WorldWideScience

Sample records for genetic switch controls

  1. Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches.

    Directory of Open Access Journals (Sweden)

    Ruben Perez-Carrasco

    2016-10-01

    Full Text Available During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules-morphogens-guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can

  2. Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches

    Science.gov (United States)

    Page, Karen M.

    2016-01-01

    During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules—morphogens—guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can qualitatively

  3. Control synthesis of switched systems

    CERN Document Server

    Zhao, Xudong; Niu, Ben; Wu, Tingting

    2017-01-01

    This book offers its readers a detailed overview of the synthesis of switched systems, with a focus on switching stabilization and intelligent control. The problems investigated are not only previously unsolved theoretically but also of practical importance in many applications: voltage conversion, naval piloting and navigation and robotics, for example. The book considers general switched-system models and provides more efficient design methods to bring together theory and application more closely than was possible using classical methods. It also discusses several different classes of switched systems. For general switched linear systems and switched nonlinear systems comprising unstable subsystems, it introduces novel ideas such as invariant subspace theory and the time-scheduled Lyapunov function method of designing switching signals to stabilize the underlying systems. For some typical switched nonlinear systems affected by various complex dynamics, the book proposes novel design approaches based on inte...

  4. Noise in Genetic Toggle Switch Models

    Directory of Open Access Journals (Sweden)

    Andrecut M.

    2006-06-01

    Full Text Available In this paper we study the intrinsic noise effect on the switching behavior of a simple genetic circuit corresponding to the genetic toggle switch model. The numerical results obtained from a noisy mean-field model are compared to those obtained from the stochastic Gillespie simulation of the corresponding system of chemical reactions. Our results show that by using a two step reaction approach for modeling the transcription and translation processes one can make the system to lock in one of the steady states for exponentially long times.

  5. Synchronization Between Two Different Switched Chaotic Systems By Switching Control

    Directory of Open Access Journals (Sweden)

    Du Li Ming

    2016-01-01

    Full Text Available This paper is concerned with the synchronization problem of two different switched chaotic systems, considering the general case that the master-slave switched chaotic systems have uncertainties. Two basic problems are considered: one is projective synchronization of switched chaotic systems under arbitrary switching; the other is projective synchronization of switched chaotic systems by design of switching when synchronization cannot achieved by using any subsystems alone. For the two problems, common Lyapunov function method and multiple Lyapunov function method are used respectively, an adaptive control scheme has been presented, some sufficient synchronization conditions are attainted, and the switching signal is designed. Finally, the numerical simulation is provide to show the effectiveness of our method.

  6. Safe LPV Controller Switching

    DEFF Research Database (Denmark)

    Trangbæk, K

    2010-01-01

    plants and controllers. Rather than relying on frequency domain methods as done in the LTI case, it is shown how to use standard LPV system identification methods. By identifying a filtered closed-loop operator rather than directly identifying the plant, more reliable results are obtained....

  7. Safe LPV Controller Switching

    DEFF Research Database (Denmark)

    Trangbæk, K

    2011-01-01

    plants and controllers. Rather than relying on frequency domain methods as done in the LTI case, it is shown how to use standard LPV system identification methods. It is furthermore shown how to include model uncertainty to robustify the results. By appropriate filtering, it is only necessary to evaluate...

  8. Optimal switching using coherent control

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper

    2013-01-01

    that the switching time, in general, is not limited by the cavity lifetime. Therefore, the total energy required for switching is a more relevant figure of merit than the switching speed, and for a particular two-pulse switching scheme we use calculus of variations to optimize the switching in terms of input energy....

  9. The Future is Noisy: The Role of Spatial Fluctuations in Genetic Switching

    International Nuclear Information System (INIS)

    Metzler, Ralf

    2001-01-01

    A genetic switch may be realized by a certain operator sector on the DNA strand from which either genetic code, to the left or to the right of this operator sector, can be transcribed and the corresponding information processed. This switch is controlled by messenger molecules, i.e., they determine to which side the switch is flipped. Recently, it has been realized that noise plays an elementary role in genetic switching, and the effect of number fluctuations of the messenger molecules have been explored. Here we argue that the assumption of well stirredness taken in the previous models may not be sufficient to characterize the influence of noise: spatial fluctuations play a non-negligible part in cellular genetic switching processes

  10. Control and synchronisation in switched arrival systems

    NARCIS (Netherlands)

    Rem, B.; Armbruster, H.D.

    2003-01-01

    A chaotic model of a production flow called the switched arrival system is extended to include switching times and maintenance. The probability distribution of the chaotic return times is calculated. Scheduling maintenance, loss of production due to switching, and control of the chaotic dynamics is

  11. Denoising of genetic switches based on Parrondo's paradox

    Science.gov (United States)

    Fotoohinasab, Atiyeh; Fatemizadeh, Emad; Pezeshk, Hamid; Sadeghi, Mehdi

    2018-03-01

    Random decision making in genetic switches can be modeled as tossing a biased coin. In other word, each genetic switch can be considered as a game in which the reactive elements compete with each other to increase their molecular concentrations. The existence of a very small number of reactive element molecules has caused the neglect of effects of noise to be inevitable. Noise can lead to undesirable cell fate in cellular differentiation processes. In this paper, we study the robustness to noise in genetic switches by considering another switch to have a new gene regulatory network (GRN) in which both switches have been affected by the same noise and for this purpose, we will use Parrondo's paradox. We introduce two networks of games based on possible regulatory relations between genes. Our results show that the robustness to noise can increase by combining these noisy switches. We also describe how one of the switches in network II can model lysis/lysogeny decision making of bacteriophage lambda in Escherichia coli and we change its fate by another switch.

  12. Switched capacitor DC-DC converter with switch conductance modulation and Pesudo-fixed frequency control

    DEFF Research Database (Denmark)

    Larsen, Dennis Øland; Vinter, Martin; Jørgensen, Ivan Harald Holger

    A switched capacitor dc-dc converter with frequency-planned control is presented. By splitting the output stage switches in eight segments the output voltage can be regulated with a combination of switching frequency and switch conductance. This allows for switching at predetermined frequencies, 31...

  13. Epigenetics of the yeast galactose genetic switch

    Indian Academy of Sciences (India)

    Prakash

    wiped out if the genetic program is not equipped to adapt to ... In this article we review some of the recent attempts made to understand the importance ..... Induction kinetics of GAL gene expression in these two cultures was determined.

  14. Selective and genetic constraints on pneumococcal serotype switching.

    Directory of Open Access Journals (Sweden)

    Nicholas J Croucher

    2015-03-01

    Full Text Available Streptococcus pneumoniae isolates typically express one of over 90 immunologically distinguishable polysaccharide capsules (serotypes, which can be classified into "serogroups" based on cross-reactivity with certain antibodies. Pneumococci can alter their serotype through recombinations affecting the capsule polysaccharide synthesis (cps locus. Twenty such "serotype switching" events were fully characterised using a collection of 616 whole genome sequences from systematic surveys of pneumococcal carriage. Eleven of these were within-serogroup switches, representing a highly significant (p < 0.0001 enrichment based on the observed serotype distribution. Whereas the recombinations resulting in between-serogroup switches all spanned the entire cps locus, some of those that caused within-serogroup switches did not. However, higher rates of within-serogroup switching could not be fully explained by either more frequent, shorter recombinations, nor by genetic linkage to genes involved in β-lactam resistance. This suggested the observed pattern was a consequence of selection for preserving serogroup. Phenotyping of strains constructed to express different serotypes in common genetic backgrounds was used to test whether genotypes were physiologically adapted to particular serogroups. These data were consistent with epistatic interactions between the cps locus and the rest of the genome that were specific to serotype, but not serogroup, meaning they were unlikely to account for the observed distribution of capsule types. Exclusion of these genetic and physiological hypotheses suggested future work should focus on alternative mechanisms, such as host immunity spanning multiple serotypes within the same serogroup, which might explain the observed pattern.

  15. Proton-Controlled Organic Microlaser Switch.

    Science.gov (United States)

    Gao, Zhenhua; Zhang, Wei; Yan, Yongli; Yi, Jun; Dong, Haiyun; Wang, Kang; Yao, Jiannian; Zhao, Yong Sheng

    2018-05-25

    Microscale laser switches have been playing irreplaceable roles in the development of photonic devices with high integration levels. However, it remains a challenge to switch the lasing wavelengths across a wide range due to relatively fixed energy bands in traditional semiconductors. Here, we report a strategy to switch the lasing wavelengths among multiple states based on a proton-controlled intramolecular charge-transfer (ICT) process in organic dye-doped flexible microsphere resonant cavities. The protonic acids can effectively bind onto the ICT molecules, which thus enhance the ICT strength of the dyes and lead to a red-shifted gain behavior. On this basis, the gain region was effectively modulated by using acids with different proton-donating ability, and as a result, laser switching among multiple wavelengths was achieved. The results will provide guidance for the rational design of miniaturized lasers with performances based on the characteristic of organic optoelectronic materials.

  16. Switching Systems: Controllability and Control Design

    Science.gov (United States)

    2009-04-25

    both continuous and discrete dynamics, are abundant in essentially all areas of engineering and scientific endeavor. Hybrid systems can switch between...TERMS EOARD, Navigation, Comunications & Guidance, Complex Systems 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON JAMES LAWTON Ph

  17. Microprocessor Controlled Capacitor Bank Switching System for ...

    African Journals Online (AJOL)

    In this work, analysis and development of a microprocessor controlled capacitor bank switching system for deployment in a smart distribution network was carried out. This system was implemented by the use of discreet components such as resistors, capacitors, transistor, diode, automatic voltage regulator, with the ...

  18. Multistable decision switches for flexible control of epigenetic differentiation.

    Directory of Open Access Journals (Sweden)

    Raúl Guantes

    2008-11-01

    Full Text Available It is now recognized that molecular circuits with positive feedback can induce two different gene expression states (bistability under the very same cellular conditions. Whether, and how, cells make use of the coexistence of a larger number of stable states (multistability is however largely unknown. Here, we first examine how autoregulation, a common attribute of genetic master regulators, facilitates multistability in two-component circuits. A systematic exploration of these modules' parameter space reveals two classes of molecular switches, involving transitions in bistable (progression switches or multistable (decision switches regimes. We demonstrate the potential of decision switches for multifaceted stimulus processing, including strength, duration, and flexible discrimination. These tasks enhance response specificity, help to store short-term memories of recent signaling events, stabilize transient gene expression, and enable stochastic fate commitment. The relevance of these circuits is further supported by biological data, because we find them in numerous developmental scenarios. Indeed, many of the presented information-processing features of decision switches could ultimately demonstrate a more flexible control of epigenetic differentiation.

  19. Design of a bistable switch to control cellular uptake.

    Science.gov (United States)

    Oyarzún, Diego A; Chaves, Madalena

    2015-12-06

    Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation-repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on-off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures. © 2015 The Author(s).

  20. Controllability of multi-agent systems with periodically switching topologies and switching leaders

    Science.gov (United States)

    Tian, Lingling; Zhao, Bin; Wang, Long

    2018-05-01

    This paper considers controllability of multi-agent systems with periodically switching topologies and switching leaders. The concept of m-periodic controllability is proposed, and a criterion for m-periodic controllability is established. The effect of the duration of subsystems on controllability is analysed by utilising a property of analytic functions. In addition, the influence of switching periods on controllability is investigated, and an algorithm is proposed to search for the fewest periods to ensure controllability. A necessary condition for m-periodic controllability is obtained from the perspective of eigenvectors of the subsystems' Laplacian matrices. For a system with switching leaders, it is proved that switching-leader controllability is equivalent to multiple-leader controllability. Furthermore, both the switching order and the tenure of agents being leaders have no effect on the controllability. Some examples are provided to illustrate the theoretical results.

  1. Multilevel inverter switching controller using a field programmable ...

    African Journals Online (AJOL)

    Conducted simulation and measurement results verified and validated the switching controller design functionality and requirement. Keywords: multilevel inverter, switching controller; FPGA, general purpose processor (GPP);digital signal processing (DSP); IGBT; Verilog, power consumption; harmonic elimination (SHE).

  2. Strain-controlled nonvolatile magnetization switching

    Science.gov (United States)

    Geprägs, S.; Brandlmaier, A.; Brandt, M. S.; Gross, R.; Goennenwein, S. T. B.

    2014-11-01

    We investigate different approaches towards a nonvolatile switching of the remanent magnetization in single-crystalline ferromagnets at room temperature via elastic strain using ferromagnetic thin film/piezoelectric actuator hybrids. The piezoelectric actuator induces a voltage-controllable strain along different crystalline directions of the ferromagnetic thin film, resulting in modifications of its magnetization by converse magnetoelastic effects. We quantify the magnetization changes in the hybrids via ferromagnetic resonance spectroscopy and superconducting quantum interference device magnetometry. These measurements demonstrate a significant strain-induced change of the magnetization, limited by an inefficient strain transfer and domain formation in the particular system studied. To overcome these obstacles, we address practicable engineering concepts and use a model to demonstrate that a strain-controlled, nonvolatile magnetization switching should be possible in appropriately engineered ferromagnetic/piezoelectric actuator hybrids.

  3. CONTROL OF BOUNCING IN RF MEMS SWITCHES USING DOUBLE ELECTRODE

    KAUST Repository

    Abdul Rahim, Farhan

    2014-05-01

    MEMS based mechanical switches are seen to be the likely replacements for CMOS based switches due to the several advantages that these mechanical switches have over CMOS switches. Mechanical switches can be used in systems under extreme conditions and also provide more reliability and cause less power loss. A major problem with mechanical switches is bouncing. Bouncing is an undesirable characteristic which increases the switching time and causes damage to the switch structure affecting the overall switch life. This thesis proposes a new switch design that may be used to mitigate bouncing by using two voltage sources using a double electrode configuration. The effect of many switch’s tunable parameters is also discussed and an effective tuning technique is also provided. The results are compared to the current control schemes in literature and show that the double electrode scheme is a viable control option.

  4. Magnetic switch for reactor control rod

    International Nuclear Information System (INIS)

    Germer, J.H.

    1986-01-01

    This patent describes a control rod system for a nuclear reactor utilizing an electromagnetic grapple mechanism for holding and releasing a control rod, the improvement comprising a magnetic reed switch assembly having a Curie-point magnetic shunt and responsive to reactor coolant temperature for short circuiting the electromagnetic grapple mechanism causing release of the control rod when the coolant temperature reaches the Curie-point of the magnetic shunt. The magnetic reed switch assembly includes a: a permanent magnet, a pair of magnetic pole pieces located at and in contact with opposite ends of the permanent magnet, the Curie-point magnetic shunt being positioned adjacent the permanent magnet and in contact with the pair of magnetic pole pieces, and a reed switch positioned intermediate the pole pieces and provided with a pair of ferromagnetic reeds, a nonmagnetic enclosure around the reeds, a first of the reeds being secured at one end to a first of the pair of pole pieces, a second of the reeds having one end extending into and secured to a hollow member positioned in and extending through a second of the pair of pole pieces, the one end of the second of the reeds secured to a condector adapted to be connected to the electromagnetic grapple mechanism

  5. Conceptual design of multiple parallel switching controller

    International Nuclear Information System (INIS)

    Ugolini, D.; Yoshikawa, S.; Ozawa, K.

    1996-01-01

    This paper discusses the conceptual design and the development of a preliminary model of a multiple parallel switching (MPS) controller. The introduction of several advanced controllers has widened and improved the control capability of nonlinear dynamical systems. However, it is not possible to uniquely define a controller that always outperforms the others, and, in many situations, the controller providing the best control action depends on the operating conditions and on the intrinsic properties and behavior of the controlled dynamical system. The desire to combine the control action of several controllers with the purpose to continuously attain the best control action has motivated the development of the MPS controller. The MPS controller consists of a number of single controllers acting in parallel and of an artificial intelligence (AI) based selecting mechanism. The AI selecting mechanism analyzes the output of each controller and implements the one providing the best control performance. An inherent property of the MPS controller is the possibility to discard unreliable controllers while still being able to perform the control action. To demonstrate the feasibility and the capability of the MPS controller the simulation of the on-line operation control of a fast breeder reactor (FBR) evaporator is presented. (author)

  6. Control of delay dominant systems with costs related to switching

    DEFF Research Database (Denmark)

    Deng, Honglian; Larsen, Lars Finn Sloth; Stoustrup, Jakob

    2010-01-01

    The objective of this paper is to extend a novel low complexity method for optimizing switch control developed by the authors earlier to work with delay dominant systems and demonstrate that the method works in practice with a refrigeration test system. The extended method solves switching problems...... controller with fixed bounds shows that the optimizing switch control outperforms the baseline....

  7. Switching Fuzzy Guaranteed Cost Control for Nonlinear Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Linqin Cai

    2014-01-01

    Full Text Available This paper deals with the problem of guaranteed cost control for a class of nonlinear networked control systems (NCSs with time-varying delay. A guaranteed cost controller design method is proposed to achieve the desired control performance based on the switched T-S fuzzy model. The switching mechanism is introduced to handle the uncertainties of NCSs. Based on Lyapunov functional approach, some sufficient conditions for the existence of state feedback robust guaranteed cost controller are presented. Simulation results show that the proposed method is effective to guarantee system’s global asymptotic stability and quality of service (QoS.

  8. Observer-Based Robust Control of Uncertain Switched Fuzzy Systems with Combined Switching Controller

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2013-01-01

    Full Text Available The observer-based robust control for a class of switched fuzzy (SF time-delay systems involving uncertainties and external disturbances is investigated in this paper. A switched fuzzy system, which differs from existing ones, is firstly employed to describe a nonlinear system. Next, a combined switching controller is proposed. The designed controller based on the observer instead of the state information integrates the advantages of both the switching controllers and the supplementary controllers but eliminates their disadvantages. The proposed controller provides good performance during the transient period, and the chattering effect is removed when the system state approaches the origin. Sufficient condition for the solvability of the robust control problem is given for the case that the state of system is not available. Since convex combination techniques are used to derive the delay-independent criteria, some subsystems are allowed to be unstable. Finally, various comparisons of the elaborated examples are conducted to demonstrate the effectiveness of the proposed control design approach.

  9. Comparison of switching control algorithms effective in restricting the switching in the neighborhood of the origin

    International Nuclear Information System (INIS)

    Joung, JinWook; Chung, Lan; Smyth, Andrew W

    2010-01-01

    The active interaction control (AIC) system consisting of a primary structure, an auxiliary structure and an interaction element was proposed to protect the primary structure against earthquakes and winds. The objective of the AIC system in reducing the responses of the primary structure is fulfilled by activating or deactivating the switching between the engagement and the disengagement of the primary and auxiliary structures through the interaction element. The status of the interaction element is controlled by switching control algorithms. The previously developed switching control algorithms require an excessive amount of switching, which is inefficient. In this paper, the excessive amount of switching is restricted by imposing an appropriately designed switching boundary region, where switching is prohibited, on pre-designed engagement–disengagement conditions. Two different approaches are used in designing the newly proposed AID-off and AID-off 2 algorithms. The AID-off 2 algorithm is designed to affect deactivated switching regions explicitly, unlike the AID-off algorithm, which follows the same procedure of designing the engagement–disengagement conditions of the previously developed algorithms, by using the current status of the AIC system. Both algorithms are shown to be effective in reducing the amount of switching times triggered from the previously developed AID algorithm under an appropriately selected control sampling period for different earthquakes, but the AID-off 2 algorithm outperforms the AID-off algorithm in reducing the number of switching times

  10. Controlled Photon Switch Assisted by Coupled Quantum Dots

    Science.gov (United States)

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication. PMID:26095049

  11. Cognitive control and the COMT Val158Met polymorphism: genetic modulation of videogame training and transfer to task-switching efficiency

    NARCIS (Netherlands)

    Colzato, L.S.; van den Wildenberg, W.P.M.; Hommel, B.

    2014-01-01

    The study investigated whether successful transfer of game-based cognitive improvements to untrained tasks might be modulated by preexisting neuro-developmental factors, such as genetic variability related to the catechol-O-methyltransferase (COMT)—an enzyme responsible for the degradation of

  12. Optimal control of switching time in switched stochastic systems with multi-switching times and different costs

    Science.gov (United States)

    Liu, Xiaomei; Li, Shengtao; Zhang, Kanjian

    2017-08-01

    In this paper, we solve an optimal control problem for a class of time-invariant switched stochastic systems with multi-switching times, where the objective is to minimise a cost functional with different costs defined on the states. In particular, we focus on problems in which a pre-specified sequence of active subsystems is given and the switching times are the only control variables. Based on the calculus of variation, we derive the gradient of the cost functional with respect to the switching times on an especially simple form, which can be directly used in gradient descent algorithms to locate the optimal switching instants. Finally, a numerical example is given, highlighting the validity of the proposed methodology.

  13. Optimal Control of Switching Linear Systems

    Directory of Open Access Journals (Sweden)

    Ali Benmerzouga

    2004-06-01

    Full Text Available A solution to the control of switching linear systems with input constraints was given in Benmerzouga (1997 for both the conventional enumeration approach and the new approach. The solution given there turned out to be not unique. The main objective in this work is to determine the optimal control sequences {Ui(k ,  i = 1,..., M ;  k = 0, 1, ...,  N -1} which transfer the system from a given initial state  X0  to a specific target state  XT  (or to be as close as possible by using the same discrete time solution obtained in Benmerzouga (1997 and minimizing a running cost-to-go function. By using the dynamic programming technique, the optimal solution is found for both approaches given in Benmerzouga (1997. The computational complexity of the modified algorithm is also given.

  14. Conductive polymer switch for controlling superconductivity

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Grassi, J.; Lo, K.; Jones, C.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole coated YBa 2 Cu 3 O 7-σ microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layout. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7-σ film, the oxidized (conductive) polymer depresses T c by up to 50K. In a similar fashion, the oxidation state of the polymer is found to reversibly modulate the magnitude of J c , the superconducting critical current. Thus, a new type of molecule switch for controlling superconductivity is demonstrated

  15. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains.

    Science.gov (United States)

    Long, Lijun; Zhao, Jun

    2017-07-01

    In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.

  16. New stability and stabilization for switched neutral control systems

    International Nuclear Information System (INIS)

    Xiong Lianglin; Zhong Shouming; Ye Mao; Wu Shiliang

    2009-01-01

    This paper concerns stability and stabilization issues for switched neutral systems and presents new classes of piecewise Lyapunov functionals and multiple Lyapunov functionals, based on which, two new switching rules are introduced to stabilize the neutral systems. One switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. The other is based on the determination of average dwell time computed from a new class of linear matrix inequalities (LMIs). And then, state-feedback control is derived for the switched neutral control system mainly based on the state switching rules. Finally, three examples are given to demonstrate the effectiveness of the proposed method.

  17. Switching robust control synthesis for teleoperation via dwell time conditions

    NARCIS (Netherlands)

    López Martínez, C.A.; van de Molengraft, M.J.G.; Steinbuch, M.; Auvray, M.; Duriez, C.

    2014-01-01

    Control design for bilateral teleoperation is still an open problem, given that it is desirable to meet a proper balance in the inherent trade-off between transparency and stability. We propose the use of switching robust control, in which smooth switching among controllers is achieved by the

  18. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    Science.gov (United States)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  19. EYE CONTROLLED SWITCHING USING CIRCULAR HOUGH TRANSFORM

    OpenAIRE

    Sagar Lakhmani

    2014-01-01

    The paper presents hands free interface between electrical appliances or devices. This technology is intended to replace conventional switching devices for the use of disabled. It is a new way to interact with the electrical or electronic devices that we use in our daily life. The paper illustrates how the movement of eye cornea and blinking can be used for switching the devices. The basic Circle Detection algorithm is used to determine the position of eye. Eye blinking is used...

  20. Control and Interference in Task Switching--A Review

    Science.gov (United States)

    Kiesel, Andrea; Steinhauser, Marco; Wendt, Mike; Falkenstein, Michael; Jost, Kerstin; Philipp, Andrea M.; Koch, Iring

    2010-01-01

    The task-switching paradigm offers enormous possibilities to study cognitive control as well as task interference. The current review provides an overview of recent research on both topics. First, we review different experimental approaches to task switching, such as comparing mixed-task blocks with single-task blocks, predictable task-switching…

  1. Iaverage current mode (ACM) control for switching power converters

    OpenAIRE

    2014-01-01

    Providing a fast current sensor direct feedback path to a modulator for controlling switching of a switched power converter in addition to an integrating feedback path which monitors average current for control of a modulator provides fast dynamic response consistent with system stability and average current mode control. Feedback of output voltage for voltage regulation can be combined with current information in the integrating feedback path to limit bandwidth of the voltage feedback signal.

  2. A genetic bistable switch utilizing nonlinear protein degradation.

    Science.gov (United States)

    Huang, Daniel; Holtz, William J; Maharbiz, Michel M

    2012-07-09

    Bistability is a fundamental property in engineered and natural systems, conferring the ability to switch and retain states. Synthetic bistable switches in prokaryotes have mainly utilized transcriptional components in their construction. Using both transcriptional and enzymatic components, creating a hybrid system, allows for wider bistable parameter ranges in a circuit. In this paper, we demonstrate a tunable family of hybrid bistable switches in E. coli using both transcriptional components and an enzymatic component. The design contains two linked positive feedback loops. The first loop utilizes the lambda repressor, CI, and the second positive feedback loop incorporates the Lon protease found in Mesoplasma florum (mf-Lon). We experimentally tested for bistable behavior in exponential growth phase, and found that our hybrid bistable switch was able to retain its state in the absence of an input signal throughout 40 cycles of cell division. We also tested the transient behavior of our switch and found that switching speeds can be tuned by changing the expression rate of mf-Lon. To our knowledge, this work demonstrates the first use of dynamic expression of an orthogonal and heterologous protease to tune a nonlinear protein degradation circuit. The hybrid switch is potentially a more robust and tunable topology for use in prokaryotic systems.

  3. Morphological control and polarization switching in polymer ...

    Indian Academy of Sciences (India)

    Liquid crystals dispersed in polymer systems constitute novel class of optical materials. The precise ... Polymer dispersed liquid crystals; nematic liquid crystal; ferroelectric liquid crystal; viscosity; drop- ... threshold voltage and the switching speed of the resulting ... crystal droplet size distribution and uniformity can be.

  4. Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients

    International Nuclear Information System (INIS)

    Chen, Hang; Thill, Peter; Cao, Jianshu

    2016-01-01

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes with the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.

  5. Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hang, E-mail: hangchen@mit.edu; Thill, Peter; Cao, Jianshu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-05-07

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes with the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.

  6. SpaceVPX Switch-Controller, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Crossfield Technology proposes a SpaceVPX (VITA 78) Switch-Controller Module implemented in a state-of-the-art Field Programmable Gate Array (FPGA) System on Chip...

  7. Control of Bouncing in MEMS Switches Using Double Electrodes

    KAUST Repository

    Abdul Rahim, Farhan; Younis, Mohammad I.

    2016-01-01

    This paper presents a novel way of controlling the bouncing phenomenon commonly present in the Radio Frequency Microelectromechanical Systems (RF MEMS) switches using a double-electrode configuration. The paper discusses modeling bouncing using both

  8. Design of adaptive switching control for hypersonic aircraft

    Directory of Open Access Journals (Sweden)

    Xin Jiao

    2015-10-01

    Full Text Available This article proposes a novel adaptive switching control of hypersonic aircraft based on type-2 Takagi–Sugeno–Kang fuzzy sliding mode control and focuses on the problem of stability and smoothness in the switching process. This method uses full-state feedback to linearize the nonlinear model of hypersonic aircraft. Combining the interval type-2 Takagi–Sugeno–Kang fuzzy approach with sliding mode control keeps the adaptive switching process stable and smooth. For rapid stabilization of the system, the adaptive laws use a direct constructive Lyapunov analysis together with an established type-2 Takagi–Sugeno–Kang fuzzy logic system. Simulation results indicate that the proposed control scheme can maintain the stability and smoothness of switching process for the hypersonic aircraft.

  9. Integrated optical switch circuit operating under FPGA control

    NARCIS (Netherlands)

    Stabile, R.; Zal, M.; Williams, K.A.; Bienstman, P.; Morthier, G.; Roelkens, G.; et al., xx

    2011-01-01

    Integrated photonic circuits are enabling an abrupt step change in networking systems providing massive bandwidth and record transmission. The increasing complexity of high connectivity photonic integrated switches requires sophisticated control planes and more intimate high speed electronics. Here

  10. Genetic noise control via protein oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    Ghim, C; Almaas, E

    2008-06-12

    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamical role of protein-protein associations. We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast protein binding-unbinding kinetics, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its intrinsic switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of phenotypically important toggle switches, and nested positive feedback loops in

  11. Qualitative differences between bilingual language control and executive control: evidence from task switching

    Directory of Open Access Journals (Sweden)

    Marco eCalabria

    2012-01-01

    Full Text Available Previous research has shown that highly-proficient bilinguals have comparable switch costs in both directions when they switch between languages (L1 and L2, the so called ‘symmetrical switch cost’ effect. Interestingly, the same symmetry is also present when they switch between L1 and a much weaker L3. These findings suggest that highly proficient bilinguals develop a language control system that seems to be insensitive to language proficiency. In the present study, we explore whether the pattern of symmetrical switch costs in language switching tasks generalizes to a non-linguistic switching task in the same group of highly-proficient bilinguals. The end goal of this is to assess whether bilingual language control (bLC can be considered as subsidiary to domain-general executive control (EC. We tested highly-proficient Catalan-Spanish bilinguals both in a linguistic switching task and in a non-linguistic switching task. In the linguistic task, participants named pictures in L1 and L2 (Experiment 1 or L3 (Experiment 2 depending on a cue presented with the picture (a flag. In the non-linguistic task, the same participants had to switch between two card sorting rule-sets (colour and shape. Overall, participants showed symmetrical switch costs in the linguistic switching task, but not in the non-linguistic switching task. In a further analysis, we observed that in the linguistic switching task the asymmetry of the switch costs changed across blocks, while in the non-linguistic switching task an asymmetrical switch cost was observed throughout the task. The observation of different patterns of switch costs in the linguistic and the non-linguistic switching tasks suggest that the bLC system is not completely subsidiary to the domain-general EC system.

  12. Non-fragile switched H∞ control for morphing aircraft with asynchronous switching

    Directory of Open Access Journals (Sweden)

    Haoyu CHENG

    2017-06-01

    Full Text Available This paper deals with the problem of non-fragile linear parameter-varying (LPV H∞ control for morphing aircraft with asynchronous switching. The switched LPV model of morphing aircraft is established by Jacobian linearization approach according to the nonlinear model. The data missing is taken into account in the link from sensors to controllers and the link from controllers to actuators, which satisfies Bernoulli distribution. The non-fragile switched LPV controllers are constructed with consideration of the uncertainties of controllers and asynchronous switching phenomenon. The parameter-dependent Lyapunov functional method and mode-dependent average dwell time (MDADT method are combined to guarantee the stability and prescribed performance of the system. The sufficient conditions on the solvability of the problem are derived in the form of linear matrix inequalities (LMI. In order to achieve higher efficiency of the designing process, an algorithm is applied to divide the whole set into subsets automatically. Simulation results are provided to verify the effectiveness and superiority of the method in the paper.

  13. An Electron-Beam Controlled Semiconductor Switch

    Science.gov (United States)

    1989-11-01

    of the Seventeenth Power Modulator Symposium, Seattle, WA, pp. 214-218. 1986. 21. Bovino , L., ’ioumans,R., Weiner, H., Burke, T . , "Optica lly... Bovino , R. Youmans, M. Weiner, and T. Burke, ’ ’Optically Co ntrolled Semiconducto r Switch for ~lulti-~legawatt Rep-Rated Pulse r s ," Conf. Record...p. 615. (II 1 W. N. Carr, IEEE Trans. Electron Devices, vol. ED-12, p. 531 , 1965. (121 T. Burke, M. Weiner. L. Bovino , and R. Youmans, in Proc

  14. Tracking Control for Switched Cascade Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Dong

    2015-01-01

    Full Text Available The issue of H∞ output tracking for switched cascade nonlinear systems is discussed in this paper, where not all the linear parts of subsystems are stabilizable. The conditions of the solvability for the issue are given by virtue of the structural characteristics of the systems and the average dwell time method, in which the total activation time for stabilizable subsystems is longer than that for the unstabilizable subsystems. At last, a simulation example is used to demonstrate the validity and advantages of the proposed approach.

  15. Hysteresis controller with constant switching frequency

    DEFF Research Database (Denmark)

    Poulsen, Søren; Andersen, Michael Andreas E.

    2005-01-01

    Switch mode audio power amplifiers are showing up on market in still greater numbers because of advantages in form of high efficiency and low total system cost, especially for high power amplifiers. Several different modulator topologies have been made, ranging from standard PWM to various self......-oscillating and digital modulators. Performance in terms of low distortion, noise and dynamic range differs significantly with the modulator topology used. Highest system performance is generally achieved with analog modulators made as a modulator loop including at least the power stage of the amplifier, because...

  16. Optically controlled redshift switching effects in hybrid fishscale metamaterials

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2018-05-01

    Full Text Available We numerically demonstrate optically controlled THz response in a hybrid fishscale metamaterial with embedded photoconductive silicon at oblique incidence of TE wave. The oblique incidence allows excitation of Fano-type trapped mode resonance in a 2-fold rotational symmetric metamaterial. The hybrid fishscale metamaterial exhibits an optically controlled redshift switching effect in the THz range. The switching effect is dominated by the conductivity of the silicon instead of mechanically adjusting angles of incidence. The tuning frequency range is up to 0.3THz with a large modulation depth and high transmission in the “ON” state. The fishscale metamaterial-based switching has been experimentally verified by its microwave counterpart integrated by variable resistors. Our work provides an alternative route to realize tunable Fano-type response in metamaterials and is of importance to active manipulation, sensing and switching of THz waves in practical applications.

  17. Optically controlled redshift switching effects in hybrid fishscale metamaterials

    Science.gov (United States)

    Wang, Yu; Zhu, Jinwei; Zhang, Hao; Zhang, Wenxing; Dong, Guohua; Ye, Peng; Lv, Tingting; Zhu, Zheng; Li, Yuxiang; Guan, Chunying; Shi, Jinhui

    2018-05-01

    We numerically demonstrate optically controlled THz response in a hybrid fishscale metamaterial with embedded photoconductive silicon at oblique incidence of TE wave. The oblique incidence allows excitation of Fano-type trapped mode resonance in a 2-fold rotational symmetric metamaterial. The hybrid fishscale metamaterial exhibits an optically controlled redshift switching effect in the THz range. The switching effect is dominated by the conductivity of the silicon instead of mechanically adjusting angles of incidence. The tuning frequency range is up to 0.3THz with a large modulation depth and high transmission in the "ON" state. The fishscale metamaterial-based switching has been experimentally verified by its microwave counterpart integrated by variable resistors. Our work provides an alternative route to realize tunable Fano-type response in metamaterials and is of importance to active manipulation, sensing and switching of THz waves in practical applications.

  18. Nonlinear Deadbeat Current Control of a Switched Reluctance Motor

    OpenAIRE

    Rudolph, Benjamin

    2009-01-01

    High performance current control is critical to the success of the switched reluctance motor (SRM). Yet high motor phase nonlinearities in the SRM place extra burden on the current controller, rendering it the weakest link in SRM control. In contrast to linear motor control techniques that respond to current error, the deadbeat controller calculates the control voltage by the current command, phase current, rotor position and applied phase voltage. The deadbeat controller has demonstrated sup...

  19. Characterization and switching performance of electron-beam controlled discharges

    International Nuclear Information System (INIS)

    Lowry, J.F.; Kline, L.E.; Heberlein, J.V.R.

    1986-01-01

    The electron-beam sustained discharge switch is an attractive concept for repetitive pulsed power switching because it has a demonstrated capability to interrupt direct current and because it is inherently scalable. The authors report on experiments with this type of switch in a 4-kV dc circuit. A wire-ion-plasma (WIP) electron-beam (e-beam) gun is used to irradiate and sustain a switch discharge with a 100-cm/sup 2/ cross-sectional area in l atm of N/sub 2/ or CH/sub 4/. Interruption of 8-10-μs pulses of up to 1.9 kA, and of 100-μs pulses of 150 A has been demonstrated in methane, and interruption against higher recovery voltages (11 kV) has been performed at 1.2 kA by adding series inductance to the circuit. These values represent power supply limitations rather than limitations of the switch itself. A comparison of the measured discharge characteristics with theoretical predictions shows that the measured switch conductivities are higher than the predicted values for given e-beam current values. A qualitative explanation for this observation is offered by considering the effects of electron reflection from the discharge anode and of nonlinear paths for the beam electrons across the discharge gap. The authors conclude that the switching performance of the e-beam controlled discharge switch corresponds to its design parameters, and that for a given switch size a lower voltage drop during the on time can be expected compared with the voltage drop predicted by previously published theory

  20. Design and advanced control of switched reluctance motor; Design og avanceret styring af switched reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Blaabjerg, F.; Jensen, F.; Kierkegaard, P.; Pedersen, J.K.; Rasmussen, P.O.; Simonsen, L.

    1999-03-01

    The aim of the project is to design, construct and optimise the control of Switched Reluctance Motors with and without permanent magnets. The expectation was an increased efficiency and a decreased material consumption. The project included originally three types of SR-motors, two with a nominal number of revolutions of 3.000 rpm and one motor with a nominal number of revolutions of 50.000 rpm. The project was changed to focus on one motor with a nominal number of revolutions of 6.000 rpm, one with a nominal number of revolutions of 50.000 rpm and one two-phased low-voltage motor with a nominal number of revolutions of 2.000 rpm. The motors had different outputs of 2,7 kW, 0,9 kW and 3 kW, respectively. For this purpose an advanced simulation programme for Switched Reluctance Motors is developed. The programme differs from other programmes by being able to simulate multi-disciplinary such as vibrations and acoustic noise. It is even possible to play the sound. In this connection completely new models are developed. It is also possible to simulate different grid connected converters. Input to the simulation programme is finite element calculations, geometry of the motor and calculations or data from an advanced characterisation system for Switched Reluctance Motors. New methods to control the current in Switched Reluctance Motors are developed, which particularly make quick dynamics possible in a digitally controlled current without use of special noise filters. The method will soon have industrial use. Other new methods have emerged, which secure that the system all the time works with the maximum efficiency irrespective of load. In some cases an efficiency improvement of 10 % is obtained compared to a classic control of the Switched Reluctance Motor. (EHS) EFP-94; EFP-95; EFP-98. 16 refs.

  1. Valence, arousal and cognitive control: A voluntary task switching study

    Directory of Open Access Journals (Sweden)

    Jelle eDemanet

    2011-11-01

    Full Text Available The present study focused on the interplay between arousal, valence and cognitive control. To this end, we investigated how arousal and valence associated with affective stimuli influenced cognitive flexibility when switching between tasks voluntarily. Three hypotheses were tested. First, a valence hypothesis that states that the positive valence of affective stimuli will facilitate both global and task-switching performance because of increased cognitive flexibility. Second, an arousal hypothesis that states that arousal, and not valence, will specifically impair task-switching performance by strengthening the previously executed task-set. Third, an attention hypothesis that states that both cognitive and emotional control ask for limited attentional resources, and predicts that arousal will impair both global and task-switching performance. The results showed that arousal affected task-switching but not global performance, possibly by phasic modulations of the noradrenergic system that reinforces the previously executed task. In addition, positive valence only affected global performance but not task-switching performance, possibly by phasic modulations of dopamine that stimulates the general ability to perform in a multitasking environment.

  2. Optimal control of switched systems arising in fermentation processes

    CERN Document Server

    Liu, Chongyang

    2014-01-01

    The book presents, in a systematic manner, the optimal controls under different mathematical models in fermentation processes. Variant mathematical models – i.e., those for multistage systems; switched autonomous systems; time-dependent and state-dependent switched systems; multistage time-delay systems and switched time-delay systems – for fed-batch fermentation processes are proposed and the theories and algorithms of their optimal control problems are studied and discussed. By putting forward novel methods and innovative tools, the book provides a state-of-the-art and comprehensive systematic treatment of optimal control problems arising in fermentation processes. It not only develops nonlinear dynamical system, optimal control theory and optimization algorithms, but can also help to increase productivity and provide valuable reference material on commercial fermentation processes.

  3. CONTROL OF BOUNCING IN RF MEMS SWITCHES USING DOUBLE ELECTRODE

    KAUST Repository

    Abdul Rahim, Farhan

    2014-01-01

    MEMS based mechanical switches are seen to be the likely replacements for CMOS based switches due to the several advantages that these mechanical switches have over CMOS switches. Mechanical switches can be used in systems under extreme conditions

  4. The Control of Switched Reluctance Motor in Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2014-05-01

    Full Text Available The control of SRM was discussed: current chopping control, angle position control. This paper presents an inverter circuit and a fuzzy sliding mode control method to minimize the torque fluctuation and noise of the SRM. Based on the experimental results, Using the inverter circuit and fuzzy sliding mode control method can effectively minimize the torque fluctuation and noise of the SRM, For the switched reluctance motor applications in electric vehicles to provide a theoretical basis.

  5. Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination

    Science.gov (United States)

    Nicolas, Laura; Cols, Montserrat; Choi, Jee Eun; Chaudhuri, Jayanta; Vuong, Bao

    2018-01-01

    Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity. PMID:29744038

  6. Zener diode controls switching of large direct currents

    Science.gov (United States)

    1965-01-01

    High-current zener diode is connected in series with the positive input terminal of a dc supply to block the flow of direct current until a high-frequency control signal is applied across the zener diode. This circuit controls the switching of large dc signals.

  7. An Integrated Model of Cognitive Control in Task Switching

    Science.gov (United States)

    Altmann, Erik M.; Gray, Wayne D.

    2008-01-01

    A model of cognitive control in task switching is developed in which controlled performance depends on the system maintaining access to a code in episodic memory representing the most recently cued task. The main constraint on access to the current task code is proactive interference from old task codes. This interference and the mechanisms that…

  8. Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches

    KAUST Repository

    Zheng, Yue Bing

    2009-02-11

    A gold nanodisk array, coated with bistable, redox-controllable [2]rotaxane molecules, when exposed to chemical oxidants and reductants, undergoes switching of its plasmonic properties reversibly. By contrast, (i) bare gold nanodisks and (ii) disks coated with a redox-active, but mechanically inert, control compound do not display surface-plasmon-based switching. Along with calculations based on time-dependent density functional theory, these experimental observations suggest that the nanoscale movements within surface-bound “molecular machines” can be used as the active components in plasmonic devices.

  9. Device for dynamic switching of robot control points

    DEFF Research Database (Denmark)

    2015-01-01

    The invention comprises a system for switching between control points of a robotic system involving an industrial robot including a robot arm with a number of joints and provided with a tool interest point movable in a plurality of degrees of freedom.......The invention comprises a system for switching between control points of a robotic system involving an industrial robot including a robot arm with a number of joints and provided with a tool interest point movable in a plurality of degrees of freedom....

  10. Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches

    KAUST Repository

    Zheng, Yue Bing; Yang, Ying-Wei; Jensen, Lasse; Fang, Lei; Juluri, Bala Krishna; Flood, Amar H.; Weiss, Paul S.; Stoddart, J. Fraser; Huang, Tony Jun

    2009-01-01

    A gold nanodisk array, coated with bistable, redox-controllable [2]rotaxane molecules, when exposed to chemical oxidants and reductants, undergoes switching of its plasmonic properties reversibly. By contrast, (i) bare gold nanodisks and (ii) disks coated with a redox-active, but mechanically inert, control compound do not display surface-plasmon-based switching. Along with calculations based on time-dependent density functional theory, these experimental observations suggest that the nanoscale movements within surface-bound “molecular machines” can be used as the active components in plasmonic devices.

  11. A Switch Is Not a Switch: Syntactically-Driven Bilingual Language Control

    Science.gov (United States)

    Gollan, Tamar H.; Goldrick, Matthew

    2018-01-01

    The current study investigated the possibility that language switches could be relatively automatically triggered by context. "Single-word switches," in which bilinguals switched languages on a single word in midsentence and then immediately switched back, were contrasted with more complete "whole-language switches," in which…

  12. A fluorescence switch based on a controllable photochromic naphthopyran group

    International Nuclear Information System (INIS)

    Chen Lizhen; Wang Guang; Zhao Xiancai

    2011-01-01

    A fluorescence switch based on photoisomerization of naphthopyran (NP) has been designed by employing 2-(pyridin-2-yl)-benzimidazole (BPI) and the naphthopyran containing two pyran rings (NP) as fluorescent dye and photochromic compound, respectively. The fluorescence switch of benzimidazole derivative can be modulated either by controlling the irradiation time of UV light or by adjusting the amount ratio of fluorescent benzimidazole derivative to photochromic naphthopyran in both solution and polymethyl methacrylate (PMMA) film. The experimental results indicated that the decrease of fluorescence intensity of benzimidazole derivative is attributed to the interaction of benzimidazole with naphthopyran. - Highlights: → Naphthopyran was first used to fabricate fluorescence switch with benzimidazole derivative. → Fluorescence intensity can be modulated by controlling the UV irradiation time. → Fluorescence intensity can be adjusted by changing the ratio of benzimidazole derivative to naphthopyran. → Decrease of fluorescence intensity is attributed to the interaction of benzimidazole derivative and naphthopyran.

  13. Personal Computer Based Controller For Switched Reluctance Motor Drives

    Science.gov (United States)

    Mang, X.; Krishnan, R.; Adkar, S.; Chandramouli, G.

    1987-10-01

    Th9, switched reluctance motor (SRM) has recently gained considerable attention in the variable speed drive market. Two important factors that have contributed to this are, the simplicity of construction and the possibility of developing low cost con-trollers with minimum number of switching devices in the drive circuits. This is mainly due to the state-of-art of the present digital circuits technology and the low cost of switching devices. The control of this motor drive is under research. Optimized performance of the SRM motor drive is very dependent on the integration of the controller, converter and the motor. This research on system integration involves considerable changes in the control algorithms and their implementation. A Personal computer (PC) based controller is very appropriate for this purpose. Accordingly, the present paper is concerned with the design of a PC based controller for a SRM. The PC allows for real-time microprocessor control with the possibility of on-line system parameter modifications. Software reconfiguration of this controller is easier than a hardware based controller. User friendliness is a natural consequence of such a system. Considering the low cost of PCs, this controller will offer an excellent cost-effective means of studying the control strategies for the SRM drive intop greater detail than in the past.

  14. Switch Reluctance Motor Control Based on Fuzzy Logic System

    Directory of Open Access Journals (Sweden)

    S. V. Aleksandrovsky

    2012-01-01

    Full Text Available Due to its intrinsic simplicity and reliability, the switched reluctance motor (SRM has now become a promising candidate for variable-speed drive applications as an alternative induction motor in various industrial application. However, the SRM has the disadvantage of nonlinear characteristic and control. It is suggested to use controller based on fuzzy logic system. Design of FLS controller and simulation model presented.

  15. Key Players in the Genetic Switch of Bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Alsing, Anne; Pedersen, Margit; Sneppen, Kim

    2011-01-01

    the bistable genetic switch of bacteriophage TP901-1 through experiments and statistical mechanical modeling. We examine the activity of the lysogenic promoter Pr at different concentrations of the phage repressor, CI, and compare the effect of CI on Pr in the presence or absence of the phage-encoded MOR...

  16. Lambda phage genetic switch as a system with critical behaviour

    Czech Academy of Sciences Publication Activity Database

    Vohradský, Jiří

    2017-01-01

    Roč. 431, OCT 27 2017 (2017), s. 32-38 ISSN 0022-5193 R&D Projects: GA MŠk(CZ) LM2015055 Institutional support: RVO:61388971 Keywords : Critical behaviour * Phage lambda * Genetic networks Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.113, year: 2016

  17. Controlling friction in a manganite surface by resistive switching

    OpenAIRE

    Schmidt, Hendrik; Krisponeit, Jon-Olaf; Samwer, Konrad; Volkert, Cynthia A.

    2016-01-01

    We report a significant change in friction of a $\\rm La_{0.55}Ca_{0.45}MnO_3$ thin film measured as a function of the materials resistive state under ultrahigh vacuum conditions at room temperature by friction force microscopy. While friction is high in the insulating state, it clearly changes to lower values if the probed local region is switched to the conducting state via nanoscale resistance switching. Thus we demonstrate active control of friction without having to change the temperature...

  18. Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Tantawi, Sami; /SLAC

    2007-01-10

    First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

  19. New mode switching algorithm for the JPL 70-meter antenna servo controller

    Science.gov (United States)

    Nickerson, J. A.

    1988-01-01

    The design of control mode switching algorithms and logic for JPL's 70 m antenna servo controller are described. The old control mode switching logic was reviewed and perturbation problems were identified. Design approaches for mode switching are presented and the final design is described. Simulations used to compare old and new mode switching algorithms and logic show that the new mode switching techniques will significantly reduce perturbation problems.

  20. Position Control of Switched Reluctance Motor Using Super Twisting Algorithm

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq Mufti

    2016-01-01

    Full Text Available The inherent problem of chattering in traditional sliding mode control is harmful for practical application of control system. This paper pays a considerable attention to a chattering-free control method, that is, higher-order sliding mode (super twisting algorithm. The design of a position controller for switched reluctance motor is presented and its stability is assured using Lyapunov stability theorem. In order to highlight the advantages of higher-order sliding mode controller (HOSMC, a classical first-order sliding mode controller (FOSMC is also applied to the same system and compared. The simulation results reflect the effectiveness of the proposed technique.

  1. SWITCHING POWER FAN CONTROL OF COMPUTER

    Directory of Open Access Journals (Sweden)

    Oleksandr I. Popovskyi

    2010-10-01

    Full Text Available Relevance of material presented in the article, due to extensive use of high-performance computers to create modern information systems, including the NAPS of Ukraine. Most computers in NAPS of Ukraine work on Intel Pentium processors at speeds from 600 MHz to 3 GHz and release a lot of heat, which requires the installation of the system unit 2-3 additional fans. The fan is always works on full power, that leads to rapid deterioration and high level (up to 50 dB noise. In order to meet ergonomic requirements it is proposed to іnstall a computer system unit and an additional control unit ventilators, allowing independent control of each fan. The solution is applied at creation of information systems planning research in the National Academy of Pedagogical Sciences of Ukraine on Internet basis.

  2. Hacking control systems, switching lights off!

    CERN Multimedia

    Computer Security Team

    2013-01-01

    Have you ever heard about “Stuxnet”? “Stuxnet” was a very sophisticated cyber-attack against the Iranian nuclear programme. Like in a spy movie, the attackers infiltrated the uranium enrichment plant at Natanz, arranged for infected USB sticks to be inserted into local PCs, and then the USB viruses did the rest.   Not only did the virus employ four distinct - so far unknown - weaknesses in the Windows operating system, but each weakness could have been sold on the underground market for up to $250,000 each. The virus was targeted to disrupt Iran's uranium production. At first, it scanned the infected PCs for dedicated SCADA (Supervisory Control and Data Acquisition) software from Siemens. Once the virus hit upon that software, it tried to identify any control system components, i.e. so-called PLCs (programmable logic controllers), attached to that PC. If the PLC matched a certain brand (Siemens S7) and configuration, the virus downloaded additi...

  3. Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems

    Science.gov (United States)

    Medford, June; Prasad, Ashok

    2014-01-01

    Biological protein interactions networks such as signal transduction or gene transcription networks are often treated as modular, allowing motifs to be analyzed in isolation from the rest of the network. Modularity is also a key assumption in synthetic biology, where it is similarly expected that when network motifs are combined together, they do not lose their essential characteristics. However, the interactions that a network module has with downstream elements change the dynamical equations describing the upstream module and thus may change the dynamic and static properties of the upstream circuit even without explicit feedback. In this work we analyze the behavior of a ubiquitous motif in gene transcription and signal transduction circuits: the switch. We show that adding an additional downstream component to the simple genetic toggle switch changes its dynamical properties by changing the underlying potential energy landscape, and skewing it in favor of the unloaded side, and in some situations adding loads to the genetic switch can also abrogate bistable behavior. We find that an additional positive feedback motif found in naturally occurring toggle switches could tune the potential energy landscape in a desirable manner. We also analyze autocatalytic signal transduction switches and show that a ubiquitous positive feedback switch can lose its switch-like properties when connected to a downstream load. Our analysis underscores the necessity of incorporating the effects of downstream components when understanding the physics of biochemical network motifs, and raises the question as to how these effects are managed in real biological systems. This analysis is particularly important when scaling synthetic networks to more complex organisms. PMID:24676102

  4. Stochastic stabilization of phenotypic States: the genetic bistable switch as a case study.

    Science.gov (United States)

    Weber, Marc; Buceta, Javier

    2013-01-01

    We study by means of analytical calculation and stochastic simulations how intrinsic noise modifies the bifurcation diagram of gene regulatory processes that can be effectively described by the Langevin formalism. In a general context, our study raises the intriguing question of how biochemical fluctuations redesign the epigenetic landscape in differentiation processes. We have applied our findings to a general class of regulatory processes that includes the simplest case that displays a bistable behavior and hence phenotypic variability: the genetic auto-activating switch. Thus, we explain why and how the noise promotes the stability of the low-state phenotype of the switch and show that the bistable region is extended when increasing the intensity of the fluctuations. This phenomenology is found in a simple one-dimensional model of the genetic switch as well as in a more detailed model that takes into account the binding of the protein to the promoter region. Altogether, we prescribe the analytical means to understand and quantify the noise-induced modifications of the bifurcation points for a general class of regulatory processes where the genetic bistable switch is included.

  5. Cooperativity Leads to Temporally-Correlated Fluctuations in the Bacteriophage Lambda Genetic Switch

    Directory of Open Access Journals (Sweden)

    Jacob Quinn Shenker

    2015-04-01

    Full Text Available Cooperative interactions are widespread in biochemical networks, providing the nonlinear response that underlies behavior such as ultrasensitivity and robust switching. We introduce a temporal correlation function—the conditional activity—to study the behavior of these phenomena. Applying it to the bistable genetic switch in bacteriophage lambda, we find that cooperative binding between binding sites on the prophage DNA lead to non-Markovian behavior, as quantified by the conditional activity. Previously, the conditional activity has been used to predict allosteric pathways in proteins; here, we show that it identifies the rare unbinding events which underlie induction from lysogeny to lysis.

  6. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae.

    Science.gov (United States)

    Vanegas, Katherina García; Lehka, Beata Joanna; Mortensen, Uffe Hasbro

    2017-02-08

    The yeast Saccharomyces cerevisiae is increasingly used as a cell factory. However, cell factory construction time is a major obstacle towards using yeast for bio-production. Hence, tools to speed up cell factory construction are desirable. In this study, we have developed a new Cas9/dCas9 based system, SWITCH, which allows Saccharomyces cerevisiae strains to iteratively alternate between a genetic engineering state and a pathway control state. Since Cas9 induced recombination events are crucial for SWITCH efficiency, we first developed a technique TAPE, which we have successfully used to address protospacer efficiency. As proof of concept of the use of SWITCH in cell factory construction, we have exploited the genetic engineering state of a SWITCH strain to insert the five genes necessary for naringenin production. Next, the naringenin cell factory was switched to the pathway control state where production was optimized by downregulating an essential gene TSC13, hence, reducing formation of a byproduct. We have successfully integrated two CRISPR tools, one for genetic engineering and one for pathway control, into one system and successfully used it for cell factory construction.

  7. Fuselage panel noise attenuation by piezoelectric switching control

    International Nuclear Information System (INIS)

    Makihara, Kanjuro; Onoda, Junjiro; Minesugi, Kenji; Miyakawa, Takeya

    2010-01-01

    This paper describes a problem that we encountered in our noise attenuation project and our solution for it. We intend to attenuate low-frequency noise that transmits through aircraft fuselage panels. Our method of noise attenuation is implemented with a piezoelectric semi-active system having a selective switch instead of an active energy-supply system. The semi-active controller is based on the predicted sound pressure distribution obtained from acoustic emission analysis. Experiments and numerical simulations demonstrate that the semi-active method attenuates acoustic levels of not only the simple monochromatic noise but also of broadband noise. We reveal that tuning the electrical parameters in the circuit is the key to effective noise attenuation, to overcome the acoustic excitation problem due to sharp switching actions, as well as to control chattering problems. The results obtained from this investigation provide meaningful insights into designing noise attenuation systems for comfortable aircraft cabin environments

  8. Mathematic-Graphical Formalization of Switch Point Control Circuit Function

    Directory of Open Access Journals (Sweden)

    Juraj Zdansky

    2004-01-01

    Full Text Available This article describes authors designed method then enables mathematic – graphical formalization of system’s functional specification. The result of this method is algebraic system – finite automata that is written in transition table. This transition table is possible to overwrite to graphic form (state diagram or to mathematic form (transition and output function. This method is described by example of switch point control circuit.

  9. Widespread genetic switches and toxicity resistance proteins for fluoride.

    Science.gov (United States)

    Baker, Jenny L; Sudarsan, Narasimhan; Weinberg, Zasha; Roth, Adam; Stockbridge, Randy B; Breaker, Ronald R

    2012-01-13

    Most riboswitches are metabolite-binding RNA structures located in bacterial messenger RNAs where they control gene expression. We have discovered a riboswitch class in many bacterial and archaeal species whose members are selectively triggered by fluoride but reject other small anions, including chloride. These fluoride riboswitches activate expression of genes that encode putative fluoride transporters, enzymes that are known to be inhibited by fluoride, and additional proteins of unknown function. Our findings indicate that most organisms are naturally exposed to toxic levels of fluoride and that many species use fluoride-sensing RNAs to control the expression of proteins that alleviate the deleterious effects of this anion.

  10. Control of Bouncing in MEMS Switches Using Double Electrodes

    KAUST Repository

    Abdul Rahim, Farhan

    2016-08-09

    This paper presents a novel way of controlling the bouncing phenomenon commonly present in the Radio Frequency Microelectromechanical Systems (RF MEMS) switches using a double-electrode configuration. The paper discusses modeling bouncing using both lumped parameter and beam models. The simulations of bouncing and its control are discussed. Comparison between the new proposed method and other available control techniques is also made. The Galerkin method is applied on the beam model accounting for the nonlinear electrostatic force, squeeze film damping, and surface contact effect. The results indicate that it is possible to reduce bouncing and hence beam degradation, by the use of double electrodes.

  11. Time dependent optimal switching controls in online selling models

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Cohen, Albert [MICHIGAN STATE UNIV

    2010-01-01

    We present a method to incorporate dishonesty in online selling via a stochastic optimal control problem. In our framework, the seller wishes to maximize her average wealth level W at a fixed time T of her choosing. The corresponding Hamilton-Jacobi-Bellmann (HJB) equation is analyzed for a basic case. For more general models, the admissible control set is restricted to a jump process that switches between extreme values. We propose a new approach, where the optimal control problem is reduced to a multivariable optimization problem.

  12. 49 CFR 236.207 - Electric lock on hand-operated switch; control.

    Science.gov (United States)

    2010-10-01

    ..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.207 Electric lock on hand-operated switch; control. Electric lock on hand-operated switch shall be controlled so that it cannot be unlocked... 49 Transportation 4 2010-10-01 2010-10-01 false Electric lock on hand-operated switch; control...

  13. 75 FR 37453 - Notice of Issuance of Final Determination Concerning Dimmer and Fan Speed Switch Controls

    Science.gov (United States)

    2010-06-29

    ... Determination Concerning Dimmer and Fan Speed Switch Controls AGENCY: U.S. Customs and Border Protection... country of origin of certain dimmer and fan speed switch controls which may be offered to the United... determination CBP concluded that Mexico is the country of origin of the dimmer and fan speed switch controls for...

  14. Genetic noise control via protein oligomerization

    Directory of Open Access Journals (Sweden)

    Almaas Eivind

    2008-11-01

    Full Text Available Abstract Background Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamic role of protein-protein interactions. Results We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch, integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast binding-unbinding kinetics among proteins, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its random switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced state from randomly being induced (uninduced. Conclusion The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of regulatory circuits

  15. Threshold Switching Induced by Controllable Fragmentation in Silver Nanowire Networks.

    Science.gov (United States)

    Wan, Tao; Pan, Ying; Du, Haiwei; Qu, Bo; Yi, Jiabao; Chu, Dewei

    2018-01-24

    Silver nanowire (Ag NW) networks have been widely studied because of a great potential in various electronic devices. However, nanowires usually undergo a fragmentation process at elevated temperatures due to the Rayleigh instability that is a result of reduction of surface/interface energy. In this case, the nanowires become completely insulating due to the formation of randomly distributed Ag particles with a large distance and further applications are hindered. Herein, we demonstrate a novel concept based on the combination of ultraviolet/ozone irradiation and a low-temperature annealing process to effectively utilize and control the fragmentation behavior to realize the resistive switching performances. In contrast to the conventional fragmentation, the designed Ag/AgO x interface facilitates a unique morphology of short nanorod-like segments or chains of tiny Ag nanoparticles with a very small spacing distance, providing conduction paths for achieving the tunneling process between the isolated fragments under the electric field. On the basis of this specific morphology, the Ag NW network has a tunable resistance and shows volatile threshold switching characteristics with a high selectivity, which is the ON/OFF current ratio in selector devices. Our concept exploits a new function of Ag NW network, i.e., resistive switching, which can be developed by designing a controllable fragmentation.

  16. Bistable switches control memory and plasticity in cellular differentiation

    Science.gov (United States)

    Wang, Lei; Walker, Brandon L.; Iannaccone, Stephen; Bhatt, Devang; Kennedy, Patrick J.; Tse, William T.

    2009-01-01

    Development of stem and progenitor cells into specialized tissues in multicellular organisms involves a series of cell fate decisions. Cellular differentiation in higher organisms is generally considered irreversible, and the idea of developmental plasticity in postnatal tissues is controversial. Here, we show that inhibition of mitogen-activated protein kinase (MAPK) in a human bone marrow stromal cell-derived myogenic subclone suppresses their myogenic ability and converts them into satellite cell-like precursors that respond to osteogenic stimulation. Clonal analysis of the induced osteogenic response reveals ultrasensitivity and an “all-or-none” behavior, hallmarks of a bistable switch mechanism with stochastic noise. The response demonstrates cellular memory, which is contingent on the accumulation of an intracellular factor and can be erased by factor dilution through cell divisions or inhibition of protein synthesis. The effect of MAPK inhibition also exhibits memory and appears to be controlled by another bistable switch further upstream that determines cell fate. Once the memory associated with osteogenic differentiation is erased, the cells regain their myogenic ability. These results support a model of cell fate decision in which a network of bistable switches controls inducible production of lineage-specific differentiation factors. A competitive balance between these factors determines cell fate. Our work underscores the dynamic nature of cellular differentiation and explains mechanistically the dual properties of stability and plasticity associated with the process. PMID:19366677

  17. Mixed H∞ and passive control for linear switched systems via hybrid control approach

    Science.gov (United States)

    Zheng, Qunxian; Ling, Youzhu; Wei, Lisheng; Zhang, Hongbin

    2018-03-01

    This paper investigates the mixed H∞ and passive control problem for linear switched systems based on a hybrid control strategy. To solve this problem, first, a new performance index is proposed. This performance index can be viewed as the mixed weighted H∞ and passivity performance. Then, the hybrid controllers are used to stabilise the switched systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. The design of state updating controllers not only depends on the pre-switching subsystem and the post-switching subsystem, but also depends on the measurable output signal. The hybrid controllers proposed in this paper can include some existing ones as special cases. Combine the multiple Lyapunov functions approach with the average dwell time technique, new sufficient conditions are obtained. Under the new conditions, the closed-loop linear switched systems are globally uniformly asymptotically stable with a mixed H∞ and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities. Finally, a numerical example and a practical example are given.

  18. Ikaros controls isotype selection during immunoglobulin class switch recombination.

    Science.gov (United States)

    Sellars, MacLean; Reina-San-Martin, Bernardo; Kastner, Philippe; Chan, Susan

    2009-05-11

    Class switch recombination (CSR) allows the humoral immune response to exploit different effector pathways through specific secondary antibody isotypes. However, the molecular mechanisms and factors that control immunoglobulin (Ig) isotype choice for CSR are unclear. We report that deficiency for the Ikaros transcription factor results in increased and ectopic CSR to IgG(2b) and IgG(2a), and reduced CSR to all other isotypes, regardless of stimulation. Ikaros suppresses active chromatin marks, transcription, and activation-induced cytidine deaminase (AID) accessibility at the gamma2b and gamma2a genes to inhibit class switching to these isotypes. Further, Ikaros directly regulates isotype gene transcription as it directly binds the Igh 3' enhancer and interacts with isotype gene promoters. Finally, Ikaros-mediated repression of gamma2b and gamma2a transcription promotes switching to other isotype genes by allowing them to compete for AID-mediated recombination at the single-cell level. Thus, our results reveal transcriptional competition between constant region genes in individual cells to be a critical and general mechanism for isotype specification during CSR. We show that Ikaros is a master regulator of this competition.

  19. Adaptive neuro-fuzzy controller of switched reluctance motor

    Directory of Open Access Journals (Sweden)

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  20. The Design of the M-B-Quadro Optical Switch and Its Access Control Strategies

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper proposes a new simple contention resolution switching architecture, M-B-Quadro, and its underlying access control strategies. By incorporating delay and buffer lines, the switching node can effectively obtain very low packet deflection probability.

  1. Compact wireless control network protocol with fast path switching

    Directory of Open Access Journals (Sweden)

    Yasutaka Kawamoto

    2017-08-01

    Full Text Available Sensor network protocol stacks require the addition or adjustment of functions based on customer requirements. Sensor network protocols that require low delay and low packet error rate (PER, such as wireless control networks, often adopt time division multiple access (TDMA. However, it is difficult to add or adjust functions in protocol stacks that use TDMA methods. Therefore, to add or adjust functions easily, we propose NES-SOURCE, a compact wireless control network protocol with a fast path-switching function. NES-SOURCE is implemented using carrier sense multiple access/collision avoidance (CSMA/CA rather than TDMA. Wireless control networks that use TDMA prevent communication failure by duplicating the communication path. If CSMA/CA networks use duplicate paths, collisions occur frequently, and communication will fail. NES-SOURCE switches paths quickly when communication fails, which reduces the effect of communication failures. Since NES-SOURCE is implemented using CSMA/CA rather than TDMA, the implementation scale is less than one-half that of existing network stacks. Furthermore, since NES-SOURCE’s code complexity is low, functions can be added or adjusted easily and quickly. Communication failures occur owing to changes in the communication environment and collisions. Experimental results demonstrate that the proposed NES-SOURCE’s path-switching function reduces the amount of communication failures when the communication environment changes owing to human movement and others. Furthermore, we clarify the relationships among the probability of a changing communication environment, the collision occurrence rate, and the PER of NES-SOURCE.

  2. Dopamine and cognitive control: sex-by-genotype interactions influence the capacity to switch attention.

    Science.gov (United States)

    Gurvich, C; Rossell, S L

    2015-03-15

    Cognitive performance in healthy persons varies widely between individuals. Sex differences in cognition are well reported, and there is an emerging body of evidence suggesting that the relationship between dopaminergic neurotransmission, implicated in many cognitive functions, is modulated by sex. Here, we examine the influence of sex and genetic variations along the dopaminergic pathway on aspects of cognitive control. A total of 415 healthy individuals, selected from an international consortium linked to Brain Research and Integrative Neuroscience Network (BRAINnet), were genotyped for two common and functional genetic variations of dopamine regulating genes: the catechol-O-methyltransferase [COMT] gene (rs4680) and the dopamine receptor D2 [DRD2] gene (rs6277). Cognitive measures were selected to explore sustained attention (using a continuous performance task), switching of attention (using a Trails B adaptation) and working memory (a visual computerised adaptation of digit span). While there were no main effects for genotype across any tasks, analyses revealed significant sex by genotype interactions for the capacity to switch attention. In relation to COMT, superior performance was noted in females with the Val/Val genotype and for DRD2, superior performance was seen for TT females and CC males. These findings highlight the importance of considering genetic variation in baseline dopamine levels in addition to sex, when considering the impact of dopamine on cognition in healthy populations. These findings also have important implications for the many neuropsychiatric disorders that implicate dopamine, cognitive changes and sex differences. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A design for the control of apoptosis in genetically modified Saccharomyces cerevisiae.

    Science.gov (United States)

    Nishida, Nao; Noguchi, Misa; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2014-01-01

    We have engineered a system that holds potential for use as a safety switch in genetically modified yeasts. Human apoptotic factor BAX (no homolog in yeast), under the control of the FBP1 (gluconeogenesis enzyme) promoter, was conditionally expressed to induce yeast cell apoptosis after glucose depletion. Such systems might prove useful for the safe use of genetically modified organisms.

  4. Intelligent Switching Control of Pneumatic Artificial Muscle Manipulator

    Science.gov (United States)

    Ahn, Kyoung Kwan; Thanh, Tu Diep Cong; Ahn, Young Kong

    Problems with the control, oscillatory motion and compliance of pneumatic systems have prevented their widespread use in advanced robotics. However, their compactness, power/weight ratio, ease of maintenance and inherent safety are the factors that could potentially be exploited in sophisticated dexterous manipulator designs. These advantages have led to the development of novel actuators such as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle Manipulators. However, some limitations still exist, such as deterioration of the performance of transient response due to the change of the external inertia load in the pneumatic artificial muscle manipulator. To overcome this problem, switching algorithm of control parameter using learning vector quantization neural network (LVQNN) is newly proposed, which estimates the external inertia load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external inertia loads.

  5. Controllability of switched singular mix-valued logical control networks with constraints

    Science.gov (United States)

    Deng, Lei; Gong, Mengmeng; Zhu, Peiyong

    2018-03-01

    The present paper investigates the controllability problem of switched singular mix-valued logical control networks (SSMLCNs) with constraints on states and controls. First, using the semi-tenser product (STP) of matrices, the SSMLCN is expressed in an algebraic form, based on which a necessary and sufficient condition is given for the uniqueness of solution of SSMLCNs. Second, a necessary and sufficient criteria is derived for the controllability of constrained SSMLCNs, by converting a constrained SSMLCN into a parallel constrained switched mix-valued logical control network. Third, an algorithm is presented to design a proper switching sequence and a control scheme which force a state to a reachable state. Finally, a numerical example is given to demonstrate the efficiency of the results obtained in this paper.

  6. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch.

    Science.gov (United States)

    Lou, Chunbo; Liu, Xili; Ni, Ming; Huang, Yiqi; Huang, Qiushi; Huang, Longwen; Jiang, Lingli; Lu, Dan; Wang, Mingcong; Liu, Chang; Chen, Daizhuo; Chen, Chongyi; Chen, Xiaoyue; Yang, Le; Ma, Haisu; Chen, Jianguo; Ouyang, Qi

    2010-01-01

    Design and synthesis of basic functional circuits are the fundamental tasks of synthetic biologists. Before it is possible to engineer higher-order genetic networks that can perform complex functions, a toolkit of basic devices must be developed. Among those devices, sequential logic circuits are expected to be the foundation of the genetic information-processing systems. In this study, we report the design and construction of a genetic sequential logic circuit in Escherichia coli. It can generate different outputs in response to the same input signal on the basis of its internal state, and 'memorize' the output. The circuit is composed of two parts: (1) a bistable switch memory module and (2) a double-repressed promoter NOR gate module. The two modules were individually rationally designed, and they were coupled together by fine-tuning the interconnecting parts through directed evolution. After fine-tuning, the circuit could be repeatedly, alternatively triggered by the same input signal; it functions as a push-on push-off switch.

  7. Convergent Transcription in the Butyrolactone Regulon in Streptomyces coelicolor Confers a Bistable Genetic Switch for Antibiotic Biosynthesis

    Science.gov (United States)

    Chatterjee, Anushree; Drews, Laurie; Mehra, Sarika; Takano, Eriko; Kaznessis, Yiannis N.; Hu, Wei-Shou

    2011-01-01

    cis-encoded antisense RNAs (cis asRNA) have been reported to participate in gene expression regulation in both eukaryotic and prokaryotic organisms. Its presence in Streptomyces coelicolor has also been reported recently; however, its role has yet to be fully investigated. Using mathematical modeling we explore the role of cis asRNA produced as a result of convergent transcription in scbA-scbR genetic switch. scbA and scbR gene pair, encoding repressor–amplifier proteins respectively, mediates the synthesis of a signaling molecule, the γ-butyrolactone SCB1 and controls the onset of antibiotic production. Our model considers that transcriptional interference caused by convergent transcription of two opposing RNA polymerases results in fatal collision and transcriptional termination, which suppresses transcription efficiency. Additionally, convergent transcription causes sense and antisense interactions between complementary sequences from opposing strands, rendering the full length transcript inaccessible for translation. We evaluated the role of transcriptional interference and the antisense effect conferred by convergent transcription on the behavior of scbA-scbR system. Stability analysis showed that while transcriptional interference affects the system, it is asRNA that confers scbA-scbR system the characteristics of a bistable switch in response to the signaling molecule SCB1. With its critical role of regulating the onset of antibiotic synthesis the bistable behavior offers this two gene system the needed robustness to be a genetic switch. The convergent two gene system with potential of transcriptional interference is a frequent feature in various genomes. The possibility of asRNA regulation in other such gene-pairs is yet to be examined. PMID:21765930

  8. Control switching in high performance and fault tolerant control

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    The problem of reliability in high performance control and in fault tolerant control is considered in this paper. A feedback controller architecture for high performance and fault tolerance is considered. The architecture is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. By usi...

  9. hamlet, a binary genetic switch between single- and multiple- dendrite neuron morphology.

    Science.gov (United States)

    Moore, Adrian W; Jan, Lily Yeh; Jan, Yuh Nung

    2002-08-23

    The dendritic morphology of neurons determines the number and type of inputs they receive. In the Drosophila peripheral nervous system (PNS), the external sensory (ES) neurons have a single nonbranched dendrite, whereas the lineally related multidendritic (MD) neurons have extensively branched dendritic arbors. We report that hamlet is a binary genetic switch between these contrasting morphological types. In hamlet mutants, ES neurons are converted to an MD fate, whereas ectopic hamlet expression in MD precursors results in transformation of MD neurons into ES neurons. Moreover, hamlet expression induced in MD neurons undergoing dendrite outgrowth drastically reduces arbor branching.

  10. Optically controlled multiple switching operations of DNA biopolymer devices

    International Nuclear Information System (INIS)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu; Fruk, Ljiljana; Hung, Yu-Chueh

    2015-01-01

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices

  11. Optically controlled multiple switching operations of DNA biopolymer devices

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Fruk, Ljiljana [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Hung, Yu-Chueh, E-mail: ychung@ee.nthu.edu.tw [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2015-12-21

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  12. Antagonistic control of a dual-input mammalian gene switch by food additives.

    Science.gov (United States)

    Xie, Mingqi; Ye, Haifeng; Hamri, Ghislaine Charpin-El; Fussenegger, Martin

    2014-08-01

    Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Automatic thermal control switches. [for use in Space Shuttle borne Get Away Special container

    Science.gov (United States)

    Wing, L. D.

    1982-01-01

    Two automatic, flexible connection thermal control switches have been designed and tested in a thermal vacuum facility and in the Get Away Special (GAS) container flown on the third Shuttle flight. The switches are complementary in that one switch passes heat when the plate on which it is mounted exceeds some selected temperature and the other switch will pass heat only when the mounting plate temperature is below the selected value. Both switches are driven and controlled by phase-change capsule motors and require no other power source or thermal sensors.

  14. Working memory and the control of action: evidence from task switching.

    Science.gov (United States)

    Baddeley, A; Chincotta, D; Adlam, A

    2001-12-01

    A series of 7 experiments used dual-task methodology to investigate the role of working memory in the operation of a simple action-control plan or program involving regular switching between addition and subtraction. Lists requiring switching were slower than blocked lists and showed 2 concurrent task effects. Demanding executive tasks impaired performance on both blocked and switched lists, whereas articulatory suppression impaired principally the switched condition. Implications for models of task switching and working memory and for the Vygotskian concept of verbal control of action are discussed.

  15. Switching the Fermilab Accelerator Control System to a relational database

    International Nuclear Information System (INIS)

    Shtirbu, S.

    1993-01-01

    The accelerator control system (open-quotes ACNETclose quotes) at Fermilab is using a made-in-house, Assembly language, database. The database holds device information, which is mostly used for finding out how to read/set devices and how to interpret alarms. This is a very efficient implementation, but it lacks the needed flexibility and forces applications to store data in private/shared files. This database is being replaced by an off-the-shelf relational database (Sybase 2 ). The major constraints on switching are the necessity to maintain/improve response time and to minimize changes to existing applications. Innovative methods are used to help achieve the required performance, and a layer seven gateway simulates the old database for existing programs. The new database is running on a DEC ALPHA/VMS platform, and provides better performance. The switch is also exposing problems with the data currently stored in the database, and is helping in cleaning up erroneous data. The flexibility of the new relational database is going to facilitate many new applications in the future (e.g. a 3D presentation of device location). The new database is expected to fully replace the old database during this summer's shutdown

  16. Improvement on Main/backup Controller Switching Device of the Nozzle Throat Area Control System for a Turbofan Aero Engine

    Science.gov (United States)

    Li, Jie; Duan, Minghu; Yan, Maode; Li, Gang; Li, Xiaohui

    2014-06-01

    A full authority digital electronic controller (FADEC) equipped with a full authority hydro-mechanical backup controller (FAHMBC) is adopted as the nozzle throat area control system (NTACS) of a turbofan aero engine. In order to ensure the switching reliability of the main/backup controller, the nozzle throat area control switching valve was improved from three-way convex desktop slide valve to six-way convex desktop slide valve. Simulation results show that, if malfunctions of FAEDC occur and abnormal signals are outputted from FADEC, NTACS will be seriously influenced by the main/backup controller switching in several working states, while NTACS will not be influenced by using the improved nozzle throat area control switching valve, thus the controller switching process will become safer and smoother and the working reliability of this turbofan aero engine is improved by the controller switching device improvement.

  17. Adaptive PID and Model Reference Adaptive Control Switch Controller for Nonlinear Hydraulic Actuator

    Directory of Open Access Journals (Sweden)

    Xin Zuo

    2017-01-01

    Full Text Available Nonlinear systems are modeled as piecewise linear systems at multiple operating points, where the operating points are modeled as switches between constituent linearized systems. In this paper, adaptive piecewise linear switch controller is proposed for improving the response time and tracking performance of the hydraulic actuator control system, which is essentially piecewise linear. The controller composed of PID and Model Reference Adaptive Control (MRAC adaptively chooses the proportion of these two components and makes the designed system have faster response time at the transient phase and better tracking performance, simultaneously. Then, their stability and tracking performance are analyzed and evaluated by the hydraulic actuator control system, the hydraulic actuator is controlled by the electrohydraulic system, and its model is built, which has piecewise linear characteristic. Then the controller results are compared between PID and MRAC and the switch controller designed in this paper is applied to the hydraulic actuator; it is obvious that adaptive switch controller has better effects both on response time and on tracking performance.

  18. Strain controlled switching effects in phosphorene and GeS.

    Science.gov (United States)

    Li, B W; Wang, Y; Xie, Y Q; Zhu, L; Yao, K L

    2017-10-27

    By performing first principles calculations within the combined approach of density functional theory and nonequilibrium Green's function technique, we have designed some nanoelectronic devices to explore the ferroelastic switching of phosphorene and phosphorene analogs GeS. With the structure swapping along the zigzag direction and armchair direction, band gap transformed at different states due to their anisotropic phosphorene-like structure. From the initial state to the middle state, the band gap becomes progressively smaller, after that, it becomes wide. By analyzing transmission coefficients, it is found that the transport properties of phosphorene and GeS can be controlled by a uniaxial strain. The results also manifest that GeS has great potential to fabricate ferroic nonvolatile memory devices, because its relatively high on/off transmission coefficient ratio (∼1000) between the two stable ferroelastic states.

  19. Electrophysiological Evidence for Endogenous Control of Attention in Switching between Languages in Overt Picture Naming

    Science.gov (United States)

    Verhoef, Kim M. W.; Roelofs, Ardi; Chwilla, Dorothee J.

    2010-01-01

    Language switching in bilingual speakers requires attentional control to select the appropriate language, for example, in picture naming. Previous language-switch studies used the color of pictures to indicate the required language thereby confounding endogenous and exogenous control. To investigate endogenous language control, our language cues…

  20. Performance of static var compensator control type thyristor controlled reactor and thyristor switched capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Josias M. de; Yung, Chou Shaw; Rose, Eber H; Pantoja, Antonio L.A. [ELETRONORTE, Belem, PA (Brazil); Fouesnant, Thomas; Boissier, Luc

    1994-12-31

    This paper has the objective of presenting the philosophy of Static Var Compensator (SVC) Control as well the necessary adjustments in the project of control system to guarantee suitable performance under different operating conditions. The verification on the performance of the SVC control has been done by Transient Network Analyzer (TNA/CEPEL) studies, commissioning tests and a factory tests. The SVC is the type of Thyristor Controlled Reactor (TCR) and Thyristor Switched Capacitor (TSC). (author) 3 refs., 12 figs.

  1. Output regulation control for switched stochastic delay systems with dissipative property under error-dependent switching

    Science.gov (United States)

    Li, L. L.; Jin, C. L.; Ge, X.

    2018-01-01

    In this paper, the output regulation problem with dissipative property for a class of switched stochastic delay systems is investigated, based on an error-dependent switching law. Under the assumption that none subsystem is solvable for the problem, a sufficient condition is derived by structuring multiple Lyapunov-Krasovskii functionals with respect to multiple supply rates, via designing error feedback regulators. The condition is also established when dissipative property reduces to passive property. Finally, two numerical examples are given to demonstrate the feasibility and efficiency of the present method.

  2. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    OpenAIRE

    Yang Yang; Chao Wang; Quanrang Zhang; Xiaolong He

    2017-01-01

    Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-dow...

  3. All-electric-controlled spin current switching in single-molecule magnet-tunnel junctions

    Science.gov (United States)

    Zhang, Zheng-Zhong; Shen, Rui; Sheng, Li; Wang, Rui-Qiang; Wang, Bai-Gen; Xing, Ding-Yu

    2011-04-01

    A single-molecule magnet (SMM) coupled to two normal metallic electrodes can both switch spin-up and spin-down electronic currents within two different windows of SMM gate voltage. Such spin current switching in the SMM tunnel junction arises from spin-selected single electron resonant tunneling via the lowest unoccupied molecular orbit of the SMM. Since it is not magnetically controlled but all-electrically controlled, the proposed spin current switching effect may have potential applications in future spintronics.

  4. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-10-01

    Full Text Available Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-down and motor braking forces. The control strategy of type two is achieved by simultaneously changing the target braking torque during different mode switch stages and controlling the motor to participate in active coordination control. Finally, the torque coordination control strategy is modeled in MATLAB/Simulink, and the results show that the proposed control strategy has a good effect in reducing the braking torque fluctuation and vehicle shocks during braking mode switches.

  5. Switched Control Strategies of Aggregated Commercial HVAC Systems for Demand Response in Smart Grids

    Directory of Open Access Journals (Sweden)

    Kai Ma

    2017-07-01

    Full Text Available This work proposes three switched control strategies for aggregated heating, ventilation, and air conditioning (HVAC systems in commercial buildings to track the automatic generation control (AGC signal in smart grid. The existing control strategies include the direct load control strategy and the setpoint regulation strategy. The direct load control strategy cannot track the AGC signal when the state of charge (SOC of the aggregated thermostatically controlled loads (TCLs exceeds their regulation capacity, while the setpoint regulation strategy provides flexible regulation capacity, but causes larger tracking errors. To improve the tracking performance, we took the advantages of the two control modes and developed three switched control strategies. The control strategies switch between the direct load control mode and the setpoint regulation mode according to different switching indices. Specifically, we design a discrete-time controller and optimize the controller parameter for the setpoint regulation strategy using the Fibonacci optimization algorithm, enabling us to propose two switched control strategies across multiple time steps. Furthermore, we extend the switched control strategies by introducing a two-stage regulation in a single time step. Simulation results demonstrate that the proposed switched control strategies can reduce the tracking errors for frequency regulation.

  6. Research on control function switch of nuclear power plant control room

    International Nuclear Information System (INIS)

    Mei Shibo; Mao Ting; Cheng Bo; Zhang Gang

    2014-01-01

    The nuclear power plant provides main control room (MCR) to the unit operators for the plant monitoring and control, and provides the remote shutdown station (RSS) as the back-up control room, which is used only when MCR is unavailable. The RSS could be used to monitor and control the plant, bring the plant into shutdown state and remove the residual heat. The command from MCR and RSS is blocked by each other and can not be executed at the same time. The operation mode switch function between MCR and RSS is carried out by MCR/RSS mode switches. The operation mode switch scheme of CPR1000, ERP and AP1000 were compared and researched, and some design bases for new nuclear power plant were submitted in this paper. These design bases could be referred during the design of control function switch for the new nuclear power plants, in order to put forward a more practical, simple, safe and convenient scheme. (authors)

  7. Time-dependent switched discrete-time linear systems control and filtering

    CERN Document Server

    Zhang, Lixian; Shi, Peng; Lu, Qiugang

    2016-01-01

    This book focuses on the basic control and filtering synthesis problems for discrete-time switched linear systems under time-dependent switching signals. Chapter 1, as an introduction of the book, gives the backgrounds and motivations of switched systems, the definitions of the typical time-dependent switching signals, the differences and links to other types of systems with hybrid characteristics and a literature review mainly on the control and filtering for the underlying systems. By summarizing the multiple Lyapunov-like functions (MLFs) approach in which different requirements on comparisons of Lyapunov function values at switching instants, a series of methodologies are developed for the issues on stability and stabilization, and l2-gain performance or tube-based robustness for l∞ disturbance, respectively, in Chapters 2 and 3. Chapters 4 and 5 are devoted to the control and filtering problems for the time-dependent switched linear systems with either polytopic uncertainties or measurable time-varying...

  8. Synchronization of Switched Neural Networks With Communication Delays via the Event-Triggered Control.

    Science.gov (United States)

    Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen

    2017-10-01

    This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.

  9. Programs for control of an analog-signal switching network

    International Nuclear Information System (INIS)

    D'Ottavio, T.; Enriquez, R.; Katz, R.; Skelly, J.

    1989-01-01

    A suite of programs has been developed to control the network of analog-signal switching multiplexers in the AGS complex. The software is driven by a relational database which describes the architecture of the multiplexer tree and the set of available analog signals. Signals are routed through a three-layer multiplexer tree, to be made available at four consoles each with three 4-trace oscilloscopes. A menu-structured operator interface program is available at each console, to accept requests to route any available analog signal to any of that console's 12 oscilloscope traces. A common routing-server program provides automatic routing-server program provides automatic routing of requested signals through the layers of multiplexers, maintaining a reservation database to denote free and in-use trunks. Expansion of the analog signal system is easily accommodated in software by adding new signals, trunks, multiplexers, or consoles to the database. Programmatic control of the triggering signals for each of the oscilloscopes is also provided. 3 refs., 4 figs., 3 tabs

  10. Speed control of switched reluctance motor using sliding mode control strategy

    Energy Technology Data Exchange (ETDEWEB)

    John, G. [Kenetech Windpower, Livermore, CA (United States); Eastham, A.R. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Electrical Engineering

    1995-12-31

    A robust speed drive system for a switched reluctance motor (SRM) using sliding mode control strategy (SLMC) is presented. After reviewing the operation of an SRM drive, a SLMC based scheme is formulated to control the drive speed. The scheme is implemented using a micro-controller and a high resolution position sensor. The parameter insensitive characteristics are demonstrated through computer simulations and experimental verification.

  11. The effect of switch control site on computer skills of infants and toddlers.

    Science.gov (United States)

    Glickman, L; Deitz, J; Anson, D; Stewart, K

    1996-01-01

    The purpose of this study was to determine whether switch control site (hand vs. head) affects the age at which children can successfully activate a computer to play a cause-and-effect game. The sample consisted of 72 participants randomly divided into two groups (head switch and hand switch), with stratification for gender and age (9-11 months, 12-14 months, 15-17 months). All participants were typically developing. After a maximum of 5 min of training, each participant was given five opportunities to activate a Jelly Bean switch to play a computer game. Competency was defined as four to five successful switch activations. Most participants in the 9-month to 11-month age group could successfully use a hand switch to activate a computer, and for the 15-month to 17-month age group, 100% of the participants met with success. By contrast, in the head switch condition, approximately one third of the participants in each of the three age ranges were successful in activating the computer to play a cause-and-effect game. The findings from this study provide developmental guidelines for using switches (head vs. hand) to activate computers to play cause-and-effect games and suggest that the clinician may consider introducing basic computer and switch skills to children as young as 9 months of age. However, the clinician is cautioned that the head switch may be more difficult to master than the hand switch and that additional research involving children with motor impairments is needed.

  12. 77 FR 65937 - Pioneer Railcorp-Continuation in Control Exemption-Rail Switching Services, Inc.

    Science.gov (United States)

    2012-10-31

    ... control of Rail Switching Services, Inc. (RSS), upon RSS's becoming a Class III rail carrier. \\1\\ Pioneer states that it owns 100% of the common stock of its 17 Class III rail carrier subsidiaries: West Michigan...--Continuation in Control Exemption--Rail Switching Services, Inc. Pioneer Railcorp (Pioneer) and its...

  13. Speed control of an induction motor by 6-switched 3-level inverter

    Directory of Open Access Journals (Sweden)

    Saygin Ali

    2017-12-01

    Full Text Available This paper presents speed control analysis of an induction motor by a 6-switched 3-level inverter. In the analysis of topology, the study used the field oriented control technique which is widely used in the literature, easy and stable for operating systems. The field weaking technique was used for speeds exceeding nominal speed to reduce magnetic saturation and thermal losses. At the end of the process, it was observed to increase motor torque and inverter efficiency. Instead of using 12 switches in conventional 3-level inverters, 6 switches are used in this topology. Reduced number of switches is the greatest contribution of this study.

  14. Speed control of an induction motor by 6-switched 3-level inverter

    Science.gov (United States)

    Saygin, Ali; Kerem, Alper

    2017-12-01

    This paper presents speed control analysis of an induction motor by a 6-switched 3-level inverter. In the analysis of topology, the study used the field oriented control technique which is widely used in the literature, easy and stable for operating systems. The field weaking technique was used for speeds exceeding nominal speed to reduce magnetic saturation and thermal losses. At the end of the process, it was observed to increase motor torque and inverter efficiency. Instead of using 12 switches in conventional 3-level inverters, 6 switches are used in this topology. Reduced number of switches is the greatest contribution of this study.

  15. Partial Finite-Time Synchronization of Switched Stochastic Chua's Circuits via Sliding-Mode Control

    Directory of Open Access Journals (Sweden)

    Zhang-Lin Wan

    2011-01-01

    Full Text Available This paper considers the problem of partial finite-time synchronization between switched stochastic Chua's circuits accompanied by a time-driven switching law. Based on the Ito formula and Lyapunov stability theory, a sliding-mode controller is developed to guarantee the synchronization of switched stochastic master-slave Chua's circuits and for the mean of error states to obtain the partial finite-time stability. Numerical simulations demonstrate the effectiveness of the proposed methods.

  16. pH-controlled silicon nanowires fluorescence switch

    International Nuclear Information System (INIS)

    Mu Lixuan; Shi Wensheng; Zhang Taiping; Zhang Hongyan; She Guangwei

    2010-01-01

    Covalently immobilizing photoinduced electronic transfer (PET) fluorophore 3-[N, N-bis(9-anthrylmethyl)amino]-propyltriethoxysilane (DiAN) on the surface of silicon nanowires (SiNWs) resulted a SiNWs-based fluorescence switch. This fluorescence switch is operated by adjustment of the acidity of the environment and exhibits sensitive response to pH at the range from 8 to 10. Such response is attributed to the effect of pH on the PET process. The successful combination of logic switch and SiNWs provides a rational approach to assemble different logic molecules on SiNWs for realization of miniaturization and modularization of switches and logic devices.

  17. Inherently safe SNR shutdown system with Curie point controlled sensor/switch unit

    International Nuclear Information System (INIS)

    Mueller, K.; Norajitra, P.; Reiser, H.

    1987-02-01

    Inherent shutdown due to increase in the sodium temperature at the core outlet is triggered by interruption of the current supply to the electromagnet coupling of absorber elements via curie point controlled sensor/switch units. These switches are arranged above suitable fuel element positions and spatially independent of the shutdown elements. Compared with other similar systems very short response times are achieved. A prototype switch unit has already undergone extensive testing. These tests have confirmed that switching takes place in a very narrow temperature range. (orig./HP) [de

  18. Mode switching control of dual-evaporator air-conditioning systems

    International Nuclear Information System (INIS)

    Lin, J.-L.; Yeh, T.-J.

    2009-01-01

    Modern air-conditioners incorporate variable-speed compressors and variable-opening expansion valves as the actuators for improving cooling performance and energy efficiency. These actuators have to be properly feedback-controlled; otherwise the systems may exhibit even poorer performance than the conventional machines which use fixed-speed compressors and mechanical expansion valves. Particularly for an air-conditioner with multiple evaporators, there are occasions that the machine is operated in a mode that only selected evaporator(s) is(are) turned on, and switching(s) between modes occurs(occur) during the control process. In this case, one needs to have more carefully designed control and switching strategies to ensure the system performance. In this paper, a framework for mode switching control of the dual-evaporator air-conditioning (DEAC) system is proposed. The framework is basically an integration of a controller and a dynamic compensator. The controller, which possesses the flow-distribution capability and assumes both evaporators are on throughout the control process, is intended to provide nominal performance. While mode switching is achieved by varying the reference settings in the controller, the dynamic compensator is used to improve the transient responses immediately after the switching. Experiments indicate that the proposed framework can achieve satisfactory indoor temperature regulation and provide bumpless switching between different modes of operation.

  19. When predictions take control: The effect of task predictions on task switching performance

    Directory of Open Access Journals (Sweden)

    Wout eDuthoo

    2012-08-01

    Full Text Available In this paper, we aimed to investigate the role of self-generated predictions in the flexible control of behaviour. Therefore, we ran a task switching experiment in which participants were asked to try to predict the upcoming task in three conditions varying in switch rate (30%, 50% and 70%. Irrespective of their predictions, the colour of the target indicated which task participants had to perform. In line with previous studies (Mayr, 2006; Monsell & Mizon, 2006, the switch cost was attenuated as the switch rate increased. Importantly, a clear task repetition bias was found in all conditions, yet the task repetition prediction rate dropped from 78% over 66% to 49% with increasing switch probability in the three conditions. Irrespective of condition, the switch cost was strongly reduced in expectation of a task alternation compared to the cost of an unexpected task alternation following repetition predictions. Hence, our data suggest that the reduction in the switch cost with increasing switch probability is caused by a diminished expectancy for the task to repeat. Taken together, this paper highlights the importance of predictions in the flexible control of behaviour, and suggests a crucial role for task repetition expectancy in the context-sensitive adjusting of task switching performance.

  20. Atomic switches: atomic-movement-controlled nanodevices for new types of computing

    International Nuclear Information System (INIS)

    Hino, Takami; Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Nayak, Alpana; Ohno, Takeo; Aono, Masakazu

    2011-01-01

    Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review. (topical review)

  1. Experimental results of thermally controlled superconducting switches for high frequency operation

    International Nuclear Information System (INIS)

    Mulder, G.B.J.; IerAvest, D.; Tenkate, H.H.J.; Krooshoop, H.J.G.; Van de Klundert, L.

    1988-01-01

    The aim of this study is to develop thermally controlled switches which are to be used in superconducting rectifiers operating at a few hertz and 1 kA. Usually, the operating frequency of thermally controlled rectifiers is limited to about 0.1 Hz due to the thermal recovery times of the switches. The thermal switches have to satisfy two conditions which are specific for the application in a superconducting rectifier: a) they have to operate in the repetitive mode so beside short activation times, fast recovery times of the switches are equally important, b) the power required to effect and maintain the normal state of the switches should be low since it will determine the rectifier efficiency. To what extent these obviously conflicting demands can be satisfied depends on the material and geometry of the switch. This paper presents a theoretical model of the thermal behaviour of a switch. The calculations are compared with experimental results of several switches having recovery times between 40 and 200 ms. Also, the feasibility of such switches for application in superconducting rectifiers operating at a few hertz with an acceptable efficiency is demonstrated

  2. Controllable thousand-port low-latency optical packet switch architecture for short link applications

    NARCIS (Netherlands)

    Di Lucente, S.; Nazarathy, J.; Raz, O.; Calabretta, N.; Dorren, H.J.S.; Bienstman, P.; Morthier, G.; Roelkens, G.; et al., xx

    2011-01-01

    The implementation of a low-latency optical packet switch architecture that is controllable while scaling to over thousand ports is investigated in this paper. Optical packet switches with thousand of input/output ports are promising devices to improve the performance of short link applications in

  3. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system

    NARCIS (Netherlands)

    Miao, W.; Luo, J.; Di Lucente, S.; Dorren, H.J.S.; Calabretta, N.

    2013-01-01

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. 4×4 dynamic switch operation at 40 Gb/s reported 300ns minimum end-to-end latency (including 25m transmission link) and

  4. Dynamic behavior of HTSC opening switch models controlled by short over-critical current pulses

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Krastelev, E.G.; Voronin, V.S.

    1999-01-01

    We present results of experimental research of dynamical properties of thin films of YBa 2 Cu 3 O 7 HTSC-switch models under action of short overcritical current pulses to test this method of control of fast high-power opening switches for accelerator applications

  5. Open-Switch Fault Diagnosis and Fault Tolerant for Matrix Converter with Finite Control Set-Model Predictive Control

    DEFF Research Database (Denmark)

    Peng, Tao; Dan, Hanbing; Yang, Jian

    2016-01-01

    To improve the reliability of the matrix converter (MC), a fault diagnosis method to identify single open-switch fault is proposed in this paper. The introduced fault diagnosis method is based on finite control set-model predictive control (FCS-MPC), which employs a time-discrete model of the MC...... topology and a cost function to select the best switching state for the next sampling period. The proposed fault diagnosis method is realized by monitoring the load currents and judging the switching state to locate the faulty switch. Compared to the conventional modulation strategies such as carrier......-based modulation method, indirect space vector modulation and optimum Alesina-Venturini, the FCS-MPC has known and unchanged switching state in a sampling period. It is simpler to diagnose the exact location of the open switch in MC with FCS-MPC. To achieve better quality of the output current under single open...

  6. The phenomenon of voltage controlled switching in disordered superconductors

    International Nuclear Information System (INIS)

    Ghosh, Sanjib; De Munshi, D

    2014-01-01

    The superconductor-to-insulator transition (SIT) is a phenomenon occurring in highly disordered superconductors and may be useful in the development of superconducting switches. The SIT has been demonstrated to be induced by different external parameters: temperature, magnetic field, electric field, etc. However, the electric field induced SIT (ESIT), which has been experimentally demonstrated for some specific materials, holds particular promise for practical device development. Here, we demonstrate, from theoretical considerations, the occurrence of the ESIT. We also propose a general switching device architecture using the ESIT and study some of its universal behavior, such as the effects of sample size, disorder strength and temperature on the switching action. This work provides a general framework for the development of such a device. (paper)

  7. Micromagnetic analysis of geometrically controlled current-driven magnetization switching

    Directory of Open Access Journals (Sweden)

    O. Alejos

    2017-05-01

    Full Text Available The magnetization dynamics induced by current pulses in a pair of two “S-shaped” ferromagnetic elements, each one consisting on two oppositely tilted tapered spikes at the ends of a straight section, is theoretically studied by means of micromagnetic simulations. Our results indicate that the magnetization reversal is triggered by thermal activation, which assists the current-induced domain nucleation and the propagation of domain walls. The detailed analysis of the magnetization dynamics reveals that the magnetization switching is only achieved when a single domain wall is nucleated in the correct corner of the element. In agreement with recent experimental studies, the switching is purely dictated by the shape, being independent of the current polarity. The statistical study points out that successful switching is only achieved within a narrow range of the current pulse amplitudes.

  8. Magnetic particle separation using controllable magnetic force switches

    International Nuclear Information System (INIS)

    Wei Zunghang; Lee, C.-P.; Lai, M.-F.

    2010-01-01

    Magnetic particle separation is very important in biomedical applications. In this study, a magnetic particle microseparator is proposed that uses micro magnets to produce open/closed magnetic flux for switching on/off the separation. When all magnets are magnetized in the same direction, the magnetic force switch for separation is on; almost all magnetic particles are trapped in the channel side walls and the separation rate can reach 95%. When the magnetization directions of adjacent magnets are opposite, the magnetic force switch for separation is off, and most magnetic particles pass through the microchannel without being trapped. For the separation of multi-sized magnetic particles, the proposed microseparator is numerically demonstrated to have high separation rate.

  9. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks.

    Science.gov (United States)

    Shen, Yiwen; Hattink, Maarten H N; Samadi, Payman; Cheng, Qixiang; Hu, Ziyiz; Gazman, Alexander; Bergman, Keren

    2018-04-16

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. We present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly network testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 µs control plane latency for data-center and high performance computing platforms.

  10. An open-closed-loop iterative learning control approach for nonlinear switched systems with application to freeway traffic control

    Science.gov (United States)

    Sun, Shu-Ting; Li, Xiao-Dong; Zhong, Ren-Xin

    2017-10-01

    For nonlinear switched discrete-time systems with input constraints, this paper presents an open-closed-loop iterative learning control (ILC) approach, which includes a feedforward ILC part and a feedback control part. Under a given switching rule, the mathematical induction is used to prove the convergence of ILC tracking error in each subsystem. It is demonstrated that the convergence of ILC tracking error is dependent on the feedforward control gain, but the feedback control can speed up the convergence process of ILC by a suitable selection of feedback control gain. A switched freeway traffic system is used to illustrate the effectiveness of the proposed ILC law.

  11. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.

    2010-01-01

    This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...... approach is based on a generalisation of hysteresis control. The strategies are verified on a simulation model of the compact marine boiler for control of low/high burner load switches.  ...

  12. Constant Switching Frequency Self-Oscillating Controlled Class-D Amplifiers

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The self-oscillating control approach has been used extensively in class-D amplifiers. It has several advantages such as high bandwidth and high audio performance. However, one of the primary disadvantages in a self-oscillating controlled system is that the switching frequency of the amplifier...... varies with the ratio of the output voltage to the input rail voltage. In other words, the switching frequency varies with the duty cycle of the output. The drop in the frequency results in lower control bandwidth and higher output voltage ripple, which are undesirable. This paper proposes a new self-oscillating...... control scheme that maintains a constant switching frequency over the full range of output voltage. The frequency difference is processed by a compensator whose output adjusts the total loop gain of the control system. It has been proven by simulation that a con-stant switching frequency self-oscillating...

  13. Switching LPV Control with Double-Layer LPV Model for Aero-Engines

    Science.gov (United States)

    Tang, Lili; Huang, Jinquan; Pan, Muxuan

    2017-11-01

    To cover the whole range of operating conditions of aero-engine, a double-layer LPV model is built so as to take into account of the variability due to the flight altitude, Mach number and the rotational speed. With this framework, the problem of designing LPV state-feedback robust controller that guarantees desired bounds on both H_∞ and H_2 performances is considered. Besides this, to reduce the conservativeness caused by a single LPV controller of the whole flight envelope and the common Lyapunov function method, a new method is proposed to design a family of LPV switching controllers. The switching LPV controllers can ensure that the closed-loop system remains stable in the sense of Lyapunov under arbitrary switching logic. Meanwhile, the switching LPV controllers can ensure the parameters change smoothly. The validity and performance of the theoretical results are demonstrated through a numerical example.

  14. DNA and RNA-controlled switching of protein kinase activity

    NARCIS (Netherlands)

    Röglin, L.; Altenbrunn, F.; Seitz, O.

    2009-01-01

    Protein switches use the binding energy gained upon recognition of ligands to modulate the conformation and binding properties of protein segments. We explored whether the programmable nucleic acid mediated recognition might be used to design or mimic constraints that limit the conformational

  15. Switching control of linear systems for generating chaos

    International Nuclear Information System (INIS)

    Liu Xinzhi; Teo, Kok-Lay; Zhang Hongtao; Chen Guanrong

    2006-01-01

    In this paper, a new switching method is developed, which can be applied to generating different types of chaos or chaos-like dynamics from two or more linear systems. A numerical simulation is given to illustrate the generated chaotic dynamic behavior of the systems with some variable parameters. Finally, a circuit is built to realize various chaotic dynamical behaviors

  16. LMI-based adaptive reliable H∞ static output feedback control against switched actuator failures

    Science.gov (United States)

    An, Liwei; Zhai, Ding; Dong, Jiuxiang; Zhang, Qingling

    2017-08-01

    This paper investigates the H∞ static output feedback (SOF) control problem for switched linear system under arbitrary switching, where the actuator failure models are considered to depend on switching signal. An active reliable control scheme is developed by combination of linear matrix inequality (LMI) method and adaptive mechanism. First, by exploiting variable substitution and Finsler's lemma, new LMI conditions are given for designing the SOF controller. Compared to the existing results, the proposed design conditions are more relaxed and can be applied to a wider class of no-fault linear systems. Then a novel adaptive mechanism is established, where the inverses of switched failure scaling factors are estimated online to accommodate the effects of actuator failure on systems. Two main difficulties arise: first is how to design the switched adaptive laws to prevent the missing of estimating information due to switching; second is how to construct a common Lyapunov function based on a switched estimate error term. It is shown that the new method can give less conservative results than that for the traditional control design with fixed gain matrices. Finally, simulation results on the HiMAT aircraft are given to show the effectiveness of the proposed approaches.

  17. Arrangement of permanent magnet and reed switches for control rod position indicator of SMART CEDM

    International Nuclear Information System (INIS)

    Yoo, J. Y.; Kim, J. I.; Kim, J. H.; Hur, H.; Jang, M. H.

    2001-01-01

    The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. A survey on the RSPT(Reed Switch Position Transmitter) type control rod position indication system and its actual implementation in the exiting nuclear power plants in Korea was performed first. The control rod position indicator having the high performance for SMART was developed on the basis of RSPT technology identified through the survey. The arrangement of permanent magnet and reed switches is the most important procedure in the design of control rod position indication. In this study, the characteristics of permanent magnet and reed switches are introduced and the calculation method for arrangement of permanent magnet and reed switch is presented

  18. Reversible Photochemical Control of Singlet Oxygen Generation Using Diarylethene Photochromic Switches

    NARCIS (Netherlands)

    Hou, Lili; Zhang, Xiaoyan; Pijper, Thomas C.; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    Reversible noninvasive control over the generation of singlet oxygen is demonstrated in a bicomponent system comprising a diarylethene photochromic switch and a porphyrin photosensitizer by selective irradiation at distinct wavelengths. The efficient generation of singlet oxygen by the

  19. Soft-switching PWM full-bridge converters topologies, control, and design

    CERN Document Server

    Ruan, Xinbo

    2014-01-01

    Soft-switching PWM full-bridge converters have been widely used in medium-to-high power dc-dc conversions for topological simplicity, easy control and high efficiency. Early works on soft-switching PWM full-bridge converter by many researchers included various topologies and modulation strategies.  However, these works were scattered, and the relationship among these topologies and modulation strategies had not been revealed. This book intends to describe systematically the soft-switching techniques for pulse-width modulation (PWM) full-bridge converters, including the topologies, control and

  20. Controlled switching of single-molecule junctions by mechanical motion of a phenyl ring

    Directory of Open Access Journals (Sweden)

    Yuya Kitaguchi

    2015-10-01

    Full Text Available Mechanical methods for single-molecule control have potential for wide application in nanodevices and machines. Here we demonstrate the operation of a single-molecule switch made functional by the motion of a phenyl ring, analogous to the lever in a conventional toggle switch. The switch can be actuated by dual triggers, either by a voltage pulse or by displacement of the electrode, and electronic manipulation of the ring by chemical substitution enables rational control of the on-state conductance. Owing to its simple mechanics, structural robustness, and chemical accessibility, we propose that phenyl rings are promising components in mechanical molecular devices.

  1. Control and switching synchronization of fractional order chaotic systems using active control technique

    KAUST Repository

    Radwan, A.G.; Moaddy, K.; Salama, Khaled N.; Momani, S.; Hashim, I.

    2013-01-01

    This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  2. Control and switching synchronization of fractional order chaotic systems using active control technique

    KAUST Repository

    Radwan, A.G.

    2013-03-13

    This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  3. Exponential Stability of Time-Switched Two-Subsystem Nonlinear Systems with Application to Intermittent Control

    Directory of Open Access Journals (Sweden)

    Huang Tingwen

    2009-01-01

    Full Text Available This paper studies the exponential stability of a class of periodically time-switched nonlinear systems. Three cases of such systems which are composed, respectively, of a pair of unstable subsystems, of both stable and unstable subsystems, and of a pair of stable systems, are considered. For the first case, the proposed result shows that there exists periodically switching rule guaranteeing the exponential stability of the whole system with (sufficient small switching period if there is a Hurwitz linear convex combination of two uncertain linear systems derived from two subsystems by certain linearization. For the second case, we present two general switching criteria by means of multiple and single Lyapunov function, respectively. We also investigate the stability issue of the third case, and the switching criteria of exponential stability are proposed. The present results for the second case are further applied to the periodically intermittent control. Several numerical examples are also given to show the effectiveness of theoretical results.

  4. Planar C-Band Antenna with Electronically Controllable Switched Beams

    Directory of Open Access Journals (Sweden)

    Mariano Barba

    2009-01-01

    Full Text Available The design, manufacturing, and measurements of a switchable-beam antenna at 3.5 GHz for WLL or Wimax base station antennas in planar technology are presented. This antenna performs a discrete beam scan of a 60∘ sector in azimuth and can be easily upgraded to 5 or more steps. The switching capabilities have been implemented by the inclusion of phase shifters based on PIN diodes in the feed network following a strategy that allows the reduction of the number of switches compared to a classic design. The measurements show that the design objectives have been achieved and encourage the application of the acquired experience in antennas for space applications, such as X-band SAR and Ku-band DBS.

  5. Controlled parity switch of persistent currents in quantum ladders

    Science.gov (United States)

    Filippone, Michele; Bardyn, Charles-Edouard; Giamarchi, Thierry

    2018-05-01

    We investigate the behavior of persistent currents for a fixed number of noninteracting fermions in a periodic quantum ladder threaded by Aharonov-Bohm and transverse magnetic fluxes Φ and χ . We show that the coupling between ladder legs provides a way to effectively change the ground-state fermion-number parity, by varying χ . Specifically, we demonstrate that varying χ by 2 π (one flux quantum) leads to an apparent fermion-number parity switch. We find that persistent currents exhibit a robust 4 π periodicity as a function of χ , despite the fact that χ →χ +2 π leads to modifications of order 1 /N of the energy spectrum, where N is the number of sites in each ladder leg. We show that these parity-switch and 4 π periodicity effects are robust with respect to temperature and disorder, and outline potential physical realizations using cold atomic gases and photonic lattices, for bosonic analogs of the effects.

  6. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  7. Software-Controlled Next Generation Optical Circuit Switching for HPC and Cloud Computing Datacenters

    Directory of Open Access Journals (Sweden)

    Muhammad Imran

    2015-11-01

    Full Text Available In this paper, we consider the performance of optical circuit switching (OCS systems designed for data center networks by using network-level simulation. Recent proposals have used OCS in data center networks but the relatively slow switching times of OCS-MEMS switches (10–100 ms and the latencies of control planes in these approaches have limited their use to the largest data center networks with workloads that last several seconds. Herein, we extend the applicability and generality of these studies by considering dynamically changing short-lived circuits in software-controlled OCS switches, using the faster switching technologies that are now available. The modelled switch architecture features fast optical switches in a single hop topology with a centralized, software-defined optical control plane. We model different workloads with various traffic aggregation parameters to investigate the performance of such designs across usage patterns. Our results show that, with suitable choices for the OCS system parameters, delay performance comparable to that of electrical data center networks can be obtained.

  8. A Precise Temperature-Responsive Bistable Switch Controlling Yersinia Virulence.

    Science.gov (United States)

    Nuss, Aaron Mischa; Schuster, Franziska; Roselius, Louisa; Klein, Johannes; Bücker, René; Herbst, Katharina; Heroven, Ann Kathrin; Pisano, Fabio; Wittmann, Christoph; Münch, Richard; Müller, Johannes; Jahn, Dieter; Dersch, Petra

    2016-12-01

    Different biomolecules have been identified in bacterial pathogens that sense changes in temperature and trigger expression of virulence programs upon host entry. However, the dynamics and quantitative outcome of this response in individual cells of a population, and how this influences pathogenicity are unknown. Here, we address these questions using a thermosensing virulence regulator of an intestinal pathogen (RovA of Yersinia pseudotuberculosis) as a model. We reveal that this regulator is part of a novel thermoresponsive bistable switch, which leads to high- and low-invasive subpopulations within a narrow temperature range. The temperature range in which bistability is observed is defined by the degradation and synthesis rate of the regulator, and is further adjustable via a nutrient-responsive regulator. The thermoresponsive switch is also characterized by a hysteretic behavior in which activation and deactivation occurred on vastly different time scales. Mathematical modeling accurately mirrored the experimental behavior and predicted that the thermoresponsiveness of this sophisticated bistable switch is mainly determined by the thermo-triggered increase of RovA proteolysis. We further observed RovA ON and OFF subpopulations of Y. pseudotuberculosis in the Peyer's patches and caecum of infected mice, and that changes in the RovA ON/OFF cell ratio reduce tissue colonization and overall virulence. This points to a bet-hedging strategy in which the thermoresponsive bistable switch plays a key role in adapting the bacteria to the fluctuating conditions encountered as they pass through the host's intestinal epithelium and suggests novel strategies for the development of antimicrobial therapies.

  9. A Precise Temperature-Responsive Bistable Switch Controlling Yersinia Virulence.

    Directory of Open Access Journals (Sweden)

    Aaron Mischa Nuss

    2016-12-01

    Full Text Available Different biomolecules have been identified in bacterial pathogens that sense changes in temperature and trigger expression of virulence programs upon host entry. However, the dynamics and quantitative outcome of this response in individual cells of a population, and how this influences pathogenicity are unknown. Here, we address these questions using a thermosensing virulence regulator of an intestinal pathogen (RovA of Yersinia pseudotuberculosis as a model. We reveal that this regulator is part of a novel thermoresponsive bistable switch, which leads to high- and low-invasive subpopulations within a narrow temperature range. The temperature range in which bistability is observed is defined by the degradation and synthesis rate of the regulator, and is further adjustable via a nutrient-responsive regulator. The thermoresponsive switch is also characterized by a hysteretic behavior in which activation and deactivation occurred on vastly different time scales. Mathematical modeling accurately mirrored the experimental behavior and predicted that the thermoresponsiveness of this sophisticated bistable switch is mainly determined by the thermo-triggered increase of RovA proteolysis. We further observed RovA ON and OFF subpopulations of Y. pseudotuberculosis in the Peyer's patches and caecum of infected mice, and that changes in the RovA ON/OFF cell ratio reduce tissue colonization and overall virulence. This points to a bet-hedging strategy in which the thermoresponsive bistable switch plays a key role in adapting the bacteria to the fluctuating conditions encountered as they pass through the host's intestinal epithelium and suggests novel strategies for the development of antimicrobial therapies.

  10. 49 CFR 1242.67 - Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power; operating switches... SERVICE FOR RAILROADS 1 Operating Expenses-Transportation § 1242.67 Switch crews; controlling operations...

  11. Sensorless speed control of switched reluctance motor using brain emotional learning based intelligent controller

    International Nuclear Information System (INIS)

    Dehkordi, Behzad Mirzaeian; Parsapoor, Amir; Moallem, Mehdi; Lucas, Caro

    2011-01-01

    In this paper, a brain emotional learning based intelligent controller (BELBIC) is developed to control the switched reluctance motor (SRM) speed. Like other intelligent controllers, BELBIC is model free and is suitable to control nonlinear systems. Motor parameter changes, operating point changes, measurement noise, open circuit fault in one phase and asymmetric phases in SRM are also simulated to show the robustness and superior performance of BELBIC. To compare the BELBIC performance with other intelligent controllers, Fuzzy Logic Controller (FLC) is developed. System responses with BELBIC and FLC are compared. Furthermore, by eliminating the position sensor, a method is introduced to estimate the rotor position. This method is based on Adaptive Neuro Fuzzy Inference System (ANFIS). The estimator inputs are four phase flux linkages. Suggested rotor position estimator is simulated in different conditions. Simulation results confirm the accurate rotor position estimation in different loads and speeds.

  12. Sensorless speed control of switched reluctance motor using brain emotional learning based intelligent controller

    Energy Technology Data Exchange (ETDEWEB)

    Dehkordi, Behzad Mirzaeian, E-mail: mirzaeian@eng.ui.ac.i [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal code 8174673441, Isfahan (Iran, Islamic Republic of); Parsapoor, Amir, E-mail: amirparsapoor@yahoo.co [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal code 8174673441, Isfahan (Iran, Islamic Republic of); Moallem, Mehdi, E-mail: moallem@cc.iut.ac.i [Department of Electrical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Lucas, Caro, E-mail: lucas@ut.ac.i [Centre of Excellence for Control and Intelligent Processing, Electrical and Computer Engineering Faculty, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-01-15

    In this paper, a brain emotional learning based intelligent controller (BELBIC) is developed to control the switched reluctance motor (SRM) speed. Like other intelligent controllers, BELBIC is model free and is suitable to control nonlinear systems. Motor parameter changes, operating point changes, measurement noise, open circuit fault in one phase and asymmetric phases in SRM are also simulated to show the robustness and superior performance of BELBIC. To compare the BELBIC performance with other intelligent controllers, Fuzzy Logic Controller (FLC) is developed. System responses with BELBIC and FLC are compared. Furthermore, by eliminating the position sensor, a method is introduced to estimate the rotor position. This method is based on Adaptive Neuro Fuzzy Inference System (ANFIS). The estimator inputs are four phase flux linkages. Suggested rotor position estimator is simulated in different conditions. Simulation results confirm the accurate rotor position estimation in different loads and speeds.

  13. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.

    Science.gov (United States)

    Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu

    2012-01-10

    An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Self-tuning fuzzy logic control of a switched reluctance generator for wind energy applications

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2012-01-01

    determination, self-tuning FLC for speed control, and a current controller. The turn-on and turn-off angle determination, as its name implies, controls the turn-on and turn-off angles of power switches to improve the efficiency and torque regulation of the SRG. The self-tuning FLC is the speed controller which......This paper presents a new self-tuning fuzzy logic control (FLC) based speed controller of a switched reluctance generator (SRG) for wind power applications. Due to its doubly salient structure and magnetic saturation, the SRG possesses an inherent characteristic of strong nonlinearity. In addition...

  15. A closer look at cognitive control: Differences in resource allocation during updating, inhibition and switching as revealed by pupillometry

    NARCIS (Netherlands)

    Rondeel, E.W.M.; Steenbergen, H. van; Holland, R.W.; Knippenberg, A.F.M. van

    2015-01-01

    The present study investigated resource allocation, as measured by pupil dilation, in tasks measuring updating (2 Back task), inhibition (Stroop task) and switching (Number Switch task). Because each cognitive control component has unique characteristics, differences in patterns of resource

  16. Reversible light-controlled conductance switching of azobenzene-based metal/polymer nanocomposites

    International Nuclear Information System (INIS)

    Pakula, Christina; Zaporojtchenko, Vladimir; Strunskus, Thomas; Faupel, Franz; Zargarani, Dordaneh; Herges, Rainer

    2010-01-01

    We present a new concept of light-controlled conductance switching based on metal/polymer nanocomposites with dissolved chromophores that do not have intrinsic current switching ability. Photoswitchable metal/PMMA nanocomposites were prepared by physical vapor deposition of Au and Pt clusters, respectively, onto spin-coated thin poly(methylmethacrylate) films doped with azo-dye molecules. High dye concentrations were achieved by functionalizing the azo groups with tails and branches, thus enhancing solubility. The composites show completely reversible optical switching of the absorption bands upon alternating irradiation with UV and blue light. We also demonstrate reversible light-controlled conductance switching. This is attributed to changes in the metal cluster separation upon isomerization based on model experiments where analogous conductance changes were induced by swelling of the composite films in organic vapors and by tensile stress.

  17. Microcontroller based PWM controlled four switch three phase inverter fed induction motor drive

    Directory of Open Access Journals (Sweden)

    Mohanty Kant Nalin

    2010-01-01

    Full Text Available This paper presents PIC microcontroller based PWM inverter controlled four switch three phase inverter (FSTPI fed Induction Motor drive. The advantage of this inverter that uses of 4 switches instead of conventional 6 switches is lesser switching losses, lower electromagnetic interference (EMI, less complexity of control algorithms and reduced interface circuits. Simulation and experimental work are carried out and results presented to demonstrate the feasibility of the proposed approach. Simulation is carried out using MATLAB SIMULINK and in the experimental work a prototype model is built to verify the simulation results. PIC microcontroller (PIC 16F877A is used to generate the PWM pulses for FSTPI to drive the 0.5 hp 3-phase Induction Motor.

  18. Adaptive Neural Tracking Control for Discrete-Time Switched Nonlinear Systems with Dead Zone Inputs

    Directory of Open Access Journals (Sweden)

    Jidong Wang

    2017-01-01

    Full Text Available In this paper, the adaptive neural controllers of subsystems are proposed for a class of discrete-time switched nonlinear systems with dead zone inputs under arbitrary switching signals. Due to the complicated framework of the discrete-time switched nonlinear systems and the existence of the dead zone, it brings about difficulties for controlling such a class of systems. In addition, the radial basis function neural networks are employed to approximate the unknown terms of each subsystem. Switched update laws are designed while the parameter estimation is invariable until its corresponding subsystem is active. Then, the closed-loop system is stable and all the signals are bounded. Finally, to illustrate the effectiveness of the proposed method, an example is employed.

  19. Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method

    Science.gov (United States)

    Chen, Xiaomin; Wang, Gang

    2017-05-01

    The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.

  20. Cross-Platform Android/iOS-Based Smart Switch Control Middleware in a Digital Home

    Directory of Open Access Journals (Sweden)

    Guo Jie

    2015-01-01

    Full Text Available With technological and economic development, people’s lives have been improved substantially, especially their home environments. One of the key aspects of these improvements is home intellectualization, whose core is the smart home control system. Furthermore, as smart phones have become increasingly popular, we can use them to control the home system through Wi-Fi, Bluetooth, and GSM. This means that control with phones is more convenient and fast and now becomes the primary terminal controller in the smart home. In this paper, we propose middleware for developing a cross-platform Android/iOS-based solution for smart switch control software, focus on the Wi-Fi based communication protocols between the cellphone and the smart switch, achieved a plugin-based smart switch function, defined and implemented the JavaScript interface, and then implemented the cross-platform Android/iOS-based smart switch control software; also the scenarios are illustrated. Finally, tests were performed after the completed realization of the smart switch control system.

  1. Controlling multi-bunches by a fast phase switching

    International Nuclear Information System (INIS)

    Decker, F.J.; Jobe, R.K.; Merminga, N.; Thompson, K.A.

    1990-09-01

    In linear accelerators with two or more bunches the beam loading of one bunch will influence the energy and energy spread the following bunches. This can be corrected by quickly changing the phase of a traveling wave-structure, so that each bunch receives a slightly different net phase. At the SLAC Linear Collider (SLC) three bunches, two (e + ,e - ) for the high energy collisions and one (e - -scavenger) for producing positrons should sit at different phases, due to their different tasks. The two e - -bunches are extracted from the damping ring at the same cycle time about 60 ns apart. Fast phase switching of the RF to the bunch length compressor in the Ring-To-Linac (RTL) section can produce the necessary advance of the scavenger bunch (about 6 degree in phase). This allows a low energy spread of this third bunch at the e + -production region at 2/3 of the linac length, while the other bunches are not influenced. The principles and possible other applications of this fast phase switching as using it for multi-bunches, as well as the experimental layout for the actual RTL compressor are presented

  2. Model predictive control of a high speed switched reluctance generator system

    NARCIS (Netherlands)

    Marinkov, Sava; De Jager, Bram; Steinbuch, Maarten

    2013-01-01

    This paper presents a novel voltage control strategy for the high-speed operation of a Switched Reluctance Generator. It uses a linear Model Predictive Control law based on the average system model. The controller computes the DC-link current needed to achieve the tracking of a desired voltage

  3. Predictive control strategies for an indirect matrix converter operating at fixed switching frequency

    DEFF Research Database (Denmark)

    Rivera, M.; Nasir, U.; Tarisciotti, L.

    2017-01-01

    The classic model predictive control presents a variable switching frequency which could produce high ripple in the controlled waveforms or resonances in the input filter of the matrix converter, affecting the performance of the system. This paper presents two model predictive control strategies...

  4. Hybrid Switching Controller Design for the Maneuvering and Transit of a Training Ship

    Directory of Open Access Journals (Sweden)

    Tomera Mirosław

    2017-03-01

    Full Text Available The paper presents the design of a hybrid controller used to control the movement of a ship in different operating modes, thereby improving the performance of basic maneuvers. This task requires integrating several operating modes, such as maneuvering the ship at low speeds, steering the ship at different speeds in the course or along the trajectory, and stopping the ship on the route. These modes are executed by five component controllers switched on and off by the supervisor depending on the type of operation performed. The desired route, containing the coordinates of waypoints and tasks performed along consecutive segments of the reference trajectory, is obtained by the supervisory system from the system operator. The former supports switching between component controllers and provides them with new set-points after each change in the reference trajectory segment, thereby ensuring stable operation of the entire hybrid switching controller.

  5. Genetic control of fruit flies

    International Nuclear Information System (INIS)

    Walder, J.M.M.

    1987-01-01

    The sterile-insect technique for control of fruit-flies is studied. A brief historic of the technique is presented, as well as a short description of the methodology. Other aspects are discussed: causes of sterility in insects and the principles of insect population suppression by sterile-insect technique. (M.A.C.)

  6. Rational Design and Tuning of Functional RNA Switch to Control an Allosteric Intermolecular Interaction.

    Science.gov (United States)

    Endoh, Tamaki; Sugimoto, Naoki

    2015-08-04

    Conformational transitions of biomolecules in response to specific stimuli control many biological processes. In natural functional RNA switches, often called riboswitches, a particular RNA structure that has a suppressive or facilitative effect on gene expression transitions to an alternative structure with the opposite effect upon binding of a specific metabolite to the aptamer region. Stability of RNA secondary structure (-ΔG°) can be predicted based on thermodynamic parameters and is easily tuned by changes in nucleobases. We envisioned that tuning of a functional RNA switch that causes an allosteric interaction between an RNA and a peptide would be possible based on a predicted switching energy (ΔΔG°) that corresponds to the energy difference between the RNA secondary structure before (-ΔG°before) and after (-ΔG°after) the RNA conformational transition. We first selected functional RNA switches responsive to neomycin with predicted ΔΔG° values ranging from 5.6 to 12.2 kcal mol(-1). We then demonstrated a simple strategy to rationally convert the functional RNA switch to switches responsive to natural metabolites thiamine pyrophosphate, S-adenosyl methionine, and adenine based on the predicted ΔΔG° values. The ΔΔG° values of the designed RNA switches proportionally correlated with interaction energy (ΔG°interaction) between the RNA and peptide, and we were able to tune the sensitivity of the RNA switches for the trigger molecule. The strategy demonstrated here will be generally applicable for construction of functional RNA switches and biosensors in which mechanisms are based on conformational transition of nucleic acids.

  7. Field-Controlled Electrical Switch with Liquid Metal.

    Science.gov (United States)

    Wissman, James; Dickey, Michael D; Majidi, Carmel

    2017-12-01

    When immersed in an electrolyte, droplets of Ga-based liquid metal (LM) alloy can be manipulated in ways not possible with conventional electrocapillarity or electrowetting. This study demonstrates how LM electrochemistry can be exploited to coalesce and separate droplets under moderate voltages of ~1-10 V. This novel approach to droplet interaction can be explained with a theory that accounts for oxidation and reduction as well as fluidic instabilities. Based on simulations and experimental analysis, this study finds that droplet separation is governed by a unique limit-point instability that arises from gradients in bipolar electrochemical reactions that lead to gradients in interfacial tension. The LM coalescence and separation are used to create a field-programmable electrical switch. As with conventional relays or flip-flop latch circuits, the system can transition between bistable (separated or coalesced) states, making it useful for memory storage, logic, and shape-programmable circuitry using entirely liquids instead of solid-state materials.

  8. Design and Advanced Control of Switched Reluctance Motors

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand

    The introduction of mainly power electronics and cheap micro computers have made the Switched Reluctance Machine (SRM), which is in focus in this thesis, a feasible alternative to traditional electrical machines like the induction- and DC-motor which have been the dominating electrical machines...... to a standard induction motor, and from the test it is seen that the nominal efficiency of the SRM is 83 % compared to only 72 % for the induction motor. During the work with this thesis some follow-ups are done which were not specified in the main-goals. But these is very important contributions in the SR...... and a static characterization system developed. To simulate and analyze the electromagnetic performance of different variations of SRMs, in for instance SRDaS, is a general dynamical model derived, which also takes into account SRMs having permanent magnets. The parameters for the models are obtained with 2D...

  9. Synchronization in a Random Length Ring Network for SDN-Controlled Optical TDM Switching

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco

    2016-01-01

    . In addition, we propose a novel synchronization algorithm that enables automatic synchronization of software defined networking controlled all-optical TDM switching nodes connected in a ring network. Besides providing synchronization, the algorithm also can facilitate dynamic slot size change and failure......In this paper we focus on optical time division multiplexed (TDM) switching and its main distinguishing characteristics compared with other optical subwavelength switching technologies. We review and discuss in detail the synchronization requirements that allow for proper switching operation...... detection. We experimentally validate the algorithm behavior and achieve correct operation for three different ring lengths. Moreover, we experimentally demonstrate data plane connectivity in a ring network composed of three nodes and show successful wavelength division multiplexing space division...

  10. High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents

    Science.gov (United States)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia

    2016-10-01

    Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.

  11. A systematic method of smooth switching LPV controllers design for a morphing aircraft

    Directory of Open Access Journals (Sweden)

    Jiang Weilai

    2015-12-01

    Full Text Available This paper is concerned with a systematic method of smooth switching linear parameter-varying (LPV controllers design for a morphing aircraft with a variable wing sweep angle. The morphing aircraft is modeled as an LPV system, whose scheduling parameter is the variation rate of the wing sweep angle. By dividing the scheduling parameter set into subsets with overlaps, output feedback controllers which consider smooth switching are designed and the controllers in overlapped subsets are interpolated from two adjacent subsets. A switching law without constraint on the average dwell time is obtained which makes the conclusion less conservative. Furthermore, a systematic algorithm is developed to improve the efficiency of the controllers design process. The parameter set is divided into the fewest subsets on the premise that the closed-loop system has a desired performance. Simulation results demonstrate the effectiveness of this approach.

  12. GENETIC ALGORITHM BASED SOLUTION IN PWM CONVERTER SWITCHING FOR VOLTAGE SOURCE INVERTER FEEDING AN INDUCTION MOTOR DRIVE

    Directory of Open Access Journals (Sweden)

    V. Jegathesan

    2017-11-01

    Full Text Available This paper presents an efficient and reliable Genetic Algorithm based solution for Selective Harmonic Elimination (SHE switching pattern. This method eliminates considerable amount of lower order line voltage harmonics in Pulse Width Modulation (PWM inverter. Determination of pulse pattern for the elimination of some lower order harmonics of a PWM inverter necessitates solving a system of nonlinear transcendental equations. Genetic Algorithm is used to solve nonlinear transcendental equations for PWM-SHE. Many methods are available to eliminate the higher order harmonics and it can be easily removed. But the greatest challenge is to eliminate the lower order harmonics and this is successfully achieved using Genetic Algorithm without using Dual transformer. Simulations using MATLABTM and Powersim with experimental results are carried out to validate the solution. The experimental results show that the harmonics up to 13th were totally eliminated.

  13. Control of systems with costs related to switching: applications to air-condition systems

    DEFF Research Database (Denmark)

    Thybo (Deng), Honglian; Larsen, Lars Finn Sloth; Stoustrup, Jakob

    2009-01-01

    The objective of this paper is to investigate a low complexity method for controlling systems with binary inputs that have costs related to switching. The control objective for this type of systems is often a trade off between the deviation from the reference and the number of switches (weariness...... energy efficiency etc.). For such systems a steady state solution might never be attained, but rather the optimal behavior might be constituted by a limit cycle. In this paper we consider the problem of finding and controlling the system towards an optimal limit cycle. A low complexity approach giving...

  14. Control strategy based on SPWM switching patterns for grid connected photovoltaic inverter

    Science.gov (United States)

    Hassaine, L.; Mraoui, A.

    2017-02-01

    Generally, for lower installation of photovoltaic systems connected to the grid, pulse width modulation (PWM) is a widely used technique for controlling the voltage source inverters injects currents into the grid. The current injected must be sinusoidal with reduced harmonic distortion. In this paper, a digital implementation of a control strategy based on PWM switching patterns for an inverter for photovoltaic system connected to the grid is presented. This strategy synchronize a sinusoidal inverter output current with a grid voltage The digital implementation of the proposed PWM switching pattern when is compared with the conventional one exhibit the advantage: Simplicity, reduction of the memory requirements and power calculation for the control

  15. Research on Adaptive Dual-Mode Switch Control Strategy for Vehicle Maglev Flywheel Battery

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2015-01-01

    Full Text Available Because of the jamming signal is real-time changeable and control algorithm cannot timely tracking control flywheel rotor, this paper takes vehicle maglev flywheel battery as the research object. One kind of dual-model control strategy is developed based on the analysis of the vibration response impact of the flywheel battery control system. In view of the complex foundation vibration problems of electric vehicles, the nonlinear dynamic simulation model of vehicle maglev flywheel battery is solved. Through analyzing the nonlinear vibration response characteristics, one kind of dual-mode adaptive hybrid control strategy based on H∞ control and unbalance displacement feed-forward compensation control is presented and a real-time switch controller is designed. The reliable hybrid control is implemented, and the stability in the process of real-time switch is solved. The results of this project can provide important basic theory support for the research of vehicle maglev flywheel battery control system.

  16. Robust passive control for Internet-based switching systems with time-delay

    Energy Technology Data Exchange (ETDEWEB)

    Guan Zhihong [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhang Hao [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)], E-mail: ehao79@163.com; Yang Shuanghua [Department of Computer Science, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2008-04-15

    In this paper, based on remote control and local control strategy, a class of hybrid multi-rate control models with time-delay and switching controllers are formulated and the problem of robust passive control for this discrete system is investigated. By Lyapunov-Krasovskii function and applying it to a descriptor model transformation some new sufficient conditions in form of LMIs are derived. A numerical example is given to illustrate the effectiveness of the theoretical result.

  17. Linear switched reluctance motor control with PIC18F452 microcontroller

    OpenAIRE

    DURSUN, Mahir; KOÇ, Fatmagül

    2014-01-01

    This paper presents the simulation, control, and experimental results of the velocity of a double-sided, 6/4-poled, 3-phased, 8 A, 24 V, 250 W, and 250 N pull force linear switched reluctance motor (LSRM). In the simulation and experimental study, the reference velocity is constant depending on the position and time. The velocity versus the position of the translator was controlled with fuzzy logic control (FLC) and proportional-integral (PI) control techniques. The motor was control...

  18. Will seizure control improve by switching from the modified Atkins diet to the traditional ketogenic diet?

    DEFF Research Database (Denmark)

    Kossoff, Eric H; Bosarge, Jennifer L; Miranda, Maria J

    2010-01-01

    It has been reported that children can maintain seizure control when the ketogenic diet (KD) is transitioned to the less-restrictive modified Atkins diet (MAD). What is unknown, however, is the likelihood of additional seizure control from a switch from the MAD to the KD. Retrospective information...

  19. Switching-based Mapping and Control for Haptic Teleoperation of Aerial Robots

    NARCIS (Netherlands)

    Mersha, A.Y.; Stramigioli, Stefano; Carloni, Raffaella

    2012-01-01

    This paper deals with the bilateral teleoperation of underactuated aerial robots by means of a haptic interface. In particular, we propose a switching-based state mapping and control algorithm between a rate-based passive controller, which addresses the workspace incompatibility between the master

  20. Automatic control of the NMB level in general anaesthesia with a switching total system mass control strategy.

    Science.gov (United States)

    Teixeira, Miguel; Mendonça, Teresa; Rocha, Paula; Rabiço, Rui

    2014-12-01

    This paper presents a model based switching control strategy to drive the neuromuscular blockade (NMB) level of patients undergoing general anesthesia to a predefined reference. A single-input single-output Wiener system with only two parameters is used to model the effect of two different muscle relaxants, atracurium and rocuronium, and a switching controller is designed based on a bank of total system mass control laws. Each of such laws is tuned for an individual model from a bank chosen to represent the behavior of the whole population. The control law to be applied at each instant corresponds to the model whose NMB response is closer to the patient's response. Moreover a scheme to improve the reference tracking quality based on the analysis of the patient's response, as well as, a comparison between the switching strategy and the Extended Kalman Kilter (EKF) technique are presented. The results are illustrated by means of several simulations, where switching shows to provide good results, both in theory and in practice, with a desirable reference tracking. The reference tracking improvement technique is able to produce a better reference tracking. Also, this technique showed a better performance than the (EKF). Based on these results, the switching control strategy with a bank of total system mass control laws proved to be robust enough to be used as an automatic control system for the NMB level.

  1. Analysis of novel stochastic switched SILI epidemic models with continuous and impulsive control

    Science.gov (United States)

    Gao, Shujing; Zhong, Deming; Zhang, Yan

    2018-04-01

    In this paper, we establish two new stochastic switched epidemic models with continuous and impulsive control. The stochastic perturbations are considered for the natural death rate in each equation of the models. Firstly, a stochastic switched SILI model with continuous control schemes is investigated. By using Lyapunov-Razumikhin method, the sufficient conditions for extinction in mean are established. Our result shows that the disease could be die out theoretically if threshold value R is less than one, regardless of whether the disease-free solutions of the corresponding subsystems are stable or unstable. Then, a stochastic switched SILI model with continuous control schemes and pulse vaccination is studied. The threshold value R is derived. The global attractivity of the model is also obtained. At last, numerical simulations are carried out to support our results.

  2. Software and Hardware control of a hybrid robot for switching between leg-type and wheel-type modes

    OpenAIRE

    Botelho, Wagner Tanaka; Okada, Tokuji; Mahmoud, Abeer; Shimizu, Toshimi

    2011-01-01

    One of the objectives of the paper is to describe the hybrid robot PEOPLER-II (Perpendicularly Oriented Planetary Legged Robot) with regard to switching between leg-type and wheel-type. Our robot has an easier design and control system than other hybrid robots. The software and hardware control in the process of performing five robot tasks are considered. These are the walking, rolling, switching, turning and spinning. In the switching task, we show the control method based on minimization of...

  3. Hybrid model predictive control applied to switching control of burner load for a compact marine boiler design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan

    2008-01-01

    This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for w...

  4. Design and construction of the advanced photon source 352-MHz rf system switching control

    International Nuclear Information System (INIS)

    Horan, D.; Solita, L.; Reigle, D.; Dimonte, N.

    1997-01-01

    A switching control system has been designed and built to provide the capability of rapidly switching the waveguide and low-level cabling between different klystrons to operate the Advanced Photon Source storage ring in the event of a failure of a klystron system or to perform necessary repairs and preventative maintenance. The twelve possible modes of operation allow for complete redundancy of the booster synchrotron rf system and either a maximum of two storage ring rf systems to be completely off-line or one system to be used as a power source for an rf test stand. A programmable controller is used to send commands to intermediate control panels which interface to WR2300 waveguide switches and phase shifters, rf cavity interlock and low-level rf distribution systems, and klystron power supply controls for rapid reconfiguration of the rf systems in response to a mode-selection command. Mode selection is a local manual operation using a keyswitch arrangement which prevents more than one mode from being selected at a time. The programmable controller also monitors for hardware malfunction and guards against open-quotes hot-switchingclose quotes of the rf systems. The rf switching controls system is monitored via the Experimental Physics and Industrial Control System (EPICS) for remote system status check

  5. Reactive control processes contributing to residual switch cost and mixing cost across the adult lifespan.

    Science.gov (United States)

    Whitson, Lisa R; Karayanidis, Frini; Fulham, Ross; Provost, Alexander; Michie, Patricia T; Heathcote, Andrew; Hsieh, Shulan

    2014-01-01

    In task-switching paradigms, performance is better when repeating the same task than when alternating between tasks (switch cost) and when repeating a task alone rather than intermixed with another task (mixing cost). These costs remain even after extensive practice and when task cues enable advanced preparation (residual costs). Moreover, residual reaction time mixing cost has been consistently shown to increase with age. Residual switch and mixing costs modulate the amplitude of the stimulus-locked P3b. This mixing effect is disproportionately larger in older adults who also prepare more for and respond more cautiously on these "mixed" repeat trials (Karayanidis et al., 2011). In this paper, we analyze stimulus-locked and response-locked P3 and lateralized readiness potentials to identify whether residual switch and mixing cost arise from the need to control interference at the level of stimulus processing or response processing. Residual mixing cost was associated with control of stimulus-level interference, whereas residual switch cost was also associated with a delay in response selection. In older adults, the disproportionate increase in mixing cost was associated with greater interference at the level of decision-response mapping and response programming for repeat trials in mixed-task blocks. These findings suggest that older adults strategically recruit greater proactive and reactive control to overcome increased susceptibility to post-stimulus interference. This interpretation is consistent with recruitment of compensatory strategies to compensate for reduced repetition benefit rather than an overall decline on cognitive flexibility.

  6. On-Demand Final State Control of a Surface-Bound Bistable Single Molecule Switch.

    Science.gov (United States)

    Garrido Torres, José A; Simpson, Grant J; Adams, Christopher J; Früchtl, Herbert A; Schaub, Renald

    2018-04-12

    Modern electronic devices perform their defined action because of the complete reliability of their individual active components (transistors, switches, diodes, and so forth). For instance, to encode basic computer units (bits) an electrical switch can be used. The reliability of the switch ensures that the desired outcome (the component's final state, 0 or 1) can be selected with certainty. No practical data storage device would otherwise exist. This reliability criterion will necessarily need to hold true for future molecular electronics to have the opportunity to emerge as a viable miniaturization alternative to our current silicon-based technology. Molecular electronics target the use of single-molecules to perform the actions of individual electronic components. On-demand final state control over a bistable unimolecular component has therefore been one of the main challenges in the past decade (1-5) but has yet to be achieved. In this Letter, we demonstrate how control of the final state of a surface-supported bistable single molecule switch can be realized. On the basis of the observations and deductions presented here, we further suggest an alternative strategy to achieve final state control in unimolecular bistable switches.

  7. Constant Switching Frequency Self-Oscillating Controlled Class-D Amplifiers

    OpenAIRE

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The self-oscillating control approach has been used extensively in class-D amplifiers. It has several advantages such as high bandwidth and high audio performance. However, one of the primary disadvantages in a self-oscillating controlled system is that the switching frequency of the amplifier varies with the ratio of the output voltage to the input rail voltage. In other words, the switching frequency varies with the duty cycle of the output. The drop in the frequency results in lower contro...

  8. Digital control of high-frequency switched-mode power converters

    CERN Document Server

    Corradini, Luca; Mattavelli, Paolo; Zane, Regan

    This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also

  9. Experimental verification of rank 1 chaos in switch-controlled Chua circuit.

    Science.gov (United States)

    Oksasoglu, Ali; Ozoguz, Serdar; Demirkol, Ahmet S; Akgul, Tayfun; Wang, Qiudong

    2009-03-01

    In this paper, we provide the first experimental proof for the existence of rank 1 chaos in the switch-controlled Chua circuit by following a step-by-step procedure given by the theory of rank 1 maps. At the center of this procedure is a periodically kicked limit cycle obtained from the unforced system. Then, this limit cycle is subjected to periodic kicks by adding externally controlled switches to the original circuit. Both the smooth nonlinearity and the piecewise linear cases are considered in this experimental investigation. Experimental results are found to be in concordance with the conclusions of the theory.

  10. Temperature Control of Gas Chromatograph Based on Switched Delayed System Techniques

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Wang

    2014-01-01

    Full Text Available We address the temperature control problem of the gas chromatograph. We model the temperature control system of the gas chromatograph into a switched delayed system and analyze the stability by common Lyapunov functional technique. The PI controller parameters can be given based on the proposed linear matrix inequalities (LMIs condition and the designed controller can make the temperature of gas chromatograph track the reference signal asymptotically. An experiment is given to illustrate the effectiveness of the stability criterion.

  11. Complexity and dynamics of switched human balance control during quiet standing.

    Science.gov (United States)

    Nema, Salam; Kowalczyk, Piotr; Loram, Ian

    2015-10-01

    In this paper, we use a combination of numerical simulations, time series analysis, and complexity measures to investigate the dynamics of switched systems with noise, which are often used as models of human balance control during quiet standing. We link the results with complexity measures found in experimental data of human sway motion during quiet standing. The control model ensuring balance, which we use, is based on an act-and-wait control concept, that is, a human controller is switched on when a certain sway angle is reached. Otherwise, there is no active control present. Given a time series data, we determine how does it look a typical pattern of control strategy in our model system. We detect the switched nonlinearity in the system using a frequency analysis method in the absence of noise. We also analyse the effect of time delay on the existence of limit cycles in the system in the absence of noise. We perform the entropy and detrended fluctuation analyses in view of linking the switchings (and the dead zone) with the occurrences of complexity in the model system in the presence of noise. Finally, we perform the entropy and detrended fluctuation analyses on experimental data and link the results with numerical findings in our model example.

  12. Chromosome 11-linked determinant controls fetal globin expression and the fetal-to-adult globin switch

    International Nuclear Information System (INIS)

    Melis, M.; Demopulos, G.; Najfeld, V.; Zhang, J.W.; Brice, M.; Papayannopoulou, T.; Stamatoyannopoulos, G.

    1987-01-01

    Hybrids formed by fusing mouse erythroleukemia (MEL) cells with human fetal erythroid cells produce human fetal globin, but they switch to adult globin production as culture time advances. To obtain information on the chromosomal assignment of the elements that control γ-to-β switching, the authors analyzed the chromosomal composition of hybrids producing exclusively or predominantly human fetal globin and hybrids producing only adult human globin. No human chromosome was consistently present in hybrids expressing fetal globin and consistently absent in hybrids expressing adult globin. Subcloning experiments demonstrated identical chromosomal compositions in subclones displaying the fetal globin program and those that had switched to expression of the adult globin program. These data indicate that retention of only one human chromosome -- i.e., chromosome 11 -- is sufficient for expression of human fetal globin and the subsequent γ-to-β switch. The results suggest that the γ-to-β switch is controlled either cis to the β-globin locus of by a trans-acting mechanism, the genes of which reside on human chromosome 11

  13. Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field

    Science.gov (United States)

    Park, Sung Min; Wang, Bo; Das, Saikat; Chae, Seung Chul; Chung, Jin-Seok; Yoon, Jong-Gul; Chen, Long-Qing; Yang, Sang Mo; Noh, Tae Won

    2018-05-01

    Flexoelectricity is an electromechanical coupling between electrical polarization and a strain gradient1 that enables mechanical manipulation of polarization without applying an electrical bias2,3. Recently, flexoelectricity was directly demonstrated by mechanically switching the out-of-plane polarization of a uniaxial system with a scanning probe microscope tip3,4. However, the successful application of flexoelectricity in low-symmetry multiaxial ferroelectrics and therefore active manipulation of multiple domains via flexoelectricity have not yet been achieved. Here, we demonstrate that the symmetry-breaking flexoelectricity offers a powerful route for the selective control of multiple domain switching pathways in multiaxial ferroelectric materials. Specifically, we use a trailing flexoelectric field that is created by the motion of a mechanically loaded scanning probe microscope tip. By controlling the SPM scan direction, we can deterministically select either stable 71° ferroelastic switching or 180° ferroelectric switching in a multiferroic magnetoelectric BiFeO3 thin film. Phase-field simulations reveal that the amplified in-plane trailing flexoelectric field is essential for this domain engineering. Moreover, we show that mechanically switched domains have a good retention property. This work opens a new avenue for the deterministic selection of nanoscale ferroelectric domains in low-symmetry materials for non-volatile magnetoelectric devices and multilevel data storage.

  14. Can task-switching training enhance executive control functioning in children with attention deficit/-hyperactivity disorder?

    Directory of Open Access Journals (Sweden)

    Jutta eKray

    2012-01-01

    Full Text Available The key cognitive impairments of children with attention deficit/-hyperactivity disorder (ADHD include executive control functions such as inhibitory control, task switching, and working memory. In this training study we examined whether task-switching training leads to improvements in these functions. Twenty children with combined type ADHD and stable methylphenidate medication performed a single-task and a task-switching training in a crossover training design. The children were randomly assigned to one of two groups. One group started with the single-task training and then performed the task-switching training and the other group vice versa. The effectiveness of the task-switching training was measured as performance improvements (relative to the single-task training on a structurally similar but new switching task and on other executive control tasks measuring inhibitory control and verbal working memory as well as on fluid intelligence (reasoning. The children in both groups showed improvements in task switching, that is, a reduction of switching costs, but not in performing the single tasks across four training sessions. Moreover, the task-switching training lead to selective enhancements in task-switching performance, that is, the reduction of task-switching costs was found to be larger after task-switching than after single-task training. Similar selective improvements were observed for inhibitory control and verbal working memory, but not for reasoning. Results of this study suggest that task-switching training is an effective cognitive intervention that helps to enhance executive control functioning in children with ADHD.

  15. Can task-switching training enhance executive control functioning in children with attention deficit/-hyperactivity disorder?

    Science.gov (United States)

    Kray, Jutta; Karbach, Julia; Haenig, Susann; Freitag, Christine

    2011-01-01

    The key cognitive impairments of children with attention deficit/-hyperactivity disorder (ADHD) include executive control functions such as inhibitory control, task-switching, and working memory (WM). In this training study we examined whether task-switching training leads to improvements in these functions. Twenty children with combined type ADHD and stable methylphenidate medication performed a single-task and a task-switching training in a crossover training design. The children were randomly assigned to one of two groups. One group started with the single-task training and then performed the task-switching training and the other group vice versa. The effectiveness of the task-switching training was measured as performance improvements (relative to the single-task training) on a structurally similar but new switching task and on other executive control tasks measuring inhibitory control and verbal WM as well as on fluid intelligence (reasoning). The children in both groups showed improvements in task-switching, that is, a reduction of switching costs, but not in performing the single-tasks across four training sessions. Moreover, the task-switching training lead to selective enhancements in task-switching performance, that is, the reduction of task-switching costs was found to be larger after task-switching than after single-task training. Similar selective improvements were observed for inhibitory control and verbal WM, but not for reasoning. Results of this study suggest that task-switching training is an effective cognitive intervention that helps to enhance executive control functioning in children with ADHD.

  16. Towards model-based control of RCCI-CDF mode-switching in dual fuel engines

    NARCIS (Netherlands)

    Indrajuana, Armando; Bekdemir, C.; Feru, E.; Willems, F.P.T.

    2018-01-01

    The operation of a dual fuel combustion engine using combustion mode-switching offers the benefit of higher thermal efficiency compared to single-mode operation. For various fuel combinations, the engine research community has shown that running dual fuel engines in Reactivity Controlled Compression

  17. Vehicle energy management for on/off controlled auxiliaries : fuel economy vs. switching frequency

    NARCIS (Netherlands)

    Chen, H.; Kessels, J.T.B.A.; Weiland, S.

    2015-01-01

    In this paper, an integrated approach for designing energy management strategies concerning vehicle auxiliaries with on/off control is proposed. This approach provides the possibility of making different trade-offs between fuel economy and switching frequency. In this paper, we demonstrate the

  18. Robust Hinf control of uncertain switched systems defined on polyhedral sets with Filippov solutions

    DEFF Research Database (Denmark)

    Ahmadi, Mohamadreza; Mojallali, Hamed; Wisniewski, Rafal

    2012-01-01

    This paper considers the control problem of a class of uncertain switched systems defined on polyhedral sets known as piecewise linear systems where, instead of the conventional Carathe ́odory solutions, Filippov solutions are studied. In other words, in contrast to the previous studies, solutions...

  19. Control of a high-speed switched reluctance machine using only the DC-link measurements

    NARCIS (Netherlands)

    Marinkov, Sava; De Jager, Bram

    2015-01-01

    In this paper we present a novel speed control strategy for a high-speed Switched Reluctance Machine that uses only the DC-link voltage and current measurements. This eliminates a number of hardware components such as position, speed, phase current and phase voltage sensors. It further lowers the

  20. An Electronically Controlled 8-Element Switched Beam Planar Array

    KAUST Repository

    Sharawi, Mohammad S.

    2015-02-24

    An 8-element planar antenna array with electronically controlled switchable-beam pattern is proposed. The planar antenna array consists of patch elements and operates in the 2.45 GHz ISM band. The array is integrated with a digitally controlled feed network that provides the required phases to generate 8 fixed beams covering most of the upper hemisphere of the array. Unlike typical switchable beam antenna arrays, which operate only in one plane, the proposed design is the first to provide full 3D switchable beams with simple control. Only a 3-bit digital word is required for the generation of the 8 different beams. The integrated array is designed on a 3-layer PCB on a Taconic substrate (RF60A). The total dimensions of the fabricated array are 187.1 × 261.3 × 1.3mm3.

  1. A switched energy saving position controller for variable-pressure electro-hydraulic servo systems.

    Science.gov (United States)

    Tivay, Ali; Zareinejad, Mohammad; Rezaei, S Mehdi; Baghestan, Keivan

    2014-07-01

    The electro-hydraulic servo system (EHSS) demonstrates a relatively low level of efficiency compared to other available actuation methods. The objective of this paper is to increase this efficiency by introducing a variable supply pressure into the system and controlling this pressure during the task of position tracking. For this purpose, an EHSS structure with controllable supply pressure is proposed and its dynamic model is derived from the basic laws of physics. A switching control structure is then proposed to control both the supply pressure and the cylinder position at the same time, in a way that reduces the overall energy consumption of the system. The stability of the proposed switching control system is guaranteed by proof, and its performance is verified by experimental testing. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Broadband optically controlled switching effect in a microfluid-filled photonic bandgap fiber

    International Nuclear Information System (INIS)

    Guo, Junqi; Liu, Yan-ge; Wang, Zhi; Luo, Mingming; Huang, Wei; Liu, Xiaoqi; Han, Tingting

    2016-01-01

    Broadband optically controlled switching in a microfluid-filled photonic bandgap fiber (MF-PBGF) was observed and investigated. The MF-PBGF was formed by infusing a temperature-sensitive high-index fluid into all of the cladding holes of a microstructured optical fiber (MOF). The fiber was then side pumped with a 532 nm continuous wave laser. An extinction ratio of greater than 20 dB at most of the bandgap wavelengths (more than 200 nm) was obtained with a switching power of ∼147 mW. Theoretical and experimental investigations revealed that the effect originated from changes in the temperature gradient induced by heat absorption of the fiber coating with laser illumination. These investigations offer a new and simple approach to achieve wideband and flexible all-optical fiber switching devices without using any photosensitive materials. (paper)

  3. CMOS single-stage input-powered bridge rectifier with boost switch and duty cycle control

    Science.gov (United States)

    Radzuan, Roskhatijah; Mohd Salleh, Mohd Khairul; Hamzah, Mustafar Kamal; Ab Wahab, Norfishah

    2017-06-01

    This paper presents a single-stage input-powered bridge rectifier with boost switch for wireless-powered devices such as biomedical implants and wireless sensor nodes. Realised using CMOS process technology, it employs a duty cycle switch control to achieve high output voltage using boost technique, leading to a high output power conversion. It has only six external connections with the boost inductance. The input frequency of the bridge rectifier is set at 50 Hz, while the switching frequency is 100 kHz. The proposed circuit is fabricated on a single 0.18-micron CMOS die with a space area of 0.024 mm2. The simulated and measured results show good agreement.

  4. Design of Measurement and Control System of Composite Fast Transfer Switch Based on PLC

    Directory of Open Access Journals (Sweden)

    ZHANG Hong-yi

    2017-06-01

    Full Text Available The fast transfer switch gets more extensive application in the power supply system along with the raising of power supply requirement for continuity and reliability in the sensitivity loads such as in airport,military place,hospital and large scale industrial production line. Therefore it is important that how to make fast transfer switch run safely and reliably. The paper expatiated the structure and principle of a fast transfer switch based on mechanical and electronic compound technology,and,according to the basic requirement and the characteristic of the fast transfer switch,a PLC mastered measuring and controlling system has been designed to raise the operation reliability of the fast transfer switch.

  5. Light controlled prebreakdown characteristics of a semi-insulating GaAs photoconductive switch

    International Nuclear Information System (INIS)

    Ma Xiangrong; Shi Wei; Ji Weili; Xue Hong

    2011-01-01

    A 4 mm gap semi-insulating (SI) GaAs photoconductive switch (PCSS) was triggered by a pulse laser with a wavelength of 1064 nm and a pulse energy of 0.5 mJ. In the experiment, when the bias field was 4 kV, the switch did not induce self-maintained discharge but worked in nonlinear (lock-on) mode. The phenomenon is analyzed as follows: an exciton effect contributes to photoconduction in the generation and dissociation of excitons. Collision ionization, avalanche multiplication and the exciton effect can supply carrier concentration and energy when an outside light source was removed. Under the combined influence of these factors, the SI-GaAs PCSS develops into self-maintained discharge rather than just in the light-controlled prebreakdown status. The characteristics of the filament affect the degree of damage to the switch. (semiconductor devices)

  6. Light controlled prebreakdown characteristics of a semi-insulating GaAs photoconductive switch

    Science.gov (United States)

    Xiangrong, Ma; Wei, Shi; Weili, Ji; Hong, Xue

    2011-12-01

    A 4 mm gap semi-insulating (SI) GaAs photoconductive switch (PCSS) was triggered by a pulse laser with a wavelength of 1064 nm and a pulse energy of 0.5 mJ. In the experiment, when the bias field was 4 kV, the switch did not induce self-maintained discharge but worked in nonlinear (lock-on) mode. The phenomenon is analyzed as follows: an exciton effect contributes to photoconduction in the generation and dissociation of excitons. Collision ionization, avalanche multiplication and the exciton effect can supply carrier concentration and energy when an outside light source was removed. Under the combined influence of these factors, the SI-GaAs PCSS develops into self-maintained discharge rather than just in the light-controlled prebreakdown status. The characteristics of the filament affect the degree of damage to the switch.

  7. Water column methanotrophy controlled by a rapid oceanographic switch

    NARCIS (Netherlands)

    Steinle, L.; Graves, C.A.; Treude, T.; Ferré, B.; Biastoch, A.; Bussmann, I.; Berndt, C.; Krastel, S.; James, R.H.; Behrens, E.; Böning, C.W.; Greinert, J.; Sapart, C.-J.; Scheinert, M.; Sommer, S.; Lehmann, M.F.; Niemann, H.

    2015-01-01

    From the seabed to the water column, where it may be consumed by aerobic methanotrophic bacteria. The size and activity of methanotrophic communities, which determine the amount of methane consumed in the water column,are thought to be mainly controlled by nutrient and redoxdynamics3–7. Here, we

  8. Direct switching control of DC-DC power electronic converters using hybrid system theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Lin, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wang, C. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wayne State Univ., Detroit, MI (United States). Div. of Engineering Technology

    2010-07-01

    A direct switching control (DSC) scheme for power electronics converters was described. The system was designed for use in both traditional and renewable energy applications as well as in electric drive vehicles. The proposed control scheme was based on a detailed hybrid system converter model that used model predictive control (MPC), piecewise affine (PWA) approximations and constrained optimal control methods. A DC-DC converter was modelled as a hybrid machine. Switching among different modes of the DC-DC converter were modelled as discrete events controlled by the hybrid controller. The modelling scheme was applied to a Buck converter. The DSC was used to control the switch of the power converter based on a hybrid machine model. Results of the study showed that the method can be used to regulate output voltage and inductor currents. The method also provides fast transient responses and effectively regulates both currents and voltage. The controller can be used to provide immediate responses to dynamic disturbances and output voltage fluctuations. 23 refs., 7 figs.

  9. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system.

    Science.gov (United States)

    Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola

    2014-02-10

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.

  10. Modeling of driver's collision avoidance maneuver based on controller switching model.

    Science.gov (United States)

    Kim, Jong-Hae; Hayakawa, Soichiro; Suzuki, Tatsuya; Hayashi, Koji; Okuma, Shigeru; Tsuchida, Nuio; Shimizu, Masayuki; Kido, Shigeyuki

    2005-12-01

    This paper presents a modeling strategy of human driving behavior based on the controller switching model focusing on the driver's collision avoidance maneuver. The driving data are collected by using the three-dimensional (3-D) driving simulator based on the CAVE Automatic Virtual Environment (CAVE), which provides stereoscopic immersive virtual environment. In our modeling, the control scenario of the human driver, that is, the mapping from the driver's sensory information to the operation of the driver such as acceleration, braking, and steering, is expressed by Piecewise Polynomial (PWP) model. Since the PWP model includes both continuous behaviors given by polynomials and discrete logical conditions, it can be regarded as a class of Hybrid Dynamical System (HDS). The identification problem for the PWP model is formulated as the Mixed Integer Linear Programming (MILP) by transforming the switching conditions into binary variables. From the obtained results, it is found that the driver appropriately switches the "control law" according to the sensory information. In addition, the driving characteristics of the beginner driver and the expert driver are compared and discussed. These results enable us to capture not only the physical meaning of the driving skill but the decision-making aspect (switching conditions) in the driver's collision avoidance maneuver as well.

  11. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    Science.gov (United States)

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  12. Development of control rod position indicator using seismic-resistance reed switches for integral reactor

    International Nuclear Information System (INIS)

    Yu, Je Yong; Kim, Ji Ho; Huh, Hyung; Choi, Myoung Hwan; Sohn, Dong Seong

    2008-01-01

    The Reed Switch Position Transmitter (RSPT) is used as a position indicator for the control rod in commercial nuclear power plants made by ABB-CE. But this position indicator has some problems when directly adopting it to the integral reactor. The Control Element Drive Mechanism (CEDM) for the integral reactor is designed to raise and lower the control rod in steps of 2mm in order to satisfy the design features of the integral reactor which are the soluble boron free operation and the use of a nuclear heating for the reactor start-up. Therefore the resolution of the position indicator for the integral reactor should be achieved to sense the position of the control rod more precisely than that of the RSPT of the ABB-CE. This paper adopts seismic resistance reed switches to the position indicator in order to reduce the damages or impacts during the handling of the position indicator and earthquake

  13. Transcriptional switches in the control of macronutrient metabolism.

    Science.gov (United States)

    Wise, Alan

    2008-06-01

    This review shows how some transcription factors respond to alterations in macronutrients. Carbohydrates induce enzymes for their metabolism and fatty acid synthesis. Fatty acids reduce carbohydrate processing, induce enzymes for their metabolism, and increase both gluconeogenesis and storage of fat. Fat stores help control carbohydrate uptake by other cells. The following main transcription factors are discussed: carbohydrate response element-binding protein; sterol regulatory element-binding protein-1c, cyclic AMP response element-binding protein, peroxisome proliferator-activated receptor-alpha, and peroxisome proliferator-activated receptor-gamma.

  14. Reactive control processes contributing to residual switch cost and mixing cost in young and old adults

    Directory of Open Access Journals (Sweden)

    Lisa Rebecca Whitson

    2014-04-01

    Full Text Available In task-switching paradigms, performance is better when repeating the same task than when alternating between tasks (switch cost and when repeating a task alone rather than intermixed with another task (mixing cost. These costs remain even after extensive practice and when task cues enable advanced preparation (residual costs. Moreover, residual RT mixing cost has been consistently shown to increase with age. Residual switch and mixing costs modulate the amplitude of the stimulus-locked P3b. This mixing effect is disproportionately larger in older adults who also prepare more for and respond more cautiously on these ‘mixed’ repeat trials (Karayanidis et al., 2011. In this study, we examine stimulus-locked and response-locked P3 and lateralized readiness potentials to identify whether residual switch and mixing cost arise from the need to control interference at the level of stimulus processing or response processing. Residual mixing cost was associated with control of stimulus-level interference, whereas residual switch cost was also associated with a delay in response selection. In older adults, the disproportionate increase in mixing cost was associated with greater interference at the level of decision-response mapping and response programming for repeat trials in mixed-task blocks. We argue that, together with evidence of greater proactive control and more cautious responding for these trials, these findings suggest that older adults strategically recruit greater proactive and reactive control to overcome increased susceptibility to post-stimulus interference. This interpretation is consistent with recruitment of compensatory strategies to compensate for reduced repetition benefit rather than an overall decline on cognitive flexibility.

  15. Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor.

    Directory of Open Access Journals (Sweden)

    Jamie T Bridgham

    2014-01-01

    Full Text Available An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs, a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER, and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become "stuck" in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large

  16. Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor

    Science.gov (United States)

    Bridgham, Jamie T.; Keay, June; Ortlund, Eric A.; Thornton, Joseph W.

    2014-01-01

    An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become “stuck” in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations

  17. Economic Model Predictive Control of Bihormonal Artificial Pancreas System Based on Switching Control and Dynamic R-parameter.

    Science.gov (United States)

    Tang, Fengna; Wang, Youqing

    2017-11-01

    Blood glucose (BG) regulation is a long-term task for people with diabetes. In recent years, more and more researchers have attempted to achieve automated regulation of BG using automatic control algorithms, called the artificial pancreas (AP) system. In clinical practice, it is equally important to guarantee the treatment effect and reduce the treatment costs. The main motivation of this study is to reduce the cure burden. The dynamic R-parameter economic model predictive control (R-EMPC) is chosen to regulate the delivery rates of exogenous hormones (insulin and glucagon). It uses particle swarm optimization (PSO) to optimize the economic cost function and the switching logic between insulin delivery and glucagon delivery is designed based on switching control theory. The proposed method is first tested on the standard subject; the result is compared with the switching PID and the switching MPC. The effect of the dynamic R-parameter on improving the control performance is illustrated by comparing the results of the EMPC and the R-EMPC. Finally, the robustness tests on meal change (size and timing), hormone sensitivity (insulin and glucagon), and subject variability are performed. All results show that the proposed method can improve the control performance and reduce the economic costs. The simulation results verify the effectiveness of the proposed algorithm on improving the tracking performance, enhancing robustness, and reducing economic costs. The method proposed in this study owns great worth in practical application.

  18. High-power subnanosecond operation of a bistable optically controlled semiconductor switch (BOSS)

    International Nuclear Information System (INIS)

    Stoudt, D.C.; Richardson, M.A.; Demske, D.L.; Roush, R.A.; Eure, K.W.

    1994-01-01

    Recent high-power, subnanosecond-switching results of the Bistable Optically controlled Semiconductor Switch (BOSS) are presented. The process of persistent photoconductivity followed by photo-quenching have been demonstrated at megawatt power levels in copper-compensated, silicon-doped, semi-insulating gallium arsenide. These processes allow a switch to be developed that can be closed by the application of one laser pulse and opened by the application of a second laser pulse with a wavelength equal to twice that of the first laser. Switch closure is primarily achieved by elevating electrons from a deep copper center which has been diffused into the material. The opening phase is a two-step process which relies initially on the absorption of the 2-μm laser causing electrons to be elevated from the valance band back into the copper center, and finally on the recombination of electrons in the conduction band with boles in the valance band. The second step requires a sufficient concentration of recombination centers (RC) in the material for opening to occur in the subnanosecond regime. These RC's are generated in the bulk GaAs material by fast-neutron irradiation (∼ 1 MeV) at a fluence of about 3 x 10 15 cm -2 . High-power switching results which demonstrate that the BOSS switch can be opened in the subnanosecond regime are presented for the first time. Neutron-irradiated BOSS devices have been opened against a rising electric field of about 20 kV/cm (10 kV) in a time less than one nanosecond. Kilovolt electrical pulses have been generated with a FWHM of roughly 250 picoseconds

  19. Robust Switching Control and Subspace Identification for Flutter of Flexible Wing

    Directory of Open Access Journals (Sweden)

    Yizhe Wang

    2018-01-01

    Full Text Available Active flutter suppression and subspace identification for a flexible wing model using micro fiber composite actuator were experimentally studied in a low speed wind tunnel. NACA0006 thin airfoil model was used for the experimental object to verify the performance of identification algorithm and designed controller. The equation of the fluid, vibration, and piezoelectric coupled motion was theoretically analyzed and experimentally identified under the open-loop and closed-loop condition by subspace method for controller design. A robust pole placement algorithm in terms of linear matrix inequality that accommodates the model uncertainty caused by identification deviation and flow speed variation was utilized to stabilize the divergent aeroelastic system. For further enlarging the flutter envelope, additional controllers were designed subject to the models beyond the flutter speed. Wind speed was measured online as the decision parameter of switching between the controllers. To ensure the stability of arbitrary switching, Common Lyapunov function method was applied to design the robust pole placement controllers for different models to ensure that the closed-loop system shared a common Lyapunov function. Wind tunnel result showed that the designed controllers could stabilize the time varying aeroelastic system over a wide range under arbitrary switching.

  20. Temperature control of fimbriation circuit switch in uropathogenic Escherichia coli: quantitative analysis via automated model abstraction.

    Science.gov (United States)

    Kuwahara, Hiroyuki; Myers, Chris J; Samoilov, Michael S

    2010-03-26

    Uropathogenic Escherichia coli (UPEC) represent the predominant cause of urinary tract infections (UTIs). A key UPEC molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible chromosomal DNA element-the fim switch. Temperature has been shown to act as a major regulator of fim switching behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes. However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather than increase) of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics mediated by recombinase FimE. Our computational analysis further implies that this down

  1. Temperature control of fimbriation circuit switch in uropathogenic Escherichia coli: quantitative analysis via automated model abstraction.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kuwahara

    2010-03-01

    Full Text Available Uropathogenic Escherichia coli (UPEC represent the predominant cause of urinary tract infections (UTIs. A key UPEC molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible chromosomal DNA element-the fim switch. Temperature has been shown to act as a major regulator of fim switching behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes. However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather than increase of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics mediated by recombinase FimE. Our computational analysis further implies

  2. Functionally-interdependent shape-switching nanoparticles with controllable properties

    Science.gov (United States)

    Halman, Justin R.; Satterwhite, Emily; Roark, Brandon; Chandler, Morgan; Viard, Mathias; Ivanina, Anna; Bindewald, Eckart; Kasprzak, Wojciech K.; Panigaj, Martin; Bui, My N.; Lu, Jacob S.; Miller, Johann; Khisamutdinov, Emil F.; Shapiro, Bruce A.; Dobrovolskaia, Marina A.

    2017-01-01

    Abstract We introduce a new concept that utilizes cognate nucleic acid nanoparticles which are fully complementary and functionally-interdependent to each other. In the described approach, the physical interaction between sets of designed nanoparticles initiates a rapid isothermal shape change which triggers the activation of multiple functionalities and biological pathways including transcription, energy transfer, functional aptamers and RNA interference. The individual nanoparticles are not active and have controllable kinetics of re-association and fine-tunable chemical and thermodynamic stabilities. Computational algorithms were developed to accurately predict melting temperatures of nanoparticles of various compositions and trace the process of their re-association in silico. Additionally, tunable immunostimulatory properties of described nanoparticles suggest that the particles that do not induce pro-inflammatory cytokines and high levels of interferons can be used as scaffolds to carry therapeutic oligonucleotides, while particles with strong interferon and mild pro-inflammatory cytokine induction may qualify as vaccine adjuvants. The presented concept provides a simple, cost-effective and straightforward model for the development of combinatorial regulation of biological processes in nucleic acid nanotechnology. PMID:28108656

  3. Soft controller switching technique to minimize the torque and current pulsations of a SCIM during its reswitching

    International Nuclear Information System (INIS)

    Larik, A.S.

    2010-01-01

    The direct-on-line starting of induction motor draws heavy current and to limit this Inrush current to a safe level normally a star-delta switch is used. However, the switching over from star to delta causes over current transients and this leads to torque pulsations. Therefore, in this paper the current and torque pulsations developed during the switching process are focused and a soft-switched controller is devised to minimize the re-closure transient currents and torque pulsations during star-delta switching of induction motor. The designed system can readily handles the sensing of favorable conditions of re closure of a switched-off running induction motor and it minimizes the inrush current and hence the pulsations of torque of all types of induction motors, whether, single-phase or three phase. An investigation is made into the transient currents and pulsation torques generated due to opening the circuit of a running induction motor and the switching pattern of star-delta switching. The re-switching control scheme for the induction motor is practically tested in the laboratory with and without soft controller. (author)

  4. Observer-based leader-following tracking control under both fixed and switching topologies

    Institute of Scientific and Technical Information of China (English)

    Jinhuan WANG; Pengxiao ZHANG; Zhixin LIU; Xiaoming HU

    2016-01-01

    This paper studies the tracking problem for a class of leader-follower multi-agent systems moving on the plane using observer-based cooperative control strategies. In our set-up, only a subset of the followers can obtain some relative information on the leader. We assume that the control input of the leader is not known to any of the followers while the system matrix is broadcast to all the followers. To track such a leader, an observer-based decentralized feedback controller is designed for each follower and detailed analysis for the convergence is presented for both fixed and switching interaction topologies between agents with the method of common Lyapunov function. We can also generalize the result to the higher dimension case for fixed topology and some special system matrices of the leader for switching topology.

  5. Application of Theory of Hybrid Systems to Control the Switching of Buck Converter

    KAUST Repository

    Benmiloud, Mohammed

    2013-08-01

    The field of power electronics poses challenging control problems that can’t be treated in a complete manner using traditional modeling. In this paper, the buck converter operating in Continuous Conduction Mode (CCM) is represented analytically by hybrid automaton model and graphically representation is also given. The hybrid trajectory and the model behavior are presented. The control problem of buck switching converters is transformed to a guard selection problem. The guard selection calculation formulas of buck converter are derived from the basic circuit laws. The stability of the switching is established analytically by the use of multiple Lyapunov functions to ensure the convergence and Poincare map to assess the local stability of the limit cycle. Numerical results clearly bring out the advantages and effectiveness of the proposed control law under varying line voltage and load conditions. Simulation studies are carried out in Matlab/Simulink/Stateflow.

  6. Application of Theory of Hybrid Systems to Control the Switching of Buck Converter

    KAUST Repository

    Benmiloud, Mohammed; Benalia, Atallah; Laleg-Kirati, Taous-Meriem

    2013-01-01

    The field of power electronics poses challenging control problems that can’t be treated in a complete manner using traditional modeling. In this paper, the buck converter operating in Continuous Conduction Mode (CCM) is represented analytically by hybrid automaton model and graphically representation is also given. The hybrid trajectory and the model behavior are presented. The control problem of buck switching converters is transformed to a guard selection problem. The guard selection calculation formulas of buck converter are derived from the basic circuit laws. The stability of the switching is established analytically by the use of multiple Lyapunov functions to ensure the convergence and Poincare map to assess the local stability of the limit cycle. Numerical results clearly bring out the advantages and effectiveness of the proposed control law under varying line voltage and load conditions. Simulation studies are carried out in Matlab/Simulink/Stateflow.

  7. Application of genetic algorithm to control design

    International Nuclear Information System (INIS)

    Lee, Yoon Joon; Cho, Kyung Ho

    1995-01-01

    A classical PID controller is designed by applying the GA (Genetic Algorithm) which searches the optimal parameters through three major operators of reproduction, crossover and mutation under the given constraints. The GA could minimize the designer's interference and the whole design process could easily be automated. In contrast with other traditional PID design methods which allows for the system output responses only, the design with the GA can take account of the magnitude or the rate of change of control input together with the output responses, which reflects the more realistic situations. Compared with other PIDs designed by the traditional methods such as Ziegler and analytic, the PID by the GA shows the superior response characteristics to those of others with the least control input energy

  8. Sliding-Mode Control Design of a Boost-Buck Switching Converter for AC Signal Generation

    OpenAIRE

    Biel Solé, Domingo; Guinjoan Gispert, Francisco; Fossas Colet, Enric; Chavarría Roé, Javier

    2004-01-01

    This paper presents a sliding-mode control design of a boost–buck switching converter for a voltage step-up dc–ac conversion without the use of any transformer. This approach combines the step-up/step-down conversion ratio capability of the converter with the robustness properties of sliding-mode control. The proposed control strategy is based on the design of two slidingcontrol laws, one ensuring the control of a full-bridge buck converter for proper dc–ac conversion, and the other one the c...

  9. Sensorless control of low-cost single-phase hybrid switched reluctance motor drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan; Rasmussen, Peter Omand

    2013-01-01

    This paper presents a sensorless-controlled, low-cost, low-power, variable-speed drive system suitable for fan and pump applications. The main advantages of this drive system are the low system cost, simple converter structure, and simple but robust sensorless control technique. The drive motor...... is a special Hybrid Switched Reluctance Motor (HSRM). The proposed sensorless control method utilizes beneficially the stator side permanent magnet field and its performance is motor parameter independent. The unique low-cost drive system solution, simple and robust sensorless control features of this drive...

  10. Sensorless Control of Low-cost Single-phase Hybrid Switched Reluctance Motor Drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    This paper presents a sensorless-controlled, low-cost, low-power, and variable-speed drive system suitable for fan and pump applications. The main advantages of this drive system are the low system cost, simple converter structure, and simple but robust sensorless control technique. The drive motor...... is a special hybrid switched reluctance motor. The proposed sensorless control method beneficially utilizes the stator side PM field and its performance is motor parameter independent. The unique low-cost drive system solution, simple and robust sensorless control features of this drive system, is demonstrated...

  11. Controllable Organic Resistive Switching Achieved by One-Step Integration of Cone-Shaped Contact.

    Science.gov (United States)

    Ling, Haifeng; Yi, Mingdong; Nagai, Masaru; Xie, Linghai; Wang, Laiyuan; Hu, Bo; Huang, Wei

    2017-09-01

    Conductive filaments (CFs)-based resistive random access memory possesses the ability of scaling down to sub-nanoscale with high-density integration architecture, making it the most promising nanoelectronic technology for reclaiming Moore's law. Compared with the extensive study in inorganic switching medium, the scientific challenge now is to understand the growth kinetics of nanoscale CFs in organic polymers, aiming to achieve controllable switching characteristics toward flexible and reliable nonvolatile organic memory. Here, this paper systematically investigates the resistive switching (RS) behaviors based on a widely adopted vertical architecture of Al/organic/indium-tin-oxide (ITO), with poly(9-vinylcarbazole) as the case study. A nanoscale Al filament with a dynamic-gap zone (DGZ) is directly observed using in situ scanning transmission electron microscopy (STEM) , which demonstrates that the RS behaviors are related to the random formation of spliced filaments consisting of Al and oxygen vacancy dual conductive channels growing through carbazole groups. The randomicity of the filament formation can be depressed by introducing a cone-shaped contact via a one-step integration method. The conical electrode can effectively shorten the DGZ and enhance the localized electric field, thus reducing the switching voltage and improving the RS uniformity. This study provides a deeper insight of the multiple filamentary mechanisms for organic RS effect. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bilingual Language Switching in the Laboratory versus in the Wild: The Spatiotemporal Dynamics of Adaptive Language Control.

    Science.gov (United States)

    Blanco-Elorrieta, Esti; Pylkkänen, Liina

    2017-09-13

    For a bilingual human, every utterance requires a choice about which language to use. This choice is commonly regarded as part of general executive control, engaging prefrontal and anterior cingulate cortices similarly to many types of effortful task switching. However, although language control within artificial switching paradigms has been heavily studied, the neurobiology of natural switching within socially cued situations has not been characterized. Additionally, although theoretical models address how language control mechanisms adapt to the distinct demands of different interactional contexts, these predictions have not been empirically tested. We used MEG (RRID: NIFINV:nlx_inv_090918) to investigate language switching in multiple contexts ranging from completely artificial to the comprehension of a fully natural bilingual conversation recorded "in the wild." Our results showed less anterior cingulate and prefrontal cortex involvement for more natural switching. In production, voluntary switching did not engage the prefrontal cortex or elicit behavioral switch costs. In comprehension, while laboratory switches recruited executive control areas, fully natural switching within a conversation only engaged auditory cortices. Multivariate pattern analyses revealed that, in production, interlocutor identity was represented in a sustained fashion throughout the different stages of language planning until speech onset. In comprehension, however, a biphasic pattern was observed: interlocutor identity was first represented at the presentation of the interlocutor and then again at the presentation of the auditory word. In all, our findings underscore the importance of ecologically valid experimental paradigms and offer the first neurophysiological characterization of language control in a range of situations simulating real life to various degrees. SIGNIFICANCE STATEMENT Bilingualism is an inherently social phenomenon, interactional context fully determining language

  13. The genetic network controlling plasma cell differentiation.

    Science.gov (United States)

    Nutt, Stephen L; Taubenheim, Nadine; Hasbold, Jhagvaral; Corcoran, Lynn M; Hodgkin, Philip D

    2011-10-01

    Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. 2011 Elsevier Ltd. All rights reserved.

  14. Robust Stability and H∞ Control of Uncertain Piecewise Linear Switched Systems with Filippov Solutions

    DEFF Research Database (Denmark)

    Ahmadi, Mohamadreza; Mojallali, Hamed; Wisniewski, Rafal

    2012-01-01

    This paper addresses the robust stability and control problem of uncertain piecewise linear switched systems where, instead of the conventional Carathe ́odory solutions, we allow for Filippov solutions. In other words, in contrast to the previous studies, solutions with infinite switching in fini...... algorithm is proposed to surmount the aforementioned matrix inequality conditions....... time along the facets and on faces of arbitrary dimensions are also taken into account. Firstly, based on earlier results, the stability problem of piecewise linear systems with Filippov solutions is translated into a number of linear matrix inequality feasibility tests. Subsequently, a set of matrix...... inequalities are brought forward, which determines the asymptotic stability of the Filippov solutions of a given uncertain piecewise linear system. Afterwards, bilinear matrix inequality conditions for synthesizing a robust controller with a guaranteed H∞ per- formance are formulated. Finally, a V-K iteration...

  15. Visual Attention Allocation Between Robotic Arm and Environmental Process Control: Validating the STOM Task Switching Model

    Science.gov (United States)

    Wickens, Christopher; Vieanne, Alex; Clegg, Benjamin; Sebok, Angelia; Janes, Jessica

    2015-01-01

    Fifty six participants time shared a spacecraft environmental control system task with a realistic space robotic arm control task in either a manual or highly automated version. The former could suffer minor failures, whose diagnosis and repair were supported by a decision aid. At the end of the experiment this decision aid unexpectedly failed. We measured visual attention allocation and switching between the two tasks, in each of the eight conditions formed by manual-automated arm X expected-unexpected failure X monitoring- failure management. We also used our multi-attribute task switching model, based on task attributes of priority interest, difficulty and salience that were self-rated by participants, to predict allocation. An un-weighted model based on attributes of difficulty, interest and salience accounted for 96 percent of the task allocation variance across the 8 different conditions. Task difficulty served as an attractor, with more difficult tasks increasing the tendency to stay on task.

  16. Mathematical Modeling and Digital Control of A Hybrid Switching Buck Converter

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Abbasi

    2017-06-01

    Full Text Available The aim of this paper is to describe mathematical modeling and digital control of a hybrid switching buck converter. This converter belongs to a class of so called hybrid switching converters and contains a resonant capacitor, resonant inductor and a diode in addition to original buck converter components. The dc gain of this converter is shown to be independent of resonant branch parameters. Moreover the dc conversion ratio is derived for both ideal case and including main inductor dc resistance. Small signal model of the converter is derived and is shown to be similar to conventional buck converter. Simulation results in SIMPLIS Software as well as experimental results of digital control using an 8 bit STM microcontroller are presented. The potential advantages and applications of this converter are discussed.

  17. A Reduced Switch Voltage Stress Class E Power Amplifier Using Harmonic Control Network

    OpenAIRE

    Ali Reza Zirak; Sobhan Roshani

    2016-01-01

    In this paper, a harmonic control network (HCN) is presented to reduce the voltage stress (maximum MOSFET voltage) of the class E power amplifier (PA). Effects of the HCN on the amplifier specifications are investigated. The results show that the proposed HCN affects several specifications of the amplifier, such as drain voltage, switch current, output power capability (Cp factor), and drain impedance. The output power capability of the presented amplifier is also improved, compared with the ...

  18. Design of practical sliding-mode controllers with constant switching frequency for power converters

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Lopez, Eva M. [School of Computer Science, Centre for Interdisciplinary Computational and Dynamical Analysis, The University of Manchester, Oxford Road, Kilburn Building, Manchester M13 9PL (United Kingdom); Cortes, Domingo [Seccion de Mecatronica, Departamento de Ingenieria Electrica, CINVESTAV-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360 Mexico City (Mexico); Castro, Christian [Centro de Investigacion en Computacion del IPN, Av. Jose Othon de Mendizabal s/n, Col. Nueva Industrial Vallejo, 07738 Mexico City (Mexico)

    2009-05-15

    A novel experimentally motivated method in order to design a family of easy-to-implement sliding-mode controllers for power converters is proposed. Two main results are presented. First, the relation between sliding-mode control and average control is reinterpreted so that the limitation of the switching frequency for the closed-loop system is achieved in a more direct way than other methods so far reported in the literature. For this purpose, a class of sliding surfaces which makes the associated equivalent control be the system average control is proposed. Second, the achievement of a constant switching frequency in the controlled system is assured without requiring the sliding-mode-based controller to be modified, unlike most previous works. As a result, the proposed sliding surfaces-type can be directly implemented via a pulse-width modulator. The control methodology is implemented for the voltage control in a boost converter prototype in which the load is considered unknown. Experimental results confirm high performance and robustness under parameters variation. Furthermore, the solution proposed is easy to implement and well-suited for other power converters. (author)

  19. ICC Experiment Performance Improvement through Advanced Feedback Controllers for High-Power Low-Cost Switching Power Amplifiers

    International Nuclear Information System (INIS)

    Nelson, Brian A.

    2006-01-01

    Limited resources force most smaller fusion energy research experiments to have little or no feedback control of their operational parameters, preventing achievement of their full operational potential. Recent breakthroughs in high-power switching technologies have greatly reduced feedback-controlled power supply costs, primarily those classified as switching power amplifiers. However, inexpensive and flexible controllers for these power supplies have not been developed. A uClinux-based micro-controller (Analog Devices Blackfin BF537) was identified as having the capabilities to form the base of a digital control system for switching power amplifiers. A control algorithm was created, and a Linux character device driver was written to realize the algorithm. The software and algorithm were successfully tested on a switching power amplifier and magnetic field coil using University of Washington (subcontractor) resources

  20. Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays.

    Science.gov (United States)

    Niu, Ben; Li, Lu

    2018-06-01

    This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.

  1. Controlling Depth of Cellular Quiescence by an Rb-E2F Network Switch

    Directory of Open Access Journals (Sweden)

    Jungeun Sarah Kwon

    2017-09-01

    Full Text Available Quiescence is a non-proliferative cellular state that is critical to tissue repair and regeneration. Although often described as the G0 phase, quiescence is not a single homogeneous state. As cells remain quiescent for longer durations, they move progressively deeper and display a reduced sensitivity to growth signals. Deep quiescent cells, unlike senescent cells, can still re-enter the cell cycle under physiological conditions. Mechanisms controlling quiescence depth are poorly understood, representing a currently underappreciated layer of complexity in growth control. Here, we show that the activation threshold of a Retinoblastoma (Rb-E2F network switch controls quiescence depth. Particularly, deeper quiescent cells feature a higher E2F-switching threshold and exhibit a delayed traverse through the restriction point (R-point. We further show that different components of the Rb-E2F network can be experimentally perturbed, following computer model predictions, to coarse- or fine-tune the E2F-switching threshold and drive cells into varying quiescence depths.

  2. A Digital Hysteresis Current Control for Half-Bridge Inverters with Constrained Switching Frequency

    Directory of Open Access Journals (Sweden)

    Triet Nguyen-Van

    2017-10-01

    Full Text Available This paper proposes a new robustly adaptive hysteresis current digital control algorithm for half-bridge inverters, which plays an important role in electric power, and in various applications in electronic systems. The proposed control algorithm is assumed to be implemented on a high-speed Field Programmable Gate Array (FPGA circuit, using measured data with high sampling frequency. The hysteresis current band is computed in each switching modulation period based on both the current error and the negative half switching period during the previous modulation period, in addition to the conventionally used voltages measured at computation instants. The proposed control algorithm is derived by solving the optimization problem—where the switching frequency is always constrained at below the desired constant frequency—which is not guaranteed by the conventional method. The optimization problem also keeps the output current stable around the reference, and minimizes power loss. Simulation results show good performances of the proposed algorithm compared with the conventional one.

  3. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact.

    Science.gov (United States)

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-12

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from 'electrochemical' to 'mechanical', which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  4. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact

    Science.gov (United States)

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-01

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from ‘electrochemical’ to ‘mechanical’, which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  5. Guaranteed Cost Finite-Time Control of Fractional-Order Positive Switched Systems

    Directory of Open Access Journals (Sweden)

    Leipo Liu

    2017-01-01

    Full Text Available The problem of guaranteed cost finite-time control of fractional-order positive switched systems (FOPSS is considered in this paper. Firstly, a new cost function is defined. Then, by constructing linear copositive Lyapunov functions and using the average dwell time (ADT approach, a state feedback controller and a static output feedback controller are constructed, respectively, and sufficient conditions are derived to guarantee that the corresponding closed-loop systems are guaranteed cost finite-time stable (GCFTS. Such conditions can be easily solved by linear programming. Finally, two examples are given to illustrate the effectiveness of the proposed method.

  6. How to turn a genetic circuit into a synthetic tunable oscillator, or a bistable switch.

    Directory of Open Access Journals (Sweden)

    Lucia Marucci

    2009-12-01

    Full Text Available Systems and Synthetic Biology use computational models of biological pathways in order to study in silico the behaviour of biological pathways. Mathematical models allow to verify biological hypotheses and to predict new possible dynamical behaviours. Here we use the tools of non-linear analysis to understand how to change the dynamics of the genes composing a novel synthetic network recently constructed in the yeast Saccharomyces cerevisiae for In-vivo Reverse-engineering and Modelling Assessment (IRMA. Guided by previous theoretical results that make the dynamics of a biological network depend on its topological properties, through the use of simulation and continuation techniques, we found that the network can be easily turned into a robust and tunable synthetic oscillator or a bistable switch. Our results provide guidelines to properly re-engineering in vivo the network in order to tune its dynamics.

  7. Adaptation of an ecdysone-based genetic switch for transgene expression in soybean seeds

    Czech Academy of Sciences Publication Activity Database

    Semenyuk, E.G.; Schmidt, M.A.; Beachy, R.N.; Moravec, Tomáš; Woodford-Thomas, T.

    2010-01-01

    Roč. 19, č. 6 (2010), s. 987-999 ISSN 0962-8819 Institutional research plan: CEZ:AV0Z50380511 Keywords : Inducible expression * Soybean * Seed-specific genes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.569, year: 2010

  8. Output Tracking Control of Switched Hybrid Systems: A Fliess Functional Expansion Approach

    Directory of Open Access Journals (Sweden)

    Fenghua He

    2013-01-01

    Full Text Available The output tracking problem is investigated for a nonlinear affine system with multiple modes of continuous control inputs. We convert the family of nonlinear affine systems under consideration into a switched hybrid system by introducing a multiple-valued logic variable. The Fliess functional expansion is adopted to express the input and output relationship of the switched hybrid system. The optimal switching control is determined for a multiple-step output tracking performance index. The proposed approach is applied to a multitarget tracking problem for a flight vehicle aiming for one real target with several decoys flying around it in the terminal guidance course. These decoys appear as apparent targets and have to be distinguished with the approaching of the flight vehicle. The guidance problem of one flight vehicle versus multiple apparent targets should be considered if no large miss distance might be caused due to the limitation of the flight vehicle maneuverability. The target orientation at each time interval is determined. Simulation results show the effectiveness of the proposed method.

  9. Activator Protein-1: redox switch controlling structure and DNA-binding.

    Science.gov (United States)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Fault Detection for Wireless Networked Control Systems with Stochastic Switching Topology and Time Delay

    Directory of Open Access Journals (Sweden)

    Pengfei Guo

    2014-01-01

    Full Text Available This paper deals with the fault detection problem for a class of discrete-time wireless networked control systems described by switching topology with uncertainties and disturbances. System states of each individual node are affected not only by its own measurements, but also by other nodes’ measurements according to a certain network topology. As the topology of system can be switched in a stochastic way, we aim to design H∞ fault detection observers for nodes in the dynamic time-delay systems. By using the Lyapunov method and stochastic analysis techniques, sufficient conditions are acquired to guarantee the existence of the filters satisfying the H∞ performance constraint, and observer gains are derived by solving linear matrix inequalities. Finally, an illustrated example is provided to verify the effectiveness of the theoretical results.

  11. Guaranteed cost control of mobile sensor networks with Markov switching topologies.

    Science.gov (United States)

    Zhao, Yuan; Guo, Ge; Ding, Lei

    2015-09-01

    This paper investigates the consensus seeking problem of mobile sensor networks (MSNs) with random switching topologies. The network communication topologies are composed of a set of directed graphs (or digraph) with a spanning tree. The switching of topologies is governed by a Markov chain. The consensus seeking problem is addressed by introducing a global topology-aware linear quadratic (LQ) cost as the performance measure. By state transformation, the consensus problem is transformed to the stabilization of a Markovian jump system with guaranteed cost. A sufficient condition for global mean-square consensus is derived in the context of stochastic stability analysis of Markovian jump systems. A computational algorithm is given to synchronously calculate both the sub-optimal consensus controller gains and the sub-minimum upper bound of the cost. The effectiveness of the proposed design method is illustrated by three numerical examples. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. a Method for Preview Vibration Control of Systems Having Forcing Inputs and Rapidly-Switched Dampers

    Science.gov (United States)

    ElBeheiry, E. M.

    1998-07-01

    In a variety of applications, especially in large scale dynamic systems, the mechanization of different vibration control elements in different locations would be decided by limitations placed on the modal vibration of the system and the inherent dynamic coupling between its modes. Also, the quality of vibration control to the economy of producing the whole system would be another trade-off leading to a mix of passive, active and semi-active vibration control elements in one system. This termactiveis limited to externally powered vibration control inputs and the termsemi-activeis limited to rapidly switched dampers. In this article, an optimal preview control method is developed for application to dynamic systems having active and semi-active vibration control elements mechanized at different locations in one system. The system is then a piecewise (bilinear) controller in which two independent sets of control inputs appear additively and multiplicatively. Calculus of variations along with the Hamiltonian approach are employed for the derivation of this method. In essence, it requires the active elements to be ideal force generators and the switched dampers to have the property of on-line variation of the damping characteristics to pre-determined limits. As the dampers switch during operation the whole system's structure differs, and then values of the active forcing inputs are adapted to match these rapid changes. Strictly speaking, each rapidly switched damper has pre-known upper and lower damping levels and it can take on any in-between value. This in-between value is to be determined by the method as long as the damper tracks a pre-known fully active control demand. In every damping state of each semi-active damper the method provides the optimal matching values of the active forcing inputs. The method is shown to have the feature of solving simple standard matrix equations to obtain closed form solutions. A comprehensive 9-DOF tractor semi-trailer model is used

  13. Time Sharing Between Robotics and Process Control: Validating a Model of Attention Switching.

    Science.gov (United States)

    Wickens, Christopher Dow; Gutzwiller, Robert S; Vieane, Alex; Clegg, Benjamin A; Sebok, Angelia; Janes, Jess

    2016-03-01

    The aim of this study was to validate the strategic task overload management (STOM) model that predicts task switching when concurrence is impossible. The STOM model predicts that in overload, tasks will be switched to, to the extent that they are attractive on task attributes of high priority, interest, and salience and low difficulty. But more-difficult tasks are less likely to be switched away from once they are being performed. In Experiment 1, participants performed four tasks of the Multi-Attribute Task Battery and provided task-switching data to inform the role of difficulty and priority. In Experiment 2, participants concurrently performed an environmental control task and a robotic arm simulation. Workload was varied by automation of arm movement and both the phases of environmental control and existence of decision support for fault management. Attention to the two tasks was measured using a head tracker. Experiment 1 revealed the lack of influence of task priority and confirmed the differing roles of task difficulty. In Experiment 2, the percentage attention allocation across the eight conditions was predicted by the STOM model when participants rated the four attributes. Model predictions were compared against empirical data and accounted for over 95% of variance in task allocation. More-difficult tasks were performed longer than easier tasks. Task priority does not influence allocation. The multiattribute decision model provided a good fit to the data. The STOM model is useful for predicting cognitive tunneling given that human-in-the-loop simulation is time-consuming and expensive. © 2016, Human Factors and Ergonomics Society.

  14. Switches of stimulus tagging frequencies interact with the conflict-driven control of selective attention, but not with inhibitory control.

    Science.gov (United States)

    Scherbaum, Stefan; Frisch, Simon; Dshemuchadse, Maja

    2016-01-01

    Selective attention and its adaptation by cognitive control processes are considered a core aspect of goal-directed action. Often, selective attention is studied behaviorally with conflict tasks, but an emerging neuroscientific method for the study of selective attention is EEG frequency tagging. It applies different flicker frequencies to the stimuli of interest eliciting steady state visual evoked potentials (SSVEPs) in the EEG. These oscillating SSVEPs in the EEG allow tracing the allocation of selective attention to each tagged stimulus continuously over time. The present behavioral investigation points to an important caveat of using tagging frequencies: The flicker of stimuli not only produces a useful neuroscientific marker of selective attention, but interacts with the adaptation of selective attention itself. Our results indicate that RT patterns of adaptation after response conflict (so-called conflict adaptation) are reversed when flicker frequencies switch at once. However, this effect of frequency switches is specific to the adaptation by conflict-driven control processes, since we find no effects of frequency switches on inhibitory control processes after no-go trials. We discuss the theoretical implications of this finding and propose precautions that should be taken into account when studying conflict adaptation using frequency tagging in order to control for the described confounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets

    Science.gov (United States)

    Folven, E.; Linder, J.; Gomonay, O. V.; Scholl, A.; Doran, A.; Young, A. T.; Retterer, S. T.; Malik, V. K.; Tybell, T.; Takamura, Y.; Grepstad, J. K.

    2015-09-01

    Using soft x-ray spectromicroscopy, we investigate the magnetic domain structure in embedded nanomagnets defined in L a0.7S r0.3Mn O3 thin films and LaFe O3/L a0.7S r0.3Mn O3 bilayers. We find that shape-controlled antiferromagnetic domain states give rise to a significant reduction of the switching field of the rectangular nanomagnets. This is discussed within the framework of competition between an intrinsic spin-flop coupling and shape anisotropy. The data demonstrates that shape effects in antiferromagnets may be used to control the magnetic properties in nanomagnets.

  16. Dual-mode switching of a liquid crystal panel for viewing angle control

    Science.gov (United States)

    Baek, Jong-In; Kwon, Yong-Hoan; Kim, Jae Chang; Yoon, Tae-Hoon

    2007-03-01

    The authors propose a method to control the viewing angle of a liquid crystal (LC) panel using dual-mode switching. To realize both wide viewing angle (WVA) characteristics and narrow viewing angle (NVA) characteristics with a single LC panel, the authors use two different dark states. The LC layer can be aligned homogeneously parallel to the transmission axis of the bottom polarizer for WVA dark state operation, while it can be aligned vertically for NVA dark state operation. The authors demonstrated that viewing angle control can be achieved with a single panel without any loss of contrast at the front.

  17. Energy-Based Adaptive Sliding Mode Speed Control for Switched Reluctance Motor Drive

    Directory of Open Access Journals (Sweden)

    M. M. Namazi Isfahani

    2012-03-01

    Full Text Available Torque ripple minimization of switched reluctance motor drives is a major subject based on these drives’ extensive use in the industry. In this paper, by using a well-known cascaded torque control structure and taking the machine physical structure characteristics into account, the proposed energy-based (passivity-based adaptive sliding algorithm derived from the view point of energy dissipation, control stability and algorithm robustness. First, a nonlinear dynamic model is developed and decomposed into separate slow and fast passive subsystems which are interconnected by negative feedbacks. Then, an outer loop speed control is employed by adaptive sliding controller to determine the appropriate torque command. Finally, to reduce torque ripple in switched reluctance motor a high-performance passivity-based current controller is proposed. It can overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. The performance of the proposed controller algorithm has been demonstrated in simulation, and experimental using a 4KW, four-phase, 8/6 pole SRM DSP-based drive system.

  18. Speed control of switched reluctance motors taking into account mutual inductances and magnetic saturation effects

    Energy Technology Data Exchange (ETDEWEB)

    Alrifai, M., E-mail: alrifm@eng.kuniv.edu.k [Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Zribi, M.; Rayan, M. [Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Krishnan, R. [Center for Rapid Transit Systems, Electrical and Computer Engineering Department, Virginia Tech University, 461 Durham Hall, Blacksburg, VA 24061-011 (United States)

    2010-06-15

    This paper deals with the speed control of switched reluctance motor (SRM) drives taking into account the effects of the mutual inductances between two adjacent phases and the effects of the magnetic saturation of the core. To overcome the problems commonly associated with single-phase excitation, a nonlinear SRM model, which is suitable for two-phase excitation and which takes into account the effects of mutual inductances between two adjacent phases and the magnetic saturation effects, is considered in the design of the proposed controllers. A feedback linearization control scheme and a sliding mode control scheme are designed for this motor drive. The proposed controllers guarantee the convergence of the phase currents and the rotor speed of the motor to their desired values. Simulation results indicate that the proposed controllers work well and that they are robust to changes in the parameters of the system and to changes in the load torque.

  19. Nonlinear Speed Control of Switched Reluctance Motor Drives Taking into Account Mutual Inductance

    Directory of Open Access Journals (Sweden)

    M. Rayan

    2008-03-01

    Full Text Available A speed control algorithm is proposed for variable speed switched reluctance motor (SRM drives taking into account the effects of mutual inductances. The control scheme adopts two-phase excitation; exciting two adjacent phases can overcome the problems associated with single-phase excitation such as large torque ripple, increased acoustic noise, and rotor shaft fatigues. The effects of mutual coupling between two adjacent phases and their contribution to the generated electromagnetic torque are considered in the design of the proposed control scheme for the motor. The proposed controller guarantees the convergence of the currents and the rotor speed of the motor to their desired values. Simulation results are given to illustrate the developed theory; the simulation studies show that the proposed controller works well. Moreover, the simulation results indicate that the proposed controller is robust to changes in the parameters of the motor and to changes in the load torque.

  20. Speed control of switched reluctance motors taking into account mutual inductances and magnetic saturation effects

    International Nuclear Information System (INIS)

    Alrifai, M.; Zribi, M.; Rayan, M.; Krishnan, R.

    2010-01-01

    This paper deals with the speed control of switched reluctance motor (SRM) drives taking into account the effects of the mutual inductances between two adjacent phases and the effects of the magnetic saturation of the core. To overcome the problems commonly associated with single-phase excitation, a nonlinear SRM model, which is suitable for two-phase excitation and which takes into account the effects of mutual inductances between two adjacent phases and the magnetic saturation effects, is considered in the design of the proposed controllers. A feedback linearization control scheme and a sliding mode control scheme are designed for this motor drive. The proposed controllers guarantee the convergence of the phase currents and the rotor speed of the motor to their desired values. Simulation results indicate that the proposed controllers work well and that they are robust to changes in the parameters of the system and to changes in the load torque.

  1. Multiobjective Genetic Algorithm applied to dengue control.

    Science.gov (United States)

    Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F

    2014-12-01

    Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. High performance SDN enabled flat data center network architecture based on scalable and flow-controlled optical switching system

    NARCIS (Netherlands)

    Calabretta, N.; Miao, W.; Dorren, H.J.S.

    2015-01-01

    We demonstrate a reconfigurable virtual datacenter network by utilizing statistical multiplexing offered by scalable and flow-controlled optical switching system. Results show QoS guarantees by the priority assignment and load balancing for applications in virtual networks.

  3. Analysis of magnetic field and hysteresis of reed switches for control rod position indicator of SMART CEDM

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, J. H.; Heo, H.; Kim, J. I.; Jang, M. H.

    2002-01-01

    The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. A survey on the RSPT(Reed Switch Position Transmitter) type control rod position indication system and its actual implementation in the exiting nuclear power plants in Korea was performed first. The control rod position indicator having the high performance for SMART was developed on the basis of RSPT technology identified through the survey. The hysteresis of reed switches is one of the important factors in a repeat accuracy of control rod position indication. In this study, the hysteresis of reed switches is introduced and the design method using the magnetic analysis of reed switches in presented

  4. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae.

    Science.gov (United States)

    Sandoval, Celeste M; Ayson, Marites; Moss, Nathan; Lieu, Bonny; Jackson, Peter; Gaucher, Sara P; Horning, Tizita; Dahl, Robert H; Denery, Judith R; Abbott, Derek A; Meadows, Adam L

    2014-09-01

    We observed that removing pantothenate (vitamin B5), a precursor to co-enzyme A, from the growth medium of Saccharomyces cerevisiae engineered to produce β-farnesene reduced the strain׳s farnesene flux by 70%, but increased its viability, growth rate and biomass yield. Conversely, the growth rate and biomass yield of wild-type yeast were reduced. Cultivation in media lacking pantothenate eliminates the growth advantage of low-producing mutants, leading to improved production upon scale-up to lab-scale bioreactor testing. An omics investigation revealed that when exogenous pantothenate levels are limited, acyl-CoA metabolites decrease, β-oxidation decreases from unexpectedly high levels in the farnesene producer, and sterol and fatty acid synthesis likely limits the growth rate of the wild-type strain. Thus pantothenate supplementation can be utilized as a "metabolic switch" for tuning the synthesis rates of molecules relying on CoA intermediates and aid the economic scale-up of strains producing acyl-CoA derived molecules to manufacturing facilities. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. SHOOT2.0: An indirect grid shooting package for optimal control problems, with switching handling and embedded continuation

    OpenAIRE

    Martinon , Pierre; Gergaud , Joseph

    2010-01-01

    The SHOOT2.0 package implements an indirect shooting method for optimal control problems. It is specifically designed to handle control discontinuities, with an automatic switching detection that requires no assumptions concerning the number of switchings. Special care is also devoted to the computation of the Jacobian matrix of the shooting function, using the variational system instead of classical finite differences. The package also features an embedded continuation method and an automati...

  6. Synchronization Algorithm for SDN-controlled All-Optical TDM Switching in a Random Length Ring Network

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco

    2016-01-01

    We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes.......We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes....

  7. Digital switched hydraulics

    Science.gov (United States)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  8. The Minimum Requirements of Language Control: Evidence from Sequential Predictability Effects in Language Switching

    Science.gov (United States)

    Declerck, Mathieu; Koch, Iring; Philipp, Andrea M.

    2015-01-01

    The current study systematically examined the influence of sequential predictability of languages and concepts on language switching. To this end, 2 language switching paradigms were combined. To measure language switching with a random sequence of languages and/or concepts, we used a language switching paradigm that implements visual cues and…

  9. Distributed reconfigurable control strategies for switching topology networked multi-agent systems.

    Science.gov (United States)

    Gallehdari, Z; Meskin, N; Khorasani, K

    2017-11-01

    In this paper, distributed control reconfiguration strategies for directed switching topology networked multi-agent systems are developed and investigated. The proposed control strategies are invoked when the agents are subject to actuator faults and while the available fault detection and isolation (FDI) modules provide inaccurate and unreliable information on the estimation of faults severities. Our proposed strategies will ensure that the agents reach a consensus while an upper bound on the team performance index is ensured and satisfied. Three types of actuator faults are considered, namely: the loss of effectiveness fault, the outage fault, and the stuck fault. By utilizing quadratic and convex hull (composite) Lyapunov functions, two cooperative and distributed recovery strategies are designed and provided to select the gains of the proposed control laws such that the team objectives are guaranteed. Our proposed reconfigurable control laws are applied to a team of autonomous underwater vehicles (AUVs) under directed switching topologies and subject to simultaneous actuator faults. Simulation results demonstrate the effectiveness of our proposed distributed reconfiguration control laws in compensating for the effects of sudden actuator faults and subject to fault diagnosis module uncertainties and unreliabilities. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Electric Drive Discrete Control System with Automatic Switching-On Reserve for Autonomous Settlement

    Directory of Open Access Journals (Sweden)

    Tsytovich L.I.

    2015-08-01

    Full Text Available The paper aims at developing of control the water supply system’s electric drives for autonomous settlement. The system provides automatic switching to a reserve control channel at refusal of any of the functional elements of the working regulation channel. Usually, such systems have a test signal generator and analyzer to system response to their impact. This result to an increase in the structural redundancy of the system, increase its cost and increase the requirements for the staff qualification. A specific feature of the system is its ability to self-diagnosis of catastrophic malfunctions of scheme’s components and an automatic switching-on the reserve control channels, without applying any test signals to the whole complex of electrical equipment. Multi-zone integrating regulator with frequency-pulse-width modulation realizes this technical solution. Control system structure and signals timing diagrams are presented. The construction principle of adaptive interval-code synchronization device with improved noise stability to control the voltage regulators serving for smooth start-up of asynchronous motors of water pumps is considered as well. Such solution allowing increase noise stability and reliability work of the system in conditions of limited power electrical networks, which is characteristic for the autonomous settlements. The article may be of interest to specialists in the field of power electronics and information electronics, electric drives and process automation.

  11. Soft switching resonant converter with duty-cycle control in DC micro-grid system

    Science.gov (United States)

    Lin, Bor-Ren

    2018-01-01

    Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.

  12. A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae.

    Science.gov (United States)

    Atack, John M; Srikhanta, Yogitha N; Fox, Kate L; Jurcisek, Joseph A; Brockman, Kenneth L; Clark, Tyson A; Boitano, Matthew; Power, Peter M; Jen, Freda E-C; McEwan, Alastair G; Grimmond, Sean M; Smith, Arnold L; Barenkamp, Stephen J; Korlach, Jonas; Bakaletz, Lauren O; Jennings, Michael P

    2015-07-28

    Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear selection for ON switching of modA2 in the middle ear. Our results indicate that a biphasic epigenetic switch can control bacterial virulence, immunoevasion and niche adaptation in an animal model system.

  13. Phase-controlled all-optical switching based on coherent population oscillation in a two-level system

    International Nuclear Information System (INIS)

    Liao, Ping; Yu, Song; Luo, Bin; Shen, Jing; Gu, Wanyi; Guo, Hong

    2011-01-01

    We theoretically propose a scheme of phase-controlled all-optical switching due to the effect of degenerate four-wave mixing (FWM) and coherent population oscillation (CPO) in a two-level system driven by a strong coupling field and two weak symmetrically detuned fields. The results show that the phase of the FWM field can be utilized to switch between constructive and destructive interference, which can lead to the transmission or attenuation of the probe field and thus switch the field on or off. We also find the intensity of the coupling field and the propagation distance have great influence on the performance of the switching. In our scheme, due to the quick response in semiconductor systems, a fast all-optical switching can be realized at low light level. -- Highlights: ► We study a new all-optical switching based on coherent population oscillation. ► The phase of the FWM field can be utilized to switch the probe field on or off. ► A fast and low-light-level switching can be realized in semiconductors.

  14. The Stabilization of Position and Attitude for a Blimp by a Switching Controller

    Directory of Open Access Journals (Sweden)

    Yoshikazu Nakamura

    2017-03-01

    Full Text Available In recent years, the development of unmanned air vehicles aiming at vegetation observation, information gathering of a disaster site, etc. is increasing. Among them, airships are attractive because of good energy efficiency and it is possible to be employed for a long time cruise. Especially, small airships called “blimp” have been developing to make the management easy. Although most of existing airships employ control methods by combining propellers and rudders, such a control approach has the problem that the maneuverability is deteriorated if their traveling speed is slow because the airflow received by rudders is weakened. In this research, “X4-Blimp” is proposed as a blimp controlled by only four propellers without any rudders, and it is controlled by a switching controller.

  15. Aircraft Loss-of-Control Accident Prevention: Switching Control of the GTM Aircraft with Elevator Jam Failures

    Science.gov (United States)

    Chang, Bor-Chin; Kwatny, Harry G.; Belcastro, Christine; Belcastro, Celeste

    2008-01-01

    Switching control, servomechanism, and H2 control theory are used to provide a practical and easy-to-implement solution for the actuator jam problem. A jammed actuator not only causes a reduction of control authority, but also creates a persistent disturbance with uncertain amplitude. The longitudinal dynamics model of the NASA GTM UAV is employed to demonstrate that a single fixed reconfigured controller design based on the proposed approach is capable of accommodating an elevator jam failure with arbitrary jam position as long as the thrust control has enough control authority. This paper is a first step towards solving a more comprehensive in-flight loss-of-control accident prevention problem that involves multiple actuator failures, structure damages, unanticipated faults, and nonlinear upset regime recovery, etc.

  16. Controllability of multi-agent systems with time-delay in state and switching topology

    Science.gov (United States)

    Ji, Zhijian; Wang, Zidong; Lin, Hai; Wang, Zhen

    2010-02-01

    In this article, the controllability issue is addressed for an interconnected system of multiple agents. The network associated with the system is of the leader-follower structure with some agents taking leader role and others being followers interconnected via the neighbour-based rule. Sufficient conditions are derived for the controllability of multi-agent systems with time-delay in state, as well as a graph-based uncontrollability topology structure is revealed. Both single and double integrator dynamics are considered. For switching topology, two algebraic necessary and sufficient conditions are derived for the controllability of multi-agent systems. Several examples are also presented to illustrate how to control the system to shape into the desired configurations.

  17. 5 kW bidirectional grid-connected drive using silicon-carbide switches: Control

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Lazar, Radu; Pedersen, Jacob Lykke

    2017-01-01

    his paper presents a controller design for a fully silicon-carbide (SiC) based bidirectional three-phase grid-connected PWM drive. For drive applications, controller must be robust and fast to be able to provide power flow in both directions. In this paper, proportional resonance (PR) current con...... magnet motor. Different tests will be conducted to evaluate the performance of the controllers in both generative and regenerative mode. It is shown that the controller can provide a good dynamic response to load changes for both direction of power flow.......-phase rectifier with switching frequency of 45 kHz will be tested. The test is done by connecting it to a grid simulator and the load is a resistive load. In the second test the rectifier will be connected to the grid via an auto-transformer and load is a 7.5kW SiC based drive which is connected to a permanent...

  18. Gate-controlled switching between persistent and inverse persistent spin helix states

    International Nuclear Information System (INIS)

    Yoshizumi, K.; Sasaki, A.; Kohda, M.; Nitta, J.

    2016-01-01

    We demonstrate gate-controlled switching between persistent spin helix (PSH) state and inverse PSH state, which are detected by quantum interference effect on magneto-conductance. These special symmetric spin states showing weak localization effect give rise to a long spin coherence when the strength of Rashba spin-orbit interaction (SOI) is close to that of Dresselhaus SOI. Furthermore, in the middle of two persistent spin helix states, where the Rashba SOI can be negligible, the bulk Dresselhaus SOI parameter in a modulation doped InGaAs/InAlAs quantum well is determined.

  19. Gate-controlled switching between persistent and inverse persistent spin helix states

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, K.; Sasaki, A.; Kohda, M.; Nitta, J. [Department of Materials Science, Tohoku University, Sendai 980-8579 (Japan)

    2016-03-28

    We demonstrate gate-controlled switching between persistent spin helix (PSH) state and inverse PSH state, which are detected by quantum interference effect on magneto-conductance. These special symmetric spin states showing weak localization effect give rise to a long spin coherence when the strength of Rashba spin-orbit interaction (SOI) is close to that of Dresselhaus SOI. Furthermore, in the middle of two persistent spin helix states, where the Rashba SOI can be negligible, the bulk Dresselhaus SOI parameter in a modulation doped InGaAs/InAlAs quantum well is determined.

  20. Voltage-Controlled Square/Triangular Wave Generator with Current Conveyors and Switching Diodes

    Directory of Open Access Journals (Sweden)

    Martin Janecek

    2012-12-01

    Full Text Available A novel relaxation oscillator based on integrating the diode-switched currents and Schmitt trigger is presented. It is derived from a known circuit with operational amplifiers where these active elements were replaced by current conveyors. The circuit employs only grounded resistances and capacitance and is suitable for high frequency square and triangular signal generation. Its frequency can be linearly and accurately controlled by voltage that is applied to a high-impedance input. Computer simulation with a model of a manufactured conveyor prototype verifies theoretic assumptions.

  1. Guaranteed Cost Finite-Time Control of Discrete-Time Positive Impulsive Switched Systems

    Directory of Open Access Journals (Sweden)

    Leipo Liu

    2018-01-01

    Full Text Available This paper considers the guaranteed cost finite-time boundedness of discrete-time positive impulsive switched systems. Firstly, the definition of guaranteed cost finite-time boundedness is introduced. By using the multiple linear copositive Lyapunov function (MLCLF and average dwell time (ADT approach, a state feedback controller is designed and sufficient conditions are obtained to guarantee that the corresponding closed-loop system is guaranteed cost finite-time boundedness (GCFTB. Such conditions can be solved by linear programming. Finally, a numerical example is provided to show the effectiveness of the proposed method.

  2. A Nanostructured Composites Thermal Switch Controls Internal and External Short Circuit in Lithium Ion Batteries

    Science.gov (United States)

    McDonald, Robert C.; VanBlarcom, Shelly L.; Kwasnik, Katherine E.

    2013-01-01

    A document discusses a thin layer of composite material, made from nano scale particles of nickel and Teflon, placed within a battery cell as a layer within the anode and/or the cathode. There it conducts electrons at room temperature, then switches to an insulator at an elevated temperature to prevent thermal runaway caused by internal short circuits. The material layer controls excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect

  3. Fluid sensitive nanoscale switching with quantum levitation controlled by $\\alpha$-Sn/$\\beta$-Sn phase transition

    OpenAIRE

    Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas

    2018-01-01

    We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α−Sn to metallic β−Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α−Sn and β−Sn, giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening l...

  4. DamX Controls Reversible Cell Morphology Switching in Uropathogenic Escherichia coli

    DEFF Research Database (Denmark)

    Khandige, Surabhi; Antoinette Asferg, Cecilie; Rasmussen, Karina Juhl

    2016-01-01

    undertaking targeted investigations that are challenging to perform in animal infection models. IMPORTANCE: Urinary tract infections (UTIs) are most often caused by uropathogenic Escherichia coli (UPEC) and account for a considerable health care burden. UPEC exhibits a dynamic lifestyle in the course....... In aiming to uncover genes underlying the phenomenon of UPEC morphotype switching, this study identifies damX, a cell division gene, as a mediator of reversible filamentation during UTI. DamX-mediated filamentation represents an additional pathway for bacterial cell shape control, an alternative to Sul......A-mediated FtsZ sequestration during E. coli uropathogenesis, and hence represents a potential target for combating UTI....

  5. Synchronising chaotic Chua's circuit using switching feedback control based on piecewise quadratic Lyapunov functions

    International Nuclear Information System (INIS)

    Hong-Bin, Zhang; Jian-Wei, Xia; Yong-Bin, Yu; Chuang-Yin, Dang

    2010-01-01

    This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attained based on piecewise quadratic Lyapunov functions. First, we obtain the piecewise linear differential inclusions (pwLDIs) model of synchronisation error dynamics, then we design a switching (piecewise-linear) feedback control law to stabilise it based on the piecewise quadratic Laypunov functions. Then we give some numerical simulations to demonstrate the effectiveness of our theoretical results

  6. Genetic control of biennial bearing in apple

    Science.gov (United States)

    Guitton, Baptiste; Kelner, Jean-Jacques; Velasco, Riccardo; Gardiner, Susan E.; Chagné, David; Costes, Evelyne

    2012-01-01

    Although flowering in mature fruit trees is recurrent, floral induction can be strongly inhibited by concurrent fruiting, leading to a pattern of irregular fruiting across consecutive years referred to as biennial bearing. The genetic determinants of biennial bearing in apple were investigated using the 114 flowering individuals from an F1 population of 122 genotypes, from a ‘Starkrimson’ (strong biennial bearer)בGranny Smith’ (regular bearer) cross. The number of inflorescences, and the number and the mass of harvested fruit were recorded over 6 years and used to calculate 26 variables and indices quantifying yield, precocity of production, and biennial bearing. Inflorescence traits exhibited the highest genotypic effect, and three quantitative trait loci (QTLs) on linkage group (LG) 4, LG8, and LG10 explained 50% of the phenotypic variability for biennial bearing. Apple orthologues of flowering and hormone-related genes were retrieved from the whole-genome assembly of ‘Golden Delicious’ and their position was compared with QTLs. Four main genomic regions that contain floral integrator genes, meristem identity genes, and gibberellin oxidase genes co-located with QTLs. The results indicated that flowering genes are less likely to be responsible for biennial bearing than hormone-related genes. New hypotheses for the control of biennial bearing emerged from QTL and candidate gene co-locations and suggest the involvement of different physiological processes such as the regulation of flowering genes by hormones. The correlation between tree architecture and biennial bearing is also discussed. PMID:21963613

  7. Stabilization of Continuous-Time Random Switching Systems via a Fault-Tolerant Controller

    Directory of Open Access Journals (Sweden)

    Guoliang Wang

    2017-01-01

    Full Text Available This paper focuses on the stabilization problem of continuous-time random switching systems via exploiting a fault-tolerant controller, where the dwell time of each subsystem consists of a fixed part and random part. It is known from the traditional design methods that the computational complexity of LMIs related to the quantity of fault combination is very large; particularly system dimension or amount of subsystems is large. In order to reduce the number of the used fault combinations, new sufficient LMI conditions for designing such a controller are established by a robust approach, which are fault-free and could be solved directly. Moreover, the fault-tolerant stabilization realized by a mode-independent controller is considered and suitably applied to a practical case without mode information. Finally, a numerical example is used to demonstrate the effectiveness and superiority of the proposed methods.

  8. Analysis and design of a standardized control module for switching regulators

    Science.gov (United States)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.; Kolecki, J. C.

    1982-07-01

    Three basic switching regulators: buck, boost, and buck/boost, employing a multiloop standardized control module (SCM) were characterized by a common small signal block diagram. Employing the unified model, regulator performances such as stability, audiosusceptibility, output impedance, and step load transient are analyzed and key performance indexes are expressed in simple analytical forms. More importantly, the performance characteristics of all three regulators are shown to enjoy common properties due to the unique SCM control scheme which nullifies the positive zero and provides adaptive compensation to the moving poles of the boost and buck/boost converters. This allows a simple unified design procedure to be devised for selecting the key SCM control parameters for an arbitrarily given power stage configuration and parameter values, such that all regulator performance specifications can be met and optimized concurrently in a single design attempt.

  9. A biotin-triggered genetic switch in mammalian cells and mice.

    Science.gov (United States)

    Weber, Wilfried; Lienhart, Cédric; Baba, Marie Daoud-El; Fussenegger, Martin

    2009-03-01

    Adjustable and reversible transgene expression systems enabling precise control of metabolic pathways and tunable production of specific target proteins have been essential for conditional reprogramming of mammalian cells to achieve progress in basic and applied bioengineering disciplines. Most of the currently available transgene control modalities have been designed to be responsive to clinically licensed pharmacologically active drugs which were expected to prevail in future clinical trials yet raised concerns about side effects when administered long term at subclinical doses. We have chosen vitamin H, also known as biotin, to control target gene transcription in mammalian cells in a potentially side effect-free manner. BirA, the Escherichia coli repressor of the biotin biosynthesis operon, was fused to the Herpes simplex transactivation domain to generate a biotin-dependent transactivator(BIT), which, in the presence of biotin, binds and activates chimeric target promoters (P(BIT)) harboring BirA-specific operator sites 5' of a minimal promoter. Biotin-inducible transgene expression was functional in a variety of rodent, monkey and human cell lines, showed excellent adjustability and reversibility in transgenic Chinese hamster ovary cell lines, provided precise product gene control in standard bioreactor cultures and enabled dose-dependent vitamin H control of a human glycoprotein in mice. The combination of a side effect-free inducer, precise and reversible transcription tunability and broad functionality in different cell types as well as in entire animals represents a unique asset for the use of biotin-inducible transgene control in future gene therapy, tissue engineering and biopharmaceutical manufacturing scenarios.

  10. Overweight and Cognitive Performance: High Body Mass Index Is Associated with Impairment in Reactive Control during Task Switching

    Directory of Open Access Journals (Sweden)

    Laura Steenbergen

    2017-10-01

    Full Text Available The prevalence of weight problems is increasing worldwide. There is growing evidence that high body mass index (BMI is associated with frontal lobe dysfunction and deficits in cognitive control. The present study aims to clarify the association between weight status and the degree of impairment in cognitive flexibility, i.e., the ability to efficiently switch from one task to another, by disentangling the preparatory and residual domains of task switching. Twenty-six normal weight (BMI < 25, five males and twenty-six overweight (BMI ≥ 25, seven males university students performed a task-switching paradigm that provides a relatively well-established diagnostic measure of proactive vs. reactive control with regard to cognitive flexibility. Compared to individuals with a BMI lower than 25, overweight (i.e., ≥25 was associated with increased switching costs in the reactive switching condition (i.e., when preparation time is short, representing reduced cognitive flexibility in the preparatory domain. In addition, the overweight group reported significantly more depression and binge eating symptoms, although still indicating minimal depression. No between-group differences were found with regard to self-reported autism spectrum symptoms, impulsiveness, state- and trait anxiety, and cognitive reactivity to depression. The present findings are consistent with and extend previous literature showing that elevated BMI in young, otherwise healthy individuals is associated with significantly more switching costs due to inefficiency in the retrieval, implementation, and maintenance of task sets, indicating less efficient cognitive control functioning.

  11. Modeling and analysis of a robust thermal control system based on forced convection thermal switches

    Science.gov (United States)

    Williams, Andrew D.; Palo, Scott E.

    2006-05-01

    There is a critical need, not just in the Department of Defense (DOD) but the entire space industry, to reduce the development time and overall cost of satellite missions. To that end, the DOD is actively pursuing the capability to reduce the deployment time of a new system from years to weeks or even days. The goal is to provide the advantages space affords not just to the strategic planner but also to the battlefield commanders. One of the most challenging aspects of this problem is the satellite's thermal control system (TCS). Traditionally the TCS must be vigorously designed, analyzed, tested, and optimized from the ground up for every satellite mission. This "reinvention of the wheel" is costly and time intensive. The next generation satellite TCS must be modular and scalable in order to cover a wide range of applications, orbits, and mission requirements. To meet these requirements a robust thermal control system utilizing forced convection thermal switches was investigated. The problem was investigated in two separate stages. The first focused on the overall design of the bus. The second stage focused on the overarching bus architecture and the design impacts of employing a thermal switch based TCS design. For the hot case, the fan provided additional cooling to increase the heat transfer rate of the subsystem. During the cold case, the result was a significant reduction in survival heater power.

  12. Activator Protein-1: redox switch controlling structure and DNA-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.; Rudenko, Gabby (Texas-MED); (Icahn)

    2017-09-07

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.

  13. Effective switching frequency multiplier inverter

    Science.gov (United States)

    Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  14. Examining Age-Related Differences in Auditory Attention Control Using a Task-Switching Procedure

    OpenAIRE

    Vera Lawo; Iring Koch

    2014-01-01

    Objectives. Using a novel task-switching variant of dichotic selective listening, we examined age-related differences in the ability to intentionally switch auditory attention between 2 speakers defined by their sex.

  15. Sensory systems for a control rod position using reed switches for the integral reactor

    International Nuclear Information System (INIS)

    Yu, J. Y.; Choi, S.; Kim, J. H.; Lee, D. J.

    2007-01-01

    The system-integrated modular advanced reactor (SMART) currently under development at the Korea Atomic Energy Research Institute is being designed with a soluble boron free operation and the use of nuclear heating for the reactor start-up. These design features require a Control Element Drive Mechanism (CEDM) for the SMART to have a fine-step movement capability as well as a high reliability for a fine reactivity control. Also the reliability and accuracy of the information for the control rod position is very important to the reactor safety as well as the design of the core protection system. The position indicator is classified as a Class 1E component because the rod position signal of the position indicator is used in the safety related systems. Therefore it will be separated from the control systems to the extent that a failure of any single control system component of a channel and shall have sufficient independence, redundancy, and testability to perform its safety functions assuming a single failure. The position indicator is composed of a permanent magnet, reed switches and a voltage divider. Four independent position indicators around the upper pressure housing provide an indication of the position of a control rod comprising of a permanent magnet with a magnetic field concentrator which moves with the extension shaft connected to the control rod. The zigzag arranged reed switches are positioned along a line parallel to the path of the movement of the permanent magnet and it is activated selectively when the permanent magnet passes by. A voltage divider electrically connected to the reed switches provides a signal commensurate with the position of the control rod. The signal may then be transmitted to a position indicating device. In order to monitor the operating condition of the rotary step motor of CEDM, the angular position detector was installed at the top of the rotary step motor by means of connecting between the planetary gear and the rotating

  16. Adjusting for treatment switching in randomised controlled trials - A simulation study and a simplified two-stage method.

    Science.gov (United States)

    Latimer, Nicholas R; Abrams, K R; Lambert, P C; Crowther, M J; Wailoo, A J; Morden, J P; Akehurst, R L; Campbell, M J

    2017-04-01

    Estimates of the overall survival benefit of new cancer treatments are often confounded by treatment switching in randomised controlled trials (RCTs) - whereby patients randomised to the control group are permitted to switch onto the experimental treatment upon disease progression. In health technology assessment, estimates of the unconfounded overall survival benefit associated with the new treatment are needed. Several switching adjustment methods have been advocated in the literature, some of which have been used in health technology assessment. However, it is unclear which methods are likely to produce least bias in realistic RCT-based scenarios. We simulated RCTs in which switching, associated with patient prognosis, was permitted. Treatment effect size and time dependency, switching proportions and disease severity were varied across scenarios. We assessed the performance of alternative adjustment methods based upon bias, coverage and mean squared error, related to the estimation of true restricted mean survival in the absence of switching in the control group. We found that when the treatment effect was not time-dependent, rank preserving structural failure time models (RPSFTM) and iterative parameter estimation methods produced low levels of bias. However, in the presence of a time-dependent treatment effect, these methods produced higher levels of bias, similar to those produced by an inverse probability of censoring weights method. The inverse probability of censoring weights and structural nested models produced high levels of bias when switching proportions exceeded 85%. A simplified two-stage Weibull method produced low bias across all scenarios and provided the treatment switching mechanism is suitable, represents an appropriate adjustment method.

  17. Switching EKF technique for rotor and stator resistance estimation in speed sensorless control of IMs

    International Nuclear Information System (INIS)

    Barut, Murat; Bogosyan, Seta; Gokasan, Metin

    2007-01-01

    High performance speed sensorless control of induction motors (IMs) calls for estimation and control schemes that offer solutions to parameter uncertainties as well as to difficulties involved with accurate flux/velocity estimation at very low and zero speed. In this study, a new EKF based estimation algorithm is proposed for the solution of both problems and is applied in combination with speed sensorless direct vector control (DVC). The technique is based on the consecutive execution of two EKF algorithms, by switching from one algorithm to another at every n sampling periods. The number of sampling periods, n, is determined based on the desired system performance. The switching EKF approach, thus applied, provides an accurate estimation of an increased number of parameters than would be possible with a single EKF algorithm. The simultaneous and accurate estimation of rotor, R r ' and stator, R s resistances, both in the transient and steady state, is an important challenge in speed sensorless IM control and reported studies achieving satisfactory results are few, if any. With the proposed technique in this study, the sensorless estimation of R r ' and R s is achieved in transient and steady state and in both high and low speed operation while also estimating the unknown load torque, velocity, flux and current components. The performance demonstrated by the simulation results at zero speed, as well as at low and high speed operation is very promising when compared with individual EKF algorithms performing either R r ' or R s estimation or with the few other approaches taken in past studies, which require either signal injection and/or a change of algorithms based on the speed range. The results also motivate utilization of the technique for multiple parameter estimation in a variety of control methods

  18. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    Science.gov (United States)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  19. Genetic control of dairy cow reproduction

    OpenAIRE

    Moore, Stephen

    2015-01-01

    The decline in dairy cow reproductive performance compromised the productivity and profitability of dairy production worldwide. The phenotypic performance of lactating cows with similar proportions of Holstein genes, similar genetic merit for milk production traits, but either good (Fert+) or poor (Fert-) genetic merit for fertility traits managed in a standardised environment was compared. The objective of this study was to elucidate the physiological mechanisms contributing to suboptimal re...

  20. Robust Switched Predictive Braking Control for Rollover Prevention in Wheeled Vehicles

    Directory of Open Access Journals (Sweden)

    Martín Antonio Rodríguez Licea

    2014-01-01

    Full Text Available The aim of this paper is to propose a differential braking rollover mitigation strategy for wheeled vehicles. The strategy makes use of a polytopic (piecewise linear description of the vehicle and includes translational and rotational dynamics, as well as suspension effects. The braking controller is robust and the system states are predicted to estimate the rollover risk up to a given time horizon. In contrast to existing works, the switched predictive nature of the control allows it to be applied only when risk of rollover is foreseen, interfering a minimum with driver’s actions. The stability of the strategy is analyzed and its robustness is illustrated via numerical simulations using CarSim for a variety of vehicles.

  1. Pigeon interaction mode switch-based UAV distributed flocking control under obstacle environments.

    Science.gov (United States)

    Qiu, Huaxin; Duan, Haibin

    2017-11-01

    Unmanned aerial vehicle (UAV) flocking control is a serious and challenging problem due to local interactions and changing environments. In this paper, a pigeon flocking model and a pigeon coordinated obstacle-avoiding model are proposed based on a behavior that pigeon flocks will switch between hierarchical and egalitarian interaction mode at different flight phases. Owning to the similarity between bird flocks and UAV swarms in essence, a distributed flocking control algorithm based on the proposed pigeon flocking and coordinated obstacle-avoiding models is designed to coordinate a heterogeneous UAV swarm to fly though obstacle environments with few informed individuals. The comparative simulation results are elaborated to show the feasibility, validity and superiority of our proposed algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Redox-controlled memristive switching in the junctions employing Ti reactive electrodes

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2011-09-01

    Full Text Available We have proposed a kind of memristive device based on the junctions employing Ti as the reactive electrodes. The role of electrically-derived redox of Ti in such memristive switching is shown. The structural and chemical evidence of the electrically-derived oxidation is presented by TEM and XPS experiment, respectively. Due to the redox of the top electrode Ti and the consequent drift of oxygen vacancies, the device shows two distinct resistance states under a sweeping voltage loading. ON state is controlled by tunneling process, while OFF state is controlled by Schottky emission conductive mechanism. The failure behaviors of such memristive junctions are also discussed. In the light of the redox principle, we demonstrate that the devices could be recovered by loading a long electrical reduction treatment.

  3. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    Science.gov (United States)

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  4. Fault Tolerant Operation of ISOP Multicell Dc-Dc Converter Using Active Gate Controlled SiC Protection Switch

    Directory of Open Access Journals (Sweden)

    Yusuke Hayashi

    2016-01-01

    Full Text Available An active gate controlled semiconductor protection switch using SiC-MOSFET is proposed to achieve the fault tolerant operation of ISOP (Input Series and Output Parallel connected multicell dc-dc converter. The SiC-MOSFET with high temperature capability simplifies the configuration of the protection circuit, and its on-resistance control by the active gate controller realizes the smooth protection without the voltage and the current surges. The first laboratory prototype of the protection switch is fabricated by using a SiC-MOSFET with a high frequency buck chopper for the active gate controller. The effectiveness of the proposed protection switch is verified, taking the impact of the volume reduction into account.

  5. Control system of mutually coupled switched reluctance motor drive of mining machines in generator mode

    Science.gov (United States)

    Ivanov, A. S.; Kalanchin, I. Yu; Pugacheva, E. E.

    2017-09-01

    One of the first electric motors, based on the use of electromagnets, was a reluctance motor in the XIX century. Due to the complexities in the implementation of control system the development of switched reluctance electric machines was repeatedly initiated only in 1960 thanks to the development of computers and power electronic devices. The main feature of these machines is the capacity to work both in engine mode and in generator mode. Thanks to a simple and reliable design in which there is no winding of the rotor, commutator, permanent magnets, a reactive gate-inductor electric drive operating in the engine mode is actively being introduced into various areas such as car industry, production of household appliances, wind power engineering, as well as responsible production processes in the oil and mining industries. However, the existing shortcomings of switched reluctance electric machines, such as nonlinear pulsations of electromagnetic moment, the presence of three or four phase supply system and sensor of rotor position prevent wide distribution of this kind of electric machines.

  6. Study on Application of T-S Fuzzy Observer in Speed Switching Control of AUVs Driven by States

    Directory of Open Access Journals (Sweden)

    Xun Zhang

    2014-01-01

    Full Text Available Considering the inherent strongly nonlinear and coupling performance of autonomous underwater vehicles (AUVs, the speed switching control method for AUV driven by states is presented. By using T-S fuzzy observer to estimate the states of AUV, the speed control strategies in lever plane, vertical plane, and speed kept are established, respectively. Then the adaptive switching law is introduced to switch the speed control strategies designed in real time. In the simulation, acoustic Doppler current profile/side scan sonar (ADCP/SSS observation case is employed to demonstrate the effectiveness of the proposed method. The results show that the efficiency of AUV was improved, the trajectory tracking error was reduced, and the steady-state ability was enhanced.

  7. Enhanced odor discrimination and impaired olfactory memory by spatially controlled switch of AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Derya R Shimshek

    2005-11-01

    Full Text Available Genetic perturbations of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca2+-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q, both leading to increased Ca2+ permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable ("mosaic" among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities.

  8. Enhanced odor discrimination and impaired olfactory memory by spatially controlled switch of AMPA receptors.

    Science.gov (United States)

    Shimshek, Derya R; Bus, Thorsten; Kim, Jinhyun; Mihaljevic, Andre; Mack, Volker; Seeburg, Peter H; Sprengel, Rolf; Schaefer, Andreas T

    2005-11-01

    Genetic perturbations of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca2+-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q), both leading to increased Ca2+ permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable ("mosaic") among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities.

  9. A tweaking principle for executive control: neuronal circuit mechanism for rule-based task switching and conflict resolution.

    Science.gov (United States)

    Ardid, Salva; Wang, Xiao-Jing

    2013-12-11

    A hallmark of executive control is the brain's agility to shift between different tasks depending on the behavioral rule currently in play. In this work, we propose a "tweaking hypothesis" for task switching: a weak rule signal provides a small bias that is dramatically amplified by reverberating attractor dynamics in neural circuits for stimulus categorization and action selection, leading to an all-or-none reconfiguration of sensory-motor mapping. Based on this principle, we developed a biologically realistic model with multiple modules for task switching. We found that the model quantitatively accounts for complex task switching behavior: switch cost, congruency effect, and task-response interaction; as well as monkey's single-neuron activity associated with task switching. The model yields several testable predictions, in particular, that category-selective neurons play a key role in resolving sensory-motor conflict. This work represents a neural circuit model for task switching and sheds insights in the brain mechanism of a fundamental cognitive capability.

  10. An injection seeded single frequency Nd:YAG Q-switched laser with precisely controllable laser pulse firing time

    Science.gov (United States)

    Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir

    2010-02-01

    We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.

  11. Maintaining genetic stability in a control flock of South African ...

    African Journals Online (AJOL)

    means of whole progeny and replacement groups for the measured characters ... The whole problem of the estimation of genetic change was ... that a genetic control flock is a segregating population in which ... 5,5 years, were divided into five equal groups by stratified ..... A note on tests of significance and optimal ex-.

  12. Asynchronous L1-gain control of uncertain switched positive linear systems with dwell time.

    Science.gov (United States)

    Li, Yang; Zhang, Hongbin

    2018-04-01

    In this paper, dwell time (DT) stability, L 1 -gain performance analysis and asynchronous L 1 -gain controller design problems of uncertain switched positive linear systems (SPLSs) are investigated. Via a time-scheduled multiple linear co-positive Lyapunov function (TSMLCLF) approach, convex sufficient conditions of DT stability and L 1 -gain performance of SPLSs with interval and polytopic uncertainties are presented. Furthermore, by utilizing the feature that the TSMLCLF keeps decreasing even if the controller is running asynchronously with the system, the asynchronous L 1 -gain controller design problem of SPLSs with interval and polytopic uncertainties is investigated. Convex sufficient conditions of the existence of time-varying asynchronous state-feedback controller which can ensure the closed-loop system's positivity, stability and L 1 -gain performance are established, and the controller gain matrices can be calculated instantaneously online. The obtained L 1 -gain in the paper is standard. All the results are presented in terms of linear programming. A practical example is provided to show the effectiveness of the results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hengan; Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Gui, Y. S.; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2014-03-10

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg{sub 1∕3}Nb{sub 2∕3})O{sub 3}-PbTiO{sub 3} substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time.

  14. A distributed, hardware reconfigurable and packet switched real-time control and data acquisition system

    International Nuclear Information System (INIS)

    Batista, A.J.N.; Combo, A.; Sousa, J.; Varandas, C.A.F.

    2002-01-01

    The architecture of a synchronized event-based control and data acquisition system that aims to improve significantly the performance of actual systems is presented. The design explores recent developments in data transport, signal processing and system synchronization. Data transport between the acquisition, processing and storing devices and at backplane level will be performed by InfiniBand, a low latency packet switched network standard. Data processing algorithms will be performed in a mixture of digital signal processors and reconfigurable field programmable gate arrays. Both devices will be programmed from a descriptive high-level mathematical language. Acquisition synchronization, data stamping and event management will be performed through a specialized low latency synchronous optical network for the time critical signals

  15. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    International Nuclear Information System (INIS)

    Zhou, Hengan; Fan, Xiaolong; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2014-01-01

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg 1∕3 Nb 2∕3 )O 3 -PbTiO 3 substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time

  16. The SAMHD1 dNTP Triphosphohydrolase Is Controlled by a Redox Switch.

    Science.gov (United States)

    Mauney, Christopher H; Rogers, LeAnn C; Harris, Reuben S; Daniel, Larry W; Devarie-Baez, Nelmi O; Wu, Hanzhi; Furdui, Cristina M; Poole, Leslie B; Perrino, Fred W; Hollis, Thomas

    2017-12-01

    Proliferative signaling involves reversible posttranslational oxidation of proteins. However, relatively few molecular targets of these modifications have been identified. We investigate the role of protein oxidation in regulation of SAMHD1 catalysis. Here we report that SAMHD1 is a major target for redox regulation of nucleotide metabolism and cell cycle control. SAMHD1 is a triphosphate hydrolase, whose function involves regulation of deoxynucleotide triphosphate pools. We demonstrate that the redox state of SAMHD1 regulates its catalytic activity. We have identified three cysteine residues that constitute an intrachain disulfide bond "redox switch" that reversibly inhibits protein tetramerization and catalysis. We show that proliferative signals lead to SAMHD1 oxidation in cells and oxidized SAMHD1 is localized outside of the nucleus. Innovation and Conclusions: SAMHD1 catalytic activity is reversibly regulated by protein oxidation. These data identify a previously unknown mechanism for regulation of nucleotide metabolism by SAMHD1. Antioxid. Redox Signal. 27, 1317-1331.

  17. A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine.

    Directory of Open Access Journals (Sweden)

    Alex T Nielsen

    2010-09-01

    Full Text Available A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP and cholera toxin (CT were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a

  18. Local digital control of power electronic converters in a dc microgrid based on a-priori derivation of switching surfaces

    Science.gov (United States)

    Banerjee, Bibaswan

    In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes

  19. Synthesis and design of a fully integrated multi-topology switched capacitor DC-DC converter with gearbox control

    DEFF Research Database (Denmark)

    Davidsen, Jeppe Gaardsted; Yosef-Hay, Yoni; Larsen, Dennis Øland

    2017-01-01

    This paper discusses a methodology of minimizing the amount of switches in a multi-topology fully integrated switched capacitor dc-dc converter powered by a super capacitor for energy harvesting purposes. The design of a simple controlling circuit for the multi-topology power stage using a gearbox...... approach is presented with all the required circuits. The converter is able to generate a output voltage of 1.2 V from a 470 mF capacitor charged to 3 V down to 1.4 V. The output voltage is regulated with a ripple voltage below 7 mV. The controlling circuit including buffers with ideal comparators has...

  20. The binary response of the GAL/MEL genetic switch of Saccharomyces cerevisiae is critically dependent on Gal80p-Gal4p interaction.

    Science.gov (United States)

    Das Adhikari, Akshay Kumar; Bhat, Paike Jayadeva

    2016-09-01

    Studies on the Saccharomyces cerevisiae GAL/MEL genetic switch have revealed that its bistability is dependent on ultrasensitivity that can be altered or abolished by disabling different combinations of nested feedback loops. In contrast, we have previously demonstrated that weakening of the interaction between Gal80p and Gal4p alone is sufficient to abolish the ultrasensitivity (Das Adhikari et al. 2014). Here, we demonstrate that altering the epistatic interaction between Gal80p and Gal4p also abolishes the bistability, and the switch response to galactose becomes graded instead of binary. However, the GAL/MEL switch of wild-type and epistatically altered strains responded in a graded fashion to melibiose. The properties of the epistatically altered strain resemble Kluyveromyces lactis, which separated from the Saccharomyces lineage 100 mya before whole-genome duplication (WGD). Based on the results reported here, we propose that epistatic interactions played a crucial role in the evolution of the fine regulation of S. cerevisiae GAL/MEL switch following WGD. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Fuzzy combination of fuzzy and switching state-feedback controllers for nonlinear systems subject to parameter uncertainties.

    Science.gov (United States)

    Lam, H K; Leung, Frank H F

    2005-04-01

    This paper presents a fuzzy controller, which involves a fuzzy combination of local fuzzy and global switching state-feedback controllers, for nonlinear systems subject to parameter uncertainties with known bounds. The nonlinear system is represented by a fuzzy combined Takagi-Sugeno-Kang model, which is a fuzzy combination of the global and local fuzzy plant models. By combining the local fuzzy and global switching state-feedback controllers using fuzzy logic techniques, the advantages of both controllers can be retained and the undesirable chattering effect introduced by the global switching state-feedback controller can be eliminated. The steady-state error introduced by the global switching state-feedback controller when a saturation function is used can also be removed. Stability conditions, which are related to the system matrices of the local and global closed-loop systems, are derived to guarantee the closed-loop system stability. An application example will be given to demonstrate the merits of the proposed approach.

  2. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    Science.gov (United States)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  3. Robust reactor power control system design by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)

    1997-12-31

    The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)

  4. Robust reactor power control system design by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)

    1998-12-31

    The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)

  5. Switching and optimizing control for coal flotation process based on a hybrid model

    Science.gov (United States)

    Dong, Zhiyong; Wang, Ranfeng; Fan, Minqiang; Fu, Xiang

    2017-01-01

    Flotation is an important part of coal preparation, and the flotation column is widely applied as efficient flotation equipment. This process is complex and affected by many factors, with the froth depth and reagent dosage being two of the most important and frequently manipulated variables. This paper proposes a new method of switching and optimizing control for the coal flotation process. A hybrid model is built and evaluated using industrial data. First, wavelet analysis and principal component analysis (PCA) are applied for signal pre-processing. Second, a control model for optimizing the set point of the froth depth is constructed based on fuzzy control, and a control model is designed to optimize the reagent dosages based on expert system. Finally, the least squares-support vector machine (LS-SVM) is used to identify the operating conditions of the flotation process and to select one of the two models (froth depth or reagent dosage) for subsequent operation according to the condition parameters. The hybrid model is developed and evaluated on an industrial coal flotation column and exhibits satisfactory performance. PMID:29040305

  6. Controlled lid-opening in Thermomyces lanuginosus lipase- An engineered switch for studying lipase function

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Jakob; Vind, Jesper; Moroz, Olga V.

    2017-01-01

    Here, we present a lipase mutant containing a biochemical switch allowing a controlled opening and closing of the lid independent of the environment. The closed form of the TlL mutant shows low binding to hydrophobic surfaces compared to the binding observed after activating the controlled switch...... inducing lid-opening. We directly show that lipid binding of this mutant is connected to an open lid conformation demonstrating the impact of the exposed amino acid residues and their participation in binding at the water-lipid interface. The switch was created by introducing two cysteine residues......-D measurements revealed a seven-fold increase in binding rate for the unlocked lipase. The TlL_locked mutant shows structural changes across the protein important for understanding the mechanism of lid-opening and closing. Our experimental results reveal sites of interest for future mutagenesis studies aimed...

  7. Genetic control of flowering time in legumes

    Directory of Open Access Journals (Sweden)

    James L Weller

    2015-04-01

    Full Text Available The timing of flowering, and in particular the degree to which it is responsive to the environment, is a key factor in the adaptation of a given species to various eco-geographic locations and agricultural practices. Flowering time variation has been documented in many crop legumes, and selection for specific variants has permitted significant expansion and improvement in cultivation, from prehistoric times to the present day. Recent advances in legume genomics have accelerated the process of gene identification and functional analysis, and opened up new prospects for a molecular understanding of flowering time adaptation in this important crop group. Within the legumes, two species have been prominent in flowering time studies; the vernalization-responsive long-day species pea (Pisum sativum and the warm-season short-day plant soybean (Glycine max. Analysis of flowering in these species is now being complemented by reverse genetics capabilities in the model legumes Medicago truncatula and Lotus japonicus, and the emergence of genome-scale resources in a range of other legumes. This review will outline the insights gained from detailed forward genetic analysis of flowering time in pea and soybean, highlighting the importance of light perception, the circadian clock and the FT family of flowering integrators. It discusses the current state of knowledge on genetic mechanisms for photoperiod and vernalization response, and concludes with a broader discussion of flowering time adaptation across legumes generally.

  8. Asymptotic stability of a genetic network under impulsive control

    International Nuclear Information System (INIS)

    Li Fangfei; Sun Jitao

    2010-01-01

    The study of the stability of genetic network is an important motif for the understanding of the living organism at both molecular and cellular levels. In this Letter, we provide a theoretical method for analyzing the asymptotic stability of a genetic network under impulsive control. And the sufficient conditions of its asymptotic stability under impulsive control are obtained. Finally, an example is given to illustrate the effectiveness of the obtained method.

  9. Dual regulatory switch confers tighter control on HtrA2 proteolytic activity.

    Science.gov (United States)

    Singh, Nitu; D'Souza, Areetha; Cholleti, Anuradha; Sastry, G Madhavi; Bose, Kakoli

    2014-05-01

    High-temperature requirement protease A2 (HtrA2), a multitasking serine protease that is involved in critical biological functions and pathogenicity, such as apoptosis and cancer, is a potent therapeutic target. It is established that the C-terminal post-synaptic density protein, Drosophila disc large tumor suppressor, zonula occludens-1 protein (PDZ) domain of HtrA2 plays pivotal role in allosteric modulation, substrate binding and activation, as commonly reported in other members of this family. Interestingly, HtrA2 exhibits an additional level of functional modulation through its unique N-terminus, as is evident from 'inhibitor of apoptosis proteins' binding and cleavage. This phenomenon emphasizes multiple activation mechanisms, which so far remain elusive. Using conformational dynamics, binding kinetics and enzymology studies, we addressed this complex behavior with respect to defining its global mode of regulation and activity. Our findings distinctly demonstrate a novel N-terminal ligand-mediated triggering of an allosteric switch essential for transforming HtrA2 to a proteolytically competent state in a PDZ-independent yet synergistic activation process. Dynamic analyses suggested that it occurs through a series of coordinated structural reorganizations at distal regulatory loops (L3, LD, L1), leading to a population shift towards the relaxed conformer. This precise synergistic coordination among different domains might be physiologically relevant to enable tighter control upon HtrA2 activation for fostering its diverse cellular functions. Understanding this complex rheostatic dual switch mechanism offers an opportunity for targeting various disease conditions with tailored site-specific effector molecules. © 2014 FEBS.

  10. Screen-Time Weight-loss Intervention Targeting Children at Home (SWITCH): a randomized controlled trial.

    Science.gov (United States)

    Maddison, Ralph; Marsh, Samantha; Foley, Louise; Epstein, Leonard H; Olds, Timothy; Dewes, Ofa; Heke, Ihirangi; Carter, Karen; Jiang, Yannan; Mhurchu, Cliona Ni

    2014-09-10

    Screen-based activities, such as watching television (TV), playing video games, and using computers, are common sedentary behaviors among young people and have been linked with increased energy intake and overweight. Previous home-based sedentary behaviour interventions have been limited by focusing primarily on the child, small sample sizes, and short follow-up periods. The SWITCH (Screen-Time Weight-loss Intervention Targeting Children at Home) study aimed to determine the effect of a home-based, family-delivered intervention to reduce screen-based sedentary behaviour on body composition, sedentary behaviour, physical activity, and diet over 24 weeks in overweight and obese children. A two-arm, parallel, randomized controlled trial was conducted. Children and their primary caregiver living in Auckland, New Zealand were recruited via schools, community centres, and word of mouth. The intervention, delivered over 20 weeks, consisted of a face-to-face meeting with the parent/caregiver and the child to deliver intervention content, which focused on training and educating them to use a wide range of strategies designed to reduce their child's screen time. Families were given Time Machine TV monitoring devices to assist with allocating screen time, activity packages to promote alternative activities, online support via a website, and monthly newsletters. Control participants were given the intervention material on completion of follow-up. The primary outcome was change in children's BMI z-score from baseline to 24 weeks. Children (n = 251) aged 9-12 years and their primary caregiver were randomized to receive the SWITCH intervention (n = 127) or no intervention (controls; n = 124). There was no significant difference in change of zBMI between the intervention and control groups, although a favorable trend was observed (-0.016; 95% CI: -0.084, 0.051; p = 0.64). There were also no significant differences on secondary outcomes, except for a trend towards

  11. Complimentary Force Allocation Control for a Dual-Mover Linear Switched Reluctance Machine

    Directory of Open Access Journals (Sweden)

    J. F. Pan

    2017-12-01

    Full Text Available This paper inspects the complementary force allocation control schemes for an integrated, dual-mover linear switched reluctance machine (LSRM. The performance of the total force is realized by the coordination of the two movers. First, the structure and characteristics of the LSRM are investigated. Then, a complimentary force allocation control scheme for the two movers is proposed. Next, three force allocation methods—constant proportion, constant proportion with a saturation interval and error compensation, and the variable proportion allocation strategies—are proposed and analyzed, respectively. Experimental results demonstrate that the complimentary force interaction between the two movers can effectively reduce the total amount of force ripples from each method. The results under the variable proportion method also show that dynamic error values falling into 0.044 mm and −0.04 mm under the unit ramp force reference can be achieved. With the sinusoidal force reference with an amplitude of 60 N and a frequency of 0.5 Hz, a dynamic force control precision of 0.062 N and 0.091 N can also be obtained.

  12. Single-photon switch: Controllable scattering of photons inside a one-dimensional resonator waveguide

    Science.gov (United States)

    Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.

    2010-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).

  13. Video game practice optimizes executive control skills in dual-task and task switching situations.

    Science.gov (United States)

    Strobach, Tilo; Frensch, Peter A; Schubert, Torsten

    2012-05-01

    We examined the relation of action video game practice and the optimization of executive control skills that are needed to coordinate two different tasks. As action video games are similar to real life situations and complex in nature, and include numerous concurrent actions, they may generate an ideal environment for practicing these skills (Green & Bavelier, 2008). For two types of experimental paradigms, dual-task and task switching respectively; we obtained performance advantages for experienced video gamers compared to non-gamers in situations in which two different tasks were processed simultaneously or sequentially. This advantage was absent in single-task situations. These findings indicate optimized executive control skills in video gamers. Similar findings in non-gamers after 15 h of action video game practice when compared to non-gamers with practice on a puzzle game clarified the causal relation between video game practice and the optimization of executive control skills. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. A tuneable switch for controlling environmental degradation of bioplastics: addition of isothiazolinone to polyhydroxyalkanoates.

    Directory of Open Access Journals (Sweden)

    Catherine Anne Woolnough

    Full Text Available Controlling the environmental degradation of polyhydroxybutyrate (PHB and polyhydroxyvalerate (P(HB-co-HV bioplastics would expand the range of their potential applications. Combining PHB and P(HB-co-HV films with the anti-fouling agent 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOI, <10% w/w restricted microbial colonisation in soil, but did not significantly affect melting temperature or the tensile strength of films. DCOI films showed reduced biofouling and postponed the onset of weight loss by up to 100 days, a 10-fold increase compared to unmodified films where the microbial coverage was significant. In addition, the rate of PHA-DCOI weight loss, post-onset, reduced by about 150%; in contrast a recorded weight loss of only 0.05% per day for P(HB-co-HV with a 10% DCOI loading was observed. This is in stark contrast to the unmodified PHB film, where a recorded weight loss of only 0.75% per day was made. The 'switch' that initiates film weight loss, and its subsequent reduced rate, depended on the DCOI loading to control biofouling. The control of biofouling and environmental degradation for these DCOI modified bioplastics increases their potential use in biodegradable applications.

  15. Development of a Synthetic Switch to Control Protein Stability in Eukaryotic Cells with Light.

    Science.gov (United States)

    Taxis, Christof

    2017-01-01

    In eukaryotic cells, virtually all regulatory processes are influenced by proteolysis. Thus, synthetic control of protein stability is a powerful approach to influence cellular behavior. To achieve this, selected target proteins are modified with a conditional degradation sequence (degron) that responds to a distinct signal. For development of a synthetic degron, an appropriate sensor domain is fused with a degron such that activity of the degron is under control of the sensor. This chapter describes the development of a light-activated, synthetic degron in the model organism Saccharomyces cerevisiae. This photosensitive degron module is composed of the light-oxygen-voltage (LOV) 2 photoreceptor domain of Arabidopsis thaliana phototropin 1 and a degron derived from murine ornithine decarboxylase (ODC). Excitation of the photoreceptor with blue light induces a conformational change that leads to exposure and activation of the degron. Subsequently, the protein is targeted for degradation by the proteasome. Here, the strategy for degron module development and optimization is described in detail together with experimental aspects, which were pivotal for successful implementation of light-controlled proteolysis. The engineering of the photosensitive degron (psd) module may well serve as a blueprint for future development of sophisticated synthetic switches.

  16. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  17. Discovery of a “White-Gray-Opaque” Tristable Phenotypic Switching System in Candida albicans: Roles of Non-genetic Diversity in Host Adaptation

    Science.gov (United States)

    Guan, Guobo; Dai, Yu; Nobile, Clarissa J.; Liang, Weihong; Cao, Chengjun; Zhang, Qiuyu; Zhong, Jin; Huang, Guanghua

    2014-01-01

    Non-genetic phenotypic variations play a critical role in the adaption to environmental changes in microbial organisms. Candida albicans, a major human fungal pathogen, can switch between several morphological phenotypes. This ability is critical for its commensal lifestyle and for its ability to cause infections. Here, we report the discovery of a novel morphological form in C. albicans, referred to as the “gray” phenotype, which forms a tristable phenotypic switching system with the previously reported white and opaque phenotypes. White, gray, and opaque cell types differ in a number of aspects including cellular and colony appearances, mating competency, secreted aspartyl proteinase (Sap) activities, and virulence. Of the three cell types, gray cells exhibit the highest Sap activity and the highest ability to cause cutaneous infections. The three phenotypes form a tristable phenotypic switching system, which is independent of the regulation of the mating type locus (MTL). Gray cells mate over 1,000 times more efficiently than do white cells, but less efficiently than do opaque cells. We further demonstrate that the master regulator of white-opaque switching, Wor1, is essential for opaque cell formation, but is not required for white-gray transitions. The Efg1 regulator is required for maintenance of the white phenotype, but is not required for gray-opaque transitions. Interestingly, the wor1/wor1 efg1/efg1 double mutant is locked in the gray phenotype, suggesting that Wor1 and Efg1 could function coordinately and play a central role in the regulation of gray cell formation. Global transcriptional analysis indicates that white, gray, and opaque cells exhibit distinct gene expression profiles, which partly explain their differences in causing infections, adaptation ability to diverse host niches, metabolic profiles, and stress responses. Therefore, the white-gray-opaque tristable phenotypic switching system in C. albicans may play a significant role in a wide

  18. Task Switching and Shifting between Stopping and Going: Developmental Change in between-Trial Control Adjustments

    Science.gov (United States)

    Huizing, Mariette; van der Molen, Maurits W.

    2011-01-01

    This study set out to investigate developmental differences in the ability to switch between choice tasks and to shift between Go/NoGo and choice tasks. Three age groups (7-year-olds, 11-year-olds, and young adults) were asked to consider the shape or color of a bivalued target stimulus. The participants performed a switch task in which a cue…

  19. Guaranteed Cost H∞ Controller Synthesis for Switched Systems Defined on Semi-algebraic Sets

    DEFF Research Database (Denmark)

    Ahmadi, Mohamadreza; Mojallali, Hamed; Wisniewski, Rafael

    2014-01-01

    of Filippov solutions which subsumes solutions with infinite switching in finite time and sliding modes. Firstly, conditions assuring asymptotic stability of Filippov solutions pertained to a switched system defined on semi-algebraic sets are formulated. Accordingly, we derive a set of sum of squares...

  20. Light-Triggered Control of Plasmonic Refraction and Group Delay by Photochromic Molecular Switches

    DEFF Research Database (Denmark)

    Großmann, Malte; Klick, Alwin; Lemke, Christoph

    2015-01-01

    An interface supporting plasmonic switching is prepared from a gold substrate coated with a polymerfilm doped with photochromic molecular switches. A reversible light-induced change in the surface plasmon polariton dispersion curve of the interface is experimentally demonstrated, evidencing...... complex functionalities based on surface plasmon refraction and group delay....

  1. Controlling the color of cholesteric liquid-crystalline films by photoirradiation of a chiroptical molecular switch used as dopant

    NARCIS (Netherlands)

    van Delden, RA; Huck, NPM; Feringa, BL; Delden, Richard A. van; Gelder, Marc B. van; Huck, Nina P.M.

    Using thin films of a cholesteric mixture of acrylates 2 and 3 doped with the chiroptical molecular switch (M)-trans-1, photo-control of the reflection color between red and green is possible. This doped liquid-crystal (LC) film can be used for photoinduced writing, color reading, and photoinduced

  2. A novel scalable and low latency hybrid data center network architecture based on flow controlled fast optical switches

    NARCIS (Netherlands)

    Yan, Fulong; Guelbenzu, Gonzalo; Calabretta, Nicola

    2018-01-01

    We present a novel hybrid DCN based on flow-controlled fast optical switches. Results show packet loss < 1.4E-5 and latency < 2.4μs for 100,000 servers (0.3 load). Costs and power consumptions are also compared with current technologies.

  3. Switching control for a class of nonlinear SISO systems with an application to post-harvest food storage

    NARCIS (Netherlands)

    van Mourik, S.; Zwart, Heiko J.; Keesman, K.J.

    2007-01-01

    For a class of scalar nonlinear systems with switching input a controller is designed using design theory for linear systems. A stability criterion is derived that contains all the physical system parameters, allowing a stability analysis without the need for numerical simulation. The results are

  4. Coexistence of electric field controlled ferromagnetism and resistive switching for TiO{sub 2} film at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shaoqing; Qin, Hongwei; Bu, Jianpei; Zhu, Gengchang; Xie, Jihao; Hu, Jifan, E-mail: hujf@sdu.edu.cn, E-mail: hu-jf@vip.163.com [School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100 (China)

    2015-08-10

    The Ag/TiO{sub 2}/Nb:SrTiO{sub 3}/Ag device exhibits the coexistence of electric field controlled ferromagnetism and resistive switching at room temperature. The bipolar resistive switching in Ag/TiO{sub 2}/Nb:SrTiO{sub 3}/Ag device may be dominated by the modulation of Schottky-like barrier with the electron injection-trapped/detrapped process at the interface of TiO{sub 2}/Nb:SrTiO{sub 3}. We suggest that the electric field-induced magnetization modulation originates mainly from the creation/annihilation of lots of oxygen vacancies in TiO{sub 2}.

  5. A novel solid-state control system for the minimization of re-switching transient currents of induction motor

    International Nuclear Information System (INIS)

    Abro, M.R.; Larik, A.S.; Mahar, M.A.

    2005-01-01

    This work is an investigation into the minimizing re-closure transient currents of induction motors by activating NOVEL solid state control system switching at a matched condition. This emphasis is placed upon-circuit transition starting of cage motors, particularly star-delta switching. The initial study is carried out on single-phase induction motion. This system is capable of effective sensing re-closure of a switched off running single-phase induction motor. Further this scheme could be developed to give sequential delta closure of a switched off running three-phase induction motor during 1st cycles following the opening of the star mode. Consideration is also given to the possibility of using sensed re-closure to minimize transient whenever the supply to a running induction motor is briefly interrupted, irrespective of whether the interruption is by accident design. A brief study is made into the type of transient currents generated by opening the circuit of a running induction motor. The importance of the switching pattern for star-delta starting is explained and emphasized. (author)

  6. Immunological profile in cerebrospinal fluid of patients with multiple sclerosis after treatment switch to rituximab and compared with healthy controls.

    Directory of Open Access Journals (Sweden)

    Pierre de Flon

    Full Text Available To investigate changes in the cerebrospinal fluid (CSF immunological profile after treatment switch from first-line injectables to rituximab in patients with relapsing-remitting MS (RRMS, and to compare the profile in MS patients with healthy controls (HC.Cerebrospinal fluid from 70 patients with clinically stable RRMS and 55 HC was analysed by a multiplex electrochemiluminescence method for a broad panel of cytokines and immunoactive substances before, and over a two-year period after, treatment switch to rituximab. After quality assessment of data, using a predefined algorithm, 14 analytes were included in the final analysis.Ten of the 14 analytes differed significantly in MS patients compared with HC at baseline. Levels of IP-10 (CXCL10, IL-12/23p40, IL-6, sVCAM1, IL-15, sICAM1 and IL-8 (CXCL8 decreased significantly after treatment switch to rituximab. The cytokines IP-10 and IL-12/IL-23p40 displayed the largest difference versus HC at baseline and also the largest relative reduction after therapy switch to rituximab.We found significant changes in the immunological profile after therapy switch to rituximab in RRMS in the direction towards the values of HC. IP-10 and IL12/IL-23p40 deserve further studies as part of the immunopathogenesis of MS as well as for the mode of action of rituximab in MS.

  7. Design of High-Voltage Switch-Mode Power Amplifier Based on Digital-Controlled Hybrid Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Yanbin Hou

    2016-01-01

    Full Text Available Compared with conventional Class-A, Class-B, and Class-AB amplifiers, Class-D amplifier, also known as switching amplifier, employs pulse width modulation (PWM technology and solid-state switching devices, capable of achieving much higher efficiency. However, PWM-based switching amplifier is usually designed for low-voltage application, offering a maximum output voltage of several hundred Volts. Therefore, a step-up transformer is indispensably adopted in PWM-based Class-D amplifier to produce high-voltage output. In this paper, a switching amplifier without step-up transformer is developed based on digital pulse step modulation (PSM and hybrid multilevel converter. Under the control of input signal, cascaded power converters with separate DC sources operate in PSM switch mode to directly generate high-voltage and high-power output. The relevant topological structure, operating principle, and design scheme are introduced. Finally, a prototype system is built, which can provide power up to 1400 Watts and peak voltage up to ±1700 Volts. And the performance, including efficiency, linearity, and distortion, is evaluated by experimental tests.

  8. Blood Pressure Control in Smokers with Arterial Hypertension Who Switched to Electronic Cigarettes

    Directory of Open Access Journals (Sweden)

    Riccardo Polosa

    2016-11-01

    Full Text Available Electronic cigarettes (ECs are battery-operated devices designed to vaporise nicotine, which may help smokers with quitting or reducing their tobacco consumption. No data is available regarding the health effects of ECs use among smokers with arterial hypertension and whether regular use results in blood pressure (BP changes. We investigated long-term changes in resting BP and level of BP control in hypertensive smokers who quit or reduced substantially their tobacco consumption by switching to ECs. A medical records review of patients with hypertension was conducted to identify patients reporting regular daily use of ECs on at least two consecutive follow-up visits. Regularly smoking hypertensive patients were included as a reference group. A marked reduction in cigarette consumption was observed in ECs users (n = 43 though consumption remained unchanged in the control group (n = 46. Compared to baseline, at 12 months (follow-up visit 2 decline in cigarette consumption was associated with significant reductions in median (25th-, 75th-centile systolic BP (140 (134.5, 144 to 130 (123.5, 138.5 mmHg; p < 0.001 and diastolic BP (86 (78, 90 to 80 (74.5, 90 mmHg; p = 0.006. No significant changes were observed in the control group. As expected, decline in cigarette consumption in the ECs users was also associated with improved BP control. The study concludes that regular ECs use may aid smokers with arterial hypertension reduce or abstain from cigarette smoking, with only trivial post-cessation weight gain. This resulted in improvements in systolic and diastolic BP as well as better BP control.

  9. G-quadruplex induced chirality of methylazacalix[6]pyridine via unprecedented binding stoichiometry: en route to multiplex controlled molecular switch

    Science.gov (United States)

    Guan, Ai-Jiao; Shen, Meng-Jie; Xiang, Jun-Feng; Zhang, En-Xuan; Li, Qian; Sun, Hong-Xia; Wang, Li-Xia; Xu, Guang-Zhi; Tang, Ya-Lin; Xu, Li-Jin; Gong, Han-Yuan

    2015-05-01

    Nucleic acid based molecular device is a developing research field which attracts great interests in material for building machinelike nanodevices. G-quadruplex, as a new type of DNA secondary structures, can be harnessed to construct molecular device owing to its rich structural polymorphism. Herein, we developed a switching system based on G-quadruplexes and methylazacalix[6]pyridine (MACP6). The induced circular dichroism (CD) signal of MACP6 was used to monitor the switch controlled by temperature or pH value. Furthermore, the CD titration, Job-plot, variable temperature CD and 1H-NMR experiments not only confirmed the binding mode between MACP6 and G-quadruplex, but also explained the difference switching effect of MACP6 and various G-quadruplexes. The established strategy has the potential to be used as the chiral probe for specific G-quadruplex recognition.

  10. Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 2: Control-Oriented Models

    Directory of Open Access Journals (Sweden)

    Sergio Ignacio Serna-Garces

    2013-10-01

    Full Text Available A previous article has presented the members of the asymmetrical interleaved dc/dc switching converters family as very appropriate candidates to interface between photovoltaic or fuel cell generators and their loads because of their reduced ripple and increased current processing capabilities. After a review of the main modeling methods suitable for high-order converters operating, as the asymmetrical interleaved converters (AIC ones, in discontinuous current conduction mode a full-order averaged model has been adapted and improved to describe the dynamic behavior of AIC. The excellent agreement between the mathematical model predictions, the switched simulations and the experimental results has allowed for satisfactory design of a linear-quadratic regulator (LQR in a fuel-cell application example, which demonstrates the usefulness of the improved control-oriented modeling approach when the switching converters operate in discontinuous conduction mode.

  11. Effects of switching frequency and leakage inductance on slow-scale stability in a voltage controlled flyback converter

    International Nuclear Information System (INIS)

    Wang Fa-Qiang; Ma Xi-Kui

    2013-01-01

    The effects of both the switching frequency and the leakage inductance on the slow-scale stability in a voltage controlled flyback converter are investigated in this paper. Firstly, the system description and its mathematical model are presented. Then, the improved averaged model, which covers both the switching frequency and the leakage inductance, is established, and the effects of these two parameters on the slow-scale stability in the system are analyzed. It is found that the occurrence of Hopf bifurcation in the system is the main reason for losing its slow-scale stability and both the switching frequency and the leakage inductance have an important effect on this slow-scale stability. Finally, the effectiveness of the improved averaged model and that of the corresponding theoretical analysis are confirmed by the simulation results and the experimental results. (general)

  12. Temperature control of molecular circuit switch responsible for virulent phenotype expression in uropathogenic Escherichia coli

    Science.gov (United States)

    Samoilov, Michael

    2010-03-01

    The behavior and fate of biological organisms are to a large extent dictated by their environment, which can be often viewed as a collection of features and constraints governed by physics laws. Since biological systems comprise networks of molecular interactions, one such key physical property is temperature, whose variations directly affect the rates of biochemical reactions involved. For instance, temperature is known to control many gene regulatory circuits responsible for pathogenicity in bacteria. One such example is type 1 fimbriae (T1F) -- the foremost virulence factor in uropathogenic E. coli (UPEC), which accounts for 80-90% of all community-acquired urinary tract infections (UTIs). The expression of T1F is randomly `phase variable', i.e. individual cells switch between virulent/fimbriate and avirulent/afimbriate phenotypes, with rates regulated by temperature. Our computational investigation of this process, which is based on FimB/FimE recombinase-mediated inversion of fimS DNA element, offers new insights into its discrete-stochastic kinetics. In particular, it elucidates the logic of T1F control optimization to the host temperature and contributes further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs.

  13. Power grid current harmonics mitigation drawn on low voltage rated switching devices with effortless control

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Hugo S.; Anunciada, Victor; Borges, Beatriz V. [Power Electronics Group, Instituto de Telecomunicacoes, Lisbon (Portugal); Instituto Superior Tecnico - Universidade Tecnica de Lisboa, Lisbon (Portugal)

    2010-01-15

    The great majority of the existing hybrid active power filter solutions is normally focused in 3{phi} systems and, in general, concentrates its domain of application in specific loads with deterministic behavior. Because common use grids do not exhibit these characteristics, it is mandatory to develop solutions for more generic scenarios, encouraging the use of less classical hybrid solutions. In fact, due to the widely use of switch mode converters in a great variety of consumer electronics, the problematic of mains current harmonic mitigation is no longer an exclusive matter of 3{phi} systems. The contribution of this paper is to present a shunt hybrid active power filter topology, initially conceived to work in 1{phi} domestic grids, able to operate the inverter at a voltage rate that can be lower than 10% of the mains voltage magnitude, even under nonspecific working conditions. In addition, the results shown in this paper demonstrate that this topology can, without lack of generality, be suitable to medium voltage (1{phi} or 3{phi}) systems. A new control approach for the proposed topology is discussed in this paper. The control method exhibits an extremely simple architecture requiring single point current sensing only, with no need for any kind of reference. Its practical implementation can be fulfilled by using very few, common use, operational amplifiers. The principle of operation, design criteria, simulation predictions and experimental results are presented and discussed. (author)

  14. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Science.gov (United States)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  15. Geochemical, Genetic, and Community Controls on Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D.

    2014-11-10

    The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

  16. A closer look at cognitive control: Differences in resource allocation during updating, inhibition and switching as revealed by pupillometry

    Directory of Open Access Journals (Sweden)

    Eefje eRondeel

    2015-09-01

    Full Text Available The present study investigated resource allocation, as measured by pupil dilation, in tasks measuring updating (2-Back task, inhibition (Stroop task and switching (Number Switch task. Because each cognitive control component has unique characteristics, differences in patterns of resource allocation were expected. Pupil and behavioral data from 35 participants were analysed. In the 2-Back task (requiring correct matching of current stimulus identity at trial p with the stimulus two trials back, p-2 we found that better performance (low total of errors made in the task was positively correlated to the mean pupil dilation during correctly responding to targets. In the Stroop task, pupil dilation on incongruent trials was higher than those on congruent trials. Incongruent versus congruent trial pupil dilation differences were positively related to reaction time differences between incongruent and congruent trials. Furthermore, on congruent Stroop trials, pupil dilation was negatively related to reaction times, presumably because more effort allocation paid off in terms of faster responses. In addition, pupil dilation on correctly-responded-to congruent trials predicted a weaker Stroop interference effect in terms of errors, probably because pupil dilation on congruent trials were diagnostic of task motivation, resulting in better performance. In the Number Switch task we found higher pupil dilation in switch as compared to non-switch trials. On the Number Switch task, pupil dilation was not related to performance. We also explored error-related pupil dilation in all tasks. The results provide new insights in the diversity of the cognitive control components in terms of resource allocation as a function of individual differences, task difficulty and error processing.

  17. Reactor controller design using genetic algorithms with simulated annealing

    International Nuclear Information System (INIS)

    Erkan, K.; Buetuen, E.

    2000-01-01

    This chapter presents a digital control system for ITU TRIGA Mark-II reactor using genetic algorithms with simulated annealing. The basic principles of genetic algorithms for problem solving are inspired by the mechanism of natural selection. Natural selection is a biological process in which stronger individuals are likely to be winners in a competing environment. Genetic algorithms use a direct analogy of natural evolution. Genetic algorithms are global search techniques for optimisation but they are poor at hill-climbing. Simulated annealing has the ability of probabilistic hill-climbing. Thus, the two techniques are combined here to get a fine-tuned algorithm that yields a faster convergence and a more accurate search by introducing a new mutation operator like simulated annealing or an adaptive cooling schedule. In control system design, there are currently no systematic approaches to choose the controller parameters to obtain the desired performance. The controller parameters are usually determined by test and error with simulation and experimental analysis. Genetic algorithm is used automatically and efficiently searching for a set of controller parameters for better performance. (orig.)

  18. Analysis of cyclic variations during mode switching between spark ignition and controlled auto-ignition combustion operations

    OpenAIRE

    Chen, T; Zhao, H; Xie, H; He, B

    2014-01-01

    © IMechE 2014. Controlled auto-ignition, also known as homogeneous charge compression ignition, has been the subject of extensive research because of their ability to provide simultaneous reductions in fuel consumption and NOx emissions from a gasoline engine. However, due to its limited operation range, switching between controlled auto-ignition and spark ignition combustion is needed to cover the complete operating range of a gasoline engine for passenger car applications. Previous research...

  19. Molecular, metabolic, and genetic control: An introduction

    Science.gov (United States)

    Tyson, John J.; Mackey, Michael C.

    2001-03-01

    The living cell is a miniature, self-reproducing, biochemical machine. Like all machines, it has a power supply, a set of working components that carry out its necessary tasks, and control systems that ensure the proper coordination of these tasks. In this Special Issue, we focus on the molecular regulatory systems that control cell metabolism, gene expression, environmental responses, development, and reproduction. As for the control systems in human-engineered machines, these regulatory networks can be described by nonlinear dynamical equations, for example, ordinary differential equations, reaction-diffusion equations, stochastic differential equations, or cellular automata. The articles collected here illustrate (i) a range of theoretical problems presented by modern concepts of cellular regulation, (ii) some strategies for converting molecular mechanisms into dynamical systems, (iii) some useful mathematical tools for analyzing and simulating these systems, and (iv) the sort of results that derive from serious interplay between theory and experiment.

  20. A High-Precision Control for a ZVT PWM Soft-Switching Inverter to Eliminate the Dead-Time Effect

    Directory of Open Access Journals (Sweden)

    Baoquan Kou

    2016-07-01

    Full Text Available Attributing to the advantages of high efficiency, low electromagnetic interference (EMI noise and closest to the pulse-width-modulation (PWM converter counterpart, zero-voltage-transition (ZVT PWM soft-switching inverters are very suitable for high-performance applications. However, the conventional control algorithms intended for high efficiency generally results in voltage distortion. Thus, this paper, for the first time, proposes a high-precision control method to eliminate the dead-time effect through controlling the auxiliary current in the auxiliary resonant snubber inverter (ARSI, which is a typical ZVT PWM inverter. The dead-time effect of ARSI is analyzed, which is distinguished from hard-switching inverters. The proposed high-precision control is introduced based on the investigation of dead-time effect. A prototype was developed to verify the effectiveness of the proposed control. The experimental results shows that the total harmonic distortion (THD of the output current of the ARSI can be reduced compared with that of the hard-switching inverter, because the blanking delay error is eliminated. The quality of the output current and voltage can be further improved by utilizing the proposed control method.

  1. Spatial Multiplexing of Atom-Photon Entanglement Sources using Feedforward Control and Switching Networks.

    Science.gov (United States)

    Tian, Long; Xu, Zhongxiao; Chen, Lirong; Ge, Wei; Yuan, Haoxiang; Wen, Yafei; Wang, Shengzhi; Li, Shujing; Wang, Hai

    2017-09-29

    The light-matter quantum interface that can create quantum correlations or entanglement between a photon and one atomic collective excitation is a fundamental building block for a quantum repeater. The intrinsic limit is that the probability of preparing such nonclassical atom-photon correlations has to be kept low in order to suppress multiexcitation. To enhance this probability without introducing multiexcitation errors, a promising scheme is to apply multimode memories to the interface. Significant progress has been made in temporal, spectral, and spatial multiplexing memories, but the enhanced probability for generating the entangled atom-photon pair has not been experimentally realized. Here, by using six spin-wave-photon entanglement sources, a switching network, and feedforward control, we build a multiplexed light-matter interface and then demonstrate a ∼sixfold (∼fourfold) probability increase in generating entangled atom-photon (photon-photon) pairs. The measured compositive Bell parameter for the multiplexed interface is 2.49±0.03 combined with a memory lifetime of up to ∼51  μs.

  2. Purification of reversibly oxidized proteins (PROP reveals a redox switch controlling p38 MAP kinase activity.

    Directory of Open Access Journals (Sweden)

    Dennis J Templeton

    2010-11-01

    Full Text Available Oxidation of cysteine residues of proteins is emerging as an important means of regulation of signal transduction, particularly of protein kinase function. Tools to detect and quantify cysteine oxidation of proteins have been a limiting factor in understanding the role of cysteine oxidation in signal transduction. As an example, the p38 MAP kinase is activated by several stress-related stimuli that are often accompanied by in vitro generation of hydrogen peroxide. We noted that hydrogen peroxide inhibited p38 activity despite paradoxically increasing the activating phosphorylation of p38. To address the possibility that cysteine oxidation may provide a negative regulatory effect on p38 activity, we developed a biochemical assay to detect reversible cysteine oxidation in intact cells. This procedure, PROP, demonstrated in vivo oxidation of p38 in response to hydrogen peroxide and also to the natural inflammatory lipid prostaglandin J2. Mutagenesis of the potential target cysteines showed that oxidation occurred preferentially on residues near the surface of the p38 molecule. Cysteine oxidation thus controls a functional redox switch regulating the intensity or duration of p38 activity that would not be revealed by immunodetection of phosphoprotein commonly interpreted as reflective of p38 activity.

  3. DREAM Controls the On/Off Switch of Specific Activity-Dependent Transcription Pathways

    Science.gov (United States)

    Mellström, Britt; Sahún, Ignasi; Ruiz-Nuño, Ana; Murtra, Patricia; Gomez-Villafuertes, Rosa; Savignac, Magali; Oliveros, Juan C.; Gonzalez, Paz; Kastanauskaite, Asta; Knafo, Shira; Zhuo, Min; Higuera-Matas, Alejandro; Errington, Michael L.; Maldonado, Rafael; DeFelipe, Javier; Jefferys, John G. R.; Bliss, Tim V. P.; Dierssen, Mara

    2014-01-01

    Changes in nuclear Ca2+ homeostasis activate specific gene expression programs and are central to the acquisition and storage of information in the brain. DREAM (downstream regulatory element antagonist modulator), also known as calsenilin/KChIP-3 (K+ channel interacting protein 3), is a Ca2+-binding protein that binds DNA and represses transcription in a Ca2+-dependent manner. To study the function of DREAM in the brain, we used transgenic mice expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). Using genome-wide analysis, we show that DREAM regulates the expression of specific activity-dependent transcription factors in the hippocampus, including Npas4, Nr4a1, Mef2c, JunB, and c-Fos. Furthermore, DREAM regulates its own expression, establishing an autoinhibitory feedback loop to terminate activity-dependent transcription. Ablation of DREAM does not modify activity-dependent transcription because of gene compensation by the other KChIP family members. The expression of daDREAM in the forebrain resulted in a complex phenotype characterized by loss of recurrent inhibition and enhanced long-term potentiation (LTP) in the dentate gyrus and impaired learning and memory. Our results indicate that DREAM is a major master switch transcription factor that regulates the on/off status of specific activity-dependent gene expression programs that control synaptic plasticity, learning, and memory. PMID:24366545

  4. Coupling analysis of energy conversion in multi-mode vibration structural control using a synchronized switch damping method

    International Nuclear Information System (INIS)

    Ji, Hongli; Qiu, Jinhao; Xia, Pinqi; Inman, Daniel

    2012-01-01

    Modal coupling is an important issue in the analysis and control of structural systems with multi-degrees of freedom (MDOF). In this paper, modal coupling induced by energy conversion in the structural control of an MDOF system using a synchronized switch damping method is investigated theoretically and validated numerically. In the analysis, it is supposed that the voltage on the piezoelectric actuator is switched at the displacement extrema of a given mode. Two types of coupling in energy conversion are considered. The first is whether the switching action based on one mode induces energy conversion of the other modes. The second is whether the vibration of one mode affects the energy conversion of the other modes. The results indicate that the modal coupling in energy conversion is very complicated. In most cases the switching action based on one mode does induce energy conversion of another mode, but the efficiency depends on the frequency ratio of the two modes. The vibration of one mode affects the energy conversion of another mode only when the frequency ratio of the two modes takes some special values. Discussions are also given on the potential application of the theoretical results in the design of an energy harvesting device. (paper)

  5. Examining age-related differences in auditory attention control using a task-switching procedure.

    Science.gov (United States)

    Lawo, Vera; Koch, Iring

    2014-03-01

    Using a novel task-switching variant of dichotic selective listening, we examined age-related differences in the ability to intentionally switch auditory attention between 2 speakers defined by their sex. In our task, young (M age = 23.2 years) and older adults (M age = 66.6 years) performed a numerical size categorization on spoken number words. The task-relevant speaker was indicated by a cue prior to auditory stimulus onset. The cuing interval was either short or long and varied randomly trial by trial. We found clear performance costs with instructed attention switches. These auditory attention switch costs decreased with prolonged cue-stimulus interval. Older adults were generally much slower (but not more error prone) than young adults, but switching-related effects did not differ across age groups. These data suggest that the ability to intentionally switch auditory attention in a selective listening task is not compromised in healthy aging. We discuss the role of modality-specific factors in age-related differences.

  6. Increased cognitive control after task conflict? Investigating the N-3 effect in task switching.

    Science.gov (United States)

    Schuch, Stefanie; Grange, James A

    2018-05-25

    Task inhibition is considered to facilitate switching to a new task and is assumed to decay slowly over time. Hence, more persisting inhibition needs to be overcome when returning to a task after one intermediary trial (ABA task sequence) than when returning after two or more intermediary trials (CBA task sequence). Schuch and Grange (J Exp Psychol Learn Mem Cogn 41:760-767, 2015) put forward the hypothesis that there is higher task conflict in ABA than CBA sequences, leading to increased cognitive control in the subsequent trial. They provided evidence that performance is better in trials following ABA than following CBA task sequences. Here, this effect of the previous task sequence ("N-3 effect") is further investigated by varying the cue-stimulus interval (CSI), allowing for short (100 ms) or long (900 ms) preparation time for the upcoming task. If increased cognitive control after ABA involves a better preparation for the upcoming task, the N-3 effect should be larger with long than short CSI. The results clearly show that this is not the case. In Experiment 1, the N-3 effect was smaller with long than short CSI; in Experiment 2, the N-3 effect was not affected by CSI. Diffusion model analysis confirmed previous results in the literature (regarding the effect of CSI and of the ABA-CBA difference); however, the N-3 effect was not unequivocally associated with any of the diffusion model parameters. In exploratory analysis, we also tested the alternative hypothesis that the N-3 effect involves more effective task shielding, which would be reflected in reduced congruency effects in trials following ABA, relative to trials following CBA; congruency effects did not differ between these conditions. Taken together, we can rule out two potential explanations of the N-3 effect: Neither is this effect due to enhanced task preparation, nor to more effective task shielding.

  7. Computerized precision control of a synchronous high voltage discharge switch for the beam separation system of the LEP e+/e- collider

    International Nuclear Information System (INIS)

    Dieperink, J.H.; Finnigan, A.; Kalbreier, W.; Keizer, R.L.; Laffin, M.; Mertens, V.

    1989-01-01

    Electrostatic separators are used to separate the beams in LEP. The counter-rotating beams are eventually brought into collision in the four low beta insertions, using switches to discharge simultaneously four high voltage (HV) circuits. Each switch consists of four spark gaps mounted in a pressure vessel. A reduction of the gap widths below the self ignition instance by electric motors results in the initiation of the discharges. Synchronization is ensured by the electrical coupling of the electrodes connected to the ground. The design and performance of the computerized precision control of the discharge switch are described. The dynamic characteristics of the prototype switch are also presented. 5 refs., 5 figs

  8. An Enhanced Three-Level Voltage Switching State Scheme for Direct Torque Controlled Open End Winding Induction Motor

    Science.gov (United States)

    Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar

    2018-01-01

    Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.

  9. Genetic control of anastomosis in Podospora anserina.

    Science.gov (United States)

    Tong, Laetitia Chan Ho; Silar, Philippe; Lalucque, Hervé

    2014-09-01

    We developed a new microscopy procedure to study anastomoses in the model ascomycete Podospora anserina and compared it with the previous method involving the formation of balanced heterokaryons. Both methods showed a good correlation. Heterokaryon formation was less quantifiable, but enabled to observe very rare events. Microscopic analysis evidenced that anastomoses were greatly influence by growth conditions and were severely impaired in the IDC mutants of the PaMpk1, PaMpk2, IDC1 and PaNox1 pathways. Yet some mutants readily formed heterokaryons, albeit with a delay when compared to the wild type. We also identified IDC(821), a new mutant presenting a phenotype similar to the other IDC mutants, including lack of anastomosis. Complete genome sequencing revealed that IDC(821) was affected in the orthologue of the Neurospora crassa So gene known to control anastomosis in several other ascomycetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Reducing Glucose Variability Due to Meals and Postprandial Exercise in T1DM Using Switched LPV Control: In Silico Studies.

    Science.gov (United States)

    Colmegna, Patricio H; Sánchez-Peña, Ricardo S; Gondhalekar, Ravi; Dassau, Eyal; Doyle, Francis J

    2016-05-01

    Time-varying dynamics is one of the main issues for achieving safe blood glucose control in type 1 diabetes mellitus (T1DM) patients. In addition, the typical disturbances considered for controller design are meals, which increase the glucose level, and physical activity (PA), which increases the subject's sensitivity to insulin. In previous works the authors have applied a linear parameter-varying (LPV) control technique to manage unannounced meals. A switched LPV controller that switches between 3 LPV controllers, each with a different level of aggressiveness, is designed to further cope with both unannounced meals and postprandial PA. Thus, the proposed control strategy has a "standard" mode, an "aggressive" mode, and a "conservative" mode. The "standard" mode is designed to be applied most of the time, while the "aggressive" mode is designed to deal only with hyperglycemia situations. On the other hand, the "conservative" mode is focused on postprandial PA control. An ad hoc simulator has been developed to test the proposed controller. This simulator is based on the distribution version of the UVA/Padova model and includes the effect of PA based on Schiavon.(1) The test results obtained when using this simulator indicate that the proposed control law substantially reduces the risk of hypoglycemia with the conservative strategy, while the risk of hyperglycemia is scarcely affected. It is demonstrated that the announcement, or anticipation, of exercise is indispensable for letting a mono-hormonal artificial pancreas deal with the consequences of postprandial PA. In view of this the proposed controller allows switching into a conservative mode when notified of PA by the user. © 2016 Diabetes Technology Society.

  11. Generation Method of Multipiecewise Linear Chaotic Systems Based on the Heteroclinic Shil’nikov Theorem and Switching Control

    Directory of Open Access Journals (Sweden)

    Chunyan Han

    2015-01-01

    Full Text Available Based on the heteroclinic Shil’nikov theorem and switching control, a kind of multipiecewise linear chaotic system is constructed in this paper. Firstly, two fundamental linear systems are constructed via linearization of a chaotic system at its two equilibrium points. Secondly, a two-piecewise linear chaotic system which satisfies the Shil’nikov theorem is generated by constructing heteroclinic loop between equilibrium points of the two fundamental systems by switching control. Finally, another multipiecewise linear chaotic system that also satisfies the Shil’nikov theorem is obtained via alternate translation of the two fundamental linear systems and heteroclinic loop construction of adjacent equilibria for the multipiecewise linear system. Some basic dynamical characteristics, including divergence, Lyapunov exponents, and bifurcation diagrams of the constructed systems, are analyzed. Meanwhile, computer simulation and circuit design are used for the proposed chaotic systems, and they are demonstrated to be effective for the method of chaos anticontrol.

  12. Multiphase soft switched DC/DC converter and active control technique for fuel cell ripple current elimination

    Science.gov (United States)

    Lai, Jih-Sheng; Liu, Changrong; Ridenour, Amy

    2009-04-14

    DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.

  13. Assessing methods for dealing with treatment switching in randomised controlled trials: a simulation study

    Directory of Open Access Journals (Sweden)

    Latimer Nicholas

    2011-01-01

    Full Text Available Abstract Background We investigate methods used to analyse the results of clinical trials with survival outcomes in which some patients switch from their allocated treatment to another trial treatment. These included simple methods which are commonly used in medical literature and may be subject to selection bias if patients switching are not typical of the population as a whole. Methods which attempt to adjust the estimated treatment effect, either through adjustment to the hazard ratio or via accelerated failure time models, were also considered. A simulation study was conducted to assess the performance of each method in a number of different scenarios. Results 16 different scenarios were identified which differed by the proportion of patients switching, underlying prognosis of switchers and the size of true treatment effect. 1000 datasets were simulated for each of these and all methods applied. Selection bias was observed in simple methods when the difference in survival between switchers and non-switchers were large. A number of methods, particularly the AFT method of Branson and Whitehead were found to give less biased estimates of the true treatment effect in these situations. Conclusions Simple methods are often not appropriate to deal with treatment switching. Alternative approaches such as the Branson & Whitehead method to adjust for switching should be considered.

  14. Genetic test feedback with weight control advice: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Meisel Susanne F

    2012-12-01

    Full Text Available Abstract Background Genetic testing for risk of weight gain is already available over the internet despite uncertain benefits and concerns about adverse emotional or behavioral effects. Few studies have assessed the effect of adding genetic test feedback to weight control advice, even though one of the proposed applications of genetic testing is to stimulate preventive action. This study will investigate the motivational effect of adding genetic test feedback to simple weight control advice in a situation where weight gain is relatively common. Methods/design First-year university students (n = 800 will be randomized to receive either 1 their personal genetic test result for a gene (FTO related to weight gain susceptibility in addition to a leaflet with simple weight control advice (‘Feedback + Advice’ group, FA, or 2 only the leaflet containing simple weight control advice (‘Advice Only’ group, AO. Motivation to avoid weight gain and active use of weight control strategies will be assessed one month after receipt of the leaflet with or without genetic test feedback. Weight and body fat will be measured at baseline and eight months follow-up. We will also assess short-term psychological reactions to the genetic test result. In addition, we will explore interactions between feedback condition and gene test status. Discussion We hope to provide a first indication of the clinical utility of weight-related genetic test feedback in the prevention context. Trial registration Current controlled trials ISRCTN91178663

  15. A versatile cis-acting inverter module for synthetic translational switches.

    Science.gov (United States)

    Endo, Kei; Hayashi, Karin; Inoue, Tan; Saito, Hirohide

    2013-01-01

    Artificial genetic switches have been designed and tuned individually in living cells. A method to directly invert an existing OFF switch to an ON switch should be highly convenient to construct complex circuits from well-characterized modules, but developing such a technique has remained a challenge. Here we present a cis-acting RNA module to invert the function of a synthetic translational OFF switch to an ON switch in mammalian cells. This inversion maintains the property of the parental switch in response to a particular input signal. In addition, we demonstrate simultaneous and specific expression control of both the OFF and ON switches. The module fits the criteria of universality and expands the versatility of mRNA-based information processing systems developed for artificially controlling mammalian cellular behaviour.

  16. A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC).

    Science.gov (United States)

    Sandoval, Imelda T; Delacruz, Richard Glenn C; Miller, Braden N; Hill, Shauna; Olson, Kristofor A; Gabriel, Ana E; Boyd, Kevin; Satterfield, Christeena; Remmen, Holly Van; Rutter, Jared; Jones, David A

    2017-04-11

    Elucidating signaling pathways that regulate cellular metabolism is essential for a better understanding of normal development and tumorigenesis. Recent studies have shown that mitochondrial pyruvate carrier 1 (MPC1) , a crucial player in pyruvate metabolism, is downregulated in colon adenocarcinomas. Utilizing zebrafish to examine the genetic relationship between MPC1 and Adenomatous polyposis coli (APC), a key tumor suppressor in colorectal cancer, we found that apc controls the levels of mpc1 and that knock down of mpc1 recapitulates phenotypes of impaired apc function including failed intestinal differentiation. Exogenous human MPC1 RNA rescued failed intestinal differentiation in zebrafish models of apc deficiency. Our data demonstrate a novel role for apc in pyruvate metabolism and that pyruvate metabolism dictates intestinal cell fate and differentiation decisions downstream of apc .

  17. Design of PID Controller Simulator based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Fahri VATANSEVER

    2013-08-01

    Full Text Available PID (Proportional Integral and Derivative controllers take an important place in the field of system controlling. Various methods such as Ziegler-Nichols, Cohen-Coon, Chien Hrones Reswick (CHR and Wang-Juang-Chan are available for the design of such controllers benefiting from the system time and frequency domain data. These controllers are in compliance with system properties under certain criteria suitable to the system. Genetic algorithms have become widely used in control system applications in parallel to the advances in the field of computer and artificial intelligence. In this study, PID controller designs have been carried out by means of classical methods and genetic algorithms and comparative results have been analyzed. For this purpose, a graphical user interface program which can be used for educational purpose has been developed. For the definite (entered transfer functions, the suitable P, PI and PID controller coefficients have calculated by both classical methods and genetic algorithms and many parameters and responses of the systems have been compared and presented numerically and graphically

  18. Parameters Designing of Slide Mode Variable Structure Controller of Bus Voltage of DC Microgrid Based on Proportion Switching Function

    Directory of Open Access Journals (Sweden)

    Sun Zhenchuan

    2017-01-01

    Full Text Available Constant value control of the DC-bus voltage is a essential problem of the control system of the DC microgrids. DC-DC converters are applied in parallel to realize the transform of energy from the distributed generations (DGs to the DC-bus. Droop control methods are applied to the DC-bus voltage while PI controllers are used in controlling the duty ratios of the converters. This method may bring out the slow response speed of the system accompanied by the large ripple of the voltage. The slide mode variable structure control can speed up the response and reduce the ripple of the voltage as well. In the traditional slide mode control based on the proportion switching function, the denominator of the transfer function of the controlled plant is a second-order characteristic polynomial without the constant term. The denominators of the transfer functions of the buck DC-DC converters contain the constant terms. The designing of the parameters of the slide mode control based on the proportion switching function is analyzed based on mathematics deductions. Simulation results show that the selected parameters can not only speed up the response of the system but also greatly reduce the ripple of the voltage.

  19. Controlled mass pollination in loblolly pine to increase genetic gains

    Science.gov (United States)

    F.E. Bridgwater; D.L. Bramlett; T.D. Byram; W.J. Lowe

    1998-01-01

    Controlled mass pollination (CMP) is one way to increase genetic gains from traditional wind-pollinated seed orchards. Methodology is under development by several forestry companies in the southern USA. Costs of CMP depend on the efficient installation, pollination, and removal of inexpensive paper bags. Even in pilot-scale studies these costs seem reasonable. Net...

  20. System control fuzzy neural sewage pumping stations using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Владлен Николаевич Кузнецов

    2015-06-01

    Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

  1. A robust two-way switching control system for remote piloting and stabilization of low-cost quadrotor UAVs

    Science.gov (United States)

    Ripamonti, Francesco; Resta, Ferruccio; Vivani, Andrea

    2015-04-01

    The aim of this paper is to present two control logics and an attitude estimator for UAV stabilization and remote piloting, that are as robust as possible to physical parameters variation and to other external disturbances. Moreover, they need to be implemented on low-cost micro-controllers, in order to be attractive for commercial drones. As an example, possible applications of the two switching control logics could be area surveillance and facial recognition by means of a camera mounted on the drone: the high computational speed logic is used to reach the target, when the high-stability one is activated, in order to complete the recognition tasks.

  2. Genetic improvement of tomato by targeted control of fruit softening

    KAUST Repository

    Uluisik, Selman

    2016-07-25

    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain \\'non-ripening mutations\\' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase. © 2016 Nature America, Inc. All rights reserved.

  3. Genetic improvement of tomato by targeted control of fruit softening

    KAUST Repository

    Uluisik, Selman; Chapman, Natalie H; Smith, Rebecca; Poole, Mervin; Adams, Gary; Gillis, Richard B; Besong, Tabot M.D.; Sheldon, Judith; Stiegelmeyer, Suzy; Perez, Laura; Samsulrizal, Nurul; Wang, Duoduo; Fisk, Ian D; Yang, Ni; Baxter, Charles; Rickett, Daniel; Fray, Rupert; Blanco-Ulate, Barbara; Powell, Ann L T; Harding, Stephen E; Craigon, Jim; Rose, Jocelyn K C; Fich, Eric A; Sun, Li; Domozych, David S; Fraser, Paul D; Tucker, Gregory A; Grierson, Don; Seymour, Graham B

    2016-01-01

    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase. © 2016 Nature America, Inc. All rights reserved.

  4. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  5. Finite-Time Switched Second-Order Sliding-Mode Control of Nonholonomic Wheeled Mobile Robot Systems

    Directory of Open Access Journals (Sweden)

    Hao Ce

    2018-01-01

    Full Text Available A continuous finite-time robust control method for the trajectory tracking control of a nonholonomic wheeled mobile robot (NWMR is presented in this paper. The proposed approach is composed of conventional sliding-mode control (SMC in the internal loop and modified switched second-order sliding-mode (S-SOSM control in the external loop. Sliding-mode controller is equivalently represented as stabilization of the nominal system without uncertainties. An S-SOSM control algorithm is employed to counteract the impact of state-dependent unmodeled dynamics and time-varying external disturbances, and the unexpected chattering has been attenuated significantly. Particularly, state-space partitioning is constructed to obtain the bounds of uncertainty terms and accomplish different control objectives under different requirements. Simulation and experiment results are used to demonstrate the effectiveness and applicability of the proposed approach.

  6. Relationships between trait impulsivity and cognitive control: the effect of attention switching on response inhibition and conflict resolution.

    Science.gov (United States)

    Leshem, Rotem

    2016-02-01

    This study examined the relationship between trait impulsivity and cognitive control, as measured by the Barratt Impulsiveness Scale (BIS) and a focused attention dichotic listening to words task, respectively. In the task, attention was manipulated in two attention conditions differing in their cognitive control demands: one in which attention was directed to one ear at a time for a whole block of trials (blocked condition) and another in which attention was switched pseudo-randomly between the two ears from trial to trial (mixed condition). Results showed that high impulsivity participants exhibited more false alarm and intrusion errors as well as a lesser ability to distinguish between stimuli in the mixed condition, as compared to low impulsivity participants. In the blocked condition, the performance levels of the two groups were comparable with respect to these measures. In addition, total BIS scores were correlated with intrusions and laterality index in the mixed but not the blocked condition. The findings suggest that high impulsivity individuals may be less prone to attentional difficulties when cognitive load is relatively low. In contrast, when attention switching is involved, high impulsivity is associated with greater difficulty in inhibiting responses and resolving cognitive conflict than is low impulsivity, as reflected in error-prone information processing. The conclusion is that trait impulsivity in a non-clinical population is manifested more strongly when attention switching is required than during maintained attention. This may have important implications for the conceptualization and treatment of impulsivity in both non-clinical and clinical populations.

  7. Quantum control using genetic algorithms in quantum communication: superdense coding

    International Nuclear Information System (INIS)

    Domínguez-Serna, Francisco; Rojas, Fernando

    2015-01-01

    We present a physical example model of how Quantum Control with genetic algorithms is applied to implement the quantum superdense code protocol. We studied a model consisting of two quantum dots with an electron with spin, including spin-orbit interaction. The electron and the spin get hybridized with the site acquiring two degrees of freedom, spin and charge. The system has tunneling and site energies as time dependent control parameters that are optimized by means of genetic algorithms to prepare a hybrid Bell-like state used as a transmission channel. This state is transformed to obtain any state of the four Bell basis as required by superdense protocol to transmit two bits of classical information. The control process protocol is equivalent to implement one of the quantum gates in the charge subsystem. Fidelities larger than 99.5% are achieved for the hybrid entangled state preparation and the superdense operations. (paper)

  8. Genetic control of organ shape and tissue polarity.

    Directory of Open Access Journals (Sweden)

    Amelia A Green

    2010-11-01

    Full Text Available The mechanisms by which genes control organ shape are poorly understood. In principle, genes may control shape by modifying local rates and/or orientations of deformation. Distinguishing between these possibilities has been difficult because of interactions between patterns, orientations, and mechanical constraints during growth. Here we show how a combination of growth analysis, molecular genetics, and modelling can be used to dissect the factors contributing to shape. Using the Snapdragon (Antirrhinum flower as an example, we show how shape development reflects local rates and orientations of tissue growth that vary spatially and temporally to form a dynamic growth field. This growth field is under the control of several dorsoventral genes that influence flower shape. The action of these genes can be modelled by assuming they modulate specified growth rates parallel or perpendicular to local orientations, established by a few key organisers of tissue polarity. Models in which dorsoventral genes only influence specified growth rates do not fully account for the observed growth fields and shapes. However, the data can be readily explained by a model in which dorsoventral genes also modify organisers of tissue polarity. In particular, genetic control of tissue polarity organisers at ventral petal junctions and distal boundaries allows both the shape and growth field of the flower to be accounted for in wild type and mutants. The results suggest that genetic control of tissue polarity organisers has played a key role in the development and evolution of shape.

  9. Low-Crosstalk Composite Optical Crosspoint Switches

    Science.gov (United States)

    Pan, Jing-Jong; Liang, Frank

    1993-01-01

    Composite optical switch includes two elementary optical switches in tandem, plus optical absorbers. Like elementary optical switches, composite optical switches assembled into switch matrix. Performance enhanced by increasing number of elementary switches. Advantage of concept: crosstalk reduced to acceptably low level at moderate cost of doubling number of elementary switches rather than at greater cost of tightening manufacturing tolerances and exerting more-precise control over operating conditions.

  10. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  11. The sheep blowfly genetic control program in Australia

    International Nuclear Information System (INIS)

    Foster, Geoffrey G.

    1989-01-01

    The blowfly Lucilia cuprina is the most important myiasis pet of sheep in Australia. Other species are associated with sheep myiasis, but L. cuprina is probably responsible for initiating more than 90% of infestations. Annual costs of production losses, prevention and treatment have been estimated at $149 millions in 1985. Prevention and treatment encompass both insecticidal applications to sheep and non-chemical management practices. In the absence of effective preventive measures, the sheep industry would be non-viable over much of Australia. Insecticide usage against L. cuprina has been marked by the appearance of widespread resistance to cyclodienes in 1956, the organophosphates in 1965, and carbamates in 1966. Resistance has not yet been reported against the triazine compounds introduced for blowfly control in 1981. The most effective non-chemical control measures are surgical (removal of skin from the breech in certain breeds of sheep, and tail-docking). They protect sheep by reducing favourable oviposition sites (dung and urine-stained wool). The spectre of insecticide resistance and the early success of the sterile insect technique (SIT) against screwworm fly in the U.S.A., led this Division to consider SIT and other autocidal methods in the 1960s. The L. cuprina genetics research program was established in 1966 and subsequently expanded in 1971. More recently, lobbying by animal welfare groups against surgical blowfly control practices, as well as increasing consumer awareness of insecticide residues in animal products, have accelerated the search for alternatives to chemical control. When SIT was first considered for L. cuprina control in 1960, little was known about the population dynamics of L. cuprina. There were insufficient ecological data to evaluate the prospects of alternative strategies such as suppression or containment. The number of flies which would have to be released in a SIT program was unknown, as were the costs. Assuming that the cost of

  12. Fluid-sensitive nanoscale switching with quantum levitation controlled by α -Sn/β -Sn phase transition

    Science.gov (United States)

    Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas

    2018-03-01

    We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α -Sn to metallic β -Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α -Sn and β -Sn , giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening liquid mixture. In this way, one may be able to produce phase-transition-controlled quantum levitation in a liquid medium.

  13. Genetic Algorithm Optimizes Q-LAW Control Parameters

    Science.gov (United States)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  14. Optimization Design by Genetic Algorithm Controller for Trajectory Control of a 3-RRR Parallel Robot

    Directory of Open Access Journals (Sweden)

    Lianchao Sheng

    2018-01-01

    Full Text Available In order to improve the control precision and robustness of the existing proportion integration differentiation (PID controller of a 3-Revolute–Revolute–Revolute (3-RRR parallel robot, a variable PID parameter controller optimized by a genetic algorithm controller is proposed in this paper. Firstly, the inverse kinematics model of the 3-RRR parallel robot was established according to the vector method, and the motor conversion matrix was deduced. Then, the error square integral was chosen as the fitness function, and the genetic algorithm controller was designed. Finally, the control precision of the new controller was verified through the simulation model of the 3-RRR planar parallel robot—built in SimMechanics—and the robustness of the new controller was verified by adding interference. The results show that compared with the traditional PID controller, the new controller designed in this paper has better control precision and robustness, which provides the basis for practical application.

  15. Viscosity Solutions for a System of Integro-PDEs and Connections to Optimal Switching and Control of Jump-Diffusion Processes

    International Nuclear Information System (INIS)

    Biswas, Imran H.; Jakobsen, Espen R.; Karlsen, Kenneth H.

    2010-01-01

    We develop a viscosity solution theory for a system of nonlinear degenerate parabolic integro-partial differential equations (IPDEs) related to stochastic optimal switching and control problems or stochastic games. In the case of stochastic optimal switching and control, we prove via dynamic programming methods that the value function is a viscosity solution of the IPDEs. In our setting the value functions or the solutions of the IPDEs are not smooth, so classical verification theorems do not apply.

  16. Development and validation of a general-purpose ASIC chip for the control of switched reluctance machines

    International Nuclear Information System (INIS)

    Chen Haijin; Lu Shengli; Shi Longxing

    2009-01-01

    A general-purpose application specific integrated circuit (ASIC) chip for the control of switched reluctance machines (SRMs) was designed and validated to fill the gap between the microcontroller capability and the controller requirements of high performance switched reluctance drive (SRD) systems. It can be used for the control of SRM running either in low speed or in high-speed, i.e., either in chopped current control (CCC) mode or in angular position control (APC) mode. Main functions of the chip include filtering and cycle calculation of rotor angular position signals, commutation logic according to rotor cycle and turn-on/turn-off angles (θ on /θ off ), controllable pulse width modulation (PWM) waveforms generation, chopping control with adjustable delay time, and commutation control with adjustable delay time. All the control parameters of the chip are set online by the microcontroller through a serial peripheral interface (SPI). The chip has been designed with the standard cell based design methodology, and implemented in the central semiconductor manufacturing corporation (CSMC) 0.5 μm complementary metal-oxide-semiconductor (CMOS) process technology. After a successful automatic test equipment (ATE) test using the Nextest's Maverick test system, the chip was further validated through an experimental three-phase 6/2-pole SRD system. Both the ATE test and experimental validation results show that the chip can meet the control requirements of high performance SRD systems, and simplify the controller construction. For a resolution of 0.36 deg. (electrical degree), the chip's maximum processable frequency of the rotor angular position signals is 10 kHz, which is 300,000 rev/min when a three-phase 6/2-pole SRM is concerned

  17. Controlled perturbation-induced switching in pulse-coupled oscillator networks

    International Nuclear Information System (INIS)

    Schittler Neves, Fabio; Timme, Marc

    2009-01-01

    Pulse-coupled systems such as spiking neural networks exhibit nontrivial invariant sets in the form of attracting yet unstable saddle periodic orbits where units are synchronized into groups. Heteroclinic connections between such orbits may in principle support switching processes in these networks and enable novel kinds of neural computations. For small networks of coupled oscillators, we here investigate under which conditions and how system symmetry enforces or forbids certain switching transitions that may be induced by perturbations. For networks of five oscillators, we derive explicit transition rules that for two cluster symmetries deviate from those known from oscillators coupled continuously in time. A third symmetry yields heteroclinic networks that consist of sets of all unstable attractors with that symmetry and the connections between them. Our results indicate that pulse-coupled systems can reliably generate well-defined sets of complex spatiotemporal patterns that conform to specific transition rules. We briefly discuss possible implications for computation with spiking neural systems.

  18. Controlled perturbation-induced switching in pulse-coupled oscillator networks

    Energy Technology Data Exchange (ETDEWEB)

    Schittler Neves, Fabio; Timme, Marc [Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, Goettingen, D-37073 (Germany); Bernstein Center for Computational Neuroscience (BCCN), Goettingen (Germany)], E-mail: neves@nld.ds.mpg.de, E-mail: timme@nld.ds.mpg.de

    2009-08-28

    Pulse-coupled systems such as spiking neural networks exhibit nontrivial invariant sets in the form of attracting yet unstable saddle periodic orbits where units are synchronized into groups. Heteroclinic connections between such orbits may in principle support switching processes in these networks and enable novel kinds of neural computations. For small networks of coupled oscillators, we here investigate under which conditions and how system symmetry enforces or forbids certain switching transitions that may be induced by perturbations. For networks of five oscillators, we derive explicit transition rules that for two cluster symmetries deviate from those known from oscillators coupled continuously in time. A third symmetry yields heteroclinic networks that consist of sets of all unstable attractors with that symmetry and the connections between them. Our results indicate that pulse-coupled systems can reliably generate well-defined sets of complex spatiotemporal patterns that conform to specific transition rules. We briefly discuss possible implications for computation with spiking neural systems.

  19. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure

    Science.gov (United States)

    Cai, Kaiming; Yang, Meiyin; Ju, Hailang; Wang, Sumei; Ji, Yang; Li, Baohe; Edmonds, Kevin William; Sheng, Yu; Zhang, Bao; Zhang, Nan; Liu, Shuai; Zheng, Houzhi; Wang, Kaiyou

    2017-07-01

    All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.

  20. Reversible control of kinesin activity and microtubule gliding speeds by switching the doping states of a conducting polymer support

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Brett D [US Naval Research Laboratory, Code 6930, Washington, DC 20375 (United States); Velea, Luminita M [US Naval Research Laboratory, Code 6930, Washington, DC 20375 (United States); Soto, Carissa M [US Naval Research Laboratory, Code 6930, Washington, DC 20375 (United States); Whitaker, Craig M [US Naval Academy, Department of Chemistry, Annapolis, MD 21402 (United States); Gaber, Bruce P [US Naval Research Laboratory, Code 6930, Washington, DC 20375 (United States); Ratna, Banahalli [US Naval Research Laboratory, Code 6930, Washington, DC 20375 (United States)

    2007-02-07

    We describe a method for reversibly controlling the ATPase activity of streptavidin-linked kinesin by changing the doping states of a conducting polymer support. When the polymer (poly(CH{sub 2}OH-EDOT)) was electrochemically switched from its dedoped (semiconducting) state to its doped (conducting) state, the ATPase activity of the adsorbed kinesin complex decreased by 35% with a concomitant decrease in the gliding speeds of kinesin-driven microtubules. When the polymer was switched back to its original dedoped state, nearly identical increases were observed in the kinesin ATPase activity and microtubule speeds. Use of a fluorescent ATP substrate analogue showed that the total amount of kinesin adsorbed on the poly(CH{sub 2}OH-EDOT) surface remained constant as the doping state of the polymer was switched. The microtubules exhibited nearly identical speed differences on the doped and dedoped surfaces for both chemical and electrochemical doping methods. Michaelis-Menten modelling suggests that the doped surface acts as an 'uncompetitive inhibitor' of kinesin. This work represents an investigation into the phenomenon of an electrically switchable surface exerting a moderating effect on the activity of an adsorbed protein that does not contain a bound, electroactive metal ion.

  1. Optimum Actuator Selection with a Genetic Algorithm for Aircraft Control

    Science.gov (United States)

    Rogers, James L.

    2004-01-01

    The placement of actuators on a wing determines the control effectiveness of the airplane. One approach to placement maximizes the moments about the pitch, roll, and yaw axes, while minimizing the coupling. For example, the desired actuators produce a pure roll moment without at the same time causing much pitch or yaw. For a typical wing, there is a large set of candidate locations for placing actuators, resulting in a substantially larger number of combinations to examine in order to find an optimum placement satisfying the mission requirements and mission constraints. A genetic algorithm has been developed for finding the best placement for four actuators to produce an uncoupled pitch moment. The genetic algorithm has been extended to find the minimum number of actuators required to provide uncoupled pitch, roll, and yaw control. A simplified, untapered, unswept wing is the model for each application.

  2. Simple-topology switched-mode DC-DC converters : dynamics and control

    CERN Document Server

    Wertelaers, P

    2018-01-01

    After a rehearsal of the functioning mode and characteristics of the buck-boost and buck converters, we attempt to formalize a lower-frequency description of the converter, by smoothing the waveforms containing switching ripple. This framework enables the construction of a linear time-invariant computational model, to which voltage-regulating actions can then be added. Emphasis is on the buck converter.

  3. Electrochemical control of quantum interference in anthraquinone-based molecular switches

    DEFF Research Database (Denmark)

    Markussen, Troels; Schiøtz, Jakob; Thygesen, Kristian Sommer

    2010-01-01

    Using first-principles calculations we analyze the electronic transport properties of a recently proposed anthraquinone-based electrochemical switch. Robust conductance on/off ratios of several orders of magnitude are observed due to destructive quantum interference present in the anthraquinone...... of hopping via the localized orbitals. The topology of the tight-binding model, which is dictated by the symmetries of the molecular orbitals, determines the amount of quantum interference....

  4. Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions.

    Science.gov (United States)

    Mativetsky, Jeffrey M; Pace, Giuseppina; Elbing, Mark; Rampi, Maria A; Mayor, Marcel; Samorì, Paolo

    2008-07-23

    Conductance switching associated with the photoisomerization of azobenzene-based (Azo) molecules was observed in nanoscopic metal-molecule-metal junctions. The junctions were formed by using a conducting atomic force microscope (C-AFM) approach, where a metallic AFM tip was used to electrically contact a gold-supported Azo self-assembled monolayer. The measured 30-fold increase in conductance is consistent with the expected decrease in tunneling barrier length resulting from the conformational change of the Azo molecule.

  5. Switch mode power supply

    International Nuclear Information System (INIS)

    Kim, Hui Jun

    1993-06-01

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  6. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Garcia Vanegas, Katherina; Lehka, Beata Joanna; Mortensen, Uffe Hasbro

    2017-01-01

    to the pathway control state where production was optimized by downregulating an essential gene TSC13, hence, reducing formation of a byproduct. Conclusions We have successfully integrated two CRISPR tools, one for genetic engineering and one for pathway control, into one system and successfully used it for cell...

  7. A Genetic Based Neuro-Fuzzy Controller System

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Recently, the mobile robots have great importance in the manufacturing processes. They are widely used for assembling processes, handling the dangerous components, moving the weighted things, etc. Designing the controller of the mobile robot is a very complex task. Many simple control systems used the neuro-fuzzy controller in the mobile robots. But, they faced with great complexity when moving in unstructured and dynamic environments. The proposed system introduces the uses of the genetic algorithm for optimizing the parameters of the neuro-fuzzy controller. So, the proposed system can improve the performance of the mobile robots. It has applied for a mobile robot used for moving the dangerous and critical materials in unstructured environment. Its results are compared with other traditional controller systems. The suggested system has proved its success for the real-time applications

  8. Application of genetic algorithms to tuning fuzzy control systems

    Science.gov (United States)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  9. Switched reluctance motor drives

    Indian Academy of Sciences (India)

    Davis RM, Ray WF, Blake RJ 1981 Inverter drive for switched reluctance: circuits and component ratings. Inst. Elec. Eng. Proc. B128: 126-136. Ehsani M. 1991 Position Sensor elimination technique for the switched reluctance motor drive. US Patent No. 5,072,166. Ehsani M, Ramani K R 1993 Direct control strategies based ...

  10. Manually operated coded switch

    International Nuclear Information System (INIS)

    Barnette, J.H.

    1978-01-01

    The disclosure related to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made

  11. Development of Digital Hysteresis Current Control with PLL Loop Gain Compensation Strategy for PWM Inverters with Constant Switching Frequency

    Directory of Open Access Journals (Sweden)

    N. Belhaouchet

    2008-03-01

    Full Text Available Hysteresis current control is one of the simplest techniques used to control the magnitude and phase angle of motor current for motor drives systems. However, this technique presents several disadvantages such as operation at variable switching frequency which can reveal problems of filtering, interference between the phases in the case of the three-phase systems with insulated neutral connection or delta connection, and irregularity of the modulation pulses which especially causes an acoustic noise on the level of the machine for the high power drive. In this paper, a new technique is proposed for a variable-hysteresis-band controller based on dead beat control applied to three phase voltage source PWM inverters feeding AC motors. Its main aim is firstly ensure a constant switching frequency and secondly the synchronization of modulation pulses using the phase-locked-loop with loop gain compensation in order to ensure a better stability. The behavior of the proposed technique is verified by simulation.

  12. Genetically Controlled Fusion, Exocytosis and Fission of Artificial Vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; De Lucrezia, Davide

    if a special class of viral proteins, termed fusogenic peptides, were added to the external medium. In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we enclosed synthesized peptides in vesicles...... to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different mechanisms are available, e.g. addition...... fusion, fission and exocytosis....

  13. Nuclear power control system design using genetic algorithm

    International Nuclear Information System (INIS)

    Lee, Yoon Joon; Cho, Kyung Ho

    1996-01-01

    The genetic algorithm(GA) is applied to the design of the nuclear power control system. The reactor control system model is described in the LQR configuration. The LQR system order is increased to make the tracking system. The key parameters of the design are weighting matrices, and these are usually determined through numerous simulations in the conventional design. To determine the more objective and optimal weightings, the improved GA is applied. The results show that the weightings determined by the GA yield the better system responses than those obtained by the conventional design method

  14. Introduction of Exogenous HSV-TK Suicide Gene Increases Safety of Keratinocyte-Derived Induced Pluripotent Stem Cells by Providing Genetic “Emergency Exit” Switch

    Directory of Open Access Journals (Sweden)

    Maciej Sułkowski

    2018-01-01

    Full Text Available Since their invention in 2006, induced Pluripotent Stem (iPS cells remain a great promise for regenerative medicine circumventing the ethical issues linked to Embryonic Stem (ES cell research. iPS cells can be generated in a patient-specific manner as an unlimited source of various cell types for in vitro drug screening, developmental biology studies and regenerative use. Having the capacity of differentiating into the cells of all three primary germ layers, iPS cells have high potential to form teratoma tumors. This remains their main disadvantage and hazard which, until resolved, prevents utilization of iPS cells in clinic. Here, we present an approach for increasing iPS cells safety by introducing genetic modification—exogenous suicide gene Herpes Simplex Virus Thymidine Kinase (HSV-TK. Its expression results in specific vulnerability of genetically modified cells to prodrug—ganciclovir (GCV. We show that HSV-TK expressing cells can be eradicated both in vitro and in vivo with high specificity and efficiency with low doses of GCV. Described strategy increases iPS cells safety for future clinical applications by generating “emergency exit” switch allowing eradication of transplanted cells in case of their malfunction.

  15. Introduction of Exogenous HSV-TK Suicide Gene Increases Safety of Keratinocyte-Derived Induced Pluripotent Stem Cells by Providing Genetic "Emergency Exit" Switch.

    Science.gov (United States)

    Sułkowski, Maciej; Konieczny, Paweł; Chlebanowska, Paula; Majka, Marcin

    2018-01-09

    Since their invention in 2006, induced Pluripotent Stem (iPS) cells remain a great promise for regenerative medicine circumventing the ethical issues linked to Embryonic Stem (ES) cell research. iPS cells can be generated in a patient-specific manner as an unlimited source of various cell types for in vitro drug screening, developmental biology studies and regenerative use. Having the capacity of differentiating into the cells of all three primary germ layers, iPS cells have high potential to form teratoma tumors. This remains their main disadvantage and hazard which, until resolved, prevents utilization of iPS cells in clinic. Here, we present an approach for increasing iPS cells safety by introducing genetic modification-exogenous suicide gene Herpes Simplex Virus Thymidine Kinase ( HSV-TK ). Its expression results in specific vulnerability of genetically modified cells to prodrug-ganciclovir (GCV). We show that HSV-TK expressing cells can be eradicated both in vitro and in vivo with high specificity and efficiency with low doses of GCV. Described strategy increases iPS cells safety for future clinical applications by generating "emergency exit" switch allowing eradication of transplanted cells in case of their malfunction.

  16. High-contrast controllable switching based on polystyrene nonlinear cavities in 2D hole-type photonic crystals

    Science.gov (United States)

    Paghousi, Roohollah; Fasihi, Kiazand

    2018-05-01

    We present a new high-contrast controllable switch, which is based on a polystyrene nonlinear cavity, and is implemented in a two dimensional (2D) hole-type photonic crystal (PC). We show that by applying a control signal, the input power can be transmitted to the output waveguide with a high contrast ratio. The operation of the proposed device is investigated through the use of coupled-mode theory (CMT) and finite-difference time-domain (FDTD) method. The contrast ratio of the proposed device varies between 18 and 23, which is higher than the corresponding value in the previous investigations. Based on the simulation results, with increasing the control power the range of operating power will be increased, while the contrast ratio will be decreased. It has been shown that in a modified structure, at the expense of the range of operating power and the contrast ratio, the control power can be decreased, considerably.

  17. A Novel Switching-Based Control Framework for Improved Task Performance in Teleoperation System With Asymmetric Time-Varying Delays.

    Science.gov (United States)

    Zhai, Di-Hua; Xia, Yuanqing

    2018-02-01

    This paper addresses the adaptive control for task-space teleoperation systems with constrained predefined synchronization error, where a novel switched control framework is investigated. Based on multiple Lyapunov-Krasovskii functionals method, the stability of the resulting closed-loop system is established in the sense of state-independent input-to-output stability. Compared with previous work, the developed method can simultaneously handle the unknown kinematics/dynamics, asymmetric varying time delays, and prescribed performance control in a unified framework. It is shown that the developed controller can guarantee the prescribed transient-state and steady-state synchronization performances between the master and slave robots, which is demonstrated by the simulation study.

  18. Genetic and Environmental Control of Neurodevelopmental Robustness in Drosophila.

    Directory of Open Access Journals (Sweden)

    David J Mellert

    Full Text Available Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability "hotspot" depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.

  19. Inefficient cognitive control in adult ADHD: evidence from trial-by-trial Stroop test and cued task switching performance

    Directory of Open Access Journals (Sweden)

    Heuser Isabella

    2007-08-01

    Full Text Available Abstract Background Contemporary neuropsychological models of ADHD implicate impaired cognitive control as contributing to disorder characteristic behavioral deficiencies and excesses; albeit to varying degrees. While the traditional view of ADHD postulates a core deficiency in cognitive control processes, alternative dual-process models emphasize the dynamic interplay of bottom-up driven factors such as activation, arousal, alerting, motivation, reward and temporal processing with top-down cognitive control. However, neuropsychological models of ADHD are child-based and have yet to undergo extensive empirical scrutiny with respect to their application to individuals with persistent symptoms in adulthood. Furthermore, few studies of adult ADHD samples have investigated two central cognitive control processes: interference control and task-set coordination. The current study employed experimental chronometric Stroop and task switching paradigms to investigate the efficiency of processes involved in interference control and task-set coordination in ADHD adults. Methods 22 adults diagnosed with persistent ADHD (17 males and 22 matched healthy control subjects performed a manual trial-by-trial Stroop color-word test and a blocked explicitly cued task switching paradigm. Performance differences between neutral and incongruent trials of the Stroop task measured interference control. Task switching paradigm manipulations allowed for measurement of transient task-set updating, sustained task-set maintenance, preparatory mechanisms and interference control. Control analyses tested for the specificity of group × condition interactions. Results Abnormal processing of task-irrelevant stimulus features was evident in ADHD group performance on both tasks. ADHD group interference effects on the task switching paradigm were found to be dependent on the time allotted to prepare for an upcoming task. Group differences in sustained task-set maintenance and

  20. An electronic trigger tool to optimise intravenous to oral antibiotic switch: a controlled, interrupted time series study

    Directory of Open Access Journals (Sweden)

    Marvin A. H. Berrevoets

    2017-08-01

    Full Text Available Abstract Background Timely switch from intravenous (iv antibiotics to oral therapy is a key component of antimicrobial stewardship programs in order to improve patient safety, promote early discharge and reduce costs. We have introduced a time-efficient and easily implementable intervention that relies on a computerized trigger tool, which identifies patients who are candidates for an iv to oral antibiotic switch. Methods The intervention was introduced on all internal medicine wards in a teaching hospital. Patients were automatically identified by an electronic trigger tool when parenteral antibiotics were used for >48 h and clinical or pharmacological data did not preclude switch therapy. A weekly educational session was introduced to alert the physicians on the intervention wards. The intervention wards were compared with control wards, which included all other hospital wards. An interrupted time-series analysis was performed to compare the pre-intervention period with the post-intervention period using ‘% of i.v. prescriptions >72 h’ and ‘median duration of iv therapy per prescription’ as outcomes. We performed a detailed prospective evaluation on a subset of 244 prescriptions to evaluate the efficacy and appropriateness of the intervention. Results The number of intravenous prescriptions longer than 72 h was reduced by 19% in the intervention group (n = 1519 (p < 0.01 and the median duration of iv antibiotics was reduced with 0.8 days (p = <0.05. Compared to the control group (n = 4366 the intervention was responsible for an additional decrease of 13% (p < 0.05 in prolonged prescriptions. The detailed prospective evaluation of a subgroup of patients showed that adherence to the electronic reminder was 72%. Conclusions An electronic trigger tool combined with a weekly educational session was effective in reducing the duration of intravenous antimicrobial therapy.

  1. GENETIC CONTROL OF RESTRICTION AND MODIFICATION IN ESCHERICHIA COLI1

    Science.gov (United States)

    Boyer, Herbert

    1964-01-01

    Boyer, Herbert (Yale University, New Haven, Conn.). Genetic control of restriction and modification in Escherichia coli. J. Bacteriol. 88:1652–1660. 1964.—Bacterial crosses with K-12 strains of Escherichia coli as Hfr donors (Hfr Hayes, Hfr Cavalli, and Hfr P4X-6) and B/r strains of E. coli as F− recipients were found to differ from crosses between K-12 Hfr donors and K-12 F− recipients in two ways: (i) recombinants (leu, pro, lac, and gal) did not appear at discrete time intervals but did appear simultaneously 30 min after matings were initiated, and (ii) the linkage of unselected markers to selected markers was reduced. Integration of a genetic region linked to the threonine locus of K-12 into the B/r genome resulted in a hybrid which no longer gave anomalous results in conjugation experiments. A similar region of the B strain was introduced into the K-12 strain, which then behaved as a typical B F− recipient. These observations are interpreted as the manifestation of host-controlled modification and restriction on the E. coli chromosome. This was verified by experiments on the restriction and modification of the bacteriophage lambda, F-lac, F-gal, and sex-factor, F1. It was found that the genetic region that controlled the mating responses of the K-12 and B/r strains also controlled the modification and restriction properties of these two strains. The genes responsible for the restricting and modifying properties of the K-12 and B strains of E. coli were found to be allelic, linked to each other, and linked to the threonine locus. PMID:14240953

  2. Distributed Leader-Following Finite-Time Consensus Control for Linear Multiagent Systems under Switching Topology

    Science.gov (United States)

    Xu, Xiaole; Chen, Shengyong

    2014-01-01

    This paper investigates the finite-time consensus problem of leader-following multiagent systems. The dynamical models for all following agents and the leader are assumed the same general form of linear system, and the interconnection topology among the agents is assumed to be switching and undirected. We mostly consider the continuous-time case. By assuming that the states of neighbouring agents are known to each agent, a sufficient condition is established for finite-time consensus via a neighbor-based state feedback protocol. While the states of neighbouring agents cannot be available and only the outputs of neighbouring agents can be accessed, the distributed observer-based consensus protocol is proposed for each following agent. A sufficient condition is provided in terms of linear matrix inequalities to design the observer-based consensus protocol, which makes the multiagent systems achieve finite-time consensus under switching topologies. Then, we discuss the counterparts for discrete-time case. Finally, we provide an illustrative example to show the effectiveness of the design approach. PMID:24883367

  3. Experimental control of a fluidic pinball using genetic programming

    Science.gov (United States)

    Raibaudo, Cedric; Zhong, Peng; Noack, Bernd R.; Martinuzzi, Robert J.

    2017-11-01

    The wake stabilization of a triangular cluster of three rotating cylinders was investigated in the present study. Experiments were performed at Reynolds number Re 6000, and compared with URANS-2D simulations at same flow conditions. 2D2C PIV measurements and constant temperature anemometry were used to characterize the flow without and with actuation. Open-loop actuation was first considered for the identification of particular control strategies. Machine learning control was also implemented for the experimental study. Linear genetic programming has been used for the optimization of open-loop parameters and closed-loop controllers. Considering a cost function J based on the fluctuations of the velocity measured by the hot-wire sensor, significant performances were achieved using the machine learning approach. The present work is supported by the senior author's (R. J. Martinuzzi) NSERC discovery Grant. C. Raibaudo acknowledges the financial support of the University of Calgary Eyes-High PDF program.

  4. Genetic and epigenetic control of plant heat responses

    Directory of Open Access Journals (Sweden)

    Junzhong eLiu

    2015-04-01

    Full Text Available Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27℃, high temperature (27-30℃ and extremely high temperature (37-42℃, also known as heat stress for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of plant immunity and circadian clock by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damage. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

  5. A scenario for a genetically controlled fission of artificial vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; Jørgensen, Mikkel Girke

    2011-01-01

    to vesicles (Hanczyc et al. 2003). In the present work, we developed a scenario how a genetically controlled fission of vesicles may be achieved by the synthesis of a special class of viral proteins within artificial vesicles. Because the authors already have a lot of experience in the water-in-oil emulsion...... be incorporated into vesicles, and therefore allow the synthesis of a large number of proteins (Noireaux et al. 2005). However, vesicle fission remains one of the upcoming challenges in the artificial cell project (Noireaux et al. 2011). So far, vesicle fission is implemented by applying mechanical stress...

  6. Control of the lighting system using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Čongradac Velimir D.

    2012-01-01

    Full Text Available The manufacturing, distribution and use of electricity are of fundamental importance for the social life and they have the biggest influence on the environment associated with any human activity. The energy needed for building lighting makes up 20-40% of the total consumption. This paper displays the development of the mathematical model and genetic algorithm for the control of dimmable lighting on problems of regulating the level of internal lighting and increase of energetic efficiency using daylight. A series of experiments using the optimization algorithm on the realized model confirmed very high savings in electricity consumption.

  7. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Tianxiang; Emori, Satoru; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Sun, Nian, E-mail: n.sun@neu.edu [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Peng, Bin; Liu, Ming, E-mail: mingliu@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Xi' an Jiaotong University, Xi' an 710049 (China); Jiao, Jie; Luo, Haosu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); Budil, David [Department of Chemistry, Northeastern University, Boston, Massachusetts 02115 (United States); Jones, John G.; Howe, Brandon M.; Brown, Gail J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)

    2016-01-04

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  8. Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

    DEFF Research Database (Denmark)

    Javadi, Alisa; Ding, Dapeng; Appel, Martin Hayhurst

    2018-01-01

    Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1-4]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between photons [2,5] or to entangle remote spin states [6......-9]. Ultimately, a quantum network of entangled spins constitutes a new paradigm in quantum optics [1]. Towards this goal, an integrated spin-photon interface would be a major leap forward. Here we demonstrate an efficient and optically programmable interface between the spin of an electron in a quantum dot...... and photons in a nanophotonic waveguide. The spin can be deterministically prepared with a fidelity of 96\\%. Subsequently the system is used to implement a "single-spin photonic switch", where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may...

  9. Control of internal and external short circuits in lithium batteries using a composite thermal switch

    Science.gov (United States)

    Mcdonald, Robert C.; Pickett, Jerome; Goebel, Franz

    1991-01-01

    A composite material has been developed, consisting of a blend of metal and fluorocarbon particles, which behaves as an electronic conductor at room temperature and which abruptly becomes an insulator at a predetermined temperature. This switching behavior results from the difference in thermal expansion coefficients between the conductive and non-conductive portions of the composite. This material was applied as a thin film between the carbon cathode in Li/SOCl2 cells, and the metallic cathode current collector. Using test articles incorporating this feature it was shown that lithium cells externally heated or internally heated during a short circuit lost rate capability and the ability to overheat well below the melting point of lithium (180 C). Thus, during an internal or external cell short circuit, the potential for thermal runaway involving reactions of molten lithium is avoided.

  10. Conductive polymer/high-TC superconductor sandwich structures: An example of a molecular switch for controlling superconductivity

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Lo, R.K.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole coated YBa 2 Cu 3 O 7-x microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layer. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7- film, the oxidized (conductive) polymer depresses T c by up to 50K. In a similar fashion, the oxidation state of the polymer is found to modulate reversibly the magnitude of J c , the superconducting critical current. Thus, a new type of molecular switch for controlling superconductivity is demonstrated. Electrochemical, resistance vs. temperature, atomic force microscopy and scanning electron microscopy measurements are utilized to explore the polymer/superconductor interactions

  11. A Zero-Voltage Switching Control Strategy for Dual Half-Bridge Cascaded Three-Level DC/DC Converter with Balanced Capacitor Voltages

    DEFF Research Database (Denmark)

    Liu, Dong; Wang, Yanbo; Chen, Zhe

    2017-01-01

    The input capacitor's voltages are unbalanced under the conventional control strategy in a dual half-bridge cascaded three-level (TL) DC/DC converter, which would affect the high voltage stresses on the capacitors. This paper proposes a pulse-wide modulation (PWM) strategy with two working modes...... for the dual half-bridge cascaded TL DC/DC converter, which can realize the zero-voltage switching (ZVS). More significantly, a capacitor voltage balance control is proposed by alternating the two working modes of the proposed ZVS PWM strategy, which can eliminate the voltage unbalance on the four input...... capacitors. Therefore, the proposed control strategy can improve the converter's performances in: 1) reducing the switching losses and noises of the power switches; and 2) reducing the voltage stresses on the input capacitors. Finally, the simulation results are conducted to verify the proposed control...

  12. Speed control with torque ripple reduction of switched reluctance motor by Hybrid Many Optimizing Liaison Gravitational Search technique

    Directory of Open Access Journals (Sweden)

    Nutan Saha

    2017-06-01

    Full Text Available This paper presents a control scheme for simultaneous control of the speed of Switched Reluctance Motor (SRM and minimizing the torque ripple employing Hybrid Many Optimizing Liaison Gravitational Search Algorithm (Hybrid MOLGSA technique. The control mechanism includes two controlling loops, the outer loop is governed for speed control and a current controller for the inner loop, intelligent selection of turn on and turn off angle for a 60 KW, 3-phase 6/8 SRM. It is noticed that the torque ripple coefficient, ISE of speed & current are reduced by 12.81%, 38.60%, 16.74% respectively by Hybrid MOLGSA algorithm compared to Gravitational Search Algorithm (GSA algorithm. It is also observed that the settling times for the controller using the parameter values for obtaining best values of torque ripple, Integral square error of speed and current are reduced by 51.25%, 58.04% and 59.375% by proposed Hybrid MOLGSA algorithm compared to the GSA algorithm.

  13. The Switching Generator: New Clock-Controlled Generator with Resistance against the Algebraic and Side Channel Attacks

    Directory of Open Access Journals (Sweden)

    Jun Choi

    2015-06-01

    Full Text Available Since Advanced Encryption Standard (AES in stream modes, such as counter (CTR, output feedback (OFB and cipher feedback (CFB, can meet most industrial requirements, the range of applications for dedicated stream ciphers is decreasing. There are many attack results using algebraic properties and side channel information against stream ciphers for hardware applications. Al-Hinai et al. presented an algebraic attack approach to a family of irregularly clock-controlled linear feedback shift register systems: the stop and go generator, self-decimated generator and alternating step generator. Other clock-controlled systems, such as shrinking and cascade generators, are indeed vulnerable against side channel attacks. To overcome these threats, new clock-controlled systems were presented, e.g., the generalized alternating step generator, cascade jump-controlled generator and mutual clock-controlled generator. However, the algebraic attack could be applied directly on these new systems. In this paper, we propose a new clock-controlled generator: the switching generator, which has resistance to algebraic and side channel attacks. This generator also preserves both security properties and the efficiency of existing clock-controlled generators.

  14. A New Adaptive Control for Five-Phase Fault-Tolerant Flux-Switching Permanent Magnet Motor

    Directory of Open Access Journals (Sweden)

    Hongyu Tang

    2016-01-01

    Full Text Available The five-phase fault-tolerant flux-switching permanent magnet (FT-FSPM motor can offer high efficiency and high fault-tolerant capability. In this paper, its operation principle is presented briefly and its mathematical model is derived. Further, a new adaptive control for an FT-FSPM motor, based on the backstepping method and the sliding mode control strategy, is proposed. According to the backstepping method, the current controllers and voltage control laws are designed to track the speed and minimize the current static error, which enhance the dynamic response and the ability to suppress external disturbances. In order to overcome the influence of parameter variations, according to sliding mode control theory, the virtual control variables and the adaptive algorithm are utilized to approach uncertainty terms. Three Lyapunov functions are designed, and the stability of the closed-loop system is analyzed in detail. Finally, both simulation and experimental results are presented to verify the proposed control method.

  15. Detecting Major Genetic Loci Controlling Phenotypic Variability in Experimental Crosses

    Science.gov (United States)

    Rönnegård, Lars; Valdar, William

    2011-01-01

    Traditional methods for detecting genes that affect complex diseases in humans or animal models, milk production in livestock, or other traits of interest, have asked whether variation in genotype produces a change in that trait’s average value. But focusing on differences in the mean ignores differences in variability about that mean. The robustness, or uniformity, of an individual’s character is not only of great practical importance in medical genetics and food production but is also of scientific and evolutionary interest (e.g., blood pressure in animal models of heart disease, litter size in pigs, flowering time in plants). We describe a method for detecting major genes controlling the phenotypic variance, referring to these as vQTL. Our method uses a double generalized linear model with linear predictors based on probabilities of line origin. We evaluate our method on simulated F2 and collaborative cross data, and on a real F2 intercross, demonstrating its accuracy and robustness to the presence of ordinary mean-controlling QTL. We also illustrate the connection between vQTL and QTL involved in epistasis, explaining how these concepts overlap. Our method can be applied to a wide range of commonly used experimental crosses and may be extended to genetic association more generally. PMID:21467569

  16. Controlling complexity: the clinical relevance of mouse complex genetics

    Czech Academy of Sciences Publication Activity Database

    Forejt, Jiří

    2013-01-01

    Roč. 21, č. 11 (2013), s. 1191-1196 ISSN 1018-4813 Institutional support: RVO:68378050 Keywords : Mouse model * Forward genetics * Rewiev Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 4.225, year: 2013

  17. Context-dependent switching between proactive and reactive working memory control mechanisms in the right inferior frontal gyrus.

    Science.gov (United States)

    Marklund, Petter; Persson, Jonas

    2012-11-15

    A critical feature of higher cognitive functioning is the capacity to flexibly tailor information processing and behaviors to current situational demands. Recent neurocognitive models have been postulated to account for the dynamic nature of human executive processing by invoking two dissociable cognitive control modes, proactive and reactive control. These may involve partially overlapping, but temporally distinct neural implementation in the prefrontal cortex. Prior brain imaging studies exploring proactive control have mainly used tasks requiring only information about single-items to be retained over unfilled delays. Whether proactive control can also be utilized to facilitate performance in more complex working memory tasks, in which concurrent processing of intervening items and updating is mandatory during contextual cue maintenance remains an open question. To examine this issue and to elucidate the extent to which overlapping neural substrates underlie proactive and reactive control we used fMRI and a modified verbal 3-back paradigm with embedded cues predictive of high-interference trials. This task requires context information to be retained over multiple intervening trials. We found that performance improved with item-specific cues predicting forthcoming lures despite increased working memory load. Temporal dynamics of activation in the right inferior frontal gyrus suggest flexible switching between proactive and reactive control in a context-dependent fashion, with greater sustained responses elicited in the 3-back task involving context maintenance of cue information and greater transient responses elicited in the 3-back task absent of cues. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  19. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    International Nuclear Information System (INIS)

    Kim, Gi-Woo; Wang, K W

    2009-01-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1→2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements

  20. A Randomized Controlled Trial of Vildagliptin Versus Alogliptin: Effective Switch From Sitagliptin in Patients With Type 2 Diabetes.

    Science.gov (United States)

    Shigematsu, Erina; Yamakawa, Tadashi; Oba, Mari S; Suzuki, Jun; Nagakura, Jo; Kadonosono, Kazuaki; Terauchi, Yasuo

    2017-07-01

    We investigated the effects of vildagliptin or alogliptin on blood glucose and hemoglobin A1c (HbA1c) in patients with type 2 diabetes inadequately controlled by sitagliptin. In a single-center open-label trial, 35 patients with inadequate glycemic control on sitagliptin therapy (50 mg once daily) were randomly switched to treatment with vildagliptin (50 mg twice daily) or alogliptin (25 mg once daily). After 12 weeks, patients who failed to achieve the target HbA1c level of vildagliptin or alogliptin treatment were switched to high-dose sitagliptin (100 mg once daily) and the effect on glycemic control was assessed. Vildagliptin did not significantly alter the mean plasma glucose level (175.5 ± 54.4 mg/dL vs. 179.1 ± 73.4 mg/dL) or HbA1c (8.01% vs. 8.02%) after 12 weeks. With alogliptin, mean plasma glucose increased from 175.4 ± 50.9 mg/dL to 195.3 ± 55.0 mg/dL after 12 weeks and HbA1c increased significantly from 8.0% to 8.3% (P vildagliptin to high-dose sitagliptin (100 mg daily), HbA1c was increased to 8.3%, but it was significantly (P vildagliptin group than the alogliptin group (P = 0.008), but the response rate (achieving the target HbA1c vildagliptin, alogliptin, and sitagliptin) were different, and the effects of vildagliptin and sitagliptin were stronger than that of alogliptin.

  1. Pseudospark switches

    International Nuclear Information System (INIS)

    Billault, P.; Riege, H.; Gulik, M. van; Boggasch, E.; Frank, K.

    1987-01-01

    The pseudospark discharge is bound to a geometrical structure which is particularly well suited for switching high currents and voltages at high power levels. This type of discharge offers the potential for improvement in essentially all areas of switching operation: peak current and current density, current rise, stand-off voltage, reverse current capability, cathode life, and forward drop. The first pseudospark switch was built at CERN at 1981. Since then, the basic switching characteristics of pseudospark chambers have been studied in detail. The main feature of a pseudospark switch is the confinement of the discharge plasma to the device axis. The current transition to the hollow electrodes is spread over a rather large surface area. Another essential feature is the easy and precise triggering of the pseudospark switch from the interior of the hollow electrodes, relatively far from the main discharge gap. Nanosecond delay and jitter values can be achieved with trigger energies of less than 0.1 mJ, although cathode heating is not required. Pseudospark gaps may cover a wide range of high-voltage, high-current, and high-pulse-power switching at repetition rates of many kilohertz. This report reviews the basic researh on pseudospark switches which has been going on at CERN. So far, applications have been developed in the range of thyratron-like medium-power switches at typically 20 to 40 kV and 0.5 to 10 kA. High-current pseudospark switches have been built for a high-power 20 kJ pulse generator which is being used for long-term tests of plasma lenses developed for the future CERN Antiproton Collector (ACOL). The high-current switches have operated for several hundred thousand shots, with 20 to 50 ns jitter at 16 kV charging voltage and more than 100 kA peak current amplitude. (orig.)

  2. Switching adolescent high-fat diet to adult control diet restores neurocognitive alterations

    Directory of Open Access Journals (Sweden)

    Chloe Boitard

    2016-11-01

    Full Text Available In addition to metabolic and cardiovascular disorders, obesity is associated with adverse cognitive and emotional outcomes. Its growing prevalence in adolescents is particularly alarming since this is a period of ongoing maturation for brain structures (including the hippocampus and amygdala and for the hypothalamic-pituitary-adrenal (HPA stress axis, which is required for cognitive and emotional processing. We recently demonstrated that adolescent, but not adult, high-fat diet (HF exposure leads to impaired hippocampal function and enhanced amygdala function through HPA axis alteration (Boitard et al., 2014; Boitard et al., 2012; Boitard et al., 2015. Here, we assessed whether the effects of adolescent HF consumption on brain function are permanent or reversible. After adolescent exposure to HF, switching to a standard chow diet restored levels of hippocampal neurogenesis and normalized enhanced HPA axis reactivity, amygdala activity and avoidance memory. Therefore, while the adolescent period is highly vulnerable to the deleterious effects of diet-induced obesity, adult exposure to a standard diet appears sufficient to reverse alterations of brain function.

  3. The optimal configuration of photovoltaic module arrays based on adaptive switching controls

    International Nuclear Information System (INIS)

    Chao, Kuei-Hsiang; Lai, Pei-Lun; Liao, Bo-Jyun

    2015-01-01

    Highlights: • We propose a strategy for determining the optimal configuration of a PV array. • The proposed strategy was based on particle swarm optimization (PSO) method. • It can identify the optimal module array connection scheme in the event of shading. • It can also find the optimal connection of a PV array even in module malfunctions. - Abstract: This study proposes a strategy for determining the optimal configuration of photovoltaic (PV) module arrays in shading or malfunction conditions. This strategy was based on particle swarm optimization (PSO). If shading or malfunctions of the photovoltaic module array occur, the module array immediately undergoes adaptive reconfiguration to increase the power output of the PV power generation system. First, the maximal power generated at various irradiation levels and temperatures was recorded during normal array operation. Subsequently, the irradiation level and module temperature, regardless of operating conditions, were used to recall the maximal power previously recorded. This previous maximum was compared with the maximal power value obtained using the maximum power point tracker to assess whether the PV module array was experiencing shading or malfunctions. After determining that the array was experiencing shading or malfunctions, PSO was used to identify the optimal module array connection scheme in abnormal conditions, and connection switches were used to implement optimal array reconfiguration. Finally, experiments were conducted to assess the strategy for identifying the optimal reconfiguration of a PV module array in the event of shading or malfunctions

  4. Migratory decisions in birds: Extent of genetic versus environmental control

    Science.gov (United States)

    Ogonowski, M.S.; Conway, C.J.

    2009-01-01

    Migration is one of the most spectacular of animal behaviors and is prevalent across a broad array of taxa. In birds, we know much about the physiological basis of how birds migrate, but less about the relative contribution of genetic versus environmental factors in controlling migratory tendency. To evaluate the extent to which migratory decisions are genetically determined, we examined whether individual western burrowing owls (Athene cunicularia hypugaea) change their migratory tendency from one year to the next at two sites in southern Arizona. We also evaluated the heritability of migratory decisions by using logistic regression to examine the association between the migratory tendency of burrowing owl parents and their offspring. The probability of migrating decreased with age in both sexes and adult males were less migratory than females. Individual owls sometimes changed their migratory tendency from one year to the next, but changes were one-directional: adults that were residents during winter 2004-2005 remained residents the following winter, but 47% of adults that were migrants in winter 2004-2005 became residents the following winter. We found no evidence for an association between the migratory tendency of hatch-year owls and their male or female parents. Migratory tendency of hatch-year owls did not differ between years, study sites or sexes or vary by hatching date. Experimental provision of supplemental food did not affect these relationships. All of our results suggest that heritability of migratory tendency in burrowing owls is low, and that intraspecific variation in migratory tendency is likely due to: (1) environmental factors, or (2) a combination of environmental factors and non-additive genetic variation. The fact that an individual's migratory tendency can change across years implies that widespread anthropogenic changes (i.e., climate change or changes in land use) could potentially cause widespread changes in the migratory tendency of

  5. Genetic quality control in mass-reared melon flies

    International Nuclear Information System (INIS)

    Miyatake, T.

    2002-01-01

    Quality control in mass-reared melon flies, Bactrocera cucurbitae, after eradication is discussed, based on the results of artificial selection experiments. First, a brief history of quality control in mass-rearing of insects is described. In practical mass- rearing of melon fly, many traits have already been differentiated between mass-reared and wild flies. These differing traits are reviewed and the factors which caused these differences are considered. It was considered that the differences between wild and mass-reared melon flies depended on the selection pressures from the mass-rearing method. Next, the results of several artificial selection experiments using the melon fly are reviewed. Finally, consideration is given to some correlated responses to artificial selection in mass-rearing. Longevity that is correlated to early fecundity was successfully controlled by artificial selection for reproduction in the mass-rearing system. On the basis of these results, an improved method for quality control in mass-reared melon fly with considerations for quantitative genetics is discussed

  6. Evaluation of electromagnetic interference between electromagnet and permanent magnet of reed switch of SMART control rod driver mechanism

    International Nuclear Information System (INIS)

    Hur, H.; Kim, J. H.; Park, J. S.; Yoo, J. Y.; Kim, J. I.

    2002-01-01

    Integral reactors require a fine reactivity control CEDM since the nuclear heating is used during the startup. Although a linear pulse motor type had been chosen for the SMART CEDM, a ball screw type is being considered as an alternative. A ball screw type CEDM driven by a rotary step motor has an emergency insertion system using electromagnet and also has a permanent magnet for RSPT in the upper pressure housing above the electromagnet. So it is necessary to evaluate an electromagnetic interference for reed switches in the vicinity of the electromagnet. This paper describes the design parameters for effective operation and the optimum design point was determined by analyzing the trend of the EMI characteristics

  7. Genetic design of interpolated non-linear controllers for linear plants

    International Nuclear Information System (INIS)

    Ajlouni, N.

    2000-01-01

    The techniques of genetic algorithms are proposed as a means of designing non-linear PID control systems. It is shown that the use of genetic algorithms for this purpose results in highly effective non-linear PID control systems. These results are illustrated by using genetic algorithms to design a non-linear PID control system and contrasting the results with an optimally tuned linear PID controller. (author)

  8. Evaluation of Optimum Genetic Contribution Theory to Control Inbreeding While Maximizing Genetic Response

    Directory of Open Access Journals (Sweden)

    S.-H. Oh

    2012-03-01

    Full Text Available Inbreeding is the mating of relatives that produce progeny having more homozygous alleles than non-inbred animals. Inbreeding increases numbers of recessive alleles, which is often associated with decreased performance known as inbreeding depression. The magnitude of inbreeding depression depends on the level of inbreeding in the animal. Level of inbreeding is expressed by the inbreeding coefficient. One breeding goal in livestock is uniform productivity while maintaining acceptable inbreeding levels, especially keeping inbreeding less than 20%. However, in closed herds without the introduction of new genetic sources high levels of inbreeding over time are unavoidable. One method that increases selection response and minimizes inbreeding is selection of individuals by weighting estimated breeding values with average relationships among individuals. Optimum genetic contribution theory (OGC uses relationships among individuals as weighting factors. The algorithm is as follows: i Identify the individual having the best EBV; ii Calculate average relationships ( r j ¯ between selected and candidates; iii Select the individual having the best EBV adjusted for average relationships using the weighting factor k, E B V * = E B V j ( 1 - k r j ¯ . iv Repeat process until the number of individuals selected equals number required. The objective of this study was to compare simulated results based on OGC selection under different conditions over 30 generations. Individuals (n = 110 were generated for the base population with pseudo random numbers of N~ (0, 3, ten were assumed male, and the remainder female. Each male was mated to ten females, and every female was assumed to have 5 progeny resulting in 500 individuals in the following generation. Results showed the OGC algorithm effectively controlled inbreeding and maintained consistent increases in selection response. Difference in breeding values between selection with OGC algorithm and by EBV only was 8

  9. Tuning of Passivity-Preserving Controllers for Switched-Mode Power Converters

    NARCIS (Netherlands)

    Jeltsema, Dimitri; Scherpen, Jacquelien M.A.

    2004-01-01

    Nonlinear passivity-based control (PBC) algorithms for power converters have proved to be an interesting alternative to other, mostly linear, control techniques. The control objective is usually achieved through an energy reshaping process and by injecting damping to modify the dissipation structure

  10. Diversity Controlling Genetic Algorithm for Order Acceptance and Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-01-01

    Full Text Available Selection and scheduling are an important topic in production systems. To tackle the order acceptance and scheduling problem on a single machine with release dates, tardiness penalty, and sequence-dependent setup times, in this paper a diversity controlling genetic algorithm (DCGA is proposed, in which a diversified population is maintained during the whole search process through survival selection considering both the fitness and the diversity of individuals. To measure the similarity between individuals, a modified Hamming distance without considering the unaccepted orders in the chromosome is adopted. The proposed DCGA was validated on 1500 benchmark instances with up to 100 orders. Compared with the state-of-the-art algorithms, the experimental results show that DCGA improves the solution quality obtained significantly, in terms of the deviation from upper bound.

  11. Voltage-controlled low-energy switching of nanomagnets through Ruderman-Kittel-Kasuya-Yosida interactions for magnetoelectric device applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Bahniman, E-mail: bghosh@utexas.edu; Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K. [Microelectronics Research Center, University of Texas at Austin, 10100 Burnet Road, Bldg. 160, Austin, Texas 78758 (United States)

    2016-07-21

    In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated for ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.

  12. Voltage-controlled low-energy switching of nanomagnets through Ruderman-Kittel-Kasuya-Yosida interactions for magnetoelectric device applications

    International Nuclear Information System (INIS)

    Ghosh, Bahniman; Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K.

    2016-01-01

    In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated for ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.

  13. RESEARCH ARTICLE Genetic control of Yellow Vein Mosaic Virus ...

    Indian Academy of Sciences (India)

    sony

    Qualitative genetic analysis done on the basis of segregation pattern of ..... First author acknowledges the financial help rendered by Jawaharlal Nehru Memorial Fund, New. Delhi ... Indian Journal of Genetics and Plant Breeding 22, 137-38.

  14. Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system

    Science.gov (United States)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Liu, Yahui; Song, Jian; Ran, Xu

    2016-02-01

    Regenerative braking is an important technology in improving fuel economy of an electric vehicle (EV). However, additional motor braking will change the dynamic characteristics of the vehicle, leading to braking instability, especially when the anti-lock braking system (ABS) is triggered. In this paper, a novel semi-brake-by-wire system, without the use of a pedal simulator and fail-safe device, is proposed. In order to compensate for the hysteretic characteristics of the designed brake system while ensure braking reliability and fuel economy when the ABS is triggered, a novel switching compensation control strategy using sliding mode control is brought forward. The proposed strategy converts the complex coupling braking process into independent control of hydraulic braking and regenerative braking, through which a balance between braking performance, braking reliability, braking safety and fuel economy is achieved. Simulation results show that the proposed strategy is effective and adaptable in different road conditions while the large wheel slip rate is triggered during a regenerative braking course. The research provides a new possibility of low-cost equipment and better control performance for the regenerative braking in the EV and the hybrid EV.

  15. Modulation of Protein Quality Control and Proteasome to Autophagy Switch in Immortalized Myoblasts from Duchenne Muscular Dystrophy Patients

    Directory of Open Access Journals (Sweden)

    Marion Wattin

    2018-01-01

    Full Text Available The maintenance of proteome integrity is of primary importance in post-mitotic tissues such as muscle cells; thus, protein quality control mechanisms must be carefully regulated to ensure their optimal efficiency, a failure of these processes being associated with various muscular disorders. Duchenne muscular dystrophy (DMD is one of the most common and severe forms of muscular dystrophies and is caused by mutations in the dystrophin gene. Protein quality control modulations have been diversely observed in degenerating muscles of patients suffering from DMD or in animal models of the disease. In this study, we investigated whether modulations of protein quality control mechanisms already pre-exist in undifferentiated myoblasts originating from DMD patients. We report for the first time that the absence of dystrophin in human myoblasts is associated with protein aggregation stress characterized by an increase of protein aggregates. This stress is combined with BAG1 to BAG3 switch, NFκB activation and up-regulation of BAG3/HSPB8 complexes that ensure preferential routing of misfolded/aggregated proteins to autophagy rather than to deficient 26S proteasome. In this context, restoration of pre-existing alterations of protein quality control processes might represent an alternative strategy for DMD therapies.

  16. A novel nine-switch inverter for independent control of two three-phase loads

    OpenAIRE

    Kominami, Tsutomu; Fujimoto, Yasutaka

    2007-01-01

    Industrial applications require large numbers of motors. For example, motors are used to manipulate industrial robots, an electric vehicles with in-wheel motors and electric trains. Two methods exist for controlling PM motors providing an inverter to control each motor, and connecting the motors in parallel and driving them with a single inverter. The first method makes an experimental apparatus complex and expensive; the second does not allow independent control of each motor because of diff...

  17. SIMULTANEOUS SPACE VECTOR MODULATION DIRECT TORQUE CONTROL OF TWO INDUCTION MOTORS USED IN ELECTRIC VEHICLES BY A NINE-SWITCH INVERTER

    Directory of Open Access Journals (Sweden)

    A. R. SHAMLOU

    2017-12-01

    Full Text Available In this paper, a novel two output nine switch-inverter is proposed in order to increase the synchronization speed of induction motors used in electric vehicles (EVs while improving the efficiency and controllability of the system. The number of switches in the proposed inverter is reduced by 25% compared to double six-switch inverters which conventionally used in EVs. The main characteristics of the considered inverter can be noted as follows: sinusoidal input and outputs, unity output power factor, and specifically, low construction cost due to active switch number reduction. The classical direct torque control method causes torque ripple and speed fluctuations. Therefore, in order to increase accuracy and dynamics of drive system, the SVM-DTC method is proposed, leading to less torque ripple and constant switching frequency. The obtained torque ripple is 2% which is less than the existing structures In order to illustrate advantages of the proposed approach, performance of the EVs in the standard cycles is evaluated.

  18. Non Linear, Time Variant Speed Control of a Single Phase Hybrid Switched Reluctance Motor

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Ahn, Jin Woo

    2009-01-01

    A high torque ripple in a given motor always presents a challenge for the speed control, since this ripple may lead to excessive actuation and ultimately may even lead to instability. The conventional solution is to low pass filter the measured speed, but this lowers dynamic control performance...

  19. Optimal and Robust Switching Control Strategies : Theory, and Applications in Traffic Management

    NARCIS (Netherlands)

    Hajiahmadi, M.

    2015-01-01

    Macroscopic modeling, predictive and robust control and route guidance for large-scale freeway and urban traffic networks are the main focus of this thesis. In order to increase the efficiency of our control strategies, we propose several mathematical and optimization techniques. Moreover, in the

  20. Fano resonance control in a photonic crystal structure and its application to ultrafast switching

    DEFF Research Database (Denmark)

    Yu, Yi; Heuck, Mikkel; Hu, Hao

    2014-01-01

    We experimentally demonstrate a photonic crystal structure that allows easy and robust control of the Fano spectrum. Its operation relies on controlling the amplitude of light propagating along one of the light paths in the structure from which the Fano resonance is obtained. Short-pulse dynamic ...... reshaping effect of the nonlinear Fano transfer function. As an example, we present a system application of a Fano structure, demonstrating its advantages by the experimental realiza- tion of 10 Gbit/s all-optical modulation with optical control power less than 1mW.......We experimentally demonstrate a photonic crystal structure that allows easy and robust control of the Fano spectrum. Its operation relies on controlling the amplitude of light propagating along one of the light paths in the structure from which the Fano resonance is obtained. Short-pulse dynamic...

  1. Switched Two-Level H∞ and Robust Fuzzy Learning Control of an Overhead Crane

    Directory of Open Access Journals (Sweden)

    Kao-Ting Hung

    2013-01-01

    Full Text Available Overhead cranes are typical dynamic systems which can be modeled as a combination of a nominal linear part and a highly nonlinear part. For such kind of systems, we propose a control scheme that deals with each part separately, yet ensures global Lyapunov stability. The former part is readily controllable by the H∞ PDC techniques, and the latter part is compensated by fuzzy mixture of affine constants, leaving the remaining unmodeled dynamics or modeling error under robust learning control using the Nelder-Mead simplex algorithm. Comparison with the adaptive fuzzy control method is given via simulation studies, and the validity of the proposed control scheme is demonstrated by experiments on a prototype crane system.

  2. Adaptive control of two-wheeled mobile balance robot capable to adapt different surfaces using a novel artificial neural network–based real-time switching dynamic controller

    Directory of Open Access Journals (Sweden)

    Ali Unluturk

    2017-03-01

    Full Text Available In this article, a novel real-time artificial neural network–based adaptable switching dynamic controller is developed and practically implemented. It will be used for real-time control of two-wheeled balance robot which can balance itself upright position on different surfaces. In order to examine the efficiency of the proposed controller, a two-wheeled mobile balance robot is designed and a test platform for experimental setup is made for balance problem on different surfaces. In a developed adaptive controller algorithm which is capable to adapt different surfaces, mean absolute target angle deviation error, mean absolute target displacement deviation error and mean absolute controller output data are employed for surface estimation by using artificial neural network. In a designed two-wheeled mobile balance robot system, robot tilt angle is estimated via Kalman filter from accelerometer and gyroscope sensor signals. Furthermore, a visual robot control interface is developed in C++ software development environment so that robot controller parameters can be changed as desired. In addition, robot balance angle, linear displacement and controller output can be observed online on personal computer. According to the real-time experimental results, the proposed novel type controller gives more effective results than the classic ones.

  3. Effectiveness of Switch to Erythropoiesis-Stimulating Agent (ESA) Biosimilars versus Maintenance of ESA Originators in the Real-Life Setting: Matched-Control Study in Hemodialysis Patients.

    Science.gov (United States)

    Minutolo, Roberto; Bolasco, Piergiorgio; Chiodini, Paolo; Sposini, Stefano; Borzumati, Maurizio; Abaterusso, Cataldo; Mele, Alessandra A; Santoro, Domenico; Canale, Valeria; Santoboni, Alberto; Filiberti, Oliviero; Fiorini, Fulvio; Mura, Carlo; Imperiali, Patrizio; Borrelli, Silvio; Russo, Luigi; De Nicola, Luca; Russo, Domenico

    2017-10-01

    In hemodialysis (HD), switching from erythropoiesis-stimulating agent (ESA) originators to biosimilars is associated with the need for doses approximately 10% higher, according to industry-driven studies. The aim of this study was to evaluate the efficacy on anemia control of switching from ESA originators to biosimilars in daily clinical practice. We retrospectively selected consecutive HD patients receiving stable intravenous ESA doses, and who had not been transfused in the previous 6 months, from 12 non-profit Italian centers. Patients switched from originators to biosimilars (n = 163) were matched with those maintained on ESA originators (n = 163) using a propensity score approach. The study duration was 24 weeks, and the primary endpoint was the mean dose difference (MDD), defined as the difference between the switch and control groups of ESA dose changes during the study (time-weighted average ESA dose minus baseline ESA dose). Age (70 ± 13 years), male sex (63%), diabetes (29%), history of cardiovascular disease (40%), body weight (68 ± 14 kg), vascular access (86% arteriovenous fistula), hemoglobin [Hb] (11.2 ± 0.9 g/dL) and ESA dose (8504 ± 6370 IU/week) were similar in the two groups. Hb remained unchanged during the study in both groups. Conversely, ESA dose remained unchanged in the control group and progressively increased in the switch group from week 8 to 24. The time-weighted average of the ESA dose was higher in the switch group than in the control group (10,503 ± 7389 vs. 7981 ± 5858 IU/week; p = 0.001), leading to a significant MDD of 2423 IU/week (95% confidence interval [CI] 1615-3321), corresponding to a 39.6% (95% CI 24.7-54.6) higher dose of biosimilars compared with originators. The time-weighted average of Hb was 0.2 g/dL lower in the switch group, with a more frequent ESA hyporesponsiveness (14.7 vs. 2.5%). Iron parameters and other resistance factors remained unchanged. In stable dialysis patients

  4. H∞ Control of Supply Chain Based on Switched Model of Stock Level

    Directory of Open Access Journals (Sweden)

    Junzhi Luo

    2014-01-01

    Full Text Available This paper is concerned with the problem of H∞ control for a class of discrete supply chain systems. A new method based on network control technique is presented to address this issue. Supply chain systems are modeled as networked systems with stochastic time delay. Sufficient conditions for H∞ controller design are given in terms of a set of linear matrix inequalities, based on which the mean-square asymptotic stability as well as H∞ performance is satisfied for such systems. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  5. Designing control loops for linear and switching power supplies a tutorial guide

    CERN Document Server

    Basso, Christophe P

    2012-01-01

    Loop control is an essential area of electronics engineering that today's professionals need to master. Rather than delving into extensive theory, this practical book focuses on what you really need to know for compensating or stabilizing a given control system. You can turn instantly to practical sections with numerous design examples and ready-made formulas to help you with your projects in the field. You also find coverage of the underpinnings and principles of control loops so you can gain a more complete understanding of the material. This authoritative volume explains how to conduct anal

  6. Seamless Mode Switching for Shared Control of Semiautonomous Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Whether it be a crew station, the Shuttle Remote Manipulator System (SRMS), an unmanned ground rover (UGV) or air vehicle (UAV), or teams thereof, the controllers...

  7. Energy harvesting from an exercise bike using a switch-mode converter controlled generator

    DEFF Research Database (Denmark)

    Knott, Arnold; Lindberg-Poulsen, Kristian; Andersen, Thomas

    2010-01-01

    output of the bike. The complete controller design consists of this power stage, a control circuit, a startup circuit and an overvoltage protection circuit. A functional overview of the entire controller is presented in the paper, along with in-depth descriptions of the specific subcircuits designed....... The system is self-starting and does not require an external power source. There are two modes of operation: Voltage regulated 12V output for connection to a standard inverter, and unregulated output for charging of a 24V battery, with direct linear control of the rotor current, thus simulating road bike...... gearing. Prototype bikes were built and used at several events, and the functionality was experimentally verified....

  8. Demonstration of Optically Controlled re-Routing in a Photonic Crystal Three-Port Switch

    DEFF Research Database (Denmark)

    Combrié, S.; Heuck, Mikkel; Xavier, S.

    2012-01-01

    We present an experimental demonstration of optically controlled re-routing of a signal in a photonic crystal cavity-waveguide structure with 3 ports. This represents a key functionality of integrated all-optical signal processing circuits....

  9. A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1

    Science.gov (United States)

    Kilisch, Markus; Lytovchenko, Olga; Arakel, Eric C.; Bertinetti, Daniela; Schwappach, Blanche

    2016-01-01

    ABSTRACT The transport of the K+ channels TASK-1 and TASK-3 (also known as KCNK3 and KCNK9, respectively) to the cell surface is controlled by the binding of 14-3-3 proteins to a trafficking control region at the extreme C-terminus of the channels. The current model proposes that phosphorylation-dependent binding of 14-3-3 sterically masks a COPI-binding motif. However, the direct effects of phosphorylation on COPI binding and on the binding parameters of 14-3-3 isoforms are still unknown. We find that phosphorylation of the trafficking control region prevents COPI binding even in the absence of 14-3-3, and we present a quantitative analysis of the binding of all human 14-3-3 isoforms to the trafficking control regions of TASK-1 and TASK-3. Surprisingly, the affinities of 14-3-3 proteins for TASK-1 are two orders of magnitude lower than for TASK-3. Furthermore, we find that phosphorylation of a second serine residue in the C-terminus of TASK-1 inhibits 14-3-3 binding. Thus, phosphorylation of the trafficking control region can stimulate or inhibit transport of TASK-1 to the cell surface depending on the target serine residue. Our findings indicate that control of TASK-1 trafficking by COPI, kinases, phosphatases and 14-3-3 proteins is highly dynamic. PMID:26743085

  10. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch

    Directory of Open Access Journals (Sweden)

    Steven Zhao

    2016-10-01

    Full Text Available Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY, cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency.

  11. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch.

    Science.gov (United States)

    Zhao, Steven; Torres, AnnMarie; Henry, Ryan A; Trefely, Sophie; Wallace, Martina; Lee, Joyce V; Carrer, Alessandro; Sengupta, Arjun; Campbell, Sydney L; Kuo, Yin-Ming; Frey, Alexander J; Meurs, Noah; Viola, John M; Blair, Ian A; Weljie, Aalim M; Metallo, Christian M; Snyder, Nathaniel W; Andrews, Andrew J; Wellen, Kathryn E

    2016-10-18

    Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA) plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY), cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL) and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Balancing Inverted Pendulum by Angle Sensing Using Fuzzy Logic Supervised PID Controller Optimized by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ashutosh K. AGARWAL

    2011-10-01

    Full Text Available Genetic algorithms are robust search techniques based on the principles of evolution. A genetic algorithm maintains a population of encoded solutions and guides the population towards the optimum solution. This important property of genetic algorithm is used in this paper to stabilize the Inverted pendulum system. This paper highlights the application and stability of inverted pendulum using PID controller with fuzzy logic genetic algorithm supervisor . There are a large number of well established search techniques in use within the information technology industry. We propose a method to control inverted pendulum steady state error and overshoot using genetic algorithm technique.

  13. Fuzzy-Genetic Optimal Control for Four Degreeof Freedom Robotic Arm Movement

    OpenAIRE

    V. K. Banga; R. Kumar; Y. Singh

    2009-01-01

    In this paper, we present optimal control for movement and trajectory planning for four degrees-of-freedom robot using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs) for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like; Movement, Friction and Settling Time in robotic arm movement have been compensated using Fuzzy logic and Genetic Algorithms. The development of a fuzzy genetic optimizatio...

  14. Adsorbed states of chlorophenol on Cu(110) and controlled switching of single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, H., E-mail: hokuyama@kuchem.kyoto-u.ac.jp; Kitaguchi, Y.; Hattori, T.; Ueda, Y.; Ferrer, N. G.; Hatta, S.; Aruga, T. [Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2016-06-28

    A molecular junction of substituted benzene (chlorophenol) is fabricated and controlled by using a scanning tunneling microscope (STM). Prior to the junction formation, the bonding geometry of the molecule on the surface is characterized by STM and electron energy loss spectroscopy (EELS). EELS shows that the OH group of chlorophenol is dissociated on Cu(110) and that the molecule is bonded nearly flat to the surface via an O atom, with the Cl group intact. We demonstrate controlled contact of an STM tip to the “available” Cl group and lift-up of the molecule while it is anchored to the surface via an O atom. The asymmetric bonding motifs of the molecule to the electrodes allow for reversible control of the junction.

  15. Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and fuel switching

    Science.gov (United States)

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their rela...

  16. Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and fuel switching

    Science.gov (United States)

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their resp...

  17. A p300 and SIRT1 Regulated Acetylation Switch of C/EBPα Controls Mitochondrial Function

    NARCIS (Netherlands)

    Zaini, Mohamad A; Müller, Christine; de Jong, Tristan V; Ackermann, Tobias; Hartleben, Götz; Kortman, Gertrud; Gührs, Karl-Heinz; Fusetti, Fabrizia; Krämer, Oliver H; Guryev, Victor; Calkhoven, Cornelis F

    2018-01-01

    Cellular metabolism is a tightly controlled process in which the cell adapts fluxes through metabolic pathways in response to changes in nutrient supply. Among the transcription factors that regulate gene expression and thereby cause changes in cellular metabolism is the basic leucine-zipper (bZIP)

  18. A p300 and SIRT1 Regulated Acetylation Switch of C/EBPα Controls Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Mohamad A. Zaini

    2018-01-01

    Full Text Available Summary: Cellular metabolism is a tightly controlled process in which the cell adapts fluxes through metabolic pathways in response to changes in nutrient supply. Among the transcription factors that regulate gene expression and thereby cause changes in cellular metabolism is the basic leucine-zipper (bZIP transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα. Protein lysine acetylation is a key post-translational modification (PTM that integrates cellular metabolic cues with other physiological processes. Here, we show that C/EBPα is acetylated by the lysine acetyl transferase (KAT p300 and deacetylated by the lysine deacetylase (KDAC sirtuin1 (SIRT1. SIRT1 is activated in times of energy demand by high levels of nicotinamide adenine dinucleotide (NAD+ and controls mitochondrial biogenesis and function. A hypoacetylated mutant of C/EBPα induces the transcription of mitochondrial genes and results in increased mitochondrial respiration. Our study identifies C/EBPα as a key mediator of SIRT1-controlled adaption of energy homeostasis to changes in nutrient supply. : Zaini et al. show that the transcription factor C/EBPα is acetylated by p300 and deacetylated by the lysine deacetylase SIRT1. Hypoacetylated C/EBPα induces the transcription of mitochondrial genes and results in increased mitochondrial respiration. C/EBPα is a key mediator of SIRT1-controlled adaption of energy homeostasis to changes in nutrient supply. Keywords: C/EBPα, SIRT1, p300, lysine acetylation, mitochondrial function, cellular metabolism, NAD+, gene regulation

  19. Design of RS232-powered controller for switched parasitic array antenna

    CSIR Research Space (South Africa)

    Mofolo, MOR

    2013-09-01

    Full Text Available It is often convenient to power up peripheral devices directly from the host device interface, without a need for additional and/or external power supply. In this paper we present a design of the RS232-powered controller for electronically...

  20. Switching in the Cocktail Party: Exploring Intentional Control of Auditory Selective Attention

    Science.gov (United States)

    Koch, Iring; Lawo, Vera; Fels, Janina; Vorlander, Michael

    2011-01-01

    Using a novel variant of dichotic selective listening, we examined the control of auditory selective attention. In our task, subjects had to respond selectively to one of two simultaneously presented auditory stimuli (number words), always spoken by a female and a male speaker, by performing a numerical size categorization. The gender of the…