolic disorder in humans constituting a major health concern today whose prevalence has continuously increased worldwide over the past few decades. Production of reactive oxygen species (ROS) and disturbed capacity of antioxidant defense in diabetic subjects have been reported. It has been suggested that enhanced production of free radicals and oxidative stress is the central event for the development of diabetic complications. Antioxidants can play an important role in the improvement of diabetes. There are many reports on the effects of antioxidants in the management of diabetes. This study aimed at evaluating the effect of antioxidant extract and purified sweet and sour Cherries on hyperglycemia, microalbumin and creatinine level in alloxan-induced diabetic rats. Thirty six adult Male Wistar rats were divided equally into six groups. Diabetes was induced in the rats by an intraperitoneal injection with 120 mg/kg body weight of alloxan. Oral administration of cherry extract at a concentration of 200 mg/kg body weight for 30 days significantly reduced the levels of blood glucose, and urinary microalbumin. Also an increase in the creatinine secretion level in urine was observed in the diabetic rats treated with the cherry extract as compared to untreated diabetic rats. In this paper, the most recent patent on the identification and treatment of diabetes is used. In conclusion, cherry antioxidant extract proved to have a beneficial effect on the diabetic rats in this study. In light of these advantageous results, it is advisable to broaden the scale of use of sweet and sour cherries extract in a trial to alleviate the adverse effects of diabetes.

  2. Synthesis and Antioxidant Activity of Alkyl Nitroderivatives of Hydroxytyrosol

    Directory of Open Access Journals (Sweden)

    Elena Gallardo

    2016-05-01

    Full Text Available A series of alkyl nitrohydroxytyrosyl ether derivatives has been synthesized from free hydroxytyrosol (HT, the natural olive oil phenol, in order to increase the assortment of compounds with potential neuroprotective activity in Parkinson’s disease. In this work, the antioxidant activity of these novel compounds has been evaluated using Ferric Reducing Antioxidant Power (FRAP, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS, and Oxygen Radical Scavenging Capacity (ORAC assays compared to that of nitrohydroxytyrosol (NO2HT and free HT. New compounds showed variable antioxidant activity depending on the alkyl side chain length; compounds with short chains (2–4 carbon atoms maintained or even improved the antioxidant activity compared to NO2HT and/or HT, whereas those with longer side chains (6–8 carbon atoms showed lower activity than NO2HT but higher than HT.

  3. The role of ecological and genetic factors in the onset of asthma in children (literature review

    Directory of Open Access Journals (Sweden)

    Chumachenko N.G.

    2016-09-01

    Full Text Available The article presents a literature review of publications domestic and foreign authors on the risk factors of the onset of asthma in children. Health is 20–40% dependent on the environment and 35–70% dependent on genetic factors. The interaction of genetic and environmental factors lead to anti-oxidant stress and changes not only on the level of the entire organism, but also on the cellular and molecular level. To asses to prognosis for onset and development of bronchial asthma in children, that reside in environmentally neglected zones it is necessary to continue the research into the molecular-genetic gene polymorphism of the enzymes of the xenobiotic detoxication system, as well as metabolic disturbances in children in order to delineate risk group for the onset of the condition and to develop indications for anti-oxidant treatment, to correct the molecular disturbances, that appear long before the clinical manifestation of asthma.

  4. Caffeine prevents high-intensity exercise-induced increase in enzymatic antioxidant and Na+-K+-ATPase activities and reduction of anxiolytic like-behaviour in rats.

    Science.gov (United States)

    Vieira, Juliano M; Carvalho, Fabiano B; Gutierres, Jessié M; Soares, Mayara S P; Oliveira, Pathise S; Rubin, Maribel A; Morsch, Vera M; Schetinger, Maria Rosa; Spanevello, Roselia M

    2017-11-01

    Here we investigated the impact of chronic high-intensity interval training (HIIT) and caffeine consumption on the activities of Na + -K + -ATPase and enzymes of the antioxidant system, as well as anxiolytic-like behaviour in the rat brain. Animals were divided into groups: control, caffeine (4 mg/kg), caffeine (8 mg/kg), HIIT, HIIT plus caffeine (4 mg/kg) and HIIT plus caffeine (8 mg/kg). Rats were trained three times per week for 6 weeks, and caffeine was administered 30 minutes before training. We assessed the anxiolytic-like behaviour, Na + -K + -ATPase, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, levels of reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) in the brain. HIIT-induced anxiolytic-like behaviour increased Na + -K + -ATPase and GPx activities and TBARS levels, altered the activities of SOD and CAT in different brain regions, and decreased GSH levels. Caffeine, however, elicited anxiogenic-like behaviour and blocked HIIT effects. The combination of caffeine and HIIT prevented the increase in SOD activity in the cerebral cortex and GPx activity in three brain regions. Our results show that caffeine promoted anxiogenic behaviour and prevented HIIT-induced changes in the antioxidant system and Na + -K + -ATPase activities.

  5. Lipid Peroxidation and Antioxidant Status in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Rokeya Begum

    2011-07-01

    Full Text Available Background: Preeclampsia is the most common and major medical complication of pregnancy with a high incidence of maternal and foetal morbidity and mortality. During pregnancy abnormally increased lipid peroxidation and free radical formation as well as significantly decreased antioxidants production in maternal blood may lead to pathogenesis of preeclampsia. So, we designed this study as little information is known about lipid peroxidation and antioxidant level in preeclampsia. Objectives: To assess the serum malondialdehyde (MDA level as a lipid peroxidation product and vitamin E (antioxidant level in women with preeclampsia as well as in normal pregnancy and to compare the values. Materials and Methods: The study was conducted on 60 women aged from 25 to 35 years in the department of Biochemistry, Budi Kemuliaan Maternity Hospital (BKMH in Jakarta during the period April to July 2004. Twenty were normal pregnant women and 20 were preeclamptic patients. For comparison age matched 20 apparently healthy nonpregnant women were included in the study. The study subjects were selected from outpatient department (OPD of Obstetrics and Gynaecology of BKMH in Jakarta. Serum MDA (lipid peroxidation product level was measured by thiobarbituric acid reactive substances assay (TBRAS method and vitamin E was estimated spectroflurometrically. Data were analyzed by unpaired Student’s t test between the groups by using SPSS version 12. Results: The mean serum MDA levels were significantly higher in normal pregnancy and also in preeclampsia than that of nonpregnant control group women (p<0.001. Again the serum MDA levels were significantly higher in preeclampsia than that of normal pregnant women (p<0.001. The serum vitamin E levels were significantly lower in preeclampsia and also in normal pregnancy than that of nonpregnant control women (p<0.001. Moreover, the serum vitamin E levels were significantly lower in preeclampsia compared to that of normal

  6. Antioxidant potential and quality characteristics of vegetable-enriched corn-based extruded snacks.

    Science.gov (United States)

    Bisharat, G I; Lazou, A E; Panagiotou, N M; Krokida, M K; Maroulis, Z B

    2015-07-01

    Phenolic content, antioxidant activity and sensory characteristics of vegetable-enriched extrudates were investigated as a result of extrusion conditions, including extrusion temperature (140-180 °C), screw rotation speed (150-250 rpm) and feed moisture content (14-19 % w.b.). Broccoli flour and olive paste was used in mixtures with corn flour at a ratio of 4 to 10 % (broccoli/corn) and 4 to 8 % (olive paste/corn). A simple power model was developed for the prediction of phenolic content and antioxidant activity of extrudates by extrusion conditions and feed composition. Phenolic content and antioxidant activity of broccoli enriched extrudates increased with extrusion temperature and broccoli addition and decreased with feed moisture content. The antioxidant activity of olive paste extrudates increased with material ratio and decreased with feed moisture content and screw rotation. Sensory porosity, homogenous structure, crispness, cohesiveness and melting decreased with feed moisture content, while the latter increased the mealy flavor and hardness of extrudates. Acceptable snacks containing broccoli flour or olive paste can be produced by selecting the appropriate process conditions.

  7. Antioxidant and antimicrobial activities of squid ink powder

    OpenAIRE

    Fatimah Zaharah, M.Y.; Rabeta, M.S.

    2017-01-01

    Economic development in Malaysia has led to increasing quantity and complexity of generated waste or by-product. The main objective of this study is to investigate the antioxidant and antimicrobial activities of squid ink powder. The squid ink was collected from fresh squid and dried using freeze dryer before it was ground into powder. The yield of squid ink was 22.82% after freeze-drying which was 69.37g in amount. Proximate composition analysis as well as two total antioxidant activity assa...

  8. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content.

    Science.gov (United States)

    Sarker, Umakanta; Oba, Shinya

    2018-06-30

    Four selected vegetable amaranths were grown under four soil water content to evaluate their response in nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and total antioxidant activity (TAC). Vegetable amaranth was significantly affected by variety, soil water content and variety × soil water content interactions for all the traits studied. Increase in water stress, resulted in significant changes in proximate compositions, minerals (macro and micro), leaf pigments, vitamin, total polyphenol content (TPC), and total flavonoid content (TFC) of vegetable amaranth. Accessions VA14 and VA16 performed better for all the traits studied. Correlation study revealed a strong antioxidant scavenging activity of leaf pigments, ascorbic acid, TPC and TFC. Vegetable amaranth can tolerate soil water stress without compromising the high quality of the final product in terms of nutrients and antioxidant profiles. Therefore, it could be a promising alternative crop in semi-arid and dry areas and also during dry seasons. Copyright © 2018. Published by Elsevier Ltd.

  9. Antioxidant and hepatoprotective activity of Cordia macleodii leaves

    Science.gov (United States)

    Qureshi, Naseem N.; Kuchekar, Bhanudansh S.; Logade, Nadeem A.; Haleem, Majid A.

    2009-01-01

    This investigation was undertaken to evaluate ethanolic extract of Cordia macleodii leaves for possible antioxidant and hepatoprotective potential. Antioxidant activity of the extracts was evaluated by four established, in vitro methods viz. 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging method, nitric oxide (NO) radical scavenging method, iron chelation method and reducing power method. The extract demonstrated a significant dose dependent antioxidant activity comparable with ascorbic acid. The extract was also evaluated for hepatoprotective activity by carbon tetrachloride (CCl4) induced liver damage model in rats. CCl4 produced a significant increase in levels of serum glutamate pyruvate transaminase (GPT), serum glutamate oxaloacetate transaminase (GOT), Alkaline Phosphatase (ALP) and total bilirubin. Pretreatment of the rats with ethanolic extract of C. macleodii (100, 200 and 400 mg/kg po) inhibited the increase in levels of GPT, GOT, ALP and total bilirubin and the inhibition was comparable with Silymarin (100 mg/kg po). The present study revealed that C. macleodii leaves have significant radical scavenging and hepatoprotective activities. PMID:23960714

  10. Effects of Tai Chi Training on Antioxidant Capacity in Pre- and Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Attakorn Palasuwan

    2011-01-01

    Full Text Available The risk of oxidative stress-related metabolic diseases increases with menopause and physical inactivity. We hypothesized that an 8-week Tai Chi (TC training program (2 sessions in class; 2 sessions at home; 1-1:15/session would improve antioxidant capacity and reduce cardiovascular risks in both pre- (n=8 and postmenopausal (n=7 sedentary women. Selected measures of physical fitness and blood parameters were analyzed before and after the program. Besides the well-known effects of TC on balance, flexibility, and maximum leg extensor strength, TC (1 increased erythrocyte glutathione peroxidase activity—an aerobic training-responsive antioxidant enzyme—and plasma total antioxidant status and (2 decreased plasma total homocysteine, a cardiovascular risk marker. In addition to being a low-velocity, low-impact, and relatively safe, TC is a suitable physical activity design for pre- and postmenopausal women to increase antioxidant defenses. Investigating breathing effects during TC movements would be an interesting area for further research in diseases prevention.

  11. Effects of tai chi training on antioxidant capacity in pre- and postmenopausal women.

    Science.gov (United States)

    Palasuwan, Attakorn; Suksom, Daroonwan; Margaritis, Irène; Soogarun, Suphan; Rousseau, Anne-Sophie

    2011-04-11

    The risk of oxidative stress-related metabolic diseases increases with menopause and physical inactivity. We hypothesized that an 8-week Tai Chi (TC) training program (2 sessions in class; 2 sessions at home; 1-1:15/session) would improve antioxidant capacity and reduce cardiovascular risks in both pre- (n = 8) and postmenopausal (n = 7) sedentary women. Selected measures of physical fitness and blood parameters were analyzed before and after the program. Besides the well-known effects of TC on balance, flexibility, and maximum leg extensor strength, TC (1) increased erythrocyte glutathione peroxidase activity-an aerobic training-responsive antioxidant enzyme-and plasma total antioxidant status and (2) decreased plasma total homocysteine, a cardiovascular risk marker. In addition to being a low-velocity, low-impact, and relatively safe, TC is a suitable physical activity design for pre- and postmenopausal women to increase antioxidant defenses. Investigating breathing effects during TC movements would be an interesting area for further research in diseases prevention.

  12. Resolving browning during the establishment of explant cultures in Vicia faba L. for genetic transformation

    Directory of Open Access Journals (Sweden)

    Helena Klenotičová

    2013-01-01

    Full Text Available Optimisation of in vitro regeneration systems of two explant types for low-tannine cultivars of faba bean based on culturing of shoot apices and cotyledonary nodes were provided by usage of various antioxidants - ascorbic acid, citric acid, glutathione and activated charcoal. In subsequent testing, the combined effects of antioxidants with transformation co-cultivation compounds acetosyringone and L-cysteine was studied. The application of antioxidants lead to decreased callogenesis, citric acids treatments (50 mg.l−1 dramatically decreased necrotic response of explants. However, citric acid, used together with ascorbic acid completely inhibited shoot growth in shoot apex cultures. Glutathion evoked hyperhydricity of explants. Activated charcoal induced rooting on media which are commonly used for shoot proliferation. Combination of acetosyringone with antioxidants influenced shoot proliferation, except of variant with ascorbic acid. Citric acid was the best and universal antioxidant in faba bean in vitro cultures and its use is recommended for faba bean genetic transformation experiments.

  13. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    Science.gov (United States)

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. [The significance of free radicals and antioxidants due to the load induced by sport activity].

    Science.gov (United States)

    Holecek, V; Liska, J; Racek, J; Rokyta, R

    2004-01-01

    Sport performance is followed by a high production of free radicals. The main reasons are reperfusion after the previous imbalance between the increased need of the organism and the ability of blood supply by oxygen, increased production of ATP, decomposition of the cells particularly white blood cells, oxidation of the purin basis from DNA, stress, output of epinephrine release of free iron, increased temperature in the muscle and its inflammation, and the reception of free radicals from external environment. Peroxidation of lipids, proteins, DNA and other compounds follows the previous biochemical steps. Antioxidants are consumed by free radicals, antioxidative enzymes are released into blood plasma, intracellular calcium is increased, the production of nitric oxide rises, the levels of hydrogen peroxide and hypochlorous acid increase. These penetrate through the membranes and oxidatively damage the tissues. Training improves the ability of the organism to balance the increased load of free radicals. The damage can be lowered by the application of a mixture of antioxidants, the most important are vitamin C, A, E, glutathione, selenium, carnosine, eventually bioflavonoids and ginkgo biloba. The lack of antioxidants can significantly diminish the sport performance and therefore the supplementation with antioxidants is for top sportsmen but also for aged people advisable.

  15. Why increased nuchal translucency is associated with congenital heart disease: a systematic review on genetic mechanisms

    NARCIS (Netherlands)

    Burger, N.B.; Bekker, M.N.; Groot, C.J. de; Christoffels, V.M.; Haak, M.C.

    2015-01-01

    This overview provides insight into the underlying genetic mechanism of the high incidence of cardiac defects in fetuses with increased nuchal translucency (NT). Nuchal edema, the morphological equivalent of increased NT, is likely to result from abnormal lymphatic development and is strongly

  16. Antioxidant Properties of Crude Extract, Partition Extract, and Fermented Medium of Dendrobium sabin Flower

    Directory of Open Access Journals (Sweden)

    Farahziela Abu

    2017-01-01

    Full Text Available Antioxidant properties of crude extract, partition extract, and fermented medium from Dendrobium sabin (DS flower were investigated. The oven-dried DS flower was extracted using 100% methanol (w/v, 100% ethanol (w/v, and 100% water (w/v. The 100% methanolic crude extract showed the highest total phenolic content (40.33 ± mg GAE/g extract and the best antioxidant properties as shown by DPPH, ABTS, and FRAP assays. A correlation relationship between antioxidant activity and total phenolic content showed that phenolic compounds were the dominant antioxidant components in this flower extract. The microbial fermentation on DS flower medium showed a potential in increasing the phenolic content and DPPH scavenging activity. The TPC of final fermented medium showed approximately 18% increment, while the DPPH of fermented medium increased significantly to approximately 80% at the end of the fermentation. Dendrobium sabin (DS flower showed very good potential properties of antioxidant in crude extract and partition extract as well as better antioxidant activity in the flower fermented medium.

  17. Prospects of using natural antioxidants in radiation processed food

    International Nuclear Information System (INIS)

    Kanatt, S.R.; Chander, Ramesh; Sharma, Arun

    2006-01-01

    Full text: Microbial contamination of food is a serious concern both for food producer and consumer. Radiation processing of food is one of the most effective technologies that can extend the shelf-life and eliminate pathogenic bacteria in food. However, wide acceptability of radiation processed food products will depend upon quality parameters such as oxidative changes, color stability and organoleptic attributes. Any food processing technique is known to accelerate lipid peroxidation and radiation processing is no exception. Irradiation does not adversely affect the overall nutritive value of food and the oxidative changes induced by irradiation are similar to those observed using conventional food processing methods. Combination of various processing conditions such as storage and cooking, results in accelerated oxidative deterioration. The growing demand for convenience foods and the evolving markets for pre cooked food, call for techniques to prevent lipid oxidation in prepared stored food. Products of lipid peroxidation adversely affect the color, flavor and texture of the food. It is therefore necessary to control these changes for better product development. Methods commonly employed by the food industry include the use of antioxidants. Presently, most of the antioxidants used are synthetic but consumer concern has become a driving force for exploring the use of natural antioxidants. The increase interest in substitution of synthetic antioxidants with natural antioxidants has fostered research on screening of plant materials in order to identify new compounds. We have investigated the antioxidant potential of several plant extracts, herbs and waste generated by the food industry, such as potato peel, banana peel, mango peel, mint, cinnamon extracts and chitosan. Mint extract was found to have the maximum antioxidant activity as tested by several in vitro antioxidant assays. The antioxidant activity of mint extract was comparable to that of BHT the commonly

  18. Distribution of Phenolic Compounds and Antioxidative Activities of Rice Kernel and Their Relationships with Agronomic Practice

    Science.gov (United States)

    Kesarwani, Amit; Chiang, Po-Yuan; Chen, Shih-Shiung

    2014-01-01

    The phenolic and antioxidant activity of ethanolic extract of two Japonica rice cultivars, Taikeng no. 16 (medium and slender grain) and Kaohsiung no. 139 (short and round grain), grown under organic and conventional farming were examined. Analyses shows that Kaohsiung no. 139 contains the highest amount of secondary metabolites and continuous farming can increase its production. Results also suggest that phenolic content under different agronomic practices, has not shown significant differences but organically grown rice has proven to be better in higher accumulation of other secondary metabolites (2,2-diphenyl-1-picrylhydrazyl (DPPH), flavonoid content, and ferrous chelating capacity). In nutshell, genetic traits and environment have significant effect on phenolic compounds and the least variation reported under agronomic practices. PMID:25506072

  19. Distribution of Phenolic Compounds and Antioxidative Activities of Rice Kernel and Their Relationships with Agronomic Practice

    Directory of Open Access Journals (Sweden)

    Amit Kesarwani

    2014-01-01

    Full Text Available The phenolic and antioxidant activity of ethanolic extract of two Japonica rice cultivars, Taikeng no. 16 (medium and slender grain and Kaohsiung no. 139 (short and round grain, grown under organic and conventional farming were examined. Analyses shows that Kaohsiung no. 139 contains the highest amount of secondary metabolites and continuous farming can increase its production. Results also suggest that phenolic content under different agronomic practices, has not shown significant differences but organically grown rice has proven to be better in higher accumulation of other secondary metabolites (2,2-diphenyl-1-picrylhydrazyl (DPPH, flavonoid content, and ferrous chelating capacity. In nutshell, genetic traits and environment have significant effect on phenolic compounds and the least variation reported under agronomic practices.

  20. Influence of drugs with antioxidant properties on the state of the sperm antioxidant system in men with excretory-toxic forms of infertility

    Directory of Open Access Journals (Sweden)

    O.K. Onufrovych

    2013-10-01

    Full Text Available Since the development of many disorders of the reproductive function in men involves processes of free radical oxidation, the purpose of this study was to form an evaluation of the pro- and antioxidant status of sperm and to restore its biological usefulness in men with excretory-toxic forms of infertility by using drugs with antioxidant properties. It is shown that excretory-toxic forms of infertility in men are mostly caused by such infectious agents as Chlamydia (22%, Chlamydia + Ureaplasma (16%, Chlamydia + Trichomonas (13%, Ureaplasma (10%. This reduces the total number of sperm in the ejaculate by 2.7 times, and motility by 1.8 times. The number of abnormal forms increases by 1.75 times. With the development of chronic inflammation of the male sex organs sperm lipid peroxidation increases by 1.3 times while the activity of glutathione peroxidase decreases (by 2.3 times and that of glutathione reductase (by 1.7 times. We observed a close correlation between the low biological quality of sperm (low concentration, low number and motility of sperm in the ejaculate with activation of lipid peroxidation and inhibition of activity of the glutathione antioxidant system. In the case of superoxide dismutase, the negative impact of reactive oxygen species on this enzyme was not observed. A course of drugs with antioxidant properties – vitamin E, vitamin C and zinc sulfate leads to improvement in the indicators on the spermagram (mostly sperm mobility and morphology, to reduction of the number of peroxide compounds and activation of the glutathione antioxidant system. In this case, the activity of glutathione peroxidase is increased by 1.5 times and the activity of glutathione reductase by 1.3 times. The activity of superoxide dismutase at the same time approaches the norm for zoospermia. The data obtained show that one of the pathogenic factors of the chronic inflammation of male sex organs, considered as a main developmental reason for infertility

  1. Evaluation of antioxidant capacity of Chinese five-spice ingredients.

    Science.gov (United States)

    Bi, Xinyan; Soong, Yean Yean; Lim, Siang Wee; Henry, Christiani Jeyakumar

    2015-05-01

    Phenolic compounds in spices were reportedly found to possess high antioxidant capacities (AOCs), which may prevent or reduce risk of human diseases such as cardiovascular disease, cancer and diabetes. The potential AOC of Chinese five-spice powder (consist of Szechuan pepper, fennel seed, cinnamon, star anise and clove) with varying proportion of individual spice ingredients was investigated through four standard methods. Our results suggest that clove is the major contributor to the AOC of the five-spice powder whereas the other four ingredients contribute to the flavour. For example, the total phenolic content as well as ferric reducing antioxidant power (FRAP), Trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) values increased linearly with the clove percentage in five-spice powder. This observation opens the door to use clove in other spice mixtures to increase their AOC and flavour. Moreover, linear relationships were also observed between AOC and the total phenolic content of the 32 tested spice samples.

  2. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods.

    Directory of Open Access Journals (Sweden)

    Jiali Xing

    Full Text Available Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS, reducing power (RP, and inhibition of linoleic acid peroxidation (ILAP. Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs.

  3. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage.

    Science.gov (United States)

    Murador, Daniella Carisa; Mercadante, Adriana Zerlotti; de Rosso, Veridiana Vera

    2016-04-01

    The aim of this study is to investigate the effects of different home cooking techniques (boiling, steaming, and stir-frying) in kale and red cabbage, on the levels of bioactive compounds (carotenoids, anthocyanins and phenolic compounds) determined by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detectors (HPLC-DAD-MS(n)), and on the antioxidant activity evaluated by ABTS, ORAC and cellular antioxidant activity (CAA) assays. The steaming technique resulted in a significant increase in phenolic content in kale (86.1%; pkale, steaming resulted in significant increases in antioxidant activity levels in all of the evaluation methods. In the red cabbage, boiling resulted in a significant increase in antioxidant activity using the ABTS assay but resulted in a significant decrease using the ORAC assay. According to the CAA assay, the stir-fried sample displayed the highest levels of antioxidant activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. "Well, good luck with that": reactions to learning of increased genetic risk for Alzheimer disease.

    Science.gov (United States)

    Zallen, Doris T

    2018-03-08

    PurposeApolipoprotein-E (APOE) genetic testing to estimate risk for developing late-onset Alzheimer disease is increasingly being offered without prior genetic counseling or preparation. Consumer interest continues to grow, raising the question of how best to conduct such testing.MethodsTwenty-six semistructured interviews were carried out to study the reactions of individuals who had already learned of their higher risk after APOE testing had been done because of a family history of Alzheimer disease, or from genetic tests done for other health-related or general-interest reasons.ResultsAdverse psychological reactions were reported by a substantial fraction of the participants, including those who had specifically sought testing, those for whom the information came as a surprise, those with a family history, and those with no known history. Still, nearly all of those interviewed said that they had benefited in the long term from lifestyle changes, often learned from online sources, that they subsequently made.ConclusionThe results show that people should be prepared prior to any genetic testing and allowed to opt out of particular tests. If testing is carried out and a higher risk is revealed, they should be actively assisted in deciding how to proceed.GENETICS in MEDICINE advance online publication, 8 March 2018; doi:10.1038/gim.2018.13.

  5. Antioxidant activity of Dianthus chinensis L. flowers processed by ionizing radiation

    International Nuclear Information System (INIS)

    Koike, Amanda C.R.; Villavicencio, Anna L.C.H.; Barros, Lillian; Antonio, Amilcar L.; Ferreira, Isabel C.F.R.

    2017-01-01

    Edible flowers are increasingly used in culinary preparations, which require new approaches to improve their conservation and safety. Irradiation treatment is safe and an effective alternative for food conservation, guaranteeing food quality, increasing shelf-life and disinfestation. This technology offers a versatile way to get good quality food while reducing post-harvest losses. Dianthus chinensis L. flowers, popularly known as Chinese pink, are widely used in culinary preparations, being also acknowledged for their bioactive components and antioxidant properties. The purpose of this study was to evaluate the antioxidant activity of D. chinensis flowers submitted to electron beam and gamma irradiation at 0, 0.5, 0.8 and 1 kGy. The antioxidant properties were evaluated through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, reducing power and β-carotene bleaching inhibition assays. Total phenolics were determined by the Folin-Ciocalteu assay. The antioxidant activity was higher for irradiated samples, especially those treated with 0.5 and 0.8 kGy, independently of the radiation source, which showed the highest capacity to inhibit β-carotene bleaching inhibition. Accordingly, the applied irradiation treatments seemed to represent feasible technology to preserve the quality of edible flower petals, being able to improve the antioxidant activity. (author)

  6. Antioxidant activity of Dianthus chinensis L. flowers processed by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Amanda C.R.; Villavicencio, Anna L.C.H., E-mail: amandaramos@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil); Barros, Lillian; Antonio, Amilcar L.; Ferreira, Isabel C.F.R., E-mail: iferreira@ipb.pt [Centro de Investigação de Montanha (CIMO) - ESA, Instituto Politécnico de Bragança (Portugal)

    2017-07-01

    Edible flowers are increasingly used in culinary preparations, which require new approaches to improve their conservation and safety. Irradiation treatment is safe and an effective alternative for food conservation, guaranteeing food quality, increasing shelf-life and disinfestation. This technology offers a versatile way to get good quality food while reducing post-harvest losses. Dianthus chinensis L. flowers, popularly known as Chinese pink, are widely used in culinary preparations, being also acknowledged for their bioactive components and antioxidant properties. The purpose of this study was to evaluate the antioxidant activity of D. chinensis flowers submitted to electron beam and gamma irradiation at 0, 0.5, 0.8 and 1 kGy. The antioxidant properties were evaluated through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, reducing power and β-carotene bleaching inhibition assays. Total phenolics were determined by the Folin-Ciocalteu assay. The antioxidant activity was higher for irradiated samples, especially those treated with 0.5 and 0.8 kGy, independently of the radiation source, which showed the highest capacity to inhibit β-carotene bleaching inhibition. Accordingly, the applied irradiation treatments seemed to represent feasible technology to preserve the quality of edible flower petals, being able to improve the antioxidant activity. (author)

  7. Role of enzymatic and non enzymatic antioxidant in ameliorating salinity induced damage in nostoc muscorum

    International Nuclear Information System (INIS)

    Hend, A.; Abeer, A.; Allah, A.

    2015-01-01

    Presence of high salt concentration in the growth medium adversely affected the plant growth and productivity by altering its metabolic activities. Experiments were conducted on cyanobacteriaum Nostoc muscorum grown in nitrogen free medium supplemented with 250 mM NaCl to evaluate the salt stress induced changes in growth, antioxidants and lipid composition. Salt stress significantly reduced the growth and physio-biochemical attributes. Salt stress increased malonaldehyde content thereby causing alterations in the lipid fraction. Significant reduction in polyunsaturated fatty acids including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI) and phosphatidylserine (PS) was observed. Where as diacylglycerol, sterol ester and non-esterified fatty acids were increased. Activities of antioxidant enzymes and contents of non-enzymatic antioxidants including glutathione enhanced due to salt stress. An increase in accumulation of proline was also observed. Hence increased activity of antioxidants and altered fatty acid composition was observed in salt stressed Nostoc muscorum. (author)

  8. Rationale for dietary antioxidant treatment of ADHD

    NARCIS (Netherlands)

    Verlaet, Annelies A.J.; Maasakkers, Carlijn M.; Hermans, Nina; Savelkoul, Huub F.J.

    2018-01-01

    Increasing understanding arises regarding disadvantages of stimulant medication in children with ADHD (Attention-Deficit Hyperactivity Disorder). This review presents scientific findings supporting dietary antioxidant treatment of ADHD and describes substantial alterations in the immune system,

  9. The effects of the nature of the antioxidant on the radiation crosslinking of polyethylene

    International Nuclear Information System (INIS)

    Gal, O.S.; Markovic, V.M.; Novakovic, L.R.; Stannett, V.T.

    1985-01-01

    The effects of three antioxidants, a hindered phenolic, a secondary amine and a thioester on the radiation crosslinking efficiency of low-density polyethylene were studied. Both gel content and thermomechanical analysis were used to follow the crosslinking. All three antioxidants decreased the amount of crosslinking at a given dose, the thioester being the most effective. The ratios of G (scission) to G (X linking) increased with all three antioxidants. This is attributed to the antioxidants only interfering with the crosslinking reaction. (author)

  10. The 5'-AMP-Activated Protein Kinase (AMPK Is Involved in the Augmentation of Antioxidant Defenses in Cryopreserved Chicken Sperm.

    Directory of Open Access Journals (Sweden)

    Thi Mong Diep Nguyen

    Full Text Available Semen cryopreservation is a unique tool for the management of animal genetic diversity. However, the freeze-thaw process causes biochemical and physical alterations which make difficult the restoration of sperm energy-dependent functions needed for fertilization. 5'-AMP activated protein kinase (AMPK is a key sensor and regulator of intracellular energy metabolism. Mitochondria functions are known to be severely affected during sperm cryopreservation with deleterious oxidative and peroxidative effects leading to cell integrity and functions damages. The aim of this study was thus to examine the role of AMPK on the peroxidation/antioxidant enzymes defense system in frozen-thawed sperm and its consequences on sperm functions. Chicken semen was diluted in media supplemented with or without AMPK activators (AICAR or Metformin [MET] or inhibitor (Compound C [CC] and then cryopreserved. AMPKα phosphorylation, antioxidant enzymes activities, mitochondrial potential, ATP, citrate, viability, acrosome reaction ability (AR and various motility parameters were negatively affected by the freeze-thaw process while reactive oxygen species (ROS production, lipid peroxidation (LPO and lactate concentration were dramatically increased. AICAR partially restored superoxide dismutase (SOD, Glutathione Peroxidase (GPx and Glutathione Reductase (GR, increased ATP, citrate, and lactate concentration and subsequently decreased the ROS and LPO (malondialdehyde in frozen-thawed semen. Motility parameters were increased (i.e., + 23% for motility, + 34% for rapid sperm as well as AR (+ 100%. MET had similar effects as AICAR except that catalase activity was restored and that ATP and mitochondrial potential were further decreased. CC showed effects opposite to AICAR on SOD, ROS, LPO and AR and motility parameters. Taken together, our results strongly suggest that, upon freeze-thaw process, AMPK stimulated intracellular anti-oxidative defense enzymes through ATP regulation

  11. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains--a review.

    Science.gov (United States)

    Nayak, Balunkeswar; Liu, Rui Hai; Tang, Juming

    2015-01-01

    Understanding the influence of processing operations such as drying/dehydration, canning, extrusion, high hydrostatic pressure, pulsed electric field, and ohmic heating on the phytochemicals of fruits, vegetables, and grains is important in retaining the health benefiting properties of these antioxidative compounds in processed food products. Most of the previous investigations in the literature on the antioxidants of fruits, vegetables, and grains have shown that food-processing operations reduced the antioxidants of the processed foods, which is also the usual consumer perception. However, in the last decade some articles in the literature reported that the evaluation of nutritional quality of processed fruits and vegetables not only depend on the quantity of vitamin C but should include analyses of other antioxidant phytochemicals and antioxidant activity. Thermal processing increased the total antioxidant activity of tomato and sweet corn. Most importantly, analysis also depends on the condition, type, and mechanism of antioxidant assays used. This review aims to provide concise information on the influence of various thermal and nonthermal food-processing operations on the stability and kinetics of health beneficial phenolic antioxidants of fruits, vegetables, and grains.

  12. Tocopherol composition of deodorization distillates and their antioxidative activity.

    Science.gov (United States)

    Nogala-Kalucka, Malgorzata; Korczak, Jozef; Wagner, Karl-Heinz; Elmadfa, Ibrahim

    2004-02-01

    During the last stage of plant oil refining, deodorization distillates containing very important biological substances such as tocopherols, sterols, terpenoids or hydrocarbons are formed as a by-products. This study aimed at evaluating the content and antioxidant capacity of tocopherol concentrates from deodorization distillates obtained after the refining of rapeseed, soybean and sunflower oil. The majority of the matrix substances were eliminated from deodorization distillates by freezing with an acetone solution at -70 degrees C. The tocopherol concentrates obtained in this way contained approximately fivefold more tocopherols than the quantity in condensates after deodorization. Antioxidant activity was investigated by observing the peroxide value at 25 degrees C and using the Oxidograph test. The test medium was lard enriched with the tocopherol concentrates of the three plant oils versus single, synthetic alpha-, gamma- and delta-tocopherols (-T), which served for comparison. In these model systems, all investigated tocopherol concentrates exhibited antioxidant capacity. Their antioxidant effect was significantly lower than that of single delta-T and gamma-T, but significantly higher than alpha-T. The results prove that natural tocopherol concentrates obtained from plant oils are valuable food antioxidants and they also increase the biological and nutritional value of food especially when administered to animal fats or food of animal origin. Tocopherol concentrates can fully replace synthetic antioxidants that have been used thus far.

  13. Risk perception after genetic counseling in patients with increased risk of cancer

    Directory of Open Access Journals (Sweden)

    Rantala Johanna

    2009-08-01

    Full Text Available Abstract Background Counselees are more aware of genetics and seek information, reassurance, screening and genetic testing. Risk counseling is a key component of genetic counseling process helping patients to achieve a realistic view for their own personal risk and therefore adapt to the medical, psychological and familial implications of disease and to encourage the patient to make informed choices 12. The aim of this study was to conceptualize risk perception and anxiety about cancer in individuals attending to genetic counseling. Methods The questionnaire study measured risk perception and anxiety about cancer at three time points: before and one week after initial genetic counseling and one year after completed genetic investigations. Eligibility criteria were designed to include only index patients without a previous genetic consultation in the family. A total of 215 individuals were included. Data was collected during three years period. Results Before genetic counseling all of the unaffected participants subjectively estimated their risk as higher than their objective risk. Participants with a similar risk as the population overestimated their risk most. All risk groups estimated the risk for children's/siblings to be lower than their own. The benefits of preventive surveillance program were well understood among unaffected participants. The difference in subjective risk perception before and directly after genetic counseling was statistically significantly lower in all risk groups. Difference in risk perception for children as well as for population was also statistically significant. Experienced anxiety about developing cancer in the unaffected subjects was lower after genetic counseling compared to baseline in all groups. Anxiety about cancer had clear correlation to perceived risk of cancer before and one year after genetic investigations. The affected participants overestimated their children's risk as well as risk for anyone in

  14. Effect of a novel aromatic cytokinin derivative on phytochemical levels and antioxidant potential in greenhouse grown Merwilla plumbea

    Czech Academy of Sciences Publication Activity Database

    Aremu, A.O.; Moyo, M.; Amoo, S.O.; Grúz, Jiří; Šubrtová, Michaela; Plíhalová, Lucie; Doležal, Karel; van Staden, J.

    2014-01-01

    Roč. 119, č. 3 (2014), s. 501-509 ISSN 0167-6857 R&D Projects: GA MŠk(CZ) LO1204 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : Antioxidant * Conservation * Phenolics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.125, year: 2014

  15. Reduced Genetic Diversity and Increased Structure in American Mink on the Swedish Coast following Invasive Species Control.

    Science.gov (United States)

    Zalewski, Andrzej; Zalewska, Hanna; Lunneryd, Sven-Gunnar; André, Carl; Mikusiński, Grzegorz

    2016-01-01

    Eradication and population reductions are often used to mitigate the negative impacts of non-native invasive species on native biodiversity. However, monitoring the effectiveness of non-native species control programmes is necessary to evaluate the efficacy of these measures. Genetic monitoring could provide valuable insights into temporal changes in demographic, ecological, and evolutionary processes in invasive populations being subject to control programmes. Such programmes should cause a decrease in effective population size and/or in genetic diversity of the targeted non-native species and an increase in population genetic structuring over time. We used microsatellite DNA data from American mink (Neovison vison) to determine whether the removal of this predator on the Koster Islands archipelago and the nearby Swedish mainland affected genetic variation over six consecutive years of mink culling by trappers as part of a population control programme. We found that on Koster Islands allelic richness decreased (from on average 4.53 to 3.55), genetic structuring increased, and effective population size did not change. In contrast, the mink population from the Swedish coast showed no changes in genetic diversity or structure, suggesting the stability of this population over 6 years of culling. Effective population size did not change over time but was higher on the coast than on the islands across all years. Migration rates from the islands to the coast were almost two times higher than from the coast to the islands. Most migrants leaving the coast were localised on the southern edge of the archipelago, as expected from the direction of the sea current between the two sites. Genetic monitoring provided valuable information on temporal changes in the population of American mink suggesting that this approach can be used to evaluate and improve control programmes of invasive vertebrates.

  16. Reduced Genetic Diversity and Increased Structure in American Mink on the Swedish Coast following Invasive Species Control.

    Directory of Open Access Journals (Sweden)

    Andrzej Zalewski

    Full Text Available Eradication and population reductions are often used to mitigate the negative impacts of non-native invasive species on native biodiversity. However, monitoring the effectiveness of non-native species control programmes is necessary to evaluate the efficacy of these measures. Genetic monitoring could provide valuable insights into temporal changes in demographic, ecological, and evolutionary processes in invasive populations being subject to control programmes. Such programmes should cause a decrease in effective population size and/or in genetic diversity of the targeted non-native species and an increase in population genetic structuring over time. We used microsatellite DNA data from American mink (Neovison vison to determine whether the removal of this predator on the Koster Islands archipelago and the nearby Swedish mainland affected genetic variation over six consecutive years of mink culling by trappers as part of a population control programme. We found that on Koster Islands allelic richness decreased (from on average 4.53 to 3.55, genetic structuring increased, and effective population size did not change. In contrast, the mink population from the Swedish coast showed no changes in genetic diversity or structure, suggesting the stability of this population over 6 years of culling. Effective population size did not change over time but was higher on the coast than on the islands across all years. Migration rates from the islands to the coast were almost two times higher than from the coast to the islands. Most migrants leaving the coast were localised on the southern edge of the archipelago, as expected from the direction of the sea current between the two sites. Genetic monitoring provided valuable information on temporal changes in the population of American mink suggesting that this approach can be used to evaluate and improve control programmes of invasive vertebrates.

  17. The optimization of extraction of antioxidants from apple pomace by pressurized liquids.

    Science.gov (United States)

    Wijngaard, Hilde; Brunton, Nigel

    2009-11-25

    Pressurized liquid extraction (PLE) is a green extraction technique that can enhance extraction rates of bioactive compounds. PLE was used to extract antioxidants and polyphenols from industrially generated apple pomace at two different temperature ranges: 160 to 193 degrees C and 75 to 125 degrees C. Antioxidant activity (DPPH radical scavenging test), total phenol content and three individual polyphenol groups were determined. Response surface methodology was used to optimize the five response values. Maximum antioxidant activity was obtained at a temperature of 200 degrees C, but unwanted compounds such as hydroxymethylfurfural were formed. Therefore a lower temperature range between 75 and 125 degrees C is recommended. Using this temperature range, a maximum antioxidant activity was determined at 60% ethanol and 102 degrees C. By using PLE the antioxidant activity was increased 2.4 times in comparison to traditional solid-liquid extraction, and the technique may be a promising alternative to conventional techniques for extracting antioxidants.

  18. Kin discrimination increases with genetic distance in a social amoeba.

    Science.gov (United States)

    Ostrowski, Elizabeth A; Katoh, Mariko; Shaulsky, Gad; Queller, David C; Strassmann, Joan E

    2008-11-25

    In the social amoeba Dictyostelium discoideum, thousands of cells aggregate upon starvation to form a multicellular fruiting body, and approximately 20% of them die to form a stalk that benefits the others. The aggregative nature of multicellular development makes the cells vulnerable to exploitation by cheaters, and the potential for cheating is indeed high. Cells might avoid being victimized if they can discriminate among individuals and avoid those that are genetically different. We tested how widely social amoebae cooperate by mixing isolates from different localities that cover most of their natural range. We show here that different isolates partially exclude one another during aggregation, and there is a positive relationship between the extent of this exclusion and the genetic distance between strains. Our findings demonstrate that D. discoideum cells co-aggregate more with genetically similar than dissimilar individuals, suggesting the existence of a mechanism that discerns the degree of genetic similarity between individuals in this social microorganism.

  19. ESR studies of antioxidative activity of different elecampane (Inula helenium L extracts

    Directory of Open Access Journals (Sweden)

    Čanadanović-Brunet Jasna M.

    2002-01-01

    Full Text Available The influence of petroleum ether, ethyl acetate and water extracts of elecampane (lnula helenium L on the transformation of the stable 1,1-diphenyl-2-pycrylhydrazil (DPPH radicals has been investigated by ESR spectroscopy. Using the phytochemist "screening" test a qualitative analysis of extracts has been made. On the basis of the obtained results it can be concluded that the investigated elecampane extracts have the antioxidative activity due to the hydrogen donor ability of the constituent biomolecules such as tannins, terpenes, polyphenols, etc. The following order of antioxidative activity has been established: ethyl acetate > petroleum ether > water extracts. Also, the investigation showed that the antioxidative activity increased with increasing concentration of all the extracts.

  20. Chemical compositions and antioxidant activity of Heracleum persicum essential oil

    Directory of Open Access Journals (Sweden)

    Maryam Gharachorloo

    2018-02-01

    Full Text Available ABSTRACT In this study essential oil of the aerial parts of Heracleum persicum a spice widely used in Iran was isolated by conventional hydrodistillation (HD and microwave-assisted hydrodistillation (MAHD techniques. The extraction yield was determined and the chemical compositions of essential oils were identified by the application of gas chromatography/mass spectrometry (GC/MS. The antioxidant activity was determined by two different methods: 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging and oven test methods. Although the main compounds of essential oils by the both extraction methods were similar, the essential oil extracted by HD with lower extraction efficiency showed more diverse compounds. The evaluation of antioxidant activity of the essential oil measured by delay in sunflower oil oxidation indicated that the antioxidant activity was dependent on the concentration which increased when higher concentrations of the essential oils were applied. The results of DPPH radical assay also indicated that the percentage of inhibition increased with increasing of essential oil concentration and IC50 value for essential oil extracted by MAHD method was obtained 1.25 mg/mL. Therefore the Heracleum persicum essential oil might be recommended for use as a flavoring agent and a source of natural antioxidants in functional foods, formulation of the supplements and in medicinal due to numerous pharmacological activities.

  1. Electrophoretic characterization of D. melanogaster strains deficient in endogenous anti-oxidants in combination with gamma radiation; Caracterizacion electroforetica de cepas de D. melanogaster deficientes en antioxidantes endogenos en combinacion con radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Gomar A, S.

    2012-07-01

    The free radicals derived of the oxygen and other reactive species are generated by endogenous processes as sub-products of the aerobic metabolism or by exogenous factors as the environmental pollution, the biological half life of these free radicals is of microseconds, but they have the capacity of reacting with any atom or molecule to its around causing oxidant stress and damage to molecules, cellular membranes and tissues. To counteract them, there is endogenous and exogenous anti-oxidants, the first ones are synthesized by the organism for maintaining the cellular homeostasis as the superoxide dismutase and catalase. There are recent evidences that indicate that the sodium cooper chlorophyllin (SCC) presents a dual effect reducing and/or increasing the induced genetic damage by different mutagenic agents. One hypothesis for this effect is that the SCC can act as oxidant per se or through some of their metabolites. Results more recent indicated that a similar of the SCC, the protoporphyrin-Ix, can produce genetic damage. In this work exogenous anti-oxidants were used, as the SCC, protoporphyrin-Ix or the bilirubin in the induction of endogenous anti-oxidants enzymes to evaluate the supposed oxidant activity of the SCC and/or their metabolites. Drosophila melanogaster strains deficient in superoxide dismutase, catalase and withered were used and a rustic strain Canton-S as control. In the three experiments were treated 60 males of 1 day of age, with SCC, protoporphyrin-Ix or bilirubin to one concentration of 69 m M during 12 days. Every 4 days 10 males were isolated to measure them the induction of superoxide dismutase and catalase. The results showed that the SCC, protoporphyrin-Ix and bilirubin considered like anti-oxidants, were able to increase the induction of the superoxide dismutase and catalase enzymes. This result maybe is because they are able to generate reactive species of oxygen, as the anion superoxide and the hydrogen peroxide. Among the three

  2. Antioxidant Properties of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-05-01

    Full Text Available Oxidative stress defines a condition in which the prooxidant–antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells’ viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  3. Antioxidant Properties of Probiotic Bacteria.

    Science.gov (United States)

    Wang, Yang; Wu, Yanping; Wang, Yuanyuan; Xu, Han; Mei, Xiaoqiang; Yu, Dongyou; Wang, Yibing; Li, Weifen

    2017-05-19

    Oxidative stress defines a condition in which the prooxidant-antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  4. Genetically engineered rice. The source of β-carotene

    Directory of Open Access Journals (Sweden)

    Karol Terlecki

    2014-04-01

    Full Text Available β-carotene is a precursor of vitamin A. It is converted to vitamin A in the humans intestine by the β-carotene-15,15’-monooxygenase. Vitamin A is essential to support vision, as an antioxidant it protects the body from free radicals, it helps to integrate the immune system, as well as takes part in cellular differentiation and proliferation. Vitamin A deficiency is a major public health problem especially among developing countries. Nyctalopia, commonly known as „Night Blindness” is one of the major symptoms of Vitamin A deficiency (VAD. Plants such as apricots, broccoli, carrots, and sweet potatoes are rich in β-carotene. Some of the plants are characterized by a higher content of provitamin-A. Among vegetables rich sources of β-carotene are: carrots, pumpkin, spinach, lettuce, green peas, tomatoes, watercress, broccoli and parsley leaves. Amongst fruits the highest content of β-carotene is in apricot, cherry, sweet cherry, plum, orange and mango. The aim of the present study was to analyze available literature data of increasing the content of β-carotene in genetically engineered rice. The genetically modified cultivar contains additional genes: PSY and CRTI thanks to which rice seed endosperm contains β-carotene. Genetically engineered rice with β-carotene is an effective source of vitamin A, it contains approximately 30 μg β-carotene per 1 g. Fortunately some of the advantages of Genetically Modified Food give an opportunity to reduce VAD worldwide, by introducing the rice which has been genetically engineered to be rich in β-carotene. The popularity of this plant as an element of nutrition is simultaneously a source of vitamin A.

  5. Nanocarriers for Delivery of Antioxidants on the Skin

    Directory of Open Access Journals (Sweden)

    María Pilar Vinardell

    2015-10-01

    Full Text Available Skin is protected from the harmful effects of free radicals by the presence of an endogenous antioxidant system. However, when exposed to ultraviolet (UV radiation, there is an imbalance between pro-oxidants and antioxidants, leading to oxidative stress and photoaging of the skin. It has been described that free radicals and other reactive species can cause severe damage to cells and cell components of the skin, which results in skin aging and cancer. To prevent these actions on skin, the use of topical antioxidant supplementation is a strategy used in the cosmetics industry and these antioxidants act on quenching free radicals. There are many studies that demonstrated the antioxidant activity of many phytochemicals or bioactive compounds by free radical scavenging. However, many bioactive substances are unstable when exposed to light or lose activity during storage. The potential sensitivity of these substances to light exposure is of importance in cosmetic formulations applied to skin because photo-degradation might occur, reducing their activity. One strategy to reduce this effect on the skin is the preparation of different types of nanomaterials that allow the encapsulation of the antioxidant substances. Another problem related to some antioxidants is their inefficient percutaneous penetration, which limits the amount of the active ingredient able to reach the site of action in viable epidermis and dermis. In this sense, the encapsulation in polymeric nanoparticles could enhance the permeation of these substances. Nanocarriers offers several advantages over conventional passive delivery, such as increased surface area, higher solubility, improved stability, controlled release, reduced skin irritancy, and protection from degradation. The different nanocarrier systems used in cosmetics include nanolipid delivery systems such as solid lipid nanoparticles (SLN and nanostructured lipid carriers (NLC, nanoemulsions (NEs, nanoparticles (NP

  6. Antioxidants in Raspberry: On-line analysis links antioxidant activity to a diversity of individual metabolites

    NARCIS (Netherlands)

    Beekwilder, M.J.; Jonker, H.H.; Hall, R.D.; Meer, van der I.M.; Vos, de C.H.

    2005-01-01

    The presence of antioxidant compounds can be considered as a quality parameter for edible fruit. In this paper, we studied the antioxidant compounds in raspberry (Rubus idaeus) fruits by high-performance liquid chromatography (HPLC) coupled to an on-line postcolumn antioxidant detection system. Both

  7. Dissecting the role of two cytokinin analogues (INCYDE and PI-55) on in vitro organogenesis, phytohormone accumulation, phytochemical content and antioxidant activity

    Czech Academy of Sciences Publication Activity Database

    Aremu, A.O.; Stirk, W.A.; Masondo, N.A.; Plačková, Lenka; Novák, Ondřej; Pěnčík, Aleš; Zatloukal, Marek; Nisler, Jaroslav; Spíchal, Lukáš; Doležal, Karel; Finnie, J. F.; van Staden, J.

    2015-01-01

    Roč. 238, SEP 2015 (2015), s. 81-94 ISSN 0168-9452 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Antioxidant * Asparagaceae * Auxins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.362, year: 2015

  8. Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds.

    Science.gov (United States)

    Carciochi, Ramiro Ariel; Galván-D'Alessandro, Leandro; Vandendriessche, Pierre; Chollet, Sylvie

    2016-12-01

    Quinoa (Chenopodium quinoa) seed has gained a great interest in the last years, mainly due to its nutritional properties and its content of antioxidant substances with health-promoting properties in humans. In this work, the effect of germination time and fermentation on the levels of antioxidant compounds (ascorbic acid, tocopherol isomers and phenolic compounds) and antioxidant activity of quinoa seeds was evaluated. Fermentation was carried out naturally by the microorganisms present in the seeds or by inoculation with two Saccharomyces cerevisiae strains (used for baking and brewing). Ascorbic acid and total tocopherols were significantly increased (p ≤ 0.05) after 72 h of germination process in comparison with raw quinoa seeds, whilst fermentation caused a decrease in both types of compounds. Phenolic compounds and antioxidant capacity were improved using both bioprocesses, being this effect more noticeable for germination process (101 % of increase after three days of germination). Germination and fermentation proved to be desirable procedures for producing enriched ingredients with health-promoting antioxidant compounds in a natural way.

  9. miR-122 promotes hepatic antioxidant defense of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium by directly targeting a metallothionein gene.

    Science.gov (United States)

    Qiang, Jun; Tao, Yi-Fan; He, Jie; Xu, Pao; Bao, Jin-Wen; Sun, Yi-Lan

    2017-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that regulate target gene expression by binding to the 3'untranslated region (3'UTR) of the target mRNA. MiRNAs regulate a large variety of genes, including those involved in liver homeostasis and energy metabolism. Down-regulated levels of hepatic miR-122 were found in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium (Cd) stress. Here, we report for the first time that reduction of miR-122 post-transcriptionally increased metallothionein (MT) mRNA levels by binding to its 3'UTR, as shown by a 3' UTR luciferase reporter assay. The expression levels of miR-122 were negatively related to MT levels in GIFT under Cd stress. We performed in vivo functional analysis of miR-122 by injecting the fish with a miR-122 antagomir. Inhibition of miR-122 levels in GIFT liver caused a significant increase in MT expression, affected white blood cell and red blood cell counts, and serum alanine and aspartate aminotransferase activities, and glucose levels, all of which may help to relieve Cd stress-related liver stress. miR-122 silencing modulated oxidative stress and stimulated the activity of antioxidant enzymes. Our findings indicate that miR-122 regulated MT levels by binding to the 3'UTR of MT mRNA, and this interaction affected Cd stress induction and the resistance response in GIFT. We concluded that miR-122 plays an important role in regulating the stress response in GIFT liver. Our findings may contribute to understanding the mechanisms of miRNA-mediated gene regulation in tilapia in response to environmental stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Antioxidant status and smoking habits: relationship with diet.

    Science.gov (United States)

    Jain, A; Agrawal, B K; Varma, M; Jadhav, A A

    2009-06-01

    The present study was conducted to assess the association between smoking, dietary intake of antioxidants and plasma indices of oxidative stress and antioxidant defences in male smokers (cigarette and bidi smokers). The study sample consisted of 100 healthy men, including 50 non-smokers and 50 smokers, who were subclassified into 25 cigarette smokers and 25 bidi smokers, aged 18-55 years. Erythrocyte superoxide dismutase and plasma ascorbic acid were measured as antioxidants and erythrocyte malondialdehyde as an oxidative stress index, by colorimetric methods. Smokers ate less fruits and vegetables than non-smokers, leading to them having a lower antioxidant level. Erythrocyte superoxide dismutase was significantly lower in cigarette smokers (0.193 U/mgP, p-value is less than 0.05) and bidi smokers (0.169 U/mgP, p-value is less than 0.001) as compared to non-smokers (0.231 U/mgP). Plasma ascorbic acid was also significantly lower in cigarette smokers (1.45 mg/100 ml, p-value is less than 0.05) as well as in bidi smokers (1.38 mg/100 ml, p-value is less than 0.001) as compared to non-smokers (1.73 mg/100 ml). There was a significant increase in erythrocyte malondialdehyde concentration levels in cigarette smokers (171.47 micromol/gHb, p-value is less than 0.05) as well as in bidi smokers (231.04 micromol/gHb, p-value is less than 0.001) as compared to non-smokers (127.30 micromol/gHb). These results provide enough evidence of increased oxidative stress and a compromised antioxidant defence system in smokers, and they are more profound in bidi smokers than in those smoking cigarettes. This study also revealed that the diet and nutrient intake of smokers are different from that of non-smokers.

  11. Effect of radiation processing on the antioxidant activity of Sage and Cinnamon

    International Nuclear Information System (INIS)

    El-Niley, H. F. G.; Farag, M. D. H.

    2012-12-01

    In the present study, the effect of radiation processing on dried sage leaves and cinnamon barks samples were carried out at dose level of 25 kGy. Total phenolic content was determined in the extracts of these herbs alongside the antioxidant properties of their methanoic extracts were assessed using reducing power assay and by DPPH radical test within an extract concentration range 2.5 to 40 mg/ml of methanol. The result showed the total phenolic compounds were increased by 11.18% and 10.19% for irradiated sage and cinnamon, respectively. The values of EC 50 estimated from the results of reducing power assay and DPPH radical test showed the sage extracts had higher antioxidant activity tham cinnamon extracts. In summary, gamma- irradiation of dried sage leaves and cinnamon barks was found to be significantly increase the antioxidant properties of dried sage leaves and cinnamon barks but also enhanced the antioxidant properties, to some extent. (Author)

  12. Increased risk of abortion after genetic amniocentesis in twin pregnancies

    DEFF Research Database (Denmark)

    Palle, C; Andersen, J W; Tabor, A

    1983-01-01

    Forty-seven twin pregnancies among 3676 patients who had a genetic amniocentesis between 1973 and 1979, are reported. The detection rate of twins at the time of amniocentesis was 62 per cent. Five (17 per cent) of the 29 women with detected twin pregnancy aborted spontaneously, these are compared...... in at least one sac aborted, while 3 of 20 twin pregnancies with one puncture in each sac aborted (15 per cent). One of 18 (6 per cent) twin pregnancies, where only one sac was punctured, because the twin pregnancies were undetected, aborted. Amniocentesis of both sacs in twin pregnancies seems associated...... with an increased risk of spontaneous abortion. The indications for amniocentesis in twin pregnancies should be critically evaluated....

  13. What is the main driver of ageing in long-lived winter honeybees: antioxidant enzymes, innate immunity, or vitellogenin?

    Science.gov (United States)

    Aurori, Cristian M; Buttstedt, Anja; Dezmirean, Daniel S; Mărghitaş, Liviu A; Moritz, Robin F A; Erler, Silvio

    2014-06-01

    To date five different theories compete in explaining the biological mechanisms of senescence or ageing in invertebrates. Physiological, genetical, and environmental mechanisms form the image of ageing in individuals and groups. Social insects, especially the honeybee Apis mellifera, present exceptional model systems to study developmentally related ageing. The extremely high phenotypic plasticity for life expectancy resulting from the female caste system provides a most useful system to study open questions with respect to ageing. Here, we used long-lived winter worker honeybees and measured transcriptional changes of 14 antioxidative enzyme, immunity, and ageing-related (insulin/insulin-like growth factor signaling pathway) genes at two time points during hibernation. Additionally, worker bees were challenged with a bacterial infection to test ageing- and infection-associated immunity changes. Gene expression levels for each group of target genes revealed that ageing had a much higher impact than the bacterial challenge, notably for immunity-related genes. Antimicrobial peptide and antioxidative enzyme genes were significantly upregulated in aged worker honeybees independent of bacterial infections. The known ageing markers vitellogenin and IlP-1 were opposed regulated with decreasing vitellogenin levels during ageing. The increased antioxidative enzyme and antimicrobial peptide gene expression may contribute to a retardation of senescence in long-lived hibernating worker honeybees. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Measurement of the total antioxidant response using a novel automated method in subjects with nonalcoholic steatohepatitis.

    Science.gov (United States)

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Fusun F; Sabuncu, Tevfik; Aslan, Mehmet; Sarifakiogullari, Serpil; Gunaydin, Necla; Erel, Ozcan

    2005-11-11

    Oxidative stress, an increase in oxidants and/or a decrease in antioxidant capacity, is one of the potential biochemical mechanisms involved in the pathogenesis of nonalcoholic steatohepatitis. We aimed to investigate the total antioxidant response using a novel automated method in nonalcoholic steatohepatitis subjects. As a reciprocal measure, we also aimed to determine total peroxide level in the same plasma samples. Twenty-two subjects with biopsy proven nonalcoholic steatohepatitis and 22 healthy controls were enrolled. Total antioxidant response and total peroxide level measurements were done in all participants. The ratio percentage of total peroxide level to total antioxidant response was regarded as oxidative stress index. Total antioxidant response of subjects with nonalcoholic steatohepatitis was significantly lower than controls (p total peroxide level and mean oxidative stress index were higher (all p total peroxide level, total antioxidant response and oxidative stress index (p 0.05). Nonalcoholic steatohepatitis is associated with increased oxidant capacity, especially in the presence of liver fibrosis. The novel automated assay is a reliable and easily applicable method for total plasma antioxidant response measurement in nonalcoholic steatohepatitis.

  15. Relevance of the Mention of Antioxidant Properties in Yogurt Labels: In Vitro Evaluation and Chromatographic Analysis.

    Science.gov (United States)

    Pereira, Eliana; Barros, Lillian; Ferreira, Isabel C F R

    2013-06-18

    The purpose of the inclusion of fruit (natural additives) in yogurt aims to increase its antioxidant activity and functionality. Herein, a comparative study of the antioxidant potential of yogurts with pieces of various fruits was performed, including yogurts with mention of antioxidant properties in the label. Free radicals scavenging activity, reducing power and inhibition of lipid peroxidation were evaluated by in vitro assays, as were the contents in antioxidants such as phenolics, flavonoids, sugars and tocopherols. After analyzing thirteen yogurts containing fruit pieces and a natural one (control), the most interesting were yogurts with pieces of berries (for phenolics, flavonoids and 2,2-dipheny-1-picrylhydrazyl (DPPH) scavenging activity), pineapple (for reducing power), blackberry (for β-carotene bleaching inhibition), blackberry "antioxidant" (for tocopherols) and cherry (for sugars). The mention of "antioxidant" in the label was relevant for tocopherols, sugars, DPPH scavenging activity and reducing power. No synergisms were observed in yogurts prepared with pieces of different fruits. Nevertheless, the addition of fruit pieces to yogurt was favorable for antioxidant content, increasing the protection of the consumer against diseases related to oxidative stress.

  16. Antioxidant activity of lichen Cetraria aculeata

    Directory of Open Access Journals (Sweden)

    Tomović Jovica

    2016-01-01

    Full Text Available The aim of the present study is to investigate the antioxidant properties of the lichen Cetraria aculeata. Antioxidant activity of the methanol and ethyl acetate extracts of lichen was tested by different methods including determination of total phenolics content, determination of total antioxidant capacity, DPPH free radical scavenging activity, inhibitory activity towards lipid peroxidation, ferrous ion chelating ability and hydroxyl radical scavenging activity. The extracts of the lichen C. aculeata showed significant antioxidant activity. The methanol extract showed higher values for total phenolics and total antioxidant capacity compared to the ethyl acetate extract, while the ethyl acetate extract demonstrated better results for DPPH radical scavenging, inhibitory activity towards lipid peroxidation, chelating ability and hydroxyl radical scavenging than the methanol extract. This is the first report of the antioxidant properties of Cetraria aculeata growing in Serbia. The results of antioxidant activity indicate the application of this lichen as source of natural antioxidants that could be used as a possible food supplement, in the pharmaceutical industry and in the treatment of various diseases.

  17. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, D., E-mail: dtahir@fmipa.unhas.ac.id; Halide, H., E-mail: dtahir@fmipa.unhas.ac.id; Kurniawan, D. [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia); Wahab, A. W. [Department of Chemistry, Hasanuddin University, Makassar 90245 (Indonesia)

    2014-09-25

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  18. Selection on Optimal Haploid Value Increases Genetic Gain and Preserves More Genetic Diversity Relative to Genomic Selection.

    Science.gov (United States)

    Daetwyler, Hans D; Hayden, Matthew J; Spangenberg, German C; Hayes, Ben J

    2015-08-01

    Doubled haploids are routinely created and phenotypically selected in plant breeding programs to accelerate the breeding cycle. Genomic selection, which makes use of both phenotypes and genotypes, has been shown to further improve genetic gain through prediction of performance before or without phenotypic characterization of novel germplasm. Additional opportunities exist to combine genomic prediction methods with the creation of doubled haploids. Here we propose an extension to genomic selection, optimal haploid value (OHV) selection, which predicts the best doubled haploid that can be produced from a segregating plant. This method focuses selection on the haplotype and optimizes the breeding program toward its end goal of generating an elite fixed line. We rigorously tested OHV selection breeding programs, using computer simulation, and show that it results in up to 0.6 standard deviations more genetic gain than genomic selection. At the same time, OHV selection preserved a substantially greater amount of genetic diversity in the population than genomic selection, which is important to achieve long-term genetic gain in breeding populations. Copyright © 2015 by the Genetics Society of America.

  19. Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results

    Science.gov (United States)

    Mut-Salud, Nuria; Álvarez, Pablo Juan; Garrido, Jose Manuel; Carrasco, Esther; Aránega, Antonia; Rodríguez-Serrano, Fernando

    2016-01-01

    The role of the induction of oxidative stress as the mechanism of action of many antitumor drugs is acquiring an increasing interest. In such cases, the antitumor therapy success may be conditioned by the antioxidants present in our own body, which can be synthesized de novo (endogenous) or incorporated through the diet and nutritional supplements (exogenous). In this paper, we have reviewed different aspects of antioxidants, including their classification, natural sources, importance in diet, consumption of nutritional supplements, and the impact of antioxidants on health. Moreover, we have focused especially on the study of the interaction between antioxidants and antitumor therapy, considering both radiotherapy and chemotherapy. In this regard, we found that the convenience of administration of antioxidants during cancer treatment still remains a very controversial issue. In general terms, antioxidants could promote or suppress the effectiveness of antitumor treatment and even protect healthy tissues against damage induced by oxidative stress. The effects may depend on many factors discussed in the paper. These factors should be taken into consideration in order to achieve precise nutritional recommendations for patients. The evidence at the moment suggests that the supplementation or restriction of exogenous antioxidants during cancer treatment, as appropriate, could contribute to improving its efficiency. PMID:26682013

  20. Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results

    Directory of Open Access Journals (Sweden)

    Nuria Mut-Salud

    2016-01-01

    Full Text Available The role of the induction of oxidative stress as the mechanism of action of many antitumor drugs is acquiring an increasing interest. In such cases, the antitumor therapy success may be conditioned by the antioxidants present in our own body, which can be synthesized de novo (endogenous or incorporated through the diet and nutritional supplements (exogenous. In this paper, we have reviewed different aspects of antioxidants, including their classification, natural sources, importance in diet, consumption of nutritional supplements, and the impact of antioxidants on health. Moreover, we have focused especially on the study of the interaction between antioxidants and antitumor therapy, considering both radiotherapy and chemotherapy. In this regard, we found that the convenience of administration of antioxidants during cancer treatment still remains a very controversial issue. In general terms, antioxidants could promote or suppress the effectiveness of antitumor treatment and even protect healthy tissues against damage induced by oxidative stress. The effects may depend on many factors discussed in the paper. These factors should be taken into consideration in order to achieve precise nutritional recommendations for patients. The evidence at the moment suggests that the supplementation or restriction of exogenous antioxidants during cancer treatment, as appropriate, could contribute to improving its efficiency.

  1. Radiation hydrolysate of tuna cooking juice with enhanced antioxidant properties

    Science.gov (United States)

    Choi, Jong-il; Sung, Nak-Yun; Lee, Ju-Woon

    2012-08-01

    Tuna protein hydrolysates are of increasing interest because of their potential application as a source of bioactive peptides. Large amounts of tuna cooking juice with proteins and extracts are produced during the process of tuna canning, and these cooking juice wastes cause environmental problems. Therefore, in this study, cooking juice proteins were hydrolyzed by irradiation for their utilization as functional additives. The degree of hydrolysis of tuna cooking juice protein increased from 0% to 15.1% at the absorbed doses of 50 kGy. To investigate the antioxidant activity of the hydrolysate, it was performed the ferric reducing antioxidant power (FRAP) assay, and the lipid peroxidation inhibitory and superoxide radical scavenging activities were measured. The FRAP values increased from 1470 μM to 1930 μM and IC50 on superoxide anion was decreased from 3.91 μg/mL to 1.29 μg/mL at 50 kGy. All of the antioxidant activities were increased in the hydrolysate, suggesting that radiation hydrolysis, which is a simple process that does not require an additive catalysts or an inactivation step, is a promising method for food and environmental industries.

  2. Comparison of Antioxidative Activity among Different Types of Hibiscus

    OpenAIRE

    Uezu, Eiko; Fu, Churan; Kyan, Chie; Nago, Chihiro; 上江洲, 榮子; 付, 楚然; 喜屋武,千 恵; 名護, ちひろ

    2013-01-01

    Increased longevity among the population of Okinawa has led to considerable international interest in the role that the local diet and custom might play in this phenomenon. The research has indicated that flowers used for the food have potential health benefit. To explore their value as functional foods, the antioxidative properties of Hibiscus rosa-sinensis, which is the most common flower in Okinawa, was evaluated. The antioxidative activity of three types of the flower-red, orange, and yel...

  3. Phytogeographic and genetic variation in Sorbus, a traditional antidiabetic medicine—adaptation in action in both a plant and a discipline

    Directory of Open Access Journals (Sweden)

    Anna Bailie

    2016-11-01

    Full Text Available Mountain ash (Sorbus decora and S. americana is used by the Cree Nation of the James Bay region of Quebec (Eeyou Istchee as traditional medicine. Its potential as an antidiabetic medicine is thought to vary across its geographical range, yet little is known about the factors that affect its antioxidant capacity. Here, we examined metabolite gene expression in relation to antioxidant activity, linking phytochemistry and medicinal potential. Samples of leaf and bark from S. decora and S. americana were collected from 20 populations at four different latitudes. Two genes known to produce antidiabetic substances, flavonol synthase and squalene synthase, were analyzed using quantitative real time PCR. Gene expression was significantly higher for flavonol synthase compared to squalene synthase and increased in the most Northern latitude. Corresponding differences observed in the antioxidant capacity of ethanolic extracts from the bark of Sorbus spp. confirm that plants at higher latitudes increase production of stress-induced secondary metabolites and support Aboriginal perceptions of their higher medicinal potential. Modern genetic techniques such as quantitative real time PCR offer unprecedented resolution to substantiate and scrutinise Aboriginal medicinal plant perception. Furthermore, it offers valuable insights into how environmental stress can trigger an adaptive response resulting in the accumulation of secondary metabolites with human medicinal properties.

  4. Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers.

    Science.gov (United States)

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang

    2016-07-01

    Functionalization of therapeutic carrier biomaterials can potentially provide additional benefits in drug delivery for disease treatment. Given that this modification determines final therapeutic efficacy of drug carriers, here, we investigate systematically the role of grafting amount of antioxidant gallic acid (GA) onto GN in situ gelling copolymers made of biodegradable gelatin and thermo-responsive poly(N-isopropylacrylamide) for intracameral delivery of pilocarpine in antiglaucoma treatment. As expected, increasing redox reaction time increased total antioxidant activities and free radical scavenging abilities of synthesized carrier biomaterials. The hydrophilic nature of antioxidant molecules strongly affected physicochemical properties of carrier materials with varying GA grafting amounts, thereby dictating in vitro release behaviors and mechanisms of pilocarpine. In vitro oxidative stress challenges revealed that biocompatible carriers with high GA content alleviated lens epithelial cell damage and reduced reactive oxygen species. Intraocular pressure and pupil diameter in glaucomatous rabbits showed correlations with GA-mediated release of pilocarpine. Additionally, enhanced pharmacological treatment effects prevented corneal endothelial cell loss during disease progression. Increasing GA content increased total antioxidant level and decreased nitrite level in the aqueous humor, suggesting a much improved antioxidant status in glaucomatous eyes. This work significantly highlights the dependence of physicochemical properties, drug release behaviors, and bioactivities on intrinsic antioxidant capacities of therapeutic carrier biomaterials for glaucoma treatment. Development of injectable biodegradable polymer depots and functionalization of carrier biomaterials with antioxidant can potentially provide benefits such as improved bioavailability, controlled release pattern, and increased therapeutic effect in intracameral pilocarpine administration for glaucoma

  5. Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking.

    Science.gov (United States)

    Harakotr, Bhornchai; Suriharn, Bhalang; Tangwongchai, Ratchada; Scott, Marvin Paul; Lertrat, Kamol

    2014-12-01

    Antioxidant components, including anthocyanins and phenolic compounds, antioxidant activity, and their changes during traditional cooking of fresh purple waxy corn were investigated. As compared to the raw corn, thermal treatment caused significant (p⩽0.05) decreases in each antioxidant compound and antioxidant activity. Steam cooking preserved more antioxidant compounds than boiling. Boiling caused a significant loss of anthocyanin and phenolic compounds into the cooking water. This cooking water is a valuable co-product because it is a good source of purple pigment. By comparing levels of antioxidant compounds in raw and cooked corn, we determined that degradation results in greater loss than leaching or diffusion into cooking water. Additionally, separation of kernels from the cob prior to cooking caused increased loss of antioxidant compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The prooxidant-antioxidant homeostasis in Guinea pigs after exposure to fractionated low-low X-radiation and correction of its disturbances with antioxidant complex treatment

    International Nuclear Information System (INIS)

    Baraboj, V.A.; Olejnik, S.A.; Blyum, I.A.; Khmelevskij, Yu.V.

    1994-01-01

    The state of prooxidant-antioxidant homeostasis in Guinea pigs exposed to whole-body fractionated X-irradiation (5 fractions of 0.2 Gy at a 24 hr interval, up to total dose of 1.0 Gy, at a dose rate of 0.425 R/min) and a possibility of its disturbance correction with the complex of vitamins C, E and P was studied. Accumulation of primary and secondary lipid peroxidation products, decrease of the ascorbic acid content, increase of the content of its oxidized forms (dehydroascorbic acid and diketogulonic acid) in radiosensitive and radioresistant organs were found. Antioxidant complex administration reduced the disturbances of prooxidant-antioxidant homeostasis, but did not provide complete normalization

  7. Acrylamide in bread. Effect of prooxidants and antioxidants

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Granby, Kit; Frandsen, Henrik Lauritz

    2008-01-01

    . Increasing the addition of aqueous rosemary extract to 10% did not decrease the acrylamide content further compared to the addition of a 1% extract. The spice dittany showed less effect in wheat buns compared to rosemary and even increased acrylamide formation slightly. The effect of antioxidants...

  8. Antioxidant Enzyme Activities of some Brassica Species

    Directory of Open Access Journals (Sweden)

    Rodica SOARE

    2017-11-01

    Full Text Available This paper set out to comparatively study five species: white cabbage (Brassica oleracea L. var. capitata alba Alef., red cabbage (Brassica oleracea L. var. capitata f. rubra Alef., Kale (Brassica oleracea L. var. Acephala, cauliflower (Brassica oleracea var. botrytis and broccoli (Brassica oleracea var. cymosa in order to identify those with high enzymatic and antioxidant activities. The enzymatic activity of superoxide dismutase (SOD, catalase (CAT and soluble peroxidase (POX as well as the antioxidant activity against 2.2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS radical cation were determined. Total superoxide dismutase activity was measured spectrophotometrically based on inhibition in the photochemical reduction of nitroblue tetrazolium. Total soluble peroxidase was assayed by measuring the increase in A436 due to the guaiacol oxidation and the catalase activity was assayed through the colorimetric method. The capacity of extracts to scavenge the ABTS radical cation was assessed colorimetric using Trolox as a standard. The obtained results show that studied enzymatic activities and the antioxidant activity against ABTS vary depending on the analyzed species. So, among the studied Brassicaceae species, it emphasize red cabbage with the highest enzymatic activity (CAT 22.54 mM H2O2/min/g and POX 187.2 mM ΔA/1min/1g f.w. and kale with highest antioxidant activity, of 767 μmol TE/100g f.w. The results of this study recommendintroducing the studied varieties in diet due to the rich antioxidant properties.

  9. The genetic component of human longevity

    DEFF Research Database (Denmark)

    Dato, Serena; Thinggaard, Mette Sørensen; De Rango, Francesco

    2018-01-01

    In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic...... pathway. We applied this approach to study the joint effect on longevity of SNPs belonging to three candidate pathways, the insulin/insulin-like growth factor signalling (IIS), DNA repair and pro/antioxidant. We analysed data from 1,058 tagging SNPs in 140 genes, collected in 1825 subjects (1......, was further found influencing longitudinal survival in nonagenarian females (p = .026). Results here presented highlight the validity of SNP-SNP interactions analyses for investigating the genetics of human longevity, confirming previously identified markers but also pointing to novel genes as central nodes...

  10. Is the development of nuclear energy likely to increase the incidence of genetic diseases for mankind

    International Nuclear Information System (INIS)

    Leonard, A.

    1976-01-01

    In a normal human population a relatively high number of individuals (+10%) are bearing genetic and chromosomal deficiencies. As a result of the difficulties encountered when carrying out valid epidemiological investigations, the observations made on the descent of irradiated subjects have not demonstrated that an exposure for a man to ionizing radiations increases the incidence of his deficiencies. That explains the need of having to use the results of experiments conducted on animals in order to evaluate this kind of hazard for mankind. The analysis of these experimental data allows us to conclude that under normal conditions of exploitation the expected development of the nuclear energy is not likely to increase significantly the incidence of genetic deficiencies for mankind. (G.C.)

  11. Antioxidant Vitamins in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Özgür Ünal

    2007-04-01

    Full Text Available OBJECTIVE: Oxidative stress can be defined as the increased production of free oxygen radicals with the effects of various facilitating factors, or the failure of the antioxidant defense mechanisms. As a result, damage occurs in the certain cellular structures, especially in the lipid ones. Although the pathogenesis of Alzheimer’s Disease (AD is still controversial, the role of the oxidative stress mechanisms in the pathogenesis is growing up gradually. OBJECTIVES: To compare the serum levels of patients with AD and normal subjects and look if any difference can be predictive in between the two groups. METHODS: In this study, the serum levels vitamin A, C and E (antioxidant vitamins were studied in 98 patients with AD, and age, sex, socioculturally and nutritionally matched 76 control subjects. RESULTS: When compared with the control subjects, vitamin A and vitamin C were found to be decreased in AD patients. There was no significant difference in the serum level of vitamin E between two groups. Two of the three vitamins known as their antioxidant properties found to be decreased especially in AD patients who are on mild stage of disease. CONCLUSION: These variations in serum levels of antioxidant vitamins can be predictive in distinguishing the patients and control subjects and as detected in the early stages of the disease, new strategies can be developed to prevent, to delay or to treat the disease

  12. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium

    Directory of Open Access Journals (Sweden)

    Takashi eOsanai

    2015-10-01

    Full Text Available Succinate is a building block compound that the U.S. Department of Energy has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching 5 times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique.

  13. Natural Antioxidants: Fascinating or Mythical Biomolecules?

    Directory of Open Access Journals (Sweden)

    Johannes Van Staden

    2010-10-01

    Full Text Available Research on the use, properties, characteristics and sources of antioxidants especially phenolic compounds, flavonoids, vitamins, synthetic chemicals and some micronutrients began in the late 18th century. Since then antioxidant research has received considerable attention and over a hundred thousand papers have been published on the subject. This has led to a rampant use of antioxidants in order to try to obtain and preserve optimal health. A number of nutraceuticals and food supplements are frequently fortified with synthetic or natural antioxidants. However, some research outcomes have led to the belief that antioxidants exist as mythical biomolecules. This review provides a critical evaluation of some common in vitro antioxidant capacity methods, and a discussion on the role and controversies surrounding non-enzymatic biomolecules, in particular phenolic compounds and non-phenolic compounds, in oxidative processes in an attempt of stemming the tidal wave that is threatening to swamp the concept of natural antioxidants.

  14. Decrease of total antioxidant capacity during coronary artery bypass surgery.

    Science.gov (United States)

    Kunt, Alper Sami; Selek, Sahbettin; Celik, Hakim; Demir, Deniz; Erel, Ozcan; Andac, Mehmet Halit

    2006-09-01

    Cardiac surgery induces an oxidative stress, which may lead to impairment of cardiac function. In this study, we aimed to measure the changes of oxidative and antioxidative status of patients undergoing coronary artery bypass surgery (CABG). We studied 79 patients who underwent CABG with and without cardiopulmonary bypass (CPB). Of the 79 patients, 39 had CPB and 40 did not. Blood samples were drawn before, during, and after the surgery. Antioxidant status was evaluated by measuring total antioxidant capacity (TAC), and oxidative status was evaluated by measuring total peroxide (TP) levels and oxidative stress index (OSI). TP and OSI levels increased, while TAC decreased progressively after the beginning of surgery, for all patients. There were negative correlations between TAC levels and aortic cross-clamping period and anastomosis time ( r = -0.553, p antioxidant vitamins such as vitamins C and E may be beneficial for patients undergoing CABG.

  15. 3D-QSAR Investigation of Synthetic Antioxidant Chromone Derivatives by Molecular Field Analysis

    Directory of Open Access Journals (Sweden)

    Jiraporn Ungwitayatorn

    2008-02-01

    Full Text Available A series of 7-hydroxy, 8-hydroxy and 7,8-dihydroxy synthetic chromone derivatives was evaluated for their DPPH free radical scavenging activities. A training set of 30 synthetic chromone derivatives was subject to three-dimensional quantitative structure-activity relationship (3D-QSAR studies using molecular field analysis (MFA. The substitutional requirements for favorable antioxidant activity were investigated and a predictive model that could be used for the design of novel antioxidants was derived. Regression analysis was carried out using genetic partial least squares (G/PLS method. A highly predictive and statistically significant model was generated. The predictive ability of the developed model was assessed using a test set of 5 compounds (r2pred = 0.924. The analyzed MFA model demonstrated a good fit, having r2 value of 0.868 and crossvalidated coefficient r2cv value of 0.771.

  16. An assessment of calophyllum inophyllum biodiesel fuelled diesel engine characteristics using novel antioxidant additives

    International Nuclear Information System (INIS)

    Ashok, B.; Nanthagopal, K.; Jeevanantham, A.K.; Bhowmick, Pathikrit; Malhotra, Dhruv; Agarwal, Pranjal

    2017-01-01

    Highlights: • A novel antioxidant Ethanox was used for the present investigation. • Effect of two antioxidants on biodiesel fuelled engine characteristics were studied. • Brake thermal efficiency increased by 5.3% for Ethanox 1000 ppm with biodiesel. • 21% reduction in oxides of nitrogen for Butylated hydroxytoluene 500 ppm addition. • Higher hydrocarbon and smoke emissions were observed for all treated fuels. - Abstract: In this present study, the effect of antioxidant additives with pure Calophyllum inophyllum methyl ester on the performance, combustion and emission characteristics has been investigated. New antioxidant additive namely Ethanox was added to the Calophyllum inophyllum biodiesel at concentrations of 200 ppm, 500 ppm and 1000 ppm for oxides of nitrogen reductions and the experimental results were compared to Butylated hydroxytoluene antioxidant at same concentrations. An experimental study was done on a twin cylinder, four stroke diesel engine at a constant speed of 1500 rpm with two different antioxidants, Ethanox and Butylated hydroxytoluene individually mixed with pure Calophyllum inophyllum at concentrations of 200 ppm, 500 ppm and 1000 ppm by weight. The experimental results showed that the addition of antioxidants with Calophyllum inophyllum biodiesel produced higher brake specific fuel consumption and higher brake thermal efficiency compared to pure biodiesel. Significant reductions in oxides of nitrogen emissions were observed with Ethanox and Butylated hydroxytoluene addition with biodiesel at all concentrations compared to neat biodiesel. The reduction oxides of nitrogen emission was 12.6% for Ethanox 1000 ppm and 21% for Butylated hydroxytoluene 500 ppm compared to neat biodiesel. Comparable combustion characteristics were obtained by addition of Ethanox with biodiesel than Butylated hydroxytoluene antioxidant. Moreover, the addition of Ethanox and Butylated hydroxytoluene antioxidants with neat biodiesel increase the carbon

  17. Antioxidant migration resistance of SiOx layer in SiOx/PLA coated film.

    Science.gov (United States)

    Huang, Chongxing; Zhao, Yuan; Su, Hongxia; Bei, Ronghua

    2018-02-01

    As novel materials for food contact packaging, inorganic silicon oxide (SiO x ) films are high barrier property materials that have been developed rapidly and have attracted the attention of many manufacturers. For the safe use of SiO x films for food packaging it is vital to study the interaction between SiO x layers and food contaminants, as well as the function of a SiO x barrier layer in antioxidant migration resistance. In this study, we deposited a SiO x layer on polylactic acid (PLA)-based films to prepare SiO x /PLA coated films by plasma-enhanced chemical vapour deposition. Additionally, we compared PLA-based films and SiO x /PLA coated films in terms of the migration of different antioxidants (e.g. t-butylhydroquinone [TBHQ], butylated hydroxyanisole [BHA], and butylated hydroxytoluene [BHT]) via specific migration experiments and then investigated the effects of a SiO x layer on antioxidant migration under different conditions. The results indicate that antioxidant migration from SiO x /PLA coated films is similar to that for PLA-based films: with increase of temperature, decrease of food simulant polarity, and increase of single-sided contact time, the antioxidant migration rate and amount in SiO x /PLA coated films increase. The SiO x barrier layer significantly reduced the amount of migration of antioxidants with small and similar molecular weights and similar physical and chemical properties, while the degree of migration blocking was not significantly different among the studied antioxidants. However, the migration was affected by temperature and food simulant. Depending on the food simulants considered, the migration amount in SiO x /PLA coated films was reduced compared with that in PLA-based films by 42-46%, 44-47%, and 44-46% for TBHQ, BHA, and BHT, respectively.

  18. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    Science.gov (United States)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  19. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training?

    Science.gov (United States)

    Gomez-Cabrera, Mari Carmen; Salvador-Pascual, Andrea; Cabo, Helena; Ferrando, Beatriz; Viña, Jose

    2015-09-01

    Physical exercise increases the cellular production of reactive oxygen species (ROS) in muscle, liver, and other organs. This is unlikely due to increased mitochondrial production but rather to extramitochondrial sources such as NADPH oxidase or xanthine oxidase. We have reported a xanthine oxidase-mediated increase in ROS production in many experimental models from isolated cells to humans. Originally, ROS were considered as detrimental and thus as a likely cause of cell damage associated with exhaustion. In the past decade, evidence showing that ROS act as signals has been gathered and thus the idea that antioxidant supplementation in exercise is always recommendable has proved incorrect. In fact, we proposed that exercise itself can be considered as an antioxidant because training increases the expression of classical antioxidant enzymes such as superoxide dismutase and glutathione peroxidase and, in general, lowering the endogenous antioxidant enzymes by administration of antioxidant supplements may not be a good strategy when training. Antioxidant enzymes are not the only ones to be activated by training. Mitochondriogenesis is an important process activated in exercise. Many redox-sensitive enzymes are involved in this process. Important signaling molecules like MAP kinases, NF-κB, PGC-1α, p53, heat shock factor, and others modulate muscle adaptation to exercise. Interventions aimed at modifying the production of ROS in exercise must be performed with care as they may be detrimental in that they may lower useful adaptations to exercise. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Estimation of the antioxidant activity of the commercially available fermented milks.

    Science.gov (United States)

    Najgebauer-Lejko, Dorota; Sady, Marek

    2015-01-01

    Free radicals are connected with the increased risk of certain diseases, especially cancers. There is some scientific evidence that antioxidant-rich diet may inhibit the negative impact of free radicals. The aim of the present study was to analyse the antioxidant capacity of the selected commercial natural and flavoured fermented milks offered in Poland, derived from different producers. The following commercially available natural fermented milks: 12 yoghurts, 12 kefirs, 2 butter milks, 2 cultured milks, Turkish yoghurt drink (ayran) and the following flavoured fermented milks: 22 yoghurts, 2 acidophillus milks, 2 kefirs, butter milk and vegetable flavoured fermented milk were analysed for their antioxidant potential. The antioxidant capacity was assessed, in two replicates and twice for each product, by means of ferric reducing antioxidant power (FRAP) and DPPH radical scavenging ability (expressed as ARP - anti radical power) methods. Among all analysed plain products, yoghurts and kefirs were characterised by the highest antioxidant activity. The presence of probiotic Lactobacillus casei strains in the product positively affected both FRAP and ARP values. Antioxidant capacity of the flavoured fermented milks was primarily affected by the type and quality (e.g. fruit concentration) of the added flavouring preparation. The most valuable regarding the estimated parameters were chocolate, coffee, grapefruit with green tea extract as well as bilberry, forest fruits, strawberry and cherry with blackcurrant fillings. Protein content, inclusion of probiotic microflora as well as type and quality of flavouring preparations are the main factors affecting antioxidant properties of fermented milks.

  1. Regenerable antioxidants-introduction of chalcogen substituents into tocopherols.

    Science.gov (United States)

    Poon, Jia-Fei; Singh, Vijay P; Yan, Jiajie; Engman, Lars

    2015-02-02

    To improve the radical-trapping capacity of the natural antioxidants, alkylthio-, alkylseleno-, and alkyltelluro groups were introduced into all vacant aromatic positions in β-, γ- and δ-tocopherol. Reaction of the tocopherols with electrophilic chalcogen reagents generated by persulfate oxidation of dialkyl dichalcogenides provided convenient but low-yielding access to many sulfur and selenium derivatives, but failed in the case of tellurium. An approach based on lithiation of the appropriate bromo-tocopherol, insertion of chalcogen into the carbon-lithium bond, air-oxidation to a dichalcogenide, and final borohydride reduction/alkylation turned out to be generally applicable to the synthesis of all chalcogen derivatives. Whereas alkylthio- and alkylseleno analogues were generally poorer quenchers of lipid peroxyl radicals than the corresponding parents, all tellurium compounds showed a substantially improved radical-trapping activity. Introduction of alkyltelluro groups into the tocopherol scaffold also caused a dramatic increase in the regenerability of the antioxidant. In a two-phase lipid peroxidation system containing N-acetylcysteine as a water-soluble co-antioxidant the inhibition time was up to six-fold higher than that recorded for the natural antioxidants. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Production, solubility and antioxidant activity of curcumin nanosuspension

    Directory of Open Access Journals (Sweden)

    Deivis de Moraes Carvalho

    2015-03-01

    Full Text Available Curcumin is a powerful bioactive agent and natural antioxidant, but it is practically water-insoluble and has low bioavailability; a possible solution to this obstacle would be formulations of curcumin nanoparticles. Surfactants such as tween 80 can be used to stabilize low-solubility molecules preventing particle aggregation. The objectives of this study were the preparation of a suspension with curcumin nanoparticles in tween 80, the testing of pure curcumin solubility and of a simple mixture of curcumin with tween 80 and nanosuspension in water and ethanol as solvents, and finally the assessment of the antioxidant activity. We prepared the nanosuspension by injecting a curcumin solution in dichloromethane at low flow in water with tween 80 under heating and ultrasound. The analysis of particles size was conducted through dynamic light scattering; the non-degradation of curcumin was verified through thin-layer chromatography. The analyses of antioxidant activity were carried out according to the DPPH method. The method applied to reduce the particles size was efficient. Both the curcumin suspension and nanosuspension in tween 80 increased its solubility. Curcumin and the formulations presented antioxidant activity.

  3. BIOCHEMICAL EVALUATION OF CUMIN (CUMINUM CYMINUM) AND MARJORAM (MARJORANA HORTENSIS) AS NATURAL ANTIOXIDANTS

    Energy Technology Data Exchange (ETDEWEB)

    MAHMOUD, K A; HAMZA, R G [Food Irradiation Research Dept., National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, (Egypt)

    2009-07-01

    Hypercholesterolemia, high cholesterol diet and oxidative stress increase serum total cholesterol and LDL-cholesterol levels resulting in increased risk for development of atherosclerosis. Antioxidants play an important role in inhibiting and scavenging free radicals, thus, providing protection to humans against infectious and degenerative diseases. Several studies showed that the antioxidant activity is high in medicinal plants. The present study was carried out to determine the effect of using cumin or marjoram as supplement on serum lipid levels, serum glucose and serum lipid peroxidation in hypercholesterolemic rats. GC-MS for analysis of essential oil showed that the number of identified compounds was 18; the most important were alpha-trepenol, linalool and gamma-terpinene (natural antioxidants). Hypercholesterolemic diet (HCD) containing cholesterol (1% w/w) and sodium cholate (0.2% w/w) was investigated on male rats. Cumin or marjoram (1% w/w) was added to the HCD as a decontaminated supplement to evaluate the efficacy of these medicinal plants in reducing hypercholesterolemia. Their effects on serum lipid, blood lipid peroxidation and antioxidant properties were determined. It was found that the use of either cumin or marjoram reduced TG, TC, LDL-C and glucose level and increased HDL-C. Also, these medicinal plants suppressed lipid peroxidation via enhancement of antioxidant activities. It could be concluded that intake of cumin or marjoram may minimize the risk of atherosclerosis associated with a high cholesterol diet. These overall results support the future use of these medicinal plants as natural antioxidants and the continuous medicinal plants intake may be recommended as food supplement.

  4. BIOCHEMICAL EVALUATION OF CUMIN (CUMINUM CYMINUM) AND MARJORAM (MARJORANA HORTENSIS) AS NATURAL ANTIOXIDANTS

    International Nuclear Information System (INIS)

    MAHMOUD, K.A.; HAMZA, R.G.

    2009-01-01

    Hypercholesterolemia, high cholesterol diet and oxidative stress increase serum total cholesterol and LDL-cholesterol levels resulting in increased risk for development of atherosclerosis. Antioxidants play an important role in inhibiting and scavenging free radicals, thus, providing protection to humans against infectious and degenerative diseases. Several studies showed that the antioxidant activity is high in medicinal plants. The present study was carried out to determine the effect of using cumin or marjoram as supplement on serum lipid levels, serum glucose and serum lipid peroxidation in hypercholesterolemic rats. GC-MS for analysis of essential oil showed that the number of identified compounds was 18; the most important were α-trepenol, linalool and γ-terpinene (natural antioxidants). Hypercholesterolemic diet (HCD) containing cholesterol (1% w/w) and sodium cholate (0.2% w/w) was investigated on male rats. Cumin or marjoram (1% w/w) was added to the HCD as a decontaminated supplement to evaluate the efficacy of these medicinal plants in reducing hypercholesterolemia. Their effects on serum lipid, blood lipid peroxidation and antioxidant properties were determined. It was found that the use of either cumin or marjoram reduced TG, TC, LDL-C and glucose level and increased HDL-C. Also, these medicinal plants suppressed lipid peroxidation via enhancement of antioxidant activities. It could be concluded that intake of cumin or marjoram may minimize the risk of atherosclerosis associated with a high cholesterol diet. These overall results support the future use of these medicinal plants as natural antioxidants and the continuous medicinal plants intake may be recommended as food supplement.

  5. Study of Coumarin-Resveratrol Hybrids as Potent Antioxidant Compounds

    Directory of Open Access Journals (Sweden)

    Maria J. Matos

    2015-02-01

    Full Text Available In the present work we synthesized a selected series of hydroxylated 3-phenylcoumarins 5–8, with the aim of evaluating in detail their antioxidant properties. From an in depth study of the antioxidant capacity data (ORAC-FL, ESR, CV and ROS inhibition it was concluded that these derivatives are very good antioxidants, with very interesting profiles in all the performed assays. The study of the effect of the number and position of the hydroxyl groups on the antioxidant activity was the principal aim of this study. In particular, 7-hydroxy-3-(3'-hydroxyphenylcoumarin (8 proved to be the most active and effective antioxidant of the selected series in four of the performed assays (ORAC-FL = 11.8, capacity of scavenging hydroxyl radicals = 54%, Trolox index = 2.33 and AI30 index = 0.18. However, the presence of two hydroxyl groups on this molecule did not increase greatly the activity profile. Theoretical evaluation of ADME properties of all the derivatives was also carried out. All the compounds can act as potential candidates for preventing or minimizing the free radical overproduction in oxidative-stress related diseases. These preliminary findings encourage us to perform a future structural optimization of this family of compounds.

  6. In vitro antioxidant and antihyperlipidemic activities of Bauhinia variegata Linn

    Science.gov (United States)

    Rajani, G.P.; Ashok, Purnima

    2009-01-01

    Objectives: To evaluate the ethanolic and aqueous extracts of Bauhinia variegata Linn. for in vitro antioxidant and antihyperlipidemic activity. Materials and Methods: Ethanolic and aqueous extracts of the stem bark and root of B. variegata Linn. were prepared and assessed for in vitro antioxidant activity by various methods namely total reducing power, scavenging of various free radicals such as 1,2-diphenyl-2-picrylhydrazyl (DPPH), super oxide, nitric oxide, and hydrogen peroxide. The percentage scavenging of various free radicals were compared with standard antioxidants such as ascorbic acid and butylated hydroxyl anisole (BHA). The extracts were also evaluated for antihyperlipidemic activity in Triton WR-1339 (iso-octyl polyoxyethylene phenol)-induced hyperlipidemic albino rats by estimating serum triglyceride, very low density lipids (VLDL), cholesterol, low-density lipids (LDL), and high-density lipid (HDL) levels. Result: Significant antioxidant activity was observed in all the methods, (P < 0.01) for reducing power and (P < 0.001) for scavenging DPPH, super oxide, nitric oxide, and hydrogen peroxide radicals. The extracts showed significant reduction (P < 0.01) in cholesterol at 6 and 24 h and (P < 0.05) at 48 h. There was significant reduction (P < 0.01) in triglyceride level at 6, 24, and 48 h. The VLDL level was also significantly (P < 0.05) reduced from 24 h and maximum reduction (P < 0.01) was seen at 48 h. There was significant increase (P < 0.01) in HDL at 6, 24, and 48 h. Conclusion: From the results, it is evident that alcoholic and aqueous extracts of B. variegata Linn. can effectively decrease plasma cholesterol, triglyceride, LDL, and VLDL and increase plasma HDL levels. In addition, the alcoholic and aqueous extracts have shown significant antioxidant activity. By the virtue of its antioxidant activity, B. variegata Linn. may show antihyperlipidemic activity. PMID:20177495

  7. Trends in the use of natural antioxidants in active food packaging: a review.

    Science.gov (United States)

    Sanches-Silva, Ana; Costa, Denise; Albuquerque, Tânia G; Buonocore, Giovanna Giuliana; Ramos, Fernando; Castilho, Maria Conceição; Machado, Ana Vera; Costa, Helena S

    2014-01-01

    The demand for natural antioxidant active packaging is increasing due to its unquestionable advantages compared with the addition of antioxidants directly to the food. Therefore, the search for antioxidants perceived as natural, namely those that naturally occur in herbs and spices, is a field attracting great interest. In line with this, in the last few years, natural antioxidants such as α-tocopherol, caffeic acid, catechin, quercetin, carvacrol and plant extracts (e.g. rosemary extract) have been incorporated into food packaging. On the other hand, consumers and the food industry are also interested in active biodegradable/compostable packaging and edible films to reduce environmental impact, minimise food loss and minimise contaminants from industrial production and reutilisation by-products. The present review focuses on the natural antioxidants already applied in active food packaging, and it reviews the methods used to determine the oxidation protection effect of antioxidant active films and the methods used to quantify natural antioxidants in food matrices or food simulants. Lastly consumers' demands and industry trends are also addressed.

  8. Antioxidant Capacity of Flavonoids in Hepatic Microsomes Is not Reflected by Antioxidant Effects In Vivo

    Directory of Open Access Journals (Sweden)

    Garry Duthie

    2012-01-01

    Full Text Available Flavonoids are polyphenolic compounds with potential antioxidant activity via multiple reduction capacities. Oxidation of cellular lipids has been implicated in many diseases. Consequently, this study has assessed the ability of several dietary flavonoid aglycones to suppress lipid peroxidation of hepatic microsomes derived from rats deficient in the major lipid soluble antioxidant, dα-tocopherol. Antioxidant effectiveness was galangin > quercetin > kaempferol > fisetin > myricetin > morin > catechin > apigenin. However, none of the flavonoids were as effective as dα-tocopherol, particularly at the lowest concentrations used. In addition, there appears to be an important distinction between the in vitro antioxidant effectiveness of flavonoids and their ability to suppress indices of oxidation in vivo. Compared with dα-tocopherol, repletion of vitamin E deficient rats with quercetin, kaempferol, or myricetin did not significantly affect indices of lipid peroxidation and tissue damage. Direct antioxidant effect of flavonoids in vivo was not apparent probably due to low bioavailability although indirect redox effects through stimulation of the antioxidant response element cannot be excluded.

  9. Dietary antioxidants for the athlete.

    Science.gov (United States)

    Atalay, Mustafa; Lappalainen, Jani; Sen, Chandan K

    2006-06-01

    Physical exercise induces oxidative stress and tissue damage. Although a basal level of reactive oxygen species (ROS) is required to drive redox signaling and numerous physiologic processes, excess ROS during exercise may have adverse implications on health and performance. Antioxidant nutrients may be helpful in that regard. Caution should be exercised against excess antioxidant supplements, however. This article presents a digest for sports practitioners. The following three recommendations are made: 1) it is important to determine the individual antioxidant need of each athlete performing a specific sport; 2) multinutrient preparations, as opposed to megadoses of any single form of nutrient, seem to be a more prudent path to choose; and 3) for outcomes of antioxidant supplementation, performance should not be the only criteria. Overall well being of the athlete, faster recovery, and minimization of injury time could all be affected by antioxidant therapy.

  10. Pyrus pashia: A persuasive source of natural antioxidants.

    Science.gov (United States)

    Siddiqui, Sabahat Zahra; Ali, Saima; Rehman, Azizur; Rubab, Kaniz; vAbbasi, Muhammad Athar; Ajaib, Muhammad; Z Rasool, Zahid Ghulam

    2015-09-01

    Pyrus pashia Buch. & Ham. was subjected to extraction with methanol. Methanolic extracts of fruit, bark and leaf were partitioned separately with four organic solvents in order of increasing polarity, asn-hexane, chloroform, ethyl acetate and n-butanol after dissolving in distilled water. Phytochemical screening revealed the presence of phenolics, flavonoides, alkaloids and cardiac glycosides in large amount in chloroform, ethyl acetate and n-butanol soluble fractions. The antioxidant activity of crude methanolic extracts, all the obtained fourorganic fractions and remaining aqueous fractions was evaluated by different methods such as: 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, ferric reducing antioxidant power (FRAP) assay and total antioxidant activity by phosphomolybdenum complex method as well as determination of total phenolics. The results of antioxidant activity exhibited that chloroform soluble fraction of fruit showed the highest value of percent inhibition of DPPH (48.16 ± 0.21 μg/ml) at the concentration of 10 μg/ml. Ethyl acetate soluble fraction displayed the lowest antioxidant activity having IC50 value of bark as (8.64 ± 0.32 μg/ml) relative to butylated hydroxytoluene (BHT), having IC50 of 12.1 ± 0.92 μg/ml. The ethyl acetate soluble fraction of bark revealed the highest FRAPs value (174.618 ± 0.11TE µM/ml) among all the three parts. This fraction also showed the highest value of total antioxidant activity as (1.499 ± 0.90), determined by phosphomolybdenum complex method. Moreover, this fraction also conferred the highest phenolic content (393.19 ± 0.72) as compared to other studied fractions of fruit and leaf.

  11. Antioxidant and cyclooxygenase activities of fatty acids found in food.

    Science.gov (United States)

    Henry, Geneive E; Momin, Rafikali A; Nair, Muraleedharan G; Dewitt, David L

    2002-04-10

    Several commercially available C-8 to C-24 saturated and unsaturated fatty acids (1-29) were assayed for cyclooxygenase-I (COX-I) and cyclooxygenase-II (COX-II) inhibitory and antioxidant activities. Among the saturated fatty acids tested at 60 microg mL(-1), there was an increase in antioxidant activity with increasing chain length from octanoic acid to myristic acid (C-8-C-14) and a decrease thereafter. All unsaturated fatty acids tested at 60 microg mL(-1) showed good antioxidant activity except for undecylenic acid (12), cis-5-dodecenoic acid (13), and nervonic acid (29). The highest inhibitory activities among the saturated fatty acids tested on cyclooxygenase enzymes COX-I and COX-II were observed for decanoic acid to lauric acid (3-5) at 100 microg mL(-1). Similarly, among the unsaturated fatty acids tested, the highest activities were observed for cis-8,11,14-eicosatrienoic acid (25) and cis-13,16-docosadienoic acid (27) at 100 microg mL(-1).

  12. Antioxidant Responses Induced by UVB Radiation in Deschampsia antarctica Desv.

    Directory of Open Access Journals (Sweden)

    Hans Köhler

    2017-05-01

    Full Text Available Deschampsia antarctica Desv. is one of two vascular plants that live in the Maritime Antarctic Territory and is exposed to high levels of ultraviolet-B (UVB radiation. In this work, antioxidant physiology of D. antarctica was studied in response to UVB induced oxidative changes. Samples were collected from Antarctica and maintained in vitro culture during 2 years. Plants were sub-cultured in a hydroponic system and exposed to 21.4 kJ m-2 day-1, emulating summer Antarctic conditions. Results showed rapid and significant increases in reactive oxygen species (ROS at 3 h, which rapidly decreased. No dramatic changes were observed in photosynthetic efficiency, chlorophyll content, and level of thiobarbituric acid reactive species (MDA. The enzymatic (superoxide dismutase, SOD and total peroxidases, POD and non-enzymatic antioxidant activity (total phenolic increased significantly in response to UVB treatment. These findings suggest that tolerance of D. antarctica to UVB radiation could be attributed to its ability to activate both enzymatic and non-enzymatic antioxidant systems.

  13. Genetic Variation in NFKBIE Is Associated With Increased Risk of Pneumococcal Meningitis in Children

    DEFF Research Database (Denmark)

    Lundbo, Lene F; Harboe, Zitta Barrella; Clausen, Louise N

    2016-01-01

    NFKBIA, NFKBIE and NFKBIZ. We aimed to replicate previous findings of genetic variation associated with invasive pneumococcal disease (IPD), and to assess whether similar associations could be found in invasive meningococcal disease (IMD). METHODS: Cases with IPD and IMD and controls were identified......BACKGROUND: Streptococcus pneumoniae and Neisseria meningitidis are frequent pathogens in life-threatening infections. Genetic variation in the immune system may predispose to these infections. Nuclear factor-κB is a key component of the TLR-pathway, controlled by inhibitors, encoded by the genes.......86-1.35). The remaining SNPs were not associated with susceptibility to invasive disease. None of the SNPs were associated with risk of IMD or mortality. CONCLUSIONS: A NFKBIE polymorphism was associated with increased risk of pneumococcal meningitis....

  14. Effects of incorporating germinated brown rice on the antioxidant properties of wheat flour chapatti.

    Science.gov (United States)

    Gujral, H Singh; Sharma, P; Bajaj, R; Solah, V

    2012-02-01

    Brown rice after germinating for 24 and 48 h was milled into flour and incorporated in whole wheat flour at a level of 10% to prepare chapattis. The objective was to use chapatti as a delivery vehicle for germinated brown rice. The flour blends and chapattis made from the flour blends were evaluated for their antioxidant properties. Incorporating germinated brown rice flour increased the total phenolic content of the flour blend from 1897 to 2144 µg FAE/g. The total flavonoids content increased significantly from 632.3 to1770.9 µg CAE/g and metal chelating activity significantly increased by 71.62%. Antioxidant activity increased significantly by the addition of brown rice flour and addition of 24- and 48-h germinated brown rice flour further increased the antioxidant activity significantly. The total phenolic content and total flavonoids content decrease significantly in all the blends after baking the flour into chapatti. A decrease of 3% to 29% was observed in the total phenolic content and a decrease of 25% to 42% was observed in the total flavonoids content. However, baking of the flour blends into chapatti increased the reducing power, metal chelating activity by three folds and antioxidant activity from 64% to 104%.

  15. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Science.gov (United States)

    Ahmed, Romana; Hossen, Md. Sakib; Ahmmed, Istiyak; Rumpa, Nur-E-Noushin; Sulaiman, Siti Amrah

    2017-01-01

    Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation. PMID:28261310

  16. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Directory of Open Access Journals (Sweden)

    Romana Ahmed

    2017-01-01

    Full Text Available Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH radical-scavenging activity and ferric reducing antioxidant power (FRAP values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO- induced myocardial infarction in rats. Male Wistar rats (n=32 were pretreated orally with an ethanol extract of MP (100 mg/kg/day for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  17. Relevance of the Mention of Antioxidant Properties in Yogurt Labels: In Vitro Evaluation and Chromatographic Analysis

    OpenAIRE

    Pereira, Eliana; Barros, Lillian; Ferreira, Isabel C. F. R.

    2013-01-01

    The purpose of the inclusion of fruit (natural additives) in yogurt aims to increase its antioxidant activity and functionality. Herein, a comparative study of the antioxidant potential of yogurts with pieces of various fruits was performed, including yogurts with mention of antioxidant properties in the label. Free radicals scavenging activity, reducing power and inhibition of lipid peroxidation were evaluated by in vitro assays, as were the contents in antioxidants such as phenolics, flavon...

  18. An update on the genetic architecture of hyperuricemia and gout.

    Science.gov (United States)

    Merriman, Tony R

    2015-04-10

    Genome-wide association studies that scan the genome for common genetic variants associated with phenotype have greatly advanced medical knowledge. Hyperuricemia is no exception, with 28 loci identified. However, genetic control of pathways determining gout in the presence of hyperuricemia is still poorly understood. Two important pathways determining hyperuricemia have been confirmed (renal and gut excretion of uric acid with glycolysis now firmly implicated). Major urate loci are SLC2A9 and ABCG2. Recent studies show that SLC2A9 is involved in renal and gut excretion of uric acid and is implicated in antioxidant defense. Although etiological variants at SLC2A9 are yet to be identified, it is clear that considerable genetic complexity exists at the SLC2A9 locus, with multiple statistically independent genetic variants and local epistatic interactions. The positions of implicated genetic variants within or near chromatin regions involved in transcriptional control suggest that this mechanism (rather than structural changes in SLC2A9) is important in regulating the activity of SLC2A9. ABCG2 is involved primarily in extra-renal uric acid under-excretion with the etiological variant influencing expression. At the other 26 loci, probable causal genes can be identified at three (PDZK1, SLC22A11, and INHBB) with strong candidates at a further 10 loci. Confirmation of the causal gene will require a combination of re-sequencing, trans-ancestral mapping, and correlation of genetic association data with expression data. As expected, the urate loci associate with gout, although inconsistent effect sizes for gout require investigation. Finally, there has been no genome-wide association study using clinically ascertained cases to investigate the causes of gout in the presence of hyperuricemia. In such a study, use of asymptomatic hyperurcemic controls would be expected to increase the ability to detect genetic associations with gout.

  19. Phenolic content and antioxidant activity of Primitivo wine: comparison among winemaking technologies.

    Science.gov (United States)

    Baiano, A; Terracone, C; Gambacorta, G; La Notte, E

    2009-04-01

    The aim of this study was to assess the influence of 9 winemaking technologies (traditional, delestage, saignée, delayed punching-down, addition of grape seed tannins, addition of ellagic-skin-seed tannins, heating of must-wine, cryo-maceration, and prolonged maceration) on the phenolic content and antioxidant activity of Primitivo musts and wines. Three methods for the determination of the antioxidant activity were compared: DPPH, beta-carotene bleaching assay, and ABTS. Oenological parameters and composition of the phenolic fraction of 1-y-aged wines was also determined. The addition of tannins allowed the increase of the phenolic content of musts and wines in a greater amount than the other technologies. The results concerning the antioxidant activity depended on the method applied. Concerning musts, the DPPH assay did not highlight great differences among technologies, whereas the addition of tannins allowed the obtainment of the highest antioxidant activity according to beta-carotene and ABTS assays. The wine aging determined an increase of the antioxidant activity, independently on the method applied. Wine obtained through traditional technology, saignée, and addition of tannins showed the highest antioxidant activities according to DPPH and beta-carotene. The highest correlation coefficients (0.961 and 0.932) were calculated between phenolic content and ABTS values of musts whereas the lowest values (0.413 and 0.517) were calculated between phenolic content and ABTS values of wines. Wines produced through traditional technology were the richest in anthocyanins. The addition of tannins allowed to obtain high content in monomeric anthocyanins, flavonoids, flavans reactive to vanillin, and coumaroylated malvidin and a low content in acetylated malvidin. Practical Applications: It is well known that a moderate consumption (equivalent to 2 glasses per day) of red wine is actually recommended since it appears associated with a decreased incidence of

  20. Reaction product of pyrogallol with methyl linoleate and its antioxidant potential for biodiesel

    Science.gov (United States)

    Sutanto, H.; Ainny, L.; Lukman; Susanto, B. H.; Nasikin, M.

    2018-03-01

    The demand of biodiesel as an alternative fuel is increasing due to fossil fuel depletion. Biodiesel is a renewable diesel fuel in the form of fatty acid methyl ester or FAME as a result of an esterification of plant oils in a presence of catalyst. Compared to the conventional diesel fuel, biodiesel is more biodegradable, has higher lubricity, and lower toxic emissions. However, the high content of unsaturated fatty acid leads to a problem that biodiesel is prone to oxidation during storage period. This oxidation instability causes degradation of fuel quality and will affect engine performance. Pyrogallol and other phenolic derivatives have been used as the antioxidant additives to prevent biodiesel oxidation. As reported in many researches, pyrogallol is one of the best phenolic antioxidant. However, its low solubility in biodiesel needs an attention. Several reports indicate the increasing solubility of pyrogallol using molecule modification with the addition of alkyl groups to its benzene ring via electrophilic substitution. This paper discusses the idea about modification of pyrogallol molecule and methyl linoleate using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical in order to increase its solubility in biodiesel while keeping its antioxidant property. Three responses were analyzed to examine the antioxidant activity: iodine value, viscosity, and color intensity. The result shown that the addition of 0.1% reaction product exhibit antioxidant activity in biodiesel.

  1. A strategy to improve nitrogen utilization, reduce environmental impact, and increase performance and antioxidant capacity of fattening lambs using pomegranate peel extract.

    Science.gov (United States)

    Rajabi, M; Rouzbehan, Y; Rezaei, J

    2017-01-01

    Dietary natural plant secondary metabolites (PSM) extracted from a pomegranate peel (PP) byproduct have the potential to improve milk yield and the milk fatty acid profile of dairy cows. This experiment was performed to assess the influence of different dietary levels of PP extract (PPE) on feedlot performance, ruminal status, nutrient utilization, and antioxidant status in fattening Moghani lambs. Thirty-two lambs (initial BW of 22 ± 1.2 kg) were used in a completely randomized design with a 72-d period and 4 treatments: PPE0 (no extract), PPE15 (15 mL PPE/kg of diet DM), PPE30 (30 mL PPE/kg of diet DM), and PPE45 (45 mL PPE/kg of diet DM). Feed intake, lamb growth, diet digestibility, microbial nitrogen (N) synthesis (MNS), N retention, rumen parameters, and blood metabolites were determined. The addition of PPE to the diet of lambs had no effect on DMI (linear [L], = 0.96; quadratic [Q], = 0.65). In vivo digestibility coefficients of DM, OM, CP, and Ash-free NDF were not affected (L, ≥ 0.28; Q, ≥ 0.26) by different levels of PPE, but it increased ADG (L, = 0.045; Q, = 0.19) and G:F (L, = 0.046; Q, = 0.20). Rumen pH, VFA concentrations, and acetate-to-propionate ratio were not affected (L, ≥ 0.14; Q, ≥ 0.23) by PPE supplementation. Dietary inclusion of PPE decreased the ruminal concentration of ammonia N (L, = 0.014; Q, = 0.67), total protozoa enumeration (L, concentrations of glucose, triglycerides, cholesterol, total protein, albumin, or albumin-to-globulin ratio. Blood urea N (L, = 0.021; Q, = 0.32) decreased with dietary addition of PPE, while total antioxidant capacity (TAC) in the rumen fluid (L, = 0.032; Q, = 0.64) and TAC in the blood (L, = 0.041; Q, = 0.51) increased. Overall, dietary inclusion of PPE, up to 45 mL/kg of diet DM, linearly improved animal growth, N retention, and antioxidant capacities of the blood and rumen fluid. The PPE is a safe natural additive for use in sheep diets that can help to reduce environmental pollution by reducing

  2. Measurement of the total antioxidant response using a novel automated method in subjects with nonalcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    Sarifakiogullari Serpil

    2005-11-01

    Full Text Available Abstract Background Oxidative stress, an increase in oxidants and/or a decrease in antioxidant capacity, is one of the potential biochemical mechanisms involved in the pathogenesis of nonalcoholic steatohepatitis. We aimed to investigate the total antioxidant response using a novel automated method in nonalcoholic steatohepatitis subjects. As a reciprocal measure, we also aimed to determine total peroxide level in the same plasma samples. Methods Twenty-two subjects with biopsy proven nonalcoholic steatohepatitis and 22 healthy controls were enrolled. Total antioxidant response and total peroxide level measurements were done in all participants. The ratio percentage of total peroxide level to total antioxidant response was regarded as oxidative stress index. Results Total antioxidant response of subjects with nonalcoholic steatohepatitis was significantly lower than controls (p In subjects with nonalcoholic steatohepatitis, fibrosis score was significantly correlated with total peroxide level, total antioxidant response and oxidative stress index (p 0.05. Conclusion Nonalcoholic steatohepatitis is associated with increased oxidant capacity, especially in the presence of liver fibrosis. The novel automated assay is a reliable and easily applicable method for total plasma antioxidant response measurement in nonalcoholic steatohepatitis.

  3. Coffee Consumption Increases the Antioxidant Capacity of Plasma and Has No Effect on the Lipid Profile or Vascular Function in Healthy Adults in a Randomized Controlled Trial.

    Science.gov (United States)

    Agudelo-Ochoa, Gloria M; Pulgarín-Zapata, Isabel C; Velásquez-Rodriguez, Claudia M; Duque-Ramírez, Mauricio; Naranjo-Cano, Mauricio; Quintero-Ortiz, Mónica M; Lara-Guzmán, Oscar J; Muñoz-Durango, Katalina

    2016-03-01

    Coffee, a source of antioxidants, has controversial effects on cardiovascular health. We evaluated the bioavailability of chlorogenic acids (CGAs) in 2 coffees and the effects of their consumption on the plasma antioxidant capacity (AC), the serum lipid profile, and the vascular function in healthy adults. Thirty-eight men and 37 women with a mean ± SD age of 38.5 ± 9 y and body mass index of 24.1 ± 2.6 kg/m(2) were randomly assigned to 3 groups: a control group that did not consume coffee or a placebo and 2 groups that consumed 400 mL coffee/d for 8 wk containing a medium (MCCGA; 420 mg) or high (HCCGA; 780 mg) CGA content. Both were low in diterpenes (0.83 mg/d) and caffeine (193 mg/d). Plasma caffeic and ferulic acid concentrations were measured by GC, and the plasma AC was evaluated with use of the ferric-reducing antioxidant power method. The serum lipid profile, nitric oxide (NO) plasma metabolites, vascular endothelial function (flow-mediated dilation; FMD), and blood pressure (BP) were evaluated. After coffee consumption (1 h and 8 wk), caffeic and ferulic acid concentrations increased in the coffee-drinking groups, although the values of the 2 groups were significantly different (P consumption, the plasma AC in the control group was significantly lower than the baseline value (-2%) and significantly increased in the MCCGA (6%) and HCCGA (5%) groups (P profile, FMD, BP, or NO plasma metabolites. This trial was registered at registroclinico.sld.cu as RPCEC00000168. © 2016 American Society for Nutrition.

  4. Development of antioxidative effect in ice cream with Kalakai (Stenochlaena palustris) water extract

    Science.gov (United States)

    Hadhiwaluyo, Kristania; Rahmawati, Della; Gunawan Puteri, Maria D. P. T.

    2017-11-01

    Kalakai (Stenochlaena. palustris) extract was used to develop the ice cream. The antioxidant activity of the extracts and its stability over process and storage were evaluated through various antioxidant assay including DPPH assay, Folin-Ciocalteau assay and aluminum chloride colorimetric method. In general, the leaves of S. palustris had a significantly higher antioxidant activity (p ice cream without affecting the sensory properties of the ice cream. In addition, the high phenolic and flavonoid content also suggest the more compounds that were capable to act as an antioxidant. The result of the stability test also suggested the ability low temperature storage and processing in maintaining the stability of the antioxidant activity of the extract (p > 0.05) over processing and storage. Thus, this strengthen the feasibility of S. palustris to be used as a potential functional food ingredient that is low cost and easily accessible with an antioxidant activity and safe iron content that is beneficial to increase the quality of food produced including in ice cream.

  5. Synthesis, antioxidative and whitening effects of novel cysteine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Hoon; Kim, Kyoung Mi; Jeong, Yoon Ju; Park, Young Min; Lee, Jae Young; Park, Soo Nam [Dept. of Fine Chemistry, Cosmetic R and D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jino [Daebong LS. Ltd, Incheon (Korea, Republic of)

    2017-01-15

    Recently, development of biocompatibility functional cosmetic agents as antioxidant or whitening agent has increased. In this study, synthetic cysteine derivatives (DBLS-21, -24, and -33) were developed containing syringic acid and cysteine moieties (l-cysteine ethyl ester, N-acetyl cysteine methyl ester, and N-acetyl cysteine ethyl ester), and their antioxidative and whitening activities were evaluated. The cellular protective effect (τ{sub 50}) of DBLS-21 was 51.1 min at 50 μM on {sup 1}O{sub 2} -induced hemolysis of erythrocytes. This activity was slightly higher than that of α-tocopherol (43.6 min) as a lipophilic antioxidant. In the melanogenesis inhibitory effect, DBLS-21, -24, and -33 was 1.6-, 1.8-, and 2.5-fold higher than arbutin, respectively. In particular, DBLS-21 and -33 was 112.8- and 6.1-fold higher than arbutin, respectively (293.4 μM) on tyrosinase inhibition activity (IC{sub 50} ). But DBLS-24 had no tyrosinase inhibitory activity. These results suggest that cysteine derivatives possess potential for use as an antioxidant agent (DBLS-21) and whitening agents (all derivatives) in cosmetics.

  6. Synthesis, antioxidative and whitening effects of novel cysteine derivatives

    International Nuclear Information System (INIS)

    Ha, Ji Hoon; Kim, Kyoung Mi; Jeong, Yoon Ju; Park, Young Min; Lee, Jae Young; Park, Soo Nam; Park, Jino

    2017-01-01

    Recently, development of biocompatibility functional cosmetic agents as antioxidant or whitening agent has increased. In this study, synthetic cysteine derivatives (DBLS-21, -24, and -33) were developed containing syringic acid and cysteine moieties (l-cysteine ethyl ester, N-acetyl cysteine methyl ester, and N-acetyl cysteine ethyl ester), and their antioxidative and whitening activities were evaluated. The cellular protective effect (τ_5_0) of DBLS-21 was 51.1 min at 50 μM on "1O_2 -induced hemolysis of erythrocytes. This activity was slightly higher than that of α-tocopherol (43.6 min) as a lipophilic antioxidant. In the melanogenesis inhibitory effect, DBLS-21, -24, and -33 was 1.6-, 1.8-, and 2.5-fold higher than arbutin, respectively. In particular, DBLS-21 and -33 was 112.8- and 6.1-fold higher than arbutin, respectively (293.4 μM) on tyrosinase inhibition activity (IC_5_0 ). But DBLS-24 had no tyrosinase inhibitory activity. These results suggest that cysteine derivatives possess potential for use as an antioxidant agent (DBLS-21) and whitening agents (all derivatives) in cosmetics

  7. Seasonal Effects on Bioactive Compounds and Antioxidant Capacity of Six Economically Important Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Eduardo A.S. Rosa

    2011-08-01

    Full Text Available Research on natural and bioactive compounds is increasingly focused on their effects on human health, but there are unexpectedly few studies evaluating the relationship between climate and natural antioxidants. The aim of this study was analyze the biological role of six different Brassica vegetables (Brassica oleracea L. and Brassica rapa L. as a natural source of antioxidant compounds. The antioxidant activity may be assigned to high levels of L-ascorbic acid, total phenolics and total flavonoids of each sample. The climate seasons affected directly the concentration of bioactive components and the antioxidant activity. Broccoli inflorescences and Portuguese kale showed high antioxidant activity in Spring-Summer whilst turnip leaves did so in Summer-Winter. The Brassica vegetables can provide considerable amounts of bioactive compounds and thus may constitute an important natural source of dietary antioxidants.

  8. Effect of antioxidant inclusion and oil quality on broiler performance, meat quality, and lipid oxidation.

    Science.gov (United States)

    Tavárez, M A; Boler, D D; Bess, K N; Zhao, J; Yan, F; Dilger, A C; McKeith, F K; Killefer, J

    2011-04-01

    The objective of the present study was to evaluate the effect of antioxidant inclusion and oil quality on broiler performance, meat quality, shelf life, and tissue oxidative status. Ross 308 male broilers were allotted to a randomized complete block design in a 2 × 2 factorial arrangement. Factors consisted of antioxidant (ethoxyquin and propyl gallate) inclusion at 2 levels (0 or 135 mg/kg) and oil quality (fresh soybean oil, control diet peroxide value dressing percentage (P = 0.906), breast yield (P = 0.708), or breast ultimate pH (P = 0.625) and had minimal effect on breast color. Antioxidant supplementation (P = 0.057) reduced breast thiobarbituric acid reactive substances after 7 d of display. Fresh oil decreased liver thiobarbituric acid reactive substances, whereas antioxidant inclusion increased serum and liver vitamin A and E concentration. The presence of an antioxidant in the feed protects lipids from further oxidizing, therefore increasing broiler performance and improving shelf life when using oxidized oil.

  9. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers.

    Science.gov (United States)

    Apak, Reşat; Güçlü, Kubilay; Ozyürek, Mustafa; Bektaşoğlu, Burcu; Bener, Mustafa

    2010-01-01

    Tests measuring the combined antioxidant effect of the nonenzymatic defenses in biological fluids may be useful in providing an index of the organism's capability to counteract reactive species known as pro-oxidants, resist oxidative damage, and combat oxidative stress-related diseases. The selected chromogenic redox reagent for the assay of human serum should be easily accessible, stable, selective, and respond to all types of biologically important antioxidants such as ascorbic acid, alpha-tocopherol, beta-carotene, reduced glutathione (GSH), uric acid, and bilirubin, regardless of chemical type or hydrophilicity. Our recently developed cupric reducing antioxidant capacity (CUPRAC) spectrophotometric method for a number of polyphenols and flavonoids using the copper(II)-neocuproine reagent in ammonium acetate buffer is now applied to a complete series of plasma antioxidants for the assay of total antioxidant capacity of serum, and the resulting absorbance at 450 nm is recorded either directly (e.g., for ascorbic acid, alpha-tocopherol, and glutathione) or after incubation at 50 degrees C for 20 min (e.g., for uric acid, bilirubin, and albumin), quantitation being made by means of a calibration curve. The lipophilic antioxidants, alpha-tocopherol and beta-carotene, are assayed in dichloromethane. Lipophilic antioxidants of serum are extracted with n-hexane from an ethanolic solution of serum subjected to centrifugation. Hydrophilic antioxidants of serum are assayed in the centrifugate after perchloric acid precipitation of proteins. The CUPRAC molar absorptivities, linear ranges, and TEAC (trolox equivalent antioxidant capacity) coefficients of the serum antioxidants are established, and the results are evaluated in comparison with the findings of the ABTS/TEAC reference method. The intra- and inter-assay coefficients of variation (CVs) are 0.7 and 1.5%, respectively, for serum. The CUPRAC assay proved to be efficient for glutathione and thiol-type antioxidants

  10. Preparation of gold/carboxymethyl chitosan nanoparticles by radiation technique for application as an antioxidant

    International Nuclear Information System (INIS)

    Le Quang Luan; Nguyen Thanh Long; Nguyen Hai Nam; Do Thi Phuong Linh

    2015-01-01

    Gold nanoparticles (AuNPs) with the sizes of 5.2, 6.7 and 7.3 nm have been synthesised by γ-irradiation of Au 3+ solutions with the corresponding concentrations of 0.25, 0.5 and 1.0 mM using carboxylmethyl chitosan as stabiliser. The optical characteristics and particle sizes of AuNPs have been determined by UV-Vis spectra and TEM images respectively. The antioxidant activity of AuNPs has been investigated at the concentrations of 0.025 mM and 0.5 mM using ABTS scavenging activity. The results have shown that the higher concentration of AuNPs displays the stronger antioxidant activity and the faster reaction time. The highest antioxidant activity has been found at the concentration of 0.375 mM within 2-3 minutes. The antioxidant activity of AuNPs increases by the increase of reaction time and is higher than that of ascorbic acid. Thus, gold/carboxymethyl chitosan nanoparticles prepared by γ-irradiation method can be potentially utilised for the production of antioxidant products in pharmaceutics, functional foods and cosmetics. (author)

  11. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Latorres, J M; Rios, D G; Saggiomo, G; Wasielesky, W; Prentice-Hernandez, C

    2018-02-01

    Protein hydrolysates from white shrimp ( Litopenaeus vannamei ) with different degrees of hydrolysis (DH-10 and 20%) were prepared using the enzymes Alcalase 2.4 L and Protamex. The hydrolysates were evaluated for amino acid composition, solubility, foaming properties, emulsifying and antioxidant activity. All the hydrolysates showed high concentrations of Glutamic Acid, Aspartic acid, Arginine, Glycine, Lysine, Proline. It was found that the increase in the production of negatively charged amino acids was related to increase in DH. The hydrophobic amino acids were higher for hydrolysates obtained with Alcalase (10% DH) and Protamex (20% DH). The results indicated that higher degree of hydrolysis showed positive relation with the protein solubility of the hydrolysates, while negatively influenced foam and emulsification properties. The antioxidant properties presented by the white shrimp protein hydrolysates were influenced by the composition and peptides size. Hydrolysates with higher peptide chain showed the highest antioxidant power for the 2,2-Diphenyl-1-picrylhydrazyl radical scavenging and reducing power, while hydrolysates with lower peptide chain showed higher antioxidant power for 2,2'-azinobis (3-ethylbenzothiazoline sulfonic acid) radical scavenging. All hydrolysates showed dose-dependent antioxidant activities. Therefore, the results of the present study suggest that white shrimp is a potential source of protein hydrolysates as bioactive ingredients for the use in the formulation of functional foods as well as natural antioxidants in lipid food systems.

  12. Effects of antioxidants on lipid peroxide formation in irradiated synthetic diets

    International Nuclear Information System (INIS)

    Wills, E.D.

    1980-01-01

    The effects of the antioxidants, vitamin E, propyl gallate, 2-t-butyl-4-methoxy phenol (BHA), 2,6-di-t-butyl-4-methoxy phenol (BHT), nor-dihydroguaiaretic acid (NDGA) and diphenyl-p-phenylene diamine (DPPD) in concentrations ranging between 0.001 per cent and 0.1 per cent have been tested on lipid peroxide formation in synthetic diet mixtures containing herring oil (10 per cent) mixed with starch (90 per cent) irradiated with γ-ray doses of 100 to 2000 krad. On a weight basis NDGA, DPPD, BHA and BHT were most effective and vitamin E and propyl gallate were least effective. An antioxidant concentration of 0.01 per cent normally protected against peroxide formation after a dose of 500 krad but if the dose was increased to 1000 or 2000 krad, much higher doses of antioxidant, up to 0.1 per cent, were required to give protection. Antioxidants prevented peroxide developing during post-irradiation storage even when added after irradiation. Antioxidants were partially or completely destroyed by irradiation with doses of 100 krad or more. The percentage of total antioxidant destroyed depended on the concentration; much greater destruction occurred in dilute solutions than in concentrated solutions. Vitamin E and propyl gallate were most sensitive whereas NDGA was relatively resistant. Antioxidant destruction was much enhanced if irradiation was carried out in presence of herring oil. Free radicals formed in unsaturated fatty acids of the herring oil are believed to be responsible. Lecithin and citric acid, which have been described as antioxidant synergists when added with vitamin E, caused a limited enhancement of its antioxidant action against radiation-induced peroxidation. (author)

  13. Structure, health benefits, antioxidant property and processing and ...

    African Journals Online (AJOL)

    Structure, health benefits, antioxidant property and processing and storage of carotenoids. ... It is sensitive to heat, light and oxygen. Enzymatic ... Thermal treatment and freezing increases the extractability of b-carotene from the food matrices.

  14. Increasing Public Awareness of Direct-to-Consumer Genetic Tests: Health Care Access, Internet Use, and Population Density Correlates.

    Science.gov (United States)

    Finney Rutten, Lila J; Gollust, Sarah E; Naveed, Sana; Moser, Richard P

    2012-01-01

    Uncertainty around the value of and appropriate regulatory models for direct-to-consumer (DTC) genetic testing underscores the importance of tracking public awareness of these services. We analyzed nationally representative, cross-sectional data from the Health Information National Trends Survey in 2008 (n = 7, 674) and 2011 (n = 3, 959) to assess population-level changes in awareness of DTC genetic testing in the U.S. and to explore sociodemographic, health care, Internet use, and population density correlates. Overall, awareness increased significantly from 29% in 2008 to 37% in 2011. The observed increase in awareness from 2008 to 2011 remained significant (OR = 1.39) even when adjusted for sociodemographic variables, health care access, Internet use, and population density. Independent of survey year, the odds of awareness of DTC genetic tests were significantly higher for those aged 50-64 (OR = 1.64), and 65-74 (OR = 1.60); college graduates (OR = 2.02); those with a regular source of health care (OR = 1.27); those with a prior cancer diagnosis (OR = 1.24); those who use the Internet (OR = 1.27); and those living in urban areas (OR = 1.25). Surveillance of awareness-along with empirical data on use of and response to genetic risk information-can inform public health and policy efforts to maximize benefits and minimize risks of DTC genetic testing.

  15. Increasing Public Awareness of Direct-to-Consumer Genetic Tests: Health Care Access, Internet Use, and Population Density Correlates

    International Nuclear Information System (INIS)

    Rutten, L. J. F.; Gollust, S. E.; Naveed, S.; Moser, R. P.

    2012-01-01

    Uncertainty around the value of and appropriate regulatory models for direct-to-consumer (DTC) genetic testing underscores the importance of tracking public awareness of these services. We analyzed nationally representative, cross-sectional data from the Health Information National Trends Survey in 2008 (n=7, 674) and 2011 (n=3, 959) to assess population-level changes in awareness of DTC genetic testing in the U.S. and to explore socio demographic, health care, Internet use, and population density correlates. Overall, awareness increased significantly from 29% in 2008 to 37% in 2011. The observed increase in awareness from 2008 to 2011 remained significant (OR=1.39) even when adjusted for socio demographic variables, health care access, Internet use, and population density. Independent of survey year, the odds of awareness of DTC genetic tests were significantly higher for those aged 50-64 (OR=1.64), and 65-74 (O R=1.60); college graduates (OR=2.02 ); those with a regular source of health care (OR=1.27); those with a prior cancer diagnosis (OR=1.24); those who use the Internet (OR=1.27); and those living in urban areas ( OR=1.25). Surveillance of awareness-along with empirical data on use of and response to genetic risk information-can inform public health and policy efforts to maximize benefits and minimize risks of DTC genetic testing.

  16. Increasing Public Awareness of Direct-to-Consumer Genetic Tests: Health Care Access, Internet Use, and Population Density Correlates

    Directory of Open Access Journals (Sweden)

    Lila J. Finney Rutten

    2012-01-01

    Full Text Available Uncertainty around the value of and appropriate regulatory models for direct-to-consumer (DTC genetic testing underscores the importance of tracking public awareness of these services. We analyzed nationally representative, cross-sectional data from the Health Information National Trends Survey in 2008 (n=7,674 and 2011 (n=3,959 to assess population-level changes in awareness of DTC genetic testing in the U.S. and to explore sociodemographic, health care, Internet use, and population density correlates. Overall, awareness increased significantly from 29% in 2008 to 37% in 2011. The observed increase in awareness from 2008 to 2011 remained significant (OR=1.39 even when adjusted for sociodemographic variables, health care access, Internet use, and population density. Independent of survey year, the odds of awareness of DTC genetic tests were significantly higher for those aged 50–64 (OR=1.64, and 65–74 (OR=1.60; college graduates (OR=2.02; those with a regular source of health care (OR=1.27; those with a prior cancer diagnosis (OR=1.24; those who use the Internet (OR=1.27; and those living in urban areas (OR=1.25. Surveillance of awareness—along with empirical data on use of and response to genetic risk information—can inform public health and policy efforts to maximize benefits and minimize risks of DTC genetic testing.

  17. Antioxidant Activity and Nutritional Status in Anorexia Nervosa: Effects of Weight Recovery

    Directory of Open Access Journals (Sweden)

    María-Jesús Oliveras-López

    2015-03-01

    Full Text Available Few studies are focused on the antioxidant status and its changes in anorexia nervosa (AN. Based on the hypothesis that renutrition improves that status, the aim was to determine the plasma antioxidant status and the antioxidant enzymes activity at the beginning of a personalized nutritional program (T0 and after recovering normal body mass index (BMI (T1. The relationship between changes in BMI and biochemical parameters was determined. Nutritional intake, body composition, anthropometric, hematological and biochemical parameters were studied in 25 women with AN (19.20 ± 6.07 years. Plasma antioxidant capacity and antioxidant enzymes activity were measured. Mean time to recover normal weight was 4.1 ± 2.44 months. Energy, macronutrients and micronutrients intake improved. Catalase activity was significantly modified after dietary intake improvement and weight recovery (T0 = 25.04 ± 1.97 vs. T1 = 35.54 ± 2.60μmol/min/mL; p < 0.01. Total antioxidant capacity increased significantly after gaining weight (T0 = 1033.03 ± 34.38 vs. T1 = 1504.61 ± 99.73 μmol/L; p < 0.01. Superoxide dismutase activity decreased (p < 0.05 and glutathione peroxidase did not change. Our results support an association between nutrition improvement and weight gain in patients with AN, followed by an enhancement of antioxidant capacity and catalase antioxidant system.

  18. Oxidative damage and antioxidant defense in thymus of malnourished lactating rats.

    Science.gov (United States)

    Gavia-García, Graciela; González-Martínez, Haydeé; Miliar-García, Ángel; Bonilla-González, Edmundo; Rosas-Trejo, María de Los Ángeles; Königsberg, Mina; Nájera-Medina, Oralia; Luna-López, Armando; González-Torres, María Cristina

    2015-01-01

    Malnutrition has been associated with oxidative damage by altered antioxidant protection mechanisms. Specifically, the aim of this study was to evaluate oxidative damage (DNA and lipid) and antioxidant status (superoxide dismutase [SOD], glutathione peroxidase [GPx], and catalase [CAT] mRNA, and protein expression) in thymus from malnourished rat pups. Malnutrition was induced during the lactation period by the food competition method. Oxidative DNA damage was determined quantifying 8-oxo-7, 8-dihydro-2'-deoxyguanosine adduct by high-performance liquid chromatography. Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. Levels of gene and protein expression of SOD, GPx, and CAT were evaluated by real-time polymerase chain reaction and Western blot, respectively. Antioxidant enzyme activities were measured spectrophotometrically. Oxidative DNA damage and lipid peroxidation significantly increased in second-degree (MN-2) and third-degree malnourished (MN-3) rats compared with well-nourished rats. Higher amounts of oxidative damage, lower mRNA expression, and lower relative concentrations of protein, as well as decreased antioxidant activity of SOD, GPx, and CAT were associated with the MN-2 and MN-3 groups. The results of this study demonstrated that higher body-weight deficits were related to alterations in antioxidant protection, which contribute to increased levels of damage in the thymus. To our knowledge, this study demonstrated for the first time that early in life, malnutrition leads to increased DNA and lipid oxidative damage, attributable to damaged antioxidant mechanisms including transcriptional and enzymatic activity alterations. These findings may contribute to the elucidation of the causes of previously reported thymus dysfunction, and might explain partially why children and adults who have overcome child undernourishment experience immunologic deficiencies. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effect of Whole-Body Cryotherapy on Antioxidant Systems in Experimental Rat Model

    Directory of Open Access Journals (Sweden)

    Bronisława Skrzep-Poloczek

    2017-01-01

    Full Text Available Background. The purpose of this study was to verify the effect of whole-body cryotherapy (WBC in rats on their antioxidant systems, lipid peroxidation products, and their total oxidative status at different exposure times and temperatures. Methods. Antioxidants in serum, plasma, liver, and erythrocytes were evaluated in two study groups following 1 min of exposure to −60°C and −90°C, for 5 and 10 consecutive days. Results. WBC increased the activity of superoxide dismutase, catalase in the group subjected to 5 and 10 days exposure, −60°C. The glutathione S-transferase activity increased in the groups subjected to 10 days WBC sessions. Total antioxidant capacity increased after 5 and 10 days of 1 min WBC, −60°C; a decrease was observed at −90°C. A decreased level of erythrocyte malondialdehyde concentration was observed at −60°C after 5 and 10 days of cryostimulation. An increased concentration was measured at −90°C after 10 days, and increase of erythrocyte malondialdehyde concentration after 5 days, −90°C. Conclusions. To the best of our knowledge, this is the first research showing the effect of WBC in rats at different exposure times and temperatures. The effect of cryotherapy on enzymatic and nonenzymatic antioxidant systems was observed in the serum of animals exposed to a temperature of −60°C in comparison to control.

  20. Lipid peroxidation and antioxidant enzymes in male infertility.

    Directory of Open Access Journals (Sweden)

    Dandekar S

    2002-07-01

    Full Text Available BACKGROUND AND AIM: Mammalian spermatozoa are rich in polyunsaturated fatty acids and are very susceptible to attack by reactive oxygen species (ROS and membrane lipid peroxide ion. Normally a balance is maintained between the amount of ROS produced and that scavenged. Cellular damage arises when this equilibrium is disturbed. A shift in the levels of ROS towards pro-oxidants in semen and vaginal secretions can induce an oxidative stress on spermatozoa. The aim was to study lipid peroxidation and antioxidant enzymes such as catalase, glutathione peroxidase and superoxide dismutase (SOD and to correlate the same, with the ′water test′, in male infertility. SETTINGS: Experimental study. SUBJECTS AND METHODS: Ejaculates from a total of 83 infertile and fertile healthy individuals were obtained. Lipid peroxidation and antioxidant enzyme levels were studied and correlated with water test. RESULTS: The results indicate that (i the antioxidant enzyme catalase showed no significant changes in the various pathological samples, (ii antioxidant enzymes SOD and glutathione peroxidase correlate positively with asthenozoospermic samples and (iii the degree of lipid peroxidation also correlates positively with the poorly swollen sperm tails. The increase in SOD and glutathione peroxidase values, in the pathological cases represents an attempt made to overcome the reactive oxygen species. CONCLUSION: Water test could be used as a preliminary marker test for sperm tail damage by reactive oxygen species, since it correlates very well with lipid peroxidation and antioxidant enzymes.

  1. Antioxidant status in acute asthmatic attack in children

    International Nuclear Information System (INIS)

    Al-Abdulla, N.O.; Al-Naama, L.M.; Hassan, M.K.

    2010-01-01

    Objectives: To determine the oxidant - antioxidant imbalance in asthmatic children, by measuring the levels of malondialdehyde (MDA) as an oxidant marker of lipid peroxidation as well as antioxidant compounds like vitamin C, vitamin E and uric acid and to investigate whether their concentrations are associated with more severe asthma. Methods: This case controlled prospective study was conducted on 219 children aged 1-12 years, attending Basra Maternity and Children Hospital. Included were 98 asthmatic children during acute attack and 121 non asthmatic, apparently healthy children. Serum malondialdehyde (MDA) as an oxidant marker of lipid peroxidation, and vitamin C, vitamin E and uric acid (as antioxidants) were estimated in asthmatic children during acute attack and compared with non-asthmatic children. Results: Asthmatic children during exacerbation of their asthma have significant lower serum levels of antioxidant compounds like vitamin C, vitamin E and uric acid (p<0.001) and significantly high malondialdehyde as compared with the controls. MDA was significantly elevated (P< 0.001), while that of vitamin C, vitamin E and uric acid were significantly decreased with increasing severity of asthmatic attack (P<0.001). A significant negative correlation between MDA with vitamin C (P<0.05, r = - 0.44) was observed in severe asthmatic attacks. Conclusion: Asthmatic patients during acute attack suffer a high degree of reactive oxygen species formation causing considerable oxidative stress that is indicated by the high level of oxidants (MDA) and low level of antioxidants. (author)

  2. Total and corrected antioxidant capacity in hemodialyzed patients

    Directory of Open Access Journals (Sweden)

    Margioris Andrew N

    2003-07-01

    Full Text Available Abstract Background Oxidative stress may play a critical role in the vascular disease of end stage renal failure and hemodialysis patients. Studies, analyzing either discrete analytes and antioxidant substances, or the integrated total antioxidant activity of human plasma during hemodialysis, give contradictory results. Methods Recently, we have introduced a new automated method for the determination of Total Antioxidant Capacity (TAC of human plasma. We have serially measured TAC and corrected TAC (cTAC: after subtraction of the interactions due to endogenous uric acid, bilirubin and albumin in 10 patients before the onset of the dialysis session, 10 min, 30 min, 1 h, 2 h and 3 h into the procedure and after completion of the session. Results Our results indicate that TAC decreases, reaching minimum levels at 2 h. However, corrected TAC increases with t1/2 of about 30 min. We then repeated the measurements in 65 patients undergoing dialysis with different filters (36 patients with ethylene vinyl alcohol copolymer resin filter -Eval-, 23 patients with two polysulfone filters -10 with F6 and 13 with PSN140-, and 6 patients with hemophan filters. Three specimens were collected (0, 30, 240 min. The results of this second group confirm our initial results, while no significant difference was observed using either filter. Conclusions Our results are discussed under the point of view of possible mechanisms of modification of endogenous antioxidants, and the interaction of lipid- and water-soluble antioxidants.

  3. Genetically Engineered Escherichia coli Nissle 1917 Synbiotics Reduce Metabolic Effects Induced by Chronic Consumption of Dietary Fructose.

    Directory of Open Access Journals (Sweden)

    Chaudhari Archana Somabhai

    Full Text Available To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN on metabolic effects induced by chronic consumption of dietary fructose.EcN was genetically modified with fructose dehydrogenase (fdh gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150-200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq, EcN (pqq-glf-mtlK, EcN (pqq-fdh was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ production.EcN (pqq-glf-mtlK, EcN (pqq-fdh transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK and EcN (pqq-fdh showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA demonstrated the prebiotic effects of mannitol and gluconic acid.Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome.

  4. Oxidative stress and food supplementation with antioxidants in therapy dogs.

    Science.gov (United States)

    Sechi, Sara; Fiore, Filippo; Chiavolelli, Francesca; Dimauro, Corrado; Nudda, Anna; Cocco, Raffaella

    2017-07-01

    The objective of this study was to evaluate the ability of a long-term antioxidant-supplemented diet to regulate the oxidative stress and general health status of dogs involved in animal-assisted intervention (AAI) programs. Oxidative stress is a consequence of the accumulation of reactive oxygen species (ROS). Exercise-induced oxidative stress can increase muscle fatigue and fiber damage and eventually leads to impairment of the immune system. A randomized, placebo-controlled, crossover clinical evaluation was conducted with 11 healthy therapy dogs: 6 females and 5 males of different breeds and with a mean age of 2.7 ± 0.8 y (mean ± SEM). The dogs were divided into 2 groups, 1 fed a high quality commercial diet without antioxidants (CD) and the other a high quality commercial diet supplemented with antioxidants (SD) for 18 wk. After the first 18 wk, metabolic parameters, reactive oxygen metabolite-derivatives (d-ROMs), and biological antioxidant potential (BAP) levels were monitored and showed a significant reduction of d-ROMs, triglycerides, and creatinine values in the SD group ( P < 0.05) and a significant increase in amylase values in the CD group ( P < 0.01). At the end of this period, groups were crossed over and fed for another 18 wk. A significant decrease in amylase and glutamate pyruvate transaminase (GPT) values was observed in the CD and SD group, respectively ( P < 0.05). In conclusion, a controlled, balanced antioxidant diet may be a valid approach to restoring good cell metabolism and neutralizing excess free radicals in therapy dogs.

  5. Differential Antioxidative Responses to Water Deficit Among four Barley (Hordeum vulgare L. Genotypes

    Directory of Open Access Journals (Sweden)

    Z Amini

    2013-08-01

    Full Text Available Future climate changes are expected to increase risks of drought, which already represent the most common stress factor for stable barley (Hordeum vulgare L. production in Iran. Up to now, extensive research projects have been done to study effects of drought stress on the antioxidant enzyme activity. While there is a few works of such studies on the field condition. In order to study of water deficit effects on the antioxidant enzymes activities as a secondary stress, we evaluate the effects of mild and severe drought stress on activities of antioxidative enzymes including superoxide dismutases, ascorbate peroxidase, catalase and peroxidase, among four barley genotypes, differing in the capacity to maintain the grain yield under drought condition during beginning on anthesis, kernel watery ripe and late milk stages under field condition. Results showed that drought increased the activity of antioxidant enzymes in all genotypes. At beginning of anthesis, POX activity of Q22 was higher than it in other genotypes ( P

  6. Reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Monisha Banerjee

    2014-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM, by definition is a heterogeneous, multifactorial, polygenic syndrome which results from insulin receptor dysfunction. It is an outcome of oxidative stress caused by interactions of reactive metabolites (RMs interactions with lipids, proteins and other mechanisms of human body. Production of RMs mainly superoxide (O2·− has been found in a variety of predominating cellular enzyme systems including NAD(PH oxidase, xanthine oxidase (XO, cyclooxygenase (COX, uncoupled endothelial nitric oxide synthase (eNOS and myeloperoxidase (MPO. The four main RM related molecular mechanisms are: increased polyol pathway flux; increased advanced glycation end-product (AGE formation; activation of protein kinase C (PKC isoforms and increased hexosamine pathway flux which have been implicated in glucose-mediated vascular damage. Superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione-S-transferase (GST, nitric oxide synthase (NOS are antioxidant enzymes involved in scavenging RMs in normal individuals. Functional polymorphisms of these antioxidant enzymes have been reported to be involved in pathogenesis of T2DM individuals. The low levels of antioxidant enzymes or their non-functionality results in excessive RMs which initiate stress related pathways thereby leading to insulin resistance and T2DM. An attempt has been made to review the role of RMs and antioxidant enzymes in oxidative stress resulting in T2DM.

  7. Effect of Free Radicals & Antioxidants on Oxidative Stress: A Review

    Directory of Open Access Journals (Sweden)

    Ashok Shinde

    2012-01-01

    Full Text Available Recently free radicals have attracted tremendous importance in the field of medicine including dentistry and molecular biology. Free radicals can be either harmful or helpful to the body. When there is an imbalance between formation and removal of free radicals then a condition called as oxidative stress is developed in body. To counteract these free radicals body has protective antioxidant mechanisms which have abilities to lower incidence of various human morbidities and mortalities. Many research groups in the past have tried to study and confirm oxidative stress. Many authors also have studied role of antioxidants in reducing oxidative stress. They have come across with controversial results and furthermore it is not yet fully confirmed whether oxidative stress increases the need for dietary antioxidants. Recently, an association between periodontitis and cardiovascular disease has received considerable attention. Various forms of antioxidants have been introduced as an approach to fight dental diseases and improve general gingival health. The implication of oxidative stress in the etiology of many chronic and degenerative diseases suggests that antioxidant therapy represents a promising avenue for treatment. This study was conducted with the objective of reviewing articles relating to this subject. A Pub Med search of all articles containing key words free radicals, oxidative stress, and antioxidants was done. A review of these articles was undertaken.

  8. The Use of Antioxidants to Control Root Rot and Wilt Diseases of Pepper

    Directory of Open Access Journals (Sweden)

    Montaser Fawzy ABDEL-MONAIM

    2010-06-01

    Full Text Available Ten isolates of Fusarium spp were isolated from pepper plants collected from different locations in New Valley Governorate, Egypt. Fusarium solani isolate FP2 and F. oxysporum isolate FP4 were highly pathogenic isolates but the other isolates moderate or less pathogenic to pepper plants (cv. Anaheim-M. The four antioxidant compounds (coumaric acid, citric acid, propylgalate and salicylic acid each at 100 and 200 ppm were evaluated for their in vitro and in vivo agonist to Fusarium pathogenic isolates caused root rot and wilt diseases in pepper plants. All tested antioxidant compounds reduced damping-off, root rot/wilt and area under root rot/wilt progress curve when used as seed soaking, seedling soaking, and soil drench especially at 200 ppm under greenhouse and field conditions compared with untreated plants. All chemicals increased fresh and dry weight of seedling grown in soil drenching or seed treatment with any antioxidants. At the same time, all tested chemicals significantly increase plant growth parameters i.e plant length, plant branching, and total yield per plant in case of seedling soaking or soil drench. In general, propylgalate at 200 ppm was more efficient in reducing infection with damping-off, root rot and wilt diseases as well as increasing the seedling fresh weight, dry weight, plant length, plant branching, number of pod plant-1 and pod yield plant-1. On the other hand, all tested antioxidants had less or no effect on mycelial dry weight and mycelial leaner growth. On the contrary, all chemicals much reduced spore formation in both Fusarium species at 100 or 200 ppm and the inhibitory effect of antioxidants increased with increasing their concentrations.

  9. Antioxidant capacity reduced in scallions grown under elevated CO 2 independent of assayed light intensity

    Science.gov (United States)

    Levine, Lanfang H.; Paré, Paul W.

    2009-10-01

    Long-duration manned space missions mandate the development of a sustainable life support system and effective countermeasures against damaging space radiation. To mitigate the risk of inevitable exposure to space radiation, cultivation of fresh fruits and vegetables rich in antioxidants is an attractive alternative to pharmacological agents. However it has yet to be established whether antioxidant properties of crops can be preserved or enhanced in a space environment where environmental conditions differ from that which plants have acclimated to on earth. Scallion ( Allium fistulosum) rich in antioxidant vitamins C and A, and flavonoids was used as a model plant to study the impact of a range of CO 2 concentrations and light intensities that are likely encountered in a space habitat on food quality traits. Scallions were hydroponically grown in controlled environmental chambers under a combination of 3 CO 2 concentrations of 400, 1200 and 4000 μmol mol -1 and 3 light intensity levels of 150, 300, 450 μmol m -2 s -1. Total antioxidant activity (TAA) of scallion extracts was determined using a radical cation scavenging assay. Both elevated CO 2 and increasing light intensity enhanced biomass accumulation, but effects on TAA (based on dry weight) differed. TAA was reduced for plants grown under elevated CO 2, but remained unchanged with increases in light intensity. Elevated CO 2 stimulated greater biomass production than antioxidants, while an increase in photosynthetic photo flux promoted the synthesis of antioxidant compounds at a rate similar to that of biomass. Consequently light is a more effective stimulus than CO 2 for antioxidant production.

  10. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients.

    Science.gov (United States)

    L Gupta, Krishan; Sahni, Nancy

    2012-10-01

    Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients.

  11. The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial

    DEFF Research Database (Denmark)

    Tepel, Martin; van der Giet, Markus; Statz, Mario

    2003-01-01

    Patients with end-stage renal failure have increased oxidative stress and show elevated cardiovascular mortality. Whether increased cardiovascular events can be prevented by the administration of antioxidants is unknown.......Patients with end-stage renal failure have increased oxidative stress and show elevated cardiovascular mortality. Whether increased cardiovascular events can be prevented by the administration of antioxidants is unknown....

  12. Association of increased total antioxidant capacity and anovulation in nonobese infertile patients with clomiphene citrate-resistant polycystic ovary syndrome.

    Science.gov (United States)

    Verit, Fatma Ferda; Erel, Ozcan; Kocyigit, Abdurrahim

    2007-08-01

    To investigate whether total antioxidant capacity (TAC) could predict the response to ovulation induction to clomiphene citrate (CC) in nonobese women with polycystic ovary syndrome. Prospective longitudinal follow-up study. Academic hospital. Fifty-five nonobese, oligomenorrheic women with polycystic ovary syndrome and normal indices of insulin sensitivity. None. Standard clinical examinations and ultrasonographic and endocrine screening, including FSH, LH, E(2), P, total T, sex hormone-binding globulin, DHEAS, and TAC were performed before initiation of CC medication. Within the total group, 27 (49%) of the patients did not ovulate at the end of follow-up. TAC, free androgen index, and ovarian volume were all significantly different in CC nonresponders from those in responders. Total antioxidant capacity was found to be the best predictor in univariate analysis (odds ratio, 171.55; 95% confidence interval, 10.61-2,772.93), and it had the highest area in the receiver operating characteristics analysis (0.91). In a multivariate prediction model, TAC, free androgen index, and ovarian volume showed good predictive power, with Hosmer-Lemeshow goodness of fit test of 0.80. Total antioxidant capacity was the strongest predictor of ovarian response during CC induction of ovulation in these patients. It can be concluded that TAC can be used as a routine screening test.

  13. Sevoflurane Induces DNA Damage Whereas Isoflurane Leads to Higher Antioxidative Status in Anesthetized Rats

    Directory of Open Access Journals (Sweden)

    Thalita L. A. Rocha

    2015-01-01

    Full Text Available Taking into account that there are controversial antioxidative effects of inhalational anesthetics isoflurane and sevoflurane and absence of comparison of genotoxicity of both anesthetics in animal model, the aim of this study was to compare DNA damage and antioxidant status in Wistar rats exposed to a single time to isoflurane or sevoflurane. The alkaline single-cell gel electrophoresis assay (comet assay was performed in order to evaluate DNA damage in whole blood cells of control animals (unexposed; n = 6 and those exposed to 2% isoflurane (n = 6 or 4% sevoflurane (n = 6 for 120 min. Plasma antioxidant status was determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. There was no statistically significant difference between isoflurane and sevoflurane groups regarding hemodynamic and temperature variables (P > 0.05. Sevoflurane significantly increased DNA damage compared to unexposed animals (P = 0.02. In addition, Wistar rats anesthetized with isoflurane showed higher antioxidative status (MTT than control group (P = 0.019. There were no significant differences in DNA damage or antioxidant status between isoflurane and sevoflurane groups (P > 0.05. In conclusion, our findings suggest that, in contrast to sevoflurane exposure, isoflurane increases systemic antioxidative status, protecting cells from DNA damage in rats.

  14. The role of genetic (PON1 polymorphism and environmental factors, especially physical activity, in antioxidant function of paraoxonase*

    Directory of Open Access Journals (Sweden)

    Aneta Otocka-Kmiecik

    2009-12-01

    Full Text Available Paraoxonase 1 ([i]PON1[/i] is a member of a three-gene family ([i]PON1, PON2[/i], and [i]PON3[/i]. PON1 activity dominates in human plasma. It is secreted from hepatic cells and is found in the circulation bound to high-density lipoproteins (HDLs. For many years it has been known only for its ability to hydrolyze organophosphate derivatives. More recently, PON1’s antioxidant activity draws attention as the enzyme was described to prevent oxidation of lipoproteins by reactive oxygen species formed during oxidative stress. PON1 was also shown to hydrolyze atherogenic products of oxidative lipid modification such as phospholipid peroxides and cholesterol ester hydroperoxides. Some studies indicate that the enzyme presents a lipolactonase activity and hydrolyzes homocysteine thiolactone (HCTL. There is growing evidence as to PON1’s protective role in atherosclerosis. Genetic (PON1 polymorphism and environmental factors and lifestyle may influence PON1 blood concentration and biological activity. Among the many recognized factors accounting for lifestyle, physical activity plays an important role. Various, often opposite, effects on PON1 status are observed in regular training and single physical activities. The results of different studies are often contradictory. It may depend on the time, intensity, and frequency of physical activity. Additionally, it seems that the effects of physical activity on [i]PON1[/i] blood concentration and activity are modified by environmental and lifestyle factors as well as [i]PON1[/i] polymorphism.

  15. Stability and Antioxidant Activity of Semi-synthetic Derivatives of 4-Nerolidylcatechol

    Directory of Open Access Journals (Sweden)

    Emerson Silva Lima

    2012-12-01

    Full Text Available 4-nerolidylcatechol (4-NC is an unstable natural product that exhibits important antioxidant, anti-inflammatory and other properties. It is readily obtainable on a multi-gram scale through straightforward solvent extraction of the roots of cultivated Piper peltatum or P. umbellatum, followed by column chromatography on the resulting extract. Semi-synthetic derivatives of 4-NC with one or two substituent groups (methyl, acetyl, benzyl, benzoyl on the O atoms have been introduced that have increased stability compared to 4-NC and significant in vitro inhibitory activity against the human malaria parasite Plasmodium falciparum. Antioxidant and anti-inflammatory properties may be important for the antiplasmodial mode of action of 4-NC derivatives. Thus, we decided to investigate the antioxidant properties, cytotoxicity and stability of 4-NC derivatives as a means to explore the potential utility of these compounds. 4-NC showed high antioxidant activity in the DPPH and ABTS assays and in 3T3-L1 cells (mouse embryonic fibroblast, however 4-NC was more cytotoxic (IC50 = 31.4 µM and more unstable than its derivatives and lost more than 80% of its antioxidant activity upon storage in solution at −20 °C for 30 days. DMSO solutions of mono-O-substituted derivatives of 4-NC exhibited antioxidant activity and radical scavenging activity in the DPPH and ABTS assays that was comparable to that of BHA and BHT. In the cell-based antioxidant model, most DMSO solutions of derivatives of 4-NC were less active on day 1 than 4-NC, quercetin and BHA and more active antioxidants than BHT. After storage for 30 days at −20 °C, DMSO solutions of most of the derivatives of 4-NC were more stable and exhibited more antioxidant activity than 4-NC, quercetin and BHA and exhibited comparable antioxidant activity to BHT. These findings point to the potential of derivatives of 4-NC as antioxidant compounds.

  16. Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response.

    Science.gov (United States)

    Chen, Menghao; Li, Xiaojing; Fan, Ruifeng; Cao, Changyu; Yao, Haidong; Xu, Shiwen

    2017-11-01

    The nuclear transcription factor NF-E2-related factor 2 (Nrf2) binds to antioxidant response elements (AREs) and is involved in the regulation of genes participated in defending cells against oxidative damage, which have been confirmed in animal models. Selenium (Se), known as an important element in the regulation of antioxidant activity, can antagonize Cadmium (Cd) toxicity in birds. However, the role of Nrf2 in selenium-cadmium interaction has not been reported in birds. To further explore the mechanism of selenium attenuating spleen toxicity induced by cadmium in chickens, cadmium chloride (CdCl 2 , 150mg/kg) and sodium selenite (Na 2 SeO 3 , 2mg/kg) were co-administrated or individually administered in the diet of chickens for 90 days. The results showed that Cd exposure increased the level of hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) and decreased the antioxidant enzyme activities, including superoxide dismutase (SOD), glutathione peroxidase (Gpx), total antioxidative capacity (T-AOC), catalase (CAT). Cd exposure increased obviously nuclear accumulation of Nrf2, and the expression of Nrf2 downstream heme oxygenase-1 (HO-1) and NAD(P)H: quinine oxidoreductase 1 (NQO1), reduced the expression of Kelch-like ECH-associated protein (keap1), Gpx-1 and thioredoxin reductase-1 (TrxR1). In addition, Cd induced the increase of bak, caspase9, p53, Cyt c mRNA levels, increased bax/bcl-2 ratio, increased caspase3 mRNA and protein levels. Selenium treatment reduced the accumulation of Cd in the spleen, attenuates Cd-induced Nrf2 nuclear accumulation, enhanced antioxidant enzyme activities, ameliorated Cd-induced oxidative stress and apoptosis in the spleen. In summary, our results demonstrate that Se ameliorated spleen toxicity induced by cadmium by modulating the antioxidant system, independently of Nrf2-regulated antioxidant response pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Comparison of Antioxidant Evaluation Assays for Investigating Antioxidative Activity of Gallic Acid and Its Alkyl Esters in Different Food Matrices.

    Science.gov (United States)

    Phonsatta, Natthaporn; Deetae, Pawinee; Luangpituksa, Pairoj; Grajeda-Iglesias, Claudia; Figueroa-Espinoza, Maria Cruz; Le Comte, Jérôme; Villeneuve, Pierre; Decker, Eric A; Visessanguan, Wonnop; Panya, Atikorn

    2017-08-30

    The addition of antioxidants is one of the strategies to inhibit lipid oxidation, a major cause of lipid deterioration in foods leading to rancidity development and nutritional losses. However, several studies have been reported that conventional antioxidant assays, e.g., TPC, ABTS, FRAP, and ORAC could not predict antioxidant performance in several foods. This study aimed to investigate the performance of two recently developed assays, e.g., the conjugated autoxidizable triene (CAT) and the apolar radical-initiated conjugated autoxidizable triene (ApoCAT) assays to predict the antioxidant effectiveness of gallic acid and its esters in selected food models in comparison with the conventional antioxidant assays. The results indicated that the polarities of the antioxidants have a strong impact on antioxidant activities. In addition, different oxidant locations demonstrated by the CAT and ApoCAT assays influenced the overall antioxidant performances of the antioxidants with different polarities. To validate the predictability of the assays, the antioxidative performance of gallic acid and its alkyl esters was investigated in oil-in-water (O/W) emulsions, bulk soybean oils, and roasted peanuts as the lipid food models. The results showed that only the ApoCAT assay could be able to predict the antioxidative performances in O/W emulsions regardless of the antioxidant polarities. This study demonstrated that the relevance of antioxidant assays to food models was strongly dependent on physical similarities between the tested assays and the food structure matrices.

  18. Molecular Identification and Genetic Characterization of Macrophomina phaseolina Strains Causing Pathogenicity on Sunflower and Chickpea

    Directory of Open Access Journals (Sweden)

    Ali N. Khan

    2017-07-01

    Full Text Available Macrophomina phaseolina is the most devastating pathogen which causes charcoal rot and root rot diseases in various economically important crops. Three strains M. phaseolina 1156, M. phaseolina 1160, and M. phaseolina PCMC/F1 were tested for their virulence on sunflower (Helianthus annuus L. and chickpea (Cicer arietinum L.. The strains showed high virulence on both hosts with a disease score of 2 on chickpea and sunflower. The strains also increased the hydrogen per oxide (H2O2 content by 1.4- to 1.6-fold in root as well as shoot of chickpea and sunflower. A significant increase in antioxidant enzymes was observed in fungal infected plants which indicated prevalence of oxidative stress during pathogen propagation. The M. phaseolina strains also produced hydrolytic enzymes such as lipase, amylase, and protease with solubilization zone of 5–43 mm, 5–45 mm, and 12–35 mm, respectively. The M. phaseolina strains were identified by 18S rRNA and analyzed for genetic diversity by using random amplified polymorphic DNA (RAPD markers. The findings based on RAPD markers and 18S rRNA sequence analysis clearly indicate genetic variation among the strains collected from different hosts. The genetically diverse strains were found to be pathogenic to sunflower and chickpea.

  19. Antioxidants of edible mushrooms

    NARCIS (Netherlands)

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M.; Griensven, Van Leo

    2015-01-01

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic

  20. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis.

    Science.gov (United States)

    Einor, D; Bonisoli-Alquati, A; Costantini, D; Mousseau, T A; Møller, A P

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and -0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Antioxidants in food

    Directory of Open Access Journals (Sweden)

    Đilas Sonja M.

    2002-01-01

    Full Text Available This paper attempts to lead the reader an understanding of what free radicals are and how they can form during lipid oxidation. Also, it provides some information out natural antioxidants (tocopherols and tocotrienols flavonoids, polyphenols, tannines, melanoidihes, carotenoids, ascorbates and the echanisms of their protection from radical damage. The sources of natural antioxidants are: oil seeds, teas, vegetables, fruits, spices and herbs.

  2. Changes in Salicylic Acid and Antioxidants during Induced Thermotolerance in Mustard Seedlings

    Science.gov (United States)

    Dat, James F.; Foyer, Christine H.; Scott, Ian M.

    1998-01-01

    Heat-acclimation or salicylic acid (SA) treatments were previously shown to induce thermotolerance in mustard (Sinapis alba L.) seedlings from 1.5 to 4 h after treatment. In the present study we investigated changes in endogenous SA and antioxidants in relation to induced thermotolerance. Thirty minutes into a 1-h heat-acclimation treatment glucosylated SA had increased 5.5-fold and then declined during the next 6 h. Increases in free SA were smaller (2-fold) but significant. Changes in antioxidants showed the following similarities after either heat-acclimation or SA treatment. The reduced-to-oxidized ascorbate ratio was 5-fold lower than the controls 1 h after treatment but recovered by 2 h. The glutathione pool became slightly more oxidized from 2 h after treatment. Glutathione reductase activity was more than 50% higher during the first 2 h. Activities of dehydroascorbate reductase and monodehydroascorbate reductase decreased by at least 25% during the first 2 h but were 20% to 60% higher than the control levels after 3 to 6 h. One hour after heat acclimation ascorbate peroxidase activity was increased by 30%. Young leaves appeared to be better protected by antioxidant enzymes following heat acclimation than the cotyledons or stem. Changes in endogenous SA and antioxidants may be involved in heat acclimation. PMID:9847121

  3. Bioactive phytochemicals and antioxidant activity in fresh and dried lychee fractions1

    Directory of Open Access Journals (Sweden)

    Estela de Rezende Queiroz

    Full Text Available Fruit of the lychee cv. Bengal are approximately 50% peel and seeds, which are discarded. These by-products have antioxidant compounds which are capable of blocking the harmful effects of free radicals in the body. Bioactive compounds (ascorbic acid, beta-carotene, lycopene and phenols and antioxidant activity were evaluated in different extracts, both fresh and dried at 45 °C, of the skin, pulp and seeds of the lychee, which were subjected to principal component analysis to clarify which of the compounds are responsible for this activity. Principal component analysis explained 82.90% of the variance of the antioxidant profile of the lychee. The peel displayed higher levels of phenols, ascorbic acid, beta-carotene and antioxidant activity, while the seeds stood out due to their levels of lycopene. With drying, there was a decrease in the levels of ascorbic acid and beta-carotene and in antioxidant activity, with an increase in the levels of phenols and lycopene. The antioxidant activity found in the peel and seeds of the lychee is high, and is mainly due to ascorbic acid and beta-carotene, as demonstrated by principal component analysis, allowing the use of these fractions as sources of natural antioxidants.

  4. Beneficial effects of antioxidative lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hisako Nakagawa

    2017-01-01

    Full Text Available Oxidative stress is caused by exposure to reactive oxygen intermediates. The oxidative damage of cell components such as proteins, lipids, and nucleic acids one of the important factors associated with diabetes mellitus, cancers and cardiovascular diseases. This occurs as a result of imbalance between the generations of oxygen derived radicals and the organism’s antioxidant potential. The amount of oxidative damage increases as an organism ages and is postulated to be a major causal factor of senescence. To date, many studies have focused on food sources, nutrients, and components that exert antioxidant activity in worms, flies, mice, and humans. Probiotics, live microorganisms that when administered in adequate amounts provide many beneficial effects on the human health, have been attracting growing interest for their health-promoting effects, and have often been administered in fermented milk products. In particular, lactic acid bacteria (LAB are known to conferre physiologic benefits. Many studies have indicated the antioxidative activity of LAB. Here we review that the effects of lactic acid bacteria to respond to oxidative stress, is connected to oxidative-stress related disease and aging.

  5. The oxidative and antioxidative status of simple febrile seizure patients

    International Nuclear Information System (INIS)

    Abuhandan, M.; Yetkin, I.; Calik, M.; Iscan, A.

    2013-01-01

    Objective: To evaluate the oxidative status following a seizure in children experiencing a simple febrile seizure. Methods: The cross-sectional study was conducted at Harran University, Turkey, between January and September 2011. It comprised 32 paediatric patients who, within the preceding 8 hours, had experienced a seizure due to upper respiratory tract infection and had been diagnosed with simple febrile seizure, and 30 healthy children as the control group. Blood was taken from the patients 8 hours after the seizure. Total oxidant level and Total anti-oxidant level were measured according to the Erel technique and the oxidative stress index was calculated. Data was analysed using SPSS 11.5. Results: The mean values of the total oxidant level and the oxidative stress index of the cases were found to be significantly high compared to the controls and the total anti-oxidant level was found to be significantly low (p<0.01, p<0.01, p<0.03 respectively). Conclusion: The increased total oxidant level and decreased total anti-oxidant level resulting in increased oxidative stress associated with febrile seizure patients may increase the risk of experiencing febrile seizures. (author)

  6. Cocoa-enriched diet enhances antioxidant enzyme activity and modulates lymphocyte composition in thymus from young rats.

    Science.gov (United States)

    Ramiro-Puig, Emma; Urpí-Sardà, Mireia; Pérez-Cano, Francisco J; Franch, Angels; Castellote, Cristina; Andrés-Lacueva, Cristina; Izquierdo-Pulido, Maria; Castell, Margarida

    2007-08-08

    Cocoa is a rich source of flavonoids, mainly (-)-epicatechin, (+)-catechin, and procyanidins. This article reports the effect of continuous cocoa intake on antioxidant capacity in plasma and tissues, including lymphoid organs and liver, from young rats. Weaned Wistar rats received natural cocoa (4% or 10% food intake) for three weeks, corresponding to their infancy. Flavonoid absorption was confirmed through the quantification of epicatechin metabolites in urine. Total antioxidant capacity (TAC) and the activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase, were examined. Cocoa intake enhanced TAC in all tissues especially in thymus. Moreover, thymus SOD and catalase activities were also dose-dependently increased by cocoa. It was also analyzed whether the enhanced antioxidant system in thymus could influence its cellular composition. An increase in the percentage of thymocytes in advanced development stage was found. In summary, cocoa diet enhances thymus antioxidant defenses and influences thymocyte differentiation.

  7. Grafting functional antioxidants on highly crosslinked polyethylene

    Science.gov (United States)

    Al-Malaika, S.; Riasat, S.; Lewucha, C.

    2016-05-01

    The problem of interference of antioxidants, such as hindered phenols, with peroxide-initiated crosslinking of polyethylene was addressed through the use of functional (reactive) graftable antioxidants (g-AO). Reactive derivatives of hindered phenol and hindered amine antioxidants were synthesised, characterised and used to investigate their grafting reactions in high density polyethylene; both non-crosslinked (PE) and highly peroxide-crosslinked (PEXa). Assessment of the extent of in-situ grafting of the antioxidants, their retention after exhaustive solvent extraction in PE and PEXa, and the stabilising performance of the grafted antioxidants (g-AO) in the polymer were examined and benchmarked against conventionally stabilised crosslinked & non-crosslinked polyethylene. It was shown that the functional antioxidants graft to a high extent in PEXa, and that the level of interference of the g-AOs with the polymer crosslinking process was minimal compared to that of conventional antioxidants which bear the same antioxidant function. The much higher level of retention of the g-AOs in PEXa after exhaustive solvent extraction, compared to that of the corresponding conventional antioxidants, accounts for their superior long-term thermal stabilising performance under severe extractive conditions.

  8. {sup 13}C NMR spectral data and molecular descriptors to predict the antioxidant activity of flavonoids

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Mariane Balerine; Muramatsu, Eric [Universidade de Sao Paulo (USP). Ribeirao Preto, SP (Brazil). Fac. de Ciencias Farmauceuticas; Emereciano, Vicente de Paula [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica; Scotti, Marcus Tullius [Universidade Federal da Paraiba (UFPA), Joao Pessoa, PA (Brazil). Centro de Ciencias Aplicadas e Educacao; Scotti, Luciana; Tavares, Josean Fechine; Silva, Marcelo Sobral da [Universidade Federal da Paraiba (UFPA), Joao Pessoa, PA (Brazil). Lab. de Tecnologia Farmaceutica

    2011-04-15

    Tissue damage due to oxidative stress is directly linked to development of many, if not all, human morbidity factors and chronic diseases. In this context, the search for dietary natural occurring molecules with antioxidant activity, such as flavonoids, has become essential. In this study, we investigated a set of 41 flavonoids (23 flavones and 18 flavonols) analyzing their structures and biological antioxidant activity. The experimental data were submitted to a QSAR (quantitative structure-activity relationships) study. NMR {sup 13}C data were used to perform a Kohonen self-organizing map study, analyzing the weight that each carbon has in the activity. Additionally, we performed MLR (multilinear regression) using GA (genetic algorithms) and molecular descriptors to analyze the role that specific carbons and substitutions play in the activity. (author)

  9. Effects of Puerariae Radix extract on the activity of antioxidant

    Directory of Open Access Journals (Sweden)

    Young-Joon Eun

    2007-12-01

    Full Text Available Objective : The objective of this study was to investigate the antioxidative effects of Puerariae Radix extract. Method : Total antioxidant capacity (TAC, Total antioxidant response (TAR, Total phenolic content, Reactive oxygen species (ROS, 1,1-Diphenyl-2-picrylhydrazyl (DPPH free radical scavenging activities, lipid peroxidation were examined. Result : Total antioxidant status was examined by total antioxidant capacity(TAC and total antioxidant response(TAR against potent free radical reactions. TAC and TAR of Puerariae Radix extract at the concentration of 5 mg/㎖ were 2.02 and 1.50 mM Trolox equivalents, respectively. Total phenolic content of Puerariae Radix extract at the concentration of 5mg/㎖ was 2.29 mM gallic acid equivalent. Concentration of Puerariae Radix extract at which DPPH radical scavenging activity was inhibited by 50% was 5.91 mg/㎖ as compared to 100% by pyrogallol solution as a reference. The inhibitory effect of the extract on lipid peroxidation was examined using rat liver mitochondria induced by FeSO4/ascorbic acid. Puerariae Radix extract at the concentration of 1 mg/㎖ slightly but significantly decreased TBARS concentration. The extract further prevented lipid peroxidation in a dose-dependent manner. The effect of Puerariae Radix extract on reactive oxygen species (ROS generation was examined using cell-free system induced by hydrogen peroxide/FeSO4. Addition of 1 mg/㎖ of Puerariae Radix extract significantly reduced dichloroflurescein (DCF fluorescence. The extract caused concentration-dependent attenuation of the increase in DCF fluorescence, indicating that the extract significantly prevented ROS generation in vitro. Thus antioxidant effects of Puerariae Radix extract seem to be due to, at least in part, the prevention from free radicals-induced oxidation, followed by inhibition of lipid peroxidation. Conclusion : As a result, Puerariae Radix seems to have antioxitative effect and antioxidant compount.

  10. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Einor, D., E-mail: daniel@einor.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Bonisoli-Alquati, A., E-mail: andreabonisoli@gmail.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA 70803 (United States); Costantini, D., E-mail: davidcostantini@libero.it [Department of Biology, University of Antwerp, Wilrijk, B-2610, Antwerp (Belgium); Mousseau, T.A., E-mail: mousseau@sc.edu [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Faculty of Bioscience and Biotechnology, Chubu University, Kasugai (Japan); Møller, A.P., E-mail: anders.moller@u-psud.fr [Laboratoire d' Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 362, F-91405 Orsay Cedex (France)

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and − 0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. - Highlights: • There is interest in variation in metabolic effects of chronic low-dose ionizing radiation • A random effect meta-analysis of effect sizes of radioactive contamination was performed • We found significant effects of radiation on oxidative damage and antioxidant response • We found significant heterogeneity among

  11. Asparagus Root Regulates Cholesterol Metabolism and Improves Antioxidant Status in Hypercholesteremic Rats

    Directory of Open Access Journals (Sweden)

    Nishant P. Visavadiya

    2009-01-01

    Full Text Available Hyperlipidemia/hypercholesteremia are major risk factors for atherosclerosis and cardiovascular diseases. Root of Asparagus racemosus (AR is widely used in Ayurvedic system of medicine in India and is known for its steroidal saponin content. This study was designed to investigate the hypocholesteremic and antioxidant potential of AR root in both normo- and hypercholesteremic animals. Normal and hypercholesteremic male albino rats were administered with root powder of AR (5 and 10 g% dose levels along with normal and hypercholesteremic diets, respectively, for a duration of 4 weeks. Plasma and hepatic lipid profiles, fecal sterol, bile acid excretion and hepatic antioxidant activity were assessed. Inclusion of AR root powder in diet, resulted in a dose-dependant reduction in plasma and hepatic lipid profiles, increased fecal excretion of cholesterol, neutral sterol and bile acid along with increases in hepatic HMG-CoA reductase activity and bile acid content in hypercholesteremic rats. Further, AR root also improved the hepatic antioxidant status (catalase, SOD and ascorbic acid levels. No significant changes in lipid and antioxidant profiles occurred in the normocholesteremic rats administered with AR root powder. AR root appeared to be useful as a dietary supplement that offers a protection against hyperlipidemia/hypercholesteremia in hypercholesteremic animals. The results of the present study indicate that the potent therapeutic phyto-components present in AR root i.e. phytosterols, saponins, polyphenols, flavonoids and ascorbic acid, could be responsible for increased bile acid production, elimination of excess cholesterol and elevation of hepatic antioxidant status in hypercholesteremic conditions.

  12. Antioxidant properties and neuroprotective capacity of strawberry tree fruit (Arbutus unedo).

    Science.gov (United States)

    Fortalezas, Sofia; Tavares, Lucélia; Pimpão, Rui; Tyagi, Meenu; Pontes, Vera; Alves, Paula M; McDougall, Gordon; Stewart, Derek; Ferreira, Ricardo B; Santos, Cláudia N

    2010-02-01

    Berries contain significant amounts of phytochemicals, including polyphenols, which are reported to reduce cancer risk, coronary heart disease and other degenerative diseases. These effects are mainly attributed to the antioxidant capacity of polyphenols found in berries. Strawberry tree (Arbutus unedo) berries are used in folk medicine but seldom eaten as fresh fruits. Their phenolic profile and antioxidant capacity reveal a high potential, but they are not well characterized as a "health promoting food". The aim of this study was to assess the antioxidant properties of the edible strawberry tree fruit in vitro and in a neurodegeneration cell model. Raspberry (Rubus idaeus), a well documented health-promoting fruit, was used as a control for comparison purposes. A. unedo yielded a similar content in polyphenols and a slightly lower value of total antioxidant capacity in comparison to R. idaeus. Although the chemically-measured antioxidant activity was similar between both fruits, R. idaeus increased neuroblastoma survival in a neurodegeneration cell model by 36.6% whereas A. unedo extracts caused no effect on neuroblastoma viability. These results clearly demonstrate that a promising level of chemically-determined antioxidant activity of a plant extract is not necessarily correlated with biological significance, as assessed by the effect of A. unedo fruit in a neurodegeneration cell model.

  13. Antioxidant Properties and Neuroprotective Capacity of Strawberry Tree Fruit (Arbutus unedo

    Directory of Open Access Journals (Sweden)

    Ricardo B. Ferreira

    2010-02-01

    Full Text Available Berries contain significant amounts of phytochemicals, including polyphenols, which are reported to reduce cancer risk, coronary heart disease and other degenerative diseases. These effects are mainly attributed to the antioxidant capacity of polyphenols found in berries. Strawberry tree (Arbutus unedo berries are used in folk medicine but seldom eaten as fresh fruits. Their phenolic profile and antioxidant capacity reveal a high potential, but they are not well characterized as a “health promoting food”. The aim of this study was to assess the antioxidant properties of the edible strawberry tree fruit in vitro and in a neurodegeneration cell model. Raspberry (Rubus idaeus, a well documented health-promoting fruit, was used as a control for comparison purposes. A. unedo yielded a similar content in polyphenols and a slightly lower value of total antioxidant capacity in comparison to R. idaeus. Although the chemically-measured antioxidant activity was similar between both fruits, R. idaeus increased neuroblastoma survival in a neurodegeneration cell model by 36.6% whereas A. unedo extracts caused no effect on neuroblastoma viability. These results clearly demonstrate that a promising level of chemically-determined antioxidant activity of a plant extract is not necessarily correlated with biological significance, as assessed by the effect of A. unedo fruit in a neurodegeneration cell model.

  14. Antioxidant therapy for pain relief in patients with chronic pancreatitis: systematic review and meta-analysis.

    Science.gov (United States)

    Cai, Guo-Hong; Huang, Jing; Zhao, Yan; Chen, Jing; Wu, Huang-Hui; Dong, Yu-Lin; Smith, Howard S; Li, Yun-Qing; Wang, Wen; Wu, Sheng-Xi

    2013-01-01

    Currently, there is no specific therapy for chronic pancreatitis (CP). The treatment of micronutrient antioxidant therapy for painful CP has been sporadically used for more than 30 years, however, its efficacy are still poorly understood. The purpose of this meta-analysis is to investigate the safety and efficacy of antioxidant therapy for pain relief in patients with CP. University Hospital in China Systematic review and meta-analysis Two authors independently reviewed the search results and extracted data and disagreements were resolved by discussion. Effects were summarized using standardized mean differences (SMDs), weighted mean differences, or odds ratio (OR) according to the suitable effect model. MEDLINE, PsycINFO, Scopus, EMBASE, and the Cochrane Central Register of Controlled Trials  were searched from 1980 through December 2012. Randomized controlled trials (RCTs) that studied antioxidant supplementation for pain relief in patients with CP were analyzed. Nine randomized controlled trials (RCTs) involving 390 patients were included. Overall, there was no association of antioxidant therapy with pain reduction in CP patients (SMD, -0.55; 95% CI, -1.22 to 0.12; P = 0.67). However, antioxidant therapy significantly increased blood levels of antioxidants in CP patients versus the placebo group (SMD, 1.08; 95% CI, 0.74 to 1.43; P pain relief (SMD, -0.93; 95% CI, -1.72 to -0.14; P = 0.02), while the trials in which a single antioxidant was used revealed no significant pain relief (SMD, -0.12; 95% CI, -1.23 to 0.99; P = 0.83) in CP patients. Strong evidence was obtained that the antioxidants increased adverse effects (OR, 6.09; 95% CI, 2.29 to 16.17, P pain relief in CP patients. Measures of total antioxidant status may not help to monitor the efficacy of antioxidant therapy for patients with CP.

  15. Effects of low dose radiation on antioxidant enzymes after radiotherapy of tumor-bearing mice

    International Nuclear Information System (INIS)

    Li Jin; Gao Gang; Wang Qin; Tang Weisheng; Liu Xiaoqiu; Wang Zhiquan

    2005-01-01

    Objective: To search for effects of low dose radiation on the activities of antioxidant enzymes after radiotherapy of tumor-bearing mice. Methods: Superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) were all determined by chemical colorimetry. Results: Low dose radiation increase the activities of antioxidant enzymes superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) in serum of tumor-bearing mice more markedly than those in the unirradiated controls. The activities of antioxidant enzymes SOD, GST, CAT in serum of tumor-bearing mice (d 5 , d 3 ) irradiated with 5cGy 6h before 2.0 Gy radiation are obviously higher than those of the group (c 3 , c 5 ) given with radiotherapy only. Conclusion: The increase in the activities of antioxidant enzymes in serum of tumor-bearing mice triggered by low dose radiation could partly contribute to the protective mechanism. (authors)

  16. Consumer Preference for Genetically Modified Halal Yogurt Drinks

    Directory of Open Access Journals (Sweden)

    Siti Hasnah Hassan

    2017-06-01

    Full Text Available Consumers worldwide have reacted negatively to food products made from genetically modified (GM ingredients. This study strives to understand the importance placed by consumers on the features of a product when purchasing halal yogurt drinks with GM or non GM ingredient along with the level of antioxidants, price, flavor and Halal certification from JAKIM. In addition, their attitudes towards genetically modified foods, in general, and their purchase intention towards genetically modified yo- gurt drinks, in particular, were also determined. Experimental design using a convenience sampling was used; 120 eligible responses were received from the study using three types of yogurt drinks. The research findings showed that nutrition was deemed as being the most important product feature that influenced the decision in purchasing yogurt drinks, followed by freshness, price, flavor, variety, and origin. Furthermore, it was found that respondents presented a neutral attitude and purchase intention towards genetically modified yogurt drinks. The recommendations to market practitioners, research limitations, as well as suggestions for future studies are also discussed.

  17. The antioxidant level of Alaska's wild berries: high, higher and highest

    Directory of Open Access Journals (Sweden)

    Roxie Rodgers Dinstel

    2013-08-01

    Full Text Available Background . In the last few years, antioxidants have become the stars of the nutritional world. Antioxidants are important in terms of their ability to protect against oxidative cell damage that can lead to conditions, such as Alzheimer's disease, cancer and heart disease – conditions also linked with chronic inflammation. The antioxidant and anti-inflammatory effects of Alaska's wild berries may have the potential to help prevent these diseases. Objective . To discover the antioxidant levels of Alaska wild berries and the ways these antioxidant levels translate when preservation methods are applied to the berry. Design . This research centred on both the raw berries and products made from the berries. In the first year, a variety of wild berries were tested to discover their oxygen radical absorption capacity (ORAC in the raw berries. The second level of the research project processed 4 different berries – blueberries, lingonberries, salmonberries, highbush cranberries – into 8 or 9 products made from these berries. The products were tested for both ORAC as well as specific antioxidants. Results . The Alaska wild berries collected and tested in the first experiment ranged from 3 to 5 times higher in ORAC value than cultivated berries from the lower 48 states. For instance, cultivated blueberries have an ORAC scale of 30. Alaska wild dwarf blueberries measure 85. This is also higher than lower 48 wild blueberries, which had a score of 61. All of the Alaskan berries tested have a level of antioxidant considered nutritionally valuable, ranging from 19 for watermelon berries to 206 for lingonberries on the ORAC scale. With the processed products made from 4 Alaska wild berries, one of the unexpected outcomes of the research was that the berries continued to have levels of antioxidants considered high, despite the effects of commonly used heat-processing techniques. When berries were dehydrated, per gram ORAC values increased. Conclusion

  18. Antioxidant activity of Sempervivum tectorum and its components.

    Science.gov (United States)

    Sentjurc, Marjeta; Nemec, Marjana; Connor, Henry D; Abram, Veronika

    2003-04-23

    The antioxidant properties of components of leaf extracts of the evergreen plant, Sempervivum tectorum (ST), have been evaluated using UV irradiated liposomal systems containing the spin trap 5-(diethoxyphosphoryl)-5-methyl-pyrroline-N-oxide. Decreases in free radical activity in the liposomal systems as measured by electron paramagnetic resonance (EPR) spectroscopy demonstrate that the lipophilic ST juice components, kaempferol (KA) and kaempferol-3-glucoside (KG) contribute significantly to the antioxidant properties of the juice. EPR spectral simulation established the presence of oxygen and carbon centered free radical adducts. The mixtures with low pH, citric and malic acid, and ST juice reveal increased EPR signals from oxygen centered radicals in comparison to the control, pointing to the important role of pH in oxygen radical formation. Parallel assays that measured thiobarbituric acid related substances confirm the antioxidant effects of KA and KG and explain the results of spin trapping experiments complicated by low pH's.

  19. The phytochemical, antibacterial and antioxidant activity of five ...

    African Journals Online (AJOL)

    bassie

    2012-08-23

    Aug 23, 2012 ... suppression and allergic reactions (Ahmad et al., 1998). There is an increased .... presence of antioxidant compounds was detected by yellow spots against a purple ... and animals (McGaw and Eloff, 2008). A literature survey.

  20. Increased Oxidative Stress and Imbalance in Antioxidant Enzymes in the Brains of Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Luciane B. Ceretta

    2012-01-01

    Full Text Available Diabetes Mellitus (DM is associated with pathological changes in the central nervous system (SNC as well as alterations in oxidative stress. Thus, the main objective of this study was to evaluate the effects of the animal model of diabetes induced by alloxan on memory and oxidative stress. Diabetes was induced in Wistar rats by using a single injection of alloxan (150 mg/kg, and fifteen days after induction, the rats memory was evaluated through the use of the object recognition task. The oxidative stress parameters and the activity of antioxidant enzymes, superoxide dismutase (SOD, and catalase (CAT were measured in the rat brain. The results showed that diabetic rats did not have alterations in their recognition memory. However, the results did show that diabetic rats had increases in the levels of superoxide in the prefrontal cortex, and in thiobarbituric acid reactive species (TBARS production in the prefrontal cortex and in the amygdala in submitochondrial particles. Also, there was an increase in protein oxidation in the hippocampus and striatum, and in TBARS oxidation in the striatum and amygdala. The SOD activity was decreased in diabetic rats in the striatum and amygdala. However, the CAT activity was increased in the hippocampus taken from diabetic rats. In conclusion, our findings illustrate that the animal model of diabetes induced by alloxan did not cause alterations in the animals’ recognition memory, but it produced oxidants and an imbalance between SOD and CAT activities, which could contribute to the pathophysiology of diabetes.

  1. Antioxidant Activity from Various Tomato Processing

    Directory of Open Access Journals (Sweden)

    Retno Sri Iswari

    2016-04-01

    Full Text Available Tomato is one of the high antioxidant potential vegetables. Nowadays, there are many techniques of tomato processings instead of fresh consumption, i.e. boiled, steamed, juiced and sauteed. Every treatment of cooking will influence the chemical compound inside the fruits and the body's nutrition intake. It is important to conduct the research on antioxidant compound especially lycopene, β-carotene, vitamin C, α-tocopherol, and its activity after processing. This research has been done using the experimental method. Tomatoes were cooked into six difference ways, and then it was extracted using the same procedure continued with antioxidant measurement. The research results showed that steaming had promoted the higher antioxidant numbers (lycopene. α-tocopherol, β-carotene and vitamin C and higher TCA and antioxidant activities in the tomatoes than other processings. It was indicated that steaming was the best way to enhance amount, capacity and activities of antioxidants of the tomatoes.

  2. Characterization of cookies made from wheat flour blended with buckwheat flour and effect on antioxidant properties.

    Science.gov (United States)

    Jan, Ulfat; Gani, Adil; Ahmad, Mudasir; Shah, Umar; Baba, Waqas N; Masoodi, F A; Maqsood, Sajid; Gani, Asir; Wani, Idress Ahmed; Wani, S M

    2015-10-01

    Buckwheat flour was incorporated into wheat flour at different levels (0, 20, 40, 60, 80, and 100 %) and the physicochemical, functional and antioxidant properties of the blended flour were studied. This study also investigated the effect of buckwheat on the retention of antioxidant properties of cookies during baking. The results showed significant variation in physicochemical and functional properties of the blended flour. The addition of buckwheat flour into wheat flour also increased the antioxidant properties of blended flour proportionally, but metal chelating properties decreased. The incorporation of buckwheat in wheat flour helped in better retention of antioxidant potential of cookies during baking process as buckwheat cookies (100 % buckwheat) showed greater percentage increase in antioxidant properties than control (100 % wheat). Quality characteristics of cookies such as hardness and spread ratio decreased, while as non-enzymatic browning (NEB) increased significantly with increase in the proportion of buckwheat flour in wheat flour. The Overall acceptability of cookies by sensory analysis was highest at 40 % level of blending. This study concluded that addition of buckwheat in wheat flour, may not only improve the physico-chemical and functional properties of the blended flour but may also enhance the nutraceutical potential of the product prepared from it.

  3. The role of disorders of the prooxidant-antioxidant system in diabetes etiopathology

    Directory of Open Access Journals (Sweden)

    Małgorzata Mrowicka

    2011-08-01

    Full Text Available Chronic hyperglycemia is believed to play a pivotal role in the development of diabetic complications. It was found that hyperglycemia triggered a number of mechanisms that evoke overproduction of reactive oxygen species (ROS. Diabetes mellitus is associated with an increased level of free radicals, disturbances of the enzymatic antioxidant defense system and lower concentration of exogenous antioxidants. In consequence, these abnormalities lead to a redox imbalance called oxidative stress. The aim of the present study is to summarize the role of reactive oxygen species and changes in the antioxidant defense system in the development of diabetic complications.

  4. Efficacy of pink guava pulp as an antioxidant in raw pork emulsion.

    Science.gov (United States)

    Joseph, Serlene; Chatli, Manish K; Biswas, Ashim K; Sahoo, Jhari

    2014-08-01

    Lipid oxidation-induced quality problems can be minimized with the use of natural antioxidants. The antioxidant potential of pink guava pulp (PGP) was evaluated at different levels (0%; C, 5.0%; T-1, 7.5%; T-2 and 10.0%; T-3) in the raw pork emulsion during refrigerated storage of 9 days under aerobic packaging. Lycopene and β-carotene contents increased (P emulsion than control throughout storage period. Our results indicated that pink guava pulp can be utilized as antioxidants in raw pork products to minimize lipid oxidation, off-odour development, and surface discolouration.

  5. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods.

    Science.gov (United States)

    Celik, Saliha Esin; Ozyürek, Mustafa; Güçlü, Kubilay; Apak, Reşat

    2010-06-15

    Antioxidants are health beneficial compounds that can protect cells and macromolecules (e.g., fats, lipids, proteins, and DNA) from the damage of reactive oxygen species (ROS). Solvent effect is a crucial parameter on the chemical behaviour of antioxidant compounds but there has been limited information regarding its role on antioxidant capacity and its assays. Therefore, the present study was undertaken to investigate the total antioxidant capacity (TAC) of some certain lipophilic and hydrophilic antioxidants, measured in different solvent media such as ethanol (EtOH) (100%), methanol (MeOH) (100%), methanol/water (4:1, v/v), methanol/water (1:1, v/v), dichloromethane (DCM)/EtOH (9:1, v/v). The cupric reducing antioxidant capacity (CUPRAC) values of selected antioxidants were experimentally reported in this work as trolox equivalent antioxidant capacity (TEAC), and compared to those found by reference TAC assays, i.e., 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)/persulphate (ABTS/persulphate) and ferric reducing antioxidant power (FRAP) methods. The TAC values of synthetic mixtures of antioxidants were experimentally measured as trolox equivalents and compared to those theoretically found by making use of the principle of additivity of absorbances assuming no chemical interaction between the mixture constituents. Possible synergistic (e.g., BHT and BHA in DCM/EtOH) or antagonistic behaviours of these synthetic mixtures were investigated in relation to solvent selection.

  6. Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa.

    Science.gov (United States)

    Chandrasekara, Neel; Shahidi, Fereidoon

    2011-05-11

    The effect of roasting on the content of phenolic compounds and antioxidant properties of cashew nuts and testa was studied. Whole cashew nuts, subjected to low-temperature (LT) and high-temperature (HT) treatments, were used to determine the antioxidant activity of products. Antioxidant activities of cashew nut, kernel, and testa phenolics extracted increased as the roasting temperature increased. The highest activity, as determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity, oxygen radical absorbance capacity (ORAC), hydroxyl radical scavenging capacity, Trolox equivalent antioxidant activity (TEAC), and reducing power, was achieved when nuts were roasted at 130 °C for 33 min. Furthermore, roasting increased the total phenolic content (TPC) in both the soluble and bound extracts from whole nut, kernel, and testa but decreased that of the proanthocyanidins (PC) except for the soluble extract of cashew kernels. In addition, cashew testa afforded a higher extract yield, TPC, and PC in both soluble and bound fractions compared to that in whole nuts and kernels. Phenolic acids, namely, syringic (the predominant one), gallic, and p-coumaric acids, were identified. Flavonoids, namely, (+)-catechin, (-)-epicatechin, and epigallocatechin, were also identified, and their contents increased with increasing temperature. The results so obtained suggest that HT-short time (HTST) roasting effectively enhances the antioxidant activity of cashew nuts and testa.

  7. Role of alkaline-tolerant fungal cellulases in release of total antioxidants from agro-wastes under solid state fermentation

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Varatharajan, G. R.; Karthikeyan, A.

    -wastes and total antioxidant property. The increased antioxidant activity on free radical scavenging was also observed with the increase in pH. Thus, the present study makes it possible to produce nutraceutical ingredients cost-effectively from agricultural wastes....

  8. Revalorization of cactus pear (Opuntia spp. wastes as a source of antioxidants

    Directory of Open Access Journals (Sweden)

    Anaberta Cardador-Martínez

    2011-09-01

    Full Text Available Recently, an increased interest in antioxidant activity and health-improving capacity of cactus pear has been registered. The antioxidant capacity of the pulp of cactus-pear fruits has been previously assessed. In this work, total phenolics, flavonoids and tannins of peel and seeds of four cactus pear cultivars were examined as well as their antioxidant capacity. Tannins were the major phenolics in cactus pear seeds accounting for almost fifty percent for all cultivars. Analysis of variance revealed that ripeness, cultivar, and its interaction had highly significant effect on the total phenolics, tannin, and flavonoid contents of cactus pear peel. With regard to the seeds, only the stage of ripeness and interaction (ripeness stage x cultivar were significant on total phenolics and tannins contents. The flavonoid content in seeds was not affected by any of the factors or their interactions. The antioxidant capacity was higher in the peel than in the seeds. Generally, fruits with light-green or yellow-brown peel have higher antiradical activity and Trolox equivalent antioxidant capacity (TEAC values compared with those with red-purple peel. Cactus pear by-products can indeed be exploited as a good and cheap source of natural antioxidants.

  9. Partitioning of selected antioxidants in mayonnaise

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.

    1999-01-01

    This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise...... acid and catechin) to 83% (Trolox). Accordingly, proportions of 6% (Trolox) to 80% (gallic acid and catechin) were found in the aqueous phase. Similar trends were observed after dialysis. After ultracentrifugation, large proportions of polar antioxidants were found in the "emulsion phase...... by either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic...

  10. Increasing milk solids production across lactation through genetic selection and intensive pasture-based feed system.

    Science.gov (United States)

    Coleman, J; Pierce, K M; Berry, D P; Brennan, A; Horan, B

    2010-09-01

    The objective of the study was to quantify the effect of genetic improvement using the Irish total merit index, the Economic Breeding Index (EBI), on overall performance and lactation profiles for milk, milk solids, body weight (BW), and body condition score (BCS) within 2 pasture-based systems of milk production likely to be used in the future, following abolition of the European Union's milk quota system. Three genotypes of Holstein-Friesian dairy cattle were established from within the Moorepark dairy research herd: LowNA, indicative of animals with North American origin and average or lower genetic merit at the time of the study; HighNA, North American Holstein-Friesians of high genetic merit; and HighNZ, New Zealand Holstein-Friesians of high genetic merit. Animals from within each genotype were randomly allocated to 1 of 2 possible pasture-based feeding systems (FS): 1) The Moorepark pasture (MP) system (2.64 cows/ha and 344 kg of concentrate supplement per cow per lactation) and 2) a high output per hectare (HC) system (2.85 cows/ha and 1,056 kg of concentrate supplement per cow per lactation). Pasture was allocated to achieve similar postgrazing residual sward heights for both treatments. A total of 126, 128, and 140 spring-calving dairy cows were used during the years 2006, 2007, and 2008, respectively. Each group had an individual farmlet of 17 paddocks and all groups were managed similarly throughout the study. The effects of genotype, FS, and the interaction between genotype and FS on milk production, BW, and BCS across lactation were studied using mixed models with factorial arrangements of genotype and FS accounting for the repeated cow records across years. No significant genotype by FS interaction was observed for any of the variables measured. Results show that milk solids production of the national average dairy cow can be increased across lactation through increased EBI. High EBI genotypes (HighNA and HighNZ) produced more milk solids per cow and

  11. Effect of roasting degree on the antioxidant activity of different Arabica coffee quality classes.

    Science.gov (United States)

    Odžaković, Božana; Džinić, Natalija; Kukrić, Zoran; Grujić, Slavica

    2016-01-01

    Coffee is one of the most widely consumed beverages in the world, because of its unique sensory properties and physiological properties. Coffee beverages represent a significant source of antioxidants in the consumers' diet and contribute significantly to their daily intake. The aim of this research was to investigate the effect of different roasting degrees on the content of biologically active compounds and antioxidant activity in different quality classes of Arabica coffee. Samples of green Arabica coffee (Rio Minas) of two quality classes from two production batches were used for the research. Roasting was carried out at temperatures of 167, 175 and 171°C. The total phenol content (TPC), total flavonoid content (TFC), flavonol content (FC) and antioxidant activity (DPPH, ABTS) in the coffee extracts was determined. This research shows that TPC was significantly higher (P coffee compared to TPC in roasted coffee, and TPC decreases as the roasting temperature increases. TFC and FC were significantly lower (P coffee than in roasted coffee. Differences in TPC between the 1st and 2nd classes of Arabica coffee were not significant (P > 0.05), while differences in TFC were significant (P coffee from the second production batch and differences in FC were significant (P coffee and for coffee roasted at 175°C. Roasting temperatures have different influences the antioxidant activity (DPPH, ABTS) of coffee and the highest antioxidant activity was determined in coffee roasted at 171°C. An exception was 1st class Arabica coffee roasted at 167°C (ABTS). All samples of 1st class Arabica coffee had higher antioxidant activity (DPPH, ABTS) compared to 2nd class Arabica. This research shows that the bioactive compounds content and antioxidant activity of different quality classes of Arabica coffee are dependent on the degree of roasting. TPC decreases when the roasting temperature increases, while TFC and FC also increase. These results indicate that the antioxidant activity

  12. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.)

    International Nuclear Information System (INIS)

    Cao Xinde; Ma, Lena Q.; Tu Cong

    2004-01-01

    This study measured antioxidative responses of Chinese brake fern (Pteris vittata L.) upon exposure to arsenic (As) of different concentrations. Chinese brake fern was grown in an artificially-contaminated soil containing 0 to 200 mg As kg -1 (Na 2 HAsO 4 ) for 12 weeks in a greenhouse. Soil As concentrations at ≤20 mg kg -1 enhanced plant growth, with 12-71% biomass increase compared to the control. Such beneficial effects were not observed at >20 mg As kg -1 . Plant As concentrations increased with soil As concentrations, with more As being accumulated in the fronds (aboveground biomass) than in the roots and with maximum frond As concentration being 4675 mg kg -1 . Arsenic uptake by Chinese brake enhanced uptake of nutrient elements K, P, Fe, Mn, and Zn except Ca and Mg, whose concentrations mostly decreased. The contents of non-enzymatic antioxidants (glutathione, acid-soluble thiol) followed similar trends as plant As concentrations, increasing with soil As concentrations, with greater contents in the fronds than in the roots especially when exposed to high As concentrations (>50 mg kg -1 ). The activities of enzymatic antioxidants (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase) in Chinese brake followed the same trends as plant biomass, increasing with soil As up to 20 mg kg -1 and then decreased. The results indicated though both enzymatic and non-enzymatic antioxidants played significant roles in As detoxification and hyperaccumulation in Chinese brake, the former is more important at low As exposure (≤20 mg kg -1 ), whereas the latter is more critical at high As exposure (50-200 mg kg -1 ). - At low levels of arsenic exposure, enzymatic antioxidants are important for arsenic detoxification and accumulation in Chinese brake fern, while non-enzymatic antioxidants were more important at high arsenic exposure

  13. Antioxidant activities of celery and parsley juices in rats treated with doxorubicin.

    Science.gov (United States)

    Kolarovic, Jovanka; Popovic, Mira; Zlinská, Janka; Trivic, Svetlana; Vojnovic, Matilda

    2010-09-03

    We have examined the influence of diluted pure celery and parsley leaf and root juices and their combinations with doxorubicin on the antioxidant status [as measured by the content of reduced glutathione (GSH) and ferric reducing antioxidant power (FRAP)] in liver homogenate and hemolysate and on the contents of cytochrome P450 in liver homogenate. It was found that doxorubicin significantly decreased the content of reduced glutathione and the total antioxidative status (FRAP) in liver homogenate and hemolysate, while celery and parsley juices alone and in combination with doxorubicin had different actions. Doxorubicin and celery juice had no effect on content of cytochrome P450. However, in combination with doxorubicin, parsley root juice significant increased, and parsley leaves juice decreased the cytochrome P450 content (compared to doxorubicin treated animals). Only parsley root juice significantly increased the content of cytochrome P450.

  14. Oxidative Stress and Antioxidants in Tomato (Solanum lycopersicum) Plants Subjected to Boron Toxicity

    Science.gov (United States)

    Cervilla, Luis M.; Blasco, Begoña; Ríos, Juan J.; Romero, Luis; Ruiz, Juan M.

    2007-01-01

    Background and Aims Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. Methods Two tomato (Solanum lycopersicum) cultivars (‘Kosaco’ and ‘Josefina’) were subjected to 0·05 (control), 0·5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H2O2; malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. Key Results The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H2O2 in the leaves of the two cultivars, these trends being more pronounced in ‘Josefina’ than in ‘Kosaco’. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in ‘Kosaco’. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. Conclusions High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell–Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress. PMID:17660516

  15. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve

    Directory of Open Access Journals (Sweden)

    Zsolt Radak

    2017-08-01

    Full Text Available It is debated whether exercise-induced ROS production is obligatory to cause adaptive response. It is also claimed that antioxidant treatment could eliminate the adaptive response, which appears to be systemic and reportedly reduces the incidence of a wide range of diseases. Here we suggest that if the antioxidant treatment occurs before the physiological function-ROS dose-response curve reaches peak level, the antioxidants can attenuate function. On the other hand, if the antioxidant treatment takes place after the summit of the bell-shaped dose response curve, antioxidant treatment would have beneficial effects on function. We suggest that the effects of antioxidant treatment are dependent on the intensity of exercise, since the adaptive response, which is multi pathway dependent, is strongly influenced by exercise intensity. It is further suggested that levels of ROS concentration are associated with peak physiological function and can be extended by physical fitness level and this could be the basis for exercise pre-conditioning. Physical inactivity, aging or pathological disorders increase the sensitivity to oxidative stress by altering the bell-shaped dose response curve.

  16. Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L.

    Science.gov (United States)

    Lee, Jong Won; Lee, Jeong Hyun; Yu, In Ho; Gorinstein, Shela; Bae, Jong Hyang; Ku, Yang Gyu

    2014-06-01

    The aim of this investigation was to find a proper harvesting period and establishing fern number, which effects the spear yield, bioactive compounds and antioxidant activities of Asparagus officinalis L. Spears were harvested at 2, 4, and 6 weeks after sprouting. Control for comparison was used without harvest. Spears and total yield increased with prolonged spear harvest period. In harvest of 6 weeks long optimum spear yield was the highest and fern numbers were 5 ~ 8. Bioactive compounds (polyphenols, flavonoids, flavanols, tannins and ascorbic acid) and the levels of antioxidant activities by ferric-reducing/antioxidant power (FRAP) and cupric reducing antioxidant capacity (CUPRAC) assays in asparagus ethanol extracts significantly differed in the investigated samples and were the highest at 6 weeks harvest period (P asparagus were studied by the interaction of polyphenol ethanol extracts with HSA, using 3D- FL. In conclusion, antioxidant status (bioactive compounds, binding and antioxidant activities) improved with the harvesting period and the first segment from spear tip. Appropriate harvesting is effective for higher asparagus yield and its bioactivity.

  17. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Samantha Giordano

    2014-01-01

    Full Text Available Oxidative stress including DNA damage, increased lipid and protein oxidation, are important features of aging and neurodegeneration suggesting that endogenous antioxidant protective pathways are inadequate or overwhelmed. Importantly, oxidative protein damage contributes to age-dependent accumulation of dysfunctional mitochondria or protein aggregates. In addition, environmental toxins such as rotenone and paraquat, which are risk factors for the pathogenesis of neurodegenerative diseases, also promote protein oxidation. The obvious approach of supplementing the primary antioxidant systems designed to suppress the initiation of oxidative stress has been tested in animal models and positive results were obtained. However, these findings have not been effectively translated to treating human patients, and clinical trials for antioxidant therapies using radical scavenging molecules such as α-tocopherol, ascorbate and coenzyme Q have met with limited success, highlighting several limitations to this approach. These could include: (1 radical scavenging antioxidants cannot reverse established damage to proteins and organelles; (2 radical scavenging antioxidants are oxidant specific, and can only be effective if the specific mechanism for neurodegeneration involves the reactive species to which they are targeted and (3 since reactive species play an important role in physiological signaling, suppression of endogenous oxidants maybe deleterious. Therefore, alternative approaches that can circumvent these limitations are needed. While not previously considered an antioxidant system we propose that the autophagy-lysosomal activities, may serve this essential function in neurodegenerative diseases by removing damaged or dysfunctional proteins and organelles.

  18. Aqueous extract from Vitis vinifera tendrils is able to enrich keratinocyte antioxidant defences.

    Science.gov (United States)

    Fraternale, Daniele; De Bellis, Roberta; Calcabrini, Cinzia; Potenza, Lucia; Cucchiarini, Luigi; Mancini, Umberto; Dachà, Marina; Ricci, Donata

    2011-09-01

    An aqueous extract of V. vinifera L. tendrils was evaluated for its ability to enrich the antioxidant capacity of cultured cells. The long-time antioxidant capability of the extract was measured by in vitro chemical methods, and its influence on reduced glutathione levels and plasma membrane oxido reductase activity was determined in cultured human keratinocytes (NCTC 2544). Keratinocytes are cells normally exposed to oxidative stress, and for this reason adequately equipped with antioxidant defences. However, it has long been suggested that exogenous antioxidants may play an important role in minimizing the adverse effects of oxidative stress on skin.We demonstrated that V. vinifera tendril aqueous extract was able to increase, in a time- and dose-dependent manner, the reduced glutathione concentration and activity of trans plasma membrane oxido reductase as an indirect evaluation of the intracellular redox status of the cells demonstrating a relevant antioxidant activity of this phytocomplex.

  19. Reduced serum non-enzymatic antioxidant defense and increased lipid peroxidation in schizophrenic patients on a hypocaloric diet.

    Science.gov (United States)

    Zortea, Karine; Fernandes, Brisa Simões; Guimarães, Lísia Rejane; Francesconi, Lenise Petter; Lersch, Camila; Gama, Clarissa Severino; Schroeder, Rafael; Zanotto-Filho, Alfeu; Moreira, José Claudio; Lobato, Maria Inês Rodrigues; Belmonte-de-Abreu, Paulo Silva

    2012-03-14

    Growing evidence suggests that oxidative stress (OS) may be associated with the pathophysiology underlying schizophrenia (SZ). Some studies indicate that nutritional supplements offer protection from OS, but there is no data about the effect of a hypocaloric diet on OS in this population. Therefore, we aimed to study the effect of a hypocaloric dietary intervention on OS in subjects with SZ. A cross-sectional study of 96 participants in outpatient treatment for SZ comprised patients separated into two groups: one group of subjects followed a hypocaloric diet (HD) program (n=42), while the other group followed a regular diet (RD) with no nutritional restrictions (n=54). The serum total radical-trapping antioxidant parameter (TRAP), total antioxidant reactivity (TAR) and thiobarbituric acid reactive species (TBARS) levels were assessed. TRAP levels were lower and TBARS levels were higher in the HD group than in the RD group (p=0.022 and p=0.023, respectively). There were no differences in TAR levels between the groups. Additionally, there was a positive correlation between TRAP and TBARS levels after adjusting for BMI and clozapine dose (partial correlation=0.42, pdiet and the levels of TRAP, TBARS, and TAR. Subjects with SZ on a hypocaloric diet displayed different OS parameters than those not following a HD. Serum TRAP levels were lower and TBARS levels were higher among SZ subjects with HD compared to SZ subjects without HD. Lower TRAP levels may reflect decreased oxidative stress, whereas higher TBARS levels most likely reflect a biochemical reaction to the decreased TRAP levels. Additionally, TAR levels were similar between groups, suggesting a similar quality of antioxidant defenses, despite quantitative differences between the two dietary protocols in SZ patients under outpatient care. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Increased genetic variance of BMI with a higher prevalence of obesity

    DEFF Research Database (Denmark)

    Rokholm, Benjamin; Silventoinen, Karri; Ängquist, Lars

    2011-01-01

    populations. Several recent studies suggest that the genetic effects on adiposity may be stronger when combined with presumed risk factors for obesity. We tested the hypothesis that a higher prevalence of obesity and overweight and a higher BMI mean is associated with a larger genetic variation in BMI....

  1. Phytochemicals and in vitro antioxidant potentials of defatted ...

    African Journals Online (AJOL)

    acid and vitamin C were 195.57 and 519.28 g/mg of extract respectively and total phenol content equivalent of gallic acid was 1427.87 ìg/mg. The reductive potential increased with increasing concentration of extract. The results obtained from this study reveal that the extract is rich in antioxidant components with several ...

  2. Sublethal toxicity of quinalphos on oxidative stress and antioxidant responses in a freshwater fish Cyprinus carpio.

    Science.gov (United States)

    Hemalatha, Devan; Amala, Antony; Rangasamy, Basuvannan; Nataraj, Bojan; Ramesh, Mathan

    2016-11-01

    Extensive use of quinalphos, an organophosphorus pesticide, is likely to reach the aquatic environment and thereby posing a health concern for aquatic organisms. Oxidative stress and antioxidant responses may be good indicators of pesticide contamination in aquatic organisms. The data on quinalphos induced oxidative stress and antioxidant responses in carps are scanty. This study is aimed to assess the two sublethal concentrations of quinalphos (1.09 and 2.18 μL L -1 ) on oxidative stress and antioxidant responses of Cyprinus carpio for a period of 20 days. In liver, the malondialdehyde level was found to be significantly increased in both the concentrations. The results of the antioxidant parameters obtained show a significant increase in superoxide dismutase, catalase, and glutathione-S-transferase activity in liver of fish. These results demonstrate that environmentally relevant levels of the insecticide quinalphos can cause oxidative damage and increase the antioxidant scavenging capacity in C. carpio. This may reflect the potential role of these parameters as useful biomarkers for the assessment of pesticide contamination. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1399-1406, 2016. © 2015 Wiley Periodicals, Inc.

  3. Antioxidant phytochemicals in fresh produce: exploitation of genotype variation and advancements in analytical protocols

    Science.gov (United States)

    Manganaris, George A.; Goulas, Vlasios; Mellidou, Ifigeneia; Drogoudi, Pavlina

    2017-12-01

    Horticultural commodities (fruit and vegetables) are the major dietary source of several bioactive compounds of high nutraceutical value for humans, including polyphenols, carotenoids and vitamins. The aim of the current review was dual. Firstly, towards the eventual enhancement of horticultural crops with bio-functional compounds, the natural genetic variation in antioxidants found in different species and cultivar/genotypes is underlined. Notably, some landraces and/or traditional cultivars have been characterized by substantially higher phytochemical content, i.e. small tomato of Santorini island (cv. ‘Tomataki Santorinis’) possesses appreciably high amounts of ascorbic acid. The systematic screening of key bioactive compounds in a wide range of germplasm for the identification of promising genotypes and the restoration of key gene fractions from wild species and landraces may help in reducing the loss of agro-biodiversity, creating a healthier ‘gene pool’ as the basis of future adaptation. Towards this direction, large scale comparative studies in different cultivars/genotypes of a given species provide useful insights about the ones of higher nutritional value. Secondly, the advancements in the employment of analytical techniques to determine the antioxidant potential through a convenient, easy and fast way are outlined. Such analytical techniques include electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy, electrochemical and chemometric methods, flow injection analysis (FIA), optical sensors and high resolution screening (HRS). Taking into consideration that fruits and vegetables are complex mixtures of water- and lipid-soluble antioxidants, the exploitation of chemometrics to develop “omics” platforms (i.e. metabolomics, foodomics) is a promising tool for researchers to decode and/or predict antioxidant activity of fresh produce. For industry, the use of cheap and rapid optical sensors and IR spectroscopy is recommended to

  4. Antioxidant Phytochemicals in Fresh Produce: Exploitation of Genotype Variation and Advancements in Analytical Protocols

    Directory of Open Access Journals (Sweden)

    George A. Manganaris

    2018-02-01

    Full Text Available Horticultural commodities (fruit and vegetables are the major dietary source of several bioactive compounds of high nutraceutical value for humans, including polyphenols, carotenoids and vitamins. The aim of the current review was dual. Firstly, toward the eventual enhancement of horticultural crops with bio-functional compounds, the natural genetic variation in antioxidants found in different species and cultivars/genotypes is underlined. Notably, some landraces and/or traditional cultivars have been characterized by substantially higher phytochemical content, i.e., small tomato of Santorini island (cv. “Tomataki Santorinis” possesses appreciably high amounts of ascorbic acid (AsA. The systematic screening of key bioactive compounds in a wide range of germplasm for the identification of promising genotypes and the restoration of key gene fractions from wild species and landraces may help in reducing the loss of agro-biodiversity, creating a healthier “gene pool” as the basis of future adaptation. Toward this direction, large scale comparative studies in different cultivars/genotypes of a given species provide useful insights about the ones of higher nutritional value. Secondly, the advancements in the employment of analytical techniques to determine the antioxidant potential through a convenient, easy and fast way are outlined. Such analytical techniques include electron paramagnetic resonance (EPR and infrared (IR spectroscopy, electrochemical, and chemometric methods, flow injection analysis (FIA, optical sensors, and high resolution screening (HRS. Taking into consideration that fruits and vegetables are complex mixtures of water- and lipid-soluble antioxidants, the exploitation of chemometrics to develop “omics” platforms (i.e., metabolomics, foodomics is a promising tool for researchers to decode and/or predict antioxidant activity of fresh produce. For industry, the use of optical sensors and IR spectroscopy is recommended to

  5. Do natural methods for fertility regulation increase the risks of genetic errors?

    Science.gov (United States)

    Serra, A

    1981-09-01

    Genetic errors of many kinds are connected with the reproductive processes and are favored by a nunber of largely uncontrollable, endogenous, and/or exogenous factors. For a long time human beings have taken into their own hands the control of this process. The regulation of fertility is clearly a forceful request to any family, to any community, were it only to lower the level of the consequences of genetic errors. In connection with this request, and in the context of the Congress for the Family of Africa and Europe (Catholic University, January 1981), 1 question must still be raised and possibly answered. The question is: do or can the so called "natural methods" for the regulation of fertility increase the risks of genetic errors with their generally dramatic effects on families and on communities. It is important to try to give as far as possible a scientifically based answer to this question. Fr. Haring, a moral theologian, citing scientific evidence finds it shocking that the rhythm method, so strongly and recently endorsed again by Church authorities, should be classified among the means of "birth control" by way of spontaneous abortion or at least by spontaneous loss of a large number of zygotes which, due to the concrete application of the rhythm method, lack of necessary vitality for survival. He goes on to state that the scientific research provides overwhelming evidence that the rhythm method in its traditional form is responsible for a disproportionate waste of zygotes and a disproportionate frequency of spontaneous abortions and a defective childern. Professor Hilgers, a reproductive physiologist, takes on opposite view, maintaining that the hypotheses are arbitrary and the alarm false. The strongest evidence upon which Fr. Haring bases his moral principles about the use of the natural methods of fertility regulation is a paper by Guerrero and Rojos (1975). These authors examined, retrospectively, the success of 965 pregnancies which occurred in

  6. Role of pH on antioxidants production by Spirulina (Arthrospira platensis

    Directory of Open Access Journals (Sweden)

    Mostafa Mahmoud Sami Ismaiel

    2016-06-01

    Full Text Available Abstract Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS, which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira platensis. The algal dry weight (DW was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4 mg/g DW, respectively was recorded at pH 8.5. The highest phenolic content (12.1 mg gallic acid equivalent (GAE/g DW was recorded at pH 9.5. The maximum production of total phycobiliprotein (159 mg/g DW was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD, catalase (CAT and peroxidase (POD was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis.

  7. Antioxidant activity of oils extracted from orange (Citrus sinensis seeds

    Directory of Open Access Journals (Sweden)

    Neuza Jorge

    2016-06-01

    Full Text Available Due to the increasing production of food in the world with consequent increase of the production of waste, the importance of developing researches for its use is noticed. Thus, the interest in vegetable oils with bioactive compounds, such as the ones extracted from fruit seeds, is growing. Therefore, the present study aims to characterize the oils extracted from seeds of Hamlin, Natal, Pera-rio and Valencia orange varieties (Citrus sinensis, as to the levels of total carotenoids, total phenolic compounds, tocopherols and phytosterols, as well as to determine their antioxidant activity. The orange seed oils presented important content of total carotenoids (19.01 mg/kg, total phenolic compounds (4.43 g/kg, α-tocopherol (135.65 mg/kg and phytosterols (1304.2 mg/kg. The antioxidant activity ranged from 56.0% (Natal to 70.2% (Pera-rio. According to the results it is possible to conclude that the orange seed oils can be used as specialty oils in diet, since they contain considerable amounts of bioactive compounds and antioxidants.

  8. Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial.

    Directory of Open Access Journals (Sweden)

    Francisco Arriagada

    Full Text Available Morin (2´,3, 4´,5,7-pentahydroxyflavone is a flavonoid with several beneficial health effects. However, its poor water solubility and it sensitivity to several environmental factors avoid its use in applications like pharmaceutical and cosmetic. In this work, we synthetized morin-modified mesoporous silica nanoparticles (AMSNPs-MOR as useful material to be used as potential nanoantioxidant. To achieve this, we characterized its adsorption kinetics, isotherm and the antioxidant capacity as hydroxyl radical (HO• scavenger and singlet oxygen (1O2 quencher. The experimental data could be well fitted with Langmuir, Freundlich and Temkin isotherm models, besides the pseudo-second order kinetics model. The total quenching rate constant obtained for singlet oxygen deactivation by AMSNPs-MOR was one order of magnitude lower than the morin rate constant reported previously in neat solvents and lipid membranes. The AMSNPs-MOR have good antioxidant properties by itself and exhibit a synergic effect with morin on the antioxidant property against hydroxyl radical. This effect, in the range of concentrations studied, was increased when the amount of morin adsorbed increased.

  9. Analytical profiling of selected antioxidants and total antioxidant capacity of goji (Lycium spp.) berries.

    Science.gov (United States)

    Protti, Michele; Gualandi, Isacco; Mandrioli, Roberto; Zappoli, Sergio; Tonelli, Domenica; Mercolini, Laura

    2017-09-05

    Goji berries and derived products represent a relevant source of micronutrients, most of which are natural antioxidants and contribute to the high nutritional quality of these fruits. Three brands of dried goji berries have been analysed by a multidisciplinary approach to get an insight into both their content of selected antioxidants and their antioxidant capacity (AC). The former goal has been achieved by developing a liquid chromatographic method coupled to mass spectrometry and combined to a fast solid phase extraction. Several significant representative antioxidant compounds belonging to the following classes: flavonoids, flavan-3-ols, phenolic acids, amino acids and derivatives, and carotenoids have been taken into account. Quercetin and rutin were found to be the predominant flavonoids, chlorogenic acid was the most abundant phenolic acid and zeaxanthin was the major carotenoid. The AC of the goji berries has been evaluated by four analytical methods in order to estimate the contributions of different reactions involved in radicals scavenging. In particular, AC has been determined using 3 standardised methods (DPPH, ABTS, ORAC) and a recently proposed electrochemical method, which measures the scavenging activity of antioxidants towards OH radicals generated both by hydrogen peroxide photolysis and the Fenton reaction. The results obtained from chemical composition and antioxidant capacity assays confirm the high nutritional and commercial value of goji berries and highlight that the three brands do not exhibit significant differences. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Increased genetic divergence between two closely related fir species in areas of range overlap

    Science.gov (United States)

    Wang, Jing; Abbott, Richard J; Ingvarsson, Pär K; Liu, Jianquan

    2014-01-01

    Because of introgressive hybridization, closely related species can be more similar to each other in areas of range overlap (parapatry or sympatry) than in areas where they are geographically isolated from each other (allopatry). Here, we report the reverse situation based on nuclear genetic divergence between two fir species, Abies chensiensis and Abies fargesii, in China, at sites where they are parapatric relative to where they are allopatric. We examined genetic divergence across 126 amplified fragment length polymorphism (AFLP) markers in a set of 172 individuals sampled from both allopatric and parapatric populations of the two species. Our analyses demonstrated that AFLP divergence was much greater between the species when comparisons were made between parapatric populations than between allopatric populations. We suggest that selection in parapatry may have largely contributed to this increased divergence. PMID:24772279

  11. Antioxidant Vitamins and Trace Elements Status of Diabetics in ...

    African Journals Online (AJOL)

    Diabetes mellitus is associated with elevated oxidative stress via increased generation of reactive oxygen species (ROS), and decline in antioxidant defences. Increased oxidative stress is thought to play a role in the development of diabetic complications. In the current study, vitamins A, C, and E, chromium, manganese ...

  12. Antioxidative and antiradical properties of plant phenolics.

    Science.gov (United States)

    Sroka, Zbigniew

    2005-01-01

    The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.

  13. Effects of exogenous melatonin on antioxidant capacity in Actinidia seedlings under salt stress

    Science.gov (United States)

    Xia, Hui; Ni, Zhiyou; Pan, Dongming

    2017-11-01

    To investigate the alleviation of exogenous melatonin (MT) in Actinidia seedlings under 100 mM NaCl stress, one-year-old Actinidia deliciosa seedlings were treated with 0.1, 0.5 and 1μM of exogenous melatonin solution, respectively. The results showed that the antioxidant substance (ASA, TPC, TFC and TFAC) contents and antioxidative capacity (DPPH, ABTS and FRAP) of Actinidia seedlings under salt stress were significantly increased compared with the CK. At the same time, the antioxidant substance contents of Actinidia seedlings with MT pretreatment were significantly higher than those of CK and S, then the antioxidative capacity was improved, and the damage of Actinidia seedlings under salt stress was alleviated. And the treatment with 0.1μM MT solution was the most significant.

  14. The Role of Rootstock in Antioxidant Activity of Citrus Fruit: Comparison of Antioxidant Activity of The Fruits of Two Commercial Citrus Varieties With The Fruits of Four Different Rootstocks

    Directory of Open Access Journals (Sweden)

    N . Hemmati

    2016-02-01

    Full Text Available Introduction: all fruits that called citrus are from rutaceae family and aurantioideae subfamily. This subfamily have more than 33 different genus that only three of its genus (citrus, poncirus and fortunella have economic aspects and in citrus producing country are important. It's reported that orange skin has a phenolic compounds which play a role in natural defense mechanism. Also various compounds of phenolic and antioxidant have a major role in fruit tolerance to stressful condition suh as cold and drought. Metabolites found in citrus fruits have antioxidant properties and it's very useful in pharmaceutical, food and cosmetics industries. Oranges, like other citrus fruits, are an excellent source of vitamin C; Vitamin C is a powerful natural antioxidant. Consumption of foods rich in vitamin C helps the body develop resistance against infectious agents and scavenge harmful, pro-inflammatory free radicals from the blood. Various factors such as rootstock type can effect on quality and quantity of citrus fruits. Also, the usage of rootstock causes the change in plant characteristics such as flowering time, ripening time, fruit quality and antioxidant characters of the fruits. Other factors except the rootstock such as scion, geographical and climate factors are effective on producing secondary metabolites. Also active substances or secondary metabolites are producing by the conduction of genetic processes, but their production are being effected by other factors obviously. The aim of this study is to investigating the biochemical changes grafted tree fruit that affected by rootstock with study the correlation between grafted tree and rootstock changes. Materials and Methods: This study was done to compare the amount of total phenol, total flavonoids and antioxidant features of fruit flesh and skin with investigating the effect of cultivar and rootstock on these parameters based on completely randomized factorial design with three replications

  15. Reconvene and reconnect the antioxidant hypothesis in human health and disease.

    Science.gov (United States)

    Singh, P P; Chandra, Anu; Mahdi, Farzana; Roy, Ajanta; Sharma, Praveen

    2010-07-01

    The antioxidants are essential molecules in human system but are not miracle molecules. They are neither performance enhancers nor can prevent or cure diseases when taken in excess. Their supplemental value is debateable. In fact, many high quality clinical trials on antioxidant supplement have shown no effect or adverse outcomes ranging from morbidity to all cause mortality. Several Chochrane Meta-analysis and Markov Model techniques, which are presently best available statistical models to derive conclusive answers for comparing large number of trials, support these claims. Nevertheless none of these statistical techniques are flawless. Hence, more efforts are needed to develop perfect statistical model to analyze the pooled data and further double blind, placebo controlled interventional clinical trials, which are gold standard, should be implicitly conducted to get explicit answers. Superoxide dismutase (SOD), glutathione peroxidase and catalase are termed as primary antioxidants as these scavenge superoxide anion and hydrogen peroxide. All these three enzymes are inducible enzymes, thereby inherently meaning that body increases or decreases their activity as per requirement. Hence there is no need to attempt to manipulate their activity nor have such efforts been clinically useful. SOD administration has been tried in some conditions especially in cancer and myocardial infarction but has largely failed, probably because SOD is a large molecule and can not cross cell membrane. The dietary antioxidants, including nutrient antioxidants are chain breaking antioxidants and in tandem with enzyme antioxidants temper the reactive oxygen species (ROS) and reactive nitrogen species (RNS) within physiological limits. Since body is able to regulate its own requirements of enzyme antioxidants, the diet must provide adequate quantity of non-enzymic antioxidants to meet the normal requirements and provide protection in exigent condition. So far, there is no evidence that

  16. Targeting of the Glutathione, Thioredoxin, and Nrf2 Antioxidant Systems in Head and Neck Cancer.

    Science.gov (United States)

    Roh, Jong-Lyel; Jang, Hyejin; Kim, Eun Hye; Shin, Daiha

    2017-07-10

    The glutathione (GSH), thioredoxin (Trx), and Nrf2 systems represent a major defense against reactive oxygen species (ROS), the cellular imbalance of which in cancer promotes growth and therapeutic resistance. This study investigated whether targeting the GSH, Trx, and Nrf2 antioxidant systems effectively eliminated head and neck cancer (HNC). At high concentrations, auranofin, but not buthionine sulfoximine (BSO) alone, decreased the viability of HNC, whereas even at low concentrations, auranofin plus BSO synergized to kill HNC cells. Dual silencing of the genes for GCLM and TrxR1 induced GSH depletion, Trx activity inhibition, and ROS accumulation, synergistically killing HNC cells. Inhibition of the GSH and Trx systems resulted in activation of the Nrf2-antioxidant response element (ARE) pathway, which may result in suboptimal GSH and Trx inhibition where HNC is resistant. Genetic inhibition of Nrf2 and/or HO-1 or trigonelline enhanced growth suppression, ROS accumulation, and cell death from GSH and Trx inhibition. The in vivo effects of GSH, Trx, and Nrf2 system inhibition were confirmed in a mouse HNC xenograft model by achieving growth inhibition >60% compared with those of control. Innovations: This study is the first to show that triple inhibition of GSH, Trx, and Nrf2 pathways could be an effective method to overcome the resistance of HNC. Inhibition of the Nrf2-ARE pathway in addition to dual inhibition of the GSH and Trx antioxidant systems can effectively eliminate resistant HNC. Antioxid. Redox Signal. 27, 106-114.

  17. Optimization of phycocyanin extraction from microalgae Spirulina platensis by sonication as antioxidant

    Science.gov (United States)

    Dianursanti, Indraputri, Claudia Maya; Taurina, Zarahmaida

    2018-02-01

    Cardiovascular disease is known as an epidemic disease which has high casualty in the world. One of its trigger factors is the amount of reactive oxygen species (ROS) inside the body. In order to regulate its amount, antioxidant ingestion is compulsory. Microalgae can be adopted as a source of antioxidant. Spirulina platensis is one of the consistently produced microalgae. It contains phycocyanin, a blue pigment, which is known as a nutritious food agent. Phycocyanin could be assumed as an antioxidant and has been clinically validated both in vitro and in vivo. This research is proposed to determine the optimum extraction time. The experiment was conducted by sonication at 37 kHz using phosphate buffer as the solvent. The result exhibited that increasing the sonication time would increase the yield until it achieved the optimum yield. Based on the experiment, the optimum extraction time was 25 minutes with yield of 8.25 mg/g dry biomass and purity of 0.6. It can be summarized that extraction time also affected the extraction efficiency and its antioxidant activity. This paper shows a prospect on future development in cultivating micro flora in Indonesia, particularly in Depok.

  18. [Change of blood antioxidant capacity of experimental animals during nutritional correction under oxidative stress].

    Science.gov (United States)

    Basov, A A; Bykov, I M

    2013-01-01

    The effect of nutritional correction (a diet high in foods with antioxidant content) on blood parameters in laboratory animals with metabolic disorders associated with oxidative stress has been studied. In experimental models of laboratory animals (male rabbits weighing 3.5-4.0 kg, n = 40) with purulent septic diseases it has been demonstrated that the use of nutritive correction (replacement of 100 g of the cereal mixture through day on a mixture of cabbage 50 g, carrots 50 g, beet 25 g, apple 25 g, kiwi 10 g and garnet 10 g per 1 rabbit) is not inferior to its efficiency of glutathione use (2 g per day). The use of these antioxidants in laboratory animals significantly reduced the phenomenon of oxidative stress on the 5th day: blood antioxidant capacity significantly increased by 14.9 and 26.6%, and the area of the flash of luminol-dependent H2O2-induced chemiluminescence of blood plasma reduced by 44.2 and 48.6% in the experimental groups receiving respectively nutritive correction and glutathione. The low-molecula level of blood antioxidant capacity was restored and the balance of the activity of superoxide dismutase (decrease) and catalase (increase) was achieved on the 10th day of the experiment. These figures significantly (p < 0.05) differed from than in the group of animals receiving no antioxidant correction. The latter studied parameters of prooxidant-antioxidant system reached values comparable with those in intact animals (n = 10) only on the 30th day, confirming the advisability of appointing a complex antioxidant therapy.

  19. Plants as natural antioxidants for meat products

    Science.gov (United States)

    Tomović, V.; Jokanović, M.; Šojić, B.; Škaljac, S.; Ivić, M.

    2017-09-01

    The meat industry is demanding antioxidants from natural sources to replace synthetic antioxidants because of the negative health consequences or beliefs regarding some synthetic ones. Plants materials provide good alternatives. Spices and herbs, generally used for their flavouring characteristics, can be added to meat products in various forms: whole, ground, or as isolates from their extracts. These natural antioxidants contain some active compounds, which exert antioxidative potential in meat products. This antioxidant activity is most often due to phenolic acids, phenolic diterpenes, flavonoids and volatile oils. Each of these compounds often has strong H-donating activity, thus making them extremely effective antioxidants; some compounds can chelate metals and donate H to oxygen radicals, thus slowing oxidation via two mechanisms. Numerous studies have demonstrated the efficacy of natural antioxidants when used in meat products. Based on this literature review, it can be concluded that natural antioxidants are added to fresh and processed meat and meat products to delay, retard, or prevent lipid oxidation, retard development of off-flavours (rancidity), improve colour stability, improve microbiological quality and extend shelf-life, without any damage to the sensory or nutritional properties.

  20. Influence of shriveling on berry composition and antioxidant activity of Cabernet Sauvignon grapes from Shanxi vineyards.

    Science.gov (United States)

    Fang, Yulin; Meng, Jiangfei; Zhang, Ang; Liu, Jinchuan; Xu, Tengfei; Yu, Weilong; Chen, Shuxia; Li, Hua; Zhang, Zhenwen; Wang, Hua

    2011-03-15

    Berry shrivel (BS), a berry development disorder, appears soon after veraison. It occurs worldwide and affects the quality of grape berries and wine. However, it had not been reported in China until recently. This study aimed to investigate the changes in berry composition and antioxidant activity of Cabernet Sauvignon grapes from Xiangning Valley, Shanxi Province, China, during BS. Shrinkage contributed to an increase in the concentration of basic grape ingredients such as sugar and acid. An appropriate degree of shrinkage was apparently helpful in improving the phenolic content and increasing the antioxidant activity, but the berries that continued to shrivel showed a low antioxidant activity. Further, the results indicated distinct differences between the berries harvested from the southern side of the canopy and those harvested from the northern side, presumably due to variations in sunlight exposure. Moderate BS was beneficial since it increased berry quality and antioxidant activity of Cabernet Sauvignon grapes from Shanxi vineyards. Copyright © 2011 Society of Chemical Industry.