WorldWideScience

Sample records for genetic variation alter

  1. Causal Genetic Variation Underlying Metabolome Differences.

    Science.gov (United States)

    Swain-Lenz, Devjanee; Nikolskiy, Igor; Cheng, Jiye; Sudarsanam, Priya; Nayler, Darcy; Staller, Max V; Cohen, Barak A

    2017-08-01

    An ongoing challenge in biology is to predict the phenotypes of individuals from their genotypes. Genetic variants that cause disease often change an individual's total metabolite profile, or metabolome. In light of our extensive knowledge of metabolic pathways, genetic variants that alter the metabolome may help predict novel phenotypes. To link genetic variants to changes in the metabolome, we studied natural variation in the yeast Saccharomyces cerevisiae We used an untargeted mass spectrometry method to identify dozens of metabolite Quantitative Trait Loci (mQTL), genomic regions containing genetic variation that control differences in metabolite levels between individuals. We mapped differences in urea cycle metabolites to genetic variation in specific genes known to regulate amino acid biosynthesis. Our functional assays reveal that genetic variation in two genes, AUA1 and ARG81 , cause the differences in the abundance of several urea cycle metabolites. Based on knowledge of the urea cycle, we predicted and then validated a new phenotype: sensitivity to a particular class of amino acid isomers. Our results are a proof-of-concept that untargeted mass spectrometry can reveal links between natural genetic variants and metabolome diversity. The interpretability of our results demonstrates the promise of using genetic variants underlying natural differences in the metabolome to predict novel phenotypes from genotype. Copyright © 2017 by the Genetics Society of America.

  2. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    Science.gov (United States)

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  3. Genetic variation in adaptability and pleiotropy in budding yeast.

    Science.gov (United States)

    Jerison, Elizabeth R; Kryazhimskiy, Sergey; Mitchell, James Kameron; Bloom, Joshua S; Kruglyak, Leonid; Desai, Michael M

    2017-08-17

    Evolution can favor organisms that are more adaptable, provided that genetic variation in adaptability exists. Here, we quantify this variation among 230 offspring of a cross between diverged yeast strains. We measure the adaptability of each offspring genotype, defined as its average rate of adaptation in a specific environmental condition, and analyze the heritability, predictability, and genetic basis of this trait. We find that initial genotype strongly affects adaptability and can alter the genetic basis of future evolution. Initial genotype also affects the pleiotropic consequences of adaptation for fitness in a different environment. This genetic variation in adaptability and pleiotropy is largely determined by initial fitness, according to a rule of declining adaptability with increasing initial fitness, but several individual QTLs also have a significant idiosyncratic role. Our results demonstrate that both adaptability and pleiotropy are complex traits, with extensive heritable differences arising from naturally occurring variation.

  4. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    Science.gov (United States)

    Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2013-01-01

    Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  5. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Monosomic alien addition lines (MAALs can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP and methylation-sensitive amplification polymorphism (MSAP analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. CONCLUSIONS/SIGNIFICANCE: The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  6. Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome

    DEFF Research Database (Denmark)

    Joseph, Bindu; Corwin, Jason A.; Li, Baohua

    2013-01-01

    Understanding genome to phenotype linkages has been greatly enabled by genomic sequencing. However, most genome analysis is typically confined to the nuclear genome. We conducted a metabolomic QTL analysis on a reciprocal RIL population structured to examine how variation in the organelle genomes...... was a central hub in the epistatic network controlling the plant metabolome. This epistatic influence manifested such that the cytoplasmic background could alter or hide pairwise epistasis between nuclear loci. Thus, cytoplasmic genetic variation plays a central role in controlling natural variation...... in metabolomic networks. This suggests that cytoplasmic genomes must be included in any future analysis of natural variation....

  7. Genetic and epigenetic alterations induced by different levels of rye genome integration in wheat recipient.

    Science.gov (United States)

    Zheng, X L; Zhou, J P; Zang, L L; Tang, A T; Liu, D Q; Deng, K J; Zhang, Y

    2016-06-17

    The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new wheat cultivars carrying alien rye germplasm. In this study, we investigated the genetic and epigenetic alterations in two sets of wheat-rye disomic addition lines (1R-7R) and the corresponding triticales. We used expressed sequence tag-simple sequence repeat, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analyses to analyze the effects of the introduction of alien chromosomes (either the entire genome or sub-genome) to wheat genetic background. We found obvious and diversiform variations in the genomic primary structure, as well as alterations in the extent and pattern of the genomic DNA methylation of the recipient. Meanwhile, these results also showed that introduction of different rye chromosomes could induce different genetic and epigenetic alterations in its recipient, and the genetic background of the parents is an important factor for genomic and epigenetic variation induced by alien chromosome addition.

  8. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids.

    Science.gov (United States)

    Wang, Xiaoran; Wu, Rui; Lin, Xiuyun; Bai, Yan; Song, Congdi; Yu, Xiaoming; Xu, Chunming; Zhao, Na; Dong, Yuzhu; Liu, Bao

    2013-05-05

    Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice

  9. Genetic Variation in the Nuclear and Organellar Genomes Modulates Stochastic Variation in the Metabolome, Growth, and Defense

    Science.gov (United States)

    Joseph, Bindu; Corwin, Jason A.; Kliebenstein, Daniel J.

    2015-01-01

    Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype. PMID:25569687

  10. Genetic Variation in Schizophrenia Liability is Shared With Intellectual Ability and Brain Structure

    NARCIS (Netherlands)

    Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Kahn, René S; Hulshoff Pol, Hilleke E

    2016-01-01

    BACKGROUND: Alterations in intellectual ability and brain structure are important genetic markers for schizophrenia liability. How variations in these phenotypes interact with variance in schizophrenia liability due to genetic or environmental factors is an area of active investigation. Studying

  11. A genetic code alteration is a phenotype diversity generator in the human pathogen Candida albicans.

    Directory of Open Access Journals (Sweden)

    Isabel Miranda

    Full Text Available BACKGROUND: The discovery of genetic code alterations and expansions in both prokaryotes and eukaryotes abolished the hypothesis of a frozen and universal genetic code and exposed unanticipated flexibility in codon and amino acid assignments. It is now clear that codon identity alterations involve sense and non-sense codons and can occur in organisms with complex genomes and proteomes. However, the biological functions, the molecular mechanisms of evolution and the diversity of genetic code alterations remain largely unknown. In various species of the genus Candida, the leucine CUG codon is decoded as serine by a unique serine tRNA that contains a leucine 5'-CAG-3'anticodon (tRNA(CAG(Ser. We are using this codon identity redefinition as a model system to elucidate the evolution of genetic code alterations. METHODOLOGY/PRINCIPAL FINDINGS: We have reconstructed the early stages of the Candida genetic code alteration by engineering tRNAs that partially reverted the identity of serine CUG codons back to their standard leucine meaning. Such genetic code manipulation had profound cellular consequences as it exposed important morphological variation, altered gene expression, re-arranged the karyotype, increased cell-cell adhesion and secretion of hydrolytic enzymes. CONCLUSION/SIGNIFICANCE: Our study provides the first experimental evidence for an important role of genetic code alterations as generators of phenotypic diversity of high selective potential and supports the hypothesis that they speed up evolution of new phenotypes.

  12. Extensive genetic and DNA methylation variation contribute to heterosis in triploid loquat hybrids.

    Science.gov (United States)

    Liu, Chao; Wang, Mingbo; Wang, Lingli; Guo, Qigao; Liang, Guolu

    2018-04-24

    We aim to overcome the unclear origin of the loquat and elucidate the heterosis mechanism of the triploid loquat. Here we investigated the genetic and epigenetic variations between the triploid plant and its parental lines using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified fragment length polymorphism (MSAP) analyses. We show that in addition to genetic variations, extensive DNA methylation variation occurred during the formation process of triploid loquat, with the triploid hybrid having increased DNA methylation compared to the parents. Furthermore, a correlation existed between genetic variation and DNA methylation remodeling, suggesting that genome instability may lead to DNA methylation variation or vice versa. Sequence analysis of the MSAP bands revealed that over 53% of them overlap with protein-coding genes, which may indicate a functional role of the differential DNA methylation in gene regulation and hence heterosis phenotypes. Consistent with this, the genetic and epigenetic alterations were associated closely to the heterosis phenotypes of triploid loquat, and this association varied for different traits. Our results suggested that the formation of triploid is accompanied by extensive genetic and DNA methylation variation, and these changes contribute to the heterosis phenotypes of the triploid loquats from the two cross lines.

  13. Genetics and variation

    Science.gov (United States)

    John R. Jones; Norbert V. DeByle

    1985-01-01

    The broad genotypic variability in quaking aspen (Populus tremuloides Michx.), that results in equally broad phenotypic variability among clones is important to the ecology and management of this species. This chapter considers principles of aspen genetics and variation, variation in aspen over its range, and local variation among clones. For a more...

  14. Genetic variation in California oaks

    Science.gov (United States)

    Constance I. Millar; Diane L. Delany; Lawrence A. Riggs

    1990-01-01

    In forestry the importance of genetic variation for successful reproduction, survival and growth has been widely documented for commercial conifers; until recently, little genetic work has been done on the California oaks. Even before the nature of genetic variation was scientifically investigated, its importance was suspected in operational forestry. Many failures of...

  15. Cryptic Genetic Variation in Evolutionary Developmental Genetics

    Directory of Open Access Journals (Sweden)

    Annalise B. Paaby

    2016-06-01

    Full Text Available Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes—processes that cannot be fully observed in continuously varying visible traits.

  16. Towards a genetic architecture of cryptic genetic variation

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 84; Issue 3. Towards a genetic architecture of cryptic genetic variation and genetic assimilation: the contribution of K. G. Bateman. Ian Dworkin. Commentary on J. Genet. Classic Volume 84 Issue 3 December 2005 pp 223-226 ...

  17. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats.

    Science.gov (United States)

    Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten Bh; Kurtz, Joachim

    2012-06-01

    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences.

  18. Functional characterization of genetic enzyme variations in human lipoxygenases

    Directory of Open Access Journals (Sweden)

    Thomas Horn

    2013-01-01

    Full Text Available Mammalian lipoxygenases play a role in normal cell development and differentiation but they have also been implicated in the pathogenesis of cardiovascular, hyperproliferative and neurodegenerative diseases. As lipid peroxidizing enzymes they are involved in the regulation of cellular redox homeostasis since they produce lipid hydroperoxides, which serve as an efficient source for free radicals. There are various epidemiological correlation studies relating naturally occurring variations in the six human lipoxygenase genes (SNPs or rare mutations to the frequency for various diseases in these individuals, but for most of the described variations no functional data are available. Employing a combined bioinformatical and enzymological strategy, which included structural modeling and experimental site-directed mutagenesis, we systematically explored the structural and functional consequences of non-synonymous genetic variations in four different human lipoxygenase genes (ALOX5, ALOX12, ALOX15, and ALOX15B that have been identified in the human 1000 genome project. Due to a lack of a functional expression system we resigned to analyze the functionality of genetic variations in the hALOX12B and hALOXE3 gene. We found that most of the frequent non-synonymous coding SNPs are located at the enzyme surface and hardly alter the enzyme functionality. In contrast, genetic variations which affect functional important amino acid residues or lead to truncated enzyme variations (nonsense mutations are usually rare with a global allele frequency<0.1%. This data suggest that there appears to be an evolutionary pressure on the coding regions of the lipoxygenase genes preventing the accumulation of loss-of-function variations in the human population.

  19. Genetic Variation in Cardiomyopathy and Cardiovascular Disorders.

    Science.gov (United States)

    McNally, Elizabeth M; Puckelwartz, Megan J

    2015-01-01

    With the wider deployment of massively-parallel, next-generation sequencing, it is now possible to survey human genome data for research and clinical purposes. The reduced cost of producing short-read sequencing has now shifted the burden to data analysis. Analysis of genome sequencing remains challenged by the complexity of the human genome, including redundancy and the repetitive nature of genome elements and the large amount of variation in individual genomes. Public databases of human genome sequences greatly facilitate interpretation of common and rare genetic variation, although linking database sequence information to detailed clinical information is limited by privacy and practical issues. Genetic variation is a rich source of knowledge for cardiovascular disease because many, if not all, cardiovascular disorders are highly heritable. The role of rare genetic variation in predicting risk and complications of cardiovascular diseases has been well established for hypertrophic and dilated cardiomyopathy, where the number of genes that are linked to these disorders is growing. Bolstered by family data, where genetic variants segregate with disease, rare variation can be linked to specific genetic variation that offers profound diagnostic information. Understanding genetic variation in cardiomyopathy is likely to help stratify forms of heart failure and guide therapy. Ultimately, genetic variation may be amenable to gene correction and gene editing strategies.

  20. Impact of genetic variations in C-C chemokine receptors and ligands on infectious diseases.

    Science.gov (United States)

    Qidwai, Tabish; Khan, M Y

    2016-10-01

    Chemokine receptors and ligands are crucial for extensive immune response against infectious diseases such as malaria, leishmaniasis, HIV and tuberculosis and a wide variety of other diseases. Role of chemokines are evidenced in the activation and regulation of immune cell migration which is important for immune response against diseases. Outcome of disease is determined by complex interaction among pathogen, host genetic variability and surrounding milieu. Variation in expression or function of chemokines caused by genetic polymorphisms could be associated with attenuated immune responses. Exploration of chemokine genetic polymorphisms in therapeutic response, gene regulation and disease outcome is important. Infectious agents in human host alter the expression of chemokines via epigenetic alterations and thus contribute to disease pathogenesis. Although some fragmentary data are available on chemokine genetic variations and their contribution in diseases, no unequivocal conclusion has been arrived as yet. We therefore, aim to investigate the association of CCR5-CCL5 and CCR2-CCL2 genetic polymorphisms with different infectious diseases, transcriptional regulation of gene, disease severity and response to therapy. Furthermore, the role of epigenetics in genes related to chemokines and infectious disease are also discussed. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  1. Analysis of Genetic Diversity of Two Mangrove Species with Morphological Alterations in a Natural Environment

    Directory of Open Access Journals (Sweden)

    Catarina Fonseca Lira-Medeiros

    2015-04-01

    Full Text Available Mangrove is an ecosystem subjected to tide, salinity and nutrient variations. These conditions are stressful to most plants, except to mangrove plants that are well-adapted. However, many mangrove areas have extremely stressful conditions, such as salt marshes, and the plants nearby usually present morphological alterations. In Sepetiba Bay, two species of mangrove plants, Avicennia schaueriana and Laguncularia racemosa, have poor development near a salt marsh (SM compared to plants at the riverside (RS, which is considered a favorable habitat in mangroves. The level of genetic diversity and its possible correlation with the morphological divergence of SM and RS plants of both species were assessed by AFLP molecular markers. We found moderate genetic differentiation between A. schaueriana plants from SM and RS areas and depleted genetic diversity on SM plants. On the other hand, Laguncularia racemosa plants had no genetic differentiation between areas. It is possible that a limited gene flow among the studied areas might be acting more intensely on A. schaueriana plants, resulting in the observed genetic differentiation. The populations of Laguncularia racemosa appear to be well connected, as genetic differentiation was not significant between the SM and RS populations. Gene flow and genetic drift are acting on neutral genetic diversity of these two mangrove species in the studied areas, and the observed genetic differentiation of A. schaueriana plants might be correlated with its morphological variation. For L. racemosa, morphological alterations could be related to epigenetic phenomena or adaptive loci polymorphism that should be further investigated.

  2. Genetic variations in multiple myeloma I

    DEFF Research Database (Denmark)

    Vangsted, A.; Klausen, T.W.; Vogel, Ulla Birgitte

    2012-01-01

    Few risk factors have been established for the plasma cell disorder multiple myeloma, but some of these like African American ethnicity and a family history of B-cell lymphoproliferative diseases suggest a genetic component for the disease. Genetic variation represents the genetic basis of variab......Few risk factors have been established for the plasma cell disorder multiple myeloma, but some of these like African American ethnicity and a family history of B-cell lymphoproliferative diseases suggest a genetic component for the disease. Genetic variation represents the genetic basis...

  3. Habitat Fragmentation Differentially Affects Genetic Variation, Phenotypic Plasticity and Survival in Populations of a Gypsum Endemic

    Directory of Open Access Journals (Sweden)

    Silvia Matesanz

    2017-05-01

    Full Text Available Habitat fragmentation, i.e., fragment size and isolation, can differentially alter patterns of neutral and quantitative genetic variation, fitness and phenotypic plasticity of plant populations, but their effects have rarely been tested simultaneously. We assessed the combined effects of size and connectivity on these aspects of genetic and phenotypic variation in populations of Centaurea hyssopifolia, a narrow endemic gypsophile that previously showed performance differences associated with fragmentation. We grew 111 maternal families sampled from 10 populations that differed in their fragment size and connectivity in a common garden, and characterized quantitative genetic variation, phenotypic plasticity to drought for key functional traits, and plant survival, as a measure of population fitness. We also assessed neutral genetic variation within and among populations using eight microsatellite markers. Although C. hyssopifolia is a narrow endemic gypsophile, we found substantial neutral genetic variation and quantitative variation for key functional traits. The partition of genetic variance indicated that a higher proportion of variation was found within populations, which is also consistent with low population differentiation in molecular markers, functional traits and their plasticity. This, combined with the generally small effect of habitat fragmentation suggests that gene flow among populations is not restricted, despite large differences in fragment size and isolation. Importantly, population’s similarities in genetic variation and plasticity did not reflect the lower survival observed in isolated populations. Overall, our results indicate that, although the species consists of genetically variable populations able to express functional plasticity, such aspects of adaptive potential may not always reflect populations’ survival. Given the differential effects of habitat connectivity on functional traits, genetic variation and fitness

  4. Sex reduces genetic variation: a multidisciplinary review.

    Science.gov (United States)

    Gorelick, Root; Heng, Henry H Q

    2011-04-01

    For over a century, the paradigm has been that sex invariably increases genetic variation, despite many renowned biologists asserting that sex decreases most genetic variation. Sex is usually perceived as the source of additive genetic variance that drives eukaryotic evolution vis-à-vis adaptation and Fisher's fundamental theorem. However, evidence for sex decreasing genetic variation appears in ecology, paleontology, population genetics, and cancer biology. The common thread among many of these disciplines is that sex acts like a coarse filter, weeding out major changes, such as chromosomal rearrangements (that are almost always deleterious), but letting minor variation, such as changes at the nucleotide or gene level (that are often neutral), flow through the sexual sieve. Sex acts as a constraint on genomic and epigenetic variation, thereby limiting adaptive evolution. The diverse reasons for sex reducing genetic variation (especially at the genome level) and slowing down evolution may provide a sufficient benefit to offset the famed costs of sex. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  5. The devil is in the details: genetic variation in introduced populations and its contributions to invasion.

    Science.gov (United States)

    Dlugosch, Katrina M; Anderson, Samantha R; Braasch, Joseph; Cang, F Alice; Gillette, Heather D

    2015-05-01

    The influence of genetic variation on invasion success has captivated researchers since the start of the field of invasion genetics 50 years ago. We review the history of work on this question and conclude that genetic variation-as surveyed with molecular markers-appears to shape invasion rarely. Instead, there is a significant disconnect between marker assays and ecologically relevant genetic variation in introductions. We argue that the potential for adaptation to facilitate invasion will be shaped by the details of genotypes affecting phenotypes, and we highlight three areas in which we see opportunities to make powerful new insights. (i) The genetic architecture of adaptive variation. Traits shaped by large-effect alleles may be strongly impacted by founder events yet more likely to respond to selection when genetic drift is strong. Large-effect loci may be especially relevant for traits involved in biotic interactions. (ii) Cryptic genetic variation exposed during invasion. Introductions have strong potential to uncover masked variation due to alterations in genetic and ecological environments. (iii) Genetic interactions during admixture of multiple source populations. As divergence among sources increases, positive followed by increasingly negative effects of admixture should be expected. Although generally hypothesized to be beneficial during invasion, admixture is most often reported among sources of intermediate divergence, supporting the possibility that incompatibilities among divergent source populations might be limiting their introgression. Finally, we note that these details of invasion genetics can be coupled with comparative demographic analyses to link genetic changes to the evolution of invasiveness itself. © 2015 John Wiley & Sons Ltd.

  6. The contribution of additive genetic variation to personality variation: heritability of personality.

    Science.gov (United States)

    Dochtermann, Ned A; Schwab, Tori; Sih, Andrew

    2015-01-07

    Individual animals frequently exhibit repeatable differences from other members of their population, differences now commonly referred to as 'animal personality'. Personality differences can arise, for example, from differences in permanent environmental effects--including parental and epigenetic contributors--and the effect of additive genetic variation. Although several studies have evaluated the heritability of behaviour, less is known about general patterns of heritability and additive genetic variation in animal personality. As overall variation in behaviour includes both the among-individual differences that reflect different personalities and temporary environmental effects, it is possible for personality to be largely genetically influenced even when heritability of behaviour per se is quite low. The relative contribution of additive genetic variation to personality variation can be estimated whenever both repeatability and heritability are estimated for the same data. Using published estimates to address this issue, we found that approximately 52% of animal personality variation was attributable to additive genetic variation. Thus, while the heritability of behaviour is often moderate or low, the heritability of personality is much higher. Our results therefore (i) demonstrate that genetic differences are likely to be a major contributor to variation in animal personality and (ii) support the phenotypic gambit: that evolutionary inferences drawn from repeatability estimates may often be justified. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    Directory of Open Access Journals (Sweden)

    Benjamin J Gosney

    Full Text Available Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.

  8. A simple genetic architecture underlies morphological variation in dogs.

    Directory of Open Access Journals (Sweden)

    Adam R Boyko

    2010-08-01

    Full Text Available Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs. Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (< or = 3 explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.

  9. Genetic variation in social influence on mate preferences

    Science.gov (United States)

    Rebar, Darren; Rodríguez, Rafael L.

    2013-01-01

    Patterns of phenotypic variation arise in part from plasticity owing to social interactions, and these patterns contribute, in turn, to the form of selection that shapes the variation we observe in natural populations. This proximate–ultimate dynamic brings genetic variation in social environments to the forefront of evolutionary theory. However, the extent of this variation remains largely unknown. Here, we use a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to assess how mate preferences are influenced by genetic variation in the social environment. We used full-sibling split-families as ‘treatment’ social environments, and reared focal females alongside each treatment family, describing the mate preferences of the focal females. With this method, we detected substantial genetic variation in social influence on mate preferences. The mate preferences of focal females varied according to the treatment families along with which they grew up. We discuss the evolutionary implications of the presence of such genetic variation in social influence on mate preferences, including potential contributions to the maintenance of genetic variation, the promotion of divergence, and the adaptive evolution of social effects on fitness-related traits. PMID:23698010

  10. Coevolutionary genetic variation in the legume-rhizobium transcriptome.

    Science.gov (United States)

    Heath, Katy D; Burke, Patricia V; Stinchcombe, John R

    2012-10-01

    Coevolutionary change requires reciprocal selection between interacting species, where the partner genotypes that are favoured in one species depend on the genetic composition of the interacting species. Coevolutionary genetic variation is manifested as genotype × genotype (G × G) interactions for fitness in interspecific interactions. Although quantitative genetic approaches have revealed abundant evidence for G × G interactions in symbioses, the molecular basis of this variation remains unclear. Here we study the molecular basis of G × G interactions in a model legume-rhizobium mutualism using gene expression microarrays. We find that, like quantitative traits such as fitness, variation in the symbiotic transcriptome may be partitioned into additive and interactive genetic components. Our results suggest that plant genetic variation had the largest influence on nodule gene expression and that plant genotype and the plant genotype × rhizobium genotype interaction determine global shifts in rhizobium gene expression that in turn feedback to influence plant fitness benefits. Moreover, the transcriptomic variation we uncover implicates regulatory changes in both species as drivers of symbiotic gene expression variation. Our study is the first to partition genetic variation in a symbiotic transcriptome and illuminates potential molecular routes of coevolutionary change. © 2012 Blackwell Publishing Ltd.

  11. Genetic Variation in Schizophrenia Liability is Shared With Intellectual Ability and Brain Structure.

    Science.gov (United States)

    Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Kahn, René S; Hulshoff Pol, Hilleke E

    2016-09-01

    Alterations in intellectual ability and brain structure are important genetic markers for schizophrenia liability. How variations in these phenotypes interact with variance in schizophrenia liability due to genetic or environmental factors is an area of active investigation. Studying these genetic markers using a multivariate twin modeling approach can provide novel leads for (genetic) pathways of schizophrenia development. In a sample of 70 twins discordant for schizophrenia and 130 healthy control twins, structural equation modeling was applied to quantify unique contributions of genetic and environmental factors on human brain structure (cortical thickness, cortical surface and global white matter fractional anisotropy [FA]), intellectual ability and schizophrenia liability. In total, up to 28.1% of the genetic variance (22.8% of total variance) in schizophrenia liability was shared with intelligence quotient (IQ), global-FA, cortical thickness, and cortical surface. The strongest contributor was IQ, sharing on average 16.4% of the genetic variance in schizophrenia liability, followed by cortical thickness (6.3%), global-FA (4.7%) and cortical surface (0.5%). Furthermore, we found that up to 57.4% of the variation due to environmental factors (4.6% of total variance) in schizophrenia was shared with IQ (34.2%) and cortical surface (13.4%). Intellectual ability, FA and cortical thickness show significant and independent shared genetic variance with schizophrenia liability. This suggests that measuring brain-imaging phenotypes helps explain genetic variance in schizophrenia liability that is not captured by variation in IQ. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Plant genetic variation mediates an indirect ecological effect between belowground earthworms and aboveground aphids.

    Science.gov (United States)

    Singh, Akanksha; Braun, Julia; Decker, Emilia; Hans, Sarah; Wagner, Agnes; Weisser, Wolfgang W; Zytynska, Sharon E

    2014-10-21

    Interactions between aboveground and belowground terrestrial communities are often mediated by plants, with soil organisms interacting via the roots and aboveground organisms via the shoots and leaves. Many studies now show that plant genetics can drive changes in the structure of both above and belowground communities; however, the role of plant genetic variation in mediating aboveground-belowground interactions is still unclear. We used an earthworm-plant-aphid model system with two aphid species (Aphis fabae and Acyrthosiphon pisum) to test the effect of host-plant (Vicia faba) genetic variation on the indirect interaction between the belowground earthworms (Eisenia veneta) on the aboveground aphid populations. Our data shows that host-plant variety mediated an indirect ecological effect of earthworms on generalist black bean aphids (A. fabae), with earthworms increasing aphid growth rate in three plant varieties but decreasing it in another variety. We found no effect of earthworms on the second aphid species, the pea aphid (A. pisum), and no effect of competition between the aphid species. Plant biomass was increased when earthworms were present, and decreased when A. pisum was feeding on the plant (mediated by plant variety). Although A. fabae aphids were influenced by the plants and worms, they did not, in turn, alter plant biomass. Previous work has shown inconsistent effects of earthworms on aphids, but we suggest these differences could be explained by plant genetic variation and variation among aphid species. This study demonstrates that the outcome of belowground-aboveground interactions can be mediated by genetic variation in the host-plant, but depends on the identity of the species involved.

  13. Genetic variation between ecotypic populations of Chloris ...

    African Journals Online (AJOL)

    Genetic variation between ecotypic populations of Chloris roxburghiana grass detected through RAPD analysis. ... frequency indicated that the four populations of C. roxburghiana were genetically distinct, probably as a result of variation in soil fertility, geographical isolation and socio-ecological history of the study sites.

  14. Genetic variation in natural honeybee populations, Apis mellifera capensis

    Science.gov (United States)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  15. Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity.

    Science.gov (United States)

    Zhong, Qing; Rüschoff, Jan H; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J; Rupp, Niels J; Fankhauser, Christian; Buhmann, Joachim M; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C; Jochum, Wolfram; Wild, Peter J

    2016-04-07

    Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility.

  16. Genetic Variations Involved in Vitamin E Status

    Directory of Open Access Journals (Sweden)

    Patrick Borel

    2016-12-01

    Full Text Available Vitamin E (VE is the generic term for four tocopherols and four tocotrienols that exhibit the biological activity of α-tocopherol. VE status, which is usually estimated by measuring fasting blood VE concentration, is affected by numerous factors, such as dietary VE intake, VE absorption efficiency, and VE catabolism. Several of these factors are in turn modulated by genetic variations in genes encoding proteins involved in these factors. To identify these genetic variations, two strategies have been used: genome-wide association studies and candidate gene association studies. Each of these strategies has its advantages and its drawbacks, nevertheless they have allowed us to identify a list of single nucleotide polymorphisms associated with fasting blood VE concentration and α-tocopherol bioavailability. However, much work remains to be done to identify, and to replicate in different populations, all the single nucleotide polymorphisms involved, to assess the possible involvement of other kind of genetic variations, e.g., copy number variants and epigenetic modifications, in order to establish a reliable list of genetic variations that will allow us to predict the VE status of an individual by knowing their genotype in these genetic variations. Yet, the potential usefulness of this area of research is exciting with regard to personalized nutrition and for future clinical trials dedicated to assessing the biological effects of the various isoforms of VE.

  17. Genetic alterations in hepatocellular carcinoma: An update

    Science.gov (United States)

    Niu, Zhao-Shan; Niu, Xiao-Jun; Wang, Wen-Hong

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although recent advances in therapeutic approaches for treating HCC have improved the prognoses of patients with HCC, this cancer is still associated with a poor survival rate mainly due to late diagnosis. Therefore, a diagnosis must be made sufficiently early to perform curative and effective treatments. There is a need for a deeper understanding of the molecular mechanisms underlying the initiation and progression of HCC because these mechanisms are critical for making early diagnoses and developing novel therapeutic strategies. Over the past decade, much progress has been made in elucidating the molecular mechanisms underlying hepatocarcinogenesis. In particular, recent advances in next-generation sequencing technologies have revealed numerous genetic alterations, including recurrently mutated genes and dysregulated signaling pathways in HCC. A better understanding of the genetic alterations in HCC could contribute to identifying potential driver mutations and discovering novel therapeutic targets in the future. In this article, we summarize the current advances in research on the genetic alterations, including genomic instability, single-nucleotide polymorphisms, somatic mutations and deregulated signaling pathways, implicated in the initiation and progression of HCC. We also attempt to elucidate some of the genetic mechanisms that contribute to making early diagnoses of and developing molecularly targeted therapies for HCC. PMID:27895396

  18. Genetic Alterations in Glioma

    International Nuclear Information System (INIS)

    Bralten, Linda B. C.; French, Pim J.

    2011-01-01

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes

  19. [Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].

    Science.gov (United States)

    Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V

    2014-01-01

    Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.

  20. Genetic Variation in Choline-Metabolizing Enzymes Alters Choline Metabolism in Young Women Consuming Choline Intakes Meeting Current Recommendations

    Directory of Open Access Journals (Sweden)

    Ariel B. Ganz

    2017-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs in choline metabolizing genes are associated with disease risk and greater susceptibility to organ dysfunction under conditions of dietary choline restriction. However, the underlying metabolic signatures of these variants are not well characterized and it is unknown whether genotypic differences persist at recommended choline intakes. Thus, we sought to determine if common genetic risk factors alter choline dynamics in pregnant, lactating, and non-pregnant women consuming choline intakes meeting and exceeding current recommendations. Women (n = 75 consumed 480 or 930 mg choline/day (22% as a metabolic tracer, choline-d9 for 10–12 weeks in a controlled feeding study. Genotyping was performed for eight variant SNPs and genetic differences in metabolic flux and partitioning of plasma choline metabolites were evaluated using stable isotope methodology. CHKA rs10791957, CHDH rs9001, CHDH rs12676, PEMT rs4646343, PEMT rs7946, FMO3 rs2266782, SLC44A1 rs7873937, and SLC44A1 rs3199966 altered the use of choline as a methyl donor; CHDH rs9001 and BHMT rs3733890 altered the partitioning of dietary choline between betaine and phosphatidylcholine synthesis via the cytidine diphosphate (CDP-choline pathway; and CHKA rs10791957, CHDH rs12676, PEMT rs4646343, PEMT rs7946 and SLC44A1 rs7873937 altered the distribution of dietary choline between the CDP-choline and phosphatidylethanolamine N-methyltransferase (PEMT denovo pathway. Such metabolic differences may contribute to disease pathogenesis and prognosis over the long-term.

  1. Genetic Alterations and Their Clinical Implications in High-Recurrence Risk Papillary Thyroid Cancer.

    Science.gov (United States)

    Lee, Min-Young; Ku, Bo Mi; Kim, Hae Su; Lee, Ji Yun; Lim, Sung Hee; Sun, Jong-Mu; Lee, Se-Hoon; Park, Keunchil; Oh, Young Lyun; Hong, Mineui; Jeong, Han-Sin; Son, Young-Ik; Baek, Chung-Hwan; Ahn, Myung-Ju

    2017-10-01

    Papillary thyroid carcinomas (PTCs) frequently involve genetic alterations. The objective of this study was to investigate genetic alterations and further explore the relationships between these genetic alterations and clinicopathological characteristics in a high-recurrence risk (node positive, N1) PTC group. Tumor tissue blocks were obtained from 240 surgically resected patients with histologically confirmed stage III/IV (pT3/4 or N1) PTCs. We screened gene fusions using NanoString's nCounter technology and mutational analysis was performed by direct DNA sequencing. Data describing the clinicopathological characteristics and clinical courses were retrospectively collected. Of the 240 PTC patients, 207 (86.3%) had at least one genetic alteration, including BRAF mutation in 190 patients (79.2%), PIK3CA mutation in 25 patients (10.4%), NTRK1/3 fusion in six patients (2.5%), and RET fusion in 24 patients (10.0%). Concomitant presence of more than two genetic alterations was seen in 36 patients (15%). PTCs harboring BRAF mutation were associated with RET wild-type expression (p=0.001). RET fusion genes have been found to occur with significantly higher frequency in N1b stage patients (p=0.003) or groups of patients aged 45 years or older (p=0.031); however, no significant correlation was found between other genetic alterations. There was no trend toward favorable recurrence-free survival or overall survival among patients lacking genetic alterations. In the selected high-recurrence risk PTC group, most patients had more than one genetic alteration. However, these known alterations could not entirely account for clinicopathological features of high-recurrence risk PTC.

  2. Molecular Darwinism: the contingency of spontaneous genetic variation.

    Science.gov (United States)

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions.

  3. Contribution of FKBP5 genetic variation to gemcitabine treatment and survival in pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Ellsworth

    Full Text Available FKBP51, (FKBP5, is a negative regulator of Akt. Variability in FKBP5 expression level is a major factor contributing to variation in response to chemotherapeutic agents including gemcitabine, a first line treatment for pancreatic cancer. Genetic variation in FKBP5 could influence its function and, ultimately, treatment response of pancreatic cancer.We set out to comprehensively study the role of genetic variation in FKBP5 identified by Next Generation DNA resequencing on response to gemcitabine treatment of pancreatic cancer by utilizing both tumor and germline DNA samples from 43 pancreatic cancer patients, including 19 paired normal-tumor samples. Next, genotype-phenotype association studies were performed with overall survival as well as with FKBP5 gene expression in tumor using the same samples in which resequencing had been performed, followed by functional genomics studies.In-depth resequencing identified 404 FKBP5 single nucleotide polymorphisms (SNPs in normal and tumor DNA. SNPs with the strongest associations with survival or FKBP5 expression were subjected to functional genomic study. Electromobility shift assay showed that the rs73748206 "A(T" SNP altered DNA-protein binding patterns, consistent with significantly increased reporter gene activity, possibly through its increased binding to Glucocorticoid Receptor (GR. The effect of rs73748206 was confirmed on the basis of its association with FKBP5 expression by affecting the binding to GR in lymphoblastoid cell lines derived from the same patients for whom DNA was used for resequencing.This comprehensive FKBP5 resequencing study provides insights into the role of genetic variation in variation of gemcitabine response.

  4. Additive genetic variation in the craniofacial skeleton of baboons (genus Papio) and its relationship to body and cranial size.

    Science.gov (United States)

    Joganic, Jessica L; Willmore, Katherine E; Richtsmeier, Joan T; Weiss, Kenneth M; Mahaney, Michael C; Rogers, Jeffrey; Cheverud, James M

    2018-02-01

    Determining the genetic architecture of quantitative traits and genetic correlations among them is important for understanding morphological evolution patterns. We address two questions regarding papionin evolution: (1) what effect do body and cranial size, age, and sex have on phenotypic (V P ) and additive genetic (V A ) variation in baboon crania, and (2) how might additive genetic correlations between craniofacial traits and body mass affect morphological evolution? We use a large captive pedigreed baboon sample to estimate quantitative genetic parameters for craniofacial dimensions (EIDs). Our models include nested combinations of the covariates listed above. We also simulate the correlated response of a given EID due to selection on body mass alone. Covariates account for 1.2-91% of craniofacial V P . EID V A decreases across models as more covariates are included. The median genetic correlation estimate between each EID and body mass is 0.33. Analysis of the multivariate response to selection reveals that observed patterns of craniofacial variation in extant baboons cannot be attributed solely to correlated response to selection on body mass, particularly in males. Because a relatively large proportion of EID V A is shared with body mass variation, different methods of correcting for allometry by statistically controlling for size can alter residual V P patterns. This may conflate direct selection effects on craniofacial variation with those resulting from a correlated response to body mass selection. This shared genetic variation may partially explain how selection for increased body mass in two different papionin lineages produced remarkably similar craniofacial phenotypes. © 2017 Wiley Periodicals, Inc.

  5. Host genetic variation impacts microbiome composition across human body sites.

    Science.gov (United States)

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T; Spector, Timothy D; Keinan, Alon; Ley, Ruth E; Gevers, Dirk; Clark, Andrew G

    2015-09-15

    The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale. Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes. Our results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

  6. Cordova: web-based management of genetic variation data.

    Science.gov (United States)

    Ephraim, Sean S; Anand, Nikhil; DeLuca, Adam P; Taylor, Kyle R; Kolbe, Diana L; Simpson, Allen C; Azaiez, Hela; Sloan, Christina M; Shearer, A Eliot; Hallier, Andrea R; Casavant, Thomas L; Scheetz, Todd E; Smith, Richard J H; Braun, Terry A

    2014-12-01

    Cordova is an out-of-the-box solution for building and maintaining an online database of genetic variations integrated with pathogenicity prediction results from popular algorithms. Our primary motivation for developing this system is to aid researchers and clinician-scientists in determining the clinical significance of genetic variations. To achieve this goal, Cordova provides an interface to review and manually or computationally curate genetic variation data as well as share it for clinical diagnostics and the advancement of research. Cordova is open source under the MIT license and is freely available for download at https://github.com/clcg/cordova. Published by Oxford University Press. This work is written by US Government employees and is in the public domain in the US.

  7. The genetic alteration of p53 in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Il; Baik, Hee Jong; Kim, Chang Min; Kim, Mi Hee [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-01-01

    Genetic alterations in the p53 gene have been detected in various human malignancies, and its alterations inactive the function of p53 as a tumor suppressor. Point mutation and gene deletion are the main mechanisms of p53 inactivation. To determine the incidence of genetic alteration of p53 and their clinical implications in Korean patients of esophageal cancer, we investigated p53 alterations in 26 esophageal cancer tissues paired with its normal tissue by Southern blot analysis, PCR-SSCP, and direct sequencing. Allelic loss of chromosome 17p occurred in 12 out of 21 informative cases(57%) by Southern blot analysis, and 16 cases showed mobility shift in PCR-SSCP, so overall incidence of p53 gene alterations was 77%(20/26). The mutations detected was randomly dispersed over exon4-8 and was frequently G-T transversion and C:T transitions. Three identical mutations were clustered at codon 213 suggested the same etiologic agents in this cases. The p53 gene alterations play a significant role in the development of esophageal cancers, however, no relationship between p53 mutation and clinical data was detected so far. 9 refs. (Author).

  8. Genetic alterations in head and neck squamous cell carcinomas

    Directory of Open Access Journals (Sweden)

    Nagai M.A.

    1999-01-01

    Full Text Available The genetic alterations observed in head and neck cancer are mainly due to oncogene activation (gain of function mutations and tumor suppressor gene inactivation (loss of function mutations, leading to deregulation of cell proliferation and death. These genetic alterations include gene amplification and overexpression of oncogenes such as myc, erbB-2, EGFR and cyclinD1 and mutations, deletions and hypermethylation leading to p16 and TP53 tumor suppressor gene inactivation. In addition, loss of heterozygosity in several chromosomal regions is frequently observed, suggesting that other tumor suppressor genes not yet identified could be involved in the tumorigenic process of head and neck cancers. The exact temporal sequence of the genetic alterations during head and neck squamous cell carcinoma (HNSCC development and progression has not yet been defined and their diagnostic or prognostic significance is controversial. Advances in the understanding of the molecular basis of head and neck cancer should help in the identification of new markers that could be used for the diagnosis, prognosis and treatment of the disease.

  9. Capacities for population-genetic variation and ecological adaptations

    Directory of Open Access Journals (Sweden)

    Marinković Dragoslav

    2007-01-01

    Full Text Available In contemporary science of population genetics it is equally complex and important to visualize how adaptive limits of individual variation are determined, as well as to describe the amount and sort of this variation. Almost all century the scientists devoted their efforts to explain the principles and structure of biological variation (genetic, developmental, environmental, interactive, etc., basing its maintenance within existing limits mostly on equilibria proclaimed by Hardy-Weinberg rules. Among numerous model-organisms that have been used to prove these rules and demonstrate new variants within mentioned concepts, Drosophila melanogaster is a kind of queen that is used in thousands of experiments for almost exactly 100 years (CARPENTER 1905, with which numerous discoveries and principles were determined that later turned out to be applicable to all other organisms. It is both, in nature and in laboratory, that Drosophilids were used to demonstrate the basic principles of population-genetic variation that was later applied to other species of animals. In ecological-genetic variation their richness in different environments could be used as an exact indicator of the status of a determined habitat, and its population-genetic structure may definitely point out to a possibility that specific resources of the environment start to be in danger to deteriorate, or to disappear in the near future. This paper shows clear-cut differences among environmental habitats, when populations of Drosophilidae are quantitatively observed in different wild, semi-domestic and domestic environments, demonstrating a highly expressed mutual dependence of these two parameters. A crucial approach is how to estimate the causes that determine the limits of biological, i.e. of individual and population-genetic variation. The realized, i.e. adaptive variation, is much lesser than a total possible variation of a polygenic trait, and in this study, using a moderately

  10. Genetic and Epigenetic Alterations of Brassica nigra Introgression Lines from Somatic Hybridization: A Resource for Cauliflower Improvement.

    Science.gov (United States)

    Wang, Gui-Xiang; Lv, Jing; Zhang, Jie; Han, Shuo; Zong, Mei; Guo, Ning; Zeng, Xing-Ying; Zhang, Yue-Yun; Wang, You-Ping; Liu, Fan

    2016-01-01

    Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower "Korso" (Brassica oleracea var. botrytis, 2n = 18, CC genome) and black mustard "G1/1" (Brassica nigra, 2n = 16, BB genome). However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs) were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits) and physiological (black rot/club root resistance) characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from "Korso." Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms) analysis identified the presence of "G1/1" DNA segments (average 7.5%). Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1%) was higher than presence of novel bands (1.4%), and the presence of fragments specific to Brassica carinata (BBCC 2n = 34) were common (average 15.5%). Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4%) was more frequent than hypomethylation (4.8%). Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.

  11. Genetic variation in bovine milk fat composition

    NARCIS (Netherlands)

    Stoop, W.M.

    2009-01-01

    In her thesis, Stoop shows that there is considerable genetic variation in milk fat composition, which opens opportunities to improve milk fat composition by selective breeding. Short and medium chain fatty acids had high heritabilities, whereas variation due to herd (mainly feed effects) was

  12. Genetic variation of contact dermatitis in broilers

    DEFF Research Database (Denmark)

    Ask, Birgitte

    2010-01-01

    This study aimed to investigate the presence of genetic variation in footpad dermatitis (FPD) and hock burns (HB) and the possibility to genetically select against these. A field trial including 10 commercial broiler lines (n = 102 to 265) was carried out at 2 Dutch farms. Footpad dermatitis and HB...

  13. The capture of heritable variation for genetic quality through social competition.

    Science.gov (United States)

    Wolf, Jason B; Harris, W Edwin; Royle, Nick J

    2008-09-01

    In theory, females of many species choose mates based on traits that are indicators of male genetic quality. A fundamental question in evolutionary biology is why genetic variation for such indicator traits persists despite strong persistent selection imposed by female preference, which is known as the lek paradox. One potential solution to the lek paradox suggests that the traits that are targets of mate choice should evolve condition-dependent expression and that condition should have a large genetic variance. Condition is expected to exhibit high genetic variance because it is affected by a large number of physiological processes and hence, condition-dependent traits should 'capture' variation contributed by a large number of loci. We suggest that a potentially important cause of variation in condition is competition for limited resources. Here, we discuss a pair of models to analyze the evolutionary genetics of traits affected by success in social competition for resources. We show that competition can contribute to genetic variation of 'competition-dependent' traits that have fundamentally different evolutionary properties than other sources of variation. Competition dependence can make traits honest indicators of genetic quality by revealing the relative competitive ability of males, can provide a component of heritable variation that does not contribute to trait evolution, and can help maintain heritable variation under directional selection. Here we provide a general introduction to the concept of competition dependence and briefly introduce two models to demonstrate the potential evolutionary consequences of competition-dependent trait expression.

  14. Rare endocrine cancers have novel genetic alterations

    Science.gov (United States)

    A molecular characterization of adrenocortical carcinoma, a rare cancer of the adrenal cortex, analyzed 91 cases for alterations in the tumor genomes and identified several novel genetic mutations as likely mechanisms driving the disease as well as whole genome doubling as a probable driver of the disease.

  15. Genetic variation in food choice behaviour of amino acid-deprived Drosophila.

    Science.gov (United States)

    Toshima, Naoko; Hara, Chieko; Scholz, Claus-Jürgen; Tanimura, Teiichi

    2014-10-01

    To understand homeostatic regulation in insects, we need to understand the mechanisms by which they respond to external stimuli to maintain the internal milieu. Our previous study showed that Drosophila melanogaster exhibit specific amino acid preferences. Here, we used the D.melanogaster Genetic Reference Panel (DGRP), which is comprised of multiple inbred lines derived from a natural population, to examine how amino acid preference changes depending on the internal nutritional state in different lines. We performed a two-choice preference test and observed genetic variations in the response to amino acid deprivation. For example, a high-responding line showed an enhanced preference for amino acids even after only 1day of deprivation and responded to a fairly low concentration of amino acids. Conversely, a low-responding line showed no increased preference for amino acids after deprivation. We compared the gene expression profiles between selected high- and the low-responding lines and performed SNP analyses. We found several groups of genes putatively involved in altering amino acid preference. These results will contribute to future studies designed to explore how the genetic architecture of an organism evolves to adapt to different nutritional environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Genetic variation facilitates seedling establishment but not population growth rate of a perennial invader.

    Science.gov (United States)

    Li, Shou-Li; Vasemägi, Anti; Ramula, Satu

    2016-01-01

    Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (Q(ST)) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F'(ST)), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. The study suggests that although genetic variation may facilitate plant invasions by

  17. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning.

    Science.gov (United States)

    Hanson, Jeffrey O; Rhodes, Jonathan R; Riginos, Cynthia; Fuller, Richard A

    2017-11-28

    Protected areas buffer species from anthropogenic threats and provide places for the processes that generate and maintain biodiversity to continue. However, genetic variation, the raw material for evolution, is difficult to capture in conservation planning, not least because genetic data require considerable resources to obtain and analyze. Here we show that freely available environmental and geographic distance variables can be highly effective surrogates in conservation planning for representing adaptive and neutral intraspecific genetic variation. We obtained occurrence and genetic data from the IntraBioDiv project for 27 plant species collected over the European Alps using a gridded sampling scheme. For each species, we identified loci that were potentially under selection using outlier loci methods, and mapped their main gradients of adaptive and neutral genetic variation across the grid cells. We then used the cells as planning units to prioritize protected area acquisitions. First, we verified that the spatial patterns of environmental and geographic variation were correlated, respectively, with adaptive and neutral genetic variation. Second, we showed that these surrogates can predict the proportion of genetic variation secured in randomly generated solutions. Finally, we discovered that solutions based only on surrogate information secured substantial amounts of adaptive and neutral genetic variation. Our work paves the way for widespread integration of surrogates for genetic variation into conservation planning.

  18. Genetic variation in dieback resistance

    DEFF Research Database (Denmark)

    Lobo, Albin; Hansen, Jon Kehlet; McKinney, Lea Vig

    2014-01-01

    -eastern Zealand, Denmark, and confirmed the presence of substantial genetic variation in ash dieback susceptibility. The average crown damage increased in the trial from 61% in 2009 to 66% in 2012 and 72% in 2014, while the estimated heritability was 0.42 in both 2009 and 2012 but increased to 0.53 in 2014....... Genetic correlation between assessments was 0.88 between 2009 and 2012 and 0.91 between 2009 and 2014, suggesting fairly good possibilities for early selection of superior genotypes in the presence of high infection levels in the trial. The level of crown damage had strong negative effect on growth...

  19. Genetic and phenotypic variation of some reproductive traits in ...

    African Journals Online (AJOL)

    Unknown

    sasas.co.za/Sajas.html. 195. Genetic and phenotypic variation of some reproductive traits in Egyptian buffalo ..... Mourad, Kawthar A., Khattab, A.S. & Ibrahim, M.A.R., 1989. Effect of genetic and non-genetic factors on reproductive traits in Egyptian ...

  20. Genetic variation and trait correlations in a birdresistant pearl millet ...

    African Journals Online (AJOL)

    selection indices for effective improvement. There was significant genetic variation for grain yield and most yield component traits, indicating that selection within the population would be feasible. Genetic variation was, however not significant for the percent incidence of downy mildew, implying that selection for improving ...

  1. Genetic and epigenetic alterations of Brassica nigra introgression lines from somatic hybridization: a resource for cauliflower improvement

    Directory of Open Access Journals (Sweden)

    Guixiang Wang

    2016-08-01

    Full Text Available Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower ‘Korso’ (Brassica oleracea var. botrytis, 2n = 18, CC genome and black mustard ‘G1/1’ (Brassica nigra, 2n = 16, BB genome. However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits and physiological (black rot/club root resistance characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from ‘Korso’. Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms analysis identified the presence of ‘G1/1’ DNA segments (average 7.5%. Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1% was significantly higher than presence of novel bands (1.4%, and the presence of fragments specific to B. carinata (BBCC 2n = 34 were common (average 15.5%. Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4% was more frequent than hypomethylation (4.8%. Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.

  2. Critical roles for a genetic code alteration in the evolution of the genus Candida.

    Science.gov (United States)

    Silva, Raquel M; Paredes, João A; Moura, Gabriela R; Manadas, Bruno; Lima-Costa, Tatiana; Rocha, Rita; Miranda, Isabel; Gomes, Ana C; Koerkamp, Marian J G; Perrot, Michel; Holstege, Frank C P; Boucherie, Hélian; Santos, Manuel A S

    2007-10-31

    During the last 30 years, several alterations to the standard genetic code have been discovered in various bacterial and eukaryotic species. Sense and nonsense codons have been reassigned or reprogrammed to expand the genetic code to selenocysteine and pyrrolysine. These discoveries highlight unexpected flexibility in the genetic code, but do not elucidate how the organisms survived the proteome chaos generated by codon identity redefinition. In order to shed new light on this question, we have reconstructed a Candida genetic code alteration in Saccharomyces cerevisiae and used a combination of DNA microarrays, proteomics and genetics approaches to evaluate its impact on gene expression, adaptation and sexual reproduction. This genetic manipulation blocked mating, locked yeast in a diploid state, remodelled gene expression and created stress cross-protection that generated adaptive advantages under environmental challenging conditions. This study highlights unanticipated roles for codon identity redefinition during the evolution of the genus Candida, and strongly suggests that genetic code alterations create genetic barriers that speed up speciation.

  3. Genetic variation in WRN and ischemic stroke

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Frikke-Schmidt, Ruth; Nordestgaard, Børge G.

    2017-01-01

    trends for ischemic cerebrovascular disease (P = 0.06). In meta-analyses including 59,190 individuals in 5 studies, the hazard ratio for ischemic stroke for C1367R TT homozygotes versus CC/CT was 1.14 (1.04–1.25; P = 0.008). Conclusions This study suggests that common genetic variation in WRN......Background Werner syndrome, a premature genetic aging syndrome, shares many clinical features reminiscent of normal physiological aging, and ischemic vascular disease is a frequent cause of death. We tested the hypothesis that genetic variation in the WRN gene was associated with risk of ischemic...... vascular disease in the general population. Methods We included 58,284 participants from two general population cohorts, the Copenhagen City Heart Study (CCHS) and the Copenhagen General Population Study (CGPS). Of these, 6,312 developed ischemic vascular disease during follow-up. In the CCHS (n = 10...

  4. Genetic Alterations in Hungarian Patients with Papillary Thyroid Cancer.

    Science.gov (United States)

    Tobiás, Bálint; Halászlaki, Csaba; Balla, Bernadett; Kósa, János P; Árvai, Kristóf; Horváth, Péter; Takács, István; Nagy, Zsolt; Horváth, Evelin; Horányi, János; Járay, Balázs; Székely, Eszter; Székely, Tamás; Győri, Gabriella; Putz, Zsuzsanna; Dank, Magdolna; Valkusz, Zsuzsanna; Vasas, Béla; Iványi, Béla; Lakatos, Péter

    2016-01-01

    The incidence of thyroid cancers is increasing worldwide. Some somatic oncogene mutations (BRAF, NRAS, HRAS, KRAS) as well as gene translocations (RET/PTC, PAX8/PPAR-gamma) have been associated with the development of thyroid cancer. In our study, we analyzed these genetic alterations in 394 thyroid tissue samples (197 papillary carcinomas and 197 healthy). The somatic mutations and translocations were detected by Light Cycler melting method and Real-Time Polymerase Chain Reaction techniques, respectively. In tumorous samples, 86 BRAF (44.2%), 5 NRAS (3.1%), 2 HRAS (1.0%) and 1 KRAS (0.5%) mutations were found, as well as 9 RET/PTC1 (4.6%) and 1 RET/PTC3 (0.5%) translocations. No genetic alteration was seen in the non tumorous control thyroid tissues. No correlation was detected between the genetic variants and the pathological subtypes of papillary cancer as well as the severity of the disease. Our results are only partly concordant with the data found in the literature.

  5. Genetic alterations during radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    Kodama, Seiji

    1995-01-01

    This paper reviews radiation-induced genetic alterations and its carcinogenesis, focusing on the previous in vitro assay outcome. A colony formation assay using Syrian hamster fetal cells and focus formation assay using mouse C3H10T1/2 cells are currently available to find malignant transformation of cells. Such in vitro assays has proposed the hypothesis that radiation-induced carcinogenesis arises from at least two-stage processes; i.e., that an early step induced by irradiation plays an important role in promoting the potential to cause the subsequent mutation. A type of genetic instability induced by radiation results in a persistently elevated frequency of spontaneous mutations, so-called the phenomenon of delayed reproductive death. One possible mechanism by which genetic instability arises has been shown to be due to the development of abnormality in the gene group involved in the maintenance mechanism of genome stability. Another possibility has also been shown to stem from the loss of telomere (the extremities of a chromosome). The importance of search for radiation-induced genetic instability is emphasized in view of the elucidation of carcinogenesis. (N.K.)

  6. Genetic integration of molar cusp size variation in baboons.

    Science.gov (United States)

    Koh, Christina; Bates, Elizabeth; Broughton, Elizabeth; Do, Nicholas T; Fletcher, Zachary; Mahaney, Michael C; Hlusko, Leslea J

    2010-06-01

    Many studies of primate diversity and evolution rely on dental morphology for insight into diet, behavior, and phylogenetic relationships. Consequently, variation in molar cusp size has increasingly become a phenotype of interest. In 2007 we published a quantitative genetic analysis of mandibular molar cusp size variation in baboons. Those results provided more questions than answers, as the pattern of genetic integration did not fit predictions from odontogenesis. To follow up, we expanded our study to include data from the maxillary molar cusps. Here we report on these later analyses, as well as inter-arch comparisons with the mandibular data. We analyzed variation in two-dimensional maxillary molar cusp size using data collected from a captive pedigreed breeding colony of baboons, Papio hamadryas, housed at the Southwest National Primate Research Center. These analyses show that variation in maxillary molar cusp size is heritable and sexually dimorphic. We also estimated additive genetic correlations between cusps on the same crown, homologous cusps along the tooth row, and maxillary and mandibular cusps. The pattern for maxillary molars yields genetic correlations of one between the paracone-metacone and protocone-hypocone. Bivariate analyses of cuspal homologues on adjacent teeth yield correlations that are high or not significantly different from one. Between dental arcades, the nonoccluding cusps consistently yield high genetic correlations, especially the metaconid-paracone and metaconid-metacone. This pattern of genetic correlation does not immediately accord with the pattern of development and/or calcification, however these results do follow predictions that can be made from the evolutionary history of the tribosphenic molar. Copyright 2009 Wiley-Liss, Inc.

  7. Genetics of body shape and armour variation in threespine sticklebacks.

    Science.gov (United States)

    Leinonen, T; Cano, J M; Merilä, J

    2011-01-01

    Patterns of genetic variation and covariation can influence the rate and direction of phenotypic evolution. We explored the possibility that the parallel morphological evolution seen in threespine stickleback (Gasterosteus aculeatus) populations colonizing freshwater environments is facilitated by patterns of genetic variation and covariation in the ancestral (marine) population. We estimated the genetic (G) and phenotypic (P) covariance matrices and directions of maximum additive genetic (g(max) ) and phenotypic (p(max) ) covariances of body shape and armour traits. Our results suggest a role for the ancestral G in explaining parallel morphological evolution in freshwater populations. We also found evidence of genetic constraints owing to the lack of variance in the ancestral G. Furthermore, strong genetic covariances and correlations among traits revealed that selective factors responsible for threespine stickleback body shape and armour divergence may be difficult to disentangle. The directions of g(max) and p(max) were correlated, but the correlations were not high enough to imply that phenotypic patterns of trait variation and covariation within populations are very informative of underlying genetic patterns. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  8. A multi-perspective view of genetic variation in Cameroon.

    Science.gov (United States)

    Coia, V; Brisighelli, F; Donati, F; Pascali, V; Boschi, I; Luiselli, D; Battaggia, C; Batini, C; Taglioli, L; Cruciani, F; Paoli, G; Capelli, C; Spedini, G; Destro-Bisol, G

    2009-11-01

    In this study, we report the genetic variation of autosomal and Y-chromosomal microsatellites in a large Cameroon population dataset (a total of 11 populations) and jointly analyze novel and previous genetic data (mitochondrial DNA and protein coding loci) taking geographic and cultural factors into consideration. The complex pattern of genetic variation of Cameroon can in part be described by contrasting two geographic areas (corresponding to the northern and southern part of the country), which differ substantially in environmental, biological, and cultural aspects. Northern Cameroon populations show a greater within- and among-group diversity, a finding that reflects the complex migratory patterns and the linguistic heterogeneity of this area. A striking reduction of Y-chromosomal genetic diversity was observed in some populations of the northern part of the country (Podokwo and Uldeme), a result that seems to be related to their demographic history rather than to sampling issues. By exploring patterns of genetic, geographic, and linguistic variation, we detect a preferential correlation between genetics and geography for mtDNA. This finding could reflect a female matrimonial mobility that is less constrained by linguistic factors than in males. Finally, we apply the island model to mitochondrial and Y-chromosomal data and obtain a female-to-male migration Nnu ratio that was more than double in the northern part of the country. The combined effect of the propensity to inter-populational admixture of females, favored by cultural contacts, and of genetic drift acting on Y-chromosomal diversity could account for the peculiar genetic pattern observed in northern Cameroon.

  9. Low Genetic Quality Alters Key Dimensions of the Mutational Spectrum.

    Directory of Open Access Journals (Sweden)

    Nathaniel P Sharp

    2016-03-01

    Full Text Available Mutations affect individual health, population persistence, adaptation, diversification, and genome evolution. There is evidence that the mutation rate varies among genotypes, but the causes of this variation are poorly understood. Here, we link differences in genetic quality with variation in spontaneous mutation in a Drosophila mutation accumulation experiment. We find that chromosomes maintained in low-quality genetic backgrounds experience a higher rate of indel mutation and a lower rate of gene conversion in a manner consistent with condition-based differences in the mechanisms used to repair DNA double strand breaks. These aspects of the mutational spectrum were also associated with body mass, suggesting that the effect of genetic quality on DNA repair was mediated by overall condition, and providing a mechanistic explanation for the differences in mutational fitness decline among these genotypes. The rate and spectrum of substitutions was unaffected by genetic quality, but we find variation in the probability of substitutions and indels with respect to several aspects of local sequence context, particularly GC content, with implications for models of molecular evolution and genome scans for signs of selection. Our finding that the chances of mutation depend on genetic context and overall condition has important implications for how sequences evolve, the risk of extinction, and human health.

  10. Genetic Variations and their Association with Diseases among ...

    African Journals Online (AJOL)

    genetics plays in disease, death and infections. The mode of study involved a combination of a retrospective study and the analysis of genetic variation among Kenyan ethnic populations using ABO blood group system. The results showed that there was association between allele frequencies of ABO system and disease ...

  11. Molecular Darwinism: The Contingency of Spontaneous Genetic Variation

    OpenAIRE

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign...

  12. Genetic variation shapes protein networks mainly through non-transcriptional mechanisms.

    Directory of Open Access Journals (Sweden)

    Eric J Foss

    2011-09-01

    Full Text Available Networks of co-regulated transcripts in genetically diverse populations have been studied extensively, but little is known about the degree to which these networks cause similar co-variation at the protein level. We quantified 354 proteins in a genetically diverse population of yeast segregants, which allowed for the first time construction of a coherent protein co-variation matrix. We identified tightly co-regulated groups of 36 and 93 proteins that were made up predominantly of genes involved in ribosome biogenesis and amino acid metabolism, respectively. Even though the ribosomal genes were tightly co-regulated at both the protein and transcript levels, genetic regulation of proteins was entirely distinct from that of transcripts, and almost no genes in this network showed a significant correlation between protein and transcript levels. This result calls into question the widely held belief that in yeast, as opposed to higher eukaryotes, ribosomal protein levels are regulated primarily by regulating transcript levels. Furthermore, although genetic regulation of the amino acid network was more similar for proteins and transcripts, regression analysis demonstrated that even here, proteins vary predominantly as a result of non-transcriptional variation. We also found that cis regulation, which is common in the transcriptome, is rare at the level of the proteome. We conclude that most inter-individual variation in levels of these particular high abundance proteins in this genetically diverse population is not caused by variation of their underlying transcripts.

  13. Genetic variations in multiple myeloma II

    DEFF Research Database (Denmark)

    Vangsted, A.; Klausen, T.W.; Vogel, U.

    2012-01-01

    Association studies on genetic variation to treatment effect may serve as a predictive marker for effect of treatment and can also uncover biological pathways behind drug effect. Single-nucleotide polymorphisms (SNPs) have been studied in relation to high-dose treatment (HDT), thalidomide- and bo...

  14. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Directory of Open Access Journals (Sweden)

    Nuno D Pires

    2016-01-01

    Full Text Available Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  15. Genetically-based olfactory signatures persist despite dietary variation.

    Directory of Open Access Journals (Sweden)

    Jae Kwak

    Full Text Available Individual mice have a unique odor, or odortype, that facilitates individual recognition. Odortypes, like other phenotypes, can be influenced by genetic and environmental variation. The genetic influence derives in part from genes of the major histocompatibility complex (MHC. A major environmental influence is diet, which could obscure the genetic contribution to odortype. Because odortype stability is a prerequisite for individual recognition under normal behavioral conditions, we investigated whether MHC-determined urinary odortypes of inbred mice can be identified in the face of large diet-induced variation. Mice trained to discriminate urines from panels of mice that differed both in diet and MHC type found the diet odor more salient in generalization trials. Nevertheless, when mice were trained to discriminate mice with only MHC differences (but on the same diet, they recognized the MHC difference when tested with urines from mice on a different diet. This indicates that MHC odor profiles remain despite large dietary variation. Chemical analyses of urinary volatile organic compounds (VOCs extracted by solid phase microextraction (SPME and analyzed by gas chromatography/mass spectrometry (GC/MS are consistent with this inference. Although diet influenced VOC variation more than MHC, with algorithmic training (supervised classification MHC types could be accurately discriminated across different diets. Thus, although there are clear diet effects on urinary volatile profiles, they do not obscure MHC effects.

  16. AFLP analysis of Cynodon dactylon (L.) Pers. var. dactylon genetic variation.

    Science.gov (United States)

    Wu, Y Q; Taliaferro, C M; Bai, G H; Anderson, M P

    2004-08-01

    Cynodon dactylon (L.) Pers. var. dactylon (common bermudagrass) is geographically widely distributed between about lat 45 degrees N and lat 45 degrees S, penetrating to about lat 53 degrees N in Europe. The extensive variation of morphological and adaptive characteristics of the taxon is substantially documented, but information is lacking on DNA molecular variation in geographically disparate forms. Accordingly, this study was conducted to assess molecular genetic variation and genetic relatedness among 28 C. dactylon var. dactylon accessions originating from 11 countries on 4 continents (Africa, Asia, Australia, and Europe). A fluorescence-labeled amplified fragment length polymorphism (AFLP) DNA profiling method was used to detect the genetic diversity and relatedness. On the basis of 443 polymorphic AFLP fragments from 8 primer combinations, the accessions were grouped into clusters and subclusters associating with their geographic origins. Genetic similarity coefficients (SC) for the 28 accessions ranged from 0.53 to 0.98. Accessions originating from Africa, Australia, Asia, and Europe formed major groupings as indicated by cluster and principal coordinate analysis. Accessions from Australia and Asia, though separately clustered, were relatively closely related and most distantly related to accessions of European origin. African accessions formed two distant clusters and had the greatest variation in genetic relatedness relative to accessions from other geographic regions. Sampling the full extent of genetic variation in C. dactylon var. dactylon would require extensive germplasm collection in the major geographic regions of its distributional range.

  17. Natural genetic variation in transcriptome reflects network structure inferred with major effect mutations: insulin/TOR and associated phenotypes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Harshman Lawrence G

    2009-03-01

    Full Text Available Abstract Background A molecular process based genotype-to-phenotype map will ultimately enable us to predict how genetic variation among individuals results in phenotypic alterations. Building such a map is, however, far from straightforward. It requires understanding how molecular variation re-shapes developmental and metabolic networks, and how the functional state of these networks modifies phenotypes in genotype specific way. We focus on the latter problem by describing genetic variation in transcript levels of genes in the InR/TOR pathway among 72 Drosophila melanogaster genotypes. Results We observe tight co-variance in transcript levels of genes not known to influence each other through direct transcriptional control. We summarize transcriptome variation with factor analyses, and observe strong co-variance of gene expression within the dFOXO-branch and within the TOR-branch of the pathway. Finally, we investigate whether major axes of transcriptome variation shape phenotypes expected to be influenced through the InR/TOR pathway. We find limited evidence that transcript levels of individual upstream genes in the InR/TOR pathway predict fly phenotypes in expected ways. However, there is no evidence that these effects are mediated through the major axes of downstream transcriptome variation. Conclusion In summary, our results question the assertion of the 'sparse' nature of genetic networks, while validating and extending candidate gene approaches in the analyses of complex traits.

  18. DNA Fingerprinting Techniques for the Analysis of Genetic and Epigenetic Alterations in Colorectal Cancer

    OpenAIRE

    Samuelsson, Johanna K.; Alonso, Sergio; Yamamoto, Fumiichiro; Perucho, Manuel

    2010-01-01

    Genetic somatic alterations are fundamental hallmarks of cancer. In addition to point and other small mutations targeting cancer genes, solid tumors often exhibit aneuploidy as well as multiple chromosomal rearrangements of large fragments of the genome. Whether somatic chromosomal alterations and aneuploidy are a driving force or a mere consequence of tumorigenesis remains controversial. Recently it became apparent that not only genetic but also epigenetic alterations play a major role in ca...

  19. Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host.

    Directory of Open Access Journals (Sweden)

    John P Jerome

    2011-01-01

    Full Text Available The genome of the food-borne pathogen Campylobacter jejuni contains multiple highly mutable sites, or contingency loci. It has been suggested that standing variation at these loci is a mechanism for rapid adaptation to a novel environment, but this phenomenon has not been shown experimentally. In previous work we showed that the virulence of C. jejuni NCTC11168 increased after serial passage through a C57BL/6 IL-10(-/- mouse model of campylobacteriosis. Here we sought to determine the genetic basis of this adaptation during passage. Re-sequencing of the 1.64 Mb genome to 200-500 X coverage allowed us to define variation in 23 contingency loci to an unprecedented depth both before and after in vivo adaptation. Mutations in the mouse-adapted C. jejuni were largely restricted to the homopolymeric tracts of thirteen contingency loci. These changes cause significant alterations in open reading frames of genes in surface structure biosynthesis loci and in genes with only putative functions. Several loci with open reading frame changes also had altered transcript abundance. The increase in specific phases of contingency loci during in vivo passage of C. jejuni, coupled with the observed virulence increase and the lack of other types of genetic changes, is the first experimental evidence that these variable regions play a significant role in C. jejuni adaptation and virulence in a novel host.

  20. Genetic sorting of subordinate species in grassland modulated by intraspecific variation in dominant species.

    Directory of Open Access Journals (Sweden)

    Danny J Gustafson

    Full Text Available Genetic variation in a single species can have predictable and heritable effects on associated communities and ecosystem processes, however little is known about how genetic variation of a dominant species affects plant community assembly. We characterized the genetic structure of a dominant grass (Sorghastrum nutans and two subordinate species (Chamaecrista fasciculata, Silphium integrifolium, during the third growing season in grassland communities established with genetically distinct (cultivated varieties or local ecotypes seed sources of the dominant grasses. There were genetic differences between subordinate species growing in the cultivar versus local ecotype communities, indicating that intraspecific genetic variation in the dominant grasses affected the genetic composition of subordinate species during community assembly. A positive association between genetic diversity of S. nutans, C. fasciculata, and S. integrifolium and species diversity established the role of an intraspecific biotic filter during community assembly. Our results show that intraspecific variation in dominant species can significantly modulate the genetic composition of subordinate species.

  1. ALDH1A2 (RALDH2 genetic variation in human congenital heart disease

    Directory of Open Access Journals (Sweden)

    Mesquita Sonia MF

    2009-11-01

    Full Text Available Abstract Background Signaling by the vitamin A-derived morphogen retinoic acid (RA is required at multiple steps of cardiac development. Since conversion of retinaldehyde to RA by retinaldehyde dehydrogenase type II (ALDH1A2, a.k.a RALDH2 is critical for cardiac development, we screened patients with congenital heart disease (CHDs for genetic variation at the ALDH1A2 locus. Methods One-hundred and thirty-three CHD patients were screened for genetic variation at the ALDH1A2 locus through bi-directional sequencing. In addition, six SNPs (rs2704188, rs1441815, rs3784259, rs1530293, rs1899430 at the same locus were studied using a TDT-based association approach in 101 CHD trios. Observed mutations were modeled through molecular mechanics (MM simulations using the AMBER 9 package, Sander and Pmemd programs. Sequence conservation of observed mutations was evaluated through phylogenetic tree construction from ungapped alignments containing ALDH8 s, ALDH1Ls, ALDH1 s and ALDH2 s. Trees were generated by the Neighbor Joining method. Variations potentially affecting splicing mechanisms were cloned and functional assays were designed to test splicing alterations using the pSPL3 splicing assay. Results We describe in Tetralogy of Fallot (TOF the mutations Ala151Ser and Ile157Thr that change non-polar to polar residues at exon 4. Exon 4 encodes part of the highly-conserved tetramerization domain, a structural motif required for ALDH oligomerization. Molecular mechanics simulation studies of the two mutations indicate that they hinder tetramerization. We determined that the SNP rs16939660, previously associated with spina bifida and observed in patients with TOF, does not affect splicing. Moreover, association studies performed with classical models and with the transmission disequilibrium test (TDT design using single marker genotype, or haplotype information do not show differences between cases and controls. Conclusion In summary, our screen indicates that

  2. Analysis of genetic variation and potential applications in genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Cardoso, Joao; Andersen, Mikael Rørdam; Herrgard, Markus

    2015-01-01

    scale and resolution by re-sequencing thousands of strains systematically. In this article, we review challenges in the integration and analysis of large-scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting the effects of genetic variants on protein function......Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology......, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic...

  3. Genetic variation in the endangered Southwestern Willow Flycatcher

    Science.gov (United States)

    Busch, Joseph; Miller, Mark P.; Paxton, E.H.; Sogge, M.K.; Keim, Paul

    2000-01-01

    The Southwestern Willow Flycatcher (Empidonax traillii extimus) is an endangered Neotropical migrant that breeds in isolated remnants of dense riparian habitat in the southwestern United States. We estimated genetic variation at 20 breeding sites of the Southwestern Willow Flycatcher (290 individuals) using 38 amplified fragment length polymorphisms (AFLPs). Our results suggest that considerable genetic diversity exists within the subspecies and within local breeding sites. Statistical analyses of genetic variation revealed only slight, although significant, differentiation among breeding sites (Mantel's r = 0.0705, P UPGMA cluster analysis of the AFLP markers indicates that extensive gene flow has occurred among breeding sites. No one site stood out as being genetically unique or isolated. Therefore, the small level of genetic structure that we detected may not be biologically significant. Ongoing field studies are consistent with this conclusion. Of the banded birds that were resighted or recaptured in Arizona during the 1996 to 1998 breeding seasons, one-third moved between breeding sites and two-thirds were philopatric. Low differentiation may be the result of historically high rangewide diversity followed by recent geographic isolation of breeding sites, although observational data indicate that gene flow is a current phenomenon. Our data suggest that breeding groups of E. t. extimus act as a metapopulation.

  4. Genetic variation within and between strains of outbred Swiss mice.

    Science.gov (United States)

    Cui, S; Chesson, C; Hope, R

    1993-04-01

    The aim of this survey was to measure levels of genetic variation within and between 5 different strains of outbred Swiss mice. Ten to 15 animals from each strain (NIH, Q(S), ARC, IMVS and STUD) were typed, using allozyme electrophoresis, at 10 gene loci: Mod-1, Idh-1, Gpi-I, Es-1, Es-3, Hbb, Pep-3, Gr-1, Got-2 and Pgm-1. Polymorphic variation in at least one of the 5 strains was detected at all 10 loci. The proportion of polymorphic loci ranged from 0.3 (NIH) to 0.8 (IMVS) with a mean of 0.52. Average expected heterozygosities ranged from 0.08 (NIH) to 0.37 (IMVS) with a mean of 0.21. The inbred strain SWR was, as expected, homozygous at all 10 loci. The amount of allelic substitution between pairs of strains was quantified using Nei's genetic distance, and a dendrogram based on these genetic distances showed a close overall similarity in its branching pattern to the known genealogy of the strains. This survey showed that a considerable degree of genetic variation persists in the 5 strains examined, a level of variation similar to that previously detected by Rice and O'Brien (1980) in 3 other outbred Swiss strains.

  5. Parental Virtue and Prenatal Genetic Alteration Research.

    Science.gov (United States)

    Tonkens, Ryan

    2015-12-01

    Although the philosophical literature on the ethics of human prenatal genetic alteration (PGA) purports to inform us about how to act, it rarely explicitly recognizes the perspective of those who will be making the PGA decision in practice. Here I approach the ethics of PGA from a distinctly virtue-based perspective, taking seriously what it means to be a good parent making this decision for one's child. From this perspective, I generate a sound verdict on the moral standing of human PGA (research): given the current state of the art, good parents have compelling reason not to consent to PGA (research) for their child, especially as part of the first wave(s) of PGA research participants and especially for non-medically oriented purposes. This is because doing otherwise is inconsistent with a plausible and defensible understanding of virtuous parenting and parental virtues, founded on a genuine concern for promoting the overall flourishing of the eventual child. In essence, given the current and foreseeable state of the art, parents who allow prenatal genetic alteration of their children are less-than-virtuous parents to those children, even in cases where they have a right to do so and even if PGA turns out to be beneficial to the eventual child.

  6. Human Genetic Variation and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sun Ju Chung

    2010-05-01

    Full Text Available Parkinson’s disease (PD is a chronic neurodegenerative disorder with multifactorial etiology. In the past decade, the genetic causes of monogenic forms of familial PD have been defined. However, the etiology and pathogenesis of the majority of sporadic PD cases that occur in outbred populations have yet to be clarified. The recent development of resources such as the International HapMap Project and technological advances in high-throughput genotyping have provided new basis for genetic association studies of common complex diseases, including PD. A new generation of genome-wide association studies will soon offer a potentially powerful approach for mapping causal genes and will likely change treatment and alter our perception of the genetic determinants of PD. However, the execution and analysis of such studies will require great care.

  7. Genetic analysis of variation in human meiotic recombination.

    Directory of Open Access Journals (Sweden)

    Reshmi Chowdhury

    2009-09-01

    Full Text Available The number of recombination events per meiosis varies extensively among individuals. This recombination phenotype differs between female and male, and also among individuals of each gender. In this study, we used high-density SNP genotypes of over 2,300 individuals and their offspring in two datasets to characterize recombination landscape and to map the genetic variants that contribute to variation in recombination phenotypes. We found six genetic loci that are associated with recombination phenotypes. Two of these (RNF212 and an inversion on chromosome 17q21.31 were previously reported in the Icelandic population, and this is the first replication in any other population. Of the four newly identified loci (KIAA1462, PDZK1, UGCG, NUB1, results from expression studies provide support for their roles in meiosis. Each of the variants that we identified explains only a small fraction of the individual variation in recombination. Notably, we found different sequence variants associated with female and male recombination phenotypes, suggesting that they are regulated by different genes. Characterization of genetic variants that influence natural variation in meiotic recombination will lead to a better understanding of normal meiotic events as well as of non-disjunction, the primary cause of pregnancy loss.

  8. Placental FKBP5 genetic and epigenetic variation is associated with infant neurobehavioral outcomes in the RICHS cohort.

    Directory of Open Access Journals (Sweden)

    Alison G Paquette

    a genotype specific fashion, and genetic variation supersedes this effect. These genetic and epigenetic differences in expression may alter the placenta's ability to modulate cortisol response and exposure, leading to altered neurobehavioral outcomes.

  9. Genetic alterations affecting cholesterol metabolism and human fertility.

    Science.gov (United States)

    DeAngelis, Anthony M; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle

    2014-11-01

    Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. © 2014 by the Society for the Study of Reproduction, Inc.

  10. [Colorectal cancer (CCR): genetic and molecular alterations].

    Science.gov (United States)

    Juárez-Vázquez, Clara Ibet; Rosales-Reynoso, Mónica Alejandra

    2014-01-01

    The aim of this review is to present a genetic and molecular overview of colorectal carcinogenesis (sporadic and hereditary origin) as a multistage process, where there are a number of molecular mechanisms associated with the development of colorectal cancer and genomic instability that allows the accumulation of mutations in proto-oncogenes and tumor suppressor genes, chromosomal instability, and methylation and microsatellite instability, and the involvement of altered expression of microRNAs' prognosis factors.

  11. Genetic and environmental factors affecting birth size variation

    DEFF Research Database (Denmark)

    Yokoyama, Yoshie; Jelenkovic, Aline; Hur, Yoon-Mi

    2018-01-01

    Background: The genetic architecture of birth size may differ geographically and over time. We examined differences in the genetic and environmental contributions to birthweight, length and ponderal index (PI) across geographical-cultural regions (Europe, North America and Australia, and East Asia......) and across birth cohorts, and how gestational age modifies these effects. Methods: Data from 26 twin cohorts in 16 countries including 57 613 monozygotic and dizygotic twin pairs were pooled. Genetic and environmental variations of birth size were estimated using genetic structural equation modelling....... Results: The variance of birthweight and length was predominantly explained by shared environmental factors, whereas the variance of PI was explained both by shared and unique environmental factors. Genetic variance contributing to birth size was small. Adjusting for gestational age decreased...

  12. DNA fingerprinting techniques for the analysis of genetic and epigenetic alterations in colorectal cancer.

    Science.gov (United States)

    Samuelsson, Johanna K; Alonso, Sergio; Yamamoto, Fumiichiro; Perucho, Manuel

    2010-11-10

    Genetic somatic alterations are fundamental hallmarks of cancer. In addition to point and other small mutations targeting cancer genes, solid tumors often exhibit aneuploidy as well as multiple chromosomal rearrangements of large fragments of the genome. Whether somatic chromosomal alterations and aneuploidy are a driving force or a mere consequence of tumorigenesis remains controversial. Recently it became apparent that not only genetic but also epigenetic alterations play a major role in carcinogenesis. Epigenetic regulation mechanisms underlie the maintenance of cell identity crucial for development and differentiation. These epigenetic regulatory mechanisms have been found substantially altered during cancer development and progression. In this review, we discuss approaches designed to analyze genetic and epigenetic alterations in colorectal cancer, especially DNA fingerprinting approaches to detect changes in DNA copy number and methylation. DNA fingerprinting techniques, despite their modest throughput, played a pivotal role in significant discoveries in the molecular basis of colorectal cancer. The aim of this review is to revisit the fingerprinting technologies employed and the oncogenic processes that they unveiled. 2010 Elsevier B.V. All rights reserved.

  13. Characterization of Genetic Variation in Icelandic Cattle

    DEFF Research Database (Denmark)

    Holm, Lars-Erik; Das, Ashutosh; Momeni, Jamal

    Identification of genetic variation in cattle breeds using next-generation sequencing technology has focused on the modern production cattle breeds. We focused on one of the oldest indigenous breeds, the Icelandic cattle breed. Sequencing of two individuals enabled identification of more than 8...

  14. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster.

    Science.gov (United States)

    Hunter, Chad M; Huang, Wen; Mackay, Trudy F C; Singh, Nadia D

    2016-04-01

    Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.

  15. Landscape location affects genetic variation of Canada lynx (Lynx canadensis)

    Science.gov (United States)

    M. K. Schwartz; L. S. Mills; Y. Ortega; L. F. Ruggiero; F. W. Allendorf

    2003-01-01

    The effect of a population's location on the landscape on genetic variation has been of interest to population genetics for more than half a century. However, most studies do not consider broadscale biogeography when interpreting genetic data. In this study, we propose an operational definition of a peripheral population, and then explore whether peripheral...

  16. Genetic spectrum of low density lipoprotein receptor gene variations in South Indian population.

    Science.gov (United States)

    ArulJothi, K N; Suruthi Abirami, B; Devi, Arikketh

    2018-03-01

    Low density lipoprotein receptor (LDLR) is a membrane bound receptor maintaining cholesterol homeostasis along with Apolipoprotein B (APOB), Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) and other genes of lipid metabolism. Any pathogenic variation in these genes alters the function of the receptor and leads to Familial Hypercholesterolemia (FH) and other cardiovascular diseases. This study was aimed at screening the LDLR, APOB and PCSK9 genes in Hypercholesterolemic patients to define the genetic spectrum of FH in Indian population. Familial Hypercholesterolemia patients (n=78) of South Indian Tamil population with LDL cholesterol and Total cholesterol levels above 4.9mmol/l and 7.5mmol/l with family history of Myocardial infarction were involved. DNA was isolated by organic extraction method from blood samples and LDLR, APOB and PCSK9 gene exons were amplified using primers that cover exon-intron boundaries. The amplicons were screened using High Resolution Melt (HRM) Analysis and the screened samples were sequenced after purification. This study reports 20 variations in South Indian population for the first time. In this set of variations 9 are novel variations which are reported for the first time, 11 were reported in other studies also. The in silico analysis for all the variations detected in this study were done to predict the probabilistic effect in pathogenicity of FH. This study adds 9 novel variations and 11 recurrent variations to the spectrum of LDLR gene mutations in Indian population. All these variations are reported for the first time in Indian population. This spectrum of variations was different from the variations of previous Indian reports. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Genetic variations of robinia pseudoacacia plant using sds-page

    International Nuclear Information System (INIS)

    Zahoor, M.; Islam, N. U.; Nisar, M.

    2015-01-01

    The biochemical analysis using SDS-PAGE has great contribution for the estimation of genetic diversity. We estimated the genetic diversity of R. pseudoacacia germ plasm protein. A total of 19 varieties were collected from different areas of Dir lower were investigated for the level of genetic divergence and genetic linkages. The total germ plasm grouped were separated at 20 percentage distance into two linkages based on Euclidean distances the 19 cultivars were further divide at 45 percentage distance into three clusters, cluster 1, cluster 2 and cluster 3. Cluster 1 was comprised of Munda 3, Munda 4, Talash 2 and UOM 1. Cluster 2 was comprised of Maidan 1 and Gulabad 1. Cluster 3 was comprised Maidan 2, UOM 3, Talash 1, Maidan 4, Maidan 3, Gulabad 2, Gulabad 3 and Gulabad 4. A total of range 00 percentage to 88 percentage variation recoded among 19 varieties. The result obtained after SDS-PAGE were computed for the construction of phylogenetic diversity, geographic relationship, Euclidian distance, genetic distance and linkage distance. This plant show a lot of variation in germ plasmic level. It is concluded that it is possible to improve and produce new varieties of this plant. (author)

  18. Assessment of genetic variation of selected spiderplant (Cleome ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... matrix calculated on the basis of UPGMA clustering algorithm revealed that the 4 morphotypes formed ... Key words: Cleome gynandra, genetic variation, morphotypes, .... Research Foundation of Kenya, Kericho, Kenya.

  19. A global reference for human genetic variation

    DEFF Research Database (Denmark)

    Auton, Adam; Abecasis, Goncalo R.; M. Altshuler, David

    2015-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals ...

  20. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster

    Science.gov (United States)

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  1. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Chad M Hunter

    2016-04-01

    Full Text Available Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.

  2. Selection Transforms the Landscape of Genetic Variation Interacting with Hsp90.

    Science.gov (United States)

    Geiler-Samerotte, Kerry A; Zhu, Yuan O; Goulet, Benjamin E; Hall, David W; Siegal, Mark L

    2016-10-01

    The protein-folding chaperone Hsp90 has been proposed to buffer the phenotypic effects of mutations. The potential for Hsp90 and other putative buffers to increase robustness to mutation has had major impact on disease models, quantitative genetics, and evolutionary theory. But Hsp90 sometimes contradicts expectations for a buffer by potentiating rapid phenotypic changes that would otherwise not occur. Here, we quantify Hsp90's ability to buffer or potentiate (i.e., diminish or enhance) the effects of genetic variation on single-cell morphological features in budding yeast. We corroborate reports that Hsp90 tends to buffer the effects of standing genetic variation in natural populations. However, we demonstrate that Hsp90 tends to have the opposite effect on genetic variation that has experienced reduced selection pressure. Specifically, Hsp90 tends to enhance, rather than diminish, the effects of spontaneous mutations and recombinations. This result implies that Hsp90 does not make phenotypes more robust to the effects of genetic perturbation. Instead, natural selection preferentially allows buffered alleles to persist and thereby creates the false impression that Hsp90 confers greater robustness.

  3. Genetic variation of durum wheat landraces using morphological ...

    African Journals Online (AJOL)

    Genetic variation of durum wheat landraces using morphological and protein markers. ... African Journal of Biotechnology. Journal Home · ABOUT THIS ... No significant correlation was observed among the two methods tested. It is concluded ...

  4. Seasonal genetic variation associated with population dynamics of a poecilogonous polychaete worm

    DEFF Research Database (Denmark)

    Thonig, Anne; Banta, Gary Thomas; Hansen, Benni Winding

    2017-01-01

    Poecilogonous species show variation in developmental mode, with larvae that differ both morphologically and ecologically. The spionid polychaete Pygospio elegans shows variation in developmental mode not only between populations, but also seasonally within populations. We investigated...... differentiation at two of the sites. The seasonal genetic shift correlated with the appearance of new size cohorts in the populations. Additionally, we found that the genetic composition of reproductive individuals did not always reflect the genetic composition of the entire sample, indicating that variance...

  5. Unleashing the power of human genetic variation knowledge: New Zealand stakeholder perspectives.

    Science.gov (United States)

    Gu, Yulong; Warren, James Roy; Day, Karen Jean

    2011-01-01

    This study aimed to characterize the challenges in using genetic information in health care and to identify opportunities for improvement. Taking a grounded theory approach, semistructured interviews were conducted with 48 participants to collect multiple stakeholder perspectives on genetic services in New Zealand. Three themes emerged from the data: (1) four service delivery models were identified in operation, including both those expected models involving genetic counselors and variations that do not route through the formal genetic service program; (2) multiple barriers to sharing and using genetic information were perceived, including technological, organizational, institutional, legal, ethical, and social issues; and (3) impediments to wider use of genetic testing technology, including variable understanding of genetic test utilities among clinicians and the limited capacity of clinical genetic services. Targeting these problems, information technologies and knowledge management tools have the potential to support key tasks in genetic services delivery, improve knowledge processes, and enhance knowledge networks. Because of the effect of issues in genetic information and knowledge management, the potential of human genetic variation knowledge to enhance health care delivery has been put on a "leash."

  6. The Grandest Genetic Experiment Ever Performed on Man? - A Y-Chromosomal Perspective on Genetic Variation in India.

    Science.gov (United States)

    Carvalho-Silva, Denise R; Tyler-Smith, Chris

    2008-05-01

    We have analysed Y-chromosomal data from Indian caste, Indian tribal and East Asian populations in order to investigate the impact of the caste system on male genetic variation. We find that variation within populations is lower in India than in East Asia, while variation between populations is overall higher. This observation can be explained by greater subdivision within the Indian population, leading to more genetic drift. However, the effect is most marked in the tribal populations, and the level of variation between caste populations is similar to the level between Chinese populations. The caste system has therefore had a detectable impact on Y-chromosomal variation, but this has been less strong than the influence of the tribal system, perhaps because of larger population sizes in the castes, more gene flow or a shorter period of time.

  7. Systematic documentation and analysis of human genetic variation using the microattribution approach

    Science.gov (United States)

    Giardine, Belinda; Borg, Joseph; Higgs, Douglas R.; Peterson, Kenneth R.; Maglott, Donna; Basak, A. Nazli; Clark, Barnaby; Faustino, Paula; Felice, Alex E.; Francina, Alain; Gallivan, Monica V. E.; Georgitsi, Marianthi; Gibbons, Richard J.; Giordano, Piero C.; Harteveld, Cornelis L.; Joly, Philippe; Kanavakis, Emmanuel; Kollia, Panagoula; Menzel, Stephan; Miller, Webb; Moradkhani, Kamran; Old, John; Papachatzopoulou, Adamantia; Papadakis, Manoussos N.; Papadopoulos, Petros; Pavlovic, Sonja; Philipsen, Sjaak; Radmilovic, Milena; Riemer, Cathy; Schrijver, Iris; Stojiljkovic, Maja; Thein, Swee Lay; Traeger-Synodinos, Jan; Tully, Ray; Wada, Takahito; Waye, John; Wiemann, Claudia; Zukic, Branka; Chui, David H. K.; Wajcman, Henri; Hardison, Ross C.; Patrinos, George P.

    2013-01-01

    We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to these disorders, and then implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories 1. A total of 1,941 unique genetic variants in 37 genes, encoding globins (HBA2, HBA1, HBG2, HBG1, HBD, HBB) and other erythroid proteins (ALOX5AP, AQP9, ARG2, ASS1, ATRX, BCL11A, CNTNAP2, CSNK2A1, EPAS1, ERCC2, FLT1, GATA1, GPM6B, HAO2, HBS1L, KDR, KL, KLF1, MAP2K1, MAP3K5, MAP3K7, MYB, NOS1, NOS2, NOS3, NOX3, NUP133, PDE7B, SMAD3, SMAD6, and TOX) are currently documented in these databases with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants and now provides a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The large repository of previously reported data, together with more recent data, acquired by microattribution, demonstrates how the comprehensive documentation of human variation will provide key insights into normal biological processes and how these are perturbed in human genetic disease. Using the microattribution process set out here, datasets which took decades to accumulate for the globin genes could be assembled rapidly for other genes and disease systems. The principles established here for the globin gene system will serve as a model for other systems and the analysis of other common and/or complex human genetic diseases. PMID:21423179

  8. In silico detection of sequence variations modifying transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Malin C Andersen

    2008-01-01

    Full Text Available Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers. The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation.

  9. In Silico Detection of Sequence Variations Modifying Transcriptional Regulation

    Science.gov (United States)

    Andersen, Malin C; Engström, Pär G; Lithwick, Stuart; Arenillas, David; Eriksson, Per; Lenhard, Boris; Wasserman, Wyeth W; Odeberg, Jacob

    2008-01-01

    Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers). The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation. PMID:18208319

  10. Intraspecific variation in social organization by genetic variation, developmental plasticity, social flexibility or entirely extrinsic factors.

    Science.gov (United States)

    Schradin, Carsten

    2013-05-19

    Previously, it was widely believed that each species has a specific social organization, but we know now that many species show intraspecific variation in their social organization. Four different processes can lead to intraspecific variation in social organization: (i) genetic variation between individuals owing to local adaptation (between populations) or evolutionarily stable strategies within populations; (ii) developmental plasticity evolved in long-term (more than one generation) unpredictable and short-term (one generation) predictable environments, which is mediated by organizational physiological effects during early ontogeny; (iii) social flexibility evolved in highly unpredictable environments, which is mediated by activational physiological effects in adults; (iv) entirely extrinsic factors such as the death of a dominant breeder. Variation in social behaviour occurs between individuals in the case of genetic variation and developmental plasticity, but within individuals in the case of social flexibility. It is important to study intraspecific variation in social organization to understand the social systems of species because it reveals the mechanisms by which species can adapt to changing environments, offers a useful tool to study the ultimate and proximate causes of sociality, and is an interesting phenomenon by itself that needs scientific explanation.

  11. Population-genetic properties of differentiated copy number variations in cattle.

    Science.gov (United States)

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Zhou, Yang; Hay, El Hamidi Abdel; Song, Jiuzhou; Sonstegard, Tad S; Van Tassell, Curtis P; Liu, George E

    2016-03-23

    While single nucleotide polymorphism (SNP) is typically the variant of choice for population genetics, copy number variation (CNV) which comprises insertion, deletion and duplication of genomic sequence, is an informative type of genetic variation. CNVs have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a population genetics survey based on CNVs derived from the BovineHD SNP array data of eight distinct cattle breeds. We generated high resolution results that show geographical patterns of variations and genome-wide admixture proportions within and among breeds. Similar to the previous SNP-based studies, our CNV-based results displayed a strong correlation of population structure and geographical location. By conducting three pairwise comparisons among European taurine, African taurine, and indicine groups, we further identified 78 unique CNV regions that were highly differentiated, some of which might be due to selection. These CNV regions overlapped with genes involved in traits related to parasite resistance, immunity response, body size, fertility, and milk production. Our results characterize CNV diversity among cattle populations and provide a list of lineage-differentiated CNVs.

  12. Comparison of the levels of intra-specific genetic variation within Giardia muris and Giardia intestinalis.

    Science.gov (United States)

    Andrews, R H; Monis, P T; Ey, P L; Mayrhofer, G

    1998-08-01

    The extent of intra-specific genetic variation between isolates of Giardia muris was assessed by allozyme electrophoresis. Additionally, the levels of allozymic variation detected within G. muris were compared with those observed between members of the two major assemblages of the morphologically distinct species Giardia intestinalis. Four isolates of G. muris were analysed. Three (Ad-120, -150, -151) were isolated from mice in Australia, while the fourth (R-T) was isolated from a golden hamster in North America. The 11 isolates of G. intestinalis (Ad-1, -12, -2, -62, representing genetic Groups I and II of Assemblage A and BAH-12, BRIS/87/HEPU/694, Ad-19, -22, -28, -45, -52, representing genetic Groups III and IV of Assemblage B) were from humans in Australia. Intra-specific genetic variation was detected between G. muris isolates at four of the 23 enzyme loci examined. Similar levels of variation were found within the genetic groups that comprise Assemblages A and B of G. intestinalis. These levels of intra-specific variation are similar to those observed within other morphologically-distinct species of protozoan parasites. We suggest that the magnitude of the genetic differences detected within G. muris provides an indication of the range of genetic variation within other species of Giardia and that this can be used as a model to delineate morphologically similar but genetically distinct (cryptic) species within this genus.

  13. MetaRanker 2.0: a web server for prioritization of genetic variation data

    DEFF Research Database (Denmark)

    Pers, Tune Hannes; Dworzynski, Piotr; Thomas, Cecilia Engel

    2013-01-01

    MetaRanker 2.0 is a web server for prioritization of common and rare frequency genetic variation data. Based on heterogeneous data sets including genetic association data, protein–protein interactions, large-scale text-mining data, copy number variation data and gene expression experiments, Meta...

  14. The genetic basis of natural variation in mushroom body size in Drosophila melanogaster.

    Science.gov (United States)

    Zwarts, Liesbeth; Vanden Broeck, Lies; Cappuyns, Elisa; Ayroles, Julien F; Magwire, Michael M; Vulsteke, Veerle; Clements, Jason; Mackay, Trudy F C; Callaerts, Patrick

    2015-12-11

    Genetic variation in brain size may provide the basis for the evolution of the brain and complex behaviours. The genetic substrate and the selective pressures acting on brain size are poorly understood. Here we use the Drosophila Genetic Reference Panel to map polymorphic variants affecting natural variation in mushroom body morphology. We identify 139 genes and 39 transcription factors and confirm effects on development and adult plasticity. We show correlations between morphology and aggression, sleep and lifespan. We propose that natural variation in adult brain size is controlled by interaction of the environment with gene networks controlling development and plasticity.

  15. Understanding human genetic variation in the era of high-throughput sequencing

    OpenAIRE

    Knight, Julian C.

    2010-01-01

    The EMBO/EMBL symposium ‘Human Variation: Cause and Consequence' highlighted advances in understanding the molecular basis of human genetic variation and its myriad implications for biology, human origins and disease.

  16. Host genetic variation influences gene expression response to rhinovirus infection.

    Directory of Open Access Journals (Sweden)

    Minal Çalışkan

    2015-04-01

    Full Text Available Rhinovirus (RV is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs, namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5 and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3. The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.

  17. Host genetic variation influences gene expression response to rhinovirus infection.

    Science.gov (United States)

    Çalışkan, Minal; Baker, Samuel W; Gilad, Yoav; Ober, Carole

    2015-04-01

    Rhinovirus (RV) is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs) from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs) in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs), namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5) and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3). The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.

  18. Genetic variation of gliadin composition of wheat varieties in shanxi

    International Nuclear Information System (INIS)

    Sun Daizhen; Wang Shuguang; Yang Wude; Cao Yaping; Yang Haifeng

    2009-01-01

    In order to discover genetic variation of gliadin composition of wheat varieties in Shanxi, A-PAGE method was used to analyze difference of gliadin composition and genetic diversity of 214 varieties including local bred, introduced and landraces wheat in recent 40 years. The results were as follows: number of gliadin band increased by 2.1 and 1.5 in bred and introduced wheat varieties compared to Shanxi landraces. In total 70 bands,the frequency of 26 bands detected from bred and introduced cultivars was up, 23 down, 21 no regular pattern compared to Shanxi landraces. In 4 gliadin zones, variation of types and frequency of gliadin band in ω zone was largest, γ was the second, β and α was smallest. Two band block of 16.5 and 19.1, and three band block of 12.9, 15.7 and 17.8 were tested in ω zone, but they do not express in the same variety. Mean of genetic distance in Shanxi wheat landraces was larger than those in other two type wheat cultivars. The cluster analysis found that cultivars of landraces, bred or introduced were divided into the same group, which showed genetic difference of loci encoded gliadin in Shanxi wheat landraces was larger than the other two type wheat cultivars, namely, the level of genetic variation of gliadin in bred or introduced cultivars was not high in the last 40 years. (authors)

  19. Variation and Genetic Structure in Platanus mexicana (Platanaceae along Riparian Altitudinal Gradient

    Directory of Open Access Journals (Sweden)

    Dulce M. Galván-Hernández

    2015-01-01

    Full Text Available Platanus mexicana is a dominant arboreal species of riparian ecosystems. These ecosystems are associated with altitudinal gradients that can generate genetic differences in the species, especially in the extremes of the distribution. However, studies on the altitudinal effect on genetic variation to riparian species are scarce. In Mexico, the population of P. mexicana along the Colipa River (Veracruz State grows below its reported minimum altitude range, possibly the lowest where this tree grows. This suggests that altitude might be an important factor in population genetics differentiation. We examined the genetic variation and population structuring at four sites with different altitudes (70, 200, 600 and 1700 m a.s.l. using ten inter-simple sequence repeats (ISSR markers. The highest value for Shannon index and Nei’s gene diversity was obtained at 1700 m a.s.l. (He = 0.27, Ne = 1.47, I = 0.42 and polymorphism reached the top value at the middle altitude (% p = 88.57. Analysis of molecular variance (AMOVA and STRUCTURE analysis indicated intrapopulation genetic differentiation. The arithmetic average (UPGMA dendrogram identified 70 m a.s.l. as the most genetically distant site. The genetic structuring resulted from limited gene flow and genetic drift. This is the first report of genetic variation in populations of P. mexicana in Mexico. This research highlights its importance as a dominant species, and its ecological and evolutionary implications in altitudinal gradients of riparian ecosystems.

  20. Genetic microheterogeneity and phenotypic variation of Helicobacter pylori arginase in clinical isolates

    Directory of Open Access Journals (Sweden)

    Spadafora Domenico

    2007-04-01

    Full Text Available Abstract Background Clinical isolates of the gastric pathogen Helicobacter pylori display a high level of genetic macro- and microheterogeneity, featuring a panmictic, rather than clonal structure. The ability of H. pylori to survive the stomach acid is due, in part, to the arginase-urease enzyme system. Arginase (RocF hydrolyzes L-arginine to L-ornithine and urea, and urease hydrolyzes urea to carbon dioxide and ammonium, which can neutralize acid. Results The degree of variation in arginase was explored at the DNA sequence, enzyme activity and protein expression levels. To this end, arginase activity was measured from 73 minimally-passaged clinical isolates and six laboratory-adapted strains of H. pylori. The rocF gene from 21 of the strains was cloned into genetically stable E. coli and the enzyme activities measured. Arginase activity was found to substantially vary (>100-fold in both different H. pylori strains and in the E. coli model. Western blot analysis revealed a positive correlation between activity and amount of protein expressed in most H. pylori strains. Several H. pylori strains featured altered arginase activity upon in vitro passage. Pairwise alignments of the 21 rocF genes plus strain J99 revealed extensive microheterogeneity in the promoter region and 3' end of the rocF coding region. Amino acid S232, which was I232 in the arginase-negative clinical strain A2, was critical for arginase activity. Conclusion These studies demonstrated that H. pylori arginase exhibits extensive genotypic and phenotypic variation which may be used to understand mechanisms of microheterogeneity in H. pylori.

  1. Genetic component of flammability variation in a Mediterranean shrub.

    Science.gov (United States)

    Moreira, B; Castellanos, M C; Pausas, J G

    2014-03-01

    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non-resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability-enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems. © 2014 John Wiley & Sons Ltd.

  2. Genetic variations in taste perception modify alcohol drinking behavior in Koreans.

    Science.gov (United States)

    Choi, Jeong-Hwa; Lee, Jeonghee; Yang, Sarah; Kim, Jeongseon

    2017-06-01

    The sensory components of alcohol affect the onset of individual's drinking. Therefore, variations in taste receptor genes may lead to differential sensitivity for alcohol taste, which may modify an individual's drinking behavior. This study examined the influence of genetic variants in the taste-sensing mechanism on alcohol drinking behavior and the choice of alcoholic beverages. A total of 1829 Koreans were analyzed for their alcohol drinking status (drinker/non-drinker), total alcohol consumption (g/day), heavy drinking (≥30 g/day) and type of regularly consumed alcoholic beverages. Twenty-one genetic variations in bitterness, sweetness, umami and fatty acid sensing were also genotyped. Our findings suggested that multiple genetic variants modified individuals' alcohol drinking behavior. Genetic variations in the T2R bitterness receptor family were associated with overall drinking behavior. Subjects with the TAS2R38 AVI haplotype were less likely to be a drinker [odds ratio (OR): 0.75, 95% confidence interval (CI): 0.59-0.95], and TAS2R5 rs2227264 predicted the level of total alcohol consumption (p = 0.01). In contrast, the T1R sweet and umami receptor family was associated with heavy drinking. TAS1R3 rs307355 CT carriers were more likely to be heavy drinkers (OR: 1.53, 95% CI: 1.06-2.19). The genetic variants were also associated with the choice of alcoholic beverages. The homo-recessive type of TAS2R4 rs2233998 (OR: 1.62, 95% CI: 1.11-2.37) and TAS2R5 rs2227264 (OR: 1.72, 95% CI: 1.14-2.58) were associated with consumption of rice wine. However, TAS1R2 rs35874116 was associated with wine drinking (OR: 0.65, 95% CI: 0.43-0.98) and the consumption level (p = 0.04). These findings suggest that multiple genetic variations in taste receptors influence drinking behavior in Koreans. Genetic variations are also responsible for the preference of particular alcoholic beverages, which may contribute to an individual's alcohol drinking behavior. Copyright © 2017

  3. Genetic effects at pleiotropic loci are context-dependent with consequences for the maintenance of genetic variation in populations.

    Directory of Open Access Journals (Sweden)

    Heather A Lawson

    2011-09-01

    Full Text Available Context-dependent genetic effects, including genotype-by-environment and genotype-by-sex interactions, are a potential mechanism by which genetic variation of complex traits is maintained in populations. Pleiotropic genetic effects are also thought to play an important role in evolution, reflecting functional and developmental relationships among traits. We examine context-dependent genetic effects at pleiotropic loci associated with normal variation in multiple metabolic syndrome (MetS components (obesity, dyslipidemia, and diabetes-related traits. MetS prevalence is increasing in Western societies and, while environmental in origin, presents substantial variation in individual response. We identify 23 pleiotropic MetS quantitative trait loci (QTL in an F(16 advanced intercross between the LG/J and SM/J inbred mouse strains (Wustl:LG,SM-G16; n = 1002. Half of each family was fed a high-fat diet and half fed a low-fat diet; and additive, dominance, and parent-of-origin imprinting genotypic effects were examined in animals partitioned into sex, diet, and sex-by-diet cohorts. We examine the context-dependency of the underlying additive, dominance, and imprinting genetic effects of the traits associated with these pleiotropic QTL. Further, we examine sequence polymorphisms (SNPs between LG/J and SM/J as well as differential expression of positional candidate genes in these regions. We show that genetic associations are different in different sex, diet, and sex-by-diet settings. We also show that over- or underdominance and ecological cross-over interactions for single phenotypes may not be common, however multidimensional synthetic phenotypes at loci with pleiotropic effects can produce situations that favor the maintenance of genetic variation in populations. Our findings have important implications for evolution and the notion of personalized medicine.

  4. Intraspecific morphological and genetic variation of common species predicts ranges of threatened ones

    Science.gov (United States)

    Fuller, Trevon L.; Thomassen, Henri A.; Peralvo, Manuel; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M.; Jarrín-V, Pablo; Devitt, Susan E. Cameron; Mason, Eliza; Schweizer, Rena M.; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Schneider, Christopher J.; Pollinger, John P.; Saatchi, Sassan; Graham, Catherine H.; Wayne, Robert K.; Smith, Thomas B.

    2013-01-01

    Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible. PMID:23595273

  5. Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L.

    Science.gov (United States)

    Lewis, Caleb; Lennon, Adrian M; Eudoxie, Gaius; Umaharan, Pathmanathan

    2018-06-02

    Cadmium (Cd) is a non-essential heavy metal that is toxic to both plants and animals and chocolates have been identified as a contributor to the human dietary Cd intake. One hundred accessions representing the various genetic groups and hybrid populations in Theobroma cacao L. held at the International Cocoa Genebank, Trinidad were evaluated for leaf and bean cadmium levels with three tree replications. Representative samples of soil from the drip zone around each tree were evaluated for bioavailable cadmium. Although there were significant differences (P ≤ 0.05) among genetic groups for leaf and bean Cd much of the variation was between accessions. There was a 13-fold variation in bean Cd and a 7-fold variation in leaf Cd between accessions despite the bioavailable Cd in the soil being uniform. There were differences in the level of partitioning into beans evident by significant variation (P ≤ 0.05) in bean Cd as a percentage of the cumulative leaf and bean Cd concentration (15-52%) between accessions. Although in general there was a higher concentration of cadmium in the testa than the cotyledon of the cocoa bean there was considerable genetic variation. These results point to the potential of using a genetic strategy to mitigate cadmium within cocoa beans either through breeding or through the use of low cadmium uptake rootstocks in grafting. The results will fuel further work into the understanding of mechanisms and genetics of cadmium uptake and partitioning in cocoa. Copyright © 2018. Published by Elsevier B.V.

  6. Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach

    NARCIS (Netherlands)

    B. Giardine (Belinda); J. Borg (Joseph); D.R. Higgs (Douglas); K.R. Peterson (Kenneth R.); J.N.J. Philipsen (Sjaak); D. Maglott (Donna); B.K. Singleton (Belinda K.); D.J. Anstee (David J.); A.N. Basak (Nazli); B.H. Clark (Bruce); F.C. Costa (Flavia C.); P. Faustino (Paula); H. Fedosyuk (Halyna); A.E. Felice (Alex); A. Francina (Alain); R. Galanello (Renzo); M.V.E. Gallivan (Monica V. E.); M. Georgitsi (Marianthi); R.J. Gibbons (Richard J.); P.C. Giordano (Piero Carlo); C.L. Harteveld (Cornelis); J.D. Hoyer (James D.); M. Jarvis (Martin); P. Joly (Philippe); E. Kanavakis (Emmanuel); P. Kollia (Panagoula); S. Menzel (Stephan); W.G. Miller (William); K. Moradkhani (Kamran); J. Old (John); A. Papachatzpoulou (Adamantia); M.N. Papadakis (Manoussos); P. Papadopoulos (Petros); S. Pavlovic (Sonja); L. Perseu (Lucia); M. Radmilovic (Milena); C. Riemer (Cathy); S. Satta (Stefania); I.A. Schrijver (Ingrid); M. Stojiljkovic (Maja); S.L. Thein; J. Traeger-Synodinos (Joanne); R. Tully (Ray); T. Wada (Takahito); J.S. Waye (John); C. Wiemann (Claudia); B. Zukic (Branka); D.H.K. Chui (David H. K.); H. Wajcman (Henri); R. Hardison (Ross); G.P. Patrinos (George)

    2011-01-01

    textabstractWe developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public

  7. Elevational patterns of genetic variation in the cosmopolitan moss Bryum argenteum (Bryaceae).

    Science.gov (United States)

    Pisa, Sergio; Werner, Olaf; Vanderpoorten, Alain; Magdy, Mahmoud; Ros, Rosa M

    2013-10-01

    The Baas Becking tenet posits that 'everything is everywhere, but the environment selects' to explain cosmopolitan distributions in highly vagile taxa. Bryophyte species show wider distributions than vascular plants and include examples of truly cosmopolitan ranges, which have been interpreted as a result of high dispersal capacities and ecological plasticity. In the current study, we documented patterns of genetic structure and diversity in the cosmopolitan moss Bryum argenteum along an elevational gradient to determine if genetic diversity and structure is homogenized by intense migrations in the lack of ecological differentiation. • 60 specimens were collected in the Sierra Nevada Mountains (Spain) between 100 and 2870 m and sequenced for ITS and rps4. Comparative analyses, genetic diversity estimators, and Mantel's tests were employed to determine the relationship between genetic variation, elevation, and geographic distance and to look for signs of demographic shifts. • Genetic diversity peaked above 1900 m and no signs of demographic shifts were detected at any elevation. There was a strong phylogenetic component in elevational variation. Genetic variation was significantly correlated with elevation, but not with geographic distance. • The results point to the long-term persistence of Bryum argenteum in a range that was glaciated during the Late Pleistocene. Evidence for an environmentally driven pattern of genetic differentiation suggests adaptive divergence. This supports the Baas Becking tenet and indicates that ecological specialization might play a key role in explaining patterns of genetic structure in cosmopolitan mosses.

  8. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout

    Science.gov (United States)

    Kovach, Ryan; Muhlfeld, Clint C.; Wade, Alisa A.; Hand, Brian K.; Whited, Diane C.; DeHaan, Patrick W.; Al-Chokhachy, Robert K.; Luikart, Gordon

    2015-01-01

    Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = −0.77;P bull trout and other imperiled species. Genetic diversity is already depressed where climatic vulnerability is highest; it will likely erode further in the very places where diversity may be most needed for future persistence.

  9. Genetic variation for characters of importance for growth in Salix viminalis L. Final report; Genetisk variation foer karaktaerer av betydelse foer tillvaext hos Salix viminalis L. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Roennberg-Waestljung, Ann Christin; Gullberg, Urban [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Plant Biology

    2000-04-01

    The overall goal for this project was to study the genetic variation and the genetic relationships for different growth characters and for water use efficiency (WUE) in Salix viminalis and also to use this knowledge to formulate breeding goals for Salix. Two factorial crossings with Swedish and Polish origin, each with 320 families have been used. Part of the Polish material was used to study the genetic variation for carbon isotope quota. Carbon isotope quota gives a measure of the WUE for the plant. Crossings have been made to change and improve the WUE in Salix viminalis. Construction of a genetic linkage map has started and the map can be used to identify genetic markers for WUE. The results show that most of the growth characters have both additive genetic variation and also a high degree of dominance genetic variation. A strategy in the breeding where both additive and dominance variation can be utilized should be adopted. WUE show mainly additive genetic variation but also a high heritability. This gives great opportunities to improve Salix material for WUE through recurrent selection.

  10. Genetic alterations and epigenetic changes in hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Luz Stella Hoyos Giraldo

    2007-02-01

    Full Text Available

    Hepatocarcinogenesis as hepatocellular carcinoma (HCC is associated with background of chronic liver disease usually in association with cirrhosis, marked hepatic fibrosis, hepatitis B virus (HBV and/or hepatitis virus (HCV infection, chronic inflammation, Aflatoxin B1(AFB1 exposure, chronic alcoholism, metabolic disorder of the liver and necroinflamatory liver disease. Hepatocarcinogenesis involve two mechanisms, genetic alterations (with changes in the cell's DNA sequence and epigenetic changes (without changes in the cell's DNA sequence, but changes in the pattern of gene expression that can persist through one or more generations (somatic sense. Hepatocarcinogenesis is associated with activation of oncogenes and decreased expression of tumor suppressor genes (TSG; include those involved in cell cycle control, apoptosis, DNA repair, immortalization and angiogenesis. AFB1 is metabolized in the liver into a potent carcinogen, aflatoxin 8, 9-epoxide, which is detoxified by epoxide hydrolase (EPHX and glutathione S-transferase M1 (GSTM1.

    A failure of detoxification processes can allow to mutagenic metabolite to bind to DNA and inducing P53 mutation. Genetic polymorphism of EPHX and GSTM1 can make individuals more susceptible to AFB1. Epigenetic inactivation of GSTP1 by promoter hypermethylation plays a role in the development of HCC because, it leads that electrophilic metabolite increase DNA damage and mutations. HBV DNA integration into the host chromosomal DNA of hepatocytes has been detected in HBV-related HCC.

    DNA tumor viruses cause cancer mainly by interfering with cell cycle controls, and activating the cell's replication machinery by blocking the action of key TSG. HBx protein is a

  11. Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations.

    Science.gov (United States)

    Tabachnick, W J; Wallis, G P; Aitken, T H; Miller, B R; Amato, G D; Lorenz, L; Powell, J R; Beaty, B J

    1985-11-01

    Twenty-eight populations representing a worldwide distribution of Aedes aegypti were tested for their ability to become orally infected with yellow fever virus (YFV). Populations had been analyzed for genetic variations at 11 isozyme loci and assigned to one of 8 genetic geographic groups of Ae. aegypti. Infection rates suggest that populations showing isozyme genetic relatedness also demonstrate similarity to oral infection rates with YFV. The findings support the hypothesis that genetic variation exists for oral susceptibility to YFV in Ae. aegypti.

  12. Epigenetic Variation May Compensate for Decreased Genetic Variation with Introductions: A Case Study Using House Sparrows (Passer domesticus on Two Continents

    Directory of Open Access Journals (Sweden)

    Aaron W. Schrey

    2012-01-01

    Full Text Available Epigenetic mechanisms impact several phenotypic traits and may be important for ecology and evolution. The introduced house sparrow (Passer domesticus exhibits extensive phenotypic variation among and within populations. We screened methylation in populations from Kenya and Florida to determine if methylation varied among populations, varied with introduction history (Kenyan invasion <50 years old, Florida invasion ~150 years old, and could potentially compensate for decrease genetic variation with introductions. While recent literature has speculated on the importance of epigenetic effects for biological invasions, this is the first such study among wild vertebrates. Methylation was more frequent in Nairobi, and outlier loci suggest that populations may be differentiated. Methylation diversity was similar between populations, in spite of known lower genetic diversity in Nairobi, which suggests that epigenetic variation may compensate for decreased genetic diversity as a source of phenotypic variation during introduction. Our results suggest that methylation differences may be common among house sparrows, but research is needed to discern whether methylation impacts phenotypic variation.

  13. Resolving the Complex Genetic Basis of Phenotypic Variation and Variability of Cellular Growth.

    Science.gov (United States)

    Ziv, Naomi; Shuster, Bentley M; Siegal, Mark L; Gresham, David

    2017-07-01

    In all organisms, the majority of traits vary continuously between individuals. Explaining the genetic basis of quantitative trait variation requires comprehensively accounting for genetic and nongenetic factors as well as their interactions. The growth of microbial cells can be characterized by a lag duration, an exponential growth phase, and a stationary phase. Parameters that characterize these growth phases can vary among genotypes (phenotypic variation), environmental conditions (phenotypic plasticity), and among isogenic cells in a given environment (phenotypic variability). We used a high-throughput microscopy assay to map genetic loci determining variation in lag duration and exponential growth rate in growth rate-limiting and nonlimiting glucose concentrations, using segregants from a cross of two natural isolates of the budding yeast, Saccharomyces cerevisiae We find that some quantitative trait loci (QTL) are common between traits and environments whereas some are unique, exhibiting gene-by-environment interactions. Furthermore, whereas variation in the central tendency of growth rate or lag duration is explained by many additive loci, differences in phenotypic variability are primarily the result of genetic interactions. We used bulk segregant mapping to increase QTL resolution by performing whole-genome sequencing of complex mixtures of an advanced intercross mapping population grown in selective conditions using glucose-limited chemostats. We find that sequence variation in the high-affinity glucose transporter HXT7 contributes to variation in growth rate and lag duration. Allele replacements of the entire locus, as well as of a single polymorphic amino acid, reveal that the effect of variation in HXT7 depends on genetic, and allelic, background. Amplifications of HXT7 are frequently selected in experimental evolution in glucose-limited environments, but we find that HXT7 amplifications result in antagonistic pleiotropy that is absent in naturally

  14. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans.

    Science.gov (United States)

    Verloop, Herman; Dekkers, Olaf M; Peeters, Robin P; Schoones, Jan W; Smit, Johannes W A

    2014-09-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation. © 2014 European Society of Endocrinology.

  15. Genetic and phenotypic intra-species variation in Candida albicans.

    Science.gov (United States)

    Hirakawa, Matthew P; Martinez, Diego A; Sakthikumar, Sharadha; Anderson, Matthew Z; Berlin, Aaron; Gujja, Sharvari; Zeng, Qiandong; Zisson, Ethan; Wang, Joshua M; Greenberg, Joshua M; Berman, Judith; Bennett, Richard J; Cuomo, Christina A

    2015-03-01

    Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity. © 2015 Hirakawa et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Unexpectedly high genetic variation in large unisexual clumps of the subdioecious plant Honckenya peploides

    DEFF Research Database (Denmark)

    Sánchez-Vilas, Julia; Philipp, Marianne; Retuerto, Rubén

    2010-01-01

    Honckenya peploides is a subdioecious dune plant that reproduces both sexually and by clonal growth. In northwest Spain this species was found to exhibit an extreme spatial segregation of the sexes, and our objective was to investigate genetic variation in unisexual clumps. Genetic variation was ...

  17. Genetic determination of human facial morphology: links between cleft-lips and normal variation.

    Science.gov (United States)

    Boehringer, Stefan; van der Lijn, Fedde; Liu, Fan; Günther, Manuel; Sinigerova, Stella; Nowak, Stefanie; Ludwig, Kerstin U; Herberz, Ruth; Klein, Stefan; Hofman, Albert; Uitterlinden, Andre G; Niessen, Wiro J; Breteler, Monique M B; van der Lugt, Aad; Würtz, Rolf P; Nöthen, Markus M; Horsthemke, Bernhard; Wieczorek, Dagmar; Mangold, Elisabeth; Kayser, Manfred

    2011-11-01

    Recent genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with non-syndromic cleft lip with or without cleft palate (NSCL/P), and other previous studies showed distinctly differing facial distance measurements when comparing unaffected relatives of NSCL/P patients with normal controls. Here, we test the hypothesis that genetic loci involved in NSCL/P also influence normal variation in facial morphology. We tested 11 SNPs from 10 genomic regions previously showing replicated evidence of association with NSCL/P for association with normal variation of nose width and bizygomatic distance in two cohorts from Germany (N=529) and the Netherlands (N=2497). The two most significant associations found were between nose width and SNP rs1258763 near the GREM1 gene in the German cohort (P=6 × 10(-4)), and between bizygomatic distance and SNP rs987525 at 8q24.21 near the CCDC26 gene (P=0.017) in the Dutch sample. A genetic prediction model explained 2% of phenotype variation in nose width in the German and 0.5% of bizygomatic distance variation in the Dutch cohort. Although preliminary, our data provide a first link between genetic loci involved in a pathological facial trait such as NSCL/P and variation of normal facial morphology. Moreover, we present a first approach for understanding the genetic basis of human facial appearance, a highly intriguing trait with implications on clinical practice, clinical genetics, forensic intelligence, social interactions and personal identity.

  18. An integrated map of genetic variation from 1.092 human genomes

    DEFF Research Database (Denmark)

    Abecasis, Goncalo R.; Auton, Adam; Brooks, Lisa D.

    2012-01-01

    By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination ...

  19. Effects of functionally asexual reproduction on quantitative genetic variation in the evening primroses (Oenothera, Onagraceae).

    Science.gov (United States)

    Godfrey, Ryan M; Johnson, Marc T J

    2014-11-01

    It has long been predicted that a loss of sexual reproduction leads to decreased heritable variation within populations and increased differentiation between populations. Despite an abundance of theory, there are few empirical tests of how sex affects genetic variation in phenotypic traits, especially for plants. Here we test whether repeated losses of two critical components of sex (recombination and segregation) in the evening primroses (Oenothera L., Onagraceae) affect quantitative genetic variation within and between populations. We sampled multiple genetic families from 3-5 populations from each of eight Oenothera species, which represented four independent transitions between sexual reproduction and a functionally asexual genetic system called "permanent translocation heterozygosity." We used quantitative genetics methods to partition genetic variation within and between populations for eight plant traits related to growth, leaf physiology, flowering, and resistance to herbivores. Heritability was, on average, 74% higher in sexual Oenothera populations than in functionally asexual populations, with plant growth rate, specific leaf area, and the percentage of leaf water content showing the strongest differences. By contrast, genetic differentiation among populations was 2.8× higher in functionally asexual vs. sexual Oenothera species. This difference was particularly strong for specific leaf area. Sexual populations tended to exhibit higher genetic correlations among traits, but this difference was weakly supported. These results support the prediction that sexual reproduction maintains higher genetic variation within populations, which may facilitate adaptive evolution. We also found partial support for the prediction that a loss of sex leads to greater population differentiation, which may elevate speciation rates. © 2014 Botanical Society of America, Inc.

  20. Genetic variation of male reproductive success in a laboratory population of Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Voordouw Maarten J

    2007-07-01

    Full Text Available Abstract Background For Anopheline mosquitoes, the vectors of human malaria, genetic variation in male reproductive success can have important consequences for any control strategy based on the release of transgenic or sterile males. Methods A quantitative genetics approach was used to test whether there was a genetic component to variation in male reproductive success in a laboratory population of Anopheles gambiae. Swarms of full sibling brothers were mated with a fixed number of females and their reproductive success was measured as (1 proportion of ovipositing females, (2 proportion of ovipositing females that produced larvae, (3 proportion of females that produced larvae, (4 number of eggs laid per female, (5 number of larvae per ovipositing female and (6 number of larvae per female. Results The proportion of ovipositing females (trait 1 and the proportion of ovipositing females that produced larvae (trait 2 differed among full sib families, suggesting a genetic basis of mating success. In contrast, the other measures of male reproductive success showed little variation due to the full sib families, as their variation are probably mostly due to differences among females. While age at emergence and wing length of the males were also heritable, they were not associated with reproductive success. Larger females produced more eggs, but males did not prefer such partners. Conclusion The first study to quantify genetic variation for male reproductive success in A. gambiae found that while the initial stages of male reproduction (i.e. the proportion of ovipositing females and the proportion of ovipositing females that produced larvae had a genetic basis, the overall reproductive success (i.e. the mean number of larvae per female did not.

  1. Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease

    Science.gov (United States)

    Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.

    2014-01-01

    Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772

  2. Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation.

    Science.gov (United States)

    Badyaev, Alexander V

    2005-05-07

    Extreme environments are closely associated with phenotypic evolution, yet the mechanisms behind this relationship are poorly understood. Several themes and approaches in recent studies significantly further our understanding of the importance that stress-induced variation plays in evolution. First, stressful environments modify (and often reduce) the integration of neuroendocrinological, morphological and behavioural regulatory systems. Second, such reduced integration and subsequent accommodation of stress-induced variation by developmental systems enables organismal 'memory' of a stressful event as well as phenotypic and genetic assimilation of the response to a stressor. Third, in complex functional systems, a stress-induced increase in phenotypic and genetic variance is often directional, channelled by existing ontogenetic pathways. This accounts for similarity among individuals in stress-induced changes and thus significantly facilitates the rate of adaptive evolution. Fourth, accumulation of phenotypically neutral genetic variation might be a common property of locally adapted and complex organismal systems, and extreme environments facilitate the phenotypic expression of this variance. Finally, stress-induced effects and stress-resistance strategies often persist for several generations through maternal, ecological and cultural inheritance. These transgenerational effects, along with both the complexity of developmental systems and stressor recurrence, might facilitate genetic assimilation of stress-induced effects. Accumulation of phenotypically neutral genetic variance by developmental systems and phenotypic accommodation of stress-induced effects, together with the inheritance of stress-induced modifications, ensure the evolutionary persistence of stress-response strategies and provide a link between individual adaptability and evolutionary adaptation.

  3. Genetic variation within the TRPM5 locus associates with prediabetic phenotypes in subjects at increased risk for type 2 diabetes

    DEFF Research Database (Denmark)

    Ketterer, Caroline; Müssig, Karsten; Heni, Martin

    2011-01-01

    The functional knockout of the calcium-sensitive, nonselective cation channel TRPM5 alters glucose-induced insulin secretion and glucose tolerance. We hypothesized that genetic variation in the TRPM5 gene may contribute to prediabetic phenotypes, including pancreatic ß-cell dysfunction. We...... glucagon-like peptide-1 levels at 30 minutes during the OGTT compared with major allele homozygotes (P = .0124), whereas in male subjects, no significant differences were found (P = .3). In our German population, the common TRPM5 variants are likely to be associated with prediabetic phenotypes...

  4. Genetic variation among pelt sheep population using microsatellite ...

    African Journals Online (AJOL)

    Genetic variation in three Iranian pelt sheep breeds namely: Gray Shiraz, Zandi and Karakul were investigated using fifteen microsatellite loci. Genomic DNA was extracted from 360 blood samples by extraction kits and salting-out procedure with some modifications. The total number of alleles ranged from 6 to12 in loci.

  5. Inter-chromosomal variation in the pattern of human population genetic structure

    Directory of Open Access Journals (Sweden)

    Baye Tesfaye M

    2011-05-01

    Full Text Available Abstract Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals, across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7 million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five complementary statistical and genetic network procedures: principal component (PC, cluster, discriminant, fixation index (FST and network/pathway analyses. At the global level, the first two PC scores were sufficient to account for major population structure; however, chromosomal level analysis detected subtle forms of population structure within continental populations, and as many as 31 PCs were required to classify individuals into homogeneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes encoding oculocutaneous albinism II (OCA2, hect domain and RLD 2 (HERC2, ectodysplasin A receptor (EDAR and solute carrier family 45, member 2 (SLC45A2. These genes are associated with melanin production, which is involved in the development of skin and hair colour, skin cancer and eye pigmentation. We also identified the genes encoding interferon-γ (IFNG and death-associated protein kinase 1 (DAPK1, which are associated with cell death, inflammatory and immunological diseases. An in-depth understanding of these genomic regions may help to explain variations in adaptation to different environments. Our approach offers a comprehensive strategy for analysing chromosome-based population structure and differentiation, and demonstrates the

  6. MICROSATELLITE GENETIC VARIATION IN CULTURED POPULATIONS OF AFRICAN CATFISH (Clarias gariepinus IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Imron Imron

    2011-06-01

    Full Text Available African catfish, Clarias gariepinus, is one of economically important farmed species in Indonesia. To support the development of aquaculture industry, high genetic quality of both broodstock and seeds is required and breeding program is considered as viable option. Information on genetic variation of the populations being considered to form a base population may give insight toward the appropriate strategy to be implemented in breeding program. This study was aimed to assess genetic variation in farmed populations of catfish in Indonesia using microsatellite markers with special emphasis on their use to develop breeding program. Three populations of farmed catfish, namely Dumbo, Paiton, and Sangkuriang were collected. Fifteen individuals representing each population were screened for microsatellite variability using seven primer sets (cga01, cga02, cga03, cga05, cga06, cga09, cga10. Results found that with exception of two loci (cga01 and cg02 which had a slight increase, the other four loci showed reduction in the number of alleles ranging from 35% to 80% depending on loci. Farmed populations also showed heterozygote deficient and inbreeding level, being the highest was found in Sangkuriang and the least was observed in Dumbo population. Individuals within populations contributed most (95% while interpopulation variation accounted for only 5% of the total genetic variation. Populations of Dumbo and Sangkuriang were genetically similar while populations of Paiton were genetically different from both Dumbo and Sangkuriang. Viewed from genetic perspective, by combining all information emerging from this study, the best possible strategy to establish a base population with broad genetic base and less inbreeding would be to combine all the populations into a synthetic base population.

  7. Genetic variation of Taenia pisiformis collected from Sichuan, China, based on the mitochondrial cytochrome B gene.

    Science.gov (United States)

    Yang, Deying; Ren, Yongjun; Fu, Yan; Xie, Yue; Nie, Huaming; Nong, Xiang; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2013-08-01

    Taenia pisiformis is one of the most important parasites of canines and rabbits. T. pisiformis cysticercus (the larval stage) causes severe damage to rabbit breeding, which results in huge economic losses. In this study, the genetic variation of T. pisiformis was determined in Sichuan Province, China. Fragments of the mitochondrial cytochrome b (cytb) (922 bp) gene were amplified in 53 isolates from 8 regions of T. pisiformis. Overall, 12 haplotypes were found in these 53 cytb sequences. Molecular genetic variations showed 98.4% genetic variation derived from intra-region. FST and Nm values suggested that 53 isolates were not genetically differentiated and had low levels of genetic diversity. Neutrality indices of the cytb sequences showed the evolution of T. pisiformis followed a neutral mode. Phylogenetic analysis revealed no correlation between phylogeny and geographic distribution. These findings indicate that 53 isolates of T. pisiformis keep a low genetic variation, which provide useful knowledge for monitoring changes in parasite populations for future control strategies.

  8. Genetic variation of common walnut (Juglans regia in Piedmont, Northwestern Italy

    Directory of Open Access Journals (Sweden)

    Ferrazzini D

    2007-12-01

    Full Text Available The European or common walnut is a large tree prized as a multipurpose species: it provides valuable timber and produces a high-quality edible nut. The diffusion of the species in Italy has been largely influenced by the human activity, mainly through germplasm movement, selection of genotypes most suited for wood or fruit production and adaptation induced on fruit crop reproductive materials. As a consequence, genetic variability has been reduced, so that programs aimed at its preservation appear of the utmost importance. 104 walnut plants growing in Piedmont, northwestern Italy, were investigated through genetic variation scored at RAPD loci, yielded by PCR amplification of 10 decamer primers. Among the 101 studied loci, only 53 were polymorphic, showing a low level of genetic variation within the studied material. Genetic differentiation was estimated both at individual and geographical area level. Only in few cases trees growing in the same area showed to be genetically similar, while the differentiation between areas accounted for about 10% of the total variation, according to AMOVA. No significant correlation was found between genetic and geographic distances. The results of the study showed that also in Piedmont (such as it was already demonstrated in other parts of Italy the distribution of common walnut is a direct consequence of the human activity. The selection of individual trees, to be used as basic materials for seed supply, should therefore be based mainly on phenotypic traits, rather than ecological features of the location: in species characterized by artificial diffusion, the adoption of Region of Provenance has a scarce significance and prominence should be given to the phenotype selection.

  9. Generation of Infectious Poliovirus with Altered Genetic Information from Cloned cDNA.

    Science.gov (United States)

    Bujaki, Erika

    2016-01-01

    The effect of specific genetic alterations on virus biology and phenotype can be studied by a great number of available assays. The following method describes the basic protocol to generate infectious poliovirus with altered genetic information from cloned cDNA in cultured cells.The example explained here involves generation of a recombinant poliovirus genome by simply replacing a portion of the 5' noncoding region with a synthetic gene by restriction cloning. The vector containing the full length poliovirus genome and the insert DNA with the known mutation(s) are cleaved for directional cloning, then ligated and transformed into competent bacteria. The recombinant plasmid DNA is then propagated in bacteria and transcribed to RNA in vitro before RNA transfection of cultured cells is performed. Finally, viral particles are recovered from the cell culture.

  10. Genetic variation in the Critically Endangered velvet worm ...

    African Journals Online (AJOL)

    In the present study the genetic variation of the Critically Endangered velvet worm species Opisthopatus roseus is examined. This species is endemic to the Ngele mistbelt forest in the KwaZulu-Natal province of South Africa. In recent years the forest has been severely impacted by anthropogenic activities such as logging of ...

  11. Genetic variation in DNA repair gene XRCC7 (G6721T) and susceptibility to breast cancer.

    Science.gov (United States)

    Nasiri, Meysam; Saadat, Iraj; Omidvari, Shahpour; Saadat, Mostafa

    2012-08-15

    The human XRCC7 is a DNA double-strand break (DSBs) repair gene, involved in non-homologous end joining (NHEJ). It is speculated that DNA DSBs repair have an important role during development of breast cancer. The human XRCC7 is a NHEJ DSBs repair gene. Genetic variation G6721T of XRCC7 (rs7003908) is located in the intron 8 of the gene. This polymorphism may regulate splicing and cause mRNA instability. In the present study, we specifically investigated whether common G6721T genetic variant of XRCC7 was associated with an altered risk of breast cancer. The present study included 362 females with breast cancer. Age frequency-matched controls (362 persons) were randomly selected from the healthy female blood donors, according to the age distribution of the cases. Using RFLP-PCR based method, the polymorphism of XRCC7 was determined. The TG (OR=1.20, 95% CI: 0.83-1.74, P=0.320) and TT (OR=1.01, 95% CI: 0.67-1.53, P=0.933) genotypes had no significant effect on risk of breast cancer, in comparison with the GG genotype. Our present findings indicate that the TT and TG genotypes were not associated with an altered breast cancer risk. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Genetic basis of variation for salinity tolerance in okra (abelmoschus esculentus L.)

    International Nuclear Information System (INIS)

    Ikram-ul-Haq; Khan, A.A.; Azhar, F.M.; Ullah, E.

    2010-01-01

    The development of salt tolerant plants through selection and breeding depends on the presence of the genetic variability within the crop species in response to salt stress, which must have significant genetic component. Such information is not extensively available in vegetable crops. The present study was carried out to gain some information on the genetic basis of variation for salinity tolerance in okra. North Carolina Mating Design II (NCM II) was used for the estimation of genetic components of variation in the traits affecting salinity tolerance. The inheritance of the traits affecting salinity tolerance at the seedling stage appeared to be controlled by both additive and non-additive effects (dominance and epistasis). The narrow sense heritability estimates ranged from 40 to 65% and 7 to 70% and the estimates of broad sense heritability ranged from 65 to 99% and 20 to 99% for absolute and relative values. The additive effects were relatively more prominent and narrow sense heritability was moderate. The high additive component for absolute Na/sup +/ and K/sup +//Na/sup +/ ratio at 60 and 80 mM NaCl, relative Na+ at 80 mM NaCl suggested that improvement for salinity tolerance in okra would be possible on the basis of these characteristics through selection and breeding. The genetic variation for tolerance to NaCl salinity existed among the okra genotypes, which had considerable heritable component and, therefore, genetic improvement of okra genotypes for salinity tolerance through recurrent selection method is possible. (author)

  13. Systems genetics analysis of pharmacogenomics variation during antidepressant treatment

    DEFF Research Database (Denmark)

    Madsen, Majbritt Busk; Kogelman, L J A; Kadarmideen, H N

    2016-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are the most widely used antidepressants, but the efficacy of the treatment varies significantly among individuals. It is believed that complex genetic mechanisms play a part in this variation. We have used a network based approach to unravel the in...... genes involved in calcium homeostasis. In conclusion, we suggest a difference in genetic interaction networks between initial and subsequent SSRI response.The Pharmacogenomics Journal advance online publication, 18 October 2016; doi:10.1038/tpj.2016.68....

  14. Consequences of inbreeding and reduced genetic variation on tolerance to cadmium stress in the midge Chironomus riparius

    International Nuclear Information System (INIS)

    Nowak, Carsten; Jost, Daniel; Vogt, Christian; Oetken, Matthias; Schwenk, Klaus; Oehlmann, Joerg

    2007-01-01

    Inbreeding and loss of genetic variation are considered to be major threats to small and endangered populations. The reduction of fitness due to inbreeding is believed to be more severe under stressful environmental conditions. We generated nine strains of the ecotoxicological model organism Chironomus riparius of different inbreeding levels in order to test the hypothesis that the inbreeding level and thus the degree of genome-wide homozygosity influences the life-history under cadmium exposure. Therefore, midge populations were exposed to a gradient of sediment-bound cadmium. The level of genetic variation in the used strains was assessed using microsatellite markers. In the life-cycle tests, inbreeding reduced fitness within C. riparius populations both under control and stressed conditions. However, differences between genetically diverse and impoverished strains were greatest at high cadmium exposure. Overall, inbreeding effects were not only dependent on cadmium concentrations in the sediment, but also on the life-history trait investigated. While some parameters where only affected by inbreeding, others were altered by both, inbreeding and cadmium. For the larval developmental time, a significant interaction was found between inbreeding and cadmium stress. While all strains showed a similar developmental time under control conditions, high rates of inbreeding led to a significantly delayed emergence time under high cadmium concentrations, resulting in longer generation periods and reduced population growth rates as population-relevant effects. The results show, that bioassays with C. riparius are affected by the level of inbreeding within Chironomus test strains. Pollution stress is therefore likely to affect the survival of rare and endangered populations more severe than that of large and genetically diverse ones

  15. The genetic alteration of retinoblastoma gene in esophageal cancer

    International Nuclear Information System (INIS)

    Cho, Jae Il; Shim, Yung Mok; Kim, Chang Min

    1994-12-01

    Retinoblastoma(RB) gene is the prototype of tumor suppressor gene and it's alteration have been frequently observed in a large number of human tumors. To investigate the role of RB in esophageal cancer, we studied 36 esophageal cancer tissues with Southern blot analysis to detect gross LOH and PCR-SSCP method to find minute LOH and mutation, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. Allelic loss of chromosome 13q14 occurred in 20 out of 32 informative cases (62.5%) by Southern analysis. Furthermore, PCR-LOH added three positive cases. Mobility shift by PCR-SSCP was observed in one case at exon 22, which showed 1 bp deletion in codon 771 of RB gene resulting in frame shift mutation. Besides, nine PCR-band alteration in tumor tissue compared with normal tissue were observed in exon 14 and 22, but mutation was not found on sequencing analysis suggesting the epigenetic alteration in tumor tissue. Analysis of the clinical data did not show any difference depending upon RB alteration. However, the total incidence of RB gene may play an important role in the development of esophageal cancer. The main genetic alteration of RB gene was deletion detected by Southern blot and one bp deletion leading to frame shift was also observed. 8 figs, 5 tabs. (Author)

  16. The genetic alteration of retinoblastoma gene in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Il; Shim, Yung Mok; Kim, Chang Min [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Retinoblastoma(RB) gene is the prototype of tumor suppressor gene and it`s alteration have been frequently observed in a large number of human tumors. To investigate the role of RB in esophageal cancer, we studied 36 esophageal cancer tissues with Southern blot analysis to detect gross LOH and PCR-SSCP method to find minute LOH and mutation, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. Allelic loss of chromosome 13q14 occurred in 20 out of 32 informative cases (62.5%) by Southern analysis. Furthermore, PCR-LOH added three positive cases. Mobility shift by PCR-SSCP was observed in one case at exon 22, which showed 1 bp deletion in codon 771 of RB gene resulting in frame shift mutation. Besides, nine PCR-band alteration in tumor tissue compared with normal tissue were observed in exon 14 and 22, but mutation was not found on sequencing analysis suggesting the epigenetic alteration in tumor tissue. Analysis of the clinical data did not show any difference depending upon RB alteration. However, the total incidence of RB gene may play an important role in the development of esophageal cancer. The main genetic alteration of RB gene was deletion detected by Southern blot and one bp deletion leading to frame shift was also observed. 8 figs, 5 tabs. (Author).

  17. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster.

    Science.gov (United States)

    Dembeck, Lauren M; Böröczky, Katalin; Huang, Wen; Schal, Coby; Anholt, Robert R H; Mackay, Trudy F C

    2015-11-14

    Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.

  18. Genetic variation of piperidine alkaloids in Pinus ponderosa: a common garden study.

    Science.gov (United States)

    Gerson, Elizabeth A; Kelsey, Rick G; St Clair, J Bradley

    2009-02-01

    Previous measurements of conifer alkaloids have revealed significant variation attributable to many sources, environmental and genetic. The present study takes a complementary and intensive, common garden approach to examine genetic variation in Pinus ponderosa var. ponderosa alkaloid production. Additionally, this study investigates the potential trade-off between seedling growth and alkaloid production, and associations between topographic/climatic variables and alkaloid production. Piperidine alkaloids were quantified in foliage of 501 nursery seedlings grown from seed sources in west-central Washington, Oregon and California, roughly covering the western half of the native range of ponderosa pine. A nested mixed model was used to test differences among broad-scale regions and among families within regions. Alkaloid concentrations were regressed on seedling growth measurements to test metabolite allocation theory. Likewise, climate characteristics at the seed sources were also considered as explanatory variables. Quantitative variation from seedling to seedling was high, and regional variation exceeded variation among families. Regions along the western margin of the species range exhibited the highest alkaloid concentrations, while those further east had relatively low alkaloid levels. Qualitative variation in alkaloid profiles was low. All measures of seedling growth related negatively to alkaloid concentrations on a natural log scale; however, coefficients of determination were low. At best, annual height increment explained 19.4 % of the variation in ln(total alkaloids). Among the climate variables, temperature range showed a negative, linear association that explained 41.8 % of the variation. Given the wide geographic scope of the seed sources and the uniformity of resources in the seedlings' environment, observed differences in alkaloid concentrations are evidence for genetic regulation of alkaloid secondary metabolism in ponderosa pine. The theoretical

  19. Genetic Variations Associated with Vitamin A Status and Vitamin A Bioavailability

    Directory of Open Access Journals (Sweden)

    Patrick Borel

    2017-03-01

    Full Text Available Blood concentration of vitamin A (VA, which is present as different molecules, i.e., mainly retinol and provitamin A carotenoids, plus retinyl esters in the postprandial period after a VA-containing meal, is affected by numerous factors: dietary VA intake, VA absorption efficiency, efficiency of provitamin A carotenoid conversion to VA, VA tissue uptake, etc. Most of these factors are in turn modulated by genetic variations in genes encoding proteins involved in VA metabolism. Genome-wide association studies (GWAS and candidate gene association studies have identified single nucleotide polymorphisms (SNPs associated with blood concentrations of retinol and β-carotene, as well as with β-carotene bioavailability. These genetic variations likely explain, at least in part, interindividual variability in VA status and in VA bioavailability. However, much work remains to be done to identify all of the SNPs involved in VA status and bioavailability and to assess the possible involvement of other kinds of genetic variations, e.g., copy number variants and insertions/deletions, in these phenotypes. Yet, the potential usefulness of this area of research is exciting regarding the proposition of more personalized dietary recommendations in VA, particularly in populations at risk of VA deficiency.

  20. Genetic variation of soybean agronomic characters induced by irradiation of seed

    International Nuclear Information System (INIS)

    He Zhihong; Wang Jinling

    1988-02-01

    Dry seeds of three soybean varieties were irradiated by 60 Co γ ray with dosage of 4.1C/kg. The varieties irradiated were Fengshou No. 10, Donghong 74-403 and Heinong No. 26, and nonirradiated seeds of the corresponding variety was used as a control. The following genetic parameters of the nine agronomic characters were estimated, including genotypic coefficient of variation, genotypic variance, broad sense heritanility and genetic advance expected through selection. Three types of plant in M 2 and M 3 were used for the estimation of these parameters which comprise semisterility (MS), fertility (MF) in M 1 and control (CK). The genetic advance expected through selection was compared with the actual effect of selection for date of maturity, seed weigh per plant and 100 seed wight. The pattern of the genetic variation in the early generations of the induced population was analysed. Problems of selection for main agronomic characters in the early generations, and significance of fertility of M 1 plants for mutation breeding were discussed

  1. Horizontal transfer generates genetic variation in an asexual pathogen

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Huang

    2014-10-01

    Full Text Available There are major gaps in the understanding of how genetic variation is generated in the asexual pathogen Verticillium dahliae. On the one hand, V. dahliae is a haploid organism that reproduces clonally. On the other hand, single-nucleotide polymorphisms and chromosomal rearrangements were found between V. dahliae strains. Lineage-specific (LS regions comprising about 5% of the genome are highly variable between V. dahliae strains. Nonetheless, it is unknown whether horizontal gene transfer plays a major role in generating genetic variation in V. dahliae. Here, we analyzed a previously sequenced V. dahliae population of nine strains from various geographical locations and hosts. We found highly homologous elements in LS regions of each strain; LS regions of V. dahliae strain JR2 are much richer in highly homologous elements than the core genome. In addition, we discovered, in LS regions of JR2, several structural forms of nonhomologous recombination, and two or three homologous sequence types of each form, with almost each sequence type present in an LS region of another strain. A large section of one of the forms is known to be horizontally transferred between V. dahliae strains. We unexpectedly found that 350 kilobases of dynamic LS regions were much more conserved than the core genome between V. dahliae and a closely related species (V. albo-atrum, suggesting that these LS regions were horizontally transferred recently. Our results support the view that genetic variation in LS regions is generated by horizontal transfer between strains, and by chromosomal reshuffling reported previously.

  2. GABAergic synapse properties may explain genetic variation in hippocampal network oscillations in mice

    Directory of Open Access Journals (Sweden)

    Tim S Heistek

    2010-06-01

    Full Text Available Cognitive ability and the properties of brain oscillation are highly heritable in humans. Genetic variation underlying oscillatory activity might give rise to differences in cognition and behavior. How genetic diversity translates into altered properties of oscillations and synchronization of neuronal activity is unknown. To address this issue, we investigated cellular and synaptic mechanisms of hippocampal fast network oscillations in eight genetically distinct inbred mouse strains. The frequency of carbachol-induced oscillations differed substantially between mouse strains. Since GABAergic inhibition sets oscillation frequency, we studied the properties of inhibitory synaptic inputs (IPSCs received by CA3 and CA1 pyramidal cells of three mouse strains that showed the highest, lowest and intermediate frequencies of oscillations. In CA3 pyramidal cells, the frequency of rhythmic IPSC input showed the same strain differences as the frequency of field oscillations. Furthermore, IPSC decay times in both CA1 and CA3 pyramidal cells were faster in mouse strains with higher oscillation frequencies than in mouse strains with lower oscillation frequency, suggesting that differences in GABAA-receptor subunit composition exist between these strains. Indeed, gene expression of GABAA-receptor β2 (Gabrb2 and β3 (Gabrb2 subunits was higher in mouse strains with faster decay kinetics compared with mouse strains with slower decay kinetics. Hippocampal pyramidal neurons in mouse strains with higher oscillation frequencies and faster decay kinetics fired action potential at higher frequencies. These data indicate that differences in genetic background may result in different GABAA-receptor subunit expression, which affects the rhythm of pyramidal neuron firing and fast network activity through GABA synapse kinetics.

  3. Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment

    Science.gov (United States)

    Xian, Zhi-Hong; Cong, Wen-Ming; Zhang, Shu-Hui; Wu, Meng-Chao

    2005-01-01

    AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments. METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD) with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated, purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data. RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size, histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene. CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcin-ogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis. PMID:15996039

  4. Genetic variation in HTR4 and lung function: GWAS follow-up in mouse.

    Science.gov (United States)

    House, John S; Li, Huiling; DeGraff, Laura M; Flake, Gordon; Zeldin, Darryl C; London, Stephanie J

    2015-01-01

    Human genome-wide association studies (GWASs) have identified numerous associations between single nucleotide polymorphisms (SNPs) and pulmonary function. Proving that there is a causal relationship between GWAS SNPs, many of which are noncoding and without known functional impact, and these traits has been elusive. Furthermore, noncoding GWAS-identified SNPs may exert trans-regulatory effects rather than impact the proximal gene. Noncoding variants in 5-hydroxytryptamine (serotonin) receptor 4 (HTR4) are associated with pulmonary function in human GWASs. To gain insight into whether this association is causal, we tested whether Htr4-null mice have altered pulmonary function. We found that HTR4-deficient mice have 12% higher baseline lung resistance and also increased methacholine-induced airway hyperresponsiveness (AHR) as measured by lung resistance (27%), tissue resistance (48%), and tissue elastance (30%). Furthermore, Htr4-null mice were more sensitive to serotonin-induced AHR. In models of exposure to bacterial lipopolysaccharide, bleomycin, and allergic airway inflammation induced by house dust mites, pulmonary function and cytokine profiles in Htr4-null mice differed little from their wild-type controls. The findings of altered baseline lung function and increased AHR in Htr4-null mice support a causal relationship between genetic variation in HTR4 and pulmonary function identified in human GWAS. © FASEB.

  5. Genetic basis of metabolome variation in yeast.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Breunig

    2014-03-01

    Full Text Available Metabolism, the conversion of nutrients into usable energy and biochemical building blocks, is an essential feature of all cells. The genetic factors responsible for inter-individual metabolic variability remain poorly understood. To investigate genetic causes of metabolome variation, we measured the concentrations of 74 metabolites across ~ 100 segregants from a Saccharomyces cerevisiae cross by liquid chromatography-tandem mass spectrometry. We found 52 quantitative trait loci for 34 metabolites. These included linkages due to overt changes in metabolic genes, e.g., linking pyrimidine intermediates to the deletion of ura3. They also included linkages not directly related to metabolic enzymes, such as those for five central carbon metabolites to ira2, a Ras/PKA pathway regulator, and for the metabolites, S-adenosyl-methionine and S-adenosyl-homocysteine to slt2, a MAP kinase involved in cell wall integrity. The variant of ira2 that elevates metabolite levels also increases glucose uptake and ethanol secretion. These results highlight specific examples of genetic variability, including in genes without prior known metabolic regulatory function, that impact yeast metabolism.

  6. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice

    OpenAIRE

    Wei Tong; Qiang He; Yong-Jin Park

    2017-01-01

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucle...

  7. Genetic Alterations in the Molecular Subtypes of Bladder Cancer: Illustration in the Cancer Genome Atlas Dataset.

    Science.gov (United States)

    Choi, Woonyoung; Ochoa, Andrea; McConkey, David J; Aine, Mattias; Höglund, Mattias; Kim, William Y; Real, Francisco X; Kiltie, Anne E; Milsom, Ian; Dyrskjøt, Lars; Lerner, Seth P

    2017-09-01

    Recent whole genome mRNA expression profiling studies revealed that bladder cancers can be grouped into molecular subtypes, some of which share clinical properties and gene expression patterns with the intrinsic subtypes of breast cancer and the molecular subtypes found in other solid tumors. The molecular subtypes in other solid tumors are enriched with specific mutations and copy number aberrations that are thought to underlie their distinct progression patterns, and biological and clinical properties. The availability of comprehensive genomic data from The Cancer Genome Atlas (TCGA) and other large projects made it possible to correlate the presence of DNA alterations with tumor molecular subtype membership. Our overall goal was to determine whether specific DNA mutations and/or copy number variations are enriched in specific molecular subtypes. We used the complete TCGA RNA-seq dataset and three different published classifiers developed by our groups to assign TCGA's bladder cancers to molecular subtypes, and examined the prevalence of the most common DNA alterations within them. We interpreted the results against the background of what was known from the published literature about the prevalence of these alterations in nonmuscle-invasive and muscle-invasive bladder cancers. The results confirmed that alterations involving RB1 and NFE2L2 were enriched in basal cancers, whereas alterations involving FGFR3 and KDM6A were enriched in luminal tumors. The results further reinforce the conclusion that the molecular subtypes of bladder cancer are distinct disease entities with specific genetic alterations. Our observation showed that some of subtype-enriched mutations and copy number aberrations are clinically actionable, which has direct implications for the clinical management of patients with bladder cancer. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  8. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2015-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  9. The African Genome Variation Project shapes medical genetics in Africa.

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S

    2015-01-15

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  10. Errors in data interpretation from genetic variation of human analytes

    OpenAIRE

    Howie, Heather L.; Delaney, Meghan; Wang, Xiaohong; Er, Lay See; Kapp, Linda; Lebedev, Jenna N.; Zimring, James C.

    2017-01-01

    In recent years, the extent of our vulnerability to misinterpretation due to poorly characterized reagents has become an issue of great concern. Antibody reagents have been identified as a major source of error, contributing to the ?reproducibility crisis.? In the current report, we define an additional dimension of the crisis; in particular, we define variation of the targets being analyzed. We report that natural variation in the immunoglobulin ?constant? region alters the reactivity with c...

  11. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.

    Science.gov (United States)

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-04-01

    Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.

  12. Immunity traits in pigs: substantial genetic variation and limited covariation.

    Directory of Open Access Journals (Sweden)

    Laurence Flori

    Full Text Available BACKGROUND: Increasing robustness via improvement of resistance to pathogens is a major selection objective in livestock breeding. As resistance traits are difficult or impossible to measure directly, potential indirect criteria are measures of immune traits (ITs. Our underlying hypothesis is that levels of ITs with no focus on specific pathogens define an individual's immunocompetence and thus predict response to pathogens in general. Since variation in ITs depends on genetic, environmental and probably epigenetic factors, our aim was to estimate the relative importance of genetics. In this report, we present a large genetic survey of innate and adaptive ITs in pig families bred in the same environment. METHODOLOGY/PRINCIPAL FINDINGS: Fifty four ITs were studied on 443 Large White pigs vaccinated against Mycoplasma hyopneumoniae and analyzed by combining a principal component analysis (PCA and genetic parameter estimation. ITs include specific and non specific antibodies, seric inflammatory proteins, cell subsets by hemogram and flow cytometry, ex vivo production of cytokines (IFNα, TNFα, IL6, IL8, IL12, IFNγ, IL2, IL4, IL10, phagocytosis and lymphocyte proliferation. While six ITs had heritabilities that were weak or not significantly different from zero, 18 and 30 ITs had moderate (0.10.4 heritability values, respectively. Phenotypic and genetic correlations between ITs were weak except for a few traits that mostly include cell subsets. PCA revealed no cluster of innate or adaptive ITs. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that variation in many innate and adaptive ITs is genetically controlled in swine, as already reported for a smaller number of traits by other laboratories. A limited redundancy of the traits was also observed confirming the high degree of complementarity between innate and adaptive ITs. Our data provide a genetic framework for choosing ITs to be included as selection criteria in multitrait selection

  13. Altered expression of MGMT in high-grade gliomas results from the combined effect of epigenetic and genetic aberrations.

    Directory of Open Access Journals (Sweden)

    João Ramalho-Carvalho

    Full Text Available MGMT downregulation in high-grade gliomas (HGG has been mostly attributed to aberrant promoter methylation and is associated with increased sensitivity to alkylating agent-based chemotherapy. However, HGG harboring 10q deletions also benefit from treatment with alkylating agents. Because the MGMT gene is mapped at 10q26, we hypothesized that both epigenetic and genetic alterations might affect its expression and predict response to chemotherapy. To test this hypothesis, promoter methylation and mRNA levels of MGMT were determined by quantitative methylation-specific PCR (qMSP or methylation-specific multiplex ligation dependent probe amplification (MS-MLPA and quantitative RT-PCR, respectively, in a retrospective series of 61 HGG. MGMT/chromosome 10 copy number variations were determined by FISH or MS-MLPA analysis. Molecular findings were correlated with clinical parameters to assess their predictive value. Overall, MGMT methylation ratios assessed by qMSP and MS-MLPA were inversely correlated with mRNA expression levels (best coefficient value obtained with MS-MLPA. By FISH analysis in 68.3% of the cases there was loss of 10q26.1 and in 15% of the cases polysomy was demonstrated; the latter displayed the highest levels of transcript. When genetic and epigenetic data were combined, cases with MGMT promoter methylation and MGMT loss depicted the lowest transcript levels, although an impact in response to alkylating agent chemotherapy was not apparent. Cooperation between epigenetic (promoter methylation and genetic (monosomy, locus deletion changes affecting MGMT in HGG is required for effective MGMT silencing. Hence, evaluation of copy number alterations might add relevant prognostic and predictive information concerning response to alkylating agent-based chemotherapy.

  14. GENETIC STRUCTURE OF NORWAY SPRUCE (PICEA ABIES): CONCORDANCE OF MORPHOLOGICAL AND ALLOZYMIC VARIATION.

    Science.gov (United States)

    Lagercrantz, Ulf; Ryman, Nils

    1990-02-01

    This study describes the population structure of Norway spruce (Picea abies) as revealed by protein polymorphisms and morphological variation. Electrophoretically detectable genetic variability was examined at 22 protein loci in 70 populations from the natural range of the species in Europe. Like other conifers, Norway spruce exhibits a relatively large amount of genetic variability and little differentiation among populations. Sixteen polymorphic loci (73%) segregate for a total of 51 alleles, and average heterozygosity per population is 0.115. Approximately 5% of the total genetic diversity is explained by differences between populations (G ST = 0.052), and Nei's standard genetic distance is less than 0.04 in all cases. We suggest that the population structure largely reflects relatively recent historical events related to the last glaciation and that Norway spruce is still in a process of adaptation and differentiation. There is a clear geographic pattern in the variation of allele frequencies. A major part of the allelefrequency variation can be accounted for by a few synthetic variables (principal components), and 80% of the variation of the first principal component is "explained" by latitude and longitude. The central European populations are consistently depauperate of genetic variability, most likely as an effect of severe restrictions of population size during the last glaciation. The pattern of differentiation at protein loci is very similar to that observed for seven morphological traits examined. This similarity suggests that the same evolutionary forces have acted upon both sets of characters. © 1990 The Society for the Study of Evolution.

  15. Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study.

    Science.gov (United States)

    Kasperaviciūte, Dalia; Catarino, Claudia B; Heinzen, Erin L; Depondt, Chantal; Cavalleri, Gianpiero L; Caboclo, Luis O; Tate, Sarah K; Jamnadas-Khoda, Jenny; Chinthapalli, Krishna; Clayton, Lisa M S; Shianna, Kevin V; Radtke, Rodney A; Mikati, Mohamad A; Gallentine, William B; Husain, Aatif M; Alhusaini, Saud; Leppert, David; Middleton, Lefkos T; Gibson, Rachel A; Johnson, Michael R; Matthews, Paul M; Hosford, David; Heuser, Kjell; Amos, Leslie; Ortega, Marcos; Zumsteg, Dominik; Wieser, Heinz-Gregor; Steinhoff, Bernhard J; Krämer, Günter; Hansen, Jörg; Dorn, Thomas; Kantanen, Anne-Mari; Gjerstad, Leif; Peuralinna, Terhi; Hernandez, Dena G; Eriksson, Kai J; Kälviäinen, Reetta K; Doherty, Colin P; Wood, Nicholas W; Pandolfo, Massimo; Duncan, John S; Sander, Josemir W; Delanty, Norman; Goldstein, David B; Sisodiya, Sanjay M

    2010-07-01

    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio<1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studies.

  16. MetaRanker 2.0: a web server for prioritization of genetic variation data.

    Science.gov (United States)

    Pers, Tune H; Dworzyński, Piotr; Thomas, Cecilia Engel; Lage, Kasper; Brunak, Søren

    2013-07-01

    MetaRanker 2.0 is a web server for prioritization of common and rare frequency genetic variation data. Based on heterogeneous data sets including genetic association data, protein-protein interactions, large-scale text-mining data, copy number variation data and gene expression experiments, MetaRanker 2.0 prioritizes the protein-coding part of the human genome to shortlist candidate genes for targeted follow-up studies. MetaRanker 2.0 is made freely available at www.cbs.dtu.dk/services/MetaRanker-2.0.

  17. Chum and pink salmon genetics - Genetic and life history variation of southern chum and pink salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The distribution of genetic and life history variation in chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon in their southern range in North America is key to...

  18. Emotional voice processing: investigating the role of genetic variation in the serotonin transporter across development.

    Directory of Open Access Journals (Sweden)

    Tobias Grossmann

    Full Text Available The ability to effectively respond to emotional information carried in the human voice plays a pivotal role for social interactions. We examined how genetic factors, especially the serotonin transporter genetic variation (5-HTTLPR, affect the neurodynamics of emotional voice processing in infants and adults by measuring event-related brain potentials (ERPs. The results revealed that infants distinguish between emotions during an early perceptual processing stage, whereas adults recognize and evaluate the meaning of emotions during later semantic processing stages. While infants do discriminate between emotions, only in adults was genetic variation associated with neurophysiological differences in how positive and negative emotions are processed in the brain. This suggests that genetic association with neurocognitive functions emerges during development, emphasizing the role that variation in serotonin plays in the maturation of brain systems involved in emotion recognition.

  19. Genetic variation of inbreeding depression among floral and fitness traits in Silene nutans

    DEFF Research Database (Denmark)

    Thiele, Jan; Hansen, Thomas Møller; Siegismund, Hans Redlef

    2010-01-01

    The magnitude and variation of inbreeding depression (ID) within populations is important for the evolution and maintenance of mixed mating systems. We studied ID and its genetic variation in a range of floral and fitness traits in a small and large population of the perennial herb Silene nutans......, using controlled pollinations in a fully factorial North Carolina II design. Floral traits and early fitness traits, that is seed mass and germination rate, were not much affected by inbreeding (delta0.4). Lack of genetic correlations indicated that ID in floral, early and late traits is genetically...... was statistically significant in most floral and all seed traits, but not in late fitness traits. However, some paternal families had delta...

  20. Assessment of genetic variation among four populations of Small ...

    African Journals Online (AJOL)

    From the findings, it can be concluded that the SEA goats in this study showed high in population genetic variation, which implies that there is good scope for their further improvement through selection within populations. The Sukuma population, which has fairly high inbreeding, is moderately differentiated from Pare, Sonjo ...

  1. Climate variables explain neutral and adaptive variation within salmonid metapopulations: The importance of replication in landscape genetics

    Science.gov (United States)

    Hand, Brian K.; Muhlfeld, Clint C.; Wade, Alisa A.; Kovach, Ryan; Whited, Diane C.; Narum, Shawn R.; Matala, Andrew P.; Ackerman, Michael W.; Garner, B. A.; Kimball, John S; Stanford, Jack A.; Luikart, Gordon

    2016-01-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  2. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans

    NARCIS (Netherlands)

    Verloop, H.; Dekkers, O.M.; Peeters, R.P.; Schoones, J.W.; Smit, J.W.

    2014-01-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple

  3. Caste-specific expression of genetic variation in the size of antibiotic-producing glands of leaf-cutting ants

    DEFF Research Database (Denmark)

    Hughes, W O H; Bot, A N M; Boomsma, J J

    2010-01-01

    are substantially larger than those of any workers, for their body size. The gland size of large workers varies significantly between patrilines in both Acromyrmex echinatior and Acromyrmex octospinosus. We also examined small workers and gynes in A. echinatior, again finding genetic variation in gland size...... in these castes. There were significant positive relationships between the gland sizes of patrilines in the different castes, indicating that the genetic mechanism underpinning the patriline variation has remained similar across phenotypes. The level of expressed genetic variation decreased from small workers......Social insect castes represent some of the most spectacular examples of phenotypic plasticity, with each caste being associated with different environmental conditions during their life. Here we examine the level of genetic variation in different castes of two polyandrous species of Acromyrmex leaf...

  4. FINDbase: A worldwide database for genetic variation allele frequencies updated

    NARCIS (Netherlands)

    M. Georgitsi (Marianthi); E. Viennas (Emmanouil); D.I. Antoniou (Dimitris I.); V. Gkantouna (Vassiliki); S. van Baal (Sjozef); E.F. Petricoin (Emanuel F.); K. Poulas (Konstantinos); G. Tzimas (Giannis); G.P. Patrinos (George)

    2011-01-01

    textabstractFrequency of INherited Disorders database (FIND base; http://www.findbase. org) records frequencies of causative genetic variations worldwide. Database records include the population and ethnic group or geographical region, the disorder name and the related gene, accompanied by links to

  5. Population genetic variation in the tree fern Alsophila spinulosa (Cyatheaceae): effects of reproductive strategy.

    Science.gov (United States)

    Wang, Ting; Su, Yingjuan; Li, Yuan

    2012-01-01

    Essentially all ferns can perform both sexual and asexual reproduction. Their populations represent suitable study objects to test the population genetic effects of different reproductive systems. Using the diploid homosporous fern Alsophila spinulosa as an example species, the main purpose of this study was to assess the relative impact of sexual and asexual reproduction on the level and structure of population genetic variation. Inter-simple sequence repeats analysis was conducted on 140 individuals collected from seven populations (HSG, LCH, BPC, MPG, GX, LD, and ZHG) in China. Seventy-four polymorphic bands discriminated a total of 127 multilocus genotypes. Character compatibility analysis revealed that 50.0 to 70.0% of the genotypes had to be deleted in order to obtain a tree-like structure in the data set from populations HSG, LCH, MPG, BPC, GX, and LD; and there was a gradual decrease of conflict in the data set when genotypes with the highest incompatibility counts were successively deleted. In contrast, in population ZHG, only 33.3% of genotypes had to be removed to achieve complete compatibility in the data set, which showed a sharp decline in incompatibility upon the deletion of those genotypes. All populations examined possessed similar levels of genetic variation. Population ZHG was not found to be more differentiated than the other populations. Sexual recombination is the predominant source of genetic variation in most of the examined populations of A. spinulosa. However, somatic mutation contributes most to the genetic variation in population ZHG. This change of the primary mode of reproduction does not cause a significant difference in the population genetic composition. Character compatibility analysis represents an effective approach to separate the role of sexual and asexual components in shaping the genetic pattern of fern populations.

  6. Population genetic variation in the tree fern Alsophila spinulosa (Cyatheaceae: effects of reproductive strategy.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available BACKGROUND: Essentially all ferns can perform both sexual and asexual reproduction. Their populations represent suitable study objects to test the population genetic effects of different reproductive systems. Using the diploid homosporous fern Alsophila spinulosa as an example species, the main purpose of this study was to assess the relative impact of sexual and asexual reproduction on the level and structure of population genetic variation. METHODOLOGY/PRINCIPAL FINDINGS: Inter-simple sequence repeats analysis was conducted on 140 individuals collected from seven populations (HSG, LCH, BPC, MPG, GX, LD, and ZHG in China. Seventy-four polymorphic bands discriminated a total of 127 multilocus genotypes. Character compatibility analysis revealed that 50.0 to 70.0% of the genotypes had to be deleted in order to obtain a tree-like structure in the data set from populations HSG, LCH, MPG, BPC, GX, and LD; and there was a gradual decrease of conflict in the data set when genotypes with the highest incompatibility counts were successively deleted. In contrast, in population ZHG, only 33.3% of genotypes had to be removed to achieve complete compatibility in the data set, which showed a sharp decline in incompatibility upon the deletion of those genotypes. All populations examined possessed similar levels of genetic variation. Population ZHG was not found to be more differentiated than the other populations. CONCLUSIONS/SIGNIFICANCE: Sexual recombination is the predominant source of genetic variation in most of the examined populations of A. spinulosa. However, somatic mutation contributes most to the genetic variation in population ZHG. This change of the primary mode of reproduction does not cause a significant difference in the population genetic composition. Character compatibility analysis represents an effective approach to separate the role of sexual and asexual components in shaping the genetic pattern of fern populations.

  7. Genetic variation among agamid lizards of the trapelus agiliscomplex in the caspian-aral basin

    Energy Technology Data Exchange (ETDEWEB)

    Macey, J. Robert; Ananjeva, Natalia B.

    2004-05-19

    Allozyme variation is examined in eight populations of Trapelus from the Caspian-Aral Basin of the former USSR. Thirty-one loci (15 variable) exhibit remarkably low levels of genetic variation with only a Nei's genetic distance of 0.117 across 2500 km. An isolated population on the European side of the Caspian Sea is found to phenetically cluster inside the Asian populations examined, suggesting that it should not be considered taxonomically distinct.

  8. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol degrad...

  9. Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression

    DEFF Research Database (Denmark)

    Ren, Shancheng; Wei, Gong-Hong; Liu, Dongbing

    2018-01-01

    BACKGROUND: Global disparities in prostate cancer (PCa) incidence highlight the urgent need to identify genomic abnormalities in prostate tumors in different ethnic populations including Asian men. OBJECTIVE: To systematically explore the genomic complexity and define disease-driven genetic......-scale and comprehensive genomic data of prostate cancer from Asian population. Identification of these genetic alterations may help advance prostate cancer diagnosis, prognosis, and treatment....... alterations in PCa. DESIGN, SETTING, AND PARTICIPANTS: The study sequenced whole-genome and transcriptome of tumor-benign paired tissues from 65 treatment-naive Chinese PCa patients. Subsequent targeted deep sequencing of 293 PCa-relevant genes was performed in another cohort of 145 prostate tumors. OUTCOME...

  10. The impact of accelerating faster than exponential population growth on genetic variation.

    Science.gov (United States)

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-03-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.

  11. Variation in the peacock's train shows a genetic component.

    Science.gov (United States)

    Petrie, Marion; Cotgreave, Peter; Pike, Thomas W

    2009-01-01

    Female peafowl (Pavo cristatus) show a strong mating preference for males with elaborate trains. This, however, poses something of a paradox because intense directional selection should erode genetic variation in the males' trains, so that females will no longer benefit by discriminating among males on the basis of these traits. This situation is known as the 'lek paradox', and leads to the theoretical expectation of low heritability in the peacock's train. We used two independent breeding experiments, involving a total of 42 sires and 86 of their male offspring, to estimate the narrow sense heritabilities of male ornaments and other morphometric traits. Contrary to expectation, we found significant levels of heritability in a trait known to be used by females during mate choice (train length), while no significant heritabilities were evident for other, non-fitness related morphological traits (tarsus length, body weight or spur length). This study adds to the building body of evidence that high levels of additive genetic variance can exist in secondary sexual traits under directional selection, but further emphasizes the main problem of what maintains this variation.

  12. Living in isolation - population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink).

    Science.gov (United States)

    Putz, Christina M; Schmid, Christoph; Reisch, Christoph

    2015-09-01

    The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.

  13. Genetic and environmental interactions

    International Nuclear Information System (INIS)

    Strong, L.C.

    1977-01-01

    Cancer may result from a multistage process occurring over a long period of time. Presumably, initial and progressive stages of carcinogenesis may be modified by both genetic and environmental factors. Theoretically, genetic factors may alter susceptibility to the carcinogenic effects of an environmental agent at the initial exposure due to variation in metabolism of the carcinogen or variation in specific target cell response to the active carcinogen, or during the latent phase due to numerous factors that might increase the probability of tumor expression, including growth-promoting factors or immunodeficiency states. Observed genetic and environmental interactions in carcinogenesis include an association between genetically determined inducibility of aryl hydrocarbon hydroxylase and smoking-related cancers, familial susceptibility to certain environmental carcinogens, an association between hereditary disorders of mutagenesis and carcinogenesis, and enhancement of tissue-specific, dominantly inherited tumor predisposition by radiation. Multiple primary tumors occur frequently in genetically predisposed individuals. Specific markers for susceptibility must be sought in order that high-risk individuals be identified and appropriate measures taken for early cancer detection or prevention. Study of the nature of the genetically determined susceptibility and interactions with environmental agents may be revealing in the understanding of carcinogenesis in general

  14. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease

    Energy Technology Data Exchange (ETDEWEB)

    Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu; Leone, Vanessa; Brulc, Jennifer; Mangatu, Thomas; Antonopoulos, Dionysios A.; Chang, Eugene B; Kahn, Stacy A.; Kirschner, Barbara S; Young, Glenn; DePaolo, R. William

    2016-01-13

    Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

  15. Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants.

    Science.gov (United States)

    Rodríguez López, Carlos M; Wetten, Andrew C; Wilkinson, Michael J

    2010-06-01

    *Relatively little is known about the timing of genetic and epigenetic forms of somaclonal variation arising from callus growth. We surveyed for both types of change in cocoa (Theobroma cacao) plants regenerated from calli of various ages, and also between tissues from the source trees. *For genetic change, we used 15 single sequence repeat (SSR) markers from four source trees and from 233 regenerated plants. For epigenetic change, we used 386 methylation-sensitive amplified polymorphism (MSAP) markers on leaf and explant (staminode) DNA from two source trees and on leaf DNA from 114 regenerants. *Genetic variation within source trees was limited to one slippage mutation in one leaf. Regenerants were far more variable, with 35% exhibiting at least one mutation. Genetic variation initially accumulated with culture age but subsequently declined. MSAP (epigenetic) profiles diverged between leaf and staminode samples from source trees. Multivariate analysis revealed that leaves from regenerants occupied intermediate eigenspace between leaves and staminodes of source plants but became progressively more similar to source tree leaves with culture age. *Statistical analysis confirmed this rather counterintuitive finding that leaves of 'late regenerants' exhibited significantly less genetic and epigenetic divergence from source leaves than those exposed to short periods of callus growth.

  16. Genetic Variation in Past and Current Landscapes: Conservation Implications Based on Six Endemic Florida Scrub Plants

    Directory of Open Access Journals (Sweden)

    Eric S. Menges

    2010-01-01

    Full Text Available If genetic variation is often positively correlated with population sizes and the presence of nearby populations and suitable habitats, landscape proxies could inform conservation decisions without genetic analyses. For six Florida scrub endemic plants (Dicerandra frutescens, Eryngium cuneifolium, Hypericum cumulicola, Liatris ohlingerae, Nolina brittoniana, and Warea carteri, we relate two measures of genetic variation, expected heterozygosity and alleles per polymorphic locus (APL, to population size and landscape variables. Presettlement areas were estimated based on soil preferences and GIS soils maps. Four species showed no genetic patterns related to population or landscape factors. The other two species showed significant but inconsistent patterns. For Liatris ohlingerae, APL was negatively related to population density and weakly, positively related to remaining presettlement habitat within 32 km. For Nolina brittoniana, APL increased with population size. The rather weak effects of population area/size and both past and current landscape structures suggest that genetic variation needs to be directly measured and not inferred for conservation planning.

  17. Genetic Variation in Past and Current Landscapes: Conservation Implications Based on Six Endemic Florida Scrub Plants

    International Nuclear Information System (INIS)

    Menges, E.S.; Pickert, R.; Dolan, R.W.; Yahr, R.; Gordon, D.R.

    2010-01-01

    If genetic variation is often positively correlated with population sizes and the presence of nearby populations and suitable habitats, landscape proxies could inform conservation decisions without genetic analyses. For six Florida scrub endemic plants (Dicerandra frutescens, Eryngium cuneifolium, Hypericum cumulicola, Liatris ohlingerae, Nolina brittoniana, and Warea carteri), we relate two measures of genetic variation, expected heterozygosity and alleles per polymorphic locus (APL), to population size and landscape variables. Presettlement areas were estimated based on soil preferences and GIS soils maps. Four species showed no genetic patterns related to population or landscape factors. The other two species showed significant but inconsistent patterns. For Liatris ohlingerae, APL was negatively related to population density and weakly, positively related to remaining presettlement habitat within 32 km. For Nolina brittoniana, APL increased with population size. The rather weak effects of population area/size and both past and current landscape structures suggest that genetic variation needs to be directly measured and not inferred for conservation planning.

  18. Mining of lethal recessive genetic variation in Danish cattle

    DEFF Research Database (Denmark)

    Das, Ashutosh

    2015-01-01

    in fertility. The primary objective of this PhD projekt was to identify recessive lethal gentic variants in the main Danish dairy cattle breed. Holstein-Friesian utilzing next generation sequencing (NGS) data. This study shows a potential for the use of the NGS-based reverse genetic approach in identifying...... lethal or semi-lethal recessive gentic variation...

  19. Drift, selection, or migration? Processes affecting genetic differentiation and variation along a latitudinal gradient in an amphibian.

    Science.gov (United States)

    Cortázar-Chinarro, Maria; Lattenkamp, Ella Z; Meyer-Lucht, Yvonne; Luquet, Emilien; Laurila, Anssi; Höglund, Jacob

    2017-08-14

    Past events like fluctuations in population size and post-glacial colonization processes may influence the relative importance of genetic drift, migration and selection when determining the present day patterns of genetic variation. We disentangle how drift, selection and migration shape neutral and adaptive genetic variation in 12 moor frog populations along a 1700 km latitudinal gradient. We studied genetic differentiation and variation at a MHC exon II locus and a set of 18 microsatellites. Using outlier analyses, we identified the MHC II exon 2 (corresponding to the β-2 domain) locus and one microsatellite locus (RCO8640) to be subject to diversifying selection, while five microsatellite loci showed signals of stabilizing selection among populations. STRUCTURE and DAPC analyses on the neutral microsatellites assigned populations to a northern and a southern cluster, reflecting two different post-glacial colonization routes found in previous studies. Genetic variation overall was lower in the northern cluster. The signature of selection on MHC exon II was weaker in the northern cluster, possibly as a consequence of smaller and more fragmented populations. Our results show that historical demographic processes combined with selection and drift have led to a complex pattern of differentiation along the gradient where some loci are more divergent among populations than predicted from drift expectations due to diversifying selection, while other loci are more uniform among populations due to stabilizing selection. Importantly, both overall and MHC genetic variation are lower at northern latitudes. Due to lower evolutionary potential, the low genetic variation in northern populations may increase the risk of extinction when confronted with emerging pathogens and climate change.

  20. Genetic alterations in B-cell non-Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Magić Zvonko

    2005-01-01

    Full Text Available Background. Although the patients with diagnosed B-NHL are classified into the same disease stage on the basis of clinical, histopathological, and immunological parameters, they respond significantly different to the applied treatment. This points out the possibility that within the same group of lymphoma there are different diseases at molecular level. For that reason many studies deal with the detection of gene alterations in lymphomas to provide a better framework for diagnosis and treatment of these hematological malignancies. Aim. To define genetic alterations in the B-NHL with highest possibilities for diagnostic purposes and molecular detection of MRD. Methods. Formalin fixed and paraffin embedded lymph node tissues from 45 patients were examined by different PCR techniques for the presence of IgH and TCR γ gene rearrangement; K-ras and H-ras mutations; c-myc amplification and bcl-2 translocation. There were 34 cases of B-cell non-Hodgkin’s lymphoma (B-NHL, 5 cases of T-cell non-Hodgkin’s lymphoma (T-NHL and 6 cases of chronic lymphadenitis (CL. The mononuclear cell fraction of the peripheral blood of 12 patients with B-NHL was analyzed for the presence of monoclonality at the time of diagnosis and in 3 to 6 months time intervals after an autologous bone marrow transplantation (BMT. Results. The monoclonality of B-lymphocytes, as evidenced by DNA fragment length homogeneity, was detected in 88 % (30/34 of B-NHL, but never in CL, T-NHL, or in normal PBL. Bcl-2 translocation was detected in 7/31 (22.6% B-NHL specimens, c-myc amplification 9/31 (29%, all were more than doubled, K-ras mutations in 1/31 (3.23% and H-ras mutations in 2/31 (6.45% of the examined B-NHL samples. In the case of LC and normal PBL, however, these gene alterations were not detected. All the patients (12 with B-NHL had dominant clone of B-lymphocyte in the peripheral blood at the time of diagnosis while only in 2 of 12 patients MRD was detected 3 or 6 months after

  1. Association of genetic variation in cannabinoid mechanisms and gastric motor functions and satiation in overweight and obesity.

    Science.gov (United States)

    Vazquez-Roque, M I; Camilleri, M; Vella, A; Carlson, P; Laugen, J; Zinsmeister, A R

    2011-07-01

    The endocannabinoid system is associated with food intake. We hypothesized that genes regulating cannabinoids are associated with obesity. Genetic variations in fatty acid amide hydroxylase (FAAH) and cannabinoid receptor 1 (CNR1) are associated with satiation and gastric motor function. In 62 overweight or obese adults of European ancestry, single nucleotide polymorphisms of rs806378 (nearest gene CNR1) and rs324420 (nearest gene FAAH) were genotyped and the associations with gastric emptying (GE) of solids and liquids, gastric volume (GV), and satiation [maximum tolerated volume (MTV) and symptoms after Ensure(®) nutrient drink test] were explored using a dominant genetic model, with gender and BMI as covariates. rs806378 CC genotype was associated with reduced fasting GV (210.2±11.0mL for CC group compared to 242.5±11.3mL for CT/TT group, P=0.031) and a modest, non-significant association with GE of solids (P=0.17). rs324420 genotype was not associated with alterations in gastric motor functions; however, there was a difference in the Ensure(®) MTV (1174.6±37.2mL for CC group compared to 1395.0±123.1mL for CA/AA group, P=0.046) suggesting higher satiation with CC genotype. Our data suggest that CNR1 and FAAH are associated with altered gastric functions or satiation that may predispose to obesity. © 2011 Blackwell Publishing Ltd.

  2. Genetic variation for parental effects on the propensity to gregarise in Locusta migratoria

    Directory of Open Access Journals (Sweden)

    Foucart Antoine

    2008-02-01

    Full Text Available Abstract Background Environmental parental effects can have important ecological and evolutionary consequences, yet little is known about genetic variation among populations in the plastic responses of offspring phenotypes to parental environmental conditions. This type of variation may lead to rapid phenotypic divergence among populations and facilitate speciation. With respect to density-dependent phenotypic plasticity, locust species (Orthoptera: family Acrididae, exhibit spectacular developmental and behavioural shifts in response to population density, called phase change. Given the significance of phase change in locust outbreaks and control, its triggering processes have been widely investigated. Whereas crowding within the lifetime of both offspring and parents has emerged as a primary causal factor of phase change, less is known about intraspecific genetic variation in the expression of phase change, and in particular in response to the parental environment. We conducted a laboratory experiment that explicitly controlled for the environmental effects of parental rearing density. This design enabled us to compare the parental effects on offspring expression of phase-related traits between two naturally-occurring, genetically distinct populations of Locusta migratoria that differed in their historical patterns of high population density outbreak events. Results We found that locusts from a historically outbreaking population of L. migratoria expressed parentally-inherited density-dependent phase changes to a greater degree than those from a historically non-outbreaking population. Conclusion Because locusts from both populations were raised in a common environment during our experiment, a genetically-based process must be responsible for the observed variation in the propensity to express phase change. This result emphasizes the importance of genetic factors in the expression of phase traits and calls for further investigations on density

  3. Genetic variation in lipid desaturases and its impact on the development of human disease.

    Science.gov (United States)

    Merino, Diana M; Ma, David W L; Mutch, David M

    2010-06-18

    Perturbations in lipid metabolism characterize many of the chronic diseases currently plaguing our society, such as obesity, diabetes, and cardiovascular disease. Thus interventions that target plasma lipid levels remain a primary goal to manage these diseases. The determinants of plasma lipid levels are multi-factorial, consisting of both genetic and lifestyle components. Recent evidence indicates that fatty acid desaturases have an important role in defining plasma and tissue lipid profiles. This review will highlight the current state-of-knowledge regarding three desaturases (Scd-1, Fads1 and Fads2) and their potential roles in disease onset and development. Although research in rodent models has provided invaluable insight into the regulation and functions of these desaturases, the extent to which murine research can be translated to humans remains unclear. Evidence emerging from human-based research demonstrates that genetic variation in human desaturase genes affects enzyme activity and, consequently, disease risk factors. Moreover, this genetic variation may have a trans-generational effect via breastfeeding. Therefore inter-individual variation in desaturase function is attributed to both genetic and lifestyle components. As such, population-based research regarding the role of desaturases on disease risk is challenged by this complex gene-lifestyle paradigm. Unravelling the contribution of each component is paramount for understanding the inter-individual variation that exists in plasma lipid profiles, and will provide crucial information to develop personalized strategies to improve health management.

  4. Genetic alterations during the progression of squamous cell carcinomas of the uterine cervix

    NARCIS (Netherlands)

    Kersemaekers, A. M.; van de Vijver, M. J.; Kenter, G. G.; Fleuren, G. J.

    1999-01-01

    Most cervical carcinomas appear to arise from cervical intraepithelial neoplasia (CIN) lesions. In addition to infection with high-risk human papilloma viruses, which is indicative of an increased risk of progression, alterations of oncogenes and tumor suppressor genes play a role. Genetic studies

  5. Genetic variation in Danish populations of Erysiphe graminis f.sp. hordei: estimation of gene diversity and effective population size using RFLP data

    DEFF Research Database (Denmark)

    Damgaard, C.; Giese, Nanna Henriette

    1996-01-01

    Genetic variation of the barley powdery mildew fungus (Erysiphe graminis f.sp. hordei) was estimated in three Danish local populations. Genetic variation was estimated from the variation amongst clones of Egh, and was therefore an estimate of the maximum genetic variation in the local populations...

  6. Genetic variation in bone morphogenetic protein (BMP) and colon and rectal cancer

    Science.gov (United States)

    Slattery, Martha L.; Lundgreen, Abbie; Herrick, Jennifer S.; Kadlubar, Susan; Caan, Bette J.; Potter, John D.; Wolff, Roger K.

    2011-01-01

    Bone morphogenetic proteins (BMP) are part of the TGF-β-signaling pathway; genetic variation in these genes may be involved in colorectal cancer. In this study we evaluated the association between genetic variation in BMP1 (11 tagSNPs), BMP2 (5 tagSNPs), BMP4 (3 tagSNPs), BMPR1A (9 tagSNPs), BMPR1B (21 tagSNPs), BMPR2 (11 tagSNPs), and GDF10 (7 tagSNPs) with risk of colon and rectal cancer and tumor molecular phenotype. We used data from population-based case-control studies (colon cancer n=1574 cases, 1970 controls; rectal cancer n=791 cases, 999 controls). We observed that genetic variation in BMPR1A, BMPR1B, BMPR2, BMP2, and BMP4 was associated with risk of developing colon cancer, with 20 to 30% increased risk for most high-risk genotypes. A summary of high-risk genotypes showed over a twofold increase in colon cancer risk at the upper risk category (OR 2.49 95% CI 1.95, 3.18). BMPR2, BMPR1B, BMP2, and GDF10 were associated with rectal cancer. BMPR2 rs2228545 was associated with an almost twofold increased risk of rectal cancer. The risk associated with the highest category of the summary score for rectal cancer was 2.97 (95% CI 1.87, 4.72). Genes in the BMP-signaling pathway were consistently associated with CIMP+ status in combination with both KRAS-mutated and MSI tumors. BMP genes interacted statistically significantly with other genes in the TGF-β-signaling pathway, including TGFβ1, TGFβR1, Smad 3, Smad 4, and Smad 7. Our data support a role for genetic variation in BMP-related genes in the etiology of colon and rectal cancer. One possible mechanism is via the TGF-β-signaling pathway. PMID:21387313

  7. A Drosophila model for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure.

    Directory of Open Access Journals (Sweden)

    Shanshan Zhou

    2017-07-01

    Full Text Available The genetic factors that give rise to variation in susceptibility to environmental toxins remain largely unexplored. Studies on genetic variation in susceptibility to environmental toxins are challenging in human populations, due to the variety of clinical symptoms and difficulty in determining which symptoms causally result from toxic exposure; uncontrolled environments, often with exposure to multiple toxicants; and difficulty in relating phenotypic effect size to toxic dose, especially when symptoms become manifest with a substantial time lag. Drosophila melanogaster is a powerful model that enables genome-wide studies for the identification of allelic variants that contribute to variation in susceptibility to environmental toxins, since the genetic background, environmental rearing conditions and toxic exposure can be precisely controlled. Here, we used extreme QTL mapping in an outbred population derived from the D. melanogaster Genetic Reference Panel to identify alleles associated with resistance to lead and/or cadmium, two ubiquitous environmental toxins that present serious health risks. We identified single nucleotide polymorphisms (SNPs associated with variation in resistance to both heavy metals as well as SNPs associated with resistance specific to each of them. The effects of these SNPs were largely sex-specific. We applied mutational and RNAi analyses to 33 candidate genes and functionally validated 28 of them. We constructed networks of candidate genes as blueprints for orthologous networks of human genes. The latter not only provided functional contexts for known human targets of heavy metal toxicity, but also implicated novel candidate susceptibility genes. These studies validate Drosophila as a translational toxicogenomics gene discovery system.

  8. Genetic diversity and connectivity within Mytilus spp. in the subarctic and Arctic

    DEFF Research Database (Denmark)

    Mathiesen, Sofie Smedegaard; Thyrring, Jakob; Hansen, Jakob Hemmer

    2017-01-01

    Climate changes in the Arctic are predicted to alter distributions of marine species. However, such changes are difficult to quantify because information on present species distribution and the genetic variation within species is lacking or poorly examined. Blue mussels, Mytilus spp., are ecosystem...... engineers in the coastal zone globally. To improve knowledge of distribution and genetic structure of the Mytilus edulis complex in the Arctic, we analyzed 81 SNPs in 534 Mytilus spp. individuals sampled at 13 sites to provide baseline data for distribution and genetic variation of Mytilus mussels...

  9. Standing genetic variation in host preference for mutualist microbial symbionts.

    Science.gov (United States)

    Simonsen, Anna K; Stinchcombe, John R

    2014-12-22

    Many models of mutualisms show that mutualisms are unstable if hosts lack mechanisms enabling preferential associations with mutualistic symbiotic partners over exploitative partners. Despite the theoretical importance of mutualism-stabilizing mechanisms, we have little empirical evidence to infer their evolutionary dynamics in response to exploitation by non-beneficial partners. Using a model mutualism-the interaction between legumes and nitrogen-fixing soil symbionts-we tested for quantitative genetic variation in plant responses to mutualistic and exploitative symbiotic rhizobia in controlled greenhouse conditions. We found significant broad-sense heritability in a legume host's preferential association with mutualistic over exploitative symbionts and selection to reduce frequency of associations with exploitative partners. We failed to detect evidence that selection will favour the loss of mutualism-stabilizing mechanisms in the absence of exploitation, as we found no evidence for a fitness cost to the host trait or indirect selection on genetically correlated traits. Our results show that genetic variation in the ability to preferentially reduce associations with an exploitative partner exists within mutualisms and is under selection, indicating that micro-evolutionary responses in mutualism-stabilizing traits in the face of rapidly evolving mutualistic and exploitative symbiotic bacteria can occur in natural host populations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden.

    Science.gov (United States)

    Rainey-Smith, Stephanie R; Mazzucchelli, Gavin N; Villemagne, Victor L; Brown, Belinda M; Porter, Tenielle; Weinborn, Michael; Bucks, Romola S; Milicic, Lidija; Sohrabi, Hamid R; Taddei, Kevin; Ames, David; Maruff, Paul; Masters, Colin L; Rowe, Christopher C; Salvado, Olivier; Martins, Ralph N; Laws, Simon M

    2018-02-26

    The glymphatic system is postulated to be a mechanism of brain Aβ-amyloid clearance and to be most effective during sleep. Ablation of the astrocytic end-feet expressed water-channel protein, Aquaporin-4, in mice, results in impairment of this clearance mechanism and increased brain Aβ-amyloid deposition, suggesting that Aquaporin-4 plays a pivotal role in glymphatic function. Currently there is a paucity of literature regarding the impact of AQP4 genetic variation on sleep, brain Aβ-amyloid burden and their relationship to each other in humans. To address this a cross-sectional observational study was undertaken in cognitively normal older adults from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. Genetic variants in AQP4 were investigated with respect to self-reported Pittsburgh Sleep Quality Index sleep parameters, positron emission tomography derived brain Aβ-amyloid burden and whether these genetic variants moderated the sleep-Aβ-amyloid burden relationship. One AQP4 variant, rs72878776, was associated with poorer overall sleep quality, while several SNPs moderated the effect of sleep latency (rs491148, rs9951307, rs7135406, rs3875089, rs151246) and duration (rs72878776, rs491148 and rs2339214) on brain Aβ-amyloid burden. This study suggests that AQP4 genetic variation moderates the relationship between sleep and brain Aβ-amyloid burden, which adds weight to the proposed glymphatic system being a potential Aβ-amyloid clearance mechanism and suggests that AQP4 genetic variation may impair this function. Further, AQP4 genetic variation should be considered when interpreting sleep-Aβ relationships.

  11. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2014-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterisation of African genetic diversity is needed. The African Genome Variation Project (AGVP) provides a resource to help design, implement and interpret genomic studies in sub-Saharan Africa (SSA) and worldwide. The AGVP represents dense genotypes from 1,481 and whole genome sequences (WGS) from 320 individuals across SSA. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across SSA. We identify new loci under selection, including for malaria and hypertension. We show that modern imputation panels can identify association signals at highly differentiated loci across populations in SSA. Using WGS, we show further improvement in imputation accuracy supporting efforts for large-scale sequencing of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa, showing for the first time that such designs are feasible. PMID:25470054

  12. Genetic variation of 12 rice cultivars grown in Brunei Darussalam ...

    African Journals Online (AJOL)

    Dell

    2015-03-25

    Mar 25, 2015 ... Quantum yield for B. berminyak were unaffected and it showed the least reduction in growth parameters studied when expose to salinity stress. From both salinity tolerance and genetic variation investigations for these 12 cultivars, it may probably be better to intercross between Arat (moderately tolerant) ...

  13. Allozyme and RAPD Analysis of the Genetic Diversity and Geographic Variation in Wild Populations of the American Chestnut (Fagaceae)

    Science.gov (United States)

    Hongwen Huang; Fenny Dane; Thomas L. Kubisiak

    1998-01-01

    Genetic variation among 12 populations of the American chestnut (Custanea dentata) was investigated. Population genetic parameters estimated from allozyme variation suggest that C. dentata at both the population and species level has narrow genetic diversity as compared to other species in the genus. Average expected heterozygosity...

  14. Genetic mapping of variation in dauer larvae development in growing populations of Caenorhabditis elegans

    NARCIS (Netherlands)

    Green, J.W.M.; Snoek, L.B.; Kammenga, J.E.; Harvey, S.C.

    2013-01-01

    In the nematode Caenorhabditis elegans, the appropriate induction of dauer larvae development within growing populations is likely to be a primary determinant of genotypic fitness. The underlying genetic architecture of natural genetic variation in dauer formation has, however, not been thoroughly

  15. Chemical variation in a dominant tree species: population divergence, selection and genetic stability across environments.

    Directory of Open Access Journals (Sweden)

    Julianne M O'Reilly-Wapstra

    Full Text Available Understanding among and within population genetic variation of ecologically important plant traits provides insight into the potential evolutionary processes affecting those traits. The strength and consistency of selection driving variability in traits would be affected by plasticity in differences among genotypes across environments (G×E. We investigated population divergence, selection and environmental plasticity of foliar plant secondary metabolites (PSMs in a dominant tree species, Eucalyptus globulus. Using two common garden trials we examined variation in PSMs at multiple genetic scales; among 12 populations covering the full geographic range of the species and among up to 60 families within populations. Significant genetic variation in the expression of many PSMs resides both among and within populations of E. globulus with moderate (e.g., sideroxylonal A h(2op = 0.24 to high (e.g., macrocarpal G h(2op = 0.48 narrow sense heritabilities and high coefficients of additive genetic variation estimated for some compounds. A comparison of Qst and Fst estimates suggest that variability in some of these traits may be due to selection. Importantly, there was no genetic by environment interaction in the expression of any of the quantitative chemical traits despite often significant site effects. These results provide evidence that natural selection has contributed to population divergence in PSMs in E. globulus, and identifies the formylated phloroglucinol compounds (particularly sideroxylonal and a dominant oil, 1,8-cineole, as candidates for traits whose genetic architecture has been shaped by divergent selection. Additionally, as the genetic differences in these PSMs that influence community phenotypes is stable across environments, the role of plant genotype in structuring communities is strengthened and these genotypic differences may be relatively stable under global environmental changes.

  16. Molecular identification and genetic variation of varieties of Styphnolobium japonicum (Fabaceae) using SRAP markers.

    Science.gov (United States)

    Sun, R X; Zhang, C H; Zheng, Y Q; Zong, Y C; Yu, X D; Huang, P

    2016-05-06

    Thirty-four Styphnolobium japonicum varieties were analyzed using sequence-related amplified polymorphism (SRAP) markers, to investigate genetic variation and test the effectiveness of SRAP markers in DNA fingerprint establishment. Twelve primer pairs were selected from 120 primer combinations for their reproducibility and high polymorphism. We found a total of 430 amplified fragments, of which 415 fragments were considered polymorphic with an average of 34.58 polymorphic fragments for each primer combination. The percentage of polymorphic fragments was 96.60%, and four primer pairs showed 100% polymorphism. Moreover, simple matched coefficients ranged between 0.68 and 0.89, with an average of 0.785, indicating that the genetic variation among varieties was relatively low. This could be because of the narrow genetic basis of the selected breeding material. Based on the similarity coefficient value of 0.76, the varieties were divided into four major groups. In addition, abundant and clear SRAP fingerprints were obtained and could be used to establish DNA fingerprints. In the DNA fingerprints, each variety had its unique pattern that could be easily distinguished from others. The results demonstrated that 34 varieties of S. japonicum had a relatively narrow genetic variation. Hence, a broadening of the genetic basis of breeding material is necessary. We conclude that establishment of DNA fingerprint is feasible by means of SRAP markers.

  17. Evolving Landscapes: the Effect of Genetic Variation on Salt Marsh Erosion

    Science.gov (United States)

    Bernik, B. M.; Blum, M. J.

    2014-12-01

    Ecogeomorphic studies have demonstrated that biota can exert influence over geomorphic processes, such as sediment transport, which in turn have biotic consequences and generate complex feedbacks. However, little attention has been paid to the potential for feedback to arise from evolutionary processes as population genetic composition changes in response to changing physical landscapes. In coastal ecosystems experiencing land loss, for example, shoreline erosion entails reduced plant survival and reproduction, and thereby represents a geomorphic response with inherent consequences for evolutionary fitness. To get at this topic, we examined the effect of genetic variation in the saltmarsh grass Spartina alterniflora, a renowned ecosystem engineer, on rates of shoreline erosion. Field transplantation studies and controlled greenhouse experiments were conducted to compare different genotypes from both wild and cultivated populations. Plant traits, soil properties, accretion/subsidence, and rates of land loss were measured. We found significant differences in rates of erosion between field plots occupied by different genotypes. Differences in erosion corresponded to variation in soil properties including critical shear stress and subsidence. Plant traits that differed across genotypes included belowground biomass, root tensile strength, and C:N ratios. Our results demonstrate the importance of genetic variation to salt marsh functioning, elucidating the relationship between evolutionary processes and ecogeomorphic dynamics in these systems. Because evolutionary processes can occur on ecological timescales, the direction and strength of ecogeomorphic feedbacks may be more dynamic than previously accounted for.

  18. MAINTENANCE OF ECOLOGICALLY SIGNIFICANT GENETIC VARIATION IN THE TIGER SWALLOWTAIL BUTTERFLY THROUGH DIFFERENTIAL SELECTION AND GENE FLOW.

    Science.gov (United States)

    Bossart, J L; Scriber, J M

    1995-12-01

    Differential selection in a heterogeneous environment is thought to promote the maintenance of ecologically significant genetic variation. Variation is maintained when selection is counterbalanced by the homogenizing effects of gene flow and random mating. In this study, we examine the relative importance of differential selection and gene flow in maintaining genetic variation in Papilio glaucus. Differential selection on traits contributing to successful use of host plants (oviposition preference and larval performance) was assessed by comparing the responses of southern Ohio, north central Georgia, and southern Florida populations of P. glaucus to three hosts: Liriodendron tulipifera, Magnolia virginiana, and Prunus serotina. Gene flow among populations was estimated using allozyme frequencies from nine polymorphic loci. Significant genetic differentiation was observed among populations for both oviposition preference and larval performance. This differentiation was interpreted to be the result of selection acting on Florida P. glaucus for enhanced use of Magnolia, the prevalent host in Florida. In contrast, no evidence of population differentiation was revealed by allozyme frequencies. F ST -values were very small and Nm, an estimate of the relative strengths of gene flow and genetic drift, was large, indicating that genetic exchange among P. glaucus populations is relatively unrestricted. The contrasting patterns of spatial differentiation for host-use traits and lack of differentiation for electrophoretically detectable variation implies that differential selection among populations will be counterbalanced by gene flow, thereby maintaining genetic variation for host-use traits. © 1995 The Society for the Study of Evolution.

  19. Genetic variation of indigenous chicken breeds in China and a ...

    African Journals Online (AJOL)

    huis

    Genetic variation of indigenous chicken breeds in China and a Recessive White breed using AFLP fingerprinting. Yushi Gao. 1,2#. , Yunjie Tu. 1,2. , Haibin Tong. 1. , Kehua Wang. 1. , Xiujun Tang. 1 and Kuanwei Chen. 1. 1 Institute of Poultry, Academy of Agricultural Sciences in China, Yangzhou, 225003, Jiangsu, China.

  20. Effects of genetic distance on heterosis in a Drosophila melanogaster model system

    DEFF Research Database (Denmark)

    Jensen, Charlotte; Ørsted, Michael; Kristensen, Torsten Nygaard

    2018-01-01

    Habitat fragmentation and small population sizes can lead to inbreeding and loss of genetic variation, which can potentially cause inbreeding depression and decrease the ability of populations to adapt to altered environmental conditions. One solution to these genetic problems is the implementati...

  1. Genetic Variant in Flavin-Containing Monooxygenase 3 Alters Lipid Metabolism in Laying Hens in a Diet-Specific Manner

    OpenAIRE

    Wang, Jing; Long, Cheng; Zhang, Haijun; Zhang, Yanan; Wang, Hao; Yue, Hongyuan; Wang, Xiaocui; Wu, Shugeng; Qi, Guanghai

    2016-01-01

    Genetic variant T329S in flavin-containing monooxygenase 3 (FMO3) impairs trimethylamine (TMA) metabolism in birds. The TMA metabolism that under complex genetic and dietary regulation, closely linked to cardiovascular disease risk. We determined whether the genetic defects in TMA metabolism may change other metabolic traits in birds, determined whether the genetic effects depend on diets, and to identify genes or gene pathways that underlie the metabolic alteration induced by genetic and die...

  2. Association of genetic variations in the mitochondrial DNA control region with presbycusis

    Directory of Open Access Journals (Sweden)

    Falah M

    2017-03-01

    Full Text Available Masoumeh Falah,1 Mohammad Farhadi,1 Seyed Kamran Kamrava,1 Saeid Mahmoudian,1 Ahmad Daneshi,1 Maryam Balali,1 Alimohamad Asghari,2 Massoud Houshmand1,3 1ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; 2Skull Base Research Center, Iran University of Medical Sciences, Tehran, Iran; 3Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran Background: The prominent role of mitochondria in the generation of reactive oxygen species, cell death, and energy production contributes to the importance of this organelle in the intracellular mechanism underlying the progression of the common sensory disorder of the elderly, presbycusis. Reduced mitochondrial DNA (mtDNA gene expression and coding region variation have frequently been reported as being associated with the development of presbycusis. The mtDNA control region regulates gene expression and replication of the genome of this organelle. To comprehensively understand of the role of mitochondria in the progression of presbycusis, we compared variations in the mtDNA control region between subjects with presbycusis and controls.Methods: A total of 58 presbycusis patients and 220 control subjects were enrolled in the study after examination by the otolaryngologist and audiology tests. Variations in the mtDNA control region were investigated by polymerase chain reaction and Sanger sequencing.Results: A total of 113 sequence variants were observed in mtDNA, and variants were detected in 100% of patients, with 84% located in hypervariable regions. The frequencies of the variants, 16,223 C>T, 16,311 T>C, 16,249 T>C, and 15,954 A>C, were significantly different between presbycusis and control subjects.Conclusion: The statistically significant difference in the frequencies of four nucleotide variants in the mtDNA control region of presbycusis patients and controls is in agreement with previous experimental

  3. Global and disease-associated genetic variation in the human Fanconi anemia gene family.

    Science.gov (United States)

    Rogers, Kai J; Fu, Wenqing; Akey, Joshua M; Monnat, Raymond J

    2014-12-20

    Fanconi anemia (FA) is a human recessive genetic disease resulting from inactivating mutations in any of 16 FANC (Fanconi) genes. Individuals with FA are at high risk of developmental abnormalities, early bone marrow failure and leukemia. These are followed in the second and subsequent decades by a very high risk of carcinomas of the head and neck and anogenital region, and a small continuing risk of leukemia. In order to characterize base pair-level disease-associated (DA) and population genetic variation in FANC genes and the segregation of this variation in the human population, we identified 2948 unique FANC gene variants including 493 FA DA variants across 57,240 potential base pair variation sites in the 16 FANC genes. We then analyzed the segregation of this variation in the 7578 subjects included in the Exome Sequencing Project (ESP) and the 1000 Genomes Project (1KGP). There was a remarkably high frequency of FA DA variants in ESP/1KGP subjects: at least 1 FA DA variant was identified in 78.5% (5950 of 7578) individuals included in these two studies. Six widely used functional prediction algorithms correctly identified only a third of the known, DA FANC missense variants. We also identified FA DA variants that may be good candidates for different types of mutation-specific therapies. Our results demonstrate the power of direct DNA sequencing to detect, estimate the frequency of and follow the segregation of deleterious genetic variation in human populations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Genetic factors account for most of the variation in serum tryptase—a twin study

    DEFF Research Database (Denmark)

    Sverrild, Asger; van der Sluis, Sophie; Kyvik, Kirsten Ohm

    2013-01-01

    Background: Mast cells are involved in a number of diseases, including inflammatory diseases such as asthma. Tryptase is a known marker of mast cell burden and activity. However, little is known about the genetic influence on serum tryptase variation. Also, only few and conflicting data exist...... on serum tryptase in asthma. Objective: To estimate the overall contribution of genetic and environmental factors to the variation in serum tryptase and to examine the correlation between serum tryptase and asthma, rhinitis, markers of allergy, airway inflammation, and airway hyperresponsiveness (AHR...

  5. Identifying tagging SNPs for African specific genetic variation from the African Diaspora Genome.

    Science.gov (United States)

    Johnston, Henry Richard; Hu, Yi-Juan; Gao, Jingjing; O'Connor, Timothy D; Abecasis, Gonçalo R; Wojcik, Genevieve L; Gignoux, Christopher R; Gourraud, Pierre-Antoine; Lizee, Antoine; Hansen, Mark; Genuario, Rob; Bullis, Dave; Lawley, Cindy; Kenny, Eimear E; Bustamante, Carlos; Beaty, Terri H; Mathias, Rasika A; Barnes, Kathleen C; Qin, Zhaohui S

    2017-04-21

    A primary goal of The Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to develop an 'African Diaspora Power Chip' (ADPC), a genotyping array consisting of tagging SNPs, useful in comprehensively identifying African specific genetic variation. This array is designed based on the novel variation identified in 642 CAAPA samples of African ancestry with high coverage whole genome sequence data (~30× depth). This novel variation extends the pattern of variation catalogued in the 1000 Genomes and Exome Sequencing Projects to a spectrum of populations representing the wide range of West African genomic diversity. These individuals from CAAPA also comprise a large swath of the African Diaspora population and incorporate historical genetic diversity covering nearly the entire Atlantic coast of the Americas. Here we show the results of designing and producing such a microchip array. This novel array covers African specific variation far better than other commercially available arrays, and will enable better GWAS analyses for researchers with individuals of African descent in their study populations. A recent study cataloging variation in continental African populations suggests this type of African-specific genotyping array is both necessary and valuable for facilitating large-scale GWAS in populations of African ancestry.

  6. Assessment of genetic diversity and variation of acer mono max seedlings after spaceflight

    International Nuclear Information System (INIS)

    Long, C.; Li, Y.; Zhang, Y.; Yang, M.

    2015-01-01

    Genetic diversity and variation of Acer Mono Maxim seedlings sampled from space-mutated (sm) populations were compared to seedlings from parallel control (ck) ones using molecular markers. RAMP analysis showed that the percentage of polymorphic band, Shannon diversity index and Nei gene diversity index of the space-mutated populations were higher than those of the control ones, which indicated that genetic variation increased after spaceflight in populations of Acer Mono Maxim. By using un-weighted pair group method with arithmetic mean (UPGMA) method, three space-mutated repeats (populations) were clustered together, and control groups clustered separately, which further indicated that there was difference between the space-mutated ones and the control ones, which may be caused by space mutation. Further analysis of genomic inconsistency between the root and leaf samples from the same tree showed that a total variation rate of 6.3% and 1.7% were obtained in ten space-mutated individuals by using RAMP and SSR markers, respectively, however, the variation rate was zero in control ones. It provided that space mutation may be caused the individual variation of Acer Mono Maxim. (author)

  7. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology.

    Science.gov (United States)

    Roux, F; Bergelson, J

    2016-01-01

    In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity. © 2016 Elsevier Inc. All rights reserved.

  8. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm.

    Science.gov (United States)

    Pironon, Samuel; Papuga, Guillaume; Villellas, Jesús; Angert, Amy L; García, María B; Thompson, John D

    2017-11-01

    The 'centre-periphery hypothesis' (CPH) is a long-standing postulate in ecology that states that genetic variation and demographic performance of a species decrease from the centre to the edge of its geographic range. This hypothesis is based on an assumed concordance between geographical peripherality and ecological marginality such that environmental conditions become harsher towards the limits of a species range. In this way, the CPH sets the stage for understanding the causes of distribution limits. To date, no study has examined conjointly the consistency of these postulates. In an extensive literature review we discuss the birth and development of the CPH and provide an assessment of the CPH by reviewing 248 empirical studies in the context of three main themes. First, a decrease in species occurrence towards their range limits was observed in 81% of studies, while only 51% demonstrated reduced abundance of individuals. A decline in genetic variation, increased differentiation among populations and higher rates of inbreeding were demonstrated by roughly one in two studies (47, 45 and 48%, respectively). However, demographic rates, size and population performance less often followed CPH expectations (20-30% of studies). We highlight the impact of important methodological, taxonomic, and biogeographical biases on such validation rates. Second, we found that geographic and ecological marginality gradients are not systematically concordant, which casts doubt on the reliability of a main assumption of the CPH. Finally, we attempt to disentangle the relative contribution of geographical, ecological and historical processes on the spatial distribution of genetic and demographic parameters. While ecological marginality gradients explain variation in species' demographic performance better than geographic gradients, contemporary and historical factors may contribute interactively to spatial patterns of genetic variation. We thereby propose a framework that integrates

  9. Incorporating latitudinal and central–marginal trends in assessing genetic variation across species ranges

    Science.gov (United States)

    Qinfeng Guo

    2012-01-01

    The genetic variation across a species’ range is an important factor in speciation and conservation, yet searching for general patterns and underlying causes remains challenging. While the majority of comparisons between central and marginal populations have revealed a general central–marginal (C-M) decline in genetic diversity, others show no clear pattern. Similarly...

  10. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants.

    Science.gov (United States)

    Machczyńska, Joanna; Zimny, Janusz; Bednarek, Piotr Tomasz

    2015-10-01

    Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.

  11. Natural variation, an underexploited resource of genetic variation for plant genetics

    NARCIS (Netherlands)

    Alonso-Blanco, C.; Koornneef, M.

    2000-01-01

    The definition of gene functions requires the phenotypic characterization of genetic variants. Currently, such functional analysis of Arabidopsis genes is based largely on laboratory-induced mutants that are selected in forward and reverse genetic studies. An alternative complementary source of

  12. Indirect Genetic Effects and the Spread of Infectious Disease: Are We Capturing the Full Heritable Variation Underlying Disease Prevalence?

    Science.gov (United States)

    Lipschutz-Powell, Debby; Woolliams, John A.; Bijma, Piter; Doeschl-Wilson, Andrea B.

    2012-01-01

    Reducing disease prevalence through selection for host resistance offers a desirable alternative to chemical treatment. Selection for host resistance has proven difficult, however, due to low heritability estimates. These low estimates may be caused by a failure to capture all the relevant genetic variance in disease resistance, as genetic analysis currently is not taylored to estimate genetic variation in infectivity. Host infectivity is the propensity of transmitting infection upon contact with a susceptible individual, and can be regarded as an indirect effect to disease status. It may be caused by a combination of physiological and behavioural traits. Though genetic variation in infectivity is difficult to measure directly, Indirect Genetic Effect (IGE) models, also referred to as associative effects or social interaction models, allow the estimation of this variance from more readily available binary disease data (infected/non-infected). We therefore generated binary disease data from simulated populations with known amounts of variation in susceptibility and infectivity to test the adequacy of traditional and IGE models. Our results show that a conventional model fails to capture the genetic variation in infectivity inherent in populations with simulated infectivity. An IGE model, on the other hand, does capture some of the variation in infectivity. Comparison with expected genetic variance suggests that there is scope for further methodological improvement, and that potential responses to selection may be greater than values presented here. Nonetheless, selection using an index of estimated direct and indirect breeding values was shown to have a greater genetic selection differential and reduced future disease risk than traditional selection for resistance only. These findings suggest that if genetic variation in infectivity substantially contributes to disease transmission, then breeding designs which explicitly incorporate IGEs might help reduce disease

  13. Genetic regulation of the variation of circulating insulin-like growth factors and leptin in human pedigrees.

    Science.gov (United States)

    Pantsulaia, Ia; Pantsulaia, I; Trofimov, Svetlana; Kobyliansky, Eugene; Livshits, Gregory

    2005-07-01

    Recent literature has shown that circulating levels of insulin-like growth factor I (IGF-I) and/or IGF binding proteins (IGF-BPs) may be of importance in the risk assessment of several chronic diseases including cancer, cardiovascular disease, diabetes mellitus and so on. The present study examined the extent of genetic and environmental influences on the populational variation of circulating IGF-I and IGF-BP-1 in apparently healthy and ethnically homogeneous white families. The plasma levels of each of the studied biochemical indices were determined by enzyme-linked immunoassay in 563 individuals aged 18 to 80 years. Quantitative genetic analysis showed that the IGF-I variation was appreciably attributable to genetic effects (47.1% +/- 9.0%), whereas for IGF-BP-1, only 23.3% +/- 7.8% of the interindividual variation was explained by genetic determinants. Common familial environment factors contributed significantly only to IGF-BP-1 variation (23.3% +/- 7.8%). In addition, we examined the covariations between these molecules and between them and IGF-BP-3 and leptin that were previously studied in the same sample. The analysis revealed that the pleiotropic genetic effects were significant for 2 pairs of traits, namely for IGF-I and IGF-BP-3, and for IGF-BP-1 and leptin. The bivariate heritability estimates were 0.21 +/- 0.04 and 0.15 +/- 0.05. The common environmental factors were consistently a significant source of correlation between all pairs (barring IGF-I and leptin) of the studied molecules; they were the sole predictors of correlation between IGF-I and IGF-BP-1, and between IGF-BP-1 and IGF-BP-3. Our results affirm the existence of specific and common genetic pathways that in combination determine a substantial proportion of the circulating variation of these molecules.

  14. Genetic variation patterns of American chestnut populations at EST-SSRs

    Science.gov (United States)

    Oliver Gailing; C. Dana Nelson

    2017-01-01

    The objective of this study is to analyze patterns of genetic variation at genic expressed sequence tag - simple sequence repeats (EST-SSRs) and at chloroplast DNA markers in populations of American chestnut (Castanea dentata Borkh.) to assist in conservation and breeding efforts. Allelic diversity at EST-SSRs decreased significantly from southwest to northeast along...

  15. Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture

    OpenAIRE

    Wei, Wei; Davis, Robert Edward; Nuss, Donald L.; Zhao, Yan

    2013-01-01

    In higher plants, the destiny of apical meristems (stem cells) is specific organogenesis, which determines the pattern of plant growth, and therefore morphotype and fertility. We found that bacterial infection can derail the meristems from their genetically preprogrammed destiny, altering plant morphogenesis. We identified four abnormal growth patterns, symptoms, in tomato infected with a cell wall-less bacterium, and found that each symptom corresponds to a distinct phase in meristem fate de...

  16. Genetic Alterations of the Thrombopoietin/MPL/JAK2 Axis Impacting Megakaryopoiesis

    OpenAIRE

    Plo, Isabelle; Bellanné-Chantelot, Christine; Mosca, Matthieu; Mazzi, Stefania; Marty, Caroline; Vainchenker, William

    2017-01-01

    Megakaryopoiesis is an original and complex cell process which leads to the formation of platelets. The homeostatic production of platelets is mainly regulated and controlled by thrombopoietin (TPO) and the TPO receptor (MPL)/JAK2 axis. Therefore, any hereditary or acquired abnormality affecting this signaling axis can result in thrombocytosis or thrombocytopenia. Thrombocytosis can be due to genetic alterations that affect either the intrinsic MPL signaling through gain-of-function (GOF) act...

  17. Integrating common and rare genetic variation in diverse human populations.

    Science.gov (United States)

    Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Dermitzakis, Emmanouil; Schaffner, Stephen F; Yu, Fuli; Peltonen, Leena; Dermitzakis, Emmanouil; Bonnen, Penelope E; Altshuler, David M; Gibbs, Richard A; de Bakker, Paul I W; Deloukas, Panos; Gabriel, Stacey B; Gwilliam, Rhian; Hunt, Sarah; Inouye, Michael; Jia, Xiaoming; Palotie, Aarno; Parkin, Melissa; Whittaker, Pamela; Yu, Fuli; Chang, Kyle; Hawes, Alicia; Lewis, Lora R; Ren, Yanru; Wheeler, David; Gibbs, Richard A; Muzny, Donna Marie; Barnes, Chris; Darvishi, Katayoon; Hurles, Matthew; Korn, Joshua M; Kristiansson, Kati; Lee, Charles; McCarrol, Steven A; Nemesh, James; Dermitzakis, Emmanouil; Keinan, Alon; Montgomery, Stephen B; Pollack, Samuela; Price, Alkes L; Soranzo, Nicole; Bonnen, Penelope E; Gibbs, Richard A; Gonzaga-Jauregui, Claudia; Keinan, Alon; Price, Alkes L; Yu, Fuli; Anttila, Verneri; Brodeur, Wendy; Daly, Mark J; Leslie, Stephen; McVean, Gil; Moutsianas, Loukas; Nguyen, Huy; Schaffner, Stephen F; Zhang, Qingrun; Ghori, Mohammed J R; McGinnis, Ralph; McLaren, William; Pollack, Samuela; Price, Alkes L; Schaffner, Stephen F; Takeuchi, Fumihiko; Grossman, Sharon R; Shlyakhter, Ilya; Hostetter, Elizabeth B; Sabeti, Pardis C; Adebamowo, Clement A; Foster, Morris W; Gordon, Deborah R; Licinio, Julio; Manca, Maria Cristina; Marshall, Patricia A; Matsuda, Ichiro; Ngare, Duncan; Wang, Vivian Ota; Reddy, Deepa; Rotimi, Charles N; Royal, Charmaine D; Sharp, Richard R; Zeng, Changqing; Brooks, Lisa D; McEwen, Jean E

    2010-09-02

    Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called 'HapMap 3', includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of variation and its role in human disease, and serves as a step towards a high-resolution map of the landscape of human genetic variation.

  18. Low Genetic Variation of Red-Crowned Cranes on Hokkaido Island, Japan, Over the Hundred Years.

    Science.gov (United States)

    Akiyama, Takuya; Momose, Kunikazu; Onuma, Manabu; Matsumoto, Fumio; Masuda, Ryuichi

    2017-06-01

    The red-crowned crane (Grus japonensis) is recognized internationally as an endangered species. Migratory populations breed in eastern Russia and northeastern China, whereas the resident population inhabits the island of Hokkaido, Japan. Although the population inhabiting Hokkaido had experienced a severe bottleneck by the end of the 19th century, the population size has recovered to about 1500 and continues to increase now thanks to conservation efforts. A previous study reported that no marked genetic differences were seen in the island population, and that the genetic variation of the whole population on Hokkaido was lower than that of the continental population. However, the precise genetic structure of the island population in the past or near present remains unclear. To better understand the spatiotemporal changes in the genetic structure of the island population, we performed mitochondrial DNA (mtDNA) analyses using stuffed specimens (years 1878-2001) and tissue or blood samples (years 1970-2014). We found three haplotypes in the island population, one of which was a novel mtDNA haplotype in 1997 and 2007 samples. In addition, there was no clear difference in the haplotype frequency through the time span. These results suggest that the low genetic variation of the island population persisted for the last hundred years. It is thus nearly impossible for the island population to recover its genetic variation in isolation. Conservation plans for this species should therefore include the promotion of genetic exchanges between the continental and island populations, such as through artificial introduction to Hokkaido.

  19. Genetic and epigenetic alterations of the reduced folate carrier in untreated diffuse large B-cell lymphoma

    DEFF Research Database (Denmark)

    Kastrup, I.B.; Worm, J.; Ralfkiaer, E.

    2008-01-01

    The reduced folate carrier (RFC) is a transmembrane protein that mediates cellular uptake of reduced folates and antifolate drugs, including methotrexate (MTX). Acquired alterations of the RFC gene have been associated with resistance to MTX in cancer cell lines and primary osteosarcomas. Here, w...... with adverse outcome. In DLBCL, genetic and epigenetic alterations of RFC were detected at diagnosis in the absence of a selective MTX pressure, suggesting that these alterations may possibly contribute to the development of lymphoma Udgivelsesdato: 2008/1...

  20. Genetic variation in caribou and reindeer (Rangifer tarandus).

    Science.gov (United States)

    Cronin, M A; Patton, J C; Balmysheva, N; MacNeil, M D

    2003-02-01

    Genetic variation at seven microsatellite DNA loci was quantified in 19 herds of wild caribou and domestic reindeer (Rangifer tarandus) from North America, Scandinavia and Russia. There is an average of 2.0-6.6 alleles per locus and observed individual heterozygosity of 0.33-0.50 in most herds. A herd on Svalbard Island, Scandinavia, is an exception, with relatively few alleles and low heterozygosity. The Central Arctic, Western Arctic and Porcupine River caribou herds in Alaska have similar allele frequencies and comprise one breeding population. Domestic reindeer in Alaska originated from transplants from Siberia, Russia, more than 100 years ago. Reindeer in Alaska and Siberia have different allele frequencies at several loci, but a relatively low level of genetic differentiation. Wild caribou and domestic reindeer in Alaska have significantly different allele frequencies at the seven loci, indicating that gene flow between reindeer and caribou in Alaska has been limited.

  1. Genetic mechanisms and age-related macular degeneration: common variants, rare variants, copy number variations, epigenetics, and mitochondrial genetics

    Directory of Open Access Journals (Sweden)

    Liu Melissa M

    2012-08-01

    Full Text Available Abstract Age-related macular degeneration (AMD is a complex and multifaceted disease involving contributions from both genetic and environmental influences. Previous work exploring the genetic contributions of AMD has implicated numerous genomic regions and a variety of candidate genes as modulators of AMD susceptibility. Nevertheless, much of this work has revolved around single-nucleotide polymorphisms (SNPs, and it is apparent that a significant portion of the heritability of AMD cannot be explained through these mechanisms. In this review, we consider the role of common variants, rare variants, copy number variations, epigenetics, microRNAs, and mitochondrial genetics in AMD. Copy number variations in regulators of complement activation genes (CFHR1 and CFHR3 and glutathione S transferase genes (GSTM1 and GSTT1 have been associated with AMD, and several additional loci have been identified as regions of potential interest but require further evaluation. MicroRNA dysregulation has been linked to the retinal pigment epithelium degeneration in geographic atrophy, ocular neovascularization, and oxidative stress, all of which are hallmarks in the pathogenesis of AMD. Certain mitochondrial DNA haplogroups and SNPs in mitochondrially encoded NADH dehydrogenase genes have also been associated with AMD. The role of these additional mechanisms remains only partly understood, but the importance of their further investigation is clear to elucidate more completely the genetic basis of AMD.

  2. Conservation genetics and geographic patterns of genetic variation of the vulnerable officinal herb Fritillaria walujewii (Liliaceae)

    Science.gov (United States)

    Zhihao Su; Borong Pan; Stewart C. Sanderson; Xiaojun Shi; Xiaolong Jiang

    2015-01-01

    The Chinese herb Fritillaria walujewii Regel is an important officinal species that is vulnerable because of over-harvesting. Here, we examined the geographic pattern of genetic variation across the species entire range, to study its evolution process and give implication needed for the conservation. Nine haplotypes were detected on the basis of three chloroplast...

  3. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-abaxial Polarity Establishment in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Jianli eLiang

    2016-02-01

    Full Text Available Alterations in leaf adaxial–abaxial (ad-ab polarity are one of the main factors that are responsible for leaf curvature. In Chinese cabbage, to form a leafy head, leaf incurvature is an essential prerequisite. Identifying ad-ab patterning genes and investigating its genetic variations will facilitate in elucidating the mechanism underlying leaf incurvature during head formation. In the present study we conducted comparative genomic analysis of the identification of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs in Arabidopsis thaliana, indicating that these genes underwent expansion and were retained after whole genome triplication (WGT. We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima’s D indices and nucleotide diversity reduction in heading accessions compared to that in non-heading accessions, indicating that these underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature that is associated in the formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage.

  4. The wild life at Chernobyl. Analysis of a prosperous but genetically altered fauna

    International Nuclear Information System (INIS)

    Chesser, R.; Baker, R.

    1996-01-01

    The ecological study of zones contaminated by Chernobyl accident reveals that the wild life abounds, because of inhabitants absence, evacuated. On the other hand, significant genetical alterations are observed, whom functional consequences, low visible, stay, at term, unknown. This kind of studies illustrates the development of a new discipline, the evolving toxicology

  5. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation

    Science.gov (United States)

    Pagliaccio, David; Luby, Joan L.; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S.; Belden, Andrew C.; Botteron, Kelly N.; Harms, Michael P.; Barch, Deanna M.

    2015-01-01

    Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within four hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9–14 year olds; N=120). Whole-brain regression analyses indicated that increasing genetic ‘risk’ predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic ‘risk’ and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. PMID:26595470

  6. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation.

    Science.gov (United States)

    Pagliaccio, David; Luby, Joan L; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S; Belden, Andrew C; Botteron, Kelly N; Harms, Michael P; Barch, Deanna M

    2015-11-01

    Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within 4 hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9- to 14-year-olds; N = 120). Whole-brain regression analyses indicated that increasing genetic "risk" predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic "risk" and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. (c) 2015 APA, all rights reserved).

  7. Implications of host genetic variation on the risk and prevalence of infectious diseases transmitted through the environment.

    Science.gov (United States)

    Doeschl-Wilson, Andrea B; Davidson, R; Conington, J; Roughsedge, T; Hutchings, M R; Villanueva, B

    2011-07-01

    Previous studies have shown that host genetic heterogeneity in the response to infectious challenge can affect the emergence risk and the severity of diseases transmitted through direct contact between individuals. However, there is substantial uncertainty about the degree and direction of influence owing to different definitions of genetic variation, most of which are not in line with the current understanding of the genetic architecture of disease traits. Also, the relevance of previous results for diseases transmitted through environmental sources is unclear. In this article a compartmental genetic-epidemiological model was developed to quantify the impact of host genetic diversity on epidemiological characteristics of diseases transmitted through a contaminated environment. The model was parameterized for footrot in sheep. Genetic variation was defined through continuous distributions with varying shape and degree of dispersion for different disease traits. The model predicts a strong impact of genetic heterogeneity on the disease risk and its progression and severity, as well as on observable host phenotypes, when dispersion in key epidemiological parameters is high. The impact of host variation depends on the disease trait for which variation occurs and on environmental conditions affecting pathogen survival. In particular, compared to homogeneous populations with the same average susceptibility, disease risk and severity are substantially higher in populations containing a large proportion of highly susceptible individuals, and the differences are strongest when environmental contamination is low. The implications of our results for the recording and analysis of disease data and for predicting response to selection are discussed.

  8. Response of predatory mites to a herbivore-induced plant volatile: genetic variation for context-dependent behaviour.

    Science.gov (United States)

    Sznajder, Beata; Sabelis, Maurice W; Egas, Martijn

    2010-07-01

    Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators' responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles.

  9. Standing genetic variation as a major contributor to adaptation in the Virginia chicken lines selection experiment.

    Science.gov (United States)

    Sheng, Zheya; Pettersson, Mats E; Honaker, Christa F; Siegel, Paul B; Carlborg, Örjan

    2015-10-01

    Artificial selection provides a powerful approach to study the genetics of adaptation. Using selective-sweep mapping, it is possible to identify genomic regions where allele-frequencies have diverged during selection. To avoid false positive signatures of selection, it is necessary to show that a sweep affects a selected trait before it can be considered adaptive. Here, we confirm candidate, genome-wide distributed selective sweeps originating from the standing genetic variation in a long-term selection experiment on high and low body weight of chickens. Using an intercross between the two divergent chicken lines, 16 adaptive selective sweeps were confirmed based on their association with the body weight at 56 days of age. Although individual additive effects were small, the fixation for alternative alleles across the loci contributed at least 40 % of the phenotypic difference for the selected trait between these lines. The sweeps contributed about half of the additive genetic variance present within and between the lines after 40 generations of selection, corresponding to a considerable portion of the additive genetic variance of the base population. Long-term, single-trait, bi-directional selection in the Virginia chicken lines has resulted in a gradual response to selection for extreme phenotypes without a drastic reduction in the genetic variation. We find that fixation of several standing genetic variants across a highly polygenic genetic architecture made a considerable contribution to long-term selection response. This provides new fundamental insights into the dynamics of standing genetic variation during long-term selection and adaptation.

  10. Ethnic Background and Genetic Variation in the Evaluation of Cancer Risk: A Systematic Review

    OpenAIRE

    Jing, Lijun; Su, Li; Ring, Brian Z.

    2014-01-01

    The clinical use of genetic variation in the evaluation of cancer risk is expanding, and thus understanding how determinants of cancer susceptibility identified in one population can be applied to another is of growing importance. However there is considerable debate on the relevance of ethnic background in clinical genetics, reflecting both the significance and complexity of genetic heritage. We address this via a systematic review of reported associations with cancer risk for 82 markers in ...

  11. Temporal organization of feeding in Syrian hamsters with a genetically altered circadian period

    NARCIS (Netherlands)

    Oklejewicz, M; Overkamp, GJF; Stirland, JA; Daan, S

    2001-01-01

    The variation in spontaneous meal patterning was studied in three genotypes (tau +/+, tau +/- and tau -/-) of the Syrian hamster with an altered circadian period. Feeding activity was monitored continuously in 13 individuals from each genotype in constant dim light conditions. All three genotypes

  12. HSP90 Shapes the Consequences of Human Genetic Variation.

    Science.gov (United States)

    Karras, Georgios I; Yi, Song; Sahni, Nidhi; Fischer, Máté; Xie, Jenny; Vidal, Marc; D'Andrea, Alan D; Whitesell, Luke; Lindquist, Susan

    2017-02-23

    HSP90 acts as a protein-folding buffer that shapes the manifestations of genetic variation in model organisms. Whether HSP90 influences the consequences of mutations in humans, potentially modifying the clinical course of genetic diseases, remains unknown. By mining data for >1,500 disease-causing mutants, we found a strong correlation between reduced phenotypic severity and a dominant (HSP90 ≥ HSP70) increase in mutant engagement by HSP90. Examining the cancer predisposition syndrome Fanconi anemia in depth revealed that mutant FANCA proteins engaged predominantly by HSP70 had severely compromised function. In contrast, the function of less severe mutants was preserved by a dominant increase in HSP90 binding. Reducing HSP90's buffering capacity with inhibitors or febrile temperatures destabilized HSP90-buffered mutants, exacerbating FA-related chemosensitivities. Strikingly, a compensatory FANCA somatic mutation from an "experiment of nature" in monozygotic twins both prevented anemia and reduced HSP90 binding. These findings provide one plausible mechanism for the variable expressivity and environmental sensitivity of genetic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Here we report genetic variations and alterations of the TRs that have been described in the literature as well as their potential role in the development of some human diseases including cancers. The functional effects of some mutations and polymorphisms in TRs on disease susceptibility, especially on cancer risk, are now ...

  14. Genetic and Nongenetic Determinants of Cell Growth Variation Assessed by High-Throughput Microscopy

    Science.gov (United States)

    Ziv, Naomi; Siegal, Mark L.; Gresham, David

    2013-01-01

    In microbial populations, growth initiation and proliferation rates are major components of fitness and therefore likely targets of selection. We used a high-throughput microscopy assay, which enables simultaneous analysis of tens of thousands of microcolonies, to determine the sources and extent of growth rate variation in the budding yeast (Saccharomyces cerevisiae) in different glucose environments. We find that cell growth rates are regulated by the extracellular concentration of glucose as proposed by Monod (1949), but that significant heterogeneity in growth rates is observed among genetically identical individuals within an environment. Yeast strains isolated from different geographic locations and habitats differ in their growth rate responses to different glucose concentrations. Inheritance patterns suggest that the genetic determinants of growth rates in different glucose concentrations are distinct. In addition, we identified genotypes that differ in the extent of variation in growth rate within an environment despite nearly identical mean growth rates, providing evidence that alleles controlling phenotypic variability segregate in yeast populations. We find that the time to reinitiation of growth (lag) is negatively correlated with growth rate, yet this relationship is strain-dependent. Between environments, the respirative activity of individual cells negatively correlates with glucose abundance and growth rate, but within an environment respirative activity and growth rate show a positive correlation, which we propose reflects differences in protein expression capacity. Our study quantifies the sources of genetic and nongenetic variation in cell growth rates in different glucose environments with unprecedented precision, facilitating their molecular genetic dissection. PMID:23938868

  15. Using induced pluripotent stem cells to explore genetic and epigenetic variation associated with Alzheimer's disease.

    Science.gov (United States)

    Imm, Jennifer; Kerrigan, Talitha L; Jeffries, Aaron; Lunnon, Katie

    2017-11-01

    It is thought that both genetic and epigenetic variation play a role in Alzheimer's disease initiation and progression. With the advent of somatic cell reprogramming into induced pluripotent stem cells it is now possible to generate patient-derived cells that are able to more accurately model and recapitulate disease. Furthermore, by combining this with recent advances in (epi)genome editing technologies, it is possible to begin to examine the functional consequence of previously nominated genetic variants and infer epigenetic causality from recently identified epigenetic variants. In this review, we explore the role of genetic and epigenetic variation in Alzheimer's disease and how the functional relevance of nominated loci can be investigated using induced pluripotent stem cells and (epi)genome editing techniques.

  16. Population genetic variation in gene expression is associated withphenotypic variation in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Fay, Justin C.; McCullough, Heather L.; Sniegowski, Paul D.; Eisen, Michael B.

    2004-02-25

    The relationship between genetic variation in gene expression and phenotypic variation observable in nature is not well understood. Identifying how many phenotypes are associated with differences in gene expression and how many gene-expression differences are associated with a phenotype is important to understanding the molecular basis and evolution of complex traits. Results: We compared levels of gene expression among nine natural isolates of Saccharomyces cerevisiae grown either in the presence or absence of copper sulfate. Of the nine strains, two show a reduced growth rate and two others are rust colored in the presence of copper sulfate. We identified 633 genes that show significant differences in expression among strains. Of these genes,20 were correlated with resistance to copper sulfate and 24 were correlated with rust coloration. The function of these genes in combination with their expression pattern suggests the presence of both correlative and causative expression differences. But the majority of differentially expressed genes were not correlated with either phenotype and showed the same expression pattern both in the presence and absence of copper sulfate. To determine whether these expression differences may contribute to phenotypic variation under other environmental conditions, we examined one phenotype, freeze tolerance, predicted by the differential expression of the aquaporin gene AQY2. We found freeze tolerance is associated with the expression of AQY2. Conclusions: Gene expression differences provide substantial insight into the molecular basis of naturally occurring traits and can be used to predict environment dependent phenotypic variation.

  17. Genetic diversity and variation of mitochondrial DNA in native and introduced bighead carp

    Science.gov (United States)

    Li, Si-Fa; Yang, Qin-Ling; Xu, Jia-Wei; Wang, Cheng-Hui; Chapman, Duane C.; Lu, Guoping

    2010-01-01

    The bighead carp Hypophthalmichthys nobilis is native to China but has been introduced to over 70 countries and is established in many large river systems. Genetic diversity and variation in introduced bighead carp have not previously been evaluated, and a systematic comparison among fish from different river systems was unavailable. In this study, 190 bighead carp specimens were sampled from five river systems in three countries (Yangtze, Pearl, and Amur rivers, China; Danube River, Hungary; Mississippi River basin, USA) and their mitochondrial 16S ribosomal RNA gene and D-loop region were sequenced (around 1,345 base pairs). Moderate genetic diversity was found in bighead carp, ranging from 0.0014 to 0.0043 for nucleotide diversity and from 0.6879 to 0.9333 for haplotype diversity. Haplotype analysis provided evidence that (1) multiple haplotype groups might be present among bighead carp, (2) bighead carp probably originated from the Yangtze River, and (3) bighead carp in the Mississippi River basin may have some genetic ancestry in the Danube River. The analysis of molecular variance showed significant genetic differentiation among these five populations but also revealed limited differentiation between the Yangtze and Amur River bighead carp. This large-scale study of bighead carp genetic diversity and variation provides the first global perspective of bighead carp in the context of biodiversity conservation as well as invasive species control and management.

  18. Genetic variants alter T-bet binding and gene expression in mucosal inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Katrina Soderquest

    2017-02-01

    Full Text Available The polarization of CD4+ T cells into distinct T helper cell lineages is essential for protective immunity against infection, but aberrant T cell polarization can cause autoimmunity. The transcription factor T-bet (TBX21 specifies the Th1 lineage and represses alternative T cell fates. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs that may be causative for autoimmune diseases. The majority of these polymorphisms are located within non-coding distal regulatory elements. It is considered that these genetic variants contribute to disease by altering the binding of regulatory proteins and thus gene expression, but whether these variants alter the binding of lineage-specifying transcription factors has not been determined. Here, we show that SNPs associated with the mucosal inflammatory diseases Crohn's disease, ulcerative colitis (UC and celiac disease, but not rheumatoid arthritis or psoriasis, are enriched at T-bet binding sites. Furthermore, we identify disease-associated variants that alter T-bet binding in vitro and in vivo. ChIP-seq for T-bet in individuals heterozygous for the celiac disease-associated SNPs rs1465321 and rs2058622 and the IBD-associated SNPs rs1551398 and rs1551399, reveals decreased binding to the minor disease-associated alleles. Furthermore, we show that rs1465321 is an expression quantitative trait locus (eQTL for the neighboring gene IL18RAP, with decreased T-bet binding associated with decreased expression of this gene. These results suggest that genetic polymorphisms may predispose individuals to mucosal autoimmune disease through alterations in T-bet binding. Other disease-associated variants may similarly act by modulating the binding of lineage-specifying transcription factors in a tissue-selective and disease-specific manner.

  19. Common genetic variation and novel loci associated with volumetric mammographic density.

    Science.gov (United States)

    Brand, Judith S; Humphreys, Keith; Li, Jingmei; Karlsson, Robert; Hall, Per; Czene, Kamila

    2018-04-17

    Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained. We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h 2 SNP ]) in 4948 participants of the cohort. In total, three novel MD loci were identified (at P associated with breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects (P < 0.05). h 2 SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h 2 SNP to previously observed narrow-sense h 2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively. These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic variation with h 2 SNP /h 2 ratios varying between dense and nondense MD components.

  20. Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas L Turner

    2011-03-01

    Full Text Available Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size.

  1. Hypothesis: Genetic and epigenetic risk factors interact to modulate vulnerability and resilience to FASD

    Directory of Open Access Journals (Sweden)

    Elif eTunc-Ozcan

    2014-08-01

    Full Text Available Fetal alcohol spectrum disorder (FASD presents a collection of symptoms representing physiological and behavioral phenotypes caused by maternal alcohol consumption. Symptom severity is modified by genetic differences in fetal susceptibility and resistance as well as maternal genetic factors such as maternal alcohol sensitivity. Animal models demonstrate that both maternal and paternal genetics contribute to the variation in the fetus’ vulnerability to alcohol exposure. Maternal and paternal genetics define the variations in these phenotypes even without the effect of alcohol in utero, as most of these traits are polygenic, non-Mendelian, in their inheritance. In addition, the epigenetic alterations that instigate the alcohol induced neurodevelopmental deficits can interact with the polygenic inheritance of respective traits. Here, based on specific examples, we present the hypothesis that the principles of non-Mendelian inheritance, or ‘exceptions’ to Mendelian genetics, can be the driving force behind the severity of the prenatal alcohol-exposed individual’s symptomology. One such exception is when maternal alleles lead to an altered intrauterine hormonal environment and, therefore, produce variations in the long-term consequences on the development of the alcohol-exposed fetus. Another exception is when epigenetic regulation of allele-specific gene expression generates disequilibrium between the maternal versus paternal genetic contributions, and thereby, modifies the effect of prenatal alcohol exposure on the fetus. We propose that these situations in which one parent has an exaggerated influence over the offspring’s vulnerability to prenatal alcohol are major contributing mechanisms responsible for the variations in the symptomology of FASD in the exposed generation and beyond.

  2. Genetic and environmental correlates of morphological variation in a marine fish: the case of Baltic Sea herring ( Clupea harengus )

    DEFF Research Database (Denmark)

    Jørgensen, H.B.H.; Pertoldi, C.; Hansen, Michael Møller

    2008-01-01

    Baltic Sea herring (Clupea harengus) have been shown to exhibit morphological differences across the marked salinity and temperature gradients in the region. Here we analyse genetic (nine microsatellite loci), morpho metric (skull shape), and meristic (pectoral fin rays and number of vertebrae...... and plastic responses. Skull shape, including and excluding size variation, differed significantly among samples, both temporally and spatially. Genetic and morphometric distances were correlated, especially when size variation was excluded from the analysis. When size variation was included, skull shape...... variation was more closely correlated with environmental distances among spawning locations. Vertebrate number differed among samples and was correlated with environmental distances, whereas the number of fin rays was not. Genetic and geographic distances among samples were not correlated....

  3. Temporal patterns of genetic variation across a 9-year-old aerial seed bank of the shrub Banksia hookeriana (Proteaceae).

    Science.gov (United States)

    Barrett, Luke G; He, Tianhua; Lamont, Byron B; Krauss, Siegfried L

    2005-11-01

    The pattern of accumulation of genetic variation over time in seed banks is poorly understood. We examined the genetic structure of the aerial seed bank of Banksia hookeriana within a single 15-year-old population in fire-prone southwestern Australia, and compared genetic variation between adults and each year of a 9-year-old seed bank using amplified fragment length polymorphism (AFLP). B. hookeriana is well suited to the study of seed bank dynamics due to the canopy storage of its seeds, and because each annual crop can be identified. A total of 304 seeds from nine crop years and five maternal plants were genotyped, along with 113 plants from the adult population. Genetic variation, as assessed by the proportion of polymorphic markers (P(p)) and Shannon's index (I), increased slightly within the seed bank over time, while gene diversity (H(j)), did not change. P(p), I, and H(j) all indicated that genetic variation within the seed bank quickly approached the maximal level detected. Analysis of molecular variance revealed that less than 4% of variation could be accounted for by variation among seeds produced in different years, whereas there was greater differentiation among maternal plants (12.7%), and among individual seeds produced by different maternal plants (83.4%). With increasing population age, offspring generated each year were slightly more outbred, as indicated by an increase in the mean number of nonmaternal markers per offspring. There were no significant differences for H(j) or I between adults and the seed bank. Viability of seeds decreased with age, such that the viability of 9-year-old seeds was half that of 2-year-old seeds. These results suggest that variable fire frequencies have only limited potential to influence the amount of genetic variation stored within the seed bank of B. hookeriana.

  4. Identification of species and genetic variation in Taenia isolates from human and swine of North India.

    Science.gov (United States)

    Singh, Satyendra K; Prasad, Kashi N; Singh, Aloukick K; Gupta, Kamlesh K; Chauhan, Ranjeet S; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Pati, Binod K

    2016-10-01

    Taenia solium is the major cause of taeniasis and cysticercosis/neurocysticercosis (NCC) in the developing countries including India, but the existence of other Taenia species and genetic variation have not been studied in India. So, we studied the existence of different Taenia species, and sequence variation in Taenia isolates from human (proglottids and cysticerci) and swine (cysticerci) in North India. Amplification of cytochrome c oxidase subunit 1 gene (cox1) was done by polymerase chain reaction (PCR) followed by sequencing and phylogenetic analysis. We identified two species of Taenia i.e. T. solium and Taenia asiatica in our isolates. T. solium isolates showed similarity with Asian genotype and nucleotide variations from 0.25 to 1.01 %, whereas T. asiatica displayed nucleotide variations ranged from 0.25 to 0.5 %. These findings displayed the minimal genetic variations in North Indian isolates of T. solium and T. asiatica.

  5. DNA methylation mediates genetic variation for adaptive transgenerational plasticity.

    Science.gov (United States)

    Herman, Jacob J; Sultan, Sonia E

    2016-09-14

    Environmental stresses experienced by individual parents can influence offspring phenotypes in ways that enhance survival under similar conditions. Although such adaptive transgenerational plasticity is well documented, its transmission mechanisms are generally unknown. One possible mechanism is environmentally induced DNA methylation changes. We tested this hypothesis in the annual plant Polygonum persicaria, a species known to express adaptive transgenerational plasticity in response to parental drought stress. Replicate plants of 12 genetic lines (sampled from natural populations) were grown in dry versus moist soil. Their offspring were exposed to the demethylating agent zebularine or to control conditions during germination and then grown in dry soil. Under control germination conditions, the offspring of drought-stressed parents grew longer root systems and attained greater biomass compared with offspring of well-watered parents of the same genetic lines. Demethylation removed these adaptive developmental effects of parental drought, but did not significantly alter phenotypic expression in offspring of well-watered parents. The effect of demethylation on the expression of the parental drought effect varied among genetic lines. Differential seed provisioning did not contribute to the effect of parental drought on offspring phenotypes. These results demonstrate that DNA methylation can mediate adaptive, genotype-specific effects of parental stress on offspring phenotypes. © 2016 The Author(s).

  6. Associations between genetic risk, functional brain network organization and neuroticism

    NARCIS (Netherlands)

    Servaas, Michelle N.; Geerligs, Linda; Bastiaansen, Jojanneke A.; Renken, Remco J.; Marsman, Jan-Bernard C.; Nolte, Ilja M.; Ormel, Johan; Aleman, Andre; Riese, Harriette

    2017-01-01

    Neuroticism and genetic variation in the serotonin-transporter (SLC6A4) and catechol-O-methyltransferase (COMT) gene are risk factors for psychopathology. Alterations in the functional integration and segregation of neural circuits have recently been found in individuals scoring higher on

  7. Genetic variation in glia-neuron signalling modulates ageing rate.

    Science.gov (United States)

    Yin, Jiang-An; Gao, Ge; Liu, Xi-Juan; Hao, Zi-Qian; Li, Kai; Kang, Xin-Lei; Li, Hong; Shan, Yuan-Hong; Hu, Wen-Li; Li, Hai-Peng; Cai, Shi-Qing

    2017-11-08

    The rate of behavioural decline in the ageing population is remarkably variable among individuals. Despite the considerable interest in studying natural variation in ageing rate to identify factors that control healthy ageing, no such factor has yet been found. Here we report a genetic basis for variation in ageing rates in Caenorhabditis elegans. We find that C. elegans isolates show diverse lifespan and age-related declines in virility, pharyngeal pumping, and locomotion. DNA polymorphisms in a novel peptide-coding gene, named regulatory-gene-for-behavioural-ageing-1 (rgba-1), and the neuropeptide receptor gene npr-28 influence the rate of age-related decline of worm mating behaviour; these two genes might have been subjected to recent selective sweeps. Glia-derived RGBA-1 activates NPR-28 signalling, which acts in serotonergic and dopaminergic neurons to accelerate behavioural deterioration. This signalling involves the SIR-2.1-dependent activation of the mitochondrial unfolded protein response, a pathway that modulates ageing. Thus, natural variation in neuropeptide-mediated glia-neuron signalling modulates the rate of ageing in C. elegans.

  8. Genetic variation in steelhead (Salmo gairdneri) from the north coast of Washington

    Science.gov (United States)

    Reisenbichler, R.R.; Phelps, S.R.

    1989-01-01

    Steelhead (Salmo gairdneri) collected from various sites in nine drainages in northwestern Washington were genetically characterized at 65 protein-coding loci by starch-gel electrophoresis. Genetic differentiation within and among drainages was not significant, and genetic variation among drainages was much less than that reported in British Columbia; these results may be the consequence of gene flow from hatchery stocks that have been released in Washington since the 1940's. Allele frequencies varied significantly among year-classes (hence, genetic characterization studies must include data from several year-classes), and also between hatchery fish (including a stock developed with local wild fish) and wild fish, indicating that few wild fish have been successfully and routinely included in hatchery brood stocks. Conservation of genetic diversity along the north coast of Washington should be facilitated by reducing the numbers of hatchery fish that spawn in streams and by including wild fish in hatchery brood stocks.

  9. Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation.

    Science.gov (United States)

    Gao, Lexuan; Geng, Yupeng; Li, Bo; Chen, Jiakuan; Yang, Ji

    2010-11-01

    Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome-wide methylation profiling using methylation-sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome-wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors. © 2010 Blackwell Publishing Ltd.

  10. Variation in human recombination rates and its genetic determinants.

    Directory of Open Access Journals (Sweden)

    Adi Fledel-Alon

    Full Text Available Despite the fundamental role of crossing-over in the pairing and segregation of chromosomes during human meiosis, the rates and placements of events vary markedly among individuals. Characterizing this variation and identifying its determinants are essential steps in our understanding of the human recombination process and its evolution.Using three large sets of European-American pedigrees, we examined variation in five recombination phenotypes that capture distinct aspects of crossing-over patterns. We found that the mean recombination rate in males and females and the historical hotspot usage are significantly heritable and are uncorrelated with one another. We then conducted a genome-wide association study in order to identify loci that influence them. We replicated associations of RNF212 with the mean rate in males and in females as well as the association of Inversion 17q21.31 with the female mean rate. We also replicated the association of PRDM9 with historical hotspot usage, finding that it explains most of the genetic variance in this phenotype. In addition, we identified a set of new candidate regions for further validation.These findings suggest that variation at broad and fine scales is largely separable and that, beyond three known loci, there is no evidence for common variation with large effects on recombination phenotypes.

  11. Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations.

    Science.gov (United States)

    Petit, Morgane; Astruc, Jean-Michel; Sarry, Julien; Drouilhet, Laurence; Fabre, Stéphane; Moreno, Carole R; Servin, Bertrand

    2017-10-01

    Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism. Copyright © 2017 by the Genetics Society

  12. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Additionally, the 1/2_g.515G>T variation resulted in a change of amino acid, i.e. glycine to valine. In silico analysis suggests that this change can alter protein structure and function, predicting it to be deleterious or damaging. This work suggests that 1 genetic variants may be important in PD susceptibility in canines.

  13. [Genetic variation analysis of canine parvovirus VP2 gene in China].

    Science.gov (United States)

    Yi, Li; Cheng, Shi-Peng; Yan, Xi-Jun; Wang, Jian-Ke; Luo, Bin

    2009-11-01

    To recognize the molecular biology character, phylogenetic relationship and the state quo prevalent of Canine parvovirus (CPV), Faecal samnples from pet dogs with acute enteritis in the cities of Beijing, Wuhan, and Nanjing were collected and tested for CPV by PCR and other assay between 2006 and 2008. There was no CPV to FPV (MEV) variation by PCR-RFLP analysis in all samples. The complete ORFs of VP2 genes were obtained by PCR from 15 clinical CPVs and 2 CPV vaccine strains. All amplicons were cloned and sequenced. Analysis of the VP2 sequences showed that clinical CPVs both belong to CPV-2a subtype, and could be classified into a new cluster by amino acids contrasting which contains Tyr-->Ile (324) mutation. Besides the 2 CPV vaccine strains belong to CPV-2 subtype, and both of them have scattered variation in amino acids residues of VP2 protein. Construction of the phylogenetic tree based on CPV VP2 sequence showed these 15 CPV clinical strains were in close relationship with Korea strain K001 than CPV-2a isolates in other countries at early time, It is indicated that the canine parvovirus genetic variation was associated with location and time in some degree. The survey of CPV capsid protein VP2 gene provided the useful information for the identification of CPV types and understanding of their genetic relationship.

  14. Environmental, phenotypic and genetic variation of wild barley (Hordeum spontaneum) from Israel

    NARCIS (Netherlands)

    Vanhala, T.; Rijn, C.P.E.; Buntjer, J.; Stam, P.; Nevo, E.; Poorter, H.; Eeuwijk, van F.A.

    2004-01-01

    Wild relatives of crop plants offer an attractive gene pool for cultivar improvement. We evaluated genetic and phenotypic variation for a set of 72 Israeli accessions of wild barley from 21 populations. These populations were grouped further into four ecotypes. In addition, environmental variables

  15. Naturally occurring genetic variation affecting the expression of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster.

    Science.gov (United States)

    Laurie-Ahlberg, C C; Bewley, G C

    1983-10-01

    Genetic variation among second and third chromosomes from natural populations of Drosophila melanogaster affects the activity level of sn-glycerol-3-phosphate dehydrogenase (EC 1.1.1.8; GPDH) at both the larval and the adult stages. The genetic effects, represented by differences among chromosome substitution lines with coisogenic backgrounds, are very repeatable over time and are generally substantially larger than environmental and measurement error effects. Neither the GPDH allozyme, the geographic origin, nor the karyotype of the chromosome contributes significantly to GPDH activity variation. The strong relationship between GPDH activity level and GPDH-specific CRM level, as well as our failure to find any thermostability variation among the lines, indicates that most, if not all, of the activity variation is due to variation in the steady-state quantity of enzyme rather than in its catalytic properties. The lack of a strong relationship between adult and larval activity levels suggests the importance of stage- or isozyme-specific effects.

  16. The genetic architecture of parallel armor plate reduction in threespine sticklebacks.

    Directory of Open Access Journals (Sweden)

    Pamela F Colosimo

    2004-05-01

    Full Text Available How many genetic changes control the evolution of new traits in natural populations? Are the same genetic changes seen in cases of parallel evolution? Despite long-standing interest in these questions, they have been difficult to address, particularly in vertebrates. We have analyzed the genetic basis of natural variation in three different aspects of the skeletal armor of threespine sticklebacks (Gasterosteus aculeatus: the pattern, number, and size of the bony lateral plates. A few chromosomal regions can account for variation in all three aspects of the lateral plates, with one major locus contributing to most of the variation in lateral plate pattern and number. Genetic mapping and allelic complementation experiments show that the same major locus is responsible for the parallel evolution of armor plate reduction in two widely separated populations. These results suggest that a small number of genetic changes can produce major skeletal alterations in natural populations and that the same major locus is used repeatedly when similar traits evolve in different locations.

  17. A genomic overview of short genetic variations in a basal chordate, Ciona intestinalis

    Directory of Open Access Journals (Sweden)

    Satou Yutaka

    2012-05-01

    Full Text Available Abstract Background Although the Ciona intestinalis genome contains many allelic polymorphisms, there is only limited data analyzed systematically. Establishing a dense map of genetic variations in C. intestinalis is necessary not only for linkage analysis, but also for other experimental biology including molecular developmental and evolutionary studies, because animals from natural populations are typically used for experiments. Results Here, we identified over three million candidate short genomic variations within a 110 Mb euchromatin region among five C. intestinalis individuals. The average nucleotide diversity was approximately 1.1%. Genetic variations were found at a similar density in intergenic and gene regions. Non-synonymous and nonsense nucleotide substitutions were found in 12,493 and 1,214 genes accounting for 81.9% and 8.0% of the entire gene set, respectively, and over 60% of genes in the single animal encode non-identical proteins between maternal and paternal alleles. Conclusions Our results provide a framework for studying evolution of the animal genome, as well as a useful resource for a wide range of C. intestinalis researchers.

  18. On the extent of genetic variation for transpiration efficiency in sorghum

    International Nuclear Information System (INIS)

    Hammer, G.L.; Broad, I.J.; Farquhar, G.D.

    1997-01-01

    associations were not strong. These results suggest that a simple screening technique could not be based on any of the measures or indices analysed in this study. A better understanding of the physiological basis of the observed genetic differences in transpiration efficiency may assist in developing reliable selection indices. It was concluded that the potential value of the improvement in transpiration efficiency over the accepted standard and the degree of genetic variation found warrant further study on this subject. It was suggested that screening for genetic variation under water-limiting conditions may provide useful insights and should be pursued. Copyright (1997) CSIRO Australia

  19. Pulmonary phenotypes associated with genetic variation in telomere-related genes.

    Science.gov (United States)

    Hoffman, Thijs W; van Moorsel, Coline H M; Borie, Raphael; Crestani, Bruno

    2018-05-01

    Genomic mutations in telomere-related genes have been recognized as a cause of familial forms of idiopathic pulmonary fibrosis (IPF). However, it has become increasingly clear that telomere syndromes and telomere shortening are associated with various types of pulmonary disease. Additionally, it was found that also single nucleotide polymorphisms (SNPs) in telomere-related genes are risk factors for the development of pulmonary disease. This review focuses on recent updates on pulmonary phenotypes associated with genetic variation in telomere-related genes. Genomic mutations in seven telomere-related genes cause pulmonary disease. Pulmonary phenotypes associated with these mutations range from many forms of pulmonary fibrosis to emphysema and pulmonary vascular disease. Telomere-related mutations account for up to 10% of sporadic IPF, 25% of familial IPF, 10% of connective-tissue disease-associated interstitial lung disease, and 1% of COPD. Mixed disease forms have also been found. Furthermore, SNPs in TERT, TERC, OBFC1, and RTEL1, as well as short telomere length, have been associated with several pulmonary diseases. Treatment of pulmonary disease caused by telomere-related gene variation is currently based on disease diagnosis and not on the underlying cause. Pulmonary phenotypes found in carriers of telomere-related gene mutations and SNPs are primarily pulmonary fibrosis, sometimes emphysema and rarely pulmonary vascular disease. Genotype-phenotype relations are weak, suggesting that environmental factors and genetic background of patients determine disease phenotypes to a large degree. A disease model is presented wherever genomic variation in telomere-related genes cause specific pulmonary disease phenotypes whenever triggered by environmental exposure, comorbidity, or unknown factors.

  20. Investigating the potential role of genetic and epigenetic variation of DNA methyltransferase genes in hyperplastic polyposis syndrome.

    Directory of Open Access Journals (Sweden)

    Musa Drini

    2011-02-01

    Full Text Available Hyperplastic Polyposis Syndrome (HPS is a condition associated with multiple serrated polyps, and an increased risk of colorectal cancer (CRC. At least half of CRCs arising in HPS show a CpG island methylator phenotype (CIMP, potentially linked to aberrant DNA methyltransferase (DNMT activity. CIMP is associated with methylation of tumor suppressor genes including regulators of DNA mismatch repair (such as MLH1, MGMT, and negative regulators of Wnt signaling (such as WIF1. In this study, we investigated the potential for interaction of genetic and epigenetic variation in DNMT genes, in the aetiology of HPS.We utilized high resolution melting (HRM analysis to screen 45 cases with HPS for novel sequence variants in DNMT1, DNMT3A, DNMT3B, and DNMT3L. 21 polyps from 13 patients were screened for BRAF and KRAS mutations, with assessment of promoter methylation in the DNMT1, DNMT3A, DNMT3B, DNMT3L MLH1, MGMT, and WIF1 gene promoters.No pathologic germline mutations were observed in any DNA-methyltransferase gene. However, the T allele of rs62106244 (intron 10 of DNMT1 gene was over-represented in cases with HPS (p<0.01 compared with population controls. The DNMT1, DNMT3A and DNMT3B promoters were unmethylated in all instances. Interestingly, the DNMT3L promoter showed low levels of methylation in polyps and normal colonic mucosa relative to matched disease free cells with methylation level negatively correlated to expression level in normal colonic tissue. DNMT3L promoter hypomethylation was more often found in polyps harbouring KRAS mutations (p = 0.0053. BRAF mutations were common (11 out of 21 polyps, whilst KRAS mutations were identified in 4 of 21 polyps.Genetic or epigenetic alterations in DNMT genes do not appear to be associated with HPS, but further investigation of genetic variation at rs62106244 is justified given the high frequency of the minor allele in this case series.

  1. Induced genetic variation for aluminum and salt tolerance in rice

    International Nuclear Information System (INIS)

    Chaudhry, M.A.; Yoshida, S.; Vegara, B.S.

    1989-01-01

    Full text: MNH applied to fertilized egg cells of 'Taichung 65' led to an increase in genetic variation in the progenies. Of a M 2 population of 15,000 seedlings, 2.3% were scored tolerant to salt. Tolerant plants showed less shoot and root growth inhibition. 50 variants expressed different degrees of tolerance to Al, even up to 30 ppm. The tolerance was related to longer root development. (author)

  2. Genetic variation assessed with microsatellites in mass selection lines of the Pacific oyster ( Crassostrea gigas) in China

    Science.gov (United States)

    Wang, Xubo; Li, Qi; Yu, Hong; Kong, Lingfeng

    2016-12-01

    Four successive mass selection lines of the Pacific oyster, Crassostrea gigas, selected for faster growth in breeding programs in China were examined at ten polymorphic microsatellite loci to assess the level of allelic diversity and estimate the effective population size. These data were compared with those of their base population. The results showed that the genetic variation of the four generations were maintained at high levels with an average allelic richness of 18.8-20.6, and a mean expected heterozygosity of 0.902-0.921. They were not reduced compared with those of their base population. Estimated effective population sizes based on temporal variances in microsatellite frequencies were smaller to that of sex ratio-corrected broodstock count estimates. Using a relatively large number of broodstock and keeping an equal sex ratio in the broodstock each generation may have contributed to retaining the original genetic diversity and maintaining relatively large effective population size. The results obtained in this study showed that the genetic variation was not affected greatly by mass selection progress and high genetic variation still existed in the mass selection lines, suggesting that there is still potential for increasing the gains in future generations of C. gigas. The present study provided important information for future genetic improvement by selective breeding, and for the design of suitable management guidelines for genetic breeding of C. gigas.

  3. Genetic variation in Miscanthus x giganteus and the importance of estimating genetic distance tresholds for differentiating clones

    DEFF Research Database (Denmark)

    Glowacka, K; Clark, L; Adhikari, S

    2015-01-01

    Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determi...... new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much-needed variation to growers......Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine...... if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from...

  4. Genetic variations of MMP9 gene and intracerebral hemorrhage susceptibility: a case-control study in Chinese Han population.

    Science.gov (United States)

    Yang, Jie; Wu, Bo; Lin, Sen; Zhou, Junshan; Li, Yingbin; Dong, Wei; Arima, Hisatomi; Zhang, Chanfei; Liu, Yukai; Liu, Ming

    2014-06-15

    To investigate the association between genetic variations of matrix metalloproteinase 9 (MMP9) gene and intracerebral hemorrhage (ICH) susceptibility in Chinese Han population. The clinical data and peripheral blood samples from the patients with ICH and hypertension, and controlled subjects with hypertension only, were collected. MassARRAY Analyzer was used to genotype the tagger single nucleotide polymorphism (SNP) of MMP9 gene. Haploview4.2 and Unphased3.1.7 were employed to construct haplotypes and to analyze the association between genetic variations (alleles, genotypes and haplotypes) of MMP9 gene and ICH susceptibility. 181 patients with ICH and hypertension, and 197 patients with hypertension only, were recruited between Sep 2009 and Oct 2010. Patients in the ICH group were younger (61.80 ± 13.27 vs. 72.44 ± 12.71 years, ppopulation. Our logistical regression analysis showed that there were no significant associations between genetic variations of the MPP9 gene and ICH susceptibility (all p>0.05). The genetic variations of MMP9 gene were not significantly associated with ICH susceptibility in the Chinese Han population. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Impact of ecological diversity on genetic and phytochemical variation injuniperus excelsa from high elevation zones of quetta valley, pakistan

    International Nuclear Information System (INIS)

    Seed, S.; Barozai, M.Y.K.; Ahmed, A.; Tareen, R.B.

    2017-01-01

    Juniperusexcelsa (Cupressaceae) is an evergreen tree and the second most diverse group of the conifers distributed abundantly in high elevation zones of Balochistan. Genetic and phytochemical variations in three naturally occurring populations of J.excelsa were analysed. Genetic variability was assessed by different molecular markers (RAPD, ISSR and URP) with an objective to use genetic diversity as a key to conserve the taxon which is also known as living fossil as dominated in Mesozoic era. Genetic diversity was assessed by polymorphic bands to generate a dendrogram based on UPGMA. Using tested markers, 116 bands were amplified out of which 67 bands were polymorphic with an average value of 8.37 (57%) bands per primer. Based on data, a cluster dendrogram was prepared that exhibited the mean genetic similarity matrix as 0.57 and two major clusters diverge at 0.49. The genetic similarity coefficient among all accessions ranged from 0.35 to 0.90. In phytochemical analysis, total phenolic and flavonoid contents were estimated and compared among all accessions. Ecological characteristics of the study sites were measured to check their impact on genetic and chemical variation. Soil properties were analyzed for Principal Component Analysis. Chemical variation of J. excelsa of three sites revealed by dissimilarity matrix exhibiting genetic distance based on TPC and Flavonoids. Cluster analysis represent two major groups. Mean concentration of TPC and flavonoids were 56+-9.15 and 150+-27.9 mg/g respectively. PCA of soil considered three factors had Eigen values >1 and explain cumulatively 4.60 %, 26.02% and 10.36 % of the variance. First factor was positively correlated with second and fifth, but negatively correlated with other factors. In conclusion, molecular marker profiling together with phytochemical variation of total phenolic and flavonoid content in all accessions of Juniperusexcelsa and impact of ecological diversity on Genetic and chemical variation can be used

  6. Genetic variation in laboratory and field populations of the vector of bluetongue virus, Culicoides variipennis (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Tabachnick, W J

    1990-01-01

    Laboratory colonies and several natural populations of the biting midge Culicoides variipennis (Coquillett) were analyzed for genetic variation at 21 electrophoretic loci. The laboratory colonies maintained high levels of genetic variation measured by average expected heterozygosities (He = 0.142 +/- 0.008), although levels were lower than those observed in field collections (He = 0.198 +/- 0.009). A field population from Colorado, analyzed five times over a 1-yr period, showed a consistent trend in the change in gene frequencies at two loci. Genetic comparisons between natural populations were consistent with the existence of two subspecies. C. variipennis variipennis and C. variipennis sonorensis Wirth & Jones.

  7. The Landscape of Somatic Genetic Alterations in Breast Cancers From ATM Germline Mutation Carriers.

    Science.gov (United States)

    Weigelt, Britta; Bi, Rui; Kumar, Rahul; Blecua, Pedro; Mandelker, Diana L; Geyer, Felipe C; Pareja, Fresia; James, Paul A; Couch, Fergus J; Eccles, Diana M; Blows, Fiona; Pharoah, Paul; Li, Anqi; Selenica, Pier; Lim, Raymond S; Jayakumaran, Gowtham; Waddell, Nic; Shen, Ronglai; Norton, Larry; Wen, Hannah Y; Powell, Simon N; Riaz, Nadeem; Robson, Mark E; Reis-Filho, Jorge S; Chenevix-Trench, Georgia

    2018-02-28

    Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate. Although 79.2% of these tumors exhibited loss of heterozygosity of the ATM wild-type allele, none displayed high activity of mutational signature 3 associated with defective homologous recombination DNA (HRD) repair. No TP53 mutations were found in the ATM-associated BCs. Analysis of an independent data set confirmed that germline ATM variants and TP53 somatic mutations are mutually exclusive. Our findings indicate that ATM-associated BCs often harbor bi-allelic inactivation of ATM, are phenotypically distinct from BRCA1/2-associated BCs, lack HRD-related mutational signatures, and that TP53 and ATM genetic alterations are likely epistatic.

  8. Genetic variation in a DNA double strand break repair gene in saudi population: a comparative study with worldwide ethnic groups.

    Science.gov (United States)

    Areeshi, Mohammed Yahya

    2013-01-01

    DNA repair capacity is crucial in maintaining cellular functions and homeostasis. However, it can be altered based on DNA sequence variations in DNA repair genes and this may lead to the development of many diseases including malignancies. Identification of genetic polymorphisms responsible for reduced DNA repair capacity is necessary for better prevention. Homologous recombination (HR), a major double strand break repair pathway, plays a critical role in maintaining the genome stability. The present study was performed to determine the frequency of the HR gene XRCC3 Exon 7 (C18067T, rs861539) polymorphisms in Saudi Arabian population in comparison with epidemiological studies by "MEDLINE" search to equate with global populations. The variant allelic (T) frequency of XRCC3 (C>T) was found to be 39%. Our results suggest that frequency of XRCC3 (C>T) DNA repair gene exhibits distinctive patterns compared with the Saudi Arabian population and this might be attributed to ethnic variation. The present findings may help in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.

  9. Uniform Variation in Genetic-Traits of a Marine Bivalve Related to Starvation, Pollution and Geographic Clines

    NARCIS (Netherlands)

    Hummel, H.; Bogaards, R.H.; Amiard-Triquet, C.; Bachelet, G.; Desprez, M.; Marchand, J.; Rybarczyk, H.; Sylvand, B.; De Wit, Y.; De Wolf, L.

    1995-01-01

    Consistent patterns of genetic variation in the marine bivalve Macoma balthica (L.) were found after exposure to low levels of copper, starvation, and along geographic dines. The geographic dines were related to temperature and salinity. Genetic differences were primarily found in the LAP (Leucine

  10. Analysis of the genetic variation in Mycobacterium tuberculosis strains by multiple genome alignments

    Directory of Open Access Journals (Sweden)

    Morales Juan

    2008-11-01

    Full Text Available Abstract Background The recent determination of the complete nucleotide sequence of several Mycobacterium tuberculosis (MTB genomes allows the use of comparative genomics as a tool for dissecting the nature and consequence of genetic variability within this species. The multiple alignment of the genomes of clinical strains (CDC1551, F11, Haarlem and C, along with the genomes of laboratory strains (H37Rv and H37Ra, provides new insights on the mechanisms of adaptation of this bacterium to the human host. Findings The genetic variation found in six M. tuberculosis strains does not involve significant genomic rearrangements. Most of the variation results from deletion and transposition events preferentially associated with insertion sequences and genes of the PE/PPE family but not with genes implicated in virulence. Using a Perl-based software islandsanalyser, which creates a representation of the genetic variation in the genome, we identified differences in the patterns of distribution and frequency of the polymorphisms across the genome. The identification of genes displaying strain-specific polymorphisms and the extrapolation of the number of strain-specific polymorphisms to an unlimited number of genomes indicates that the different strains contain a limited number of unique polymorphisms. Conclusion The comparison of multiple genomes demonstrates that the M. tuberculosis genome is currently undergoing an active process of gene decay, analogous to the adaptation process of obligate bacterial symbionts. This observation opens new perspectives into the evolution and the understanding of the pathogenesis of this bacterium.

  11. Molecular genetics of coat colour variations in White Galloway and White Park cattle.

    Science.gov (United States)

    Brenig, B; Beck, J; Floren, C; Bornemann-Kolatzki, K; Wiedemann, I; Hennecke, S; Swalve, H; Schütz, E

    2013-08-01

    White Galloway cattle exhibit three different white coat colour phenotypes, that is, well marked, strongly marked and mismarked. However, mating of individuals with the preferred well or strongly marked phenotype also results in offspring with the undesired mismarked and/or even fully black coat colour. To elucidate the genetic background of the coat colour variations in White Galloway cattle, we analysed four coat colour relevant genes: mast/stem cell growth factor receptor (KIT), KIT ligand (KITLG), melanocortin 1 receptor (MC1R) and tyrosinase (TYR). Here, we show that the coat colour variations in White Galloway cattle and White Park cattle are caused by a KIT gene (chromosome 6) duplication and aberrant insertion on chromosome 29 (Cs29 ) as recently described for colour-sided Belgian Blue. Homozygous (Cs29 /Cs29 ) White Galloway cattle and White Park cattle exhibit the mismarked phenotype, whereas heterozygous (Cs29 /wt29 ) individuals are either well or strongly marked. In contrast, fully black individuals are characterised by the wild-type chromosome 29. As known for other cattle breeds, mutations in the MC1R gene determine the red colouring. Our data suggest that the white coat colour variations in White Galloway cattle and White Park cattle are caused by a dose-dependent effect based on the ploidy of aberrant insertions and inheritance of the KIT gene on chromosome 29. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  12. Genetic Alterations of the Thrombopoietin/MPL/JAK2 Axis Impacting Megakaryopoiesis.

    Science.gov (United States)

    Plo, Isabelle; Bellanné-Chantelot, Christine; Mosca, Matthieu; Mazzi, Stefania; Marty, Caroline; Vainchenker, William

    2017-01-01

    Megakaryopoiesis is an original and complex cell process which leads to the formation of platelets. The homeostatic production of platelets is mainly regulated and controlled by thrombopoietin (TPO) and the TPO receptor (MPL)/JAK2 axis. Therefore, any hereditary or acquired abnormality affecting this signaling axis can result in thrombocytosis or thrombocytopenia. Thrombocytosis can be due to genetic alterations that affect either the intrinsic MPL signaling through gain-of-function (GOF) activity ( MPL, JAK2, CALR ) and loss-of-function (LOF) activity of negative regulators ( CBL, LNK ) or the extrinsic MPL signaling by THPO GOF mutations leading to increased TPO synthesis. Alternatively, thrombocytosis may paradoxically result from mutations of MPL leading to an abnormal MPL trafficking, inducing increased TPO levels by alteration of its clearance. In contrast, thrombocytopenia can also result from LOF THPO or MPL mutations, which cause a complete defect in MPL trafficking to the cell membrane, impaired MPL signaling or stability, defects in the TPO/MPL interaction, or an absence of TPO production.

  13. A multivariate analysis of genetic variation in the advertisement call of the gray treefrog, Hyla versicolor.

    Science.gov (United States)

    Welch, Allison M; Smith, Michael J; Gerhardt, H Carl

    2014-06-01

    Genetic variation in sexual displays is crucial for an evolutionary response to sexual selection, but can be eroded by strong selection. Identifying the magnitude and sources of additive genetic variance underlying sexually selected traits is thus an important issue in evolutionary biology. We conducted a quantitative genetics experiment with gray treefrogs (Hyla versicolor) to investigate genetic variances and covariances among features of the male advertisement call. Two energetically expensive traits showed significant genetic variation: call duration, expressed as number of pulses per call, and call rate, represented by its inverse, call period. These two properties also showed significant genetic covariance, consistent with an energetic constraint to call production. Combining the genetic variance-covariance matrix with previous estimates of directional sexual selection imposed by female preferences predicts a limited increase in call duration but no change in call rate despite significant selection on both traits. In addition to constraints imposed by the genetic covariance structure, an evolutionary response to sexual selection may also be limited by high energetic costs of long-duration calls and by preferences that act most strongly against very short-duration calls. Meanwhile, the persistence of these preferences could be explained by costs of mating with males with especially unattractive calls. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  14. The Genetic Basis of Baculum Size and Shape Variation in Mice

    Directory of Open Access Journals (Sweden)

    Nicholas G. Schultz

    2016-05-01

    Full Text Available The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian species. Closely related species often display diverse baculum morphology where no other morphological differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence. Quantifying the genetic basis of baculum size and shape variation has been difficult because these structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward. Here, we develop a novel morphometric approach to quantify size and shape variation from three-dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of mice. We identify two quantitative trait loci (QTL that explain ∼50% of the variance in baculum size, and a third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that independently modulate size and shape. Based on a combination of bioinformatic investigations and new data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in bone morphogenesis and may enable future genetic manipulation of baculum morphology.

  15. Assessment of genetic and epigenetic variation during long-term Taxus cell culture.

    Science.gov (United States)

    Fu, Chunhua; Li, Liqin; Wu, Wenjuan; Li, Maoteng; Yu, Xiaoqing; Yu, Longjiang

    2012-07-01

    Gradual loss of secondary metabolite production is a common obstacle in the development of a large-scale plant cell production system. In this study, cell morphology, paclitaxel (Taxol®) biosynthetic ability, and genetic and epigenetic variations in the long-term culture of Taxus media cv Hicksii cells were assessed over a 5-year period to evaluate the mechanisms of the loss of secondary metabolites biosynthesis capacity in Taxus cell. The results revealed that morphological variations, gradual loss of paclitaxel yield and decreased transcriptional level of paclitaxel biosynthesis key genes occurred during long-term subculture. Genetic and epigenetic variations in these cultures were also studied at different times during culture using amplified fragment-length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP), and high-performance liquid chromatography (HPLC) analyses. A total of 32 primer combinations were used in AFLP amplification, and none of the AFLP loci were found to be polymorphic, thus no major genetic rearrangements were detected in any of the tested samples. However, results from both MSAP and HPLC indicated that there was a higher level of DNA methylation in the low-paclitaxel yielding cell line after long-term culture. Based on these results, we proposed that accumulation of paclitaxel in Taxus cell cultures might be regulated by DNA methylation. To our knowledge, this is the first report of increased methylation with the prolongation of culture time in Taxus cell culture. It provides substantial clues for exploring the gradual loss of the taxol biosynthesis capacity of Taxus cell lines during long-term subculture. DNA methylation maybe involved in the regulation of paclitaxel biosynthesis in Taxus cell culture.

  16. Genetic variation and its maintenance

    International Nuclear Information System (INIS)

    Roberts, D.F.; De Stefano, G.F.

    1986-01-01

    This book contains several papers divided among three sections. The section titles are: Genetic Diversity--Its Dimensions; Genetic Diversity--Its Origin and Maintenance; and Genetic Diversity--Applications and Problems of Complex Characters

  17. Genetic variation of wild and hatchery populations of the catla Indian major carp (Catla catla Hamilton 1822: Cypriniformes, Cyprinidae revealed by RAPD markers

    Directory of Open Access Journals (Sweden)

    S.M. Zakiur Rahman

    2009-01-01

    Full Text Available Genetic variation is a key component for improving a stock through selective breeding programs. Randomly amplified polymorphic DNA (RAPD markers were used to assess genetic variation in three wild population of the catla carp (Catla catla Hamilton 1822 in the Halda, Jamuna and Padma rivers and one hatchery population in Bangladesh. Five decamer random primers were used to amplify RAPD markers from 30 fish from each population. Thirty of the 55 scorable bands were polymorphic, indicating some degree of genetic variation in all the populations. The proportion of polymorphic loci and gene diversity values reflected a relatively higher level of genetic variation in the Halda population. Sixteen of the 30 polymorphic loci showed a significant (p < 0.05, p < 0.01, p < 0.001 departure from homogeneity and the F ST values in the different populations indicated some degree of genetic differentiation in the population pairs. Estimated genetic distances between populations were directly correlated with geographical distances. The unweighted pair group method with averages (UPGMA dendrogram showed two clusters, the Halda population forming one cluster and the other populations the second cluster. Genetic variation of C. catla is a useful trait for developing a good management strategy for maintaining genetic quality of the species.

  18. Genetic Variation in NFKBIE Is Associated With Increased Risk of Pneumococcal Meningitis in Children

    DEFF Research Database (Denmark)

    Lundbo, Lene F; Harboe, Zitta Barrella; Clausen, Louise N

    2016-01-01

    NFKBIA, NFKBIE and NFKBIZ. We aimed to replicate previous findings of genetic variation associated with invasive pneumococcal disease (IPD), and to assess whether similar associations could be found in invasive meningococcal disease (IMD). METHODS: Cases with IPD and IMD and controls were identified......BACKGROUND: Streptococcus pneumoniae and Neisseria meningitidis are frequent pathogens in life-threatening infections. Genetic variation in the immune system may predispose to these infections. Nuclear factor-κB is a key component of the TLR-pathway, controlled by inhibitors, encoded by the genes.......86-1.35). The remaining SNPs were not associated with susceptibility to invasive disease. None of the SNPs were associated with risk of IMD or mortality. CONCLUSIONS: A NFKBIE polymorphism was associated with increased risk of pneumococcal meningitis....

  19. Genetic Variation and Geographic Differentiation Among Populations of the Nonmigratory Agricultural Pest Oedaleus infernalis (Orthoptera: Acridoidea) in China

    Science.gov (United States)

    Sun, Wei; Dong, Hui; Gao, Yue-Bo; Su, Qian-Fu; Qian, Hai-Tao; Bai, Hong-Yan; Zhang, Zhu-Ting; Cong, Bin

    2015-01-01

    The nonmigratory grasshopper Oedaleus infernalis Saussure (Orthoptera : Acridoidea) is an agricultural pest to crops and forage grasses over a wide natural geographical distribution in China. The genetic diversity and genetic variation among 10 geographically separated populations of O. infernalis was assessed using polymerase chain reaction-based molecular markers, including the intersimple sequence repeat and mitochondrial cytochrome oxidase sequences. A high level of genetic diversity was detected among these populations from the intersimple sequence repeat (H: 0.2628, I: 0.4129, Hs: 0.2130) and cytochrome oxidase analyses (Hd: 0.653). There was no obvious geographical structure based on an unweighted pair group method analysis and median-joining network. The values of FST, θII, and Gst estimated in this study are low, and the gene flow is high (Nm > 4). Analysis of the molecular variance suggested that most of the genetic variation occurs within populations, whereas only a small variation takes place between populations. No significant correlation was found between the genetic distance and geographical distance. Overall, our results suggest that the geographical distance plays an unimpeded role in the gene flow among O. infernalis populations. PMID:26496789

  20. Genetic variation of the endangered Gentiana lutea L. var. aurantiaca (Gentianaceae) in populations from the Northwest Iberian Peninsula.

    Science.gov (United States)

    González-López, Oscar; Polanco, Carlos; György, Zsuzsanna; Pedryc, Andrzej; Casquero, Pedro A

    2014-06-05

    Gentiana lutea L. (G. lutea L.) is an endangered plant, patchily distributed along the mountains of Central and Southern Europe. In this study, inter-simple sequence repeat (ISSR) markers were used to investigate the genetic variation in this species within and among populations of G. lutea L. var. aurantiaca of the Cantabrian Mountains (Northwest Iberian Peninsula). Samples of G. lutea L. collected at different locations of the Pyrenees and samples of G. lutea L. subsp. vardjanii of the Dolomites Alps were also analyzed for comparison. Using nine ISSR primers, 106 bands were generated, and 89.6% of those were polymorphic. The populations from the Northwest Iberian Peninsula were clustered in three different groups, with a significant correlation between genetic and geographic distances. Gentiana lutea L. var. aurantiaca showed 19.8% private loci and demonstrated a remarkable level of genetic variation, both among populations and within populations; those populations with the highest level of isolation show the lowest genetic variation within populations. The low number of individuals, as well as the observed genetic structure of the analyzed populations makes it necessary to protect them to ensure their survival before they are too small to persist naturally.

  1. Genetic Variation of the Endangered Gentiana lutea L. var. aurantiaca (Gentianaceae in Populations from the Northwest Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Oscar González-López

    2014-06-01

    Full Text Available Gentiana lutea L. (G. lutea L. is an endangered plant, patchily distributed along the mountains of Central and Southern Europe. In this study, inter-simple sequence repeat (ISSR markers were used to investigate the genetic variation in this species within and among populations of G. lutea L. var. aurantiaca of the Cantabrian Mountains (Northwest Iberian Peninsula. Samples of G. lutea L. collected at different locations of the Pyrenees and samples of G. lutea L. subsp. vardjanii of the Dolomites Alps were also analyzed for comparison. Using nine ISSR primers, 106 bands were generated, and 89.6% of those were polymorphic. The populations from the Northwest Iberian Peninsula were clustered in three different groups, with a significant correlation between genetic and geographic distances. Gentiana lutea L. var. aurantiaca showed 19.8% private loci and demonstrated a remarkable level of genetic variation, both among populations and within populations; those populations with the highest level of isolation show the lowest genetic variation within populations. The low number of individuals, as well as the observed genetic structure of the analyzed populations makes it necessary to protect them to ensure their survival before they are too small to persist naturally.

  2. RAPD analysis of genetic variation in the Australian fan flower, Scaevola.

    Science.gov (United States)

    Swoboda, I; Bhalla, P L

    1997-10-01

    The use of randomly amplified polymorphic DNA (RAPD) to study genetic variability in Scaevola (family Goodeniaceae), a native Australian species used in ornamental horticulture, is demonstrated. Plants of the genus Scaevola are commonly known as "fan flowers," due to the fan-like shape of the flowers. Nineteen accessions of Scaevola (12 cultivated and 7 wild) were studied using 20 random decamer arbitrary primers. Eight primers gave a distinct reproducible amplification profile of 90 scorable polymorphic fragments, enabling the differentiation of the Scaevola accessions. RAPD amplification of genomic DNA revealed a high genetic variability among the different species of Scaevola studied. Molecular markers were used to calculate the similarity coefficients, which were then used for determining genetic distances between each of the accessions. Based on genetic distances, a dendrogram was constructed. Though the dendrogram is in general agreement with the taxonomy, it also highlights discrepancies in the classification. The RAPD data showed that Scaevola aemula (series Pogogynae) is closer to Scaevola glandulifera of series Globuliferae than to the rest of members of series Pogogynae. In addition, the RAPD banding pattern of white flower S. aemula, one of the commercial cultivars, was identical to that of Scaevola albida, indicating their genetic similarity. Our study showed that there is a large genetic distance between commercial cultivars of Scaevola (Purple Fanfare, Pink Perfection, and Mauve Cluster), indicating considerable genetic variation among them. The use of RAPDs in intra- and inter-specific breeding of Scaevola is also explored.

  3. Genetic variation and significance of hepatitis B surface antigen

    Directory of Open Access Journals (Sweden)

    ZHANG Zhenhua

    2013-11-01

    Full Text Available Hepatitis B virus (HBV is prone to genetic variation because there is reverse transcription in the process of HBV replication. The gene mutation of hepatitis B surface antigen may affect clinical diagnosis of HBV infection, viral replication, and vaccine effect. The current research and existing problems are discussed from the following aspects: the mechanism and biological and clinical significance of S gene mutation. Most previous studies focused on S gene alone, so S gene should be considered as part of HBV DNA in the future research on S gene mutation.

  4. Suitable gamma ray dose determination in order to induce genetic variation in kaboli chickpea (Cicer Arietinum L)

    International Nuclear Information System (INIS)

    Naserian Khiabani, B.; Ahari Mostafavi, H.; Fathollahi, H.; Vedadi, S.; Mosavi Shalmani, M. A.

    2008-01-01

    In spite of chickpea's use in Iran and its ability of being replaced to adjust the shortage of protein in dietary habits, yield production is very low. One of the main reasons for chickpea's low yield production is its sensitiveness to some diseases, pest and environmental stresses. Genetic variation in chickpea is very low, because of its self pollination. In breeding programs, genetic variation plays an essential role so that the induction of genetic variation in plant population is very important for the plant breeders. The induced mutation through different kinds of mutagens is one of the important ways of genetic variation. In this research, first the sensitiveness of four cultivars (ILC.486, Philip86, Bivinich, Jam) were assessed to different gamma ray doses (100, 200, 300, 400 Gy). The results showed that with an increase in gamma ray dose, the growth rate of chickpea's genotypes decreases. In this respect, the decrease of growth rate has a linear relationship with the gamma ray dose and it is independent from the genotypes. The root length is more sensitive to gamma ray doses than its shoot, and it was observed that at the low doses the root growth decreases, comparing to the shoot growth. On the other hand, in high doses of gamma ray growth abrasion (Ageotropism, Albinism and etc.) were observed. Some traits variation (such as leaf shape, leaf size, leaf color, Albinism, etc.) were seen in M 2 generation, and finally to continue the project, three doses of gamma ray (150,200,250) were selected for the next year

  5. From DNA to RNA to disease and back: The 'central dogma' of regulatory disease variation

    Directory of Open Access Journals (Sweden)

    Stranger Barbara E

    2006-06-01

    Full Text Available Abstract Much of the focus of human disease genetics is directed towards identifying nucleotide variants that contribute to disease phenotypes. This is a complex problem, often involving contributions from multiple loci and their interactions, as well as effects due to environmental factors. Although some diseases with a genetic basis are caused by nucleotide changes that alter an amino acid sequence, in other cases, disease risk is associated with altered gene regulation. This paper focuses on how studies of gene expression variation might complement disease studies and provide crucial links between genotype and phenotype.

  6. Genetic variation in variability: phenotypic variability of fledging weight and its evolution in a songbird population

    NARCIS (Netherlands)

    Mulder, H.A.; Gienapp, P; Visser, ME

    2016-01-01

    Variation in traits is essential for natural selection to operate and genetic and environmental effects can contribute to this phenotypic variation. From domesticated populations, we know that families can differ in their level of within-family variance, which leads to the intriguing situation that

  7. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions

    Science.gov (United States)

    Yin, Xinyou

    2012-01-01

    To understand the physiological basis of genetic variation and resulting quantitative trait loci (QTLs) for photosynthesis in a rice (Oryza sativa L.) introgression line population, 13 lines were studied under drought and well-watered conditions, at flowering and grain filling. Simultaneous gas exchange and chlorophyll fluorescence measurements were conducted at various levels of incident irradiance and ambient CO2 to estimate parameters of a model that dissects photosynthesis into stomatal conductance (g s), mesophyll conductance (g m), electron transport capacity (J max), and Rubisco carboxylation capacity (V cmax). Significant genetic variation in these parameters was found, although drought and leaf age accounted for larger proportions of the total variation. Genetic variation in light-saturated photosynthesis and transpiration efficiency (TE) were mainly associated with variation in g s and g m. One previously mapped major QTL of photosynthesis was associated with variation in g s and g m, but also in J max and V cmax at flowering. Thus, g s and g m, which were demonstrated in the literature to be responsible for environmental variation in photosynthesis, were found also to be associated with genetic variation in photosynthesis. Furthermore, relationships between these parameters and leaf nitrogen or dry matter per unit area, which were previously found across environmental treatments, were shown to be valid for variation across genotypes. Finally, the extent to which photosynthesis rate and TE can be improved was evaluated. Virtual ideotypes were estimated to have 17.0% higher photosynthesis and 25.1% higher TE compared with the best genotype investigated. This analysis using introgression lines highlights possibilities of improving both photosynthesis and TE within the same genetic background. PMID:22888131

  8. Salmon and steelhead genetics and genomics - Epigenetic and genomic variation in salmon and steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conduct analyses of epigenetic and genomic variation in Chinook salmon and steelhead to determine influence on phenotypic expression of life history traits. Genetic,...

  9. Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery.

    Science.gov (United States)

    Scott, Eric M; Halees, Anason; Itan, Yuval; Spencer, Emily G; He, Yupeng; Azab, Mostafa Abdellateef; Gabriel, Stacey B; Belkadi, Aziz; Boisson, Bertrand; Abel, Laurent; Clark, Andrew G; Alkuraya, Fowzan S; Casanova, Jean-Laurent; Gleeson, Joseph G

    2016-09-01

    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia, has resulted in an elevated burden of recessive disease. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized 'genetic purging'. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics.

  10. Genetic variations in the Dravidian population of South West coast of India: Implications in designing case-control studies.

    Science.gov (United States)

    D'Cunha, Anitha; Pandit, Lekha; Malli, Chaithra

    2017-06-01

    Indian data have been largely missing from genome-wide databases that provide information on genetic variations in different populations. This hinders association studies for complex disorders in India. This study was aimed to determine whether the complex genetic structure and endogamy among Indians could potentially influence the design of case-control studies for autoimmune disorders in the south Indian population. A total of 12 single nucleotide variations (SNVs) related to genes associated with autoimmune disorders were genotyped in 370 healthy individuals belonging to six different caste groups in southern India. Allele frequencies were estimated; genetic divergence and phylogenetic relationship within the various caste groups and other HapMap populations were ascertained. Allele frequencies for all genotyped SNVs did not vary significantly among the different groups studied. Wright's FSTwas 0.001 per cent among study population and 0.38 per cent when compared with Gujarati in Houston (GIH) population on HapMap data. The analysis of molecular variance results showed a 97 per cent variation attributable to differences within the study population and variation due to differences between castes. Phylogenetic analysis showed a separation of Dravidian population from other HapMap populations and particularly from GIH population. Despite the complex genetic origins of the Indian population, our study indicated a low level of genetic differentiation among Dravidian language-speaking people of south India. Case-control studies of association among Dravidians of south India may not require stratification based on language and caste.

  11. Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region

    DEFF Research Database (Denmark)

    Silventoinen, Karri; Jelenkovic, Aline; Sund, Reijo

    2017-01-01

    Background: Genes and the environment contribute to variation in adult body mass index [BMI (in kg/m(2))], but factors modifying these variance components are poorly understood.Objective: We analyzed genetic and environmental variation in BMI between men and women from young adulthood to old age...

  12. Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region

    DEFF Research Database (Denmark)

    Silventoinen, Karri; Jelenkovic, Aline; Sund, Reijo

    2017-01-01

    Background: Genes and the environment contribute to variation in adult body mass index [BMI (in kg/m(2))], but factors modifying these variance components are poorly understood. Objective: We analyzed genetic and environmental variation in BMI between men and women from young adulthood to old age...

  13. Genetic variations in the serotoninergic system contribute to body-mass index in Chinese adolescents.

    Directory of Open Access Journals (Sweden)

    Chunhui Chen

    Full Text Available OBJECTIVE: Obesity has become a worldwide health problem in the past decades. Human and animal studies have implicated serotonin in appetite regulation, and behavior genetic studies have shown that body mass index (BMI has a strong genetic component. However, the roles of genes related to the serotoninergic (5-hydroxytryptamine,5-HT system in obesity/BMI are not well understood, especially in Chinese subjects. SUBJECTS AND DESIGN: With a sample of 478 healthy Chinese volunteers, this study investigated the relation between BMI and genetic variations of the serotoninergic system as characterized by 136 representative polymorphisms. We used a system-level approach to identify SNPs associated with BMI, then estimated their overall contribution to BMI by multiple regression and verified it by permutation. RESULTS: We identified 12 SNPs that made statistically significant contributions to BMI. After controlling for gender and age, four of these SNPs accounted for 7.7% additional variance of BMI. Permutation analysis showed that the probability of obtaining these findings by chance was low (p = 0.015, permuted for 1000 times. CONCLUSION: These results showed that genetic variations in the serotoninergic system made a moderate contribution to individual differences in BMI among a healthy Chinese sample, suggesting that a similar approach can be used to study obesity.

  14. Analysis of host genetic diversity and viral entry as sources of between-host variation in viral load

    Science.gov (United States)

    Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael

    2012-01-01

    Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.

  15. The genetic basis for variation in resistance to infection in the Drosophila melanogaster genetic reference panel.

    Directory of Open Access Journals (Sweden)

    Jonathan B Wang

    2017-03-01

    Full Text Available Individuals vary extensively in the way they respond to disease but the genetic basis of this variation is not fully understood. We found substantial individual variation in resistance and tolerance to the fungal pathogen Metarhizium anisopliae Ma549 using the Drosophila melanogaster Genetic Reference Panel (DGRP. In addition, we found that host defense to Ma549 was correlated with defense to the bacterium Pseudomonas aeruginosa Pa14, and several previously published DGRP phenotypes including oxidative stress sensitivity, starvation stress resistance, hemolymph glucose levels, and sleep indices. We identified polymorphisms associated with differences between lines in both their mean survival times and microenvironmental plasticity, suggesting that lines differ in their ability to adapt to variable pathogen exposures. The majority of polymorphisms increasing resistance to Ma549 were sex biased, located in non-coding regions, had moderately large effect and were rare, suggesting that there is a general cost to defense. Nevertheless, host defense was not negatively correlated with overall longevity and fecundity. In contrast to Ma549, minor alleles were concentrated in the most Pa14-susceptible as well as the most Pa14-resistant lines. A pathway based analysis revealed a network of Pa14 and Ma549-resistance genes that are functionally connected through processes that encompass phagocytosis and engulfment, cell mobility, intermediary metabolism, protein phosphorylation, axon guidance, response to DNA damage, and drug metabolism. Functional testing with insertional mutagenesis lines indicates that 12/13 candidate genes tested influence susceptibility to Ma549. Many candidate genes have homologs identified in studies of human disease, suggesting that genes affecting variation in susceptibility are conserved across species.

  16. Social and genetic interactions drive fitness variation in a free-living dolphin population.

    Science.gov (United States)

    Frère, Celine H; Krützen, Michael; Mann, Janet; Connor, Richard C; Bejder, Lars; Sherwin, William B

    2010-11-16

    The evolutionary forces that drive fitness variation in species are of considerable interest. Despite this, the relative importance and interactions of genetic and social factors involved in the evolution of fitness traits in wild mammalian populations are largely unknown. To date, a few studies have demonstrated that fitness might be influenced by either social factors or genes in natural populations, but none have explored how the combined effect of social and genetic parameters might interact to influence fitness. Drawing from a long-term study of wild bottlenose dolphins in the eastern gulf of Shark Bay, Western Australia, we present a unique approach to understanding these interactions. Our study shows that female calving success depends on both genetic inheritance and social bonds. Moreover, we demonstrate that interactions between social and genetic factors also influence female fitness. Therefore, our study represents a major methodological advance, and provides critical insights into the interplay of genetic and social parameters of fitness.

  17. A large-scale survey of genetic copy number variations among Han Chinese residing in Taiwan

    Directory of Open Access Journals (Sweden)

    Wu Jer-Yuarn

    2008-12-01

    Full Text Available Abstract Background Copy number variations (CNVs have recently been recognized as important structural variations in the human genome. CNVs can affect gene expression and thus may contribute to phenotypic differences. The copy number inferring tool (CNIT is an effective hidden Markov model-based algorithm for estimating allele-specific copy number and predicting chromosomal alterations from single nucleotide polymorphism microarrays. The CNIT algorithm, which was constructed using data from 270 HapMap multi-ethnic individuals, was applied to identify CNVs from 300 unrelated Han Chinese individuals in Taiwan. Results Using stringent selection criteria, 230 regions with variable copy numbers were identified in the Han Chinese population; 133 (57.83% had been reported previously, 64 displayed greater than 1% CNV allele frequency. The average size of the CNV regions was 322 kb (ranging from 1.48 kb to 5.68 Mb and covered a total of 2.47% of the human genome. A total of 196 of the CNV regions were simple deletions and 27 were simple amplifications. There were 449 genes and 5 microRNAs within these CNV regions; some of these genes are known to be associated with diseases. Conclusion The identified CNVs are characteristic of the Han Chinese population and should be considered when genetic studies are conducted. The CNV distribution in the human genome is still poorly characterized, and there is much diversity among different ethnic populations.

  18. Serum chemistry reference values for the common genet (Genetta genetta): variations associated with Leishmania infantum infection.

    Science.gov (United States)

    Millán, Javier; Chirife, Andrea D; Altet, Laura

    2015-03-01

    The role of wildlife in the epidemiology of leishmaniosis in under debate, and determining whether infection with Leishmania infantum causes illness in wild carnivores is important to determine its potential role as a reservoir. To provide for the first time serum biochemistry reference values for the common genet (Genetta genetta), and to determine variations associated with L. infantum infection. Twenty-five serum biochemistry parameters were determined in 22 wild-caught genets. Blood samples were analyzed for L. infantum DNA by means of real-time polymerase chain reaction (PCR). Two female genets were positive for L. infantum DNA but did not show any external clinical sign upon physical examination. Among other variations in the biochemistry values of these genets, one presented a higher concentration of gamma-globulins and cholesterol, whereas the other genet presented increased creatinine, bilirubin, and chloride levels when compared to uninfected females. Sex-related differences in some parameters were also reported. Infection with L. infantum may sometimes be accompanied by abnormal serum biochemistry in wild carnivores. Clinical disease may occur in L. infantum-infected wild carnivores. This has implications in the epidemiology of leishmaniosis. In addition, the data provided here would also be useful as reference values for researchers or rehabilitators working with the common genet.

  19. Genetic variation of Lymnaea stagnalis tolerance to copper: A test of selection hypotheses and its relevance for ecological risk assessment

    International Nuclear Information System (INIS)

    Côte, Jessica; Bouétard, Anthony; Pronost, Yannick; Besnard, Anne-Laure; Coke, Maïra; Piquet, Fabien; Caquet, Thierry; Coutellec, Marie-Agnès

    2015-01-01

    The use of standardized monospecific testing to assess the ecological risk of chemicals implicitly relies on the strong assumption that intraspecific variation in sensitivity is negligible or irrelevant in this context. In this study, we investigated genetic variation in copper sensitivity of the freshwater snail Lymnaea stagnalis, using lineages stemming from eight natural populations or strains found to be genetically differentiated at neutral markers. Copper-induced mortality varied widely among populations, as did the estimated daily death rate and time to 50% mortality (LT50). Population genetic divergence in copper sensitivity was compared to neutral differentiation using the Q ST -F ST approach. No evidence for homogenizing selection could be detected. This result demonstrates that species-level extrapolations from single population studies are highly unreliable. The study provides a simple example of how evolutionary principles could be incorporated into ecotoxicity testing in order to refine ecological risk assessment. - Highlights: • Genetic variation in copper tolerance occurs between Lymnaea stagnalis populations. • We used the Q ST -F ST approach to test evolutionary patterns in copper tolerance. • No evidence for uniform selection was found. • Results suggest that extrapolations to the species level are not safe. • A method is proposed to refine ecological risk assessment using genetic parameters. - Genetic variation in copper tolerance occurs in Lymnaea stagnalis. A method is proposed for considering evolutionary parameters in ecological risk assessment

  20. Investigation on Genetic Variation of Iran Watermelon Accession

    Directory of Open Access Journals (Sweden)

    majid reza kiyani

    2009-06-01

    Full Text Available In order to determine of genetic variation in germplasm of 120 watermelon accessions, a field trial conducted at agricultural and natural resource research center of khorasan . These Accessions with four commercial cultivars as control were planted in agnomental design with six replications. 15 quantitative morphological traits were measured and some statistical parameter and analysis include of Mean, Coefficient variance, cluster analysis, correlation regression coefficients were determine for this traits. yield, Sugar percent , time between flowering and ripping, fruit length, fruit width, fruit mass to fruit weight ratio , fruit skin to fruit weight ratio , seed weight to fruit weight ratio , 100 seed weight , seed length , seed diameter , seed width were the most useful traits for identifying of genotypes from each other. A one side analysis of variance was performed for different regions genetic diversity detection, which indicated a significant difference between regions for all traits except fruit Ph and fruit skin thickness. Cluster analysis divided genotypes into eight groups based on quantitative data. Correlation analysis between traits showed a significant relation between yield and all traits except fruit ph, time to flowering and seed fruit length.

  1. Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush

    Science.gov (United States)

    Baillie, Shauna M.; Muir, Andrew M.; Hansen, Michael J.; Krueger, Charles C.; Bentzen, Paul

    2016-01-01

    BackgroundAdaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycushthat considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing.ResultsFour putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments.ConclusionWe provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake

  2. Spatial structure of morphological and neutral genetic variation in Brook Trout

    Science.gov (United States)

    Kazyak, David C.; Hilderbrand, Robert H.; Keller, Stephen R.; Colaw, Mark C.; Holloway, Amanda E.; Morgan, Raymond P.; King, Timothy L.

    2015-01-01

    Brook Trout Salvelinus fontinalis exhibit exceptional levels of life history variation, remarkable genetic variability, and fine-scale population structure. In many cases, neighboring populations may be highly differentiated from one another to an extent that is comparable with species-level distinctions in other taxa. Although genetic samples have been collected from hundreds of populations and tens of thousands of individuals, little is known about whether differentiation at neutral markers reflects phenotypic differences among Brook Trout populations. We compared differentiation in morphology and neutral molecular markers among populations from four geographically proximate locations (all within 24 km) to examine how genetic diversity covaries with morphology. We found significant differences among and/or within streams for all three morphological axes examined and identified the source stream of many individuals based on morphology (52.3% classification efficiency). Although molecular and morphological differentiation among streams ranged considerably (mean pairwise FST: 0.023–0.264; pairwise PST: 0.000–0.339), the two measures were not significantly correlated. While in some cases morphological characters appear to have diverged to a greater extent than expected by neutral genetic drift, many traits were conserved to a greater extent than were neutral genetic markers. Thus, while Brook Trout exhibit fine-scale spatial patterns in both morphology and neutral genetic diversity, these types of biological variabilities are being structured by different ecological and evolutionary processes. The relative influences of genetic drift versus selection and phenotypic plasticity in shaping morphology appear to vary among populations occupying nearby streams.

  3. A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK.

    Science.gov (United States)

    Morgan, Sarah; Shatunov, Aleksey; Sproviero, William; Jones, Ashley R; Shoai, Maryam; Hughes, Deborah; Al Khleifat, Ahmad; Malaspina, Andrea; Morrison, Karen E; Shaw, Pamela J; Shaw, Christopher E; Sidle, Katie; Orrell, Richard W; Fratta, Pietro; Hardy, John; Pittman, Alan; Al-Chalabi, Ammar

    2017-06-01

    Amyotrophic lateral sclerosis is a progressive neurodegenerative disease of motor neurons. About 25 genes have been verified as relevant to the disease process, with rare and common variation implicated. We used next generation sequencing and repeat sizing to comprehensively assay genetic variation in a panel of known amyotrophic lateral sclerosis genes in 1126 patient samples and 613 controls. About 10% of patients were predicted to carry a pathological expansion of the C9orf72 gene. We found an increased burden of rare variants in patients within the untranslated regions of known disease-causing genes, driven by SOD1, TARDBP, FUS, VCP, OPTN and UBQLN2. We found 11 patients (1%) carried more than one pathogenic variant (P = 0.001) consistent with an oligogenic basis of amyotrophic lateral sclerosis. These findings show that the genetic architecture of amyotrophic lateral sclerosis is complex and that variation in the regulatory regions of associated genes may be important in disease pathogenesis. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  4. Macro-environment of breast carcinoma: frequent genetic alterations in the normal appearing skins of patients with breast cancer.

    Science.gov (United States)

    Moinfar, Farid; Beham, Alfred; Friedrich, Gerhard; Deutsch, Alexander; Hrzenjak, Andelko; Luschin, Gero; Tavassoli, Fattaneh A

    2008-05-01

    Genetic abnormalities in microenvironmental tissues with subsequent alterations of reciprocal interactions between epithelial and mesenchymal cells play a key role in the breast carcinogenesis. Although a few reports have demonstrated abnormal fibroblastic functions in normal-appearing fibroblasts taken from the skins of breast cancer patients, the genetic basis of this phenomenon and its implication for carcinogenesis are unexplored. We analyzed 12 mastectomy specimens showing invasive ductal carcinomas. In each case, morphologically normal epidermis and dermis, carcinoma, normal stroma close to carcinoma, and stroma at a distant from carcinoma were microdissected. Metastatic-free lymphatic tissues from lymph nodes served as a control. Using PCR, DNA extracts were examined with 11 microsatellite markers known for a high frequency of allelic imbalances in breast cancer. Losses of heterozygosity and/or microsatellite instability were detected in 83% of the skin samples occurring either concurrently with or independently from the cancerous tissues. In 80% of these cases at least one microsatellite marker displayed loss of heterozygosity or microsatellite instability in the skin, which was absent in carcinoma. A total of 41% of samples showed alterations of certain loci observed exclusively in the carcinoma but not in the skin compartments. Our study suggests that breast cancer is not just a localized genetic disorder, but rather part of a larger field of genetic alterations/instabilities affecting multiple cell populations in the organ with various cellular elements, ultimately contributing to the manifestation of the more 'localized' carcinoma. These data indicate that more global assessment of tumor micro- and macro-environment is crucial for our understanding of breast carcinogenesis.

  5. Recommendations for Genetic Variation Data Capture in Developing Countries to Ensure a Comprehensive Worldwide Data Collection

    Science.gov (United States)

    Patrinos, George P; Al Aama, Jumana; Al Aqeel, Aida; Al-Mulla, Fahd; Borg, Joseph; Devereux, Andrew; Felice, Alex E; Macrae, Finlay; Marafie, Makia J; Petersen, Michael B; Qi, Ming; Ramesar, Rajkumar S; Zlotogora, Joel; Cotton, Richard GH

    2011-01-01

    Developing countries have significantly contributed to the elucidation of the genetic basis of both common and rare disorders, providing an invaluable resource of cases due to large family sizes, consanguinity, and potential founder effects. Moreover, the recognized depth of genomic variation in indigenous African populations, reflecting the ancient origins of humanity on the African continent, and the effect of selection pressures on the genome, will be valuable in understanding the range of both pathological and nonpathological variations. The involvement of these populations in accurately documenting the extant genetic heterogeneity is more than essential. Developing nations are regarded as key contributors to the Human Variome Project (HVP; http://www.humanvariomeproject.org), a major effort to systematically collect mutations that contribute to or cause human disease and create a cyber infrastructure to tie databases together. However, biomedical research has not been the primary focus in these countries even though such activities are likely to produce economic and health benefits for all. Here, we propose several recommendations and guidelines to facilitate participation of developing countries in genetic variation data documentation, ensuring an accurate and comprehensive worldwide data collection. We also summarize a few well-coordinated genetic data collection initiatives that would serve as paradigms for similar projects. Hum Mutat 31:1–8, 2010. © 2010 Wiley-Liss, Inc. PMID:21089065

  6. Lack of genetic variation in tree ring delta13C suggests a uniform, stomatally-driven response to drought stress across Pinus radiata genotypes.

    Science.gov (United States)

    Rowell, Douglas M; Ades, Peter K; Tausz, Michael; Arndt, Stefan K; Adams, Mark A

    2009-02-01

    We assessed the variation in delta(13)C signatures of Pinus radiata D. Don stemwood taken from three genetic trials in southern Australia. We sought to determine the potential of using delta(13)C signatures as selection criteria for drought tolerance. Increment cores were taken from P. radiata and were used to determine the basal area increment and the delta(13)C signature of extracted cellulose. Both growth increment and cellulose delta(13)C were affected by water availability. Growth increment and delta(13)C were negatively correlated suggesting that growth was water-limited. While there was significant genetic variation in growth, there was no significant genetic variation in cellulose delta(13)C of tree rings. This suggests that different genotypes of P. radiata display significant differences in growth and yet respond similarly to drought stress. The delta(13)C response to drought stress was more due to changes in stomatal conductance than to the variation in photosynthetic capacity, and this may explain the lack of genetic variation in delta(13)C. The lack of genetic variation in cellulose delta(13)C of tree rings precludes its use as a selection criterion for drought tolerance among P. radiata genotypes.

  7. Population-genetic nature of copy number variations in the human genome.

    Science.gov (United States)

    Kato, Mamoru; Kawaguchi, Takahisa; Ishikawa, Shumpei; Umeda, Takayoshi; Nakamichi, Reiichiro; Shapero, Michael H; Jones, Keith W; Nakamura, Yusuke; Aburatani, Hiroyuki; Tsunoda, Tatsuhiko

    2010-03-01

    Copy number variations (CNVs) are universal genetic variations, and their association with disease has been increasingly recognized. We designed high-density microarrays for CNVs, and detected 3000-4000 CNVs (4-6% of the genomic sequence) per population that included CNVs previously missed because of smaller sizes and residing in segmental duplications. The patterns of CNVs across individuals were surprisingly simple at the kilo-base scale, suggesting the applicability of a simple genetic analysis for these genetic loci. We utilized the probabilistic theory to determine integer copy numbers of CNVs and employed a recently developed phasing tool to estimate the population frequencies of integer copy number alleles and CNV-SNP haplotypes. The results showed a tendency toward a lower frequency of CNV alleles and that most of our CNVs were explained only by zero-, one- and two-copy alleles. Using the estimated population frequencies, we found several CNV regions with exceptionally high population differentiation. Investigation of CNV-SNP linkage disequilibrium (LD) for 500-900 bi- and multi-allelic CNVs per population revealed that previous conflicting reports on bi-allelic LD were unexpectedly consistent and explained by an LD increase correlated with deletion-allele frequencies. Typically, the bi-allelic LD was lower than SNP-SNP LD, whereas the multi-allelic LD was somewhat stronger than the bi-allelic LD. After further investigation of tag SNPs for CNVs, we conclude that the customary tagging strategy for disease association studies can be applicable for common deletion CNVs, but direct interrogation is needed for other types of CNVs.

  8. Genetic variation and geographic differentiation among populations of the nonmigratory agricultural pest Oedaleus infernalis (Orthoptera: Acridoidea) in China.

    Science.gov (United States)

    Sun, Wei; Dong, Hui; Gao, Yue-Bo; Su, Qian-Fu; Qian, Hai-Tao; Bai, Hong-Yan; Zhang, Zhu-Ting; Cong, Bin

    2015-01-01

    The nonmigratory grasshopper Oedaleus infernalis Saussure (Orthoptera : Acridoidea) is an agricultural pest to crops and forage grasses over a wide natural geographical distribution in China. The genetic diversity and genetic variation among 10 geographically separated populations of O. infernalis was assessed using polymerase chain reaction-based molecular markers, including the intersimple sequence repeat and mitochondrial cytochrome oxidase sequences. A high level of genetic diversity was detected among these populations from the intersimple sequence repeat (H: 0.2628, I: 0.4129, Hs: 0.2130) and cytochrome oxidase analyses (Hd: 0.653). There was no obvious geographical structure based on an unweighted pair group method analysis and median-joining network. The values of FST, θ(II), and Gst estimated in this study are low, and the gene flow is high (Nm > 4). Analysis of the molecular variance suggested that most of the genetic variation occurs within populations, whereas only a small variation takes place between populations. No significant correlation was found between the genetic distance and geographical distance. Overall, our results suggest that the geographical distance plays an unimpeded role in the gene flow among O. infernalis populations. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  9. Parkinson's disease and pesticides: A meta-analysis of disease connection and genetic alterations.

    Science.gov (United States)

    Ahmed, Hussien; Abushouk, Abdelrahman Ibrahim; Gabr, Mohamed; Negida, Ahmed; Abdel-Daim, Mohamed M

    2017-06-01

    Parkinson's disease (PD) is a globally prevalent, multifactorial disorder that occurs due to interactions between genetic and environmental factors. Observational studies have shown a link between exposure to pesticides and the risk of PD. We performed this study to systemically review published case-control studies and estimate quantitatively the association between pesticide exposure and PD. We searched Medline (through PubMed) for eligible case-control studies. The association between pesticide exposure and PD risk or occurrence of certain genetic alterations, related to the pathogenesis of PD was presented as odds ratios (OR) and pooled under the random effects model, using the statistical add-in (MetaXL, version 5.0). The pooled result showed that exposure to pesticides is linked to PD (OR 1.46, 95% CI [1.21, 1.77]), but there was a significant heterogeneity among included studies. Exposure to pesticides increased the risk of alterations in different PD pathogenesis-related genes, such as GST (OR 1.97, 95% CI [1.41, 2.76]), PON-1 (OR 1.32, 95% CI [1.09, 1.6]), MDR1 (OR 2.06, 95% CI [1.58, 2.68]), and SNCA genes (OR 1.28, 95% CI [1.02, 1.37]). There was no statistically significant association between exposure to pesticides and alteration of CYP2D6 (OR 1.19, 95% CI [0.91, 1.54]), SLC6A3 (OR 0.74, 95% CI [0.55, 1]), MnSOD (OR 1.45, 95% CI [0.97, 2.16]), NQO1 (OR 1.35, 95% CI [0.91, 2.01]), and PON-2 genes (OR 0.88, 95% CI [0.53, 1.45]). In conclusion, this meta-analysis provides evidence that pesticide exposure is significantly associated with the risk of PD and alterations in genes involved in PD pathogenesis. However, the underlying mechanism of this association and the effect of the duration of exposure or the type of pesticides should be addressed by future research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Genetic Variation in Functional Traits Influences Arthropod Community Composition in Aspen (Populus tremula L.)

    Science.gov (United States)

    Robinson, Kathryn M.; Ingvarsson, Pär K.; Jansson, Stefan; Albrectsen, Benedicte R.

    2012-01-01

    We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores. PMID:22662190

  11. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L..

    Directory of Open Access Journals (Sweden)

    Kathryn M Robinson

    Full Text Available We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  12. Genetic variation in liver x receptor alpha and risk of ischemic vascular disease in the general population

    DEFF Research Database (Denmark)

    Stender, Stefan; Frikke-Schmidt, Ruth; Anestis, Aristomenis

    2011-01-01

    Although animal studies indicate that liver X receptor alpha (LXRα) might influence risk of atherosclerosis, data in humans remain scarce. We tested the hypothesis that genetic variation in LXRα associates with risk of ischemic vascular disease and/or plasma lipid and lipoprotein levels in the ge......Although animal studies indicate that liver X receptor alpha (LXRα) might influence risk of atherosclerosis, data in humans remain scarce. We tested the hypothesis that genetic variation in LXRα associates with risk of ischemic vascular disease and/or plasma lipid and lipoprotein levels...... in the general population....

  13. Genetic variation in liver x receptor alpha and risk of ischemic vascular disease in the general population

    DEFF Research Database (Denmark)

    Stender, Stefan; Frikke-Schmidt, Ruth; Anestis, Aristomenis

    2011-01-01

    Although animal studies indicate that liver X receptor alpha (LXRa) might influence risk of atherosclerosis, data in humans remain scarce. We tested the hypothesis that genetic variation in LXRa associates with risk of ischemic vascular disease and/or plasma lipid and lipoprotein levels in the ge......Although animal studies indicate that liver X receptor alpha (LXRa) might influence risk of atherosclerosis, data in humans remain scarce. We tested the hypothesis that genetic variation in LXRa associates with risk of ischemic vascular disease and/or plasma lipid and lipoprotein levels...... in the general population....

  14. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers.

    Science.gov (United States)

    Nath, Aritro; Chan, Christina

    2016-01-04

    Reprogramming of cellular metabolism is a hallmark feature of cancer cells. While a distinct set of processes drive metastasis when compared to tumorigenesis, it is yet unclear if genetic alterations in metabolic pathways are associated with metastatic progression of human cancers. Here, we analyzed the mutation, copy number variation and gene expression patterns of a literature-derived model of metabolic genes associated with glycolysis (Warburg effect), fatty acid metabolism (lipogenesis, oxidation, lipolysis, esterification) and fatty acid uptake in >9000 primary or metastatic tumor samples from the multi-cancer TCGA datasets. Our association analysis revealed a uniform pattern of Warburg effect mutations influencing prognosis across all tumor types, while copy number alterations in the electron transport chain gene SCO2, fatty acid uptake (CAV1, CD36) and lipogenesis (PPARA, PPARD, MLXIPL) genes were enriched in metastatic tumors. Using gene expression profiles, we established a gene-signature (CAV1, CD36, MLXIPL, CPT1C, CYP2E1) that strongly associated with epithelial-mesenchymal program across multiple cancers. Moreover, stratification of samples based on the copy number or expression profiles of the genes identified in our analysis revealed a significant effect on patient survival rates, thus confirming prominent roles of fatty acid uptake and metabolism in metastatic progression and poor prognosis of human cancers.

  15. Heritability and genetic basis of protein level variation in an outbred population.

    Science.gov (United States)

    Parts, Leopold; Liu, Yi-Chun; Tekkedil, Manu M; Steinmetz, Lars M; Caudy, Amy A; Fraser, Andrew G; Boone, Charles; Andrews, Brenda J; Rosebrock, Adam P

    2014-08-01

    The genetic basis of heritable traits has been studied for decades. Although recent mapping efforts have elucidated genetic determinants of transcript levels, mapping of protein abundance has lagged. Here, we analyze levels of 4084 GFP-tagged yeast proteins in the progeny of a cross between a laboratory and a wild strain using flow cytometry and high-content microscopy. The genotype of trans variants contributed little to protein level variation between individual cells but explained >50% of the variance in the population's average protein abundance for half of the GFP fusions tested. To map trans-acting factors responsible, we performed flow sorting and bulk segregant analysis of 25 proteins, finding a median of five protein quantitative trait loci (pQTLs) per GFP fusion. Further, we find that cis-acting variants predominate; the genotype of a gene and its surrounding region had a large effect on protein level six times more frequently than the rest of the genome combined. We present evidence for both shared and independent genetic control of transcript and protein abundance: More than half of the expression QTLs (eQTLs) contribute to changes in protein levels of regulated genes, but several pQTLs do not affect their cognate transcript levels. Allele replacements of genes known to underlie trans eQTL hotspots confirmed the correlation of effects on mRNA and protein levels. This study represents the first genome-scale measurement of genetic contribution to protein levels in single cells and populations, identifies more than a hundred trans pQTLs, and validates the propagation of effects associated with transcript variation to protein abundance. © 2014 Parts et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Relations of mitochondrial genetic variants to measures of vascular function.

    Science.gov (United States)

    Fetterman, Jessica L; Liu, Chunyu; Mitchell, Gary F; Vasan, Ramachandran S; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M; Levy, Daniel

    2018-05-01

    Mitochondrial genetic variation with resultant alterations in oxidative phosphorylation may influence vascular function and contribute to cardiovascular disease susceptibility. We assessed relations of peptide-encoding variants in the mitochondrial genome with measures of vascular function in Framingham Heart Study participants. Of 258 variants assessed, 40 were predicted to have functional consequences by bioinformatics programs. A maternal pattern of heritability was estimated to contribute to the variability of aortic stiffness. A putative association with a microvascular function measure was identified that requires replication. The methods we have developed can be applied to assess the relations of mitochondrial genetic variation to other phenotypes. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  17. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data.

    Science.gov (United States)

    Fan, Jean; Lee, Hae-Ock; Lee, Soohyun; Ryu, Da-Eun; Lee, Semin; Xue, Catherine; Kim, Seok Jin; Kim, Kihyun; Barkas, Nikolas; Park, Peter J; Park, Woong-Yang; Kharchenko, Peter V

    2018-06-13

    Characterization of intratumoral heterogeneity is critical to cancer therapy, as presence of phenotypically diverse cell populations commonly fuels relapse and resistance to treatment. Although genetic variation is a well-studied source of intratumoral heterogeneity, the functional impact of most genetic alterations remains unclear. Even less understood is the relative importance of other factors influencing heterogeneity, such as epigenetic state or tumor microenvironment. To investigate the relationship between genetic and transcriptional heterogeneity in a context of cancer progression, we devised a computational approach called HoneyBADGER to identify copy number variation and loss-of-heterozygosity in individual cells from single-cell RNA-sequencing data. By integrating allele and normalized expression information, HoneyBADGER is able to identify and infer the presence of subclone-specific alterations in individual cells and reconstruct underlying subclonal architecture. Examining several tumor types, we show that HoneyBADGER is effective at identifying deletion, amplifications, and copy-neutral loss-of-heterozygosity events, and is capable of robustly identifying subclonal focal alterations as small as 10 megabases. We further apply HoneyBADGER to analyze single cells from a progressive multiple myeloma patient to identify major genetic subclones that exhibit distinct transcriptional signatures relevant to cancer progression. Surprisingly, other prominent transcriptional subpopulations within these tumors did not line up with the genetic subclonal structure, and were likely driven by alternative, non-clonal mechanisms. These results highlight the need for integrative analysis to understand the molecular and phenotypic heterogeneity in cancer. Published by Cold Spring Harbor Laboratory Press.

  18. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...... degradation drank approximately 30% more alcohol per week and had a higher risk of everyday and heavy drinking, and of alcoholism. Individuals with ADH1C slow versus fast alcohol degradation had a higher risk of heavy drinking Udgivelsesdato: 2008/8/25...

  19. Evolutionary origins and genetic variation of the Seychelles treefrog, Tachycnemis seychellensis (Duméril and Bibron, 1841) (Amphibia: Anura: Hyperoliidae).

    Science.gov (United States)

    Maddock, Simon T; Day, Julia J; Nussbaum, Ronald A; Wilkinson, Mark; Gower, David J

    2014-06-01

    The hyperoliid frog Tachycnemis seychellensis, the only species of its genus, is endemic to the four largest granitic islands of the Seychelles archipelago and is reliant on freshwater bodies for reproduction. Its presence in the Seychelles is thought to be the product of a transoceanic dispersal, diverging from the genus Heterixalus, its closest living relative (currently endemic to Madagascar), between approximately 10-35Ma. A previous study documented substantial intraspecific morphological variation among island populations and also among populations within the largest island (Mahé). To assess intraspecific genetic variation and to infer the closest living relative(s) of T. seychellensis, DNA sequence data were generated for three mitochondrial and four nuclear markers. These data support a sister-group relationship between T. seychellensis and Heterixalus, with the divergence between the two occurring between approximately 11-19Ma based on cytb p-distances. Low levels of genetic variation were found among major mitochondrial haplotype clades of T. seychellensis (maximum 0.7% p-distance concatenated mtDNA), and samples from each of the islands (except La Digue) comprised multiple mitochondrial haplotype clades. Two nuclear genes (rag1 and tyr) showed no variation, and the other two (rho and pomc) lacked any notable geographic structuring, counter to patterns observed within presumably more vagile Seychelles taxa such as lizards. The low levels of genetic variation and phylogeographic structure support an interpretation that there is a single but morphologically highly variable species of Seychelles treefrog. The contrasting genetic and morphological intraspecific variation may be attributable to relatively recent admixture during low sea-level stands, ecophenotypic plasticity, local adaptation to different environmental conditions, and/or current and previously small population sizes. Low genetic phylogeographic structure but substantial morphological

  20. Genetic variation in tolerance of Douglas-fir to Swiss needle cast as assessed by symptom expression.

    Science.gov (United States)

    G.R. Jonhson

    2002-01-01

    The incidence of Swiss needle cast on Douglas-fir has increased significantly in recent years on the Oregon coast. Genetic variation in symptoms of disease infection, as measured by foliage traits, was assessed in two series of progeny trials to determine whether these "crown health" indicators were under genetic control and correlated with tolerance;...

  1. Genetic variation in house mice (Mus, Muridae, Rodentia) from the Czech and Slovak Republics

    Czech Academy of Sciences Publication Activity Database

    Šugerková, Monika; Munclinger, P.; Božíková, E.; Piálek, Jaroslav; Macholán, Miloš

    2002-01-01

    Roč. 51, č. 2 (2002), s. 81-92 ISSN 0139-7893 R&D Projects: GA AV ČR IAA6045601; GA AV ČR IAA6045902; GA ČR GA206/01/0989; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z5045916 Keywords : house mouse * genetic variation * allozymes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.234, year: 2002 http://www.ivb.cz/folia/51/2/081-092.pdf

  2. The maintenance of genetic variation for oviposition rate in two-spotted spider mites: inferences from artificial selection

    NARCIS (Netherlands)

    Tien, N.S.H.; Sabelis, M.W.; Egas, M.

    2010-01-01

    Despite the directional selection acting on life-history traits, substantial amounts of standing variation for these traits have frequently been found. This variation may result from balancing selection (e.g., through genetic trade-offs) or from mutation-selection balance. These mechanisms affect

  3. Spatial difference in genetic variation for fenitrothion tolerance between local populations of Daphnia galeata in Lake Kasumigaura, Japan.

    Science.gov (United States)

    Mano, Hiroyuki; Tanaka, Yoshinari

    2017-12-01

    This study examines the spatial difference in genetic variation for tolerance to a pesticide, fenitrothion, in Daphnia galeata at field sites in Lake Kasumigaura, Japan. We estimated genetic values of isofemale lines established from dormant eggs of D. galeata collected from field sampling sites with the toxicant threshold model applied using acute toxicity. We compared genetic values and variances and broad-sense heritability across different sites in the lake. Results showed that the mean tolerance values to fenitrothion did not differ spatially. The variance in genetic value and heritability of fenitrothion tolerance significantly differed between sampling sites, revealing that long-term ecological risk of fenitrothion may differ between local populations in the lake. These results have implications for aquatic toxicology research, suggesting that differences in genetic variation of tolerance to a chemical among local populations must be considered for understanding the long-term ecological risks of the chemical over a large geographic area.

  4. Large variations in ocular dimensions in a multiethnic population with similar genetic background.

    Science.gov (United States)

    Niu, Zhiqiang; Li, Jun; Zhong, Hua; Yuan, Zhonghua; Zhou, Hua; Zhang, Yang; Yuan, Yuansheng; Chen, Qin; Pan, Chen-Wei

    2016-03-07

    We aimed to describe the ethnic variations in ocular dimensions among three ethnic groups with similar genetic ancestry from mainland of China. We included 2119 ethnic Bai, 2202 ethnic Yi and 2183 ethnic Han adults aged 50 years or older in the study. Ocular dimensions including axial length (AL), anterior chamber depth (ACD), vitreous chamber depth (VCD) and lens thickness (LT) were measured using A-scan ultrasonography. Bai Chinese had longer ALs (P variations in LTs. Diabetes was associated with shallower ACDs and this association was stronger in Bai Chinese compared with Yi or Han Chinese (P for interaction = 0.02). Thicker lenses were associated with younger age (P = 0.04), male gender (P variations in cultures and lifestyles.

  5. Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat.

    Science.gov (United States)

    Shitsukawa, Naoki; Tahira, Chikako; Kassai, Ken-Ichiro; Hirabayashi, Chizuru; Shimizu, Tomoaki; Takumi, Shigeo; Mochida, Keiichi; Kawaura, Kanako; Ogihara, Yasunari; Murai, Koji

    2007-06-01

    Bread wheat (Triticum aestivum) is a hexaploid species with A, B, and D ancestral genomes. Most bread wheat genes are present in the genome as triplicated homoeologous genes (homoeologs) derived from the ancestral species. Here, we report that both genetic and epigenetic alterations have occurred in the homoeologs of a wheat class E MADS box gene. Two class E genes are identified in wheat, wheat SEPALLATA (WSEP) and wheat LEAFY HULL STERILE1 (WLHS1), which are homologs of Os MADS45 and Os MADS1 in rice (Oryza sativa), respectively. The three wheat homoeologs of WSEP showed similar genomic structures and expression profiles. By contrast, the three homoeologs of WLHS1 showed genetic and epigenetic alterations. The A genome WLHS1 homoeolog (WLHS1-A) had a structural alteration that contained a large novel sequence in place of the K domain sequence. A yeast two-hybrid analysis and a transgenic experiment indicated that the WLHS1-A protein had no apparent function. The B and D genome homoeologs, WLHS1-B and WLHS1-D, respectively, had an intact MADS box gene structure, but WLHS1-B was predominantly silenced by cytosine methylation. Consequently, of the three WLHS1 homoeologs, only WLHS1-D functions in hexaploid wheat. This is a situation where three homoeologs are differentially regulated by genetic and epigenetic mechanisms.

  6. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation.

    Science.gov (United States)

    Delviks-Frankenberry, Krista A; Nikolaitchik, Olga A; Burdick, Ryan C; Gorelick, Robert J; Keele, Brandon F; Hu, Wei-Shau; Pathak, Vinay K

    2016-05-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic

  7. Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population.

    Science.gov (United States)

    Solus, Joseph F; Arietta, Brenda J; Harris, James R; Sexton, David P; Steward, John Q; McMunn, Chara; Ihrie, Patrick; Mehall, Janelle M; Edwards, Todd L; Dawson, Elliott P

    2004-10-01

    The extent of genetic variation found in drug metabolism genes and its contribution to interindividual variation in response to medication remains incompletely understood. To better determine the identity and frequency of variation in 11 phase I drug metabolism genes, the exons and flanking intronic regions of the cytochrome P450 (CYP) isoenzyme genes CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5 were amplified from genomic DNA and sequenced. A total of 60 kb of bi-directional sequence was generated from each of 93 human DNAs, which included Caucasian, African-American and Asian samples. There were 388 different polymorphisms identified. These included 269 non-coding, 45 synonymous and 74 non-synonymous polymorphisms. Of these, 54% were novel and included 176 non-coding, 14 synonymous and 21 non-synonymous polymorphisms. Of the novel variants observed, 85 were represented by single occurrences of the minor allele in the sample set. Much of the variation observed was from low-frequency alleles. Comparatively, these genes are variation-rich. Calculations measuring genetic diversity revealed that while the values for the individual genes are widely variable, the overall nucleotide diversity of 7.7 x 10(-4) and polymorphism parameter of 11.5 x 10(-4) are higher than those previously reported for other gene sets. Several independent measurements indicate that these genes are under selective pressure, particularly for polymorphisms corresponding to non-synonymous amino acid changes. There is relatively little difference in measurements of diversity among the ethnic groups, but there are large differences among the genes and gene subfamilies themselves. Of the three CYP subfamilies involved in phase I drug metabolism (1, 2, and 3), subfamily 2 displays the highest levels of genetic diversity.

  8. Characterization of the genetic variation present in CYP3A4 in three South African populations

    Directory of Open Access Journals (Sweden)

    Britt Ingrid Drögemöller

    2013-02-01

    Full Text Available TThe CYP3A4 enzyme is the most abundant human cytochrome P450 and is regarded as the most important enzyme involved in drug metabolism. Inter-individual and inter-population variability in gene expression and enzyme activity are thought to be influenced, in part, by genetic variation. Although Southern African individuals have been shown to exhibit the highest levels of genetic diversity, they have been under-represented in pharmacogenetic research to date. Therefore, the aim of this study was to identify genetic variation within CYP3A4 in three South African population groups comprising of 29 Khoisan, 65 Xhosa and 65 Mixed Ancestry individuals. To identify known and novel CYP3A4 variants, 15 individuals were randomly selected from each of the population groups for bi-directional Sanger sequencing of approximately 600 bp of the 5’-upstream region and all thirteen exons including flanking intronic regions. Genetic variants detected were genotyped in the rest of the cohort. In total, 24 SNPs were detected, including CYP3A4*12, CYP3A4*15, and the reportedly functional CYP3A4*1B promoter polymorphism, as well as two novel non-synonymous variants. These putatively functional variants, p.R162W and p.Q200H, were present in two of the three populations and all three populations, respectively, and in silico analysis predicted that the former would damage the protein product. Furthermore, the three populations were shown to exhibit distinct genetic profiles. These results confirm that South African populations show unique patterns of variation in the genes encoding xenobiotic metabolizing enzymes. This research suggests that population-specific genetic profiles for CYP3A4 and other drug metabolizing genes would be essential to make full use of pharmacogenetics in Southern Africa. Further investigation is needed to determine if the identified genetic variants influence CYP3A4 metabolism phenotype in these populations.

  9. Characterization of the genetic variation present in CYP3A4 in three South African populations.

    Science.gov (United States)

    Drögemöller, Britt; Plummer, Marieth; Korkie, Lundi; Agenbag, Gloudi; Dunaiski, Anke; Niehaus, Dana; Koen, Liezl; Gebhardt, Stefan; Schneider, Nicol; Olckers, Antonel; Wright, Galen; Warnich, Louise

    2013-01-01

    The CYP3A4 enzyme is the most abundant human cytochrome P450 (CYP) and is regarded as the most important enzyme involved in drug metabolism. Inter-individual and inter-population variability in gene expression and enzyme activity are thought to be influenced, in part, by genetic variation. Although Southern African individuals have been shown to exhibit the highest levels of genetic diversity, they have been under-represented in pharmacogenetic research to date. Therefore, the aim of this study was to identify genetic variation within CYP3A4 in three South African population groups comprising of 29 Khoisan, 65 Xhosa and 65 Mixed Ancestry (MA) individuals. To identify known and novel CYP3A4 variants, 15 individuals were randomly selected from each of the population groups for bi-directional Sanger sequencing of ~600 bp of the 5'-upstream region and all thirteen exons including flanking intronic regions. Genetic variants detected were genotyped in the rest of the cohort. In total, 24 SNPs were detected, including CYP3A4(*)12, CYP3A4(*)15, and the reportedly functional CYP3A4(*)1B promoter polymorphism, as well as two novel non-synonymous variants. These putatively functional variants, p.R162W and p.Q200H, were present in two of the three populations and all three populations, respectively, and in silico analysis predicted that the former would damage the protein product. Furthermore, the three populations were shown to exhibit distinct genetic profiles. These results confirm that South African populations show unique patterns of variation in the genes encoding xenobiotic metabolizing enzymes. This research suggests that population-specific genetic profiles for CYP3A4 and other drug metabolizing genes would be essential to make full use of pharmacogenetics in Southern Africa. Further investigation is needed to determine if the identified genetic variants influence CYP3A4 metabolism phenotype in these populations.

  10. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms

    International Nuclear Information System (INIS)

    Paul, J.H.; David, A.W.

    1989-01-01

    The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [ 3 H]thymidine or [ 3 H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degree C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physicochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms

  11. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    DEFF Research Database (Denmark)

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P

    2016-01-01

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovari...

  12. Genetic Variation in the Dopamine System Influences Intervention Outcome in Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Rochellys Diaz Heijtz

    2018-02-01

    Interpretation: Naturally occurring genetic variation in the dopamine system can influence treatment outcomes in children with cerebral palsy. A polygenic dopamine score might be valid for treatment outcome prediction and for designing individually tailored interventions for children with cerebral palsy.

  13. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome.

    Science.gov (United States)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui; Kim, Su Yeon; Korneliussen, Thorfinn; Vinckenbosch, Nicolas; Tian, Geng; Huerta-Sanchez, Emilia; Feder, Alison F; Grarup, Niels; Jørgensen, Torben; Jiang, Tao; Witte, Daniel R; Sandbæk, Annelli; Hellmann, Ines; Lauritzen, Torsten; Hansen, Torben; Pedersen, Oluf; Wang, Jun; Nielsen, Rasmus

    2011-10-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations.

  14. Association of ATM and BMI-1 genetic variation with breast cancer risk in Han Chinese.

    Science.gov (United States)

    Yue, Li-Ling; Wang, Fu-Chao; Zhang, Ming-Long; Liu, Dan; Chen, Ping; Mei, Qing-Bu; Li, Peng-Hui; Pan, Hong-Ming; Zheng, Li-Hong

    2018-04-24

    We tested the hypothesis that genetic variation in ATM and BMI-1 genes can alter the risk of breast cancer through genotyping 6 variants among 524 breast cancer cases and 518 cancer-free controls of Han nationality. This was an observational, hospital-based, case-control association study. Analyses of single variant, linkage, haplotype, interaction and nomogram were performed. Risk was expressed as odds ratio (OR) and 95% confidence interval (CI). All studied variants were in the Hardy-Weinberg equilibrium and were not linked. The mutant allele frequencies of rs1890637, rs3092856 and rs1801516 in ATM gene were significantly higher in cases than in controls (P = .005, ATM gene were significantly associated with 1.98-fold and 6.04-fold increased risk of breast cancer (95% CI: 1.36-2.90 and 1.65-22.08, respectively). Nomogram analysis estimated that the cumulative proportion of 3 significant variants in ATM gene was about 12.5%. Our findings collectively indicated that ATM gene was a candidate gene in susceptibility to breast cancer in Han Chinese. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Variation in Women's Preferences Regarding Male Facial Masculinity Is Better Explained by Genetic Differences Than by Previously Identified Context-Dependent Effects.

    Science.gov (United States)

    Zietsch, Brendan P; Lee, Anthony J; Sherlock, James M; Jern, Patrick

    2015-09-01

    Women's preferences for masculine versus feminine male faces are highly variable. According to a dominant theory in evolutionary psychology, this variability results from adaptations that optimize preferences by calibrating them to certain contextual factors, including women's self-perceived attractiveness, short- versus long-term relationship orientation, pathogen disgust sensitivity, and stage of the menstrual cycle. The theory does not account for the possible contribution of genetic variation on women's facial masculinity preference. Using a large sample (N = 2,160) of identical and nonidentical female Finnish twins and their siblings, we showed that the proportion of variation in women's preferences regarding male facial masculinity that was attributable to genetic variation (38%) dwarfed the variation due to the combined effect of contextual factors (< 1%). These findings cast doubt on the importance of these context-dependent effects and may suggest a need for refocusing in the field toward understanding the wide genetic variation in these preferences and how this variation relates to the evolution of sexual dimorphism in faces. © The Author(s) 2015.

  16. Identification and analysis of genetic variations in pri-miRNAs expressed specifically or at a high level in sheep skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available MicroRNAs (miRNAs are key regulators in miRNA-mediated gene regulatory networks and play important roles in many biological processes, such as growth and development of mammals. In this study, we used microarrays to detect 261 miRNAs that are expressed in sheep skeletal muscle. We found 22 miRNAs that showed high levels of expression and equated to 89% of the total miRNA. Genetic variations in these 22 pri-miRNAs were further investigated using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP and sequencing. A total of 49 genetic variations, which included 41 single nucleotide polymorphisms (SNPs and 8 deletions/insertions, were identified in four sheep breeds. Three variations were further researched in a larger sample set, including five sheep breeds with different meat production performances. We found that the genotype and allele frequencies of the CCC deletion/insertion in pri-miR-133a were significantly related to the sheep meat production trait. Finally, cell assays and quantitative reverse transcription PCR (qRT-PCR were employed to investigate the effect of pri-miRNA genetic variation on the miRNA biogenesis process. The results confirmed that genetic variations can influence miRNA biogenesis and increase or decrease the levels of mature miRNAs, in accordance with the energy and stability change of hair-pin secondary structures. Our findings will help to further the understanding of the functions of genetic variations in sheep pri-miRNAs in skeletal muscle growth and development.

  17. Genetic variation of milk fatty acid composition between and within dairy cattle breeds

    NARCIS (Netherlands)

    Maurice - Van Eijndhoven, M.H.T.

    2014-01-01

    Abstract

    Maurice – Van Eijndhoven, M.H.T. (2014). Genetic variation of milk fatty acid composition between and within dairy cattle breeds. PhD thesis, Wageningen University, the Netherlands

    Fat is one of the main components in bovine milk and comprises a large

  18. Genetic influences on variation in female orgasmic function: a twin study

    Science.gov (United States)

    Dunn, Kate M; Cherkas, Lynn F; Spector, Tim D

    2005-01-01

    Orgasmic dysfunction in females is commonly reported in the general population with little consensus on its aetiology. We performed a classical twin study to explore whether there were observable genetic influences on female orgasmic dysfunction. Adult females from the TwinsUK register were sent a confidential survey including questions on sexual problems. Complete responses to the questions on orgasmic dysfunction were obtained from 4037 women consisting of 683 monozygotic and 714 dizygotic pairs of female twins aged between 19 and 83 years. One in three women (32%) reported never or infrequently achieving orgasm during intercourse, with a corresponding figure of 21% during masturbation. A significant genetic influence was seen with an estimated heritability for difficulty reaching orgasm during intercourse of 34% (95% confidence interval 27–40%) and 45% (95% confidence interval 38–52%) for orgasm during masturbation. These results show that the wide variation in orgasmic dysfunction in females has a genetic basis and cannot be attributed solely to cultural influences. These results should stimulate further research into the biological and perhaps evolutionary processes governing female sexual function. PMID:17148182

  19. Diversity and Genetic Variation among Brevipalpus Populations from Brazil and Mexico

    Science.gov (United States)

    Sánchez-Velázquez, E. J.; Santillán-Galicia, M. T.; Novelli, V. M.; Nunes, M. A.; Mora-Aguilera, G.; Valdez-Carrasco, J. M.; Otero-Colina, G.; Freitas-Astúa, J.

    2015-01-01

    Brevipalpus phoenicis s.l. is an economically important vector of the Citrus leprosis virus-C (CiLV-C), one of the most severe diseases attacking citrus orchards worldwide. Effective control strategies for this mite should be designed based on basic information including its population structure, and particularly the factors that influence its dynamics. We sampled sweet orange orchards extensively in eight locations in Brazil and 12 in Mexico. Population genetic structure and genetic variation between both countries, among locations and among sampling sites within locations were evaluated by analysing nucleotide sequence data from fragments of the mitochondrial cytochrome oxidase subunit I (COI). In both countries, B. yothersi was the most common species and was found in almost all locations. Individuals from B. papayensis were found in two locations in Brazil. Brevipalpus yothersi populations collected in Brazil were more genetically diverse (14 haplotypes) than Mexican populations (four haplotypes). Although geographical origin had a low but significant effect (ca. 25%) on the population structure, the greatest effect was from the within location comparison (37.02 %). Potential factors driving our results were discussed. PMID:26207373

  20. Demographic History and Reproductive Output Correlates with Intraspecific Genetic Variation in Seven Species of Indo-Pacific Mangrove Crabs.

    Science.gov (United States)

    Fratini, Sara; Ragionieri, Lapo; Cannicci, Stefano

    2016-01-01

    The spatial distribution and the amount of intraspecific genetic variation of marine organisms are strongly influenced by many biotic and abiotic factors. Comparing biological and genetic data characterizing species living in the same habitat can help to elucidate the processes driving these variation patterns. Here, we present a comparative multispecies population genetic study on seven mangrove crabs co-occurring in the West Indian Ocean characterized by planktotrophic larvae with similar pelagic larval duration. Our main aim was to investigate whether a suite of biological, behavioural and ecological traits could affect genetic diversities of the study species in combination with historical demographic parameters. As possible current explanatory factors, we used the intertidal micro-habitat colonised by adult populations, various parameters of individual and population fecundity, and the timing of larval release. As the genetic marker, we used partial sequences of cytochrome oxidase subunit I gene. Genetic and ecological data were collected by the authors and/or gathered from primary literature. Permutational multiple regression models and ANOVA tests showed that species density and their reproductive output in combination with historical demographic parameters could explain the intraspecific genetic variation indexes across the seven species. In particular, species producing consistently less eggs per spawning event showed higher values of haplotype diversity. Moreover, Tajima's D parameters well explained the recorded values for haplotype diversity and average γst. We concluded that current intraspecific gene diversities in crabs inhabiting mangrove forests were affected by population fecundity as well as past demographic history. The results were also discussed in terms of management and conservation of fauna in the Western Indian Ocean mangroves.

  1. Demographic History and Reproductive Output Correlates with Intraspecific Genetic Variation in Seven Species of Indo-Pacific Mangrove Crabs.

    Directory of Open Access Journals (Sweden)

    Sara Fratini

    Full Text Available The spatial distribution and the amount of intraspecific genetic variation of marine organisms are strongly influenced by many biotic and abiotic factors. Comparing biological and genetic data characterizing species living in the same habitat can help to elucidate the processes driving these variation patterns. Here, we present a comparative multispecies population genetic study on seven mangrove crabs co-occurring in the West Indian Ocean characterized by planktotrophic larvae with similar pelagic larval duration. Our main aim was to investigate whether a suite of biological, behavioural and ecological traits could affect genetic diversities of the study species in combination with historical demographic parameters. As possible current explanatory factors, we used the intertidal micro-habitat colonised by adult populations, various parameters of individual and population fecundity, and the timing of larval release. As the genetic marker, we used partial sequences of cytochrome oxidase subunit I gene. Genetic and ecological data were collected by the authors and/or gathered from primary literature. Permutational multiple regression models and ANOVA tests showed that species density and their reproductive output in combination with historical demographic parameters could explain the intraspecific genetic variation indexes across the seven species. In particular, species producing consistently less eggs per spawning event showed higher values of haplotype diversity. Moreover, Tajima's D parameters well explained the recorded values for haplotype diversity and average γst. We concluded that current intraspecific gene diversities in crabs inhabiting mangrove forests were affected by population fecundity as well as past demographic history. The results were also discussed in terms of management and conservation of fauna in the Western Indian Ocean mangroves.

  2. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing

    NARCIS (Netherlands)

    Aflitos, S.A.; Schijlen, E.G.W.M.; Jong, de J.H.S.G.M.; Ridder, de D.; Smit, S.; Finkers, H.J.; Bakker, F.T.; Geest, van de H.C.; Lintel Hekkert, te B.; Haarst, van J.C.; Smits, L.W.M.; Koops, A.J.; Sanchez-Perez, M.J.; Heusden, van A.W.; Visser, R.G.F.; Schranz, M.E.; Peters, S.A.

    2014-01-01

    We explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative for the Lycopersicon, Arcanum, Eriopersicon, and Neolycopersicon groups which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new

  3. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing

    NARCIS (Netherlands)

    Aflitos, S.; Schijlen, E.; de Jong, H.; de Ridder, D.; Smit, S.; Finkers, R.; Wang, J.; Zhang, G.; Li, N.; Mao, L.; Bakker, F.; Dirks, R.; Breit, T.; Gravendeel, B.; Huits, H.; Struss, D.; Swanson-Wagner, R.; van Leeuwen, H.; van Ham, R.C.H.J.; Fito, L.; Guignier, L.; Sevilla, M.; Ellul, P.; Ganko, E.; Kapur, A.; Reclus, E.; de Geus, B.; van de Geest, H.; te Lintel Hekkert, B.; van Haarst, J.; Smits, L.; Koops, A.; Sanchez-Perez, G.; van Heusden, A.W.; Visser, R.; Quan, Z.; Min, J.; Liao, L.; Wang, X.; Wang, G.; Yue, Z.; Yang, X.; Xu, N.; Schranz, E.; Smets, E.; Vos, R.; Rauwerda, J.; Ursem, R.; Schuit, C.; Kerns, M.; van den Berg, J.; Vriezen, W.; Janssen, A.; Datema, E.; Jahrman, T.; Moquet, F.; Bonnet, J.; Peters, S.

    2014-01-01

    We explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative of the Lycopersicon, Arcanum, Eriopersicon and Neolycopersicon groups, which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new

  4. Intraspecific Variation in Pines from the Trans-Mexican Volcanic Belt Grown under Two Watering Regimes: Implications for Management of Genetic Resources

    Directory of Open Access Journals (Sweden)

    Andrés Flores

    2018-01-01

    Full Text Available Management of forest genetic resources requires experimental data related to the genetic variation of the species and populations under different climatic conditions. Foresters also demand to know how the main selective drivers will influence the adaptability of the genetic resources. To assess the inter- and intraspecific variation and plasticity in seedling drought tolerance at a relevant genetic resource management scale, we tested the changes in growth and biomass allocation of seedlings of Pinus oocarpa, P. patula and P. pseudostrobus under two contrasting watering regimes. We found general significant intraspecific variation and intraspecific differences in plasticity, since both population and watering by population interaction were significant for all three species. All the species and populations share a common general avoidance mechanism (allometric adjustment of shoot/root biomass. However, the intraspecific variation and differences in phenotypic plasticity among populations modify the adaptation strategies of the species to drought. Some of the differences are related to the climatic conditions of the location of origin. We confirmed that even at reduced geographical scales, Mexican pines present differences in the response to water stress. The differences among species and populations are relevant in afforestation programs as well as in genetic conservation activities.

  5. Genetic variations of VDR/NR1I1 encoding vitamin D receptor in a Japanese population.

    Science.gov (United States)

    Ukaji, Maho; Saito, Yoshiro; Fukushima-Uesaka, Hiromi; Maekawa, Keiko; Katori, Noriko; Kaniwa, Nahoko; Yoshida, Teruhiko; Nokihara, Hiroshi; Sekine, Ikuo; Kunitoh, Hideo; Ohe, Yuichiro; Yamamoto, Noboru; Tamura, Tomohide; Saijo, Nagahiro; Sawada, Jun-ichi

    2007-12-01

    The vitamin D receptor (VDR) is a transcriptional factor responsive to 1alpha,25-dihydroxyvitamin D(3) and lithocholic acid, and induces expression of drug metabolizing enzymes CYP3A4, CYP2B6 and CYP2C9. In this study, the promoter regions, 14 exons (including 6 exon 1's) and their flanking introns of VDR were comprehensively screened for genetic variations in 107 Japanese subjects. Sixty-one genetic variations including 25 novel ones were found: 9 in the 5'-flanking region, 2 in the 5'-untranslated region (UTR), 7 in the coding exons (5 synonymous and 2 nonsynonymous variations), 12 in the 3'-UTR, 19 in the introns between the exon 1's, and 12 in introns 2 to 8. Of these, one novel nonsynonymous variation, 154A>G (Met52Val), was detected with an allele frequency of 0.005. The single nucleotide polymorphisms (SNPs) that increase VDR expression or activity, -29649G>A, 2T>C and 1592((*)308)C>A tagging linked variations in the 3'-UTR, were detected at 0.430, 0.636, and 0.318 allele frequencies, respectively. Another SNP, -26930A>G, with reduced VDR transcription was found at a 0.028 frequency. These findings would be useful for association studies on VDR variations in Japanese.

  6. SSR marker analysis on genetic variation of M3 from maize inbred lines 48-2 and R08 after irradiation inducement

    International Nuclear Information System (INIS)

    Li Qi; Shi Haichun; Ke Yongpei; Yuan Jichao; Yu Xuejie

    2011-01-01

    Analyzing the biological effects and the genetic variations of maize mutagenic progenies is important to facilitate effective selections and utilization of the mutants. In this study, the genetic variation of 103 mutagenic progenies of M 3 lines of inbred lines 48-2 and R08 with 60 Co γ-rays inducement were evaluated with SSR molecular markers. The results indicated that, the amplitude of polymorphism information content (PIC) of the 48-2 and R08 M 3 lines ranged 0.307 ∼ 0.948 and 0.108 ∼ 0.955, with an average of 0.762 and 0.701, respectively. The amplitude of genetic diversity indexes (H') ranged 0.552 ∼ 2.830 and 0.254 ∼ 3.309, with an average of 1.830 and 1.777, respectively. The average value of genetic similarity coefficient of the 49 M 3 lines of 48-2 with its check (M673) was 0.8194. However, the average value of genetic similarity coefficient of the M 3 lines of R08 with its check (M487) was 0.8373. Based on the genetic similarity coefficient, inbred lines 48-2, R08 and their 101 M 3 lines were clustered in 7 and 5 populations respectively. This phenomenon indicated that massive genetic variation could appear in progenies due to irradiation. The strengthen of selection and utilization of mutants based on the breeding objectives and in accordance with the feature and regularity on genetic variations of main characteristics of mutant lines in various populations could be enhanced in breeding program, to some extent, which can increase the breeding efficiency of irradiation induced mutation in maize. (authors)

  7. Relative variations of gut microbiota in disordered cholesterol metabolism caused by high-cholesterol diet and host genetics.

    Science.gov (United States)

    Bo, Tao; Shao, Shanshan; Wu, Dongming; Niu, Shaona; Zhao, Jiajun; Gao, Ling

    2017-08-01

    Recent studies performed provide mechanistic insight into effects of the microbiota on cholesterol metabolism, but less focus was given to how cholesterol impacts the gut microbiota. In this study, ApoE -/- Sprague Dawley (SD) rats and their wild-type counterparts (n = 12) were, respectively, allocated for two dietary condition groups (normal chow and high-cholesterol diet). Total 16S rDNA of fecal samples were extracted and sequenced by high-throughput sequencing to determine differences in microbiome composition. Data were collected and performed diversity analysis and phylogenetic analysis. The influence of cholesterol on gut microbiota was discussed by using cholesterol dietary treatment as exogenous cholesterol disorder factor and genetic modification as endogenous metabolic disorder factor. Relative microbial variations were compared to illustrate the causality and correlation of cholesterol and gut microbiota. It turned out comparing to genetically modified rats, exogenous cholesterol intake may play more effective role in changing gut microbiota profile, although the serum cholesterol level of genetically modified rats was even higher. Relative abundance of some representative species showed that the discrepancies due to dietary variation were more obvious, whereas some low abundance species changed because of genetic disorders. Our results partially demonstrated that gut microbiota are relatively more sensitive to dietary variation. Nevertheless, considering the important effect of bacteria in cholesterol metabolism, the influence to gut flora by "genetically caused cholesterol disorder" cannot be overlooked. Manipulation of gut microbiota might be an effective target for preventing cholesterol-related metabolic disorders. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. Regulation of the Th1 immune response : the role of IL-23 and the influence of genetic variations

    NARCIS (Netherlands)

    Wetering, Diederik van de

    2010-01-01

    Part 1: The role of IL-23 in inducing IFN-g production and in the initiation of a Th1 response. Part 2: Genetic variations in the type-1 cytokine pathway. Part 3: Treatment options for a genetic deficiency in the type-1 cytokine pathway

  9. Linking neocortical, cognitive, and genetic variability in autism with alterations of brain plasticity: the Trigger-Threshold-Target model.

    Science.gov (United States)

    Mottron, Laurent; Belleville, Sylvie; Rouleau, Guy A; Collignon, Olivier

    2014-11-01

    The phenotype of autism involves heterogeneous adaptive traits (strengths vs. disabilities), different domains of alterations (social vs. non-social), and various associated genetic conditions (syndromic vs. nonsyndromic autism). Three observations suggest that alterations in experience-dependent plasticity are an etiological factor in autism: (1) the main cognitive domains enhanced in autism are controlled by the most plastic cortical brain regions, the multimodal association cortices; (2) autism and sensory deprivation share several features of cortical and functional reorganization; and (3) genetic mutations and/or environmental insults involved in autism all appear to affect developmental synaptic plasticity, and mostly lead to its upregulation. We present the Trigger-Threshold-Target (TTT) model of autism to organize these findings. In this model, genetic mutations trigger brain reorganization in individuals with a low plasticity threshold, mostly within regions sensitive to cortical reallocations. These changes account for the cognitive enhancements and reduced social expertise associated with autism. Enhanced but normal plasticity may underlie non-syndromic autism, whereas syndromic autism may occur when a triggering mutation or event produces an altered plastic reaction, also resulting in intellectual disability and dysmorphism in addition to autism. Differences in the target of brain reorganization (perceptual vs. language regions) account for the main autistic subgroups. In light of this model, future research should investigate how individual and sex-related differences in synaptic/regional brain plasticity influence the occurrence of autism. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Genetic variation and phylogenetic relationship analysis of Jatropha curcas L. inferred from nrDNA ITS sequences.

    Science.gov (United States)

    Guo, Guo-Ye; Chen, Fang; Shi, Xiao-Dong; Tian, Yin-Shuai; Yu, Mao-Qun; Han, Xue-Qin; Yuan, Li-Chun; Zhang, Ying

    2016-01-01

    Genetic variation and phylogenetic relationships among 102 Jatropha curcas accessions from Asia, Africa, and the Americas were assessed using the internal transcribed spacer region of nuclear ribosomal DNA (nrDNA ITS). The average G+C content (65.04%) was considerably higher than the A+T (34.96%) content. The estimated genetic diversity revealed moderate genetic variation. The pairwise genetic divergences (GD) between haplotypes were evaluated and ranged from 0.000 to 0.017, suggesting a higher level of genetic differentiation in Mexican accessions than those of other regions. Phylogenetic relationships and intraspecific divergence were inferred by Bayesian inference (BI), maximum parsimony (MP), and median joining (MJ) network analysis and were generally resolved. The J. curcas accessions were consistently divided into three lineages, groups A, B, and C, which demonstrated distant geographical isolation and genetic divergence between American accessions and those from other regions. The MJ network analysis confirmed that Central America was the possible center of origin. The putative migration route suggested that J. curcas was distributed from Mexico or Brazil, via Cape Verde and then split into two routes. One route was dispersed to Spain, then migrated to China, eventually spreading to southeastern Asia, while the other route was dispersed to Africa, via Madagascar and migrated to China, later spreading to southeastern Asia. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    Science.gov (United States)

    The diversity and population-genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analyzed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, Romagnola), sequenced to 11-fold...

  12. Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Matsuoka

    Full Text Available The complex process of allopolyploid speciation includes various mechanisms ranging from species crosses and hybrid genome doubling to genome alterations and the establishment of new allopolyploids as persisting natural entities. Currently, little is known about the genetic mechanisms that underlie hybrid genome doubling, despite the fact that natural allopolyploid formation is highly dependent on this phenomenon. We examined the genetic basis for the spontaneous genome doubling of triploid F1 hybrids between the direct ancestors of allohexaploid common wheat (Triticum aestivum L., AABBDD genome, namely Triticumturgidum L. (AABB genome and Aegilopstauschii Coss. (DD genome. An Ae. tauschii intraspecific lineage that is closely related to the D genome of common wheat was identified by population-based analysis. Two representative accessions, one that produces a high-genome-doubling-frequency hybrid when crossed with a T. turgidum cultivar and the other that produces a low-genome-doubling-frequency hybrid with the same cultivar, were chosen from that lineage for further analyses. A series of investigations including fertility analysis, immunostaining, and quantitative trait locus (QTL analysis showed that (1 production of functional unreduced gametes through nonreductional meiosis is an early step key to successful hybrid genome doubling, (2 first division restitution is one of the cytological mechanisms that cause meiotic nonreduction during the production of functional male unreduced gametes, and (3 six QTLs in the Ae. tauschii genome, most of which likely regulate nonreductional meiosis and its subsequent gamete production processes, are involved in hybrid genome doubling. Interlineage comparisons of Ae. tauschii's ability to cause hybrid genome doubling suggested an evolutionary model for the natural variation pattern of the trait in which non-deleterious mutations in six QTLs may have important roles. The findings of this study demonstrated

  13. Serum uric acid concentrations and SLC2A9 genetic variation in Hispanic children: the Viva La Familia Study.

    Science.gov (United States)

    Voruganti, V Saroja; Laston, Sandra; Haack, Karin; Mehta, Nitesh R; Cole, Shelley A; Butte, Nancy F; Comuzzie, Anthony G

    2015-04-01

    Elevated concentrations of serum uric acid are associated with increased risk of gout and renal and cardiovascular diseases. Genetic studies in adults have consistently identified associations of solute carrier family 2, member 9 (SLC2A9), polymorphisms with variation in serum uric acid. However, it is not known whether the association of serum uric acid with SLC2A9 polymorphisms manifests in children. The aim was to investigate whether variation in serum uric acid is under genetic influence and whether the association with SLC2A9 polymorphisms generalizes to Hispanic children of the Viva La Familia Study. We conducted a genomewide association study with 1.1 million genetic markers in 815 children. We found serum uric acid to be significantly heritable [h(2) ± SD = 0.45 ± 0.08, P = 5.8 × 10(-11)] and associated with SLC2A9 variants (P values between 10(-16) and 10(-7)). Several of the significantly associated polymorphisms were previously identified in studies in adults. We also found positive genetic correlations between serum uric acid and BMI z score (ρG = 0.45, P = 0.002), percentage of body fat (ρG = 0.28, P = 0.04), fat mass (ρG = 0.34, P = 0.02), waist circumference (ρG = 0.42, P = 0.003), and waist-to-height ratio (ρG = 0.46, P = 0.001). Our results show that variation in serum uric acid in Hispanic children is under considerable genetic influence and is associated with obesity-related phenotypes. As in adults, genetic variation in SLC2A9 is associated with serum uric acid concentrations, an important biomarker of renal and cardiovascular disease risk, in Hispanic children. © 2015 American Society for Nutrition.

  14. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds.

    Directory of Open Access Journals (Sweden)

    James W Kijas

    Full Text Available The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability.

  15. Neutral mutation as the source of genetic variation in life history traits.

    Science.gov (United States)

    Brcić-Kostić, Krunoslav

    2005-08-01

    The mechanism underlying the maintenance of adaptive genetic variation is a long-standing question in evolutionary genetics. There are two concepts (mutation-selection balance and balancing selection) which are based on the phenotypic differences between alleles. Mutation - selection balance and balancing selection cannot properly explain the process of gene substitution, i.e. the molecular evolution of quantitative trait loci affecting fitness. I assume that such loci have non-essential functions (small effects on fitness), and that they have the potential to evolve into new functions and acquire new adaptations. Here I show that a high amount of neutral polymorphism at these loci can exist in real populations. Consistent with this, I propose a hypothesis for the maintenance of genetic variation in life history traits which can be efficient for the fixation of alleles with very small selective advantage. The hypothesis is based on neutral polymorphism at quantitative trait loci and both neutral and adaptive gene substitutions. The model of neutral - adaptive conversion (NAC) assumes that neutral alleles are not neutral indefinitely, and that in specific and very rare situations phenotypic (relative fitness) differences between them can appear. In this paper I focus on NAC due to phenotypic plasticity of neutral alleles. The important evolutionary consequence of NAC could be the increased adaptive potential of a population. Loci responsible for adaptation should be fast evolving genes with minimally discernible phenotypic effects, and the recent discovery of genes with such characteristics implicates them as suitable candidates for loci involved in adaptation.

  16. Insecticide-driven patterns of genetic variation in the dengue vector Aedes aegypti in Martinique Island.

    Directory of Open Access Journals (Sweden)

    Sébastien Marcombe

    Full Text Available Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs. Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique.

  17. Using soil seed banks to assess temporal patterns of genetic variation in invasive plant populations

    OpenAIRE

    Fennell, Mark; Gallagher, Tommy; Vintro, Luis Leon; Osborne, Bruce

    2014-01-01

    Most research on the genetics of invasive plant species has focused on analyzing spatial differences among existing populations. Using a long-established Gunnera tinctoria population from Ireland, we evaluated the potential of using plants derived from seeds associated with different soil layers to track genetic variation through time. This species and site were chosen because (1) G. tinctoria produces a large and persistent seed bank; (2) it has been present in this locality, Sraheens, for ∼...

  18. The genetic basis of addictive disorders.

    Science.gov (United States)

    Ducci, Francesca; Goldman, David

    2012-06-01

    Addictions are common, chronic, and relapsing diseases that develop through a multistep process. The impact of addictions on morbidity and mortality is high worldwide. Twin studies have shown that the heritability of addictions ranges from 0.39 (hallucinogens) to 0.72 (cocaine). Twin studies indicate that genes influence each stage from initiation to addiction, although the genetic determinants may differ. Addictions are by definition the result of gene × environment interaction. These disorders, which are in part volitional, in part inborn, and in part determined by environmental experience, pose the full range of medical, genetic, policy, and moral challenges. Gene discovery is being facilitated by a variety of powerful approaches, but is in its infancy. It is not surprising that the genes discovered so far act in a variety of ways: via altered metabolism of drug (the alcohol and nicotine metabolic gene variants), via altered function of a drug receptor (the nicotinic receptor, which may alter affinity for nicotine but as discussed may also alter circuitry of reward), and via general mechanisms of addiction (genes such as monoamine oxidase A and the serotonin transporter that modulate stress response, emotion, and behavioral control). Addiction medicine today benefits from genetic studies that buttress the case for a neurobiologic origin of addictive behavior, and some general information on familially transmitted propensity that can be used to guide prevention. A few well-validated, specific predictors such as OPRM1, ADH1B, ALDH2, CHRNA5, and CYP26 have been identified and can provide some specific guidance, for example, to understand alcohol-related flushing and upper GI cancer risk (ADH1B and AKLDH2), variation in nicotine metabolism (CYP26), and, potentially, naltrexone treatment response (OPRM1). However, the genetic predictors available are few in number and account for only a small portion of the genetic variance in liability, and have not been integrated

  19. Genetic variation in Phoca vitulina (the harbour seal) revealed by DNA fingerprinting and RAPDs

    NARCIS (Netherlands)

    Kappe, A.L.; van de Zande, L.; Vedder, E.J.; Bijlsma, R.; van Delden, Wilke

    Genetic variation in two harbour seal (Phoca vitulina) populations from the Dutch Wadden Sea and Scotland was examined by RAPD analysis and DNA fingerprinting. For comparison a population of grey seals (Halichoerus grypus) was studied. The RAPD method revealed a very low number of polymorphic bands.

  20. Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Gaastra, Benjamin; Shatunov, Aleksey; Pulit, Sara; Jones, Ashley R; Sproviero, William; Gillett, Alexandra; Chen, Zhongbo; Kirby, Janine; Fogh, Isabella; Powell, John F; Leigh, P Nigel; Morrison, Karen E; Shaw, Pamela J; Shaw, Christopher E; van den Berg, Leonard H; Veldink, Jan H; Lewis, Cathryn M; Al-Chalabi, Ammar

    2016-01-01

    Our objective was to identify whether rare genetic variation in amyotrophic lateral sclerosis (ALS) candidate survival genes modifies ALS survival. Candidate genes were selected based on evidence for modifying ALS survival. Each tail of the extreme 1.5% of survival was selected from the UK MND DNA

  1. Integrated analysis of HPV-mediated immune alterations in cervical cancer.

    Science.gov (United States)

    Chen, Long; Luan, Shaohong; Xia, Baoguo; Liu, Yansheng; Gao, Yuan; Yu, Hongyan; Mu, Qingling; Zhang, Ping; Zhang, Weina; Zhang, Shengmiao; Wei, Guopeng; Yang, Min; Li, Ke

    2018-05-01

    Human papillomavirus (HPV) infection is the primary cause of cervical cancer. HPV-mediated immune alterations are known to play crucial roles in determining viral persistence and host cell transformation. We sought to thoroughly understand HPV-directed immune alterations in cervical cancer by exploring publically available datasets. 130 HPV positive and 7 HPV negative cervical cancer cases from The Cancer Genome Atlas were compared for differences in gene expression levels and functional enrichment. Analyses for copy number variation (CNV) and genetic mutation were conducted for differentially expressed immune genes. Kaplan-Meier analysis was performed to assess survival and relapse differences across cases with or without alterations of the identified immune signature genes. Genes up-regulated in HPV positive cervical cancer were enriched for various gene ontology terms of immune processes (P=1.05E-14~1.00E-05). Integrated analysis of the differentially expressed immune genes identified 9 genes that displayed either CNV, genetic mutation and/or gene expression changes in at least 10% of the cases of HPV positive cervical cancer. Genomic amplification may cause elevated levels of these genes in some HPV positive cases. Finally, patients with alterations in at least one of the nine signature genes overall had earlier relapse compared to those without any alterations. The altered expression of either TFRC or MMP13 may indicate poor survival for a subset of cervical cancer patients (P=1.07E-07). We identified a novel immune gene signature for HPV positive cervical cancer that is potentially associated with early relapse of cervical cancer. Copyright © 2018. Published by Elsevier Inc.

  2. Genetic variation at Exon2 of TLR4 gene and its association with ...

    African Journals Online (AJOL)

    This study was conducted to analyze the polymorphisms of chicken Toll-like receptors 4(TLR4) gene and aimed to provide a theoretical foundation for a further research on correlation between chicken TLR4 gene and disease resistance. Genetic variations at exon 2 of TLR4 gene in 14 chicken breeds and the red jungle ...

  3. Linking Genetic Variation in Adaptive Plant Traits to Climate in Tetraploid and Octoploid Basin Wildrye [Leymus cinereus (Scribn. & Merr.) A. Love] in the Western U.S.

    Science.gov (United States)

    Johnson, R C; Vance-Borland, Ken

    2016-01-01

    Few studies have assessed how ploidy type within a species affects genetic variation among populations in relation to source climates. Basin wildrye (Leymus cinereus (Scribn. & Merr.) A. Love) is a large bunchgrass common in the intermountain Western U.S. found in both octoploid and tetraploid types. In common gardens at two sites over two years differences in both ploidy type and genetic variation within ploidy were observed in phenology, morphology, and production traits on 57 octoploid and 52 tetraploid basin wildrye from the intermountain Western U.S. (Ptypes. Still, among populations octoploids often had greater genetic variation for traits and occupied more diverse climates than tetraploids. Genetic variation for both ploidy types was linked to source climates in canonical correlation analysis, with the first two variates explaining 70% of the variation. Regression of those canonical variates with seed source climate variables produced models that explained 64% and 38% of the variation, respectively, and were used to map 15 seed zones covering 673,258 km2. Utilization of these seed zones will help ensure restoration with adaptive seed sources for both ploidy types. The link between genetic traits and seed source climates suggests climate driven natural selection and adaptive evolution in basin wildrye. The more diverse climates occupied by octoploids and higher trait variation suggests a higher capacity for ecological differentiation than tetraploids in the intermountain Western U.S.

  4. Genetic variation in foundation species governs the dynamics of trophic interactions

    Science.gov (United States)

    Valencia-Cuevas, Leticia; Mussali-Galante, Patricia; Cano-Santana, Zenón; Pujade-Villar, Juli; Equihua-Martínez, Armando

    2018-01-01

    Abstract Various studies have demonstrated that the foundation species genetic diversity can have direct effects that extend beyond the individual or population level, affecting the dependent communities. Additionally, these effects may be indirectly extended to higher trophic levels throughout the entire community. Quercus castanea is an oak species with characteristics of foundation species beyond presenting a wide geographical distribution and being a dominant element of Mexican temperate forests. In this study, we analyzed the influence of population (He) and individual (HL) genetic diversity of Q. castanea on its canopy endophagous insect community and associated parasitoids. Specifically, we studied the composition, richness (S) and density of leaf-mining moths (Lepidoptera: Tischeridae, Citheraniidae), gall-forming wasps (Hymenoptera: Cynipidae), and canopy parasitoids of Q. castanea. We sampled 120 trees belonging to six populations (20/site) through the previously recognized gradient of genetic diversity. In total, 22 endophagous insect species belonging to three orders (Hymenoptera, Lepidoptera, and Diptera) and 20 parasitoid species belonging to 13 families were identified. In general, we observed that the individual genetic diversity of the host plant (HL) has a significant positive effect on the S and density of the canopy endophagous insect communities. In contrast, He has a significant negative effect on the S of endophagous insects. Additionally, indirect effects of HL were observed, affecting the S and density of parasitoid insects. Our results suggest that genetic variation in foundation species can be one of the most important factors governing the dynamics of tritrophic interactions that involve oaks, herbivores, and parasitoids. PMID:29492034

  5. Evaluation of Genetic Variation of the Breeding Lines Isolated from Sesame (Sesamum indicum L. landraces

    Directory of Open Access Journals (Sweden)

    F Nasiri

    2013-04-01

    Full Text Available This study was carried out to evaluate the genetic diversity of the breeding lines isolated from the sesame landraces. Seventy genotypes were evaluated in randomized complete block design with two replications in 2008. The results showed that there were significant differences among the genotypes for all of the studied traits such as days to maturity, plant height and seed yield. There was no difference between the phenotypic and genetic coefficients of variations for most of the traits, thus it was concluded that the majority of their observed variations was due to the genetic factors. The grain yield of the genotypes ranged from 1089 to 4650 kg/ha. One of the breeding line isolated from Birjand landrace had the highest mean of days to maturity (170 days and Yekta genotype had the lowest mean for this trait (118 days. The range of plant height among genotypes was 123 to 179 cm and the mean of capsule per plant was ranged from 46 to 181. Branches per plant had the highest broad-sense heritability (81.1 % and the estimated broad-sense heritability for grain yield was 75.5%. Cluster analysis classified the genotypes in three distinct groups and there were significant differences among these groups for all of the traits, except days to maturity. Genotypes classified in the second group had the most capsule per plant and grain yield and they can be used for genetic improvement of this trait. Meanwhile genotypes of the first group can be used for genetic improvement of plant height and branches per plant.

  6. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    Science.gov (United States)

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  7. Genetic Variation Linked to Lung Cancer Survival in White Smokers | Center for Cancer Research

    Science.gov (United States)

    CCR investigators have discovered evidence that links lung cancer survival with genetic variations (called single nucleotide polymorphisms) in the MBL2 gene, a key player in innate immunity. The variations in the gene, which codes for a protein called the mannose-binding lectin, occur in its promoter region, where the RNA polymerase molecule binds to start transcription, and in the first exon that is responsible for the correct structure of MBL. The findings appear in the September 19, 2007, issue of the Journal of the National Cancer Institute.

  8. Climate alters intraspecific variation in copepod effect traits through pond food webs.

    Science.gov (United States)

    Charette, Cristina; Derry, Alison M

    2016-05-01

    Essential fatty acids (EFAs) are primarily generated by phytoplankton in aquatic ecosystems, and can limit the growth, development, and reproduction of higher consumers. Among the most critical of the EFAs are highly unsaturated fatty acids (HUFAs), which are only produced by certain groups of phytoplankton. Changing environmental conditions can alter phytoplankton community and fatty acid composition and affect the HUFA content of higher trophic levels. Almost no research has addressed intraspecific variation in HUFAs in zooplankton, nor intraspecific relationships of HUFAs with body size and fecundity. This is despite that intraspecific variation in HUFAs can exceed interspecific variation and that intraspecific trait variation in body size and fecundity is increasingly recognized to have an important role in food web ecology (effect traits). Our study addressed the relative influences of abiotic selection and food web effects associated with climate change on intraspecific differences and interrelationships between HUFA content, body size, and fecundity of freshwater copepods. We applied structural equation modeling and regression analyses to intraspecific variation in a dominant calanoid copepod, Leptodiatomus minutus, among a series of shallow north-temperate ponds. Climate-driven diurnal temperature fluctuations favored the coexistence of diversity of phytoplankton groups with different temperature optima and nutritive quality. This resulted in unexpected positive relationships between temperature, copepod DHA content and body size. Temperature correlated positively with diatom biovolume, and mediated relationships between copepod HUFA content and body size, and between copepod body size and fecundity. The presence of brook trout further accentuated these positive effects in warm ponds, likely through nutrient cycling and stimulation of phytoplankton resources. Climate change may have previously unrecognized positive effects on freshwater copepod DHA content

  9. Genetic variation of transgenerational plasticity of offspring germination in response to salinity stress and the seed transcriptome of Medicago truncatula.

    Science.gov (United States)

    Vu, Wendy T; Chang, Peter L; Moriuchi, Ken S; Friesen, Maren L

    2015-04-01

    Transgenerational plasticity provides phenotypic variation that contributes to adaptation. For plants, the timing of seed germination is critical for offspring survival in stressful environments, as germination timing can alter the environmental conditions a seedling experiences. Stored seed transcripts are important determinants of seed germination, but have not previously been linked with transgenerational plasticity of germination behavior. In this study we used RNAseq and growth chamber experiments of the model legume M. trucantula to test whether parental exposure to salinity stress influences the expression of stored seed transcripts and early offspring traits and test for genetic variation. We detected genotype-dependent parental environmental effects (transgenerational plasticity) on the expression levels of stored seed transcripts, seed size, and germination behavior of four M. truncatula genotypes. More than 50% of the transcripts detected in the mature, ungerminated seed transcriptome were annotated as regulating seed germination, some of which are involved in abiotic stress response and post-embryonic development. Some genotypes showed increased seed size in response to parental exposure to salinity stress, but no parental environmental influence on germination timing. In contrast, other genotypes showed no seed size differences across contrasting parental conditions but displayed transgenerational plasticity for germimation timing, with significantly delayed germination in saline conditions when parental plants were exposed to salinity. In genotypes that show significant transgenerational plastic germination response, we found significant coexpression networks derived from salt responsive transcripts involved in post-transcriptional regulation of the germination pathway. Consistent with the delayed germination response to saline conditions in these genotypes, we found genes associated with dormancy and up-regulation of abscisic acid (ABA). Our results

  10. Induction of Genetic Variation with Recurrent Gamma Radiation in Centipedegrass (Eremochloa ophiuroides)

    International Nuclear Information System (INIS)

    Lim Keun- Bal; Rim Yong-Woo

    1998-01-01

    Centipedegrass (Eremochloa ophiuroides) is a popular lawn grass in the southeastern USA. It has a naturally light green color and grows well on a wide range of soil types. Studies show limited morphological variation present in centipedegrass germplasm. To obtain the high morphological variation, plants were established from the irradiated seed at 10 Kr, allowed to interpollinate and harvested bulk seed, and then irradiated again for the next cycles. Morphological characteristics were measured in the 5 genetic varition lines (TC201:cv. Common and non irradiated, TC202:4th cycles, TC241:6th cycles, TC306:8th cycles, and TC318:5th cycles) induced by recurrent gamma radiation. The ranges of variation of recurrently radiated centipedegrass lines TC202, TC241, and TC306 except TC318(TifBlair) for the stolons per plant, total stolon length per plant, longest stolon length, leaf length and width at top-most exposed internode were wider than those of non-irradiated line (TC201). Recurrent gamma radiation was very effective to enlarge the ranges of variation of morphological characteristics in reproductive organ like stolons of centipedegrass. The effect of quantity of gamma ray irradiation cycles on the means and ranges of variation in the morphological characteristics of centipedegrass was not regularly tended

  11. Ethnic variation of genetic (idiopathic) generalized epilepsy in Malaysia.

    Science.gov (United States)

    Lim, Kheng Seang; Ng, Ching Ching; Chan, Chung Kin; Foo, Wee Shean; Low, Joyce Siew Yong; Tan, Chong Tin

    2017-02-01

    Ethnic variation in epilepsy classification was reported in the Epilepsy Phenome/Genome Project. This study aimed to determine the ethnic variation in the prevalence of genetic (idiopathic) generalized epilepsy (GGE) and GGE with family history in a multi-ethnic Asian population in Malaysia. In this cross-sectional study, 392 patients with a clinical diagnosis of GGE were recruited in the neurology outpatient clinic, University of Malaya Medical Centre (UMMC), from January 2011 till April 2016. In our epilepsy cohort (n=2100), 18.7% were diagnosed to have GGE. Of those, 28.6% >(N=112) had family history of epilepsy with a mean age of seizure onset of 16.5 years old, and 42.0% had myoclonic seizures (N=47). The lifetime prevalence of epilepsy among first-degree relative of those with GGE and positive family history was 15.0%. Analysis according to ethnicity showed that Malaysian Chinese had the lowest percentage of GGE among those with epilepsy (12.3%), as compared with Indian and Malay (25.3% and 21.3%, pChinese (27.5%) ethnic groups. Consanguineous marriage was noted in 5 Indian families with positive family history (9.6%). There was ethnic variation in the prevalence of GGE, whereby the Malaysian Chinese had the lowest percentage of GGE as compared with Indian and Malay. A substantial proportion of GGE had positive family history among the three ethnics groups. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  12. Genetic variations in the MCT1 (SLC16A1) gene in the Chinese population of Singapore.

    Science.gov (United States)

    Lean, Choo Bee; Lee, Edmund Jon Deoon

    2009-01-01

    MCT1(SLC16A1) is the first member of the monocarboxylate transporter (MCT) and its family is involved in the transportation of metabolically important monocarboxylates such as lactate, pyruvate, acetate and ketone bodies. This study identifies genetic variations in SLC16A1 in the ethnic Chinese group of the Singaporean population (n=95). The promoter, coding region and exon-intron junctions of the SLC16A1 gene encoding the MCT1 transporter were screened for genetic variation in the study population by DNA sequencing. Seven genetic variations of SLC16A1, including 4 novel ones, were found: 2 in the promoter region, 2 in the coding exons (both nonsynonymous variations), 2 in the 3' untranslated region (3'UTR) and 1 in the intron. Of the two mutations detected in the promoter region, the -363-855T>C is a novel mutation. The 1282G>A (Val(428)Ile) is a novel SNP and was found as heterozygotic in 4 subjects. The 1470T>A (Asp(490)Glu) was found to be a common polymorphism in this study. Lastly, IVS3-17A>C in intron 3 and 2258 (755)A>G in 3'UTR are novel mutations found to be common polymorphisms in the local Chinese population. To our knowledge, this is the first report of a comprehensive analysis on the MCT1 gene in any population.

  13. Genetic variation in South Indian castes: evidence from Y-chromosome, mitochondrial, and autosomal polymorphisms

    Directory of Open Access Journals (Sweden)

    Tirupati S

    2008-12-01

    Full Text Available Abstract Background Major population movements, social structure, and caste endogamy have influenced the genetic structure of Indian populations. An understanding of these influences is increasingly important as gene mapping and case-control studies are initiated in South Indian populations. Results We report new data on 155 individuals from four Tamil caste populations of South India and perform comparative analyses with caste populations from the neighboring state of Andhra Pradesh. Genetic differentiation among Tamil castes is low (RST = 0.96% for 45 autosomal short tandem repeat (STR markers, reflecting a largely common origin. Nonetheless, caste- and continent-specific patterns are evident. For 32 lineage-defining Y-chromosome SNPs, Tamil castes show higher affinity to Europeans than to eastern Asians, and genetic distance estimates to the Europeans are ordered by caste rank. For 32 lineage-defining mitochondrial SNPs and hypervariable sequence (HVS 1, Tamil castes have higher affinity to eastern Asians than to Europeans. For 45 autosomal STRs, upper and middle rank castes show higher affinity to Europeans than do lower rank castes from either Tamil Nadu or Andhra Pradesh. Local between-caste variation (Tamil Nadu RST = 0.96%, Andhra Pradesh RST = 0.77% exceeds the estimate of variation between these geographically separated groups (RST = 0.12%. Low, but statistically significant, correlations between caste rank distance and genetic distance are demonstrated for Tamil castes using Y-chromosome, mtDNA, and autosomal data. Conclusion Genetic data from Y-chromosome, mtDNA, and autosomal STRs are in accord with historical accounts of northwest to southeast population movements in India. The influence of ancient and historical population movements and caste social structure can be detected and replicated in South Indian caste populations from two different geographic regions.

  14. Towards a genetic architecture of cryptic genetic variation and ...

    Indian Academy of Sciences (India)

    Unknown

    reprinted in this issue as a J. Genet. classic, pages 227–257). IAN DWORKIN* ... In this commentary, I will discuss the context of this work examining the genetic ... mental buffering where development was channelled in one of several ...

  15. A preliminary investigation into the genetic variation and population structure of Taenia hydatigena from Sardinia, Italy.

    Science.gov (United States)

    Boufana, Belgees; Scala, Antonio; Lahmar, Samia; Pointing, Steve; Craig, Philip S; Dessì, Giorgia; Zidda, Antonella; Pipia, Anna Paola; Varcasia, Antonio

    2015-11-30

    Cysticercosis caused by the metacestode stage of Taenia hydatigena is endemic in Sardinia. Information on the genetic variation of this parasite is important for epidemiological studies and implementation of control programs. Using two mitochondrial genes, the cytochrome c oxidase subunit 1 (cox1) and the NADH dehydrogenase subunit 1 (ND1) we investigated the genetic variation and population structure of Cysticercus tenuicollis from Sardinian intermediate hosts and compared it to that from other hosts from various geographical regions. The parsimony cox1 network analysis indicated the existence of a common lineage for T. hydatigena and the overall diversity and neutrality indices indicated demographic expansion. Using the cox1 sequences, low pairwise fixation index (Fst) values were recorded for Sardinian, Iranian and Palestinian sheep C. tenuicollis which suggested the absence of genetic differentiation. Using the ND1 sequences, C. tenuicollis from Sardinian sheep appeared to be differentiated from those of goat and pig origin. In addition, goat C. tenuicollis were genetically different from adult T. hydatigena as indicated by the statistically significant Fst value. Our results are consistent with biochemical and morphological studies that suggest the existence of variants of T. hydatigena. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt

    Directory of Open Access Journals (Sweden)

    Amer F. Mahmoud

    2016-04-01

    Full Text Available Fusarium graminearum Schwabe causes Fusarium head blight (FHB, a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B isolates being more aggressive towards wheat than groups (A and (C. Furthermore, Trichoderma harzianum (Rifai and Bacillus subtilis (Ehrenberg which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt.

  17. Genetic variation and comparison of orchardgrass (Dactylis glomerata L.) cultivars and wild accessions as revealed by SSR markers.

    Science.gov (United States)

    Xie, W G; Lu, X F; Zhang, X Q; Huang, L K; Cheng, L

    2012-02-24

    Orchardgrass is a highly variable, perennial forage grass that is cultivated throughout temperate and subtropical regions of the world. Despite its economic importance, the genetic relationship and distance among and within cultivars are largely unknown but would be of great interest for breeding programs. We investigated the molecular variation and structure of cultivar populations, compared the level of genetic diversity among cultivars (Baoxing, Anba, Bote, and Kaimo), subspecies (Dactylis glomerata ssp Woronowii) and advanced breeding line (YA02-116) to determine whether there is still sufficient genetic diversity within presently used cultivars for future breeding progress in China. Twenty individuals were analyzed from each of six accessions using SSR markers; 114 easily scored bands were generated from 15 SSR primer pairs, with an average of 7.6 alleles per locus. The polymorphic rate was 100% among the 120 individuals, reflecting a high degree of genetic diversity. Among the six accessions, the highest genetic diversity was observed in Kaimo (H = 0.2518; I = 0.3916; P = 87.3%) and 02-116 had a lower level of genetic diversity (H = 0.1806; I = 0.2788; P = 58.73%) compared with other cultivars tested. An of molecular variance revealed a much larger genetic variation within accessions (65%) than between them (35%). This observation suggests that these cultivars have potential for providing rich genetic resource for further breeding program. Furthermore, the study also indicated that Chinese orchardgrass breeding has involved strong selection for adaptation to forage production, which may result in restricted genetic base of orchardgrass cultivar.

  18. The Genetic Variation of Bali Cattle (Bos javanicus Based on Sex Related Y Chromosome Gene

    Directory of Open Access Journals (Sweden)

    A Winaya

    2011-09-01

    Full Text Available Bali cattle is very popular Indonesian local beef related to their status in community living process of farmers in Indonesia, especially as providers of meat and exotic animal. Bali cattle were able to adapt the limited environment and becoming local livestock that existed until recently.  In our early study by microsatellites showed that Bali cattle have specific allele. In this study we analyzed the variance of partly sex related Y (SRY gene sequence in Bali cattle bull as a source of cement for Artificial Insemination (AI.  Blood from 17 two location of AI center, Singosari, Malang and Baturiti, Bali was collected and then extracted to get the DNA genome.  PCR reaction was done to amplify partially of SRY gene segment and followed by sequencing PCR products to get the DNA sequence of SRY gene. The SRY gene sequence was used to determine the genetic variation and phylogenetic relationship.  We found that Bali cattle bull from Singosari has relatively closed genetic relationship with Baturiti. It is also supported that in early data some Bali bulls of Singosari were came from Baturiti. It has been known that Baturiti is the one source of Bali cattle bull with promising genetic potential. While, in general that Bali bull where came from two areas were not different on reproductive performances. It is important to understand about the genetic variation of Bali cattle in molecular level related to conservation effort and maintaining the genetic characters of the local cattle. So, it will not become extinct or even decreased the genetic quality of Indonesian indigenous cattle.   Key Words : Bali cattle, SRY gene, artificial insemination, phylogenetic, allele   Animal Production 13(3:150-155 (2011

  19. Climatic factors, genetic structure and phenotypic variation in English yew (Taxus baccata L.)

    OpenAIRE

    Mayol, Maria; Berganzo, Elisa; Burgarella, Concetta; González-Martínez, Santiago C.; Grivet, Delphine; Vendramin, Giovanni G.; Vincenot, Lucie; Riba, Miquel

    2018-01-01

    Influence of climatic factors on genetic structure and phenotypic variation in English yew (Taxus baccata L.) Conference "Adapting to global change in the Mediterranean hotspot" (Seville, 18-20 September 2013) Mediterranean forests constitute long-term reservoirs of biodiversity and adaptive potential. As compared with their central or northern European counterparts, Mediterranean forests are characterized by highly heterogeneous and fragmented environments, ...

  20. Aging, Genetic Variations, and Ethnopharmacology: Building Cultural Competence Through Awareness of Drug Responses in Ethnic Minority Elders.

    Science.gov (United States)

    Woods, Diana Lynn; Mentes, Janet C; Cadogan, Mary; Phillips, Linda R

    2017-01-01

    Unique drug responses that may result in adverse events are among the ethnocultural differences described by the Agency for Healthcare Research and Quality. These differences, often attributed to a lack of adherence on the part of the older adult, may be linked to genetic variations that influence drug responses in different ethnic groups. The paucity of research coupled with a lack of knowledge among health care providers compound the problem, contributing to further disparities, especially in this era of personalized medicine and pharmacogenomics. This article examines how age-related changes and genetic differences influence variations in drug responses among older adults in unique ethnocultural groups. The article starts with an overview of age-related changes and ethnopharmacology, moves to describing genetic differences that affect drug responses, with a focus on medications commonly prescribed for older adults, and ends with application of these issues to culturally congruent health care. © The Author(s) 2015.

  1. Genetic variations and relationships of cultivated and weedy types of perilla species in Korea and Japan using multi DNA markers

    International Nuclear Information System (INIS)

    Sun, Y.; Zheng, S.; Lee, J.; Hong, S.

    2017-01-01

    The genus Perilla, known as an oil crop or a Chinese medicine, vegetable crop, is widely cultivated in East Asia. It occurs in two distinct varieties, var. frutescens and var. crispa, and their genetic relationship is still obscure. To understand the genetic diversity and relationships of the cultivated and weedy types of Perilla crops in Korea, Japan and China, we evaluated the genetic variation of 20 accessions by 3 rDNA markers. Among these three markers, the nuclear ribosomal DNA (nrDNA) internal transcribed spacers (ITS) region of Perilla crops showed less sequence variations than the 5S and 18S genes. There were abundant variable nucleotide sites appearing in the 5S and 18S genes. Especially in the 18S gene, the variable nucleotide sites showed specificity between some Perilla type and other varieties. JPN1 showed 6 special variable nucleotide sites differing from other varieties, resulting in the farthest phylogenetic relationship in the 18S tree. CHI15 shared 8 special variable sites, also showing far phylogenetic relationship with other varieties. According to the sequence analysis result, the cultivated types of Korean var. frutescens showed relatively more genetic diversity than those of Japanese var. frutescens, while Korean var. crispa showed lower genetic diversity than those of Japanese var. crispa. However, the intra- or inter-variety genetic distance did not have significant difference. This work provided more sequence resources of Perilla crops and evidences to evaluate the genetic variation and relationships. Our result would help molecular type identification, functional plant breeding and trait improvement of Perilla crops. (author)

  2. Genetic variation in DNA repair pathways and risk of non-Hodgkin's lymphoma.

    Directory of Open Access Journals (Sweden)

    Justin Rendleman

    Full Text Available Molecular and genetic evidence suggests that DNA repair pathways may contribute to lymphoma susceptibility. Several studies have examined the association of DNA repair genes with lymphoma risk, but the findings from these reports have been inconsistent. Here we provide the results of a focused analysis of genetic variation in DNA repair genes and their association with the risk of non-Hodgkin's lymphoma (NHL. With a population of 1,297 NHL cases and 1,946 controls, we have performed a two-stage case/control association analysis of 446 single nucleotide polymorphisms (SNPs tagging the genetic variation in 81 DNA repair genes. We found the most significant association with NHL risk in the ATM locus for rs227060 (OR = 1.27, 95% CI: 1.13-1.43, p = 6.77×10(-5, which remained significant after adjustment for multiple testing. In a subtype-specific analysis, associations were also observed for the ATM locus among both diffuse large B-cell lymphomas (DLBCL and small lymphocytic lymphomas (SLL, however there was no association observed among follicular lymphomas (FL. In addition, our study provides suggestive evidence of an interaction between SNPs in MRE11A and NBS1 associated with NHL risk (OR = 0.51, 95% CI: 0.34-0.77, p = 0.0002. Finally, an imputation analysis using the 1,000 Genomes Project data combined with a functional prediction analysis revealed the presence of biologically relevant variants that correlate with the observed association signals. While the findings generated here warrant independent validation, the results of our large study suggest that ATM may be a novel locus associated with the risk of multiple subtypes of NHL.

  3. Evaluation of the Genetic Variation of Cowpea Landraces (Vigna unguiculata from Western Cameroon Using Qualitative Traits

    Directory of Open Access Journals (Sweden)

    Toscani NGOMPE-DEFFO

    2017-12-01

    Full Text Available Characterization of the genetic diversity and analysis of the genetic relationship between accessions of a crop species is a key step in breeding superior cultivars. The main objective of the hereby study was to determine the genetic variation between 30 cowpea accessions collected throughout the eight divisions of the Western Region of Cameroon using qualitative traits. Phenotypic variation of these accessions was evaluated using diversity indices and cluster analyses. A total of twenty qualitative traits were used for the study. Fifteen of them (75% were polymorphic, displaying each at least two phenotypic classes. The monomorphic characters were growth pattern, leaf color, leaf hairiness, plant hairiness and pod hairiness, each with only one phenotypic class. Results showed a relatively significant level of genetic diversity among the studied cowpea accessions. Overall, the average of the observed and effective number of phenotypic classes per qualitative trait were Na = 2.350 and Ne = 1.828 respectively. The Nei’s genetic diversity and the Shannon weaver diversity index were He = 0.369, ranging from zero (monomorphic trait to 0.655 (growth habit and H’ = 0.609, ranging from zero (monomorphic trait to 0.996 (seed crowding, respectively. The dendrogram constructed from the twenty qualitative traits revealed 05 accessions clusters with the number of accessions in each cluster varying from one to eleven. Information obtained from this study is likely be useful for future cowpea breeding program.

  4. From homothally to heterothally: Mating preferences and genetic variation within clones of the dinoflagellate Gymnodinium catenatum

    Science.gov (United States)

    Figueroa, Rosa Isabel; Rengefors, Karin; Bravo, Isabel; Bensch, Staffan

    2010-02-01

    The chain-forming dinoflagellate Gymnodinium catenatum Graham is responsible for outbreaks of paralytic shellfish poisoning (PSP), a human health threat in coastal waters. Sexuality in this species is of great importance in its bloom dynamics, and has been shown to be very complex but lacks an explanation. For this reason, we tested if unreported homothallic behavior and rapid genetic changes may clarify the sexual system of this alga. To achieve this objective, 12 clonal strains collected from the Spanish coast were analyzed for the presence of sexual reproduction. Mating affinity results, self-compatibility studies, and genetic fingerprinting (amplified fragment length polymorphism, AFLP) analysis on clonal strains, showed three facts not previously described for this species: (i) That there is a continuous mating system within G. catenatum, with either self-compatible strains (homothallic), or strains that needed to be outcrossed (heterothallic), and with a range of differences in cyst production among the crosses. (ii) There was intraclonal genetic variation, i.e. genetic variation within an asexual lineage. Moreover, the variability among homothallic clones was smaller than among the heterothallic ones. (iii) Sibling strains (the two strains established by the germination of one cyst) increased their intra- and inter-sexual compatibility with time. To summarize, we have found that G. catenatum's sexual system is much more complex than previously described, including complex homothallic/heterothallic behaviors. Additionally, high rates of genetic variability may arise in clonal strains, although explanations for the mechanisms responsible are still lacking.

  5. Serum uric acid concentrations and SLC2A9 genetic variation in Hispanic children: the Viva La Familia Study1234

    Science.gov (United States)

    Voruganti, V Saroja; Laston, Sandra; Haack, Karin; Mehta, Nitesh R; Cole, Shelley A; Butte, Nancy F; Comuzzie, Anthony G

    2015-01-01

    Background: Elevated concentrations of serum uric acid are associated with increased risk of gout and renal and cardiovascular diseases. Genetic studies in adults have consistently identified associations of solute carrier family 2, member 9 (SLC2A9), polymorphisms with variation in serum uric acid. However, it is not known whether the association of serum uric acid with SLC2A9 polymorphisms manifests in children. Objective: The aim was to investigate whether variation in serum uric acid is under genetic influence and whether the association with SLC2A9 polymorphisms generalizes to Hispanic children of the Viva La Familia Study. Design: We conducted a genomewide association study with 1.1 million genetic markers in 815 children. Results: We found serum uric acid to be significantly heritable [h2 ± SD = 0.45 ± 0.08, P = 5.8 × 10−11] and associated with SLC2A9 variants (P values between 10−16 and 10−7). Several of the significantly associated polymorphisms were previously identified in studies in adults. We also found positive genetic correlations between serum uric acid and BMI z score (ρG = 0.45, P = 0.002), percentage of body fat (ρG = 0.28, P = 0.04), fat mass (ρG = 0.34, P = 0.02), waist circumference (ρG = 0.42, P = 0.003), and waist-to-height ratio (ρG = 0.46, P = 0.001). Conclusions: Our results show that variation in serum uric acid in Hispanic children is under considerable genetic influence and is associated with obesity-related phenotypes. As in adults, genetic variation in SLC2A9 is associated with serum uric acid concentrations, an important biomarker of renal and cardiovascular disease risk, in Hispanic children. PMID:25833971

  6. Transgenerational Effects Alter Plant Defense and Resistance in Nature

    Science.gov (United States)

    Colicchio, Jack

    2017-01-01

    Trichomes, or leaf hairs, are epidermal extensions that take a variety of forms and perform many functions in plants, including herbivore defense. In this study, I document genetically determined variation, within-generation plasticity, and a direct role of trichomes in herbivore defense for Mimulus guttatus. After establishing the relationship between trichomes and herbivory, I test for transgenerational effects of wounding on trichome density and herbivore resistance. Patterns of inter-annual variation in herbivore density and the high cost of plant defense makes plant-herbivore interactions a system in which transgenerational phenotypic plasticity (TPP) is apt to evolve. Here, I demonstrate that parental damage alters offspring trichome density and herbivore resistance in nature. Moreover, this response varies between populations. This is among the first studies to demonstrate that TPP contributes to variation in nature, and also suggests that selection can modify TPP in response to local conditions. PMID:28102915

  7. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    International Nuclear Information System (INIS)

    Adams, Scott V.; Barrick, Brian; Christopher, Emily P.; Shafer, Martin M.; Makar, Karen W.; Song, Xiaoling; Lampe, Johanna W.; Vilchis, Hugo; Ulery, April; Newcomb, Polly A.

    2015-01-01

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.

  8. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Scott V., E-mail: sadams@fhcrc.org [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Barrick, Brian [Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003 (United States); Christopher, Emily P. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Shafer, Martin M. [Environmental Chemistry and Technology, Wisconsin State Laboratory of Hygiene, University of Wisconsin, 2601 Agriculture Dr., Madison, WI 53718 (United States); Makar, Karen W.; Song, Xiaoling [Public Health Science Biomarker Laboratory, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Lampe, Johanna W. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Vilchis, Hugo [Border Epidemiology and Environmental Health Center, New Mexico State University, Box 30001 MSC 3BEC, Las Cruces, NM 88003 (United States); Ulery, April [Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003 (United States); Newcomb, Polly A. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States)

    2015-12-15

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.

  9. Age and haplotype variations within FADS1 interact and associate with alterations in fatty acid composition in human male cortical brain tissue.

    Directory of Open Access Journals (Sweden)

    Erika Freemantle

    Full Text Available Fatty acids (FA play an integral role in brain function and alterations have been implicated in a variety of complex neurological disorders. Several recent genomic studies have highlighted genetic variability in the fatty acid desaturase (FADS1/2/3 gene cluster as an important contributor to FA alterations in serum lipids as well as measures of FA desaturase index estimated by ratios of relevant FAs. The contribution to alterations of FAs within the brain by local synthesis is still a matter of debate. Thus, the impact of genetic variants in FADS genes on gene expression and brain FA levels is an important avenue to investigate.Analyses were performed on brain tissue from prefrontal cortex Brodmann area 47 (BA47 of 61 male subjects of French Canadian ancestry ranging in age from young adulthood to middle age (18-58 years old, with the exception of one teenager (15 years old. Haplotype tagging SNPs were selected using the publicly available HapMap genotyping dataset in conjunction with Haploview. DNA sequencing was performed by the Sanger method and gene expression was measured by quantitative real-time PCR. FAs in brain tissue were analysed by gas chromatography. Variants in the FADS1 gene region were sequenced and analyzed for their influence on both FADS gene expression and FAs in brain tissue.Our results suggest an association of the minor haplotype with alteration in estimated fatty acid desaturase activity. Analysis of the impact of DNA variants on expression and alternative transcripts of FADS1 and FADS2, however, showed no differences. Furthermore, there was a significant interaction between haplotype and age on certain brain FA levels.This study suggests that genetic variability in the FADS genes cluster, previously shown to be implicated in alterations in peripheral FA levels, may also affect FA composition in brain tissue, but not likely by local synthesis.

  10. Common variation in ISL1 confers genetic susceptibility for human congenital heart disease.

    Directory of Open Access Journals (Sweden)

    Kristen N Stevens

    Full Text Available Congenital heart disease (CHD is the most common birth abnormality and the etiology is unknown in the overwhelming majority of cases. ISLET1 (ISL1 is a transcription factor that marks cardiac progenitor cells and generates diverse multipotent cardiovascular cell lineages. The fundamental role of ISL1 in cardiac morphogenesis makes this an exceptional candidate gene to consider as a cause of complex congenital heart disease. We evaluated whether genetic variation in ISL1 fits the common variant-common disease hypothesis. A 2-stage case-control study examined 27 polymorphisms mapping to the ISL1 locus in 300 patients with complex congenital heart disease and 2,201 healthy pediatric controls. Eight genic and flanking ISL1 SNPs were significantly associated with complex congenital heart disease. A replication study analyzed these candidate SNPs in 1,044 new cases and 3,934 independent controls and confirmed that genetic variation in ISL1 is associated with risk of non-syndromic congenital heart disease. Our results demonstrate that two different ISL1 haplotypes contribute to risk of CHD in white and black/African American populations.

  11. Microgeographic and temporal genetic variation in populations of the bluetongue virus vector Culicoides variipennis (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Tabachnick, W J

    1992-05-01

    Seven Colorado populations of the bluetongue virus vector Culicoides varipennis (Coquillett) were analyzed for genetic variation at 19-21 isozyme loci. Permanent populations, which overwinter as larvae, showed little temporal genetic change at 19 loci. PGD and MDH showed seasonal changes in gene frequencies, attributable to selection at two permanent populations. Two temporary populations showed low heterozygosity compared with permanent populations. Independent estimates of gene flow, calculated using FST and the private allele method, were Nm* = 2.15 and 6.95, respectively. Colorado C. variipennis permanent populations showed high levels of gene flow which prevented significant genetic differentiation due to genetic drift. Temporary populations showed significant gene frequency differences from nearby permanent populations due to the "founder effect" associated with chance colonization.

  12. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    Science.gov (United States)

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  13. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Science.gov (United States)

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  14. Genetic variation for sensitivity to a thyme monoterpene in associated plant species.

    Science.gov (United States)

    Jensen, Catrine Grønberg; Ehlers, Bodil Kirstine

    2010-04-01

    Recent studies have shown that plant allelochemicals can have profound effects on the performance of associated species, such that plants with a history of co-existence with "chemical neighbour" plants perform better in their presence compared to naïve plants. This has cast new light on the complexity of plant-plant interactions and plant communities and has led to debates on whether plant communities are more co-evolved than traditionally thought. In order to determine whether plants may indeed evolve in response to other plants' allelochemicals it is crucial to determine the presence of genetic variation for performance under the influence of specific allelochemicals and show that natural selection indeed operates on this variation. We studied the effect of the monoterpene carvacrol-a dominant compound in the essential oil of Thymus pulegioides-on three associated plant species originating from sites where thyme is either present or absent. We found the presence of genetic variation in both naïve and experienced populations for performance under the influence of the allelochemical but the response varied among naïve and experienced plant. Plants from experienced populations performed better than naïve plants on carvacrol soil and contained significantly more seed families with an adaptive response to carvacrol than naïve populations. This suggests that the presence of T. pulegioides can act as a selective agent on associated species, by favouring genotypes which perform best in the presence of its allelochemicals. The response to the thyme allelochemical varied from negative to neutral to positive among the species. The different responses within a species suggest that plant-plant interactions can evolve; this has implications for community dynamics and stability.

  15. Genetic basis of autism: is there a way forward?

    Science.gov (United States)

    Eapen, Valsamma

    2011-05-01

    This paper outlines some of the key findings from genetic research carried out in the last 12-18 months, which indicate that autism spectrum disorder (ASD) is a complex disorder involving interactions between genetic, epigenetic and environmental factors. The current literature highlights the presence of genetic and phenotypic heterogeneity in ASD with a number of underlying pathogenetic mechanisms. In this regard, there are at least three phenotypic presentations with distinct genetic underpinnings: autism plus phenotype characterized by syndromic ASD caused by rare, single-gene disorders; broad autism phenotype caused by genetic variations in single or multiple genes, each of these variations being common and distributed continually in the general population, but resulting in varying clinical phenotypes when it reaches a certain threshold through complex gene-gene and gene-environment interactions; and severe and specific phenotype caused by 'de-novo' mutations in the patient or transmitted through asymptomatic carriers of such mutation. Understanding the neurobiological processes by which genotypes become phenotypes, along with the advances in developmental neuroscience and neuronal networks at the cellular and molecular level, is paving the way for translational research involving targeted interventions of affected molecular pathways and early intervention programs that promote normal brain responses to stimuli and alter the developmental trajectory.

  16. Genetic variation of the riparian pioneer tree species populus nigra. II. Variation In susceptibility to the foliar rust melampsora larici-populina

    Science.gov (United States)

    Legionnet; Muranty; Lefevre

    1999-04-01

    Partial resistance of Populus nigra L. to three races of the foliar rust Melampsora larici-populina Kleb. was studied in a field trial and in laboratory tests, using a collection of P. nigra originating from different places throughout France. No total resistance was found. The partial resistance was split into epidemiological components, which proved to be under genetic control. Various patterns of association of epidemiological components values were found. Principal components analysis revealed their relationships. Only 24% of the variance of the field susceptibility could be explained by the variation of the epidemiological components of susceptibility. This variable was significantly correlated with susceptibility to the most ancient and widespread race of the pathogen, and with the variables related to the size of the lesions of the different races. Analysis of variance showed significant differences in susceptibility between regions and between stands within one region. Up to 20% of variation was between regions, and up to 22% between stands, so that these genetic factors appeared to be more differentiated than the neutral diversity (up to 3.5% Legionnet & Lefevre, 1996). However, no clear pattern of geographical distribution of diversity was detected.

  17. Geographic patterns of genetic variation and conservation consequences in three South American rodents.

    Science.gov (United States)

    Miranda, Gustavo B; Andrades-Miranda, Jaqueline; Oliveira, Luiz F B; Langguth, Alfredo; Mattevi, Margarete S

    2007-12-01

    In this study, the geographic patterns of genetic variation of three rodent species belonging to the tribe Oryzomyini were investigated using the mitochondrial cytochrome b and nuclear IRBP genes in biomes that are undergoing degradation processes to a greater or lesser degree. The samples are from 25 collecting localities distributed throughout the Amazon, Cerrado, Atlantic Forest, and Pampa biomes. The results show that the three species have a population and geographic structure, besides being in demographic equilibrium. The phylogenetic analyses performed on Euryoryzomys russatus and Hylaeamys megacephalus showed these specimens grouped in three distinct clades forming geographic gradients (North-South direction in H. megacephalus). Intraspecific genetic divergence was higher in H. megacephalus (4.53%), followed by E. russatus (1.79%), and lowest in Sooretamys angouya (0.88%). The results obtained indicate that, necessarily, the management strategies to preserve genetic diversity should be different for each species, since each of them presented specific population parameters.

  18. FADS2 Genetic Variance in Combination with Fatty Acid Intake Might Alter Composition of the Fatty Acids in Brain.

    Directory of Open Access Journals (Sweden)

    Thais S Rizzi

    Full Text Available Multiple lines of evidence suggest that fatty acids (FA play an important role in cognitive function. However, little is known about the functional genetic pathways involved in cognition. The main goals of this study were to replicate previously reported interaction effects between breast feeding (BF and FA desaturase (FADS genetic variation on IQ and to investigate the possible mechanisms by which these variants might moderate BF effect, focusing on brain expression. Using a sample of 534 twins, we observed a trend in the moderation of BF effects on IQ by FADS2 variation. In addition, we made use of publicly available gene expression databases from both humans (193 and mice (93 and showed that FADS2 variants also correlate with FADS1 brain expression (P-value<1.1E-03. Our results provide novel clues for the understanding of the genetic mechanisms regulating FA brain expression and improve the current knowledge of the FADS moderation effect on cognition.

  19. Genetic variations altering FSH action affect circulating hormone levels as well as follicle growth in healthy peripubertal girls.

    Science.gov (United States)

    Busch, Alexander S; Hagen, Casper P; Almstrup, Kristian; Main, Katharina M; Juul, Anders

    2016-04-01

    Do variants of the genes encoding follicle stimulating hormone (FSH) beta subunit (B) and FSH receptor (R) impact circulating reproductive hormone levels and ovarian follicle maturation in healthy peripubertal girls? FSHB and FSHR genetic variants exert, alone or their combination, distinct effects on reproductive hormone levels as well as ovarian follicle maturation in healthy peripubertal girls. FSHB and FSHR genetic variants impact reproductive hormone levels as well as associated pathologies in women. While FSHR c. 2039A>G is known to alter gonadotrophin levels in women, FSHR c.-29G>A has not yet been shown to exert effect and there are conflicting results concerning FSHB c.-211G>T. This population-based study included 633 girls recruited as part of two cohorts, the COPENHAGEN Puberty Study (2006-2014, a cross-sectional and ongoing longitudinal study) and the Copenhagen Mother-Child Cohort (1997-2002, including transabdominal ultrasound (TAUS) of the ovaries in a subset of 91 peripubertal girls). Clinical examinations, including pubertal breast stage (Tanner's classification B1-B5) were performed. Circulating levels of FSH, luteinizing hormone (LH), estradiol, anti-Mullerian hormone (AMH) and inhibin-B were assessed by immunoassays. In a subset of the girls (n = 91), ovarian volume and the number/size of antral follicles were assessed by TAUS. Genotypes were determined by competitive PCR. FSHR c.2039A>G minor alleles were positively associated with serum FSH (β = 0.08, P = 0.004), LH (β = 0.06, P = 0.012) and estradiol (β = 0.06, P = 0.017) (adjusted for Tanner stages). In a combined model, FSHR c.-29G>A and FSHR c.2039A>G alleles were positively associated with FSH levels in early-pubertal girls (B2 + B3, n = 327, r = 0.1, P = 0.02) and in young adolescents (B4 + B5, n = 149, r = 0.2, P = 0.01). Serum AMH and inhibin B levels were not significantly influenced by the single nucleotide polymorphisms (SNPs). Single SNPs were not associated with follicles

  20. Genes: Interactions with Language on Three Levels—Inter-Individual Variation, Historical Correlations and Genetic Biasing

    Science.gov (United States)

    Dediu, Dan

    The complex inter-relationships between genetics and linguistics encompass all four scales highlighted by the contributions to this book and, together with cultural transmission, the genetics of language holds the promise to offer a unitary understanding of this fascinating phenomenon. There are inter-individual differences in genetic makeup which contribute to the obvious fact that we are not identical in the way we understand and use language and, by studying them, we will be able to both better treat and enhance ourselves. There are correlations between the genetic configuration of human groups and their languages, reflecting the historical processes shaping them, and there also seem to exist genes which can influence some characteristics of language, biasing it towards or against certain states by altering the way language is transmitted across generations. Besides the joys of pure knowledge, the understanding of these three aspects of genetics relevant to language will potentially trigger advances in medicine, linguistics, psychology or the understanding of our own past and, last but not least, a profound change in the way we regard one of the emblems of being human: our capacity for language.

  1. Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Stine H Kresse

    Full Text Available BACKGROUND: Osteosarcomas are the most common non-haematological primary malignant tumours of bone, and all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies. PRINCIPAL FINDINGS: The cell lines showed complex patterns of DNA copy number changes, where genomic copy number gains were significantly associated with gene-rich regions and losses with gene-poor regions. By integrating the datasets, 350 genes were identified as having two types of aberrations (gain/over-expression, hypo-methylation/over-expression, loss/under-expression or hyper-methylation/under-expression using a recurrence threshold of 6/19 (>30% cell lines. The genes showed in general alterations in either DNA copy number or DNA methylation, both within individual samples and across the sample panel. These 350 genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. The aberrations of three selected genes, CXCL5, DLX5 and RUNX2, were validated in five cell lines and five tumour samples using PCR techniques. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2'-deoxycytidine treatment for four genes tested; AKAP12, CXCL5, EFEMP1 and IL11RA. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for detrimental genes. CONCLUSIONS: Integrative analysis of genome-wide genetic and epigenetic alterations identified dependencies and relationships between

  2. Conserved Genetic Architecture Underlying Individual Recombination Rate Variation in a Wild Population of Soay Sheep (Ovis aries).

    Science.gov (United States)

    Johnston, Susan E; Bérénos, Camillo; Slate, Jon; Pemberton, Josephine M

    2016-05-01

    Meiotic recombination breaks down linkage disequilibrium (LD) and forms new haplotypes, meaning that it is an important driver of diversity in eukaryotic genomes. Understanding the causes of variation in recombination rate is important in interpreting and predicting evolutionary phenomena and in understanding the potential of a population to respond to selection. However, despite attention in model systems, there remains little data on how recombination rate varies at the individual level in natural populations. Here we used extensive pedigree and high-density SNP information in a wild population of Soay sheep (Ovis aries) to investigate the genetic architecture of individual autosomal recombination rates. Individual rates were high relative to other mammal systems and were higher in males than in females (autosomal map lengths of 3748 and 2860 cM, respectively). The heritability of autosomal recombination rate was low but significant in both sexes (h(2) = 0.16 and 0.12 in females and males, respectively). In females, 46.7% of the heritable variation was explained by a subtelomeric region on chromosome 6; a genome-wide association study showed the strongest associations at locus RNF212, with further associations observed at a nearby ∼374-kb region of complete LD containing three additional candidate loci, CPLX1, GAK, and PCGF3 A second region on chromosome 7 containing REC8 and RNF212B explained 26.2% of the heritable variation in recombination rate in both sexes. Comparative analyses with 40 other sheep breeds showed that haplotypes associated with recombination rates are both old and globally distributed. Both regions have been implicated in rate variation in mice, cattle, and humans, suggesting a common genetic architecture of recombination rate variation in mammals. Copyright © 2016 by the Genetics Society of America.

  3. Worldwide variation in hip fracture incidence weakly aligns with genetic divergence between populations.

    Science.gov (United States)

    Wallace, I J; Botigué, L R; Lin, M; Smaers, J B; Henn, B M; Grine, F E

    2016-09-01

    This study investigates the influence of genetic differentiation in determining worldwide heterogeneity in osteoporosis-related hip fracture rates. The results indicate that global variation in fracture incidence exceeds that expected on the basis of random genetic variance. Worldwide, the incidence of osteoporotic hip fractures varies considerably. This variability is believed to relate mainly to non-genetic factors. It is conceivable, however, that genetic susceptibility indeed differs across populations. Here, we present the first quantitative assessment of the effects of genetic differentiation on global variability in hip fracture rates. We investigate the observed variance in publically reported age-standardized rates of hip fracture among 28 populations from around the world relative to the expected variance given the phylogenetic relatedness of these populations. The extent to which these variances are similar constitutes a "phylogenetic signal," which was measured using the K statistic. Population genetic divergence was calculated using a robust array of genome-wide single nucleotide polymorphisms. While phylogenetic signal is maximized when K > 1, a K value of only 0.103 was detected in the combined-sex fracture rate pattern across the 28 populations, indicating that fracture rates vary more than expected based on phylogenetic relationships. When fracture rates for the sexes were analyzed separately, the degree of phylogenetic signal was also found to be small (females: K = 0.102; males: K = 0.081). The lack of a strong phylogenetic signal underscores the importance of factors other than stochastic genetic diversity in shaping worldwide heterogeneity in hip fracture incidence.

  4. Additive genetic variation in schizophrenia risk is shared by populations of African and European descent

    NARCIS (Netherlands)

    De Candia, T.r.; Lee, S.H.; Yang, J.; Browning, B.L.; Gejman, P. V.; Levinson, D. F.; Mowry, B. J.; Hewitt, J.K.; Goddard, M.E.; O'Donovan, M.C.; Purcell, S.M.; Posthuma, D.; Visscher, P. M.; Wray, N.R.; Keller, M. C.

    2013-01-01

    To investigate the extent to which the proportion of schizophrenia's additive genetic variation tagged by SNPs is shared by populations of European and African descent, we analyzed the largest combined African descent (AD [n = 2,142]) and European descent (ED [n = 4,990]) schizophrenia case-control

  5. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18.

    Directory of Open Access Journals (Sweden)

    Stephen D Bentley

    2007-02-01

    Full Text Available The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an

  6. Linking Genetic Variation in Adaptive Plant Traits to Climate in Tetraploid and Octoploid Basin Wildrye [Leymus cinereus (Scribn. & Merr. A. Love] in the Western U.S.

    Directory of Open Access Journals (Sweden)

    R C Johnson

    Full Text Available Few studies have assessed how ploidy type within a species affects genetic variation among populations in relation to source climates. Basin wildrye (Leymus cinereus (Scribn. & Merr. A. Love is a large bunchgrass common in the intermountain Western U.S. found in both octoploid and tetraploid types. In common gardens at two sites over two years differences in both ploidy type and genetic variation within ploidy were observed in phenology, morphology, and production traits on 57 octoploid and 52 tetraploid basin wildrye from the intermountain Western U.S. (P<0.01. Octoploids had larger leaves, longer culms, and greater crown circumference than tetraploids but the numerical ranges of plant traits and their source climates overlapped between ploidy types. Still, among populations octoploids often had greater genetic variation for traits and occupied more diverse climates than tetraploids. Genetic variation for both ploidy types was linked to source climates in canonical correlation analysis, with the first two variates explaining 70% of the variation. Regression of those canonical variates with seed source climate variables produced models that explained 64% and 38% of the variation, respectively, and were used to map 15 seed zones covering 673,258 km2. Utilization of these seed zones will help ensure restoration with adaptive seed sources for both ploidy types. The link between genetic traits and seed source climates suggests climate driven natural selection and adaptive evolution in basin wildrye. The more diverse climates occupied by octoploids and higher trait variation suggests a higher capacity for ecological differentiation than tetraploids in the intermountain Western U.S.

  7. Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm.

    Science.gov (United States)

    Jackson, Phillip; Basnayake, Jaya; Inman-Bamber, Geoff; Lakshmanan, Prakash; Natarajan, Sijesh; Stokes, Chris

    2016-02-01

    Fifty-one genotypes of sugarcane (Saccharum spp.) or closely related germplasm were evaluated in a pot experiment to examine genetic variation in transpiration efficiency. Significant variation in whole plant transpiration efficiency was observed, with the difference between lowest and highest genotypes being about 40% of the mean. Leaf gas exchange measurements were made across a wide range of conditions. There was significant genetic variation in intrinsic transpiration efficiency at a leaf level as measured by leaf internal CO2 (Ci) levels. Significant genetic variation in Ci was also observed within subsets of data representing narrow ranges of stomatal conductance. Ci had a low broad sense heritability (Hb = 0.11) on the basis of single measurements made at particular dates, because of high error variation and genotype × date interaction, but broad sense heritability for mean Ci across all dates was high (Hb = 0.81) because of the large number of measurements taken at different dates. Ci levels among genotypes at mid-range levels of conductance had a strong genetic correlation (-0.92 ± 0.30) with whole plant transpiration efficiency but genetic correlations between Ci and whole plant transpiration efficiency were weaker or not significant at higher and lower levels of conductance. Reduced Ci levels at any given level of conductance may result in improved yields in water-limited environments without trade-offs in rates of water use and growth. Targeted selection and improvement of lowered Ci per unit conductance via breeding may provide longer-term benefits for water-limited environments but the challenge will be to identify a low-cost screening methodology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Partitioning of genetic variation between regulatory and coding gene segments: the predominance of software variation in genes encoding introvert proteins.

    Science.gov (United States)

    Mitchison, A

    1997-01-01

    In considering genetic variation in eukaryotes, a fundamental distinction can be made between variation in regulatory (software) and coding (hardware) gene segments. For quantitative traits the bulk of variation, particularly that near the population mean, appears to reside in regulatory segments. The main exceptions to this rule concern proteins which handle extrinsic substances, here termed extrovert proteins. The immune system includes an unusually large proportion of this exceptional category, but even so its chief source of variation may well be polymorphism in regulatory gene segments. The main evidence for this view emerges from genome scanning for quantitative trait loci (QTL), which in the case of the immune system points to a major contribution of pro-inflammatory cytokine genes. Further support comes from sequencing of major histocompatibility complex (Mhc) class II promoters, where a high level of polymorphism has been detected. These Mhc promoters appear to act, in part at least, by gating the back-signal from T cells into antigen-presenting cells. Both these forms of polymorphism are likely to be sustained by the need for flexibility in the immune response. Future work on promoter polymorphism is likely to benefit from the input from genome informatics.

  9. Genetic variation may explain why females are less susceptible to dental erosion.

    Science.gov (United States)

    Uhlen, Marte-Mari; Stenhagen, Kjersti R; Dizak, Piper M; Holme, Børge; Mulic, Aida; Tveit, Anne B; Vieira, Alexandre R

    2016-10-01

    Not all individuals at risk for dental erosion (DE) display erosive lesions. The prevalence of DE is higher among male subjects. The occurrence of DE may depend on more than just acidic challenge, with genetics possibly playing a role. The aim of this study was to investigate the association of enamel-formation genes with DE. One premolar and a saliva sample were collected from 90 individuals. Prepared teeth were immersed in 0.01 M HCl (pH 2.2), and enamel loss (μm) was measured using white light interferometry. DNA was extracted from saliva, and 15 single-nucleotide polymorphisms were analysed. Allele and genotype frequencies were related to the enamel loss of the specimens. Single-marker and haplotype analyses were performed using sex as a covariate. Mean enamel loss was higher for male donors than for female donors (P = 0.047). Significant associations were found between enamel loss and amelogenin, X-linked (AMELX), tuftelin 1 (TUFT1), and tuftelin-interacting protein 11 (TFIP11). Analyses showed significant associations between variation in enamel-formation genes and a lower susceptibility to DE in female subjects. The results indicate that susceptibility to DE is influenced by genetic variation, and may, in part, explain why some individuals are more susceptible than others to DE, including differences between female subjects and male subjects. © 2016 Eur J Oral Sci.

  10. Transcriptomics Profiling of Alzheimer’s Disease Reveal Neurovascular Defects, Altered Amyloid-β Homeostasis, and Deregulated Expression of Long Noncoding RNAs

    Science.gov (United States)

    Magistri, Marco; Velmeshev, Dmitry; Makhmutova, Madina; Faghihi, Mohammad Ali

    2015-01-01

    Abstract The underlying genetic variations of late-onset Alzheimer’s disease (LOAD) cases remain largely unknown. A combination of genetic variations with variable penetrance and lifetime epigenetic factors may converge on transcriptomic alterations that drive LOAD pathological process. Transcriptome profiling using deep sequencing technology offers insight into common altered pathways regardless of underpinning genetic or epigenetic factors and thus represents an ideal tool to investigate molecular mechanisms related to the pathophysiology of LOAD. We performed directional RNA sequencing on high quality RNA samples extracted from hippocampi of LOAD and age-matched controls. We further validated our data using qRT-PCR on a larger set of postmortem brain tissues, confirming downregulation of the gene encoding substance P (TAC1) and upregulation of the gene encoding the plasminogen activator inhibitor-1 (SERPINE1). Pathway analysis indicates dysregulation in neural communication, cerebral vasculature, and amyloid-β clearance. Beside protein coding genes, we identified several annotated and non-annotated long noncoding RNAs that are differentially expressed in LOAD brain tissues, three of them are activity-dependent regulated and one is induced by Aβ1 - 42 exposure of human neural cells. Our data provide a comprehensive list of transcriptomics alterations in LOAD hippocampi and warrant holistic approach including both coding and non-coding RNAs in functional studies aimed to understand the pathophysiology of LOAD. PMID:26402107

  11. Distinct genetic alteration profiles of acute myeloid leukemia between Caucasian and Eastern Asian population.

    Science.gov (United States)

    Wei, Hui; Wang, Ying; Zhou, Chunlin; Lin, Dong; Liu, Bingcheng; Liu, Kaiqi; Qiu, Shaowei; Gong, Benfa; Li, Yan; Zhang, Guangji; Wei, Shuning; Gong, Xiaoyuan; Liu, Yuntao; Zhao, Xingli; Gu, Runxia; Mi, Yingchang; Wang, Jianxiang

    2018-02-10

    Racial and ethnic disparities in malignancies attract extensive attention. To investigate whether there are racial and ethnic disparities in genetic alteration between Caucasian and Eastern Asian population, data from several prospective AML trials were retrospectively analyzed in this study. We found that there were more patients with core binding factor (CBF) leukemia in Eastern Asian cohorts and there were different CBF leukemia constitutions between them. The ratios of CBF leukemia are 27.7, 22.1, 21.1, and 23.4%, respectively, in our (ChiCTR-TRC-10001202), another Chinese, Korean, and Japanese Eastern Asian cohorts, which are significantly higher than those in ECOG1900, MRC AML15, UK NCRI AML17, HOVON/SAKK AML-42, and German AML2003 (15.5, 12.5, 9.3, 10.2, and 12%, respectively). And CBFbeta-MYH11 occurred more prevalently in HOVON/SAKK AML- 42 and ECOG1900 trials (50.0 and 54.3% of CBF leukemia, respectively) than in Chinese and Japanese trials (20.1 and 20.8%, respectively). The proportion of FLT3-ITD mutation is 11.2% in our cohort, which is lower than that in MRC AML15 and UK NCRI AML17 (24.6 and 17.9%, respectively). Even after excluding the age bias, there are still different incidence rates of mutation between Caucasian and Eastern Asian population. These data suggest that there are racial and ethnic disparities in genetic alteration between Caucasian and Eastern Asian population.

  12. Characterization of the genetic variation present in CYP3A4 in three South African populations

    OpenAIRE

    Drögemöller, Britt; Plummer, Marieth; Korkie, Lundi; Agenbag, Gloudi; Dunaiski, Anke; Niehaus, Dana; Koen, Liezl; Gebhardt, Stefan; Schneider, Nicol; Olckers, Antonel; Wright, Galen; Warnich, Louise

    2013-01-01

    TThe CYP3A4 enzyme is the most abundant human cytochrome P450 and is regarded as the most important enzyme involved in drug metabolism. Inter-individual and inter-population variability in gene expression and enzyme activity are thought to be influenced, in part, by genetic variation. Although Southern African individuals have been shown to exhibit the highest levels of genetic diversity, they have been under-represented in pharmacogenetic research to date. Therefore, the aim of this study wa...

  13. Ontogenetic de novo copy number variations (CNVs as a source of genetic individuality: studies on two families with MZD twins for schizophrenia.

    Directory of Open Access Journals (Sweden)

    Sujit Maiti

    2011-03-01

    Full Text Available Genetic individuality is the foundation of personalized medicine, yet its determinants are currently poorly understood. One issue is the difference between monozygotic twins that are assumed identical and have been extensively used in genetic studies for decades. Here, we report genome-wide alterations in two nuclear families each with a pair of monozygotic twins discordant for schizophrenia evaluated by the Affymetrix 6.0 human SNP array. The data analysis includes characterization of copy number variations (CNVs and single nucleotide polymorphism (SNPs. The results have identified genomic differences between twin pairs and a set of new provisional schizophrenia genes. Samples were found to have between 35 and 65 CNVs per individual. The majority of CNVs (~80% represented gains. In addition, ~10% of the CNVs were de novo (not present in parents, of these, 30% arose during parental meiosis and 70% arose during developmental mitosis. We also observed SNPs in the twins that were absent from both parents. These constituted 0.12% of all SNPs seen in the twins. In 65% of cases these SNPs arose during meiosis compared to 35% during mitosis. The developmental mitotic origin of most CNVs that may lead to MZ twin discordance may also cause tissue differences within individuals during a single pregnancy and generate a high frequency of mosaics in the population. The results argue for enduring genome-wide changes during cellular transmission, often ignored in most genetic analyses.

  14. Expression of parasite genetic variation changes over the course of infection: implications of within-host dynamics for the evolution of virulence.

    Science.gov (United States)

    Clerc, Melanie; Ebert, Dieter; Hall, Matthew D

    2015-04-07

    How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Genetic diversity in breonadia salicina based on intra-species sequence variation of chloroplast dna spacer sequence

    International Nuclear Information System (INIS)

    Qurainy, F.A.; Gaafar, A.R.Z.

    2014-01-01

    Assessment and knowledge of the genetic diversity and variation within and between populations of rare and endangered plants is very important for effective conservation. Intergenic spacer sequences variation of psbA-trnH locus of chloroplast genome was assessed within Breonadia salicina (Rubiaceae), a critically endangered and endemic plant species to South western part of Kingdom of Saudi Arabia. The obtained sequence data from 19 individuals in three populations revealed nine haplotypes. The aligned sequences obtained from the overall Saudi accessions extended to 355 bp, revealing nine haplotypes. A high level of haplotype diversity (Hd = 0.842) and low level of nucleotide diversity (Pi = 0.0058) were detected. Consistently, both hierarchical analysis of molecular variance (AMOVA) and constructed neighbor-joining tree indicated null genetic differentiation among populations. This level of differentiation between populations or between regions in psbA-trnH sequences may be due to effects of the abundance of ancestral haplotype sharing and the presence of private haplotypes fixed for each population. Furthermore, the results revealed almost the same level of genetic diversity in comparison with Yemeni accessions, in which Saudi accessions were sharing three haplotypes from the four haplotypes found in Yemeni accessions. (author)

  16. Somatic Genetic Variation in Solid Pseudopapillary Tumor of the Pancreas by Whole Exome Sequencing

    Directory of Open Access Journals (Sweden)

    Meng Guo

    2017-01-01

    Full Text Available Solid pseudopapillary tumor of the pancreas (SPT is a rare pancreatic disease with a unique clinical manifestation. Although CTNNB1 gene mutations had been universally reported, genetic variation profiles of SPT are largely unidentified. We conducted whole exome sequencing in nine SPT patients to probe the SPT-specific insertions and deletions (indels and single nucleotide polymorphisms (SNPs. In total, 54 SNPs and 41 indels of prominent variations were demonstrated through parallel exome sequencing. We detected that CTNNB1 mutations presented throughout all patients studied (100%, and a higher count of SNPs was particularly detected in patients with older age, larger tumor, and metastatic disease. By aggregating 95 detected variation events and viewing the interconnections among each of the genes with variations, CTNNB1 was identified as the core portion in the network, which might collaborate with other events such as variations of USP9X, EP400, HTT, MED12, and PKD1 to regulate tumorigenesis. Pathway analysis showed that the events involved in other cancers had the potential to influence the progression of the SNPs count. Our study revealed an insight into the variation of the gene encoding region underlying solid-pseudopapillary neoplasm tumorigenesis. The detection of these variations might partly reflect the potential molecular mechanism.

  17. Genetic variations in marine natural population - Measurement and utility in resource management and conservation: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Parulekar, A.H.

    A number of molecular and biochemical tools which can be applied to the identification of species and the detection of genetic variation within species have been developed in recent years. All these methods rely on the ability to distinguish between...

  18. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes.

    Science.gov (United States)

    Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin

    2016-07-01

    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including "codon capture," "genome streamlining," and "ambiguous intermediate" theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNA(Ala) containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. © 2016 Mühlhausen et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Transformation of natural genetic variation into Haemophilus influenzae genomes.

    Directory of Open Access Journals (Sweden)

    Joshua Chang Mell

    2011-07-01

    Full Text Available Many bacteria are able to efficiently bind and take up double-stranded DNA fragments, and the resulting natural transformation shapes bacterial genomes, transmits antibiotic resistance, and allows escape from immune surveillance. The genomes of many competent pathogens show evidence of extensive historical recombination between lineages, but the actual recombination events have not been well characterized. We used DNA from a clinical isolate of Haemophilus influenzae to transform competent cells of a laboratory strain. To identify which of the ~40,000 polymorphic differences had recombined into the genomes of four transformed clones, their genomes and their donor and recipient parents were deep sequenced to high coverage. Each clone was found to contain ~1000 donor polymorphisms in 3-6 contiguous runs (8.1±4.5 kb in length that collectively comprised ~1-3% of each transformed chromosome. Seven donor-specific insertions and deletions were also acquired as parts of larger donor segments, but the presence of other structural variation flanking 12 of 32 recombination breakpoints suggested that these often disrupt the progress of recombination events. This is the first genome-wide analysis of chromosomes directly transformed with DNA from a divergent genotype, connecting experimental studies of transformation with the high levels of natural genetic variation found in isolates of the same species.

  20. Implications of Genetic and Epigenetic Alterations of CDKN2A (p16INK4a in Cancer

    Directory of Open Access Journals (Sweden)

    Ran Zhao

    2016-06-01

    Full Text Available Aberrant gene silencing is highly associated with altered cell cycle regulation during carcinogenesis. In particular, silencing of the CDKN2A tumor suppressor gene, which encodes the p16INK4a protein, has a causal link with several different types of cancers. The p16INK4a protein plays an executional role in cell cycle and senescence through the regulation of the cyclin-dependent kinase (CDK 4/6 and cyclin D complexes. Several genetic and epigenetic aberrations of CDKN2A lead to enhanced tumorigenesis and metastasis with recurrence of cancer and poor prognosis. In these cases, the restoration of genetic and epigenetic reactivation of CDKN2A is a practical approach for the prevention and therapy of cancer. This review highlights the genetic status of CDKN2A as a prognostic and predictive biomarker in various cancers.

  1. Genetic Architecture of Natural Variation Underlying Adult Foraging Behavior That Is Essential for Survival of Drosophila melanogaster.

    Science.gov (United States)

    Lee, Yuh Chwen G; Yang, Qian; Chi, Wanhao; Turkson, Susie A; Du, Wei A; Kemkemer, Claus; Zeng, Zhao-Bang; Long, Manyuan; Zhuang, Xiaoxi

    2017-05-01

    Foraging behavior is critical for the fitness of individuals. However, the genetic basis of variation in foraging behavior and the evolutionary forces underlying such natural variation have rarely been investigated. We developed a systematic approach to assay the variation in survival rate in a foraging environment for adult flies derived from a wild Drosophila melanogaster population. Despite being such an essential trait, there is substantial variation of foraging behavior among D. melanogaster strains. Importantly, we provided the first evaluation of the potential caveats of using inbred Drosophila strains to perform genome-wide association studies on life-history traits, and concluded that inbreeding depression is unlikely a major contributor for the observed large variation in adult foraging behavior. We found that adult foraging behavior has a strong genetic component and, unlike larval foraging behavior, depends on multiple loci. Identified candidate genes are enriched in those with high expression in adult heads and, demonstrated by expression knock down assay, are involved in maintaining normal functions of the nervous system. Our study not only identified candidate genes for foraging behavior that is relevant to individual fitness, but also shed light on the initial stage underlying the evolution of the behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Genetic variation in resistance to ionizing radiation

    International Nuclear Information System (INIS)

    Ayala, F.J.

    1991-01-01

    We proposed an investigation of genetically-determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu,Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population ''null'' (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CA1. The roles of SOD level in radioresistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. In addition, we have pursued an unexpected genetic event-namely the nearly simultaneous transformation of several lines homozygous for the SOD ''null'' allele into predominately S lines. Using specifically designed probes and DNA amplification by means of the Tag polymerase chain reaction (PCR) we have shown that (1) the null allele was still present in the transformed lines, but was being gradually replaced by the S allele as a consequence of natural selection; and (2) that the transformation was due to the spontaneous deletion of a 0.68 Kb truncated P-element, the insertion of which is characteristic of the CA1 null allele

  3. Variation in effective pollination rates in relation to the spatial and temporal distribution of pollen release in rejuvenated perennial ryegrass

    NARCIS (Netherlands)

    Treuren, van R.; Goossens, P.J.; Sevcikova, M.

    2006-01-01

    Genebank accessions stored as seed populations require periodic rejuvenation in order to maintain sufficient numbers of viable seeds. During rejuvenation the genetic composition of accessions may be altered for a variety of reasons, of which variation in pollination rates between plants is the least

  4. Assessment of intra and interregional genetic variation in the Eastern Red-backed Salamander, Plethodon cinereus, via analysis of novel microsatellite markers.

    Directory of Open Access Journals (Sweden)

    Alexander C Cameron

    Full Text Available The red-backed salamander (Plethodon cinereus has long-served as a model system in ecology, evolution, and behavior, and studies surveying molecular variation in this species have become increasingly common over the past decade. However, difficulties are commonly encountered when extending microsatellite markers to populations that are unstudied from a genetic perspective due to high levels of genetic differentiation across this species' range. To ameliorate this issue, we used 454 pyrosequencing to identify hundreds of microsatellite loci. We then screened 40 of our top candidate loci in populations in Virginia, Pennsylvania, and Ohio-including an isolated island population ~ 4.5 km off the shore of Lake Erie (South Bass Island. We identified 25 loci that are polymorphic in a well-studied region of Virginia and 11 of these loci were polymorphic in populations located in the genetically unstudied regions of Ohio and Pennsylvania. Use of these loci to examine patterns of variation within populations revealed that South Bass Island has low diversity in comparison to other sites. However, neither South Bass Island nor isolated populations around Cleveland are inbred. Assessment of variation between populations revealed three well defined genetic clusters corresponding to Virginia, mainland Ohio/Pennsylvania, and South Bass Island. Comparisons of our results to those of others working in various parts of the range are consistent with the idea that differentiation is lower in regions that were once glaciated. However, these comparisons also suggest that well differentiated isolated populations in the formerly glaciated portion of the range are not uncommon. This work provides novel genetic resources that will facilitate population genetic studies in a part of the red-backed salamander's range that has not previously been studied in this manner. Moreover, this work refines our understanding of how neutral variation is distributed in this ecologically

  5. Transgenerational effects alter plant defence and resistance in nature.

    Science.gov (United States)

    Colicchio, J

    2017-04-01

    Trichomes, or leaf hairs, are epidermal extensions that take a variety of forms and perform many functions in plants, including herbivore defence. In this study, I document genetically determined variation, within-generation plasticity, and a direct role of trichomes in herbivore defence for Mimulus guttatus. After establishing the relationship between trichomes and herbivory, I test for transgenerational effects of wounding on trichome density and herbivore resistance. Patterns of interannual variation in herbivore density and the high cost of plant defence makes plant-herbivore interactions a system in which transgenerational phenotypic plasticity (TPP) is apt to evolve. Here, I demonstrate that parental damage alters offspring trichome density and herbivore resistance in nature. Moreover, this response varies between populations. This is among the first studies to demonstrate that TPP contributes to variation in nature, and also suggests that selection can modify TPP in response to local conditions. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  6. Trait variation and genetic diversity in a banana genomic selection training population

    Science.gov (United States)

    Nyine, Moses; Uwimana, Brigitte; Swennen, Rony; Batte, Michael; Brown, Allan; Christelová, Pavla; Hřibová, Eva; Lorenzen, Jim

    2017-01-01

    Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income and food security, with the highest per capita consumption worldwide. Pests, diseases and climate change hamper sustainable production of bananas. New breeding tools with increased crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of East African Highland banana (EAHB). These include genomic selection (GS), which will benefit breeding through increased genetic gain per unit time. Understanding trait variation and the correlation among economically important traits is an essential first step in the development and selection of suitable GS models for banana. In this study, we tested the hypothesis that trait variations in bananas are not affected by cross combination, cycle, field management and their interaction with genotype. A training population created using EAHB breeding material and its progeny was phenotyped in two contrasting conditions. A high level of correlation among vegetative and yield related traits was observed. Therefore, genomic selection models could be developed for traits that are easily measured. It is likely that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are highly correlated with. Genotype response to cycle and field management practices varied greatly with respect to traits. Yield related traits accounted for 31–35% of principal component variation under low and high input field management conditions. Resistance to Black Sigatoka was stable across cycles but varied under different field management depending on the genotype. The best cross combination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping using simple sequence repeat (SSR) markers revealed that the training population was genetically diverse, reflecting a complex pedigree background, which was mostly influenced by the male parents. PMID:28586365

  7. Trait variation and genetic diversity in a banana genomic selection training population.

    Directory of Open Access Journals (Sweden)

    Moses Nyine

    Full Text Available Banana (Musa spp. is an important crop in the African Great Lakes region in terms of income and food security, with the highest per capita consumption worldwide. Pests, diseases and climate change hamper sustainable production of bananas. New breeding tools with increased crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of East African Highland banana (EAHB. These include genomic selection (GS, which will benefit breeding through increased genetic gain per unit time. Understanding trait variation and the correlation among economically important traits is an essential first step in the development and selection of suitable GS models for banana. In this study, we tested the hypothesis that trait variations in bananas are not affected by cross combination, cycle, field management and their interaction with genotype. A training population created using EAHB breeding material and its progeny was phenotyped in two contrasting conditions. A high level of correlation among vegetative and yield related traits was observed. Therefore, genomic selection models could be developed for traits that are easily measured. It is likely that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are highly correlated with. Genotype response to cycle and field management practices varied greatly with respect to traits. Yield related traits accounted for 31-35% of principal component variation under low and high input field management conditions. Resistance to Black Sigatoka was stable across cycles but varied under different field management depending on the genotype. The best cross combination was 1201K-1xSH3217 based on selection response (R of hybrids. Genotyping using simple sequence repeat (SSR markers revealed that the training population was genetically diverse, reflecting a complex pedigree background, which was mostly influenced by the male parents.

  8. Trait variation and genetic diversity in a banana genomic selection training population.

    Science.gov (United States)

    Nyine, Moses; Uwimana, Brigitte; Swennen, Rony; Batte, Michael; Brown, Allan; Christelová, Pavla; Hřibová, Eva; Lorenzen, Jim; Doležel, Jaroslav

    2017-01-01

    Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income and food security, with the highest per capita consumption worldwide. Pests, diseases and climate change hamper sustainable production of bananas. New breeding tools with increased crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of East African Highland banana (EAHB). These include genomic selection (GS), which will benefit breeding through increased genetic gain per unit time. Understanding trait variation and the correlation among economically important traits is an essential first step in the development and selection of suitable GS models for banana. In this study, we tested the hypothesis that trait variations in bananas are not affected by cross combination, cycle, field management and their interaction with genotype. A training population created using EAHB breeding material and its progeny was phenotyped in two contrasting conditions. A high level of correlation among vegetative and yield related traits was observed. Therefore, genomic selection models could be developed for traits that are easily measured. It is likely that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are highly correlated with. Genotype response to cycle and field management practices varied greatly with respect to traits. Yield related traits accounted for 31-35% of principal component variation under low and high input field management conditions. Resistance to Black Sigatoka was stable across cycles but varied under different field management depending on the genotype. The best cross combination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping using simple sequence repeat (SSR) markers revealed that the training population was genetically diverse, reflecting a complex pedigree background, which was mostly influenced by the male parents.

  9. Hypothalamic-pituitary-adrenal axis genetic variation and early stress moderates amygdala function.

    Science.gov (United States)

    Di Iorio, Christina R; Carey, Caitlin E; Michalski, Lindsay J; Corral-Frias, Nadia S; Conley, Emily Drabant; Hariri, Ahmad R; Bogdan, Ryan

    2017-06-01

    Early life stress may precipitate psychopathology, at least in part, by influencing amygdala function. Converging evidence across species suggests that links between childhood stress and amygdala function may be dependent upon hypothalamic-pituitary-adrenal (HPA) axis function. Using data from college-attending non-Hispanic European-Americans (n=308) who completed the Duke Neurogenetics Study, we examined whether early life stress (ELS) and HPA axis genetic variation interact to predict threat-related amygdala function as well as psychopathology symptoms. A biologically-informed multilocus profile score (BIMPS) captured HPA axis genetic variation (FKBP5 rs1360780, CRHR1 rs110402; NR3C2 rs5522/rs4635799) previously associated with its function (higher BIMPS are reflective of higher HPA axis activity). BOLD fMRI data were acquired while participants completed an emotional face matching task. ELS and depression and anxiety symptoms were measured using the childhood trauma questionnaire and the mood and anxiety symptom questionnaire, respectively. The interaction between HPA axis BIMPS and ELS was associated with right amygdala reactivity to threat-related stimuli, after accounting for multiple testing (empirical-p=0.016). Among individuals with higher BIMPS (i.e., the upper 21.4%), ELS was positively coupled with threat-related amygdala reactivity, which was absent among those with average or low BIMPS. Further, higher BIMPS were associated with greater self-reported anxious arousal, though there was no evidence that amygdala function mediated this relationship. Polygenic variation linked to HPA axis function may moderate the effects of early life stress on threat-related amygdala function and confer risk for anxiety symptomatology. However, what, if any, neural mechanisms may mediate the relationship between HPA axis BIMPS and anxiety symptomatology remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Domain altering SNPs in the human proteome and their impact on signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yichuan Liu

    Full Text Available Single nucleotide polymorphisms (SNPs constitute an important mode of genetic variations observed in the human genome. A small fraction of SNPs, about four thousand out of the ten million, has been associated with genetic disorders and complex diseases. The present study focuses on SNPs that fall on protein domains, 3D structures that facilitate connectivity of proteins in cell signaling and metabolic pathways. We scanned the human proteome using the PROSITE web tool and identified proteins with SNP containing domains. We showed that SNPs that fall on protein domains are highly statistically enriched among SNPs linked to hereditary disorders and complex diseases. Proteins whose domains are dramatically altered by the presence of an SNP are even more likely to be present among proteins linked to hereditary disorders. Proteins with domain-altering SNPs comprise highly connected nodes in cellular pathways such as the focal adhesion, the axon guidance pathway and the autoimmune disease pathways. Statistical enrichment of domain/motif signatures in interacting protein pairs indicates extensive loss of connectivity of cell signaling pathways due to domain-altering SNPs, potentially leading to hereditary disorders.

  11. Genetic variation in the Cytb gene of human cerebral Taenia solium cysticerci recovered from clinically and radiologically heterogeneous patients with neurocysticercosis

    Directory of Open Access Journals (Sweden)

    Hector Palafox-Fonseca

    2013-11-01

    Full Text Available Neurocysticercosis (NC is a clinically and radiologically heterogeneous parasitic disease caused by the establishment of larval Taenia solium in the human central nervous system. Host and/or parasite variations may be related to this observed heterogeneity. Genetic differences between pig and human-derived T. solium cysticerci have been reported previously. In this study, 28 cysticerci were surgically removed from 12 human NC patients, the mitochondrial gene that encodes cytochrome b was amplified from the cysticerci and genetic variations that may be related to NC heterogeneity were characterised. Nine different haplotypes (Ht, which were clustered in four haplogroups (Hg, were identified. Hg 3 and 4 exhibited a tendency to associate with age and gender, respectively. However, no significant associations were found between NC heterogeneity and the different T. solium cysticerci Ht or Hg. Parasite variants obtained from patients with similar NC clinical or radiological features were genetically closer than those found in groups of patients with a different NC profile when using the Mantel test. Overall, this study establishes the presence of genetic differences in the Cytb gene of T. solium isolated from human cysticerci and suggests that parasite variation could contribute to NC heterogeneity.

  12. [Genetic variation and differentiation in striped field mouse Apodemus agrarius inferred from RAPD-PCR analysis].

    Science.gov (United States)

    Atopkin, D M; Bogdanov, A S; Chelomina, G N

    2007-06-01

    Genetic variation and differentiation of the trans-Palearctic species Apodemus agrarius (striped field mouse), whose range consists of two large isolates-European-Siberian and Far Eastern-Chinese, were examined using RAPD-PCR analysis. The material from the both parts of the range was examined (41 individual of A. agrarius from 18 localities of Russia, Ukraine, Moldova, and Kazakhstan); the Far-Eastern part was represented by samples from the Amur region, Khabarovsk krai, and Primorye (Russia). Differences in frequencies of polymorphic RAPD loci were found between the European-Siberian and the Far Eastern population groups of striped field mouse. No "fixed" differences between them in RAPD spectra were found, and none of the used statistical methods permitted to distinguish with absolute certainty animals from the two range parts. Thus, genetic isolation of the European-Siberian and the Far Eastern population groups of A. agrarius is not strict. These results support the hypothesis on recent dispersal of striped field mouse from East to West Palearctics (during the Holocene climatic optimum, 7000 to 4500 years ago) and subsequent disjunction of the species range (not earlier than 4000-4500 years ago). The Far Eastern population group is more polymorphic than the European-Siberian one, while genetic heterogeneity is more uniformly distributed within it. This is probably explained by both historical events that happened during the species dispersal in the past, and different environmental conditions for the species in different parts of its range. The Far Eastern population group inhabits the area close to the distribution center of A. agrarius. It is likely that this group preserved genetic variation of the formerly integral ancestral form, while some amount of genetic polymorphism could be lost during the species colonization of the Siberian and European areas. To date, the settlement density and population number in general are higher than within the European

  13. Morphological variation in two genetically distinct groups of the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela)

    NARCIS (Netherlands)

    Alexandrino, J.; Ferrand, N.; Arntzen, J.W.

    2005-01-01

    Morphometric and colour pattern variation in the endemic Iberian salamander Chioglossa lusitanica is concordant with the genetic differentiation of two groups of populations separated by the Mondego river in Portugal. Salamanders from the south have shorter digits than those from the north. Clinal

  14. The role of seed size in the non-genetic variation exhibited in salt tolerance studies involving the bread wheat cv. chinese spring

    Directory of Open Access Journals (Sweden)

    P. K. Martin

    2014-01-01

    Full Text Available The intention of this study was to confirm the role of seed size in the non-genetic variation exhibited during salinity tolerance experiments involving the bread wheat cv. Chinese Spring. The nutrient film/rockwool hydroponics technique was utilised. This study concluded that seed size does not play a significant role in the non-genetic variation generated during a study of salinity tolerance of the bread wheat cv. Chinese Spring.

  15. Human genetic variation in VAC14 regulates Salmonella invasion and typhoid fever through modulation of cholesterol.

    Science.gov (United States)

    Alvarez, Monica I; Glover, Luke C; Luo, Peter; Wang, Liuyang; Theusch, Elizabeth; Oehlers, Stefan H; Walton, Eric M; Tram, Trinh Thi Bich; Kuang, Yu-Lin; Rotter, Jerome I; McClean, Colleen M; Chinh, Nguyen Tran; Medina, Marisa W; Tobin, David M; Dunstan, Sarah J; Ko, Dennis C

    2017-09-12

    Risk, severity, and outcome of infection depend on the interplay of pathogen virulence and host susceptibility. Systematic identification of genetic susceptibility to infection is being undertaken through genome-wide association studies, but how to expeditiously move from genetic differences to functional mechanisms is unclear. Here, we use genetic association of molecular, cellular, and human disease traits and experimental validation to demonstrate that genetic variation affects expression of VAC14, a phosphoinositide-regulating protein, to influence susceptibility to Salmonella enterica serovar Typhi ( S Typhi) infection. Decreased VAC14 expression increased plasma membrane cholesterol, facilitating Salmonella docking and invasion. This increased susceptibility at the cellular level manifests as increased susceptibility to typhoid fever in a Vietnamese population. Furthermore, treating zebrafish with a cholesterol-lowering agent, ezetimibe, reduced susceptibility to S Typhi. Thus, coupling multiple genetic association studies with mechanistic dissection revealed how VAC14 regulates Salmonella invasion and typhoid fever susceptibility and may open doors to new prophylactic/therapeutic approaches.

  16. Genetic variation in flowering phenology and avoidance of seed predation in native populations of Ulex europaeus.

    Science.gov (United States)

    Atlan, A; Barat, M; Legionnet, A S; Parize, L; Tarayre, M

    2010-02-01

    The genetic variation in flowering phenology may be an important component of a species' capacity to colonize new environments. In native populations of the invasive species Ulex europaeus, flowering phenology has been shown to be bimodal and related to seed predation. The aim of the present study was to determine if this bimodality has a genetic basis, and to investigate whether the polymorphism in flowering phenology is genetically linked to seed predation, pod production and growth patterns. We set up an experiment raising maternal families in a common garden. Based on mixed analyses of variance and correlations among maternal family means, we found genetic differences between the two main flowering types and confirmed that they reduced seed predation in two different ways: escape in time or predator satiation. We suggest that this polymorphism in strategy may facilitate maintain high genetic diversity for flowering phenology and related life-history traits in native populations of this species, hence providing high evolutionary potential for these traits in invaded areas.

  17. Genetic variation in the emblematic Puya raimondii (Bromeliaceae from Huascarán National Park, Peru

    Directory of Open Access Journals (Sweden)

    Claudia Teresa Hornung-Leoni

    2013-04-01

    Full Text Available Puya raimondii, the giant Peruvian and Bolivian terrestrial bromeliad, is an emblematic endemic Andean species well represented in Huascarán National Park in Peru. This park is the largest reserve of puna (high altitude plateau vegetation. The objective of this study is to report on genetic variation in populations of P. raimondii from Huascarán and neighboring areas. AFLP profiles with four selective primer combinations were retrieved for 60 individuals from different zones. Genetic variability was estimated and a total of 172 bands were detected, of which 79.1% were polymorphic loci. The results showed genetic differentiation among populations, and gene flow. A cluster analysis showed that individuals of P. raimondii populations located in different mountain systems could be grouped together, suggesting long distance dispersal. Thus, conservation strategies for P. raimondii have to take into account exchange between populations located far apart in distance in order to preserve the genetic diversity of this showy species.

  18. Epigenetic Alterations in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Johannes eGräff

    2015-12-01

    Full Text Available Alzheimer’s disease (AD is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.

  19. Epigenetic Alterations in Alzheimer's Disease.

    Science.gov (United States)

    Sanchez-Mut, Jose V; Gräff, Johannes

    2015-01-01

    Alzheimer's disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.

  20. Genetic Alterations in Pesticide Exposed Bolivian Farmers

    DEFF Research Database (Denmark)

    Jørs, Erik; González, Ana Rosa; Ascarrunz, Maria Eugenia

    2007-01-01

    : Questionnaires were applied and blood tests taken from 81 volunteers from La Paz County, of whom 48 were pesticide exposed farmers and 33 non-exposed controls. Sixty males and 21 females participated with a mean age of 37.3 years (range 17-76). Data of exposure and possible genetic damage were collected...... and evaluated by well known statistical methods, controlling for relevant confounders. To measure genetic damage chromosomal aberrations and the comet assay analysis were performed. Results: Pesticide exposed farmers had a higher degree of genetic damage compared to the control group. The number of chromosomal......, probably related to exposure to pesticides. Due to the potentially negative long term health effects of genetic damage on reproduction and the development of cancer, preventive measures are recommended. Effective control with imports and sales, banning of the most toxic pesticides, education...

  1. Copy number variation analysis of matched ovarian primary tumors and peritoneal metastasis.

    Directory of Open Access Journals (Sweden)

    Joel A Malek

    Full Text Available Ovarian cancer is the most deadly gynecological cancer. The high rate of mortality is due to the large tumor burden with extensive metastatic lesion of the abdominal cavity. Despite initial chemosensitivity and improved surgical procedures, abdominal recurrence remains an issue and results in patients' poor prognosis. Transcriptomic and genetic studies have revealed significant genome pathologies in the primary tumors and yielded important information regarding carcinogenesis. There are, however, few studies on genetic alterations and their consequences in peritoneal metastatic tumors when compared to their matched ovarian primary tumors. We used high-density SNP arrays to investigate copy number variations in matched primary and metastatic ovarian cancer from 9 patients. Here we show that copy number variations acquired by ovarian tumors are significantly different between matched primary and metastatic tumors and these are likely due to different functional requirements. We show that these copy number variations clearly differentially affect specific pathways including the JAK/STAT and cytokine signaling pathways. While many have shown complex involvement of cytokines in the ovarian cancer environment we provide evidence that ovarian tumors have specific copy number variation differences in many of these genes.

  2. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Michelle R Jones

    2015-08-01

    Full Text Available Genome wide association studies (GWAS have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS, a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  3. Mapping the genetic basis of symbiotic variation in legume-rhizobium interactions in Medicago truncatula.

    Science.gov (United States)

    Gorton, Amanda J; Heath, Katy D; Pilet-Nayel, Marie-Laure; Baranger, Alain; Stinchcombe, John R

    2012-11-01

    Mutualisms are known to be genetically variable, where the genotypes differ in the fitness benefits they gain from the interaction. To date, little is known about the loci that underlie such genetic variation in fitness or whether the loci influencing fitness are partner specific, and depend on the genotype of the interaction partner. In the legume-rhizobium mutualism, one set of potential candidate genes that may influence the fitness benefits of the symbiosis are the plant genes involved in the initiation of the signaling pathway between the two partners. Here we performed quantitative trait loci (QTL) mapping in Medicago truncatula in two different rhizobium strain treatments to locate regions of the genome influencing plant traits, assess whether such regions are dependent on the genotype of the rhizobial mutualist (QTL × rhizobium strain), and evaluate the contribution of sequence variation at known symbiosis signaling genes. Two of the symbiotic signaling genes, NFP and DMI3, colocalized with two QTL affecting average fruit weight and leaf number, suggesting that natural variation in nodulation genes may potentially influence plant fitness. In both rhizobium strain treatments, there were QTL that influenced multiple traits, indicative of either tight linkage between loci or pleiotropy, including one QTL with opposing effects on growth and reproduction. There was no evidence for QTL × rhizobium strain or genotype × genotype interactions, suggesting either that such interactions are due to small-effect loci or that more genotype-genotype combinations need to be tested in future mapping studies.

  4. Large variations in ocular dimensions in a multiethnic population with similar genetic background

    OpenAIRE

    Niu, Zhiqiang; Li, Jun; Zhong, Hua; Yuan, Zhonghua; Zhou, Hua; Zhang, Yang; Yuan, Yuansheng; Chen, Qin; Pan, Chen-Wei

    2016-01-01

    We aimed to describe the ethnic variations in ocular dimensions among three ethnic groups with similar genetic ancestry from mainland of China. We included 2119 ethnic Bai, 2202 ethnic Yi and 2183 ethnic Han adults aged 50 years or older in the study. Ocular dimensions including axial length (AL), anterior chamber depth (ACD), vitreous chamber depth (VCD) and lens thickness (LT) were measured using A-scan ultrasonography. Bai Chinese had longer ALs (P?

  5. Genetic Diversity of Seven Cattle Breeds Inferred Using Copy Number Variations

    Directory of Open Access Journals (Sweden)

    Magretha D. Pierce

    2018-05-01

    Full Text Available Copy number variations (CNVs comprise deletions, duplications, and insertions found within the genome larger than 50 bp in size. CNVs are thought to be primary role-players in breed formation and adaptation. South Africa boasts a diverse ecology with harsh environmental conditions and a broad spectrum of parasites and diseases that pose challenges to livestock production. This has led to the development of composite cattle breeds which combine the hardiness of Sanga breeds and the production potential of the Taurine breeds. The prevalence of CNVs within these respective breeds of cattle and the prevalence of CNV regions (CNVRs in their diversity, adaptation and production is however not understood. This study therefore aimed to ascertain the prevalence, diversity, and correlations of CNVRs within cattle breeds used in South Africa. Illumina Bovine SNP50 data and PennCNV were utilized to identify CNVRs within the genome of 287 animals from seven cattle breeds representing Sanga, Taurine, Composite, and cross breeds. Three hundred and fifty six CNVRs of between 36 kb to 4.1 Mb in size were identified. The null hypothesis that one CNVR loci is independent of another was tested using the GENEPOP software. One hunded and two and seven of the CNVRs in the Taurine and Sanga/Composite cattle breeds demonstrated a significant (p ≤ 0.05 association. PANTHER overrepresentation analyses of correlated CNVRs demonstrated significant enrichment of a number of biological processes, molecular functions, cellular components, and protein classes. CNVR genetic variation between and within breed group was measured using phiPT which allows intra-individual variation to be suppressed and hence proved suitable for measuring binary CNVR presence/absence data. Estimate PhiPT within and between breed variance was 2.722 and 0.518 respectively. Pairwise population PhiPT values corresponded with breed type, with Taurine Holstein and Angus breeds demonstrating no between

  6. Genetic analysis of central carbon metabolism unveils an amino acid substitution that alters maize NAD-dependent isocitrate dehydrogenase activity.

    Directory of Open Access Journals (Sweden)

    Nengyi Zhang

    2010-04-01

    Full Text Available Central carbon metabolism (CCM is a fundamental component of life. The participating genes and enzymes are thought to be structurally and functionally conserved across and within species. Association mapping utilizes a rich history of mutation and recombination to achieve high resolution mapping. Therefore, applying association mapping in maize (Zea mays ssp. mays, the most diverse model crop species, to study the genetics of CCM is a particularly attractive system.We used a maize diversity panel to test the CCM functional conservation. We found heritable variation in enzyme activity for every enzyme tested. One of these enzymes was the NAD-dependent isocitrate dehydrogenase (IDH, E.C. 1.1.1.41, in which we identified a novel amino-acid substitution in a phylogenetically conserved site. Using candidate gene association mapping, we identified that this non-synonymous polymorphism was associated with IDH activity variation. The proposed mechanism for the IDH activity variation includes additional components regulating protein level. With the comparison of sequences from maize and teosinte (Zea mays ssp. Parviglumis, the maize wild ancestor, we found that some CCM genes had also been targeted for selection during maize domestication.Our results demonstrate the efficacy of association mapping for dissecting natural variation in primary metabolic pathways. The considerable genetic diversity observed in maize CCM genes underlies heritable phenotypic variation in enzyme activities and can be useful to identify putative functional sites.

  7. Genetic variation and correlation of agronomic traits in meadow bromegrass (Bromus riparius Rehm clones

    Directory of Open Access Journals (Sweden)

    Araújo Marcelo Renato Alves de

    2004-01-01

    Full Text Available Meadow bromegrass (Bromus riparius Rehm. is a recently introduced pasture grass in western Canada. Its leafy production and rapid regrowth have made it a major grass species for pasturing beef animals in this region. As relatively little breeding work has been done on this species, there is little information on its breeding behaviour. The main objective of this study was to estimate total genetic variability, broad-sense heritability, phenotypic and genetic correlations. Forty-four meadow bromegrass clones were evaluated for agronomic characters. Genetic variation for dry matter yield, seed yield, fertility index, harvest index, plant height, plant spread, crude protein, neutral detergent fiber and acid detergent fiber, was significant. Broad-sense heritability estimates exceeded 50% for all characters. Heritability estimates were at least 3.5 times greater than their standard errors. Phenotypic and genetic correlation between all possible characters were measured. There was general agreement in both sign and magnitude between genetic and phenotypic correlations. Correlations between the different characters demonstrated that it is possible to simultaneously improve seed and forage yield. Based on the results, it appears that the development of higher yielding cultivars with higher crude protein, and lower acid and neutral detergent fibers concentration should be possible.

  8. Genetic Variation between Biomphalaria alexandrina Snails Susceptible and Resistant to Schistosoma mansoni Infection

    Directory of Open Access Journals (Sweden)

    Suzanne M. F. El-Nassery

    2013-01-01

    Full Text Available Much effort has been made to control schistosomiasis infection in Egypt. However, enduring effects from such strategies have not yet been achieved. In this study, we sought to determine the genetic variability related to the interaction between Biomphalaria alexandrina snails and Schistosoma mansoni. Using RAPD-PCR with eight (10 mers random primers, we were able to determine the polymorphic markers that differed between snails susceptible and resistant to Schistosoma mansoni infection using five primers out of the eight. Our results suggest that the RAPD-PCR technique is an efficient means by which to compare genomes and to detect genetic variations between schistosomiasis intermediate hosts. The RAPD technique with the above-noted primers can identify genomic markers that are specifically related to the Biomphalaria alexandrina/Schistosoma mansoni relationship in the absence of specific nucleotide sequence information. This approach could be used in epidemiologic surveys to investigate genetic diversity among Biomphalaria alexandrina snails. The ability to determine resistant markers in Biomphalaria alexandrina snails could potentially lead to further studies that use refractory snails as agents to control the spread of schistosomiasis.

  9. Transferrin variation and genetic structure of reindeer populations in Scandinavia

    Directory of Open Access Journals (Sweden)

    Knut H. Røed

    1987-06-01

    Full Text Available Polyacrylamide gel electrophoresis was used to analyse transferrin variation in herds of semi-domestic reindeer from Scandinavia. The results are compared with previously reported values for other populations of both semi-domestic and wild reindeer using the same techniques as in the present study. In all populations the number of alleles was high, ranging from seven to eleven, and the heterozygosity was correspondingly high, with a mean of 0.749. This high genetic variation in all populations suggests that inbreeding is not widespread among Scandinavian reindeer. The pattern of allele frequency distribution indicates a high degree of genetic heterogeneity in the transferrin locus, both between the different semi-domestic herds and between the different wild populations. The mean value of genetic distance was 0.069 between semi-domestic herds and 0.091 between wild populations. Between semi-domestic and wild populations the genetic distance was particularly high, with a mean of 0.188. This high value was mainly due to a different pattern in the distribution of the two most common transferrin alleles: Tfu was most common among semi-domestic herds, while TfEI was most common among wild populations. These differences in transferrin allele distribution are discussed in relation to possible different origins of semi-domestic and wild reindeer in Scandinavia, or alternatively, to different selection forces acting on transferrin genotypes in semi-domestic and wild populations.Transferrin-variasjon og genetisk struktur hos rein i Skandinavia.Abstact in Norwegian / Sammendrag: Transferrin-variasjon i tamreinflokker ble analysert ved hjelp av polyacrylamid gel elektroforese. Resultatene er sammenlignet med verdier som tidligere er beskrevet for både tamrein og villrein hvor det ble benyttet samme metode som i denne undersøkelsen. I alle populasjonene ble det registrert et høyt antall alleler (7-11 og heterozygositeten var tilsvarende høy med en

  10. A genetic variant of the sperm-specific SLO3 K+ channel has altered pH and Ca2+ sensitivities.

    Science.gov (United States)

    Geng, Yanyan; Ferreira, Juan J; Dzikunu, Victor; Butler, Alice; Lybaert, Pascale; Yuan, Peng; Magleby, Karl L; Salkoff, Lawrence; Santi, Celia M

    2017-05-26

    To fertilize an oocyte, sperm must first undergo capacitation in which the sperm plasma membrane becomes hyperpolarized via activation of potassium (K + ) channels and resultant K + efflux. Sperm-specific SLO3 K + channels are responsible for these membrane potential changes critical for fertilization in mouse sperm, and they are only sensitive to pH i However, in human sperm, the major K + conductance is both Ca 2+ - and pH i -sensitive. It has been debated whether Ca 2+ -sensitive SLO1 channels substitute for human SLO3 (hSLO3) in human sperm or whether human SLO3 channels have acquired Ca 2+ sensitivity. Here we show that hSLO3 is rapidly evolving and reveal a natural structural variant with enhanced apparent Ca 2+ and pH sensitivities. This variant allele (C382R) alters an amino acid side chain at a principal interface between the intramembrane-gated pore and the cytoplasmic gating ring of the channel. Because the gating ring contains sensors to intracellular factors such as pH and Ca 2+ , the effectiveness of transduction between the gating ring and the pore domain appears to be enhanced. Our results suggest that sperm-specific genes can evolve rapidly and that natural genetic variation may have led to a SLO3 variant that differs from wild type in both pH and intracellular Ca 2+ sensitivities. Whether this physiological variation confers differences in fertility among males remains to be established. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Genetic and Cytological Analyses of the Natural Variation of Seed Number per Pod in Rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Yuhua Yang

    2017-11-01

    Full Text Available Seed number is one of the key traits related to plant evolution/domestication and crop improvement/breeding. In rapeseed germplasm, the seed number per pod (SNPP shows a very wide variation from several to nearly 30; however, the underlying causations/mechanisms for this variation are poorly known. In the current study, the genetic and cytological bases for the natural variation of SNPP in rapeseed was firstly and systematically investigated using the representative four high-SNPP and five low-SNPP lines. The results of self- or cross-pollination experiment between the high- and low-SNPP lines showed that the natural variation of SNPP was mainly controlled by maternal effect (mean = 0.79, followed by paternal effect (mean = 0.21. Analysis of the data using diploid seed embryo–cytoplasmic–maternal model further showed that the maternal genotype, embryo, and cytoplasm effects, respectively, explained 47.6, 35.2, and 7.5% of the genetic variance. In addition, the analysis of combining ability showed that for the SNPP of hybrid F1 was mainly determined by the general combining ability of parents (63.0%, followed by special combining ability of parental combination (37.0%. More importantly, the cytological observation showed that the SNPP difference between the high- and low-SNPP lines was attributable to the accumulative differences in its components. Of which, the number of ovules, the proportion of fertile ovules, the proportion of fertile ovules to be fertilized, and the proportion of fertilized ovules to develop into seeds accounted for 30.7, 18.2, 7.1, and 43.9%, respectively. The accordant results of both genetic and cytological analyses provide solid evidences and systematic insights to further understand the mechanisms underlying the natural variation of SNPP, which will facilitate the development of high-yield cultivars in rapeseed.

  12. Urban park characteristics, genetic variation, and historical demography of white-footed mouse (Peromyscus leucopus populations in New York City

    Directory of Open Access Journals (Sweden)

    Jason Munshi-South

    2014-03-01

    Full Text Available Severe fragmentation is a typical fate of native remnant habitats in cities, and urban wildlife with limited dispersal ability are predicted to lose genetic variation in isolated urban patches. However, little information exists on the characteristics of urban green spaces required to conserve genetic variation. In this study, we examine whether isolation in New York City (NYC parks results in genetic bottlenecks in white-footed mice (Peromyscus leucopus, and test the hypotheses that park size and time since isolation are associated with genetic variability using nonlinear regression and information-theoretic model selection. White-footed mice have previously been documented to exhibit male-biased dispersal, which may create disparities in genetic variation between males and females in urban parks. We use genotypes of 18 neutral microsatellite data and four different statistical tests to assess this prediction. Given that sex-biased dispersal may create disparities between population genetic patterns inferred from bi- vs. uni-parentally inherited markers, we also sequenced a 324 bp segment of the mitochondrial D-loop for independent inferences of historical demography in urban P. leucopus. We report that isolation in urban parks does not necessarily result in genetic bottlenecks; only three out of 14 populations in NYC parks exhibited a signature of a recent bottleneck at 18 neutral microsatellite loci. Mouse populations in larger urban parks, or parks that have been isolated for shorter periods of time, also do not generally contain greater genetic variation than populations in smaller parks. These results suggest that even small networks of green spaces may be sufficient to maintain the evolutionary potential of native species with certain characteristics. We also found that isolation in urban parks results in weak to nonexistent sex-biased dispersal in a species known to exhibit male-biased dispersal in less fragmented environments. In

  13. Farnesoid X receptor (FXR activation and FXR genetic variation in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Rian M Nijmeijer

    Full Text Available BACKGROUND: We previously showed that activation of the bile salt nuclear receptor Farnesoid X Receptor (FXR protects against intestinal inflammation in mice. Reciprocally, these inflammatory mediators may decrease FXR activation. We investigated whether FXR activation is repressed in the ileum and colon of inflammatory bowel disease (IBD patients in remission. Additionally, we evaluated whether genetic variation in FXR is associated with IBD. METHODS: mRNA expression of FXR and FXR target gene SHP was determined in ileal and colonic biopsies of patients with Crohn's colitis (n = 15 and ulcerative colitis (UC; n = 12, all in clinical remission, and healthy controls (n = 17. Seven common tagging SNPs and two functional SNPs in FXR were genotyped in 2355 Dutch IBD patients (1162 Crohn's disease (CD and 1193 UC and in 853 healthy controls. RESULTS: mRNA expression of SHP in the ileum is reduced in patients with Crohn's colitis but not in patients with UC compared to controls. mRNA expression of villus marker Villin was correlated with FXR and SHP in healthy controls, a correlation that was weaker in UC patients and absent in CD patients. None of the SNPs was associated with IBD, UC or CD, nor with clinical subgroups of CD. CONCLUSIONS: FXR activation in the ileum is decreased in patients with Crohn's colitis. This may be secondary to altered enterohepatic circulation of bile salts or transrepression by inflammatory signals but does not seem to be caused by the studied SNPs in FXR. Increasing FXR activity by synthetic FXR agonists may have benefit in CD patients.

  14. On the edge of Bantu expansions: mtDNA, Y chromosome and lactase persistence genetic variation in southwestern Angola

    Directory of Open Access Journals (Sweden)

    Beleza Sandra

    2009-04-01

    Full Text Available Abstract Background Current information about the expansion of Bantu-speaking peoples is hampered by the scarcity of genetic data from well identified populations from southern Africa. Here, we fill an important gap in the analysis of the western edge of the Bantu migrations by studying for the first time the patterns of Y-chromosome, mtDNA and lactase persistence genetic variation in four representative groups living around the Namib Desert in southwestern Angola (Ovimbundu, Ganguela, Nyaneka-Nkumbi and Kuvale. We assessed the differentiation between these populations and their levels of admixture with Khoe-San groups, and examined their relationship with other sub-Saharan populations. We further combined our dataset with previously published data on Y-chromosome and mtDNA variation to explore a general isolation with migration model and infer the demographic parameters underlying current genetic diversity in Bantu populations. Results Correspondence analysis, lineage sharing patterns and admixture estimates indicate that the gene pool from southwestern Angola is predominantly derived from West-Central Africa. The pastoralist Herero-speaking Kuvale people were additionally characterized by relatively high frequencies of Y-chromosome (12% and mtDNA (22% Khoe-San lineages, as well as by the presence of the -14010C lactase persistence mutation (6%, which likely originated in non-Bantu pastoralists from East Africa. Inferred demographic parameters show that both male and female populations underwent significant size growth after the split between the western and eastern branches of Bantu expansions occurring 4000 years ago. However, males had lower population sizes and migration rates than females throughout the Bantu dispersals. Conclusion Genetic variation in southwestern Angola essentially results from the encounter of an offshoot of West-Central Africa with autochthonous Khoisan-speaking peoples from the south. Interactions between the Bantus

  15. Genetic Variation of Follicle-Stimulating Hormone Action Is Associated With Age at Testicular Growth in Boys

    DEFF Research Database (Denmark)

    Busch, Alexander S; Hagen, Casper P; Main, Katharina M

    2017-01-01

    Context: Although genetic factors play a pivotal role in male pubertal timing, genome-wide association studies have identified only a few loci. Genetic variation of follicle-stimulating hormone (FSH) action affects adult reproductive parameters and female pubertal timing. Objective: To investigate...... effective FSH action. Effects explained 1.7% (Denmark) and 1.5% (Chile) of the variance. In addition, BMI z score was negatively associated with pubertal timing (β = -0.35 years in both cohorts), explaining 17.2% (Denmark) and 7.2% (Chile) of the variance. Conclusion: In two ethnically distinct populations...

  16. Childhood socioeconomic status and longitudinal patterns of alcohol problems: Variation across etiological pathways in genetic risk.

    Science.gov (United States)

    Barr, Peter B; Silberg, Judy; Dick, Danielle M; Maes, Hermine H

    2018-05-14

    Childhood socioeconomic status (SES) is an important aspect of early life environment associated with later life health/health behaviors, including alcohol misuse. However, alcohol misuse is modestly heritable and involves differing etiological pathways. Externalizing disorders show significant genetic overlap with substance use, suggesting an impulsivity pathway to alcohol misuse. Alcohol misuse also overlaps with internalizing disorders, suggesting alcohol is used to cope. These differing pathways could lead to different patterns over time and/or differential susceptibility to environmental conditions, such as childhood SES. We examine whether: 1) genetic risk for externalizing and internalizing disorders influence trajectories of alcohol problems across adolescence to adulthood, 2) childhood SES alters genetic risk these disorders on trajectories of alcohol problems, and 3) these patterns are consistent across sex. We find modest evidence of gene-environment interaction. Higher childhood SES increases the risk of alcohol problems in late adolescence/early adulthood, while lower childhood SES increases the risk of alcohol problems in later adulthood, but only among males at greater genetic risk of externalizing disorders. Females from lower SES families with higher genetic risk of internalizing or externalizing disorders have greater risk of developing alcohol problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Genetic variation associated with mammalian feeding in Culex pipiens from a West Nile virus epidemic region in Chicago, Illinois.

    Science.gov (United States)

    Huang, Shaoming; Hamer, Gabriel L; Molaei, Goudarz; Walker, Edward D; Goldberg, Tony L; Kitron, Uriel D; Andreadis, Theodore G

    2009-12-01

    Mosquitoes of the Culex pipiens complex are important vectors of West Nile virus in the United States. We examined the genetic variations of Cx. pipiens mosquitoes from Chicago, Illinois that were determined to be principally ornithophilic but exhibited a relatively higher inclination for mammalian hosts including humans. Microsatellite analysis of 10 polymorphic markers was performed on 346 engorged Cx. pipiens specimens with identified avian or mammalian blood meals. Our results indicated that there were no significant differences in allelic richness, the pattern of conformity to Hardy-Weinberg equilibrium, and linkage disequilibrium, nor was there overall genetic differentiation between specimens with avian- and mammalian-derived blood meals. However, Cx. pipiens form pipiens with mammalian- (including human-) derived blood meals had significantly higher ancestry (p 0.05) and the proportion of hybrids (p > 0.05) from Cx. quinquefasciatus (population from Harris Country, Texas). No temporal genetic variation was detected in accordance with the observation that there was no shift in blood feeding from birds to mammals. The results of this study in conjunction with regional host-feeding behavior suggest that the probability of genetic ancestry from Cx. pipiens f. molestus may predispose mosquitoes to feed more readily on mammals; however, the genetic mechanisms are unknown.

  18. Natural Selection and Evolution: Using Multimedia Slide Shows to Emphasize the Role of Genetic Variation

    Science.gov (United States)

    Malone, Molly

    2012-01-01

    Most middle school students comprehend that organisms have adaptations that enable their survival and that successful adaptations prevail in a population over time. Yet they often miss that those bird beaks, moth-wing colors, or whatever traits are the result of random, normal genetic variations that just happen to confer a negative, neutral, or…

  19. Introgression from cultivated rice alters genetic structures of wild relative populations: implications for in situ conservation

    Science.gov (United States)

    Jin, Xin; Chen, Yu; Liu, Ping; Li, Chen; Cai, Xingxing; Rong, Jun

    2018-01-01

    Abstract Maintaining genetic integrity is essential for in situ and ex situ conservation of crop wild relative (CWR) species. However, introgression of crop alleles into CWR species/populations may change their genetic structure and diversity, resulting in more invasive weeds or, in contrast, the extinction of endangered populations. To determine crop-wild introgression and its consequences, we examined the genetic structure and diversity of six wild rice (Oryza rufipogon) populations under in situ conservation in China. Thirty-four simple sequence repeat (SSR) and 34 insertion/deletion markers were used to genotype the wild rice populations and two sets of rice cultivars (O. sativa), corresponding to the two types of molecular markers. Shared alleles and STRUCTURE analyses suggested a variable level of crop-wild introgression and admixture. Principal coordinates and cluster analyses indicated differentiation of wild rice populations, which was associated with the spatial distances to cultivated rice fields. The level of overall genetic diversity was comparable between wild rice populations and rice cultivars, but a great number of wild-specific alleles was detected in the wild populations. We conclude based on the results that crop-wild introgression can considerably alter the pattern of genetic structure and relationships of CWR populations. Appropriate measures should be taken for effective in situ conservation of CWR species under the scenario of crop-wild introgression. PMID:29308123

  20. Estimating the actual subject-specific genetic correlations in behavior genetics.

    Science.gov (United States)

    Molenaar, Peter C M

    2012-10-01

    Generalization of the standard behavior longitudinal genetic factor model for the analysis of interindividual phenotypic variation to a genetic state space model for the analysis of intraindividual variation enables the possibility to estimate subject-specific heritabilities.

  1. Nuclear genetic variation across the range of ponderosa pine (Pinus ponderosa): Phylogeographic, taxonomic and conservation implications

    Science.gov (United States)

    Kevin M. Potter; Valerie D. Hipkins; Mary F. Mahalovich; Robert E. Means

    2015-01-01

    Ponderosa pine (Pinus ponderosa) is among the most broadly distributed conifer species of western North America, where it possesses considerable ecological, esthetic, and commercial value. It exhibits complicated patterns of morphological and genetic variation, suggesting that it may be in the process of differentiating into distinct regional...

  2. Molecular Population Genetics.

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  3. Genetic and pharmacological modifications of thrombin formation in apolipoprotein e-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner

    NARCIS (Netherlands)

    Borissoff, Julian I.; Otten, Jeroen J. T.; Heeneman, Sylvia; Leenders, Peter; van Oerle, René; Soehnlein, Oliver; Loubele, Sarah T. B. G.; Hamulyák, Karly; Hackeng, Tilman M.; Daemen, Mat J. A. P.; Degen, Jay L.; Weiler, Hartmut; Esmon, Charles T.; van Ryn, Joanne; Biessen, Erik A. L.; Spronk, Henri M. H.; ten Cate, Hugo

    2013-01-01

    Variations in the blood coagulation activity, determined genetically or by medication, may alter atherosclerotic plaque progression, by influencing pleiotropic effects of coagulation proteases. Published experimental studies have yielded contradictory findings on the role of hypercoagulability in

  4. Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum.

    Science.gov (United States)

    Wójcik, Małgorzata; Dresler, Sławomir; Jawor, Emilia; Kowalczyk, Krzysztof; Tukiendorf, Anna

    2013-01-01

    Waste deposits produced by metal mining and smelting activities provide extremely difficult habitats for plant colonization and growth. Therefore, plants spontaneously colonizing such areas represent a very interesting system for studying evolution of plant adaptation and population differentiation between contaminated and noncontaminated environments. In this study, two populations of Dianthus carthusianorum, one originating from Zn-Pb waste deposit (a metallicolous population, M) and the other from unpolluted soil (a nonmetallicolous population, NM), were analyzed in respect of their morphological and physiological traits as well as genetic markers. It was found that the plants inhabiting the waste heap differed significantly from the NM plants in terms of leaf size and shape, and these differences were persistent between the first generation of the plants of both populations cultivated under uniform, controlled laboratory conditions. In contrast with the evident morphological differences, no significant differentiation between the populations regarding the physiological traits measured (accumulation of proline, anthocyanins, chlorophyll, carotenoids) was found. These traits can be regarded as neither population specific nor stress markers. The genetic variability was analyzed using 17 random amplified polymorphic DNA (RAPD) and four inter simple sequence repeat (ISSR) markers; this proved that the differentiation between the M and NM populations exists also at the genetic level. Analysis of molecular variance (AMOVA) showed that 24% of the total genetic diversity resided among populations, while 76% - within the populations. However, no significant differences in intrapopulation genetic diversity (Hj) between the M and NM populations of D. carthusianorum was found, which contradicts the theory that acquisition of adaptation mechanisms to adverse, isolated growth habitats is related to reduction in genetic diversity. Distinct genetic differences between the two

  5. An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines

    Science.gov (United States)

    Both epigenetic alterations and genetic variations play essential roles in tumorigenesis. The epigenetic modification of DNA methylation is catalyzed and maintained by the DNA methyltransferases (DNMT3a, DNMT3b and DNMT1). DNA mutations and DNA methylation profiles of DNMTs themselves and their rela...

  6. Natural selection affects multiple aspects of genetic variation at putatively peutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui

    2011-01-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries...... these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination...... and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations...

  7. Using Genetically Engineered Animal Models in the Postgenomic Era to Understand Gene Function in Alcoholism

    Science.gov (United States)

    Reilly, Matthew T.; Harris, R. Adron; Noronha, Antonio

    2012-01-01

    Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene’s function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput “next-generation sequencing” technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism. PMID:23134044

  8. Environmental variation partitioned into separate heritable components

    DEFF Research Database (Denmark)

    Ørsted, Michael; Rohde, Palle Duun; Hoffmann, Ary A

    2018-01-01

    Trait variation is normally separated into genetic and environmental components, yet genetic factors also control the expression of environmental variation, encompassing plasticity across environmental gradients and within-environment responses. We defined four components of environmental variation......: plasticity across environments, variability in plasticity, variation within environments, and differences in within-environment variation across environments. We assessed these components for cold tolerance across five rearing temperatures using the Drosophila melanogaster Genetic Reference Panel (DGRP...

  9. Genetic variation in the response of the weed Ruellia nudiflora (Acanthaceae) to arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Ramos-Zapata, José Alberto; Campos-Navarrete, María José; Parra-Tabla, Víctor; Abdala-Roberts, Luis; Navarro-Alberto, Jorge

    2010-04-01

    The main goal of this work was to test for plant genetic variation in the phenotypic plasticity response of the weed Ruellia nudiflora to arbuscular mycorrhizal (AM) fungi inoculation. We collected plants in the field, kept them under homogeneous conditions inside a nursery, and then collected seeds from these parent plants to generate five inbred lines (i.e., genetic families). Half of the plants of each inbred line were inoculated with AM fungi while the other half were not (controls); a fully crossed experimental design was then used to test for the effects of treatment (with or without AM fungi inoculation) and inbred line (genetic family). For each plant, we recorded the number of leaves produced and the number of days it survived during a 2-month period. Results showed a strong positive treatment effect (plastic response to AM fungi inoculation) for leaf production and survival. Moreover, in terms of survival, the treatment effect differed between genetic families (significant genetic family by treatment interaction). These findings indicate that the positive effect of AM fungi on plant survival (and potentially also growth) differs across plant genotypes and that such condition may contribute to R. nudiflora's capacity to colonize new environments.

  10. Recolonization after habitat restoration leads to decreased genetic variation in populations of a terrestrial orchid.

    Science.gov (United States)

    Vandepitte, K; Gristina, A S; De Hert, K; Meekers, T; Roldán-Ruiz, I; Honnay, O

    2012-09-01

    Colonization is crucial to habitat restoration projects that rely on the spontaneous regeneration of the original vegetation. However, as a previously declining plant species spreads again, the likelihood of founder effects increases through recurrent population founding and associated serial bottlenecks. We related Amplified Fragment Length Polymorphism markers genetic variation and fitness to colonization history for all extant populations of the outcrossing terrestrial orchid Dactylorhiza incarnata in an isolated coastal dune complex. Around 1970, D. incarnata suffered a severe bottleneck yet ultimately persisted and gradually spread throughout the spatially segregated dune slacks, aided by the restoration of an open vegetation. Genetic assignment demonstrated dispersal to vacant sites from few nearby extant populations and very limited inflow from outside the spatially isolated reserve. Results further indicated that recurrent founding from few local sources resulted in the loss of genetic diversity and promoted genetic divergence (F(ST) = 0.35) among populations, but did not influence population fitness. The few source populations initially available and the limited inflow of genes from outside the study reserve, as a consequence of habitat degradation and spatial isolation, may have magnified the genetic effects of recurrent population founding. © 2012 Blackwell Publishing Ltd.

  11. Ultra Deep Sequencing of a Baculovirus Population Reveals Widespread Genomic Variations

    Directory of Open Access Journals (Sweden)

    Aurélien Chateigner

    2015-07-01

    Full Text Available Viruses rely on widespread genetic variation and large population size for adaptation. Large DNA virus populations are thought to harbor little variation though natural populations may be polymorphic. To measure the genetic variation present in a dsDNA virus population, we deep sequenced a natural strain of the baculovirus Autographa californica multiple nucleopolyhedrovirus. With 124,221X average genome coverage of our 133,926 bp long consensus, we could detect low frequency mutations (0.025%. K-means clustering was used to classify the mutations in four categories according to their frequency in the population. We found 60 high frequency non-synonymous mutations under balancing selection distributed in all functional classes. These mutants could alter viral adaptation dynamics, either through competitive or synergistic processes. Lastly, we developed a technique for the delimitation of large deletions in next generation sequencing data. We found that large deletions occur along the entire viral genome, with hotspots located in homologous repeat regions (hrs. Present in 25.4% of the genomes, these deletion mutants presumably require functional complementation to complete their infection cycle. They might thus have a large impact on the fitness of the baculovirus population. Altogether, we found a wide breadth of genomic variation in the baculovirus population, suggesting it has high adaptive potential.

  12. [Epigenetic alterations in acute lymphoblastic leukemia].

    Science.gov (United States)

    Navarrete-Meneses, María Del Pilar; Pérez-Vera, Patricia

    Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. It is well-known that genetic alterations constitute the basis for the etiology of ALL. However, genetic abnormalities are not enough for the complete development of the disease, and additional alterations such as epigenetic modifications are required. Such alterations, like DNA methylation, histone modifications, and noncoding RNA regulation have been identified in ALL. DNA hypermethylation in promoter regions is one of the most frequent epigenetic modifications observed in ALL. This modification frequently leads to gene silencing in tumor suppressor genes, and in consequence, contributes to leukemogenesis. Alterations in histone remodeling proteins have also been detected in ALL, such as the overexpression of histone deacetylases enzymes, and alteration of acetyltransferases and methyltransferases. ALL also shows alteration in the expression of miRNAs, and in consequence, the modification in the expression of their target genes. All of these epigenetic modifications are key events in the malignant transformation since they lead to the deregulation of oncogenes as BLK, WNT5B and WISP1, and tumor suppressors such as FHIT, CDKN2A, CDKN2B, and TP53, which alter fundamental cellular processes and potentially lead to the development of ALL. Both genetic and epigenetic alterations contribute to the development and evolution of ALL. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  13. Advances in molecular identification, taxonomy, genetic variation and diagnosis of Toxocara spp.

    Science.gov (United States)

    Chen, Jia; Zhou, Dong-Hui; Nisbet, Alasdair J; Xu, Min-Jun; Huang, Si-Yang; Li, Ming-Wei; Wang, Chun-Ren; Zhu, Xing-Quan

    2012-10-01

    The genus Toxocara contains parasitic nematodes of human and animal health significance, such as Toxocara canis, Toxocara cati and Toxocara vitulorum. T. canis and T. cati are among the most prevalent parasites of dogs and cats with a worldwide distribution. Human infection with T. canis and T. cati, which can cause a number of clinical manifestations such as visceral larva migrans (VLMs), ocular larva migrans (OLMs), eosinophilic meningoencephalitis (EME), covert toxocariasis (CT) and neurotoxocariasis, is considered the most prevalent neglected helminthiasis in industrialized countries. The accurate identification Toxocara spp. and their unequivocal differentiation from each other and from other ascaridoid nematodes causing VLMs and OLMs has important implications for studying their taxonomy, epidemiology, population genetics, diagnosis and control. Due to the limitations of traditional (morphological) approaches for identification and diagnosis of Toxocara spp., PCR-based techniques utilizing a range of genetic markers in the nuclear and mitochondrial genomes have been developed as useful alternative approaches because of their high sensitivity, specificity, rapidity and utility. In this article, we summarize the current state of knowledge and advances in molecular identification, taxonomy, genetic variation and diagnosis of Toxocara spp. with prospects for further studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Evaluation of the innate immune response of Angus heifers with genetic marker variation for intramuscular fat deposition following a lipopolysaccharide challenge

    Science.gov (United States)

    This study evaluated the effect of genetic selection for markers related to marbling deposition in Angus heifers on the immune response following a lipopolysaccharide (LPS) challenge. Fall-born heifers (n = 19; ~7 months of age, 274 +/- 24 kg) with genetic variation for marbling were utilized inclu...

  15. Geographically structured genetic variation in the Medicago lupulina-Ensifer mutualism.

    Science.gov (United States)

    Harrison, Tia L; Wood, Corlett W; Heath, Katy D; Stinchcombe, John R

    2017-07-01

    Gene flow between genetically differentiated populations can maintain variation in species interactions, especially when population structure is congruent between interacting species. However, large-scale empirical comparisons of the population structure of interacting species are rare, particularly in positive interspecific interactions (mutualisms). One agriculturally and ecologically important mutualism is the partnership between legume plants and rhizobia. Through characterizing and comparing the population genomic structure of the legume Medicago lupulina and two rhizobial species (Ensifer medicae and E. meliloti), we explored the spatial scale of population differentiation between interacting partners in their introduced range in North America. We found high proportions of E. meliloti in southeastern populations and high proportions of E. medicae in northwestern populations. Medicago lupulina and the Ensifer genus showed similar patterns of spatial genetic structure (isolation by distance). However, we detected no evidence of isolation by distance or population structure within either species of bacteria. Genome-wide nucleotide diversity within each of the two Ensifer species was low, suggesting limited introduction of strains, founder events, or severe bottlenecks. Our results suggest that there is potential for geographically structured coevolution between M. lupulina and the Ensifer genus, but not between M. lupulina and either Ensifer species. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  16. Imaging genetics and the neurobiological basis of individual differences in vulnerability to addiction.

    Science.gov (United States)

    Sweitzer, Maggie M; Donny, Eric C; Hariri, Ahmad R

    2012-06-01

    Addictive disorders are heritable, but the search for candidate functional polymorphisms playing an etiological role in addiction is hindered by complexity of the phenotype and the variety of factors interacting to impact behavior. Advances in human genome sequencing and neuroimaging technology provide an unprecedented opportunity to explore the impact of functional genetic variants on variability in behaviorally relevant neural circuitry. Here, we present a model for merging these technologies to trace the links between genes, brain, and addictive behavior. We describe imaging genetics and discuss the utility of its application to addiction. We then review data pertaining to impulsivity and reward circuitry as an example of how genetic variation may lead to variation in behavioral phenotype. Finally, we present preliminary data relating the neural basis of reward processing to individual differences in nicotine dependence. Complex human behaviors such as addiction can be traced to their basic genetic building blocks by identifying intermediate behavioral phenotypes, associated neural circuitry, and underlying molecular signaling pathways. Impulsivity has been linked with variation in reward-related activation in the ventral striatum (VS), altered dopamine signaling, and functional polymorphisms of DRD2 and DAT1 genes. In smokers, changes in reward-related VS activation induced by smoking abstinence may be associated with severity of nicotine dependence. Variation in genes related to dopamine signaling may contribute to heterogeneity in VS sensitivity to reward and, ultimately, to addiction. These findings illustrate the utility of the imaging genetics approach for investigating the neurobiological basis for vulnerability to addiction. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Genetic variation in bacterial kidney disease (BKD) susceptibility in Lake Michigan Chinook Salmon and its progenitor population from the Puget Sound

    Science.gov (United States)

    Purcell, Maureen K.; Hard, Jeffrey J.; Neely, Kathleen G.; Park, Linda K.; Winton, James R.; Elliott, Diane G.

    2014-01-01

    Mass mortality events in wild fish due to infectious diseases are troubling, especially given the potential for long-term, population-level consequences. Evolutionary theory predicts that populations with sufficient genetic variation will adapt in response to pathogen pressure. Chinook Salmon Oncorhynchus tshawytscha were introduced into Lake Michigan in the late 1960s from a Washington State hatchery population. In the late 1980s, collapse of the forage base and nutritional stress in Lake Michigan were thought to contribute to die-offs of Chinook Salmon due to bacterial kidney disease (BKD). Previously, we demonstrated that Lake Michigan Chinook Salmon from a Wisconsin hatchery have greater survival following BKD challenge relative to their progenitor population. Here, we evaluated whether the phenotypic divergence of these populations in BKD susceptibility was due to selection rather than genetic drift. Comparison of the overall magnitude of quantitative trait to neutral marker divergence between the populations suggested selection had occurred but a direct test of quantitative trait divergence was not significant, preventing the rejection of the null hypothesis of differentiation through genetic drift. Estimates of phenotypic variation (VP), additive genetic variation (VA) and narrow-sense heritability (h2) were consistently higher in the Wisconsin relative to the Washington population. If selection had acted on the Wisconsin population there was no evidence of a concomitant loss of genetic variation in BKD susceptibility. The Renibacterium salmoninarum exposures were conducted at both 14°C and 9°C; the warmer temperature accelerated time to death in both populations and there was no evidence of phenotypic plasticity or a genotype-by-environment (G × E) interaction. High h2 estimates for BKD susceptibility in the Wisconsin population, combined with a lack of phenotypic plasticity, predicts that future adaptive gains in BKD resistance are still possible and

  18. Integrating population variation and protein structural analysis to improve clinical interpretation of missense variation: application to the WD40 domain.

    Science.gov (United States)

    Laskowski, Roman A; Tyagi, Nidhi; Johnson, Diana; Joss, Shelagh; Kinning, Esther; McWilliam, Catherine; Splitt, Miranda; Thornton, Janet M; Firth, Helen V; Wright, Caroline F

    2016-03-01

    We present a generic, multidisciplinary approach for improving our understanding of novel missense variants in recently discovered disease genes exhibiting genetic heterogeneity, by combining clinical and population genetics with protein structural analysis. Using six new de novo missense diagnoses in TBL1XR1 from the Deciphering Developmental Disorders study, together with population variation data, we show that the β-propeller structure of the ubiquitous WD40 domain provides a convincing way to discriminate between pathogenic and benign variation. Children with likely pathogenic mutations in this gene have severely delayed language development, often accompanied by intellectual disability, autism, dysmorphology and gastrointestinal problems. Amino acids affected by likely pathogenic missense mutations are either crucial for the stability of the fold, forming part of a highly conserved symmetrically repeating hydrogen-bonded tetrad, or located at the top face of the β-propeller, where 'hotspot' residues affect the binding of β-catenin to the TBLR1 protein. In contrast, those altered by population variation are significantly less likely to be spatially clustered towards the top face or to be at buried or highly conserved residues. This result is useful not only for interpreting benign and pathogenic missense variants in this gene, but also in other WD40 domains, many of which are associated with disease. © The Author 2016. Published by Oxford University Press.

  19. Genetic variation in hormone metabolizing genes and risk of testicular germ cell tumors.

    Science.gov (United States)

    Figueroa, Jonine D; Sakoda, Lori C; Graubard, Barry I; Chanock, Stephen; Rubertone, Mark V; Erickson, R Loren; McGlynn, Katherine A

    2008-11-01

    Testicular germ cell tumors (TGCT) that arise in young men are composed of two histologic types, seminomas and nonseminomas. Risk patterns for the two types appear to be similar and may be related to either endogenous or exogenous hormonal exposures in utero. Why similar risk patterns would result in different histologic types is unclear, but could be related to varying genetic susceptibility profiles. Genetic variation in hormone metabolizing genes could potentially modify hormonal exposures, and thereby affect which histologic type a man develops. To examine this hypothesis, 33 single nucleotide polymorphisms (SNPs) in four hormone metabolism candidate genes (CYP1A1, CYP17A1, HSD17B1, HSD17B4) and the androgen receptor gene (AR) were genotyped. Associations with TGCT were evaluated among 577 TGCT cases (254 seminoma, 323 nonseminoma) and 707 controls from the US Servicemen's Testicular Tumor Environmental and Endocrine Determinants (STEED) study. There were no significant associations with TGCT overall based on a test using an additive model. However, compared to homozygotes of the most common allele, two nonredundant SNPs in CYP1A1 were inversely associated with nonseminoma: CYP1A1 promoter SNP rs4886605 OR = 0.75 (95% CI = 0.54-1.04) among the heterozygotes and OR = 0.37, 95% CI = 0.12-1.11 among the homozygotes with a p-value for trend = 0.02; rs2606345 intron 1 SNP, OR = 0.69 (95% CI = 0.51-0.93) among heterozygotes and OR = 0.70 (95% CI = 0.42-1.17) among homozygotes, with a p-value for trend = 0.02. Caution in interpretation is warranted until findings are replicated in other studies; however, the results suggest that genetic variation in CYP1A1 may be associated with nonseminoma.

  20. The causes of variation in the presence of genetic covariance between sexual traits and preferences.

    Science.gov (United States)

    Fowler-Finn, Kasey D; Rodríguez, Rafael L

    2016-05-01

    Mating traits and mate preferences often show patterns of tight correspondence across populations and species. These patterns of apparent coevolution may result from a genetic association between traits and preferences (i.e. trait-preference genetic covariance). We review the literature on trait-preference covariance to determine its prevalence and potential biological relevance. Of the 43 studies we identified, a surprising 63% detected covariance. We test multiple hypotheses for factors that may influence the likelihood of detecting this covariance. The main predictor was the presence of genetic variation in mate preferences, which is one of the three main conditions required for the establishment of covariance. In fact, 89% of the nine studies where heritability of preference was high detected covariance. Variables pertaining to the experimental methods and type of traits involved in different studies did not greatly influence the detection of trait-preference covariance. Trait-preference genetic covariance appears to be widespread and therefore represents an important and currently underappreciated factor in the coevolution of traits and preferences. © 2015 Cambridge Philosophical Society.