WorldWideScience

Sample records for genetic screening approach

  1. Pragmatic approaches to genetic screening.

    NARCIS (Netherlands)

    Mallia, P.; Have, H.A.M.J. ten

    2005-01-01

    Pragmatic approaches to genetic testing are discussed and appraised. Whilst there are various schools of pragmatism, the Deweyan approach seems to be the most appreciated in bioethics as it allows a historical approach indebted to Hegel. This in turn allows the pragmatist to specify and balance prin

  2. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we...... examine definitions of the relevant concepts in order to illustrate this point. The concepts are i) prenatal, ii) genetic screening, iii) screening, scanning and testing, iv) maternal and foetal tests, v) test techniques and vi) genetic conditions. So far, prenatal screening has little connection...... with precisely defined genetics. There are benefits but also disadvantages in overstating current links between them in the term genetic screening. Policy making and professional and public understandings about screening could be clarified if the distinct meanings of prenatal screening and genetic screening were...

  3. Prenatal screening and genetics

    NARCIS (Netherlands)

    Alderson, P.; Aro, A.R.; Dragonas, T.; Ettorre, E.; Hemminki, E.; Jalinoja, P.; Santalahti, P.; Tijmstra, T.

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we

  4. Prenatal screening and genetics

    NARCIS (Netherlands)

    Alderson, P.; Aro, A.R.; Dragonas, T.; Ettorre, E.; Hemminki, E.; Jalinoja, P.; Santalahti, P.; Tijmstra, T.

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we exami

  5. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we ex...

  6. Multiplicity of experimental approaches to therapy for genetic muscle diseases and necessity for population screening.

    Science.gov (United States)

    Laing, Nigel G

    2008-01-01

    Currently a multiplicity of experimental approaches to therapy for genetic muscle diseases is being investigated. These include replacement of the missing gene, manipulation of the gene message, repair of the mutation, upregulation of an alternative gene and pharmacological interventions targeting a number of systems. A number of these approaches are in current clinical trials. There is considerable anticipation that perhaps more than one of the approaches will finally prove of clinical benefit, but there are many voices of caution. No matter which approaches might ultimately prove effective, there is a consensus that for most benefit to the patients it will be necessary to start treatment as early as possible. A consensus is also developing that the only way to do this is to implement population-based newborn screening to identify affected children shortly after birth. Population-based newborn screening is currently practised in very few places in the world and it brings with it implications for prevention rather than cure of genetic muscle diseases.

  7. Prenatal Genetic Screening Tests

    Science.gov (United States)

    ... cells from the fetus or placenta obtained through amniocentesis or chorionic villus sampling (CVS) . FAQ164 “Prenatal Genetic ... should be followed by a diagnostic test with amniocentesis or CVS. The cell-free DNA screening test ...

  8. Newborn genetic screening: blessing or curse?

    Science.gov (United States)

    Kenner, C; Amlung, S

    1999-10-01

    Newly discovered genes and advances in genetic screening programs prompt many questions reflecting the kinds of ethical dilemmas that go hand in hand with life-changing discoveries. Neonatal genetic screening has been a standard of care for some time, but as our knowledge in the field of genetics expands, should we continue with the same approach? What newborn genetic screening tests should be mandatory, and what are the long-range consequences associated with testing? This article reviews genetic modes of inheritance, outlines and explains the most common newborn screening tests, and enumerates the ethical issues associated with these screening procedures. The role of the neonatal nurse in the newborn genetic screening process is discussed.

  9. Optimal screening for genetic diseases.

    Science.gov (United States)

    Nævdal, Eric

    2014-12-01

    Screening for genetic diseases is performed in many regions and/or ethnic groups where there is a high prevalence of possibly malign genes. The propagation of such genes can be considered a dynamic externality. Given that many of these diseases are untreatable and give rise to truly tragic outcomes, they are a source of societal concern, and the screening process should perhaps be regulated. This paper incorporates a standard model of genetic propagation into an economic model of dynamic management to derive cost benefit rules for optimal screening. The highly non-linear nature of genetic dynamics gives rise to perhaps surprising results that include discontinuous controls and threshold effects. One insight is that any screening program that is in place for any amount of time should screen all individuals in a target population. The incorporation of genetic models may prove to be useful to several emerging fields in economics such as genoeconomics, neuroeconomics and paleoeconomics.

  10. Judaism, genetic screening and genetic therapy.

    Science.gov (United States)

    Rosner, F

    1998-01-01

    Genetic screening, gene therapy and other applications of genetic engineering are permissible in Judaism when used for the treatment, cure, or prevention of disease. Such genetic manipulation is not considered to be a violation of God's natural law, but a legitimate implementation of the biblical mandate to heal. If Tay-Sachs disease, diabetes, hemophilia, cystic fibrosis, Huntington's disease or other genetic diseases can be cured or prevented by "gene surgery," then it is certainly permitted in Jewish law. Genetic premarital screening is encouraged in Judaism for the purpose of discouraging at-risk marriages for a fatal illness such as Tay-Sachs disease. Neonatal screening for treatable conditions such as phenylketonuria is certainly desirable and perhaps required in Jewish law. Preimplantation screening and the implantation of only "healthy" zygotes into the mother's womb to prevent the birth of an affected child are probably sanctioned in Jewish law. Whether or not these assisted reproduction techniques may be used to choose the sex of one's offspring, to prevent the birth of a child with a sex-linked disease such as hemophilia, has not yet been ruled on by modern rabbinic decisions. Prenatal screening with the specific intent of aborting an affected fetus is not allowed according to most rabbinic authorities, although a minority view permits it "for great need." Not to have children if both parents are carriers of genetic diseases such as Tay-Sachs is not a Jewish option. Preimplantation screening is preferable. All screening test results must remain confidential. Judaism does not permit the alteration or manipulation of physical traits and characteristics such as height, eye and hair color, facial features and the like, when such change provides no useful benefit to mankind. On the other hand, it is permissible to clone organisms and microorganisms to facilitate the production of insulin, growth hormone, and other agents intended to benefit mankind and to

  11. A theoretical introduction to "combinatory SYBRGreen qPCR screening", a matrix-based approach for the detection of materials derived from genetically modified plants.

    Science.gov (United States)

    Van den Bulcke, Marc; Lievens, Antoon; Barbau-Piednoir, Elodie; MbongoloMbella, Guillaume; Roosens, Nancy; Sneyers, Myriam; Casi, Amaya Leunda

    2010-03-01

    The detection of genetically modified (GM) materials in food and feed products is a complex multi-step analytical process invoking screening, identification, and often quantification of the genetically modified organisms (GMO) present in a sample. "Combinatory qPCR SYBRGreen screening" (CoSYPS) is a matrix-based approach for determining the presence of GM plant materials in products. The CoSYPS decision-support system (DSS) interprets the analytical results of SYBRGREEN qPCR analysis based on four values: the C(t)- and T(m) values and the LOD and LOQ for each method. A theoretical explanation of the different concepts applied in CoSYPS analysis is given (GMO Universe, "Prime number tracing", matrix/combinatory approach) and documented using the RoundUp Ready soy GTS40-3-2 as an example. By applying a limited set of SYBRGREEN qPCR methods and through application of a newly developed "prime number"-based algorithm, the nature of subsets of corresponding GMO in a sample can be determined. Together, these analyses provide guidance for semi-quantitative estimation of GMO presence in a food and feed product.

  12. The art and design of genetic screens: mouse.

    Science.gov (United States)

    Kile, Benjamin T; Hilton, Douglas J

    2005-07-01

    Humans are mammals, not bacteria or plants, yeast or nematodes, insects or fish. Mice are also mammals, but unlike gorilla and goat, fox and ferret, giraffe and jackal, they are suited perfectly to the laboratory environment and genetic experimentation. In this review, we will summarize the tools, tricks and techniques for executing forward genetic screens in the mouse and argue that this approach is now accessible to most biologists, rather than being the sole domain of large national facilities and specialized genetics laboratories.

  13. Culture and genetic screening in Africa.

    Science.gov (United States)

    Jegede, Ayodele S

    2009-12-01

    Africa is a continent in transition amidst a revival of cultural practices. Over previous years the continent was robbed of the benefits of medical advances by unfounded cultural practices surrounding its cultural heritage. In a fast moving field like genetic screening, discussions of social and policy aspects frequently need to take place at an early stage to avoid the dilemma encountered by Western medicine. This paper, examines the potential challenges to genetic screening in Africa. It discusses how cultural practices may affect genetic screening. It views genomics science as a culture which is trying to diffuse into another one. It argues that understanding the existing culture will help the diffusion process. The paper emphasizes the importance of genetic screening for Africa, by assessing the current level of burden of diseases in the continent and shows its role in reducing disease prevalence. The paper identifies and discusses the cultural challenges that are likely to confront genetic screening on the continent, such as the worldview, rituals and taboos, polygyny, culture of son preference and so on. It also discusses cultural practices that may promote the science such as inheritance practices, spouse selection practices and naming patterns. Factors driving the cultural challenges are identified and discussed, such as socialization process, patriarchy, gender, belief system and so on. Finally, the paper discusses the way forward and highlights the ethical considerations of doing genetic screening on the continent. However, the paper also recognizes that African culture is not monolithic and therefore makes a case for exceptions.

  14. Genetic screening and democracy: lessons from debating genetic screening criteria in the Netherlands.

    Science.gov (United States)

    van El, Carla Geertruida; Pieters, Toine; Cornel, Martina

    2012-04-01

    Recent decades have witnessed increasing possibilities for genetic testing and screening. In clinical genetics, the doctor's office defined a secluded space for discussion of sensitive reproductive options in cases of elevated risk for genetic disorders in individuals or their offspring. When prenatal screening for all pregnant women became conceivable, the potential increase in scale made social and ethical concerns relevant for the whole of society. Whereas genetic testing in clinical genetic practice was widely accepted, prenatal screening at a population level met with unease. Concerns were raised regarding social pressure to screen: the sum of individual choice might result in a 'collective eugenics'. The government's involvement also raised suspicion: actively offering screening evoked associations with eugenic population policies from the first half of the 20th century. By reconstructing elements of policy and public debate on prenatal screening in the Netherlands from the past 30 years, this article discusses how the government has gradually changed its role in balancing the interest of the individual and the collective on genetic reproductive issues. Against a background of increasing knowledge about and demand for prenatal screening among the population, governmental policy changed from focusing on protection by banning screening toward facilitating screening in a careful and ethically sound way by providing adequate information, decision aids and quality assessment instruments. In the meanwhile, invigorating democracy in public debate may entail discussing concepts of 'the good life' in relation to living with or without impairments and dealing with genetic information about oneself or one's offspring.

  15. Genetic screening services provided in Turkey.

    Science.gov (United States)

    Erdem, Yurdagül; Tekşen, Fulya

    2013-12-01

    In Turkey, the rate of consanguineous marriage is quite high (22-24 %) and as a result, the incidence of autosomal recessive diseases and congenital anomalies is also very high and gives rise to a serious public health problem. In the last three decades, great effort has been made to avoid increases in the prevalence of these hereditary diseases. For this purpose, population-based premarital, prenatal, neonatal and adult genetic screening programs are performed in various centers such as Community Health Centers, Early Diagnosis of Cancer and Education Centers (KETEM), Prenatal and Neonatal Departments of Universities and State Hospitals and Thalessemia Screening Centers. Such centers are staffed by health professionals including physicians, family physicians, nurses, midwives, biologists and medical geneticists. Genetic counseling is also provided to patients attending these centers after screening tests are performed. Since there are no specialized training programs for genetic counselors, genetic counseling is generally provided by doctors or medical geneticists. The aim of this paper is to give an overview of the genetic screening services provided in Turkey, the prevalence of genetic diseases and the design of intensive educational programs for health professionals.

  16. In vitro fertilization with preimplantation genetic screening

    NARCIS (Netherlands)

    Mastenbroek, Sebastiaan; Twisk, Moniek; van Echten-Arends, Jannie; Sikkema-Raddatz, Birgit; Korevaar, Johanna C.; Verhoeve, Harold R.; Vogel, Niels E. A.; Arts, Eus G. J. M.; de Vries, Jan W. A.; Bossuyt, Patrick M.; Buys, Charles H. C. M.; Heineman, Maas Jan; Repping, Sjoerd; van der Veen, Fulco

    2007-01-01

    BACKGROUND: Pregnancy rates in women of advanced maternal age undergoing in vitro fertilization (IVF) are disappointingly low. It has been suggested that the use of preimplantation genetic screening of cleavage-stage embryos for aneuploidies may improve the effectiveness of IVF in these women.

  17. Reverse Genetic Approaches in Zebrafish

    Institute of Scientific and Technical Information of China (English)

    Peng Huang; Zuoyan Zhu; Shuo Lin; Bo Zhang

    2012-01-01

    Zebrafish (Danio rerio) is a well-established vertebrate animal model.A comprehensive collection of reverse genetics tools has been developed for studying gene function in this useful organism.Morpholino is the most widely used reagent to knock down target gene expression post-transcriptionally.For a long time,targeted genome modification has been heavily relied on large-scale traditional forward genetic screens,such as ENU (N-ethyl-N-nitrosourea) mutagenesis derived TILLING (Targeting Induced Local Lesions IN Genomes)strategy and pseudo-typed retrovirus mediated insertional mutagenesis.Recently,engineered endonucleases,including ZFNs (zinc finger nucleases) and TALENs (transcription activator-like effector nucleases),provide new and efficient strategies to directly generate sitespecific indel mutations by inducing double strand breaks in target genes.Here we summarize the major reverse genetic approaches for loss-of-function studies used and emerging in zebrafish,including strategies based on genome-wide mutagenesis and methods for sitespecific gene targeting.Future directions and expectations will also be discussed.

  18. Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases

    NARCIS (Netherlands)

    Alvarenga Fernandes Sin, Olga; Michels, Helen; Nollen, Ellen A. A.

    2014-01-01

    Caenorhabditis elegans comprises unique features that make it an attractive model organism in diverse fields of biology. Genetic screens are powerful to identify genes and C. elegans can be customized to forward or reverse genetic screens and to establish gene function. These genetic screens can be

  19. Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases

    NARCIS (Netherlands)

    Alvarenga Fernandes Sin, Olga; Michels, Helen; Nollen, Ellen A. A.

    2014-01-01

    Caenorhabditis elegans comprises unique features that make it an attractive model organism in diverse fields of biology. Genetic screens are powerful to identify genes and C. elegans can be customized to forward or reverse genetic screens and to establish gene function. These genetic screens can be

  20. Sources of Error in Mammalian Genetic Screens

    Directory of Open Access Journals (Sweden)

    Laura Magill Sack

    2016-09-01

    Full Text Available Genetic screens are invaluable tools for dissection of biological phenomena. Optimization of such screens to enhance discovery of candidate genes and minimize false positives is thus a critical aim. Here, we report several sources of error common to pooled genetic screening techniques used in mammalian cell culture systems, and demonstrate methods to eliminate these errors. We find that reverse transcriptase-mediated recombination during retroviral replication can lead to uncoupling of molecular tags, such as DNA barcodes (BCs, from their associated library elements, leading to chimeric proviral genomes in which BCs are paired to incorrect ORFs, shRNAs, etc. This effect depends on the length of homologous sequence between unique elements, and can be minimized with careful vector design. Furthermore, we report that residual plasmid DNA from viral packaging procedures can contaminate transduced cells. These plasmids serve as additional copies of the PCR template during library amplification, resulting in substantial inaccuracies in measurement of initial reference populations for screen normalization. The overabundance of template in some samples causes an imbalance between PCR cycles of contaminated and uncontaminated samples, which results in a systematic artifactual depletion of GC-rich library elements. Elimination of contaminating plasmid DNA using the bacterial endonuclease Benzonase can restore faithful measurements of template abundance and minimize GC bias.

  1. Genome-wide genetic screening with chemically mutagenized haploid embryonic stem cells

    OpenAIRE

    Forment, Josep V.; Herzog, Mareike; Coates, Julia; Konopka, Tomasz; Gapp, Bianca V.; Nijman, Sebastian M.; Adams, David J; Keane, Thomas M.; Jackson, Stephen P.

    2016-01-01

    This is the author accepted manuscript. In model organisms, classical genetic screening via random mutagenesis provides key insights into the molecular bases of genetic interactions, helping to define synthetic lethality, synthetic viability and drug-resistance mechanisms. The limited genetic tractability of diploid mammalian cells, however, precludes this approach. Here, we demonstrate the feasibility of classical genetic screening in mammalian systems by using haploid cells, chemical mut...

  2. Coupled mutagenesis screens and genetic mapping in zebrafish.

    Science.gov (United States)

    Rawls, John F; Frieda, Matthew R; McAdow, Anthony R; Gross, Jason P; Clayton, Chad M; Heyen, Candy K; Johnson, Stephen L

    2003-01-01

    Forward genetic analysis is one of the principal advantages of the zebrafish model system. However, managing zebrafish mutant lines derived from mutagenesis screens and mapping the corresponding mutations and integrating them into the larger collection of mutations remain arduous tasks. To simplify and focus these endeavors, we developed an approach that facilitates the rapid mapping of new zebrafish mutations as they are generated through mutagenesis screens. We selected a minimal panel of 149 simple sequence length polymorphism markers for a first-pass genome scan in crosses involving C32 and SJD inbred lines. We also conducted a small chemical mutagenesis screen that identified several new mutations affecting zebrafish embryonic melanocyte development. Using our first-pass marker panel in bulked-segregant analysis, we were able to identify the genetic map positions of these mutations as they were isolated in our screen. Rapid mapping of the mutations facilitated stock management, helped direct allelism tests, and should accelerate identification of the affected genes. These results demonstrate the efficacy of coupling mutagenesis screens with genetic mapping. PMID:12663538

  3. GAMPMS: Genetic algorithm managed peptide mutant screening.

    Science.gov (United States)

    Long, Thomas; McDougal, Owen M; Andersen, Tim

    2015-06-30

    The prominence of endogenous peptide ligands targeted to receptors makes peptides with the desired binding activity good molecular scaffolds for drug development. Minor modifications to a peptide's primary sequence can significantly alter its binding properties with a receptor, and screening collections of peptide mutants is a useful technique for probing the receptor-ligand binding domain. Unfortunately, the combinatorial growth of such collections can limit the number of mutations which can be explored using structure-based molecular docking techniques. Genetic algorithm managed peptide mutant screening (GAMPMS) uses a genetic algorithm to conduct a heuristic search of the peptide's mutation space for peptides with optimal binding activity, significantly reducing the computational requirements of the virtual screening. The GAMPMS procedure was implemented and used to explore the binding domain of the nicotinic acetylcholine receptor (nAChR) α3β2-isoform with a library of 64,000 α-conotoxin (α-CTx) MII peptide mutants. To assess GAMPMS's performance, it was compared with a virtual screening procedure that used AutoDock to predict the binding affinity of each of the α-CTx MII peptide mutants with the α3β2-nAChR. The GAMPMS implementation performed AutoDock simulations for as few as 1140 of the 64,000 α-CTx MII peptide mutants and could consistently identify a set of 10 peptides with an aggregated binding energy that was at least 98% of the aggregated binding energy of the 10 top peptides from the exhaustive AutoDock screening.

  4. A comprehensive platform for highly multiplexed mammalian functional genetic screens

    Directory of Open Access Journals (Sweden)

    Cheung-Ong Kahlin

    2011-05-01

    Full Text Available Abstract Background Genome-wide screening in human and mouse cells using RNA interference and open reading frame over-expression libraries is rapidly becoming a viable experimental approach for many research labs. There are a variety of gene expression modulation libraries commercially available, however, detailed and validated protocols as well as the reagents necessary for deconvolving genome-scale gene screens using these libraries are lacking. As a solution, we designed a comprehensive platform for highly multiplexed functional genetic screens in human, mouse and yeast cells using popular, commercially available gene modulation libraries. The Gene Modulation Array Platform (GMAP is a single microarray-based detection solution for deconvolution of loss and gain-of-function pooled screens. Results Experiments with specially constructed lentiviral-based plasmid pools containing ~78,000 shRNAs demonstrated that the GMAP is capable of deconvolving genome-wide shRNA "dropout" screens. Further experiments with a larger, ~90,000 shRNA pool demonstrate that equivalent results are obtained from plasmid pools and from genomic DNA derived from lentivirus infected cells. Parallel testing of large shRNA pools using GMAP and next-generation sequencing methods revealed that the two methods provide valid and complementary approaches to deconvolution of genome-wide shRNA screens. Additional experiments demonstrated that GMAP is equivalent to similar microarray-based products when used for deconvolution of open reading frame over-expression screens. Conclusion Herein, we demonstrate four major applications for the GMAP resource, including deconvolution of pooled RNAi screens in cells with at least 90,000 distinct shRNAs. We also provide detailed methodologies for pooled shRNA screen readout using GMAP and compare next-generation sequencing to GMAP (i.e. microarray based deconvolution methods.

  5. Genetic Screening for Familial Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Oliveira Carla

    2004-05-01

    Full Text Available Abstract Approximately 10% of gastric cancer cases show familial clustering but only 1-3% of gastric carcinomas arise as a result of inherited gastric cancer predisposition syndromes. Direct proof that Hereditary Gastric Cancer a genetic disease with a germline gene defect has come from the demonstration of co-segregation of germline E-cadherin (CDH1 mutations with early onset diffuse gastric cancer in families with an autosomal dominant pattern of inheritance (HDGC. E-cadherin is a transmembrane calcium-dependent cell-adhesion molecule involved in cell-junction formation and the maintenance of epithelial integrity. In this review, we describe frequency and type of CDH1 mutations in sporadic and familial gastric cancer. Further we demonstrate the functional significance of some CDH1 germline missense mutations found in HDGC. We also discuss the CDH1 polymorphisms that have been associated to gastric cancer. We report other types of malignancies associated to HDGC, besides diffuse gastric cancer. Moreover, we review the data available on putative alternative candidate genes screened in familial gastric cancer. Finally, we briefly discuss the role of low-penetrance genes and Helicobacter pylori in gastric cancer. This knowledge is a fundamental step towards accurate genetic counselling, in which a highly specialised pre-symptomatic therapeutic intervention should be offered.

  6. Screening and surveillance approaches in familial pancreatic cancer.

    Science.gov (United States)

    Canto, Marcia Irene

    2008-07-01

    Screening and surveillance for pancreatic cancer and its precursors is a relatively new indication for endoscopic ultrasound. It provides an alternative approach to the ineffective treatment of mostly incurable symptomatic pancreatic cancer. It is currently reserved for individuals with an increased risk for pancreatic ductal adenocarcinoma, such as those who have inherited genetic syndromes (eg, patients who have Peutz-Jeghers syndrome or hereditary pancreatitis, germline mutation carriers of p16 and BRCA2) and at-risk relatives of patients who have familial pancreatic cancer. This article discusses the rationale for performing screening and surveillance, the types of patients who are eligible for screening, the diagnostic modalities and technique for screening, the diagnostic yield of screening, and the ongoing research.

  7. A genetic engineering approach to genetic algorithms.

    Science.gov (United States)

    Gero, J S; Kazakov, V

    2001-01-01

    We present an extension to the standard genetic algorithm (GA), which is based on concepts of genetic engineering. The motivation is to discover useful and harmful genetic materials and then execute an evolutionary process in such a way that the population becomes increasingly composed of useful genetic material and increasingly free of the harmful genetic material. Compared to the standard GA, it provides some computational advantages as well as a tool for automatic generation of hierarchical genetic representations specifically tailored to suit certain classes of problems.

  8. Moving up the slippery slope: mandated genetic screening on Cyprus.

    Science.gov (United States)

    Cowan, Ruth Schwartz

    2009-02-15

    Many social scientists and bioethicists have argued that genetic screening is a new form of eugenics. Examination of the development of the quasi-mandated screening program for beta-thalassemia in the Republic of Cyprus (1970-1984) demonstrates that there is nothing eugenic about modern genetic screening practices. The Cypriot screening program involves mandated premarital carrier screening, voluntary prenatal diagnosis (originally through fetoscopy, now through CVS), and voluntary termination of afflicted pregnancies-all at public expense. In the Republic of Cyprus, the mandating agency for genetic screening is the established church, so this examination also demonstrates that religious authorities with profound objections to abortion can balance that moral precept against others, such as the imperative to reduce suffering that sometimes conflict with it. (c) 2009 Wiley-Liss, Inc.

  9. The art and design of genetic screens: maize.

    Science.gov (United States)

    Candela, Héctor; Hake, Sarah

    2008-03-01

    Maize (Zea mays) is an excellent model for basic research. Genetic screens have informed our understanding of developmental processes, meiosis, epigenetics and biochemical pathways--not only in maize but also in other cereal crops. We discuss the forward and reverse genetic screens that are possible in this organism, and emphasize the available tools. Screens exploit the well-studied behaviour of transposon systems, and the distinctive chromosomes allow an integration of cytogenetics into mutagenesis screens and analyses. The imminent completion of the maize genome sequence provides the essential resource to move seamlessly from gene to phenotype and back.

  10. Stakeholder perspectives on the implementation of genetic carrier screening in a changing landscape.

    Science.gov (United States)

    Holtkamp, Kim C A; Vos, Evelien M; Rigter, Tessel; Lakeman, Phillis; Henneman, Lidewij; Cornel, Martina C

    2017-02-16

    In most countries, genetic carrier screening is neither offered, nor embedded in mainstream healthcare. Technological developments have triggered a two-fold transition in carrier screening: the expansion from screening one single disorder to many disorders simultaneously, and offering screening universally, regardless of ancestry. This study aims to identify general and population-specific barriers and needs reflected by stakeholders regarding the implementation of carrier screening in a changing landscape. Seventeen semi-structured interviews were conducted with Dutch key stakeholders working in the practical and scientific field of carrier screening. The constellation approach was used to categorise barriers and needs into three levels: culture, structure and practice. Barriers on a cultural level include: undecidedness about the desirability of carrier screening, and a lack of priority of screening in mainstream healthcare. On a structural level barriers included: need for organisational structures in healthcare for embedding carrier screening, need for guidelines, financial structures, practical tools for overcoming challenges during counselling, and a need for training and education of both professionals and the public. A lack of demand for screening by the public, and a need for a division of responsibilities were barriers on a practical level. The absence of a collective sense of urgency for genetic carrier screening, a lack of organisational structures, and uncertainty or even disagreement about the responsibilities seem to be important barriers in the implementation of carrier screening. Stakeholders therefore suggest that change agents should be formally acknowledged to strategically plan broadening of current initiatives and attune different stakeholders.

  11. Antenatal screening and the gendering of genetic responsibility

    Directory of Open Access Journals (Sweden)

    Reed Kate

    2007-09-01

    Full Text Available Abstract Background The objective of this study is to explore men's and women's perceptions of antenatal blood screening. The study will assess the impact of these perceptions on decision-making regarding diagnostic testing and selective abortion, and on parental feelings of genetic responsibility. By exploring gender and antenatal screening in this way, the research aims to contribute to our understanding of lay perceptions of genetic screening and increase our knowledge of the decision-making process in screening. Research design This qualitative study will be based on semi-structured interviews with twenty pregnant women and twenty male partners in the post-industrial city of Sheffield, UK. All interviews will be taped, transcribed and analysed thematically using NVIVO, a qualitative software package. Discussion The findings of this study have relevance to existing debates on the social and ethical implications of reproductive genetics. A better understanding of male and female perceptions of the screening process could improve guidance and practice in antenatal screening and genetic counselling. It will also inform and contribute to the development of theory on gender and genetic screening.

  12. Reverse Genetics Approaches to Control Arenavirus.

    Science.gov (United States)

    Martínez-Sobrido, Luis; Cheng, Benson Yee Hin; de la Torre, Juan Carlos

    2016-01-01

    Several arenavirus cause hemorrhagic fever disease in humans and pose a significant public health problem in their endemic regions. To date, no licensed vaccines are available to combat human arenavirus infections, and anti-arenaviral drug therapy is limited to an off-label use of ribavirin that is only partially effective. The development of arenavirus reverse genetics approaches provides investigators with a novel and powerful approach for the investigation of the arenavirus molecular and cell biology. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription and the identification of novel anti-arenaviral drug targets without requiring the use of live forms of arenaviruses. Likewise, it is now feasible to rescue infectious arenaviruses entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis, as well as to facilitate screens to identify anti-arenaviral drugs and development of novel live-attenuated arenavirus vaccines. Recently, reverse genetics have also allowed the generation of tri-segmented arenaviruses expressing foreign genes, facilitating virus detection and opening the possibility of implementing live-attenuated arenavirus-based vaccine vector approaches. Likewise, the development of single-cycle infectious, reporter-expressing, arenaviruses has provided a new experimental method to study some aspects of the biology of highly pathogenic arenaviruses without the requirement of high-security biocontainment required to study HF-causing arenaviruses. In this chapter we summarize the current knowledge on arenavirus reverse genetics and the implementation of plasmid-based reverse genetics techniques for the development of arenavirus vaccines and vaccine vectors.

  13. Private and public eugenics: genetic and screening in India

    NARCIS (Netherlands)

    Gupta, J.A.

    2007-01-01

    Epidemiologists and geneticists claim that genetics has an increasing role to play in public health policies and programs in the future. Within this perspective, genetic testing and screening are instrumental in avoiding the birth of children with serious, costly or untreatable disorders. This paper

  14. Applying theological developments to bioethical issues such as genetic screening.

    Science.gov (United States)

    Mallia, Pierre; ten Have, Henk

    2005-01-01

    Catholic movements within the centre of Roman Catholic doctrine recently have discussed Trinitarian theology as applied to sciences, arts, economics, health and other social areas. We explore the possibilities Trinitarian theology offers to bioethical debate, concentrating particularly on genetic screening and testing. It is important therefore to analyse the philosophical implications of this approach onto the bioethical world, where much disagreement occurs on fundamental issues. It is Catholic basic teaching to recognize and see God's hand in plurality, not merely as a cliche and then doing what we feel is right, but to recognize how to live in a pluralistic world. We recognize, in agreement with these theologians, that in order for a Trinitarian mode of understanding to be used by those doing bioethical debate, there is a need to depart from fundamentalism.

  15. Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens

    DEFF Research Database (Denmark)

    Timms, Richard T.; Menzies, Sam A.; Tchasovnikarova, Iva A.

    2016-01-01

    The application of forward genetic screens to cultured human cells represents a powerful method to study gene function. The repurposing of the bacterial CRISPR/Cas9 system provides an effective method to disrupt gene function in mammalian cells, and has been applied to genome-wide screens. Here, we...... compare the efficacy of genome-wide CRISPR/Cas9-mediated forward genetic screens versus gene-trap mutagenesis screens in haploid human cells, which represent the existing ‘gold standard’ method. This head-to-head comparison aimed to identify genes required for the endoplasmic reticulum....../3-associated disulphide reductase. Genome-wide CRISPR/Cas9-mediated screens together with haploid genetic screens provide a powerful addition to the forward genetic toolbox....

  16. High-efficiency multiplex capillary electrophoresis single strand conformation polymorphism (multi-CE-SSCP) mutation screening of SCN5A: a rapid genetic approach to cardiac arrhythmia.

    Science.gov (United States)

    Hofman-Bang, J; Behr, E R; Hedley, P; Tfelt-Hansen, J; Kanters, J K; Haunsøe, S; McKenna, W J; Christiansen, M

    2006-06-01

    Mutations in the SCN5A gene coding for the alpha-subunit of the cardiac Na(+) ion channel cause long QT syndrome, Brugada syndrome, idiopathic ventricular fibrillation, sick sinus node syndrome, progressive conduction disease, dilated cardiomyopathy and atrial standstill. These diseases exhibit variable expressivity, and identification of gene carriers is clinically important, particularly in sudden infant and adult death syndromes. The SCN5A gene comprises 28 exons distributed over 100 kbp of genomic sequence at chromosome 3p21. Disease-causing mutations are private and scattered over the DNA sequence, making it difficult to screen for specific mutations. We developed a multiplex capillary-electrophoresis single-strand conformation polymorphism (Multi-CE-SSCP) mutation screening protocol on the ABI 3100 platform and applied it to 10 previously slab-gel SSCP identified mutations and SNPs and used it to identify one novel deletion. The method is highly efficient, with a turnover of 23 patients per 24 h and a false positive rate of 0.5% of the analyzed amplicons. Each variant has a particular elution pattern, and all 20 carriers of the H558R polymorphism out of 57 persons were correctly identified. We suggest that the method could become part of routine work-up of patients with suspicious syncope and of members of families with sudden unexplained death.

  17. Technical Update: Preimplantation Genetic Diagnosis and Screening.

    Science.gov (United States)

    Dahdouh, Elias M; Balayla, Jacques; Audibert, François; Wilson, R Douglas; Audibert, François; Brock, Jo-Ann; Campagnolo, Carla; Carroll, June; Chong, Karen; Gagnon, Alain; Johnson, Jo-Ann; MacDonald, William; Okun, Nanette; Pastuck, Melanie; Vallée-Pouliot, Karine

    2015-05-01

    Objectif : Mettre à jour et passer en revue les techniques et les indications du diagnostic génétique préimplantatoire et du dépistage génétique préimplantatoire. Options : Discussion au sujet des aspects techniques et génétiques des techniques génésiques préimplantatoires, particulièrement en ce qui concerne celles qui font appel aux nouvelles technologies cytogénétiques et à la biopsie au stade de l’embryon. Issues : Les issues cliniques obtenues par les techniques génésiques à la suite du recours au diagnostic génétique préimplantatoire et au dépistage génétique préimplantatoire sont incluses. La présente mise à jour ne traite pas en détail des issues indésirables qui ont été signalées en association avec les technologies de procréation assistée. Résultats : La littérature publiée a été récupérée par l’intermédiaire de recherches menées dans Medline et The Cochrane Library en avril 2014 au moyen d’un vocabulaire contrôlé (« aneuploidy », « blastocyst/physiology », « genetic diseases », « preimplantation diagnosis/methods », « fertilization in vitro ») et de mots clés (p. ex. « preimplantation genetic diagnosis », « preimplantation genetic screening », « comprehensive chromosome screening », « aCGH », « SNP microarray », « qPCR » et « embryo selection ») appropriés. Les résultats ont été restreints aux analyses systématiques, aux études observationnelles et aux essais comparatifs randomisés / essais cliniques comparatifs publiés en anglais entre 1990 et avril 2014. Aucune restriction n’a été imposée en matière de langue. Les recherches ont été mises à jour de façon régulière et intégrées à la directive clinique jusqu’en janvier 2015. Des publications additionnelles ont été identifiées à partir des bibliographies des articles récupérés. La littérature grise (non publiée) a été identifiée par l’intermédiaire de

  18. Big screens with small RNAs : loss of function genetic screens to identify novel cancer genes

    NARCIS (Netherlands)

    Mullenders, J.

    2009-01-01

    This thesis described the construction and screening of one of the first large scale RNAi libraries for use in human cells. Functional genetic screens with this library have led to the identification of novel cancer genes. These cancer genes function in several pathways including the p53 tumor suppr

  19. GPCALMA: a Grid Approach to Mammographic Screening

    CERN Document Server

    Bagnasco, S; Cerello, P G; Delogu, P; Fantacci, M E; Torres, E L; Masala, G L; Oliva, P R; Retico, A; Stumbo, S

    2004-01-01

    The next generation of High Energy Physics experiments requires a GRID approach to a distributed computing system and the associated data management: the key concept is the "Virtual Organisation" (VO), a group of geographycally distributed users with a common goal and the will to share their resources. A similar approach is being applied to a group of Hospitals which joined the GPCALMA project (Grid Platform for Computer Assisted Library for MAmmography), which will allow common screening programs for early diagnosis of breast and, in the future, lung cancer. HEP techniques come into play in writing the application code, which makes use of neural networks for the image analysis and shows performances similar to radiologists in the diagnosis. GRID technologies will allow remote image analysis and interactive online diagnosis, with a relevant reduction of the delays presently associated to screening programs.

  20. A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia

    Science.gov (United States)

    Ferrari, Raffaele; Grassi, Mario; Salvi, Erika; Borroni, Barbara; Palluzzi, Fernando; Pepe, Daniele; D'Avila, Francesca; Padovani, Alessandro; Archetti, Silvana; Rainero, Innocenzo; Rubino, Elisa; Pinessi, Lorenzo; Benussi, Luisa; Binetti, Giuliano; Ghidoni, Roberta; Galimberti, Daniela; Scarpini, Elio; Serpente, Maria; Rossi, Giacomina; Giaccone, Giorgio; Tagliavini, Fabrizio; Nacmias, Benedetta; Piaceri, Irene; Bagnoli, Silvia; Bruni, Amalia C.; Maletta, Raffaele G.; Bernardi, Livia; Postiglione, Alfredo; Milan, Graziella; Franceschi, Massimo; Puca, Annibale A.; Novelli, Valeria; Barlassina, Cristina; Glorioso, Nicola; Manunta, Paolo; Singleton, Andrew; Cusi, Daniele; Hardy, John; Momeni, Parastoo

    2015-01-01

    Frontotemporal dementia (FTD) is the second most prevalent form of early onset dementia after Alzheimer's disease (AD). We performed a case-control association study in an Italian FTD cohort (n = 530) followed by the novel single nucleotide polymorphisms (SNPs)-to-genes approach and functional annotation analysis. We identified 2 novel potential loci for FTD. Suggestive SNPs reached p-values ∼10−7 and odds ratio > 2.5 (2p16.3) and 1.5 (17q25.3). Suggestive alleles at 17q25.3 identified a disease-associated haplotype causing decreased expression of –cis genes such as RFNG and AATK involved in neuronal genesis and differentiation and axon outgrowth, respectively. We replicated this locus through the SNPs-to-genes approach. Our functional annotation analysis indicated significant enrichment for functions of the brain (neuronal genesis, differentiation, and maturation), the synapse (neurotransmission and synapse plasticity), and elements of the immune system, the latter supporting our recent international FTD–genome-wide association study. This is the largest genome-wide study in Italian FTD to date. Although our results are not conclusive, we set the basis for future replication studies and identification of susceptible molecular mechanisms involved in FTD pathogenesis. PMID:26154020

  1. A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia.

    Science.gov (United States)

    Ferrari, Raffaele; Grassi, Mario; Salvi, Erika; Borroni, Barbara; Palluzzi, Fernando; Pepe, Daniele; D'Avila, Francesca; Padovani, Alessandro; Archetti, Silvana; Rainero, Innocenzo; Rubino, Elisa; Pinessi, Lorenzo; Benussi, Luisa; Binetti, Giuliano; Ghidoni, Roberta; Galimberti, Daniela; Scarpini, Elio; Serpente, Maria; Rossi, Giacomina; Giaccone, Giorgio; Tagliavini, Fabrizio; Nacmias, Benedetta; Piaceri, Irene; Bagnoli, Silvia; Bruni, Amalia C; Maletta, Raffaele G; Bernardi, Livia; Postiglione, Alfredo; Milan, Graziella; Franceschi, Massimo; Puca, Annibale A; Novelli, Valeria; Barlassina, Cristina; Glorioso, Nicola; Manunta, Paolo; Singleton, Andrew; Cusi, Daniele; Hardy, John; Momeni, Parastoo

    2015-10-01

    Frontotemporal dementia (FTD) is the second most prevalent form of early onset dementia after Alzheimer's disease (AD). We performed a case-control association study in an Italian FTD cohort (n = 530) followed by the novel single nucleotide polymorphisms (SNPs)-to-genes approach and functional annotation analysis. We identified 2 novel potential loci for FTD. Suggestive SNPs reached p-values ∼10(-7) and odds ratio > 2.5 (2p16.3) and 1.5 (17q25.3). Suggestive alleles at 17q25.3 identified a disease-associated haplotype causing decreased expression of -cis genes such as RFNG and AATK involved in neuronal genesis and differentiation and axon outgrowth, respectively. We replicated this locus through the SNPs-to-genes approach. Our functional annotation analysis indicated significant enrichment for functions of the brain (neuronal genesis, differentiation, and maturation), the synapse (neurotransmission and synapse plasticity), and elements of the immune system, the latter supporting our recent international FTD-genome-wide association study. This is the largest genome-wide study in Italian FTD to date. Although our results are not conclusive, we set the basis for future replication studies and identification of susceptible molecular mechanisms involved in FTD pathogenesis.

  2. Moderating effects of autism on parent views of genetic screening for aggression.

    Science.gov (United States)

    May, Michael E; Brandt, Rachel C; Bohannan, Joseph K

    2012-10-01

    Advances in gene-environment interaction research have revealed genes that are associated with aggression. However, little is known about parent perceptions of genetic screening for behavioral symptoms like aggression as opposed to diagnosing disabilities. These perceptions may influence future research endeavors involving genetic linkage studies to behavior, including proactive approaches for parents to avoid events leading to aggression. The purpose of this study was to solicit the perspectives of parents who have children with autism about screening for genes associated with aggression, compared to responses from those who have children without disabilities and those planning to have children. Parents of children with autism were more likely to support screening and the use of the results to seek treatment if necessary. Results are discussed in the context of surveillance screening and systematic early intervention for behavioral symptoms related to autism. The results may provide insight for clincians, researchers, policymakers, and advocacy groups related to diagnosing and treating aggression in people with autism.

  3. Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens

    DEFF Research Database (Denmark)

    Timms, Richard T.; Menzies, Sam A.; Tchasovnikarova, Iva A.;

    2016-01-01

    The application of forward genetic screens to cultured human cells represents a powerful method to study gene function. The repurposing of the bacterial CRISPR/Cas9 system provides an effective method to disrupt gene function in mammalian cells, and has been applied to genome-wide screens. Here, ...

  4. Coeliac disease and autoimmune disease-genetic overlap and screening.

    Science.gov (United States)

    Lundin, Knut E A; Wijmenga, Cisca

    2015-09-01

    Coeliac disease is a treatable, gluten-induced disease that often occurs concurrently with other autoimmune diseases. In genetic studies since 2007, a partial genetic overlap between these diseases has been revealed and further insights into the pathophysiology of coeliac disease and autoimmunity have been gained. However, genetic screening is not sensitive and specific enough to accurately predict disease development. The current method to diagnose individuals with coeliac disease is serological testing for the presence of autoantibodies whilst the patient is on a regular, gluten-containing diet, followed by gastroduodenoscopy with duodenal biopsy. Serological test results can also predict the probability of coeliac disease development, even if asymptomatic. In patients with autoimmune diseases known to occur alongside coeliac disease (particularly type 1 diabetes mellitus or thyroid disorders), disease screening-and subsequent treatment if coeliac disease is detected-could have beneficial effects on progression or potential complications of both diseases, owing to the effectiveness of gluten-free dietary interventions in coeliac disease. However, whether diagnosis of coeliac disease and subsequent dietary treatment can prevent autoimmune diseases is debated. In this Review, the genetic and immunological features of coeliac disease, overlap with other autoimmune diseases and implications for current screening strategies will be discussed.

  5. An Integrated Approach to Crop Genetic Improvement

    Institute of Scientific and Technical Information of China (English)

    Martin A. J. Parry; Malcolm J. Hawkesford

    2012-01-01

    The balance between the supply and demand of the major food crops is fragile,fueling concerns for long-term global food security.The rising population,increasing wealth and a proliferation of nonfood uses (e.g.bioenergy) has led to growing demands on agriculture,while increased production is limited by greater urbanization,and the degradation of land.Furthermore,global climate change with increasing temperatures and lower,more erratic rainfall is projected to decrease agricultural yields.There is a predicted need to increase food production by at least 70% by 2050 and therefore an urgent need to develop novel and integrated approaches,incorporating high-throughput phenotyping that will both increase production per unit area and simultaneously improve the resource use efficiency of crops.Yield potential,yield stability,nutrient and water use are all complex multigenic traits and while there is genetic variability,their complexity makes such traits difficult to breed for directly.Nevertheless molecular plant breeding has the potential to deliver substantial improvements,once the component traits and the genes underlying these traits have been identified.In addition,interactions between the individual traits must also be taken into account,a demand that is difficult to fulfill with traditional screening approaches.Identified traits will be incorporated into new cultivars using conventional or biotechnological tools.In order to better understand the relationship between genotype,component traits,and environment over time,a multidisciplinary approach must be adopted to both understand the underlying processes and identify candidate genes,QTLs and traits that can be used to develop improved crops.

  6. Combination of hearing screening and genetic screening for deafness-susceptibility genes in newborns.

    Science.gov (United States)

    Yao, Gen-Dong; Li, Shou-Xia; Chen, Ding-Li; Feng, Hai-Qin; Zhao, Su-Bin; Liu, Yong-Jie; Guo, Li-Li; Yang, Zhi-Ming; Zhang, Xiao-Fang; Sun, Cai-Xia; Wang, Ze-Hui; Zhang, Wei-Yong

    2014-01-01

    The aim of this study was to determine the clinical significance of the results of screening of newborn hearing and the incidence of deafness-susceptibility genes. One thousand newborn babies in the Handan Center Hospital (Handan, China) underwent screening of hearing and deafness-susceptibility genes. The first screening test was carried out using otoacoustic emissions (OAEs). Babies with hearing loss who failed to pass the initial screening were scheduled for rescreening at 42 days after birth. Cord blood was used for the screening of deafness-susceptibility genes, namely the GJB2, SLC26A4 and mitochondrial 12S rRNA (MTRNR1) genes. Among the 1,000 neonates that underwent the first hearing screening, 25 exhibited left-sided hearing loss, 21 exhibited right-sided hearing loss and 15 cases had binaural hearing loss. After rescreening 42 days later, only one of the initial 61 cases exhibited hearing loss under OAE testing. The neonatal deafness gene tests showed two cases with 1555A>G mutation and two cases with 1494C>T mutation of the MTRNR1 gene. In the SLC26A4 gene screening, four cases exhibited the heterozygous IVS7-2A>G mutation and one case exhibited heterozygous 1226G>A mutation. In the GJB2 gene screening, two cases exhibited the homozygous 427C>T mutation and 10 exhibited the heterozygous 235delC mutation. The genetic screening revealed 21 newborns with mutations in the three deafness-susceptibility genes. The overall carrier rate was 2.1% (21/1,000). The association of hearing and gene screening may be the promising screening strategy for the diagnosis of hearing loss.

  7. Genetic screening for infertility: When should it be done?

    Directory of Open Access Journals (Sweden)

    Elda Kara

    2010-07-01

    Primary amenorrhea should be investigated by karyotype analysis and selected mutation screening according to the patient's clinical features. Karyotype analyses and FMR1 gene screening is recommended in cases of POF. At present the infertility of patients with POF cannot be restored if the diagnosis is made after complete follicular depletion, but in some cases, early diagnosis by genetic investigation may instead lead to the advice of early conception or oocyte harvesting and preservation. In addition, the accumulation and annotation of array comparative genomic hybridization data might, in the near future, lead to the identification of pathogenetic copy number variations and genes involved in POF. Karyotype analysis of both partners is recommended in all couples with recurrent pregnancy loss. No routine genetic test can be recommended so far in patients with PCOS.

  8. Forward genetic screen for auxin-deficient mutants by cytokinin.

    Science.gov (United States)

    Wu, Lei; Luo, Pan; Di, Dong-Wei; Wang, Li; Wang, Ming; Lu, Cheng-Kai; Wei, Shao-Dong; Zhang, Li; Zhang, Tian-Zi; Amakorová, Petra; Strnad, Miroslav; Novák, Ondřej; Guo, Guang-Qin

    2015-07-06

    Identification of mutants with impairments in auxin biosynthesis and dynamics by forward genetic screening is hindered by the complexity, redundancy and necessity of the pathways involved. Furthermore, although a few auxin-deficient mutants have been recently identified by screening for altered responses to shade, ethylene, N-1-naphthylphthalamic acid (NPA) or cytokinin (CK), there is still a lack of robust markers for systematically isolating such mutants. We hypothesized that a potentially suitable phenotypic marker is root curling induced by CK, as observed in the auxin biosynthesis mutant CK-induced root curling 1 / tryptophan aminotransferase of Arabidopsis 1 (ckrc1/taa1). Phenotypic observations, genetic analyses and biochemical complementation tests of Arabidopsis seedlings displaying the trait in large-scale genetic screens showed that it can facilitate isolation of mutants with perturbations in auxin biosynthesis, transport and signaling. However, unlike transport/signaling mutants, the curled (or wavy) root phenotypes of auxin-deficient mutants were significantly induced by CKs and could be rescued by exogenous auxins. Mutants allelic to several known auxin biosynthesis mutants were re-isolated, but several new classes of auxin-deficient mutants were also isolated. The findings show that CK-induced root curling provides an effective marker for discovering genes involved in auxin biosynthesis or homeostasis.

  9. [Current methods in genetic analysis : an approach for genetics-based preventive medicine].

    Science.gov (United States)

    Klein, Hans-Georg; Rost, Imma

    2015-02-01

    Modern genetic analysis methods such as DNA arrays (gene chips) or high-throughput DNA sequencing of the next generation (Next Generation Sequencing, NGS) have once again accelerated the pace of innovation that has been powered by genome research over the past 10 years of the "post-genomic era". The present paper introduces array and NGS methods as two important innovation driving methods and provides examples for their application in large-scale scientific projects. However, a broad application of these very powerful technologies for genetic screening for the purpose of disease prevention is currently not yet in sight. The complexity of the interaction of genes, gene products and the environment has so far exceeded all expectations, suggesting that reliable statements about the medical relevance of common genetic variants can presently only be made in a few areas such as pharmacogenetics and oncology. We also discuss ethical issues raised by genetic population screening. The aim of this paper is to provide a brief outline of the development of methods in molecular genetics to the now dominant modern technologies and present their applications in research, in the diagnosis of rare diseases, and in terms of screening approaches.

  10. [Incest--forensic genetic approach].

    Science.gov (United States)

    Raczek, Ewa

    2012-01-01

    The paper presents intimate relationships between biologically and legally close relatives, complicated in the social, culture and religion perspective. (art. 201 of the Penal Code), but it chiefly addresses problems associated with giving opinion on the fatherhood towards the incestuous child. The report calls for a broader interest in this issue from expert witnesses in forensic genetics, as well as encourages them to publish examples taken from their own professional experience that may unquestionably be helpful to other practitioners in this field and above all will lead to extending educational methods related to widely understood DNA analysis in giving an opinion on arguable fatherhood.

  11. A post-developmental genetic screen for zebrafish models of inherited liver disease.

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is one of the most common causes of chronic liver disease such as simple steatosis, nonalcoholic steatohepatitis (NASH, cirrhosis and fibrosis. However, the molecular pathogenesis and genetic variations causing NAFLD are poorly understood. The high prevalence and incidence of NAFLD suggests that genetic variations on a large number of genes might be involved in NAFLD. To identify genetic variants causing inherited liver disease, we used zebrafish as a model system for a large-scale mutant screen, and adopted a whole genome sequencing approach for rapid identification of mutated genes found in our screen. Here, we report on a forward genetic screen of ENU mutagenized zebrafish. From 250 F2 lines of ENU mutagenized zebrafish during post-developmental stages (5 to 8 days post fertilization, we identified 19 unique mutant zebrafish lines displaying visual evidence of hepatomegaly and/or steatosis with no developmental defects. Histological analysis of mutants revealed several specific phenotypes, including common steatosis, micro/macrovesicular steatosis, hepatomegaly, ballooning, and acute hepatocellular necrosis. This work has identified multiple post-developmental mutants and establishes zebrafish as a novel animal model for post-developmental inherited liver disease.

  12. A post-developmental genetic screen for zebrafish models of inherited liver disease.

    Science.gov (United States)

    Kim, Seok-Hyung; Wu, Shu-Yu; Baek, Jeong-In; Choi, Soo Young; Su, Yanhui; Flynn, Charles R; Gamse, Joshua T; Ess, Kevin C; Hardiman, Gary; Lipschutz, Joshua H; Abumrad, Naji N; Rockey, Don C

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease such as simple steatosis, nonalcoholic steatohepatitis (NASH), cirrhosis and fibrosis. However, the molecular pathogenesis and genetic variations causing NAFLD are poorly understood. The high prevalence and incidence of NAFLD suggests that genetic variations on a large number of genes might be involved in NAFLD. To identify genetic variants causing inherited liver disease, we used zebrafish as a model system for a large-scale mutant screen, and adopted a whole genome sequencing approach for rapid identification of mutated genes found in our screen. Here, we report on a forward genetic screen of ENU mutagenized zebrafish. From 250 F2 lines of ENU mutagenized zebrafish during post-developmental stages (5 to 8 days post fertilization), we identified 19 unique mutant zebrafish lines displaying visual evidence of hepatomegaly and/or steatosis with no developmental defects. Histological analysis of mutants revealed several specific phenotypes, including common steatosis, micro/macrovesicular steatosis, hepatomegaly, ballooning, and acute hepatocellular necrosis. This work has identified multiple post-developmental mutants and establishes zebrafish as a novel animal model for post-developmental inherited liver disease.

  13. The calculus a genetic approach

    CERN Document Server

    Toeplitz, Otto

    2007-01-01

    When first published posthumously in 1963, this book presented a radically different approach to the teaching of calculus.  In sharp contrast to the methods of his time, Otto Toeplitz did not teach calculus as a static system of techniques and facts to be memorized. Instead, he drew on his knowledge of the history of mathematics and presented calculus as an organic evolution of ideas beginning with the discoveries of Greek scholars, such as Archimedes, Pythagoras, and Euclid, and developing through the centuries in the work of Kepler, Galileo, Fermat, Newton, and Leibniz. Through this unique a

  14. Global burden of genetic disease and the role of genetic screening.

    Science.gov (United States)

    Verma, I C; Puri, R D

    2015-10-01

    It is estimated that 5.3% of newborns will suffer from a genetic disorder, when followed up until the age of 25 years. In developing, as compared to western countries, hemoglobinopathies and glucose-6-phosphate dehydrogenase deficiency have a higher incidence due to severe falciparum malaria in the distant past, and autosomal recessive disorders have a higher frequency due to greater proportion of consanguineous marriages. Chromosomal disorders have a combined frequency of 1 in 153 births, therefore screening for chromosomal disorders is essential, using biochemical markers, ultrasonography, and recently by non-invasive prenatal diagnosis based on cell-free fetal DNA in maternal plasma. Preconceptional counseling should be encouraged. For genetic disorders screening should be carried out, ideally after marriage, but before pregnancy. The disorders to be screened depend upon ethnicity. Metabolic disorders have a high incidence in developing countries due to greater rate of consanguineous marriages. Newborn screening is recommended to reduce the burden of these disorders, as many metabolic disorders can be treated. Hearing and critical congenital heart disease should both be screened in the newborn period.

  15. Pooled-matrix protein interaction screens using Barcode Fusion Genetics.

    Science.gov (United States)

    Yachie, Nozomu; Petsalaki, Evangelia; Mellor, Joseph C; Weile, Jochen; Jacob, Yves; Verby, Marta; Ozturk, Sedide B; Li, Siyang; Cote, Atina G; Mosca, Roberto; Knapp, Jennifer J; Ko, Minjeong; Yu, Analyn; Gebbia, Marinella; Sahni, Nidhi; Yi, Song; Tyagi, Tanya; Sheykhkarimli, Dayag; Roth, Jonathan F; Wong, Cassandra; Musa, Louai; Snider, Jamie; Liu, Yi-Chun; Yu, Haiyuan; Braun, Pascal; Stagljar, Igor; Hao, Tong; Calderwood, Michael A; Pelletier, Laurence; Aloy, Patrick; Hill, David E; Vidal, Marc; Roth, Frederick P

    2016-04-22

    High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods.

  16. Genetic Algorithm Approaches for Actuator Placement

    Science.gov (United States)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  17. genomic and transcriptomic approaches towards the genetic ...

    African Journals Online (AJOL)

    USER

    to the complex nature of these stresses, and the genotype x environment interaction (GxE). .... collection (Azam-Ali et al., 2001); (vi) biological .... Integrative platform to study gene function and gene evolution in legumes ..... a powerful dissection of the genetic control of ... complemented by a new approach called genomic.

  18. Testing for direct genetic effects using a screening step in family-based association studies

    Directory of Open Access Journals (Sweden)

    Sharon M Lutz

    2013-11-01

    Full Text Available In genome wide association studies (GWAS, families based studies tend to have less power to detect genetic associations than population based studies, such as case-control studies. This can be an issue when testing if genes in a family based GWAS have a direct effect on the phenotype of interest or if the genes act indirectly through a secondary phenotype. When multiple SNPs are tested for a direct effect in the family based study, a screening step can be used to minimize the burden of multiple comparisons in the causal analysis. We propose a 2-stage screening step that can be incorporated into the family based association test (FBAT approach similar to the conditional mean model approach in the VanSteen-algorithm [1]. Simulations demonstrate that the type 1 error is preserved and this method is advantageous when multiple markers are tested. This method is illustrated by an application to the Framingham Heart Study.

  19. New Approaches to Establish Genetic Causality

    Science.gov (United States)

    McNally, Elizabeth M.; George, Alfred L.

    2015-01-01

    Cardiovascular medicine has evolved rapidly in the era of genomics with many diseases having primary genetic origins becoming the subject of intense investigation. The resulting avalanche of information on the molecular causes of these disorders has prompted a revolution in our understanding of disease mechanisms and provided new avenues for diagnoses. At the heart of this revolution is the need to correctly classify genetic variants discovered during the course of research or reported from clinical genetic testing. This review will address current concepts related to establishing the cause and effect relationship between genomic variants and heart diseases. A survey of general approaches used for functional annotation of variants will also be presented. PMID:25864169

  20. Unconventional screening approaches for antibiotic discovery

    National Research Council Canada - National Science Library

    Farha, Maya A; Brown, Eric D

    2015-01-01

    .... Nevertheless, a paucity of new antibacterial drugs in discovery and development pipelines using traditional approaches has prompted a variety of unconventional and disruptive strategies for antibacterial drug discovery...

  1. Cellular biosensing: chemical and genetic approaches.

    Science.gov (United States)

    Haruyama, Tetsuya

    2006-05-24

    Biosensors have been developed to determine the concentration of specific compounds in situ. They are already widely employed as a practical technology in the clinical and healthcare fields. Recently, another concept of biosensing has been receiving attention: biosensing for the evaluation of molecular potency. The development of this novel concept has been supported by the development of related technologies, as such as molecular design, molecular biology (genetic engineering) and cellular/tissular engineering. This review is addresses this new concept of biosensing and its application to the evaluation of the potency of chemicals in biological systems, in the field of cellular/tissular engineering. Cellular biosensing may provide information on both pharmaceutical and chemical safety, and on drug efficacy in vitro as a screening tool.

  2. A genetic screen to isolate Toxoplasma gondii host-cell egress mutants.

    Science.gov (United States)

    Coleman, Bradley I; Gubbels, Marc-Jan

    2012-02-08

    The widespread, obligate intracellular, protozoan parasite Toxoplasma gondii causes opportunistic disease in immuno-compromised patients and causes birth defects upon congenital infection. The lytic replication cycle is characterized by three stages: 1. active invasion of a nucleated host cell; 2. replication inside the host cell; 3. active egress from the host cell. The mechanism of egress is increasingly being appreciated as a unique, highly regulated process, which is still poorly understood at the molecular level. The signaling pathways underlying egress have been characterized through the use of pharmacological agents acting on different aspects of the pathways. As such, several independent triggers of egress have been identified which all converge on the release of intracellular Ca(2+), a signal that is also critical for host cell invasion. This insight informed a candidate gene approach which led to the identification of plant like calcium dependent protein kinase (CDPK) involved in egress. In addition, several recent breakthroughs in understanding egress have been made using (chemical) genetic approaches. To combine the wealth of pharmacological information with the increasing genetic accessibility of Toxoplasma we recently established a screen permitting the enrichment for parasite mutants with a defect in host cell egress. Although chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) or ethyl methanesulfonate (EMS) has been used for decades in the study of Toxoplasma biology, only recently has genetic mapping of mutations underlying the phenotypes become routine. Furthermore, by generating temperature-sensitive mutants, essential processes can be dissected and the underlying genes directly identified. These mutants behave as wild-type under the permissive temperature (35 °C), but fail to proliferate at the restrictive temperature (40 °C) as a result of the mutation in question. Here we illustrate a new phenotypic screening method to isolate mutants

  3. Genetic Counseling and Screening of Consanguineous Couples and Their Offspring: Recommendations of the National Society of Genetic Counselors.

    Science.gov (United States)

    Bennett, Robin L; Motulsky, Arno G; Bittles, Alan; Hudgins, Louanne; Uhrich, Stefanie; Doyle, Debra Lochner; Silvey, Kerry; Scott, C Ronald; Cheng, Edith; McGillivray, Barbara; Steiner, Robert D; Olson, Debra

    2002-04-01

    The objective of this document is to provide recommendations for genetic counseling and screening for consanguineous couples (related as second cousins or closer) and their offspring with the goals of1. providing preconception reproductive options2. improving pregnancy outcome and identifying reproductive choices3. reducing morbidity and mortality in the 1st years of life, and4. respecting psychosocial and multicultural issues.The recommendations are the opinions of a multicenter working group (the Consanguinity Working Group (CWG)) with expertise in genetic counseling, medical genetics, biochemical genetics, genetic epidemiology, pediatrics, perinatology, and public health genetics, which was convened by the National Society of Genetic Counselors (NSGC). The consensus of the CWG and NSGC reviewers is that beyond a thorough medical family history with follow-up of significant findings, no additional preconception screening is recommended for consanguineous couples. Consanguineous couples should be offered similar genetic screening as suggested for any couple of their ethnic group. During pregnancy, consanguineous couples should be offered maternal-fetal serum marker screening and high-resolution fetal ultrasonography. Newborns should be screened for impaired hearing and detection of treatable inborn errors of metabolism. These recommendations should not be construed as dictating an exclusive course of management, nor does use of such recommendations guarantee a particular outcome. The professional judgment of a health care provider, familiar with the facts and circumstances of a specific case, will always supersede these recommendations.

  4. Unconventional screening approaches for antibiotic discovery.

    Science.gov (United States)

    Farha, Maya A; Brown, Eric D

    2015-09-01

    The dramatic rise in microbial drug resistance in recent years has led to ongoing searches for novel drugs to add to the armory against infectious disease. Nevertheless, a paucity of new antibacterial drugs in discovery and development pipelines using traditional approaches has prompted a variety of unconventional and disruptive strategies for antibacterial drug discovery. Herein, we review recent nontraditional approaches that have been piloted for early drug discovery efforts. These unique methodologies open new avenues for finding the next generation of antimicrobials. © 2015 New York Academy of Sciences.

  5. Combinatorial and high-throughput screening approaches for strain engineering.

    Science.gov (United States)

    Liu, Wenshan; Jiang, Rongrong

    2015-03-01

    Microbes have long been used in the industry to produce valuable biochemicals. Combinatorial engineering approaches, new strain engineering tools derived from inverse metabolic engineering, have started to attract attention in recent years, including genome shuffling, error-prone DNA polymerase, global transcription machinery engineering (gTME), random knockout/overexpression libraries, ribosome engineering, multiplex automated genome engineering (MAGE), customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER), and library construction of "tunable intergenic regions" (TIGR). Since combinatorial approaches and high-throughput screening methods are fundamentally interconnected, color/fluorescence-based, growth-based, and biosensor-based high-throughput screening methods have been reviewed. We believe that with the help of metabolic engineering tools and new combinatorial approaches, plus effective high-throughput screening methods, researchers will be able to achieve better results on improving microorganism performance under stress or enhancing biochemical yield.

  6. Molecular approaches to screen bioactive compounds from endophytic fungi

    Directory of Open Access Journals (Sweden)

    M Vasundhara

    2016-11-01

    Full Text Available Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain genes involved in the entire biosynthetic pathway(s. Therefore, ascertaining the presence of key enzymes of a particular biosynthetic pathway could serve as a molecular marker for screening of these endophytes to produce that metabolite. In absence of entire biosynthetic pathways in endophytic fungi, plant genes associated with that metabolic pathway could serve as markers. This review focuses on the impact of molecular approaches to screen the endophytic fungi for the production of bioactive compounds. An attempt has been made on screening of anticancer compounds like taxol (paclitaxel, podophyllotoxin and camptothecin using molecular markers. The advantages of molecular approaches over conventional methods to screen endophytic fungi and also identification of endophytic fungi are also discussed.

  7. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi.

    Science.gov (United States)

    Vasundhara, M; Kumar, Anil; Reddy, M Sudhakara

    2016-01-01

    Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain genes involved in the entire biosynthetic pathway(s). Therefore, ascertaining the presence of key enzymes of a particular biosynthetic pathway could serve as a molecular marker for screening of these endophytes to produce that metabolite. In absence of entire biosynthetic pathways in endophytic fungi, plant genes associated with that metabolic pathway could serve as markers. This review focuses on the impact of molecular approaches to screen the endophytic fungi for the production of bioactive compounds. An attempt has been made on screening of anticancer compounds like taxol (paclitaxel), podophyllotoxin, and camptothecin using molecular markers. The advantages of molecular approaches over conventional methods to screen endophytic fungi and also identification of endophytic fungi are discussed.

  8. Incidental findings, genetic screening and the challenge of personalisation

    Directory of Open Access Journals (Sweden)

    Carlo Petrini

    2014-12-01

    Full Text Available Genetic tests frequently produce more information than is initially expected. Several documents have addressed this issue and offer suggestions regarding how this information should be managed and, in particular, concerning the expedience of revealing (or not revealing it to the persons concerned. While the approaches to the management of these incidental findings (IFs vary, it is usually recommended that the information be disclosed if there is confirmed clinical utility and the possibility of treatment or prevention. However, this leaves unsolved some fundamental issues such as the different ways of interpreting "clinical utility", countless sources of uncertainty and varying ways of defining the notion of "incidental". Guidelines and other reference documents can offer indications to those responsible for managing IFs but should not be allowed to relieve researchers and healthcare professionals of their responsibilities.

  9. [A novel approach to techniques in genetic testing for cancer].

    Science.gov (United States)

    Kato, Jun-ichi

    2014-04-01

    In molecular targeted drug therapy, genetic screening is carried out to identify the existence of target genes that are specifically expressed in cancer cells. Conventional methods for detecting the mutation of genes in cancer cells through the use of purified DNA is time consuming, especially in the case of the enzymatic treatment of pathological specimens, and it is difficult to finish all these protocols on the same day. Also, depending on the condition of the patients, it may be difficult to perform surgery or biopsy, and pathological specimens are not always obtainable. Thus, sometimes genetic screening using purified DNA and the enzymatic treatment of pathological specimens cannot be performed. We have successfully solved these problems using i-densy, a genetic analysis device, and two different methods of genetic testing for cancer. The first is a method which, without extracting DNA, uses simply pretreated pathological specimens for genetic screening. Using deparaffinized specimens that have only been heat-treated for a short period of time, we were able to obtain the exact same results as if we had extracted DNA. The second is the highly specific genetic screening technique, the MBP-QP method. Using this method, we were able to confirm the detection of genetic mutation from the DNA of blood plasma. It is now possible to screen for the mutation of genes in cancer cells using just a blood sample from patients without using tissue or cells, which also has little burden on the patient.

  10. Identification of common genetic modifiers of neurodegenerative diseases from an integrative analysis of diverse genetic screens in model organisms

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2012-02-01

    Full Text Available Abstract Background An array of experimental models have been developed in the small model organisms C. elegans, S. cerevisiae and D. melanogaster for the study of various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and expanded polyglutamine diseases as exemplified by Huntington's disease (HD and related ataxias. Genetic approaches to determine the nature of regulators of the disease phenotypes have ranged from small scale to essentially whole genome screens. The published data covers distinct models in all three organisms and one important question is the extent to which shared genetic factors can be uncovered that affect several or all disease models. Surprisingly it has appeared that there may be relatively little overlap and that many of the regulators may be organism or disease-specific. There is, however, a need for a fully integrated analysis of the available genetic data based on careful comparison of orthologues across the species to determine the real extent of overlap. Results We carried out an integrated analysis using C. elegans as the baseline model organism since this is the most widely studied in this context. Combination of data from 28 published studies using small to large scale screens in all three small model organisms gave a total of 950 identifications of genetic regulators. Of these 624 were separate genes with orthologues in C. elegans. In addition, 34 of these genes, which all had human orthologues, were found to overlap across studies. Of the common genetic regulators some such as chaperones, ubiquitin-related enzymes (including the E3 ligase CHIP which directly links the two pathways and histone deacetylases were involved in expected pathways whereas others such as the peroxisomal acyl CoA-oxidase suggest novel targets for neurodegenerative disease therapy Conclusions We identified a significant number of overlapping regulators of neurodegenerative disease models. Since the diseases

  11. Genetic testing in congenital heart disease:A clinical approach

    Institute of Scientific and Technical Information of China (English)

    Marie A Chaix; Gregor Andelfinger; Paul Khairy

    2016-01-01

    Congenital heart disease(CHD) is the most common type of birth defect. Traditionally, a polygenic model defined by the interaction of multiple genes and environmental factors was hypothesized to account for different forms of CHD. It is now understood that the contribution of genetics to CHD extends beyond a single unified paradigm. For example, monogenic models and chromosomal abnormalities have been associated with various syndromic and non-syndromic forms of CHD. In such instances, genetic investigation and testing may potentially play an important role in clinical care. A family tree with a detailed phenotypic description serves as the initial screening tool to identify potentially inherited defects and to guide further genetic investigation. The selection of a genetic test is contingent upon the particular diagnostic hypothesis generated by clinical examination. Genetic investigation in CHD may carry the potential to improve prognosis by yielding valuable information with regards to personalized medical care, confidence in the clinical diagnosis, and/or targeted patient followup. Moreover, genetic assessment may serve as a tool to predict recurrence risk, define the pattern of inheritance within a family, and evaluate the need for further family screening. In some circumstances, prenatal or preimplantation genetic screening could identify fetuses or embryos at high risk for CHD. Although genetics may appear to constitute a highly specialized sector of cardiology, basic knowledge regarding inheritance patterns, recurrence risks, and available screening and diagnostic tools, including their strengths and limitations, could assist the treating physician in providing sound counsel.

  12. A novel mating approach for genetic algorithms.

    Science.gov (United States)

    Galán, Severino F; Mengshoel, Ole J; Pinter, Rafael

    2013-01-01

    Genetic algorithms typically use crossover, which relies on mating a set of selected parents. As part of crossover, random mating is often carried out. A novel approach to parent mating is presented in this work. Our novel approach can be applied in combination with a traditional similarity-based criterion to measure distance between individuals or with a fitness-based criterion. We introduce a parameter called the mating index that allows different mating strategies to be developed within a uniform framework: an exploitative strategy called best-first, an explorative strategy called best-last, and an adaptive strategy called self-adaptive. Self-adaptive mating is defined in the context of the novel algorithm, and aims to achieve a balance between exploitation and exploration in a domain-independent manner. The present work formally defines the novel mating approach, analyzes its behavior, and conducts an extensive experimental study to quantitatively determine its benefits. In the domain of real function optimization, the experiments show that, as the degree of multimodality of the function at hand grows, increasing the mating index improves performance. In the case of the self-adaptive mating strategy, the experiments give strong results for several case studies.

  13. Infant metabolic screening: a total quality management approach.

    Science.gov (United States)

    Forsberg, S A

    1997-01-01

    The principles of total quality management (TQM) were used to improve the infant metabolic screening program in a large urban hospital. Three quality indicators needed improvement; unsatisfactory specimen quality, delayed delivery to the state laboratory for testing, and specimen slips missing the date of collection. A multidisciplinary team identified the root causes of the poor quality and implemented remedies. Dramatic improvement in three infant screening indicators occurred within a 4-month period. Evaluation of the three indicators continued for the following 3-year period. Quality improvement programs that involve a multidisciplinary approach benefit the patient and staff and may reduce costs.

  14. Substrate Activity Screening (SAS) and Related Approaches in Medicinal Chemistry.

    Science.gov (United States)

    Gladysz, Rafaela; Lambeir, Anne-Marie; Joossens, Jurgen; Augustyns, Koen; Van der Veken, Pieter

    2016-03-04

    Substrate activity screening (SAS) was presented a decade ago by Ellman and co-workers as a straightforward methodology for the identification of fragment-sized building blocks for enzyme inhibitors. Ever since, SAS and variations derived from it have been successfully applied to the discovery of inhibitors of various families of enzymatically active drug targets. This review covers key achievements and challenges of SAS and related methodologies, including the modified substrate activity screening (MSAS) approach. Special attention is given to the kinetic and thermodynamic aspects of these methodologies, as a thorough understanding thereof is crucial for successfully transforming the identified fragment-sized hits into potent inhibitors.

  15. Genetic synthetic lethality screen at the single gene level in cultured human cells

    OpenAIRE

    Simons, Arnold H.; Dafni, Naomi; Dotan, Iris; Oron, Yoram; Canaani, Dan

    2001-01-01

    Recently, we demonstrated the feasibility of a chemical synthetic lethality screen in cultured human cells. We now demonstrate the principles for a genetic synthetic lethality screen. The technology employs both an immortalized human cell line deficient in the gene of interest, which is complemented by an episomal survival plasmid expressing the wild-type cDNA for the gene of interest, and the use of a novel GFP-based double-label fluorescence system. Dominant negative genetic suppressor elem...

  16. Systematic genetic screening in a prospective group of Danish patients with pheochromocytoma

    DEFF Research Database (Denmark)

    Hansen, Morten Steen Svarer; Jacobsen, Niels; Frederiksen, Anja Lisbeth

    2017-01-01

    Recent guidelines recommend consideration of genetic screening in all newly diagnosed patients with pheochromocytoma. Patients diagnosed with pheochromocytoma in the Region of Southern Denmark during 2006-2013 without previously recognized monogenetic etiology were offered genetic screening...... for mutations in the VHL, RET, SDHB, SDHC, and SDHD genes. A total of 41 patients were included, and genetic data were available in 35. In four of the 35 patients, a pathogenic variant was identified prior to the diagnosis of pheochromocytoma (von Hippel-Lindau disease, n=2; neurofibromatosis type 1, n=2......). The patients carrying a genetic mutation were all younger than 45 years at time of diagnosis of pheochromocytoma, two patients presented with bilateral tumors, and one patient had a positive family history of pheochromocytoma. Genetic screening of the remaining 31 patients did not identify any mutations...

  17. Chemical genetics and drug screening in Drosophila cancer models

    Institute of Scientific and Technical Information of China (English)

    Mara Gladstone; Tin Tin Su

    2011-01-01

    Drug candidates often fail in preclinical and clinical testing because of reasons of efficacy and/or safety.It would be time- and cost-efficient to have screening models that reduce the rate of such false positive candidates that appear promising at first but fail later.In this regard,it would be particularly useful to have a rapid and inexpensive whole animal model that can pre-select hits from high-throughput screens but before testing in costly rodent assays.Drosophila melanogaster has emerged as a potential whole animal model for drug screening.Of particular interest have been drugs that must act in the context of multi-cellularity such as those for neurological disorders and cancer.A recent review provides a comprehensive summary of drug screening in Drosophila,but with an emphasis on neurodegenerative disorders.Here,we review Drosophila screens in the literature aimed at cancer therapeutics.

  18. A novel approach to glaucoma screening and education in Nepal

    Directory of Open Access Journals (Sweden)

    Rens Ger V

    2008-10-01

    Full Text Available Abstract Background Glaucoma is a major cause of blindness worldwide and an increasingly significant global health problem. Glaucoma prevention and management efforts have been challenging due to inherent difficulty in developing a simple and cost-effective screening plan, limited access to health care and educational resources, poverty, and inadequate knowledge of the disease, particularly in developing countries. Starting in 2004 the Tilganga Eye Centre in Kathmandu, Nepal has provided targeted glaucoma screening, treatment, and education through a combination of clinical outreach programs and educational activities for patients. Methods A simple, age-based glaucoma screening algorithm was incorporated into three one-day cataract screening clinics. Using this algorithm, patients who were newly diagnosed with glaucoma were referred to TEC, where medication and surgery were provided free of charge through private donor funding. In addition, we describe two ongoing educational programs for increasing glaucoma awareness: an annual Glaucoma Awareness Week (which includes free screening, treatment, and counseling, and a repeating lecture series which generates new counselors. Results From 2004 to 2007 screening at the annual Glaucoma Awareness Week resulted in the diagnosis of 120 individuals with glaucoma, or 7.6% of total registrants. Attendance increased annually with a trend toward an increasing number of returning patients but a decreasing percentage of newly diagnosed patients, though the absolute numbers have remained relatively stable (range 21 to 38. Data from the three one-day screening clinics in 2006 show that approximately 2 to 4% of patients 50 years of age or older per clinic were newly diagnosed with POAG. Conclusion This multi-faceted approach appears to successfully identify individuals with glaucoma and provide treatment to those who would otherwise not be able to afford it. While more data is needed to validate this model

  19. Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Bindu

    2012-06-01

    Full Text Available One of the category of algorithm Problems are basically exponential problems. These problems are basically exponential problems and take time to find the solution. In the present work we are optimising one of the common NP complete problem called Travelling Salesman Problem. In our work we have defined a genetic approach by combining fuzzy approach along with genetics. In this work we have implemented the modified DPX crossover to improve genetic approach. The work is implemented in MATLAB environment and obtained results shows the define approach has optimized the existing genetic algorithm results

  20. Reverse Pathway Genetic Approach Identifies Epistasis in Autism Spectrum Disorders

    Science.gov (United States)

    Traglia, Michela; Tsang, Kathryn; Bearden, Carrie E.; Rauen, Katherine A.

    2017-01-01

    Although gene-gene interaction, or epistasis, plays a large role in complex traits in model organisms, genome-wide by genome-wide searches for two-way interaction have limited power in human studies. We thus used knowledge of a biological pathway in order to identify a contribution of epistasis to autism spectrum disorders (ASDs) in humans, a reverse-pathway genetic approach. Based on previous observation of increased ASD symptoms in Mendelian disorders of the Ras/MAPK pathway (RASopathies), we showed that common SNPs in RASopathy genes show enrichment for association signal in GWAS (P = 0.02). We then screened genome-wide for interactors with RASopathy gene SNPs and showed strong enrichment in ASD-affected individuals (P < 2.2 x 10−16), with a number of pairwise interactions meeting genome-wide criteria for significance. Finally, we utilized quantitative measures of ASD symptoms in RASopathy-affected individuals to perform modifier mapping via GWAS. One top region overlapped between these independent approaches, and we showed dysregulation of a gene in this region, GPR141, in a RASopathy neural cell line. We thus used orthogonal approaches to provide strong evidence for a contribution of epistasis to ASDs, confirm a role for the Ras/MAPK pathway in idiopathic ASDs, and to identify a convergent candidate gene that may interact with the Ras/MAPK pathway. PMID:28076348

  1. Approaching Corporate Social Responsibility through Kenneth Burke's Notions of Terministic Screens and Entitlement

    DEFF Research Database (Denmark)

    Kampf, Constance

    Approaching Corporate Social Responsibility through Kenneth Burke's Notions of Terministic Screens and Entitlement Kenneth Burke brings together the function of rhetoric as both a constitutive and interpretive process through his notions of terministic screens and entitlement.  Terministic screen...

  2. Coeliac disease and autoimmune disease-genetic overlap and screening

    NARCIS (Netherlands)

    Lundin, Knut E. A.; Wijmenga, Cisca

    Coeliac disease is a treatable, gluten-induced disease that often occurs concurrently with other autoimmune diseases. In genetic studies since 2007, a partial genetic overlap between these diseases has been revealed and further insights into the pathophysiology of coeliac disease and autoimmunity

  3. Genetic Approaches to Develop Salt Tolerant Germplasm

    KAUST Repository

    Tester, Mark A.

    2015-08-19

    Forty percent of the world\\'s food is produced under irrigation, and this is directly threatened by over-exploitation and changes in the global environment. One way to address this threat is to develop systems for increasing our ability to use lower quality water, in particular saline water. Low cost partial desalination of brackish water, use of saline water for cooling and increases in the salinity tolerance of crops can all contribute to the development of this new agricultural system. In this talk, the focus will be on the use of forward genetic approaches for discovery of genes related to salinity tolerance in barley and tomatoes. Rather than studying salinity tolerance as a trait in itself, we dissect salinity tolerance into a series of components that are hypothesised to contribute to overall salinity tolerance (following the paradigm of Munns & Tester, 2008). For example, one significant component of tolerance of most crop plants to moderate soil salinity is due to the ability to maintain low concentrations of Na+ in the leaves, and much analysis of this aspect has been done (e.g. Roy et al., 2013, 2014). A major site for the control of shoot Na+ accumulation is at the plasma membrane of the mature stele of the root. Alleles of HKT, a major gene underlying this transport process have been characterized and, in work led by Dr Rana Munns (CSIRO), have now been introgressed into commercial durum wheat and led to significantly increased yields in saline field conditions (Munns et al., 2012). The genotyping of mapping populations is now highly efficient. However, the ability to quantitatively phenotype these populations is now commonly limiting forward progress in plant science. The increasing power of digital imaging and computational technologies offers the opportunity to relieve this phenotyping bottleneck. The Plant Accelerator is a 4500m2 growth facility that provides non-destructive phenotyping of large populations of plants (http

  4. Schwinger boson approach to the fully screened Kondo model.

    Science.gov (United States)

    Rech, J; Coleman, P; Zarand, G; Parcollet, O

    2006-01-13

    We apply the Schwinger boson scheme to the fully screened Kondo model and generalize the method to include antiferromagnetic interactions between ions. Our approach captures the Kondo crossover from local moment behavior to a Fermi liquid with a nontrivial Wilson ratio. When applied to the two-impurity model, the mean-field theory describes the "Varma-Jones" quantum phase transition between a valence bond state and a heavy Fermi liquid.

  5. A recessive genetic screen for components of the RNA interference pathway in mouse embryonic stem cells.

    Science.gov (United States)

    Trombly, Melanie I; Wang, Xiaozhong

    2010-01-01

    Several key components of the RNA interference (RNAi) pathway were identified in genetic screens performed in nonmammalian model organisms. To identify components of the mammalian RNAi pathway, we developed a recessive genetic screen in mouse embryonic stem (ES) cells. Recessive genetic screens are feasible in ES cells that are Bloom-syndrome protein (Blm-) deficient. Therefore, we constructed a reporter cell line in Blm-deficient ES cells to isolate RNAi mutants through a simple drug-selection scheme. This chapter describes how we used retroviral gene traps to mutagenize the reporter cell line and select for RNAi mutants. Putative RNAi mutants were confirmed using a separate functional assay. The location of the gene trap was then identified using molecular techniques such as Splinkerette PCR. Our screening strategy successfully isolated several mutant clones of Argonaute2, a vital component of the RNAi pathway.

  6. Medical and lay attitudes towards genetic screening and testing in Finland

    DEFF Research Database (Denmark)

    Toiviainen, Hanna; Jallinoja, Piia; Aro, Arja R

    2003-01-01

    The purpose of this study was to compare physicians', midwives' and lay people's attitudes towards genetic screening and testing to find out whether medical education and experience influence attitudes of genetic screening and testing. The study was based on comparison of answers to joint questions...... referred to as midwives in the following; n=800, response rate 79%), and lay people (n=2000, response rate 62%). Midwives were more worried about the consequences of genetic testing and stressed the autonomy of the customer more strongly than lay people did. Furthermore, professionals considered that lay...

  7. Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse.

    Science.gov (United States)

    DiTommaso, Tia; Jones, Lynelle K; Cottle, Denny L; Gerdin, Anna-Karin; Vancollie, Valerie E; Watt, Fiona M; Ramirez-Solis, Ramiro; Bradley, Allan; Steel, Karen P; Sundberg, John P; White, Jacqueline K; Smyth, Ian M

    2014-10-01

    The skin is a highly regenerative organ which plays critical roles in protecting the body and sensing its environment. Consequently, morbidity and mortality associated with skin defects represent a significant health issue. To identify genes important in skin development and homeostasis, we have applied a high throughput, multi-parameter phenotype screen to the conditional targeted mutant mice generated by the Wellcome Trust Sanger Institute's Mouse Genetics Project (Sanger-MGP). A total of 562 different mouse lines were subjected to a variety of tests assessing cutaneous expression, macroscopic clinical disease, histological change, hair follicle cycling, and aberrant marker expression. Cutaneous lesions were associated with mutations in 23 different genes. Many of these were not previously associated with skin disease in the organ (Mysm1, Vangl1, Trpc4ap, Nom1, Sparc, Farp2, and Prkab1), while others were ascribed new cutaneous functions on the basis of the screening approach (Krt76, Lrig1, Myo5a, Nsun2, and Nf1). The integration of these skin specific screening protocols into the Sanger-MGP primary phenotyping pipelines marks the largest reported reverse genetic screen undertaken in any organ and defines approaches to maximise the productivity of future projects of this nature, while flagging genes for further characterisation.

  8. Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse.

    Directory of Open Access Journals (Sweden)

    Tia DiTommaso

    2014-10-01

    Full Text Available The skin is a highly regenerative organ which plays critical roles in protecting the body and sensing its environment. Consequently, morbidity and mortality associated with skin defects represent a significant health issue. To identify genes important in skin development and homeostasis, we have applied a high throughput, multi-parameter phenotype screen to the conditional targeted mutant mice generated by the Wellcome Trust Sanger Institute's Mouse Genetics Project (Sanger-MGP. A total of 562 different mouse lines were subjected to a variety of tests assessing cutaneous expression, macroscopic clinical disease, histological change, hair follicle cycling, and aberrant marker expression. Cutaneous lesions were associated with mutations in 23 different genes. Many of these were not previously associated with skin disease in the organ (Mysm1, Vangl1, Trpc4ap, Nom1, Sparc, Farp2, and Prkab1, while others were ascribed new cutaneous functions on the basis of the screening approach (Krt76, Lrig1, Myo5a, Nsun2, and Nf1. The integration of these skin specific screening protocols into the Sanger-MGP primary phenotyping pipelines marks the largest reported reverse genetic screen undertaken in any organ and defines approaches to maximise the productivity of future projects of this nature, while flagging genes for further characterisation.

  9. Applying theological developments to bioethical issues such as genetic screening.

    NARCIS (Netherlands)

    Mallia, P.; Have, H.A.M.J. ten

    2005-01-01

    Catholic movements within the centre of Roman Catholic doctrine recently have discussed Trinitarian theology as applied to sciences, arts, economics, health and other social areas. We explore the possibilities Trinitarian theology offers to bioethical debate, concentrating particularly on genetic sc

  10. Screening for oral precancer with noninvasive genetic cytology

    NARCIS (Netherlands)

    Bremmer, J.F.; Graveland, A.P.; Brink, A.; Braakhuis, B.J.M.; Kuik, D.J.; Leemans, C.R.; Bloemena, E.; van der Waal, I.; Brakenhoff, R.H.

    2009-01-01

    Oral squamous cell carcinomas develop in precancerous fields consisting of genetically altered mucosal epithelial cells. These precancerous fields may appear as clinically visible lesions, in particular, oral leukoplakia, but the large majority remains clinically undetectable. The aim of this study

  11. A genetic approach for the identification of exosporium assembly determinants of Bacillus anthracis

    Science.gov (United States)

    Spreng, Krista A.; Thompson, Brian M.; Stewart, George C.

    2013-01-01

    The exosporium is the outermost layer of spores of the zoonotic pathogen Bacillus anthracis. The composition of the exosporium and its functions are only partly understood. Because this outer spore layer is refractive to traditional biochemical analysis, a genetic approach is needed in order to define the proteins which comprise this important spore layer and its assembly pathway. We have created a novel genetic screening system for the identification and isolation of mutants with defects in exosporium assembly during B. anthracis spore maturation. The system is based on the targeting sequence of the BclA exosporium nap layer glycoprotein and a fluorescent reporter. By utilizing this screening system and gene inactivation with Tn916, several novel putative exosporium-associated determinants were identified. A sampling of the mutants obtained was further characterized, confirming their exosporium defect and validating the utility of this screen to identify novel spore determinants in the genome of this pathogen. PMID:23411372

  12. Pathways and barriers to genetic testing and screening: Molecular genetics meets the high-risk family. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Duster, T.

    1998-11-01

    The proliferation of genetic screening and testing is requiring increasing numbers of Americans to integrate genetic knowledge and interventions into their family life and personal experience. This study examines the social processes that occur as families at risk for two of the most common autosomal recessive diseases, sickle cell disease (SC) and cystic fibrosis (CF), encounter genetic testing. Each of these diseases is found primarily in a different ethnic/racial group (CF in Americans of North European descent and SC in Americans of West African descent). This has permitted them to have a certain additional lens on the role of culture in integrating genetic testing into family life and reproductive planning. A third type of genetic disorder, the thalassemias was added to the sample in order to extent the comparative frame and to include other ethnic and racial groups.

  13. Is there evidence that we should screen the general population for Lynch syndrome with genetic testing? A systematic review

    Science.gov (United States)

    Prince, Anya E R; Cadigan, R Jean; Henderson, Gail E; Evans, James P; Adams, Michael; Coker-Schwimmer, Emmanuel; Penn, Dolly C; Van Riper, Marcia; Corbie-Smith, Giselle; Jonas, Daniel E

    2017-01-01

    Background The emerging dual imperatives of personalized medicine and technologic advances make population screening for preventable conditions resulting from genetic alterations a realistic possibility. Lynch syndrome is a potential screening target due to its prevalence, penetrance, and the availability of well-established, preventive interventions. However, while population screening may lower incidence of preventable conditions, implementation without evidence may lead to unintentional harms. We examined the literature to determine whether evidence exists that screening for Lynch-associated mismatch repair (MMR) gene mutations leads to improved overall survival, cancer-specific survival, or quality of life. Documenting evidence and gaps is critical to implementing genomic approaches in public health and guiding future research. Materials and methods Our 2014–2015 systematic review identified studies comparing screening with no screening in the general population, and controlled studies assessing analytic validity of targeted next-generation sequencing, and benefits or harms of interventions or screening. We conducted meta-analyses for the association between early or more frequent colonoscopies and health outcomes. Results Twelve studies met our eligibility criteria. No adequate evidence directly addressed the main question or the harms of screening in the general population. Meta-analyses found relative reductions of 68% for colorectal cancer incidence (relative risk: 0.32, 95% confidence interval: 0.23–0.43, three cohort studies, 590 participants) and 78% for all-cause mortality (relative risk: 0.22, 95% confidence interval: 0.09–0.56, three cohort studies, 590 participants) for early or more frequent colonoscopies among family members of people with cancer who also had an associated MMR gene mutation. Conclusion Inadequate evidence exists examining harms and benefits of population-based screening for Lynch syndrome. Lack of evidence highlights the need

  14. Screening for Outliers in Multiple Trait Genetic Evaluarion

    DEFF Research Database (Denmark)

    Madsen, Per; Pösa, Jukka; Pedersen, Jørn

    2012-01-01

    genetic evaluation in dairy cattle. Application of such is simple to implement and increased the accuracy of predicted breeding values for animals that has one or more records edited. Potential biases in evaluations for contemporary animals were also reduced. Optimum editing rules can be determined using......Use of multivariate models in genetic evaluation requires a multivariate method for detecting erroneous outliers that cannot be detected using univariate methods. A simple rule for detecting outliers based on an approximated Mahanalobis distance was applied to Jersey data from the routine Nordic...

  15. No beneficial effect of preimplantation genetic screening in women of advanced maternal age with a high risk for embryonic aneuploidy

    NARCIS (Netherlands)

    Twisk, Moniek; Mastenbroek, Sebastiaan; Hoek, Annemieke; Heineman, Maas-Jan; van der Veen, Fulco; Bossuyt, Patrick M.; Repping, Sjoerd; Korevaar, Johanna C.

    2008-01-01

    Human preimplantation embryos generated through in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) treatments show a variable rate of numerical chromosome abnormalities or aneuploidies. Preimplantation genetic screening (PGS) has been designed to screen for aneuploidies in high

  16. No beneficial effect of preimplantation genetic screening in women of advanced maternal age with a high risk for embryonic aneuploidy

    NARCIS (Netherlands)

    Twisk, Moniek; Mastenbroek, Sebastiaan; Hoek, Annemieke; Heineman, Maas-Jan; van der Veen, Fulco; Bossuyt, Patrick M.; Repping, Sjoerd; Korevaar, Johanna C.

    2008-01-01

    Human preimplantation embryos generated through in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) treatments show a variable rate of numerical chromosome abnormalities or aneuploidies. Preimplantation genetic screening (PGS) has been designed to screen for aneuploidies in high

  17. Whole genome approaches to quantitative genetics.

    Science.gov (United States)

    Visscher, Peter M

    2009-06-01

    Apart from parent-offspring pairs and clones, relative pairs vary in the proportion of the genome that they share identical by descent. In the past, quantitative geneticists have used the expected value of sharing genes by descent to estimate genetic parameters and predict breeding values. With the possibility to genotype individuals for many markers across the genome it is now possible to empirically estimate the actual relationship between relatives. We review some of the theory underlying the variation in genetic identity, show applications to estimating genetic variance for height in humans and discuss other applications.

  18. A genetic screen for components of the mammalian RNA interference pathway in Bloom-deficient mouse embryonic stem cells

    OpenAIRE

    2009-01-01

    Genetic screens performed in model organisms have helped identify key components of the RNA interference (RNAi) pathway. Recessive genetic screens have recently become feasible through the use of mouse embryonic stem (ES) cells that are Bloom's syndrome protein (Blm) deficient. Here, we developed and performed a recessive genetic screen to identify components of the mammalian RNAi pathway in Blm-deficient ES cells. Genome-wide mutagenesis using a retroviral gene trap strategy resulted in the ...

  19. Screening of spontaneous castor bean accesses for genetic ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-10-05

    Oct 5, 2016 ... 1Department of Agricultural Engineering, Federal University of Campina Grande ... sizing the consequences of human actions in the ... significant increase in the literature of the use of ... genetic improvement programs of this culture in Brazil, ... subsequent selection according to color pattern, weight, health,.

  20. A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer.

    Science.gov (United States)

    Rad, Roland; Rad, Lena; Wang, Wei; Strong, Alexander; Ponstingl, Hannes; Bronner, Iraad F; Mayho, Matthew; Steiger, Katja; Weber, Julia; Hieber, Maren; Veltkamp, Christian; Eser, Stefan; Geumann, Ulf; Öllinger, Rupert; Zukowska, Magdalena; Barenboim, Maxim; Maresch, Roman; Cadiñanos, Juan; Friedrich, Mathias; Varela, Ignacio; Constantino-Casas, Fernando; Sarver, Aaron; Ten Hoeve, Jelle; Prosser, Haydn; Seidler, Barbara; Bauer, Judith; Heikenwälder, Mathias; Metzakopian, Emmanouil; Krug, Anne; Ehmer, Ursula; Schneider, Günter; Knösel, Thomas; Rümmele, Petra; Aust, Daniela; Grützmann, Robert; Pilarsky, Christian; Ning, Zemin; Wessels, Lodewyk; Schmid, Roland M; Quail, Michael A; Vassiliou, George; Esposito, Irene; Liu, Pentao; Saur, Dieter; Bradley, Allan

    2015-01-01

    Here we describe a conditional piggyBac transposition system in mice and report the discovery of large sets of new cancer genes through a pancreatic insertional mutagenesis screen. We identify Foxp1 as an oncogenic transcription factor that drives pancreatic cancer invasion and spread in a mouse model and correlates with lymph node metastasis in human patients with pancreatic cancer. The propensity of piggyBac for open chromatin also enabled genome-wide screening for cancer-relevant noncoding DNA, which pinpointed a Cdkn2a cis-regulatory region. Histologically, we observed different tumor subentities and discovered associated genetic events, including Fign insertions in hepatoid pancreatic cancer. Our studies demonstrate the power of genetic screening to discover cancer drivers that are difficult to identify by other approaches to cancer genome analysis, such as downstream targets of commonly mutated human cancer genes. These piggyBac resources are universally applicable in any tissue context and provide unique experimental access to the genetic complexity of cancer.

  1. Comparative Haploid Genetic Screens Reveal Divergent Pathways in the Biogenesis and Trafficking of Glycophosphatidylinositol-Anchored Proteins

    Directory of Open Access Journals (Sweden)

    Eric M. Davis

    2015-06-01

    Full Text Available Glycophosphatidylinositol-anchored proteins (GPI-APs play essential roles in physiology, but their biogenesis and trafficking have not been systematically characterized. Here, we took advantage of the recently available haploid genetics approach to dissect GPI-AP pathways in human cells using prion protein (PrP and CD59 as model molecules. Our screens recovered a large number of common and unexpectedly specialized factors in the GPI-AP pathways. PIGN, PGAP2, and PIGF, which encode GPI anchor-modifying enzymes, were selectively isolated in the CD59 screen, suggesting that GPI anchor composition significantly influences the biogenesis of GPI-APs in a substrate-dependent manner. SEC62 and SEC63, which encode components of the ER-targeting machinery, were selectively recovered in the PrP screen, indicating that they do not constitute a universal route for the biogenesis of mammalian GPI-APs. Together, these comparative haploid genetic screens demonstrate that, despite their similarity in overall architecture and subcellular localization, GPI-APs follow markedly distinct biosynthetic and trafficking pathways.

  2. The future role of genetic screening to detect newborns at risk of childhood-onset hearing loss

    Science.gov (United States)

    2013-01-01

    Objective: To explore the future potential of genetic screening to detect newborns at risk of childhood-onset hearing loss. Design: An expert led discussion of current and future developments in genetic technology and the knowledge base of genetic hearing loss to determine the viability of genetic screening and the implications for screening policy. Results and Discussion: Despite increasing pressure to adopt genetic technologies, a major barrier for genetic screening in hearing loss is the uncertain clinical significance of the identified mutations and their interactions. Only when a reliable estimate of the future risk of hearing loss can be made at a reasonable cost, will genetic screening become viable. Given the speed of technological advancement this may be within the next 10 years. Decision-makers should start to consider how genetic screening could augment current screening programmes as well as the associated data processing and storage requirements. Conclusion: In the interim, we suggest that decision makers consider the benefits of (1) genetically testing all newborns and children with hearing loss, to determine aetiology and to increase knowledge of the genetic causes of hearing loss, and (2) consider screening pregnant women for the m.1555A> G mutation to reduce the risk of aminoglycoside antibiotic-associated hearing loss. PMID:23131088

  3. Validation of a semiconductor next-generation sequencing assay for the clinical genetic screening of CFTR.

    Science.gov (United States)

    Trujillano, Daniel; Weiss, Maximilian E R; Köster, Julia; Papachristos, Efstathios B; Werber, Martin; Kandaswamy, Krishna Kumar; Marais, Anett; Eichler, Sabrina; Creed, Jenny; Baysal, Erol; Jaber, Iqbal Yousuf; Mehaney, Dina Ahmed; Farra, Chantal; Rolfs, Arndt

    2015-09-01

    Genetic testing for cystic fibrosis and CFTR-related disorders mostly relies on laborious molecular tools that use Sanger sequencing to scan for mutations in the CFTR gene. We have explored a more efficient genetic screening strategy based on next-generation sequencing (NGS) of the CFTR gene. We validated this approach in a cohort of 177 patients with previously known CFTR mutations and polymorphisms. Genomic DNA was amplified using the Ion AmpliSeq™ CFTR panel. The DNA libraries were pooled, barcoded, and sequenced using an Ion Torrent PGM sequencer. The combination of different robust bioinformatics tools allowed us to detect previously known pathogenic mutations and polymorphisms in the 177 samples, without detecting spurious pathogenic calls. In summary, the assay achieves a sensitivity of 94.45% (95% CI: 92% to 96.9%), with a specificity of detecting nonvariant sites from the CFTR reference sequence of 100% (95% CI: 100% to 100%), a positive predictive value of 100% (95% CI: 100% to 100%), and a negative predictive value of 99.99% (95% CI: 99.99% to 100%). In addition, we describe the observed allelic frequencies of 94 unique definitely and likely pathogenic, uncertain, and neutral CFTR variants, some of them not previously annotated in the public databases. Strikingly, a seven exon spanning deletion as well as several more technically challenging variants such as pathogenic poly-thymidine-guanine and poly-thymidine (poly-TG-T) tracts were also detected. Targeted NGS is ready to substitute classical molecular methods to perform genetic testing on the CFTR gene.

  4. Decoding directional genetic dependencies through orthogonal CRISPR/Cas screens | Office of Cancer Genomics

    Science.gov (United States)

    Genetic interaction studies are a powerful approach to identify functional interactions between genes. This approach can reveal networks of regulatory hubs and connect uncharacterized genes to well-studied pathways. However, this approach has previously been limited to simple gene inactivation studies. Here, we present an orthogonal CRISPR/Cas-mediated genetic interaction approach that allows the systematic activation of one gene while simultaneously knocking out a second gene in the same cell.

  5. PRENATAL DIAGNOSIS AND SCREENING OF GENETIC ABNORMALITIES IN EARLY PREGNANCY

    Directory of Open Access Journals (Sweden)

    Jyothi Kiran Kohli

    2016-11-01

    Full Text Available BACKGROUND Genetic diseases are one of the major causes of hospital admissions due to disability and mortality particularly among children (1:5 children of hospital admission either partially/completely as distribution of genetic diseases is not related to socioeconomic background, which implies that developing world has a large number of genetic diseases largely left uncared for, i.e. overall incidence of foetal/neonatal loss due to genetic/genetic environmental causes are as follows: 1:50 newborns have major congenital abnormality, 1:100 have a unifactorial disorder, 1:200 have a major chromosomal abnormality before birth. Diagnosis of chromosomal anomalies in foetus is one of the most important challenges in modern perinatology as invasive or noninvasive methods. The aim of the study is to review on cytogenetic evaluation of CVS obtained (transcervically during first trimester of pregnancy by direct karyotyping of tissue. MATERIALS AND METHODS This study was conducted in 2001 in Department of Anatomy along with Obstetrics and Gynaecology Department, LNJP Hospital. 37 healthy cases with 6-12 weeks of gestational age coming for medical termination of pregnancy were included in the study. After written informed consent for procedure, ultrasound-guided transcervical chorionic villus sampling was done (Brambati’s method. Tissue procured was then processed for direct karyotyping and studied. Metaphase spreads were photographed and karyotypes prepared and studied. RESULTS Out of 37 pregnant females, 30 samples were successfully prepared and processed by Direct method out of which 23 were normal female (46, XX and 7 were normal male (46, XY. No normal anomaly was detected. Best biopsies were obtained with 8-12 weeks gestation. G Banding could not be performed as chromosome obtained were found to be resistant to banding. CONCLUSIONS To summarise chromosome preparations obtained from CVS by Direct method has advantage of providing sufficient number

  6. Ecosystem Screening Approach for Pathogen-Associated Microorganisms Affecting Host Disease▿†

    Science.gov (United States)

    Galiana, Eric; Marais, Antoine; Mura, Catherine; Industri, Benoît; Arbiol, Gilles; Ponchet, Michel

    2011-01-01

    The microbial community in which a pathogen evolves is fundamental to disease outcome. Species interacting with a pathogen on the host surface shape the distribution, density, and genetic diversity of the inoculum, but the role of these species is rarely determined. The screening method developed here can be used to characterize pathogen-associated species affecting disease. This strategy involves three steps: (i) constitution of the microbial community, using the pathogen as a trap; (ii) community selection, using extracts from the pathogen as the sole nutrient source; and (iii) molecular identification and the screening of isolates focusing on their effects on the growth of the pathogen in vitro and host disease. This approach was applied to a soilborne plant pathogen, Phytophthora parasitica, structured in a biofilm, for screening the microbial community from the rhizosphere of Nicotiana tabacum (the host). Two of the characterized eukaryotes interfered with the oomycete cycle and may affect the host disease. A Vorticella species acted through a mutualistic interaction with P. parasitica, disseminating pathogenic material by leaving the biofilm. A Phoma species established an amensal interaction with P. parasitica, strongly suppressing disease by inhibiting P. parasitica germination. This screening method is appropriate for all nonobligate pathogens. It allows the definition of microbial species as promoters or suppressors of a disease for a given biotope. It should also help to identify important microbial relationships for ecology and evolution of pathogens. PMID:21742919

  7. Ecosystem screening approach for pathogen-associated microorganisms affecting host disease.

    Science.gov (United States)

    Galiana, Eric; Marais, Antoine; Mura, Catherine; Industri, Benoît; Arbiol, Gilles; Ponchet, Michel

    2011-09-01

    The microbial community in which a pathogen evolves is fundamental to disease outcome. Species interacting with a pathogen on the host surface shape the distribution, density, and genetic diversity of the inoculum, but the role of these species is rarely determined. The screening method developed here can be used to characterize pathogen-associated species affecting disease. This strategy involves three steps: (i) constitution of the microbial community, using the pathogen as a trap; (ii) community selection, using extracts from the pathogen as the sole nutrient source; and (iii) molecular identification and the screening of isolates focusing on their effects on the growth of the pathogen in vitro and host disease. This approach was applied to a soilborne plant pathogen, Phytophthora parasitica, structured in a biofilm, for screening the microbial community from the rhizosphere of Nicotiana tabacum (the host). Two of the characterized eukaryotes interfered with the oomycete cycle and may affect the host disease. A Vorticella species acted through a mutualistic interaction with P. parasitica, disseminating pathogenic material by leaving the biofilm. A Phoma species established an amensal interaction with P. parasitica, strongly suppressing disease by inhibiting P. parasitica germination. This screening method is appropriate for all nonobligate pathogens. It allows the definition of microbial species as promoters or suppressors of a disease for a given biotope. It should also help to identify important microbial relationships for ecology and evolution of pathogens.

  8. Impact of blastocyst biopsy and comprehensive chromosome screening technology on preimplantation genetic screening: a systematic review of randomized controlled trials.

    Science.gov (United States)

    Dahdouh, Elias M; Balayla, Jacques; García-Velasco, Juan Antonio

    2015-03-01

    Embryonic aneuploidy is highly prevalent in IVF cycles and contributes to decreased implantation rates, IVF cycle failure and early pregnancy loss. Preimplantation genetic screening (PGS) selects the most competent (euploid) embryos for transfer, and has been proposed to improve IVF outcomes. Use of PGS with fluorescence-in-situ hybridization technology after day 3 embryo biopsy (PGS-v1) significantly lowers live birth rates and is not recommended for use. Comprehensive chromosome screening technology, which assesses the whole chromosome complement, can be achieved using different genetic platforms. Whether PGS using comprehensive chromosome screening after blastocyst biopsy (PGS-v2) improves IVF outcomes remains to be determined. A systematic review of randomized controlled trials was conducted on PGS-v2. Three trials met full inclusion criteria, comparing PGS-v2 and routine IVF care. PGS-v2 is associated with higher clinical implantation rates, and higher ongoing pregnancy rates when the same number of embryos is transferred in both PGS and control groups. Additionally, PGS-v2 improves embryo selection in eSET practice, maintaining the same ongoing pregnancy rates between PGS and control groups, while sharply decreasing multiple pregnancy rates. These results stem from good-prognosis patients undergoing IVF. Whether these findings can be extrapolated to poor-prognosis patients with decreased ovarian reserve remains to be determined. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  9. Impact of human genome initiative-derived technology on genetic testing, screening and counseling: Cultural, ethical and legal issues

    Energy Technology Data Exchange (ETDEWEB)

    Trottier, R.W.; Hodgin, F.C.; Imara, M.; Phoenix, D.; Lybrook, S. (Morehouse Coll., Atlanta, GA (United States). School of Medicine); Crandall, L.A.; Moseley, R.E.; Armotrading, D. (Florida Univ., Gainesville, FL (United States). Coll. of Medicine)

    1993-01-01

    Genetic medical services provided by the Georgia Division of Public Health in two northern and two central districts are compared to services provided in a district in which a tertiary care facility is located. Genetics outreach public health nurses play key roles in Georgia's system of Children's Health Services Genetics Program, including significant roles as counselors and information sources on special needs social services and support organizations. Unique features of individual health districts, (e.g., the changing face of some rural communities in ethnocultural diversity and socioeconomic character), present new challenges to current and future genetics services delivery. Preparedness as to educational needs of both health professionals and the lay population is of foremost concern in light of the ever expanding knowledge and technology in medical genetics. Perspectives on genetics and an overview of services offered by a local private sector counselor are included for comparison to state supported services. The nature of the interactions which transpire between private and public genetic services resources in Georgia will be described. A special focus of this research includes issues associated with sickle cell disease newborn screening service delivery process in Georgia, with particular attention paid to patient follow-up and transition to primary care. Of particular interest to this focus is the problem of loss to follow-up in the current system. Critical factors in education and counseling of sickle cell patients and the expectations of expanding roles of primary care physicians are discussed. The Florida approach to the delivery of genetic services contrasts to the Georgia model by placing more emphasis on a consultant-specialist team approach.

  10. Simulation Approach for Timing Analysis of Genetic Logic Circuits.

    Science.gov (United States)

    Baig, Hasan; Madsen, Jan

    2017-02-01

    Constructing genetic logic circuits is an application of synthetic biology in which parts of the DNA of a living cell are engineered to perform a dedicated Boolean function triggered by an appropriate concentration of certain proteins or by different genetic components. These logic circuits work in a manner similar to electronic logic circuits, but they are much more stochastic and hence much harder to characterize. In this article, we introduce an approach to analyze the threshold value and timing of genetic logic circuits. We show how this approach can be used to analyze the timing behavior of single and cascaded genetic logic circuits. We further analyze the timing sensitivity of circuits by varying the degradation rates and concentrations. Our approach can be used not only to characterize the timing behavior but also to analyze the timing constraints of cascaded genetic logic circuits, a capability that we believe will be important for design automation in synthetic biology.

  11. 小耳畸形家系的基因定位及候选基因筛查初步研究%Preliminary study of genetic basis of congenital microtia with gene mapping and candidate gene screening approach

    Institute of Scientific and Technical Information of China (English)

    林琳; 潘博; 蒋海越; 赵延勇; 韩娟

    2013-01-01

    Objective:To map and to identify the causative genes for congenital microtia in a Chinese family.Methods:Linkage analysis with microsatellite markers spanning the whole human-genome was performed in ZX07 family.Direct sequence analysis of the candidate genes was carried out.Results:The position of the causal gene did not be excluded from chromosome11 and chromosome4.Based on the functions of the genes,three genes were chosen as candidate genes including FGF3,FGFR3 and HMX1,nearby D11S4191,D4S419,D4S412,respectively.No mutation of these genes had been identified in this family.Conclusion:FGF3,FGFR3 and HMX1 genes were not the causative genes of ZX07 family.Further investigation should be needed.This study provided insight into the genetic basis of congenital microtia.%目的小耳畸形致病基因的定位克隆及其候选基因筛查的初步研究.方法针对收集的先天性小耳畸形家系(ZX07家系)通过STR标记进行全基因组扫描和连锁分析;在可疑的连锁区域选择与小耳畸形相关的候选基因进行筛查研究.结果全基因组扫描连锁分析发现15、11、4、12、16、2号条染色体有存在致病基因的可能,在NCBI网站上查询并选择杂合度较高的位点设计STR引物,通过精细定位排除了15、16、12、2号染色体连锁的可能.在11号和4号染色体D11S4191、D4S419、D4S412三个位点附近选择与小耳畸形相关的FGF3、FGFR3和HMX1基因进行筛查,未发现上述基因的突变.结论ZX07小耳畸形家系为常染色体显性遗传,初步的基因筛查排除了FGF3、FGFR3和HMX1基因突变,为进一步研究小耳畸形的致病基因奠定了基础.

  12. A Forward Genetic Screening for Prostate Cancer Progression Genes

    Science.gov (United States)

    2012-10-01

    melanoma. Nature 436, 117‐122 (2005). 26. J.C. Cronin et al. Frequent mutations in the MITF pathway in melanoma.  Pigment   Cell Melanoma Res. 22, 435‐444... bacterial genetics. J Mol Biol 116: 125–159. 3. Ding S, Wu X, Li G, Han M, Zhuang Y, et al. (2005) Efficient transposition of the piggyBac (PB) transposon

  13. Cellular and genetic approaches to myocardial regeneration

    NARCIS (Netherlands)

    Tuyn, John van

    2008-01-01

    Injection of (stem) cells into the damaged heart has a positive effect on cardiac function. In this thesis two strategies for improving myocardial regeneration over classical cell therapy were investigated. The first is to induce cardiomyogenic differentiation by genetically engineering cells to ex

  14. Neuroimaging genetic approaches to Posttraumatic Stress Disorder.

    Science.gov (United States)

    Lebois, Lauren A M; Wolff, Jonathan D; Ressler, Kerry J

    2016-10-01

    Neuroimaging genetic studies that associate genetic and epigenetic variation with neural activity or structure provide an opportunity to link genes to psychiatric disorders, often before psychopathology is discernable in behavior. Here we review neuroimaging genetics studies with participants who have Posttraumatic Stress Disorder (PTSD). Results show that genes related to the physiological stress response (e.g., glucocorticoid receptor and activity, neuroendocrine release), learning and memory (e.g., plasticity), mood, and pain perception are tied to neural intermediate phenotypes associated with PTSD. These genes are associated with and sometimes predict neural structure and function in areas involved in attention, executive function, memory, decision-making, emotion regulation, salience of potential threats, and pain perception. Evidence suggests these risk polymorphisms and neural intermediate phenotypes are vulnerabilities toward developing PTSD in the aftermath of trauma, or vulnerabilities toward particular symptoms once PTSD has developed. Work distinguishing between the re-experiencing and dissociative sub-types of PTSD, and examining other PTSD symptom clusters in addition to the re-experiencing and hyperarousal symptoms, will further clarify neurobiological mechanisms and inconsistent findings. Furthermore, an exciting possibility is that genetic associations with PTSD may eventually be understood through differential intermediate phenotypes of neural circuit structure and function, possibly underlying the different symptom clusters seen within PTSD. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A cellular genetics approach identifies gene-drug interactions and pinpoints drug toxicity pathway nodes

    Directory of Open Access Journals (Sweden)

    Oscar Takeo Suzuki

    2014-08-01

    Full Text Available New approaches to toxicity testing have incorporated high-throughput screening across a broad-range of in vitro assays to identify potential key events in response to chemical or drug treatment. To date, these approaches have primarily utilized repurposed drug discovery assays. In this study, we describe an approach that combines in vitro screening with genetic approaches for the experimental identification of genes and pathways involved in chemical or drug toxicity. Primary embryonic fibroblasts isolated from 32 genetically-characterized inbred mouse strains were treated in concentration-response format with 65 compounds, including pharmaceutical drugs, environmental chemicals, and compounds with known modes-of-action. Integrated cellular responses were measured at 24 and 72 hours using high-content imaging and included cell loss, membrane permeability, mitochondrial function, and apoptosis. Genetic association analysis of cross-strain differences in the cellular responses resulted in a collection of candidate loci potentially underlying the variable strain response to each chemical. As a demonstration of the approach, one candidate gene involved in rotenone sensitivity, Cybb, was experimentally validated in vitro and in vivo. Pathway analysis on the combined list of candidate loci across all chemicals identified a number of over-connected nodes that may serve as core regulatory points in toxicity pathways.

  16. 1 Hierarchical Approaches to the Analysis of Genetic Diversity in ...

    African Journals Online (AJOL)

    2015-04-14

    Apr 14, 2015 ... Keywords: Genetic diversity, Hierarchical approach, Plant, Clustering,. Descriptive ... utilization) or by clustering (based on a phonetic analysis of individual ...... Improvement of Food Crop Preservatives for the next Millennium.

  17. Effect of screening for cystic-fibrosis on the influence of genetic-counseling

    NARCIS (Netherlands)

    Dankert-Roelse, J E; te Meerman, G J; Knol, K; ten Kate, L P

    1987-01-01

    We studied the influence of genetic counseling for cystic fibrosis on family planning, using neonatal screening, family size at time of diagnosis, and maternal age as possible determinants for reproductive behaviour. The expected number of children born to mothers of equal age and parity in the same

  18. Neurological Condition of Infants Born After In Vitro Fertilization With Preimplantation Genetic Screening

    NARCIS (Netherlands)

    Middelburg, Karin J.; Heineman, Maas J.; Haadsma, Maaike L.; Bos, Arend F.; Kok, Joke H.; Hadders-Algra, Mijna

    2010-01-01

    Aim of this study was to evaluate the effect of preimplantation genetic screening (PGS) on neurodevelopmental outcome in children. We conducted a prospective follow-up Study of children born to women randomly assigned to in vitro fertilization with or without PGS. Primary outcome was adverse neurolo

  19. Screening of genetic parameters for soluble protein expression in Escherichia coli

    DEFF Research Database (Denmark)

    Vernet, Erik; Kotzsch, Alexander; Voldborg, Bjørn

    2011-01-01

    . Here we present a screening strategy for expression of biomedically relevant proteins in Escherichia coli using a panel of six different genetic variations. These include engineered strains for rare codon supplementation, increased disulfide bond formation in the cytoplasm and novel vectors...

  20. Stego-audio Using Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    V. Santhi

    2014-06-01

    Full Text Available With the rapid development of digital multimedia applications, the secure data transmission becomes the main issue in data communication system. So the multimedia data hiding techniques have been developed to ensure the secured data transfer. Steganography is an art of hiding a secret message within an image/audio/video file in such a way that the secret message cannot be perceived by hacker/intruder. In this study, we use RSA encryption algorithm to encrypt the message and Genetic Algorithm (GA to encode the message in the audio file. This study presents a method to access the negative audio bytes and includes the negative audio bytes in the message encoding and position embedding process. This increases the capacity of encoding message in the audio file. The use of GA operators in Genetic Algorithm reduces the noise distortions.

  1. A chemical genetics approach for specific differentiation of stem cells to somatic cells: a new promising therapeutical approach.

    Science.gov (United States)

    Sachinidis, Agapios; Sotiriadou, Isaia; Seelig, Bianca; Berkessel, Albrecht; Hescheler, Jürgen

    2008-01-01

    Cell replacement therapy of severe degenerative diseases such as diabetes, myocardial infarction and Parkinson's disease through transplantation of somatic cells generated from embryonic stem (ES) cells is currently receiving considerable attention for the therapeutic applications. ES cells harvested from the inner cell mass (ICM) of the early embryo, can proliferate indefinitely in vitro while retaining the ability to differentiate into all somatic cells thereby providing an unlimited renewable source of somatic cells. In this context, identifying soluble factors, in particular chemically synthesized small molecules, and signal cascades involved in specific differentiation processes toward a defined tissue specific cell type are crucial for optimizing the generation of somatic cells in vitro for therapeutic approaches. However, experimental models are required allowing rapid and "easy-to-handle" parallel screening of chemical libraries to achieve this goal. Recently, the forward chemical genetic screening strategy has been postulated to screen small molecules in cellular systems for a specific desired phenotypic effect. The current review is focused on the progress of ES cell research in the context of the chemical genetics to identify small molecules promoting specific differentiation of ES cells to desired cell phenotype. Chemical genetics in the context of the cell ES-based cell replacement therapy remains a challenge for the near future for several scientific fields including chemistry, molecular biology, medicinal physics and robotic technologies.

  2. Genetic & epigenetic approach to human obesity

    Directory of Open Access Journals (Sweden)

    K Rajender Rao

    2014-01-01

    Full Text Available Obesity is an important clinical and public health challenge, epitomized by excess adipose tissue accumulation resulting from an imbalance in energy intake and energy expenditure. It is a forerunner for a variety of other diseases such as type-2-diabetes (T2D, cardiovascular diseases, some types of cancer, stroke, hyperlipidaemia and can be fatal leading to premature death. Obesity is highly heritable and arises from the interplay of multiple genes and environmental factors. Recent advancements in Genome-wide association studies (GWAS have shown important steps towards identifying genetic risks and identification of genetic markers for lifestyle diseases, especially for a metabolic disorder like obesity. According to the 12 th u0 pdate of Human Obesity Gene Map there are 253 quantity trait loci (QTL for obesity related phenotypes from 61 genome wide scan studies. Contribution of genetic propensity of individual ethnic and racial variations in obesity is an active area of research. Further, understanding its complexity as to how these variations could influence ones susceptibility to become or remain obese will lead us to a greater understanding of how obesity occurs and hopefully, how to prevent and treat this condition. In this review, various strategies adapted for such an analysis based on the recent advances in genome wide and functional variations in human obesity are discussed.

  3. Genetic & epigenetic approach to human obesity.

    Science.gov (United States)

    Rao, K Rajender; Lal, Nirupama; Giridharan, N V

    2014-11-01

    Obesity is an important clinical and public health challenge, epitomized by excess adipose tissue accumulation resulting from an imbalance in energy intake and energy expenditure. It is a forerunner for a variety of other diseases such as type-2-diabetes (T2D), cardiovascular diseases, some types of cancer, stroke, hyperlipidaemia and can be fatal leading to premature death. Obesity is highly heritable and arises from the interplay of multiple genes and environmental factors. Recent advancements in Genome-wide association studies (GWAS) have shown important steps towards identifying genetic risks and identification of genetic markers for lifestyle diseases, especially for a metabolic disorder like obesity. According to the 12th Update of Human Obesity Gene Map there are 253 quantity trait loci (QTL) for obesity related phenotypes from 61 genome wide scan studies. Contribution of genetic propensity of individual ethnic and racial variations in obesity is an active area of research. Further, understanding its complexity as to how these variations could influence ones susceptibility to become or remain obese will lead us to a greater understanding of how obesity occurs and hopefully, how to prevent and treat this condition. In this review, various strategies adapted for such an analysis based on the recent advances in genome wide and functional variations in human obesity are discussed.

  4. Genetic & epigenetic approach to human obesity

    Science.gov (United States)

    Rao, K. Rajender; Lal, Nirupama; Giridharan, N.V.

    2014-01-01

    Obesity is an important clinical and public health challenge, epitomized by excess adipose tissue accumulation resulting from an imbalance in energy intake and energy expenditure. It is a forerunner for a variety of other diseases such as type-2-diabetes (T2D), cardiovascular diseases, some types of cancer, stroke, hyperlipidaemia and can be fatal leading to premature death. Obesity is highly heritable and arises from the interplay of multiple genes and environmental factors. Recent advancements in Genome-wide association studies (GWAS) have shown important steps towards identifying genetic risks and identification of genetic markers for lifestyle diseases, especially for a metabolic disorder like obesity. According to the 12th Update of Human Obesity Gene Map there are 253 quantity trait loci (QTL) for obesity related phenotypes from 61 genome wide scan studies. Contribution of genetic propensity of individual ethnic and racial variations in obesity is an active area of research. Further, understanding its complexity as to how these variations could influence ones susceptibility to become or remain obese will lead us to a greater understanding of how obesity occurs and hopefully, how to prevent and treat this condition. In this review, various strategies adapted for such an analysis based on the recent advances in genome wide and functional variations in human obesity are discussed. PMID:25579139

  5. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.

    Science.gov (United States)

    Xue, Hui-Ying; Ji, Li-Juan; Gao, Ai-Mei; Liu, Ping; He, Jing-Dong; Lu, Xiao-Jie

    2016-02-01

    CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) systems have emerged as versatile and convenient (epi)genome editing tools and have become an important player in medical genetic research. CRISPR-Cas9 and its variants such as catalytically inactivated Cas9 (dead Cas9, dCas9) and scaffold-incorporating single guide sgRNA (scRNA) have been applied in various genomic screen studies. CRISPR screens enable high-throughput interrogation of gene functions in health and diseases. Compared with conventional RNAi screens, CRISPR screens incur less off-target effects and are more versatile in that they can be used in multiple formats such as knockout, knockdown and activation screens, and can target coding and non-coding regions throughout the genome. This powerful screen platform holds the potential of revolutionising functional genomic studies in the near future. Herein, we introduce the mechanisms of (epi)genome editing mediated by CRISPR-Cas9 and its variants, introduce the procedures and applications of CRISPR screen in functional genomics, compare it with conventional screen tools and at last discuss current challenges and opportunities and propose future directions.

  6. Genetic Screening of Couples with Recurrent Spontaneous Abortion

    Directory of Open Access Journals (Sweden)

    M. Nail Alp

    2006-01-01

    Full Text Available The aim of this study was to determine the chromosomal abberations and their incidence in non-consanguineous couples with a history of two or more than two spontaneous abortion. In the study, we carried out cytogenetic analysis on 434 couples. Patients detected with chromosome abnormality were evaluated according to their pedigree analysis, and also patients’ relatives were screened for the same abnormality. Peripheral blood were taken from patients, then performed with lymphocyte culture and stained by binded using Giemsa-banding method. For each individual, 20-30-cells chromosomes were counted and around 5-10 well-binded metaphase chromosomes were karyotyped for numerical and structural chromosomal aberrations. Of 434 couples investigated, 30 (6.91% were found to have chromosomal abnormality, in one of couples partners. In 13 of couples (2.99%, one of partners was found to be balanced translocation carrier. Of these, 7 (1.61%were found to be reciprocal carrier, while 6 (1.38% Robertsonian-type balanced translocation carrier. Gonadal mosaicism was found in 3 couples (0.69%, pericentric 9 inversion in 8 couples (1.85 %, while 6 couples showed different chromosomal structure from each other. These chromosomal aberrations may cause of abortion due to high incidence in general population.

  7. Engaging nurses in genetics: the strategic approach of the NHS National Genetics Education and Development Centre.

    Science.gov (United States)

    Kirk, Maggie; Tonkin, Emma; Burke, Sarah

    2008-04-01

    The UK government announced the establishment of an NHS National Genetics Education and Development Centre in its Genetics White Paper. The Centre aims to lead and coordinate developments to enhance genetics literacy of health professionals. The nursing program takes a strategic approach based on Ajzen's Theory of Planned Behavior, using the UK nursing genetics competences as the platform for development. The program team uses innovative approaches to raise awareness of the relevance of genetics, working collaboratively with policy stakeholders, as key agents of change in promoting competence. Providing practical help in preparing learning and teaching resources lends further encouragement. Evaluation of the program is dependent on gathering baseline data, and the program has been informed by an education needs analysis. The challenges faced are substantial and necessitate international collaboration where expertise and resources can be shared to produce a global system of influence to facilitate the engagement of non-genetic nurses.

  8. Genetic screening of the inherited Ichtyosis causative mutation in Chianina cattle

    Directory of Open Access Journals (Sweden)

    Luciano Molteni

    2010-01-01

    Full Text Available Inherited Ichthyosis, Chianina, Causative mutation, Genetic screening.Inherited Ichthyosis is a genetic disorder reported in both humans and animals, including bovines. Two inherited forms were reported in cattle and both are transmitted in an autosomal recessive manner: Ichthyosis Fetalis (IF and Ichthyosis Congenita (IC. A causative mutation of IF in Chianina cattle was recently indentified in the ABC12 gene. This work reports the first genetic screening using this recently available genetic test on Chianina cattle. Tests were performed on both the population of farm breeding selected young bulls (131 samples randomly chosen and high breeding value sires (16 samples. Results confirm a low total prevalence of carriers in the selected sire population (2/131; 1.5% and the presence of the disease allele among the high value selected sires (1/16; 6.3%. This result strengthens the importance to continue the genetic screening program, particularly in performance tested bulls approved for use in AI or natural service.

  9. A new CAD approach for improving efficacy of cancer screening

    Science.gov (United States)

    Zheng, Bin; Qian, Wei; Li, Lihua; Pu, Jiantao; Kang, Yan; Lure, Fleming; Tan, Maxine; Qiu, Yuchen

    2015-03-01

    Since performance and clinical utility of current computer-aided detection (CAD) schemes of detecting and classifying soft tissue lesions (e.g., breast masses and lung nodules) is not satisfactory, many researchers in CAD field call for new CAD research ideas and approaches. The purpose of presenting this opinion paper is to share our vision and stimulate more discussions of how to overcome or compensate the limitation of current lesion-detection based CAD schemes in the CAD research community. Since based on our observation that analyzing global image information plays an important role in radiologists' decision making, we hypothesized that using the targeted quantitative image features computed from global images could also provide highly discriminatory power, which are supplementary to the lesion-based information. To test our hypothesis, we recently performed a number of independent studies. Based on our published preliminary study results, we demonstrated that global mammographic image features and background parenchymal enhancement of breast MR images carried useful information to (1) predict near-term breast cancer risk based on negative screening mammograms, (2) distinguish between true- and false-positive recalls in mammography screening examinations, and (3) classify between malignant and benign breast MR examinations. The global case-based CAD scheme only warns a risk level of the cases without cueing a large number of false-positive lesions. It can also be applied to guide lesion-based CAD cueing to reduce false-positives but enhance clinically relevant true-positive cueing. However, before such a new CAD approach is clinically acceptable, more work is needed to optimize not only the scheme performance but also how to integrate with lesion-based CAD schemes in the clinical practice.

  10. Cognitive Radio — Genetic Algorithm Approach

    Science.gov (United States)

    Reddy, Y. B.

    2005-03-01

    Cognitive Radio (CR) is relatively a new technology, which intelligently detects a particular segment of the radio spectrum currently in use and selects unused spectrum quickly without interfering the transmission of authorized users. Cognitive Radios can learn about current use of spectrum in their operating area, make intelligent decisions, and react to immediate changes in the use of spectrum by other authorized users. The goal of CR technology is to relieve radio spectrum overcrowding, which actually translates to a lack of access to full radio spectrum utilization. Due to this adaptive behavior, the CR can easily avoid the interference of signals in a crowded radio frequency spectrum. In this research, we discuss the possible application of genetic algorithms (GA) to create a CR that can respond intelligently in changing and unanticipated circumstances and in the presence of hostile jammers and interferers. Genetic algorithms are problem solving techniques based on evolution and natural selection. GA models adapt Charles Darwin's evolutionary theory for analysis of data and interchanging design elements in hundreds of thousands of different combinations. Only the best-performing combinations are permitted to survive, and those combinations "reproduce" further, progressively yielding better and better results.

  11. Newborn screening for lysosomal diseases: current status and potential interface with population medical genetics in Latin America.

    Science.gov (United States)

    Giugliani, Roberto

    2012-09-01

    The aim of newborn screening (NBS) programs is to detect a condition in a presymptomatic baby and provide management measures which could significantly improve the natural history of the disease. NBS programs for metabolic diseases were first introduced in North America and Europe and in the 1960s for phenylketonuria, expanded a few years later to include congenital hypothyroidism, and have been growing steadily in terms of number of conditions tested for and number of countries and births covered. Lysosomal storage diseases (LSDs) are a group of around 50 genetic conditions in which a defect in a lysosomal function occurs. LSDs are progressive conditions, being usually asymptomatic at birth, but with clinical features becoming apparent in childhood, with severe manifestations in most instances, high morbidity and shortened life span. Although individually rare, the prevalence of LSDs is significant when the group is considered as a whole (around 1:4,000-1:9,000 live births). Several management techniques, including bone marrow transplantation, enzyme replacement therapy, substrate inhibition therapy, pharmacological chaperones and many other approaches are transforming the LSDs into treatable conditions. However, lack of awareness and lack of access to tests cause a significant delay between onset of symptoms and diagnosis. Several lines of evidence showing that the earlier introduction of therapy may provide a better outcome, are bringing support to the idea of including LSDs in NBS programs. Due to advances in technology, high-throughput multiplex methods are now available for mass screening of several LSDs. Pilot projects were already developed in many countries for some LSDs, with interesting results. Although some NBS in Latin America has been carried out since the 1970s, it has so far been incorporated as a public health program in only a few countries in the region. It will probably take many years before NBS is implemented in most Latin American countries

  12. Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2014-02-01

    Full Text Available Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI screens can provide insights into the biological role(s of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.

  13. Maximizing lifetime of wireless sensor networks using genetic approach

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    the cluster head intelligently using auction data of node i.e. its local battery power, topology strength and external battery support. The network lifetime is the centre focus of the research paper which explores intelligently selection of cluster head using auction based approach. The multi......-objective parameters are considered to solve the problem using genetic algorithm of evolutionary approach....

  14. Simulation Approach for Timing Analysis of Genetic Logic Circuits

    DEFF Research Database (Denmark)

    Baig, Hasan; Madsen, Jan

    2017-01-01

    in a manner similar to electronic logic circuits, but they are much more stochastic and hence much harder to characterize. In this article, we introduce an approach to analyze the threshold value and timing of genetic logic circuits. We show how this approach can be used to analyze the timing behavior...

  15. Genetic Algorithm Approaches to Prebiobiotic Chemistry Modeling

    Science.gov (United States)

    Lohn, Jason; Colombano, Silvano

    1997-01-01

    We model an artificial chemistry comprised of interacting polymers by specifying two initial conditions: a distribution of polymers and a fixed set of reversible catalytic reactions. A genetic algorithm is used to find a set of reactions that exhibit a desired dynamical behavior. Such a technique is useful because it allows an investigator to determine whether a specific pattern of dynamics can be produced, and if it can, the reaction network found can be then analyzed. We present our results in the context of studying simplified chemical dynamics in theorized protocells - hypothesized precursors of the first living organisms. Our results show that given a small sample of plausible protocell reaction dynamics, catalytic reaction sets can be found. We present cases where this is not possible and also analyze the evolved reaction sets.

  16. Frequency of chromosomal aneuploidy in high quality embryos from young couples using preimplantation genetic screening

    Directory of Open Access Journals (Sweden)

    Farzaneh Fesahat

    2017-09-01

    Full Text Available Background: Selection of the best embryo for transfer is very important in assisted reproductive technology (ART. Using morphological assessment for this selection demonstrated that the correlation between embryo morphology and implantation potential is relatively weak. On the other hand, aneuploidy is a key genetic factor that can influence human reproductive success in ART. Objective: The aim of this lab trial study was to evaluate the incidence of aneuploidies in five chromosomes in the morphologically high-quality embryos from young patients undergoing ART for sex selection. Materials and Methods: A total of 97 high quality embryos from 23 women at the age of 37or younger years that had previously undergone preimplantation genetic screening for sex selection were included in this study. After washing, the slides of blastomeres from embryos of patients were reanalyzed by fluorescence in-situ hybridization for chromosomes 13, 18 and 21. Results: There was a significant rate of aneuploidy determination in the embryos using preimplantation genetic screening for both sex and three evaluated autosomal chromosomes compared to preimplantation genetic screening for only sex chromosomes (62.9% vs. 24.7%, p=0.000. The most frequent detected chromosomal aneuploidy was trisomy or monosomy of chromosome 13. Conclusion: There is considerable numbers of chromosomal abnormalities in embryos generated in vitro which cause in vitro fertilization failure and it seems that morphological characterization of embryos is not a suitable method for choosing the embryos without these abnormalities

  17. Practical experiences with an extended screening strategy for genetically modified organisms (GMOs) in real-life samples.

    Science.gov (United States)

    Scholtens, Ingrid; Laurensse, Emile; Molenaar, Bonnie; Zaaijer, Stephanie; Gaballo, Heidi; Boleij, Peter; Bak, Arno; Kok, Esther

    2013-09-25

    Nowadays most animal feed products imported into Europe have a GMO (genetically modified organism) label. This means that they contain European Union (EU)-authorized GMOs. For enforcement of these labeling requirements, it is necessary, with the rising number of EU-authorized GMOs, to perform an increasing number of analyses. In addition to this, it is necessary to test products for the potential presence of EU-unauthorized GMOs. Analysis for EU-authorized and -unauthorized GMOs in animal feed has thus become laborious and expensive. Initial screening steps may reduce the number of GMO identification methods that need to be applied, but with the increasing diversity also screening with GMO elements has become more complex. For the present study, the application of an informative detailed 24-element screening and subsequent identification strategy was applied in 50 animal feed samples. Almost all feed samples were labeled as containing GMO-derived materials. The main goal of the study was therefore to investigate if a detailed screening strategy would reduce the number of subsequent identification analyses. An additional goal was to test the samples in this way for the potential presence of EU-unauthorized GMOs. Finally, to test the robustness of the approach, eight of the samples were tested in a concise interlaboratory study. No significant differences were found between the results of the two laboratories.

  18. Genetic Programming Approach for Predicting Surface Subsidence Induced by Mining

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The surface subsidence induced by mining is a complex problem, which is related with many complex and uncertain factors.Genetic programming (GP) has a good ability to deal with complex and nonlinear problems, therefore genetic programming approach is proposed to predict mining induced surface subsidence in this article.First genetic programming technique is introduced, second, surface subsidence genetic programming model is set up by selecting its main affective factors and training relating to practical engineering data, and finally, predictions are made by the testing of data, whose results show that the relative error is approximately less than 10%, which can meet the engineering needs, and therefore, this proposed approach is valid and applicable in predicting mining induced surface subsidence.The model offers a novel method to predict surface subsidence in mining.

  19. Reverse genetics approaches to combat pathogenic arenaviruses.

    Science.gov (United States)

    de la Torre, Juan C

    2008-12-01

    Several arenaviruses cause hemorrhagic fever (HF) in humans, and evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. Moreover, arenaviruses pose a biodefense threat. No licensed anti-arenavirus vaccines are available, and current anti-arenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with anemia and other side effects. Therefore, it is important to develop effective vaccines and better antiviral drugs to combat the dual threats of naturally occurring and intentionally introduced arenavirus infections. The development of arenavirus reverse genetic systems is allowing investigators to conduct a detailed molecular characterization of the viral cis-acting signals and trans-acting factors that control each of the steps of the arenavirus life cycle, including RNA synthesis, packaging and budding. Knowledge derived from these studies is uncovering potential novel targets for therapeutic intervention, as well as facilitating the establishment of assays to identify and characterize candidate antiviral drugs capable of interfering with specific steps of the virus life cycle. Likewise, the ability to generate predetermined specific mutations within the arenavirus genome and analyze their phenotypic expression would significantly contribute to the elucidation of arenavirus-host interactions, including the basis of their ability to cause severe HF. This, in turn, could lead to the development of novel, potent and safe arenavirus vaccines.

  20. Screening for haplotypic variability within Oesophagostomum bifurcum (Nematoda) employing a single-strand conformation polymorphism approach.

    Science.gov (United States)

    de Gruijter, J M; Polderman, A M; Zhu, X Q; Gasser, R B

    2002-06-01

    Genetic markers in the mitochondrial genome have proven useful for population genetic studies because of their maternal inheritance and relatively high evolutionary rates. In this study, we exploited the high resolution capacity of PCR-coupled single-strand conformation polymorphism (SSCP) to screen for sequence variation in part of the cytochrome c oxidase subunit 1 gene (p cox 1) among individuals of the parasitic nematode, Oesophagostomum bifurcum from human or Mona monkey hosts from Africa. SSCP analysis revealed distinct profiles among some of the individuals, and subsequent sequence analysis of representative samples defined 10 different haplotypes. For comparative purposes, the p cox 1 sequences for representatives of four other species of Oesophagostomum from livestock were included. While there were high levels (11.5-13.7%) of sequence difference among the latter species, there was no fixed nucleotide difference between O. bifurcum individuals from humans and those from monkeys. The data support the proposal that O. bifurcum from the two primate hosts represents a single species and that the haplotypic variability in p cox 1 represents population variation. The results reinforce the usefulness of the SSCP-sequencing approach for studying genetic variation in nematode populations using mitochondrial markers.

  1. Integrating Genetic Algorithm, Tabu Search Approach for Job Shop Scheduling

    CERN Document Server

    Thamilselvan, R

    2009-01-01

    This paper presents a new algorithm based on integrating Genetic Algorithms and Tabu Search methods to solve the Job Shop Scheduling problem. The idea of the proposed algorithm is derived from Genetic Algorithms. Most of the scheduling problems require either exponential time or space to generate an optimal answer. Job Shop scheduling (JSS) is the general scheduling problem and it is a NP-complete problem, but it is difficult to find the optimal solution. This paper applies Genetic Algorithms and Tabu Search for Job Shop Scheduling problem and compares the results obtained by each. With the implementation of our approach the JSS problems reaches optimal solution and minimize the makespan.

  2. Multiple comparisons in genetic association studies: a hierarchical modeling approach.

    Science.gov (United States)

    Yi, Nengjun; Xu, Shizhong; Lou, Xiang-Yang; Mallick, Himel

    2014-02-01

    Multiple comparisons or multiple testing has been viewed as a thorny issue in genetic association studies aiming to detect disease-associated genetic variants from a large number of genotyped variants. We alleviate the problem of multiple comparisons by proposing a hierarchical modeling approach that is fundamentally different from the existing methods. The proposed hierarchical models simultaneously fit as many variables as possible and shrink unimportant effects towards zero. Thus, the hierarchical models yield more efficient estimates of parameters than the traditional methods that analyze genetic variants separately, and also coherently address the multiple comparisons problem due to largely reducing the effective number of genetic effects and the number of statistically "significant" effects. We develop a method for computing the effective number of genetic effects in hierarchical generalized linear models, and propose a new adjustment for multiple comparisons, the hierarchical Bonferroni correction, based on the effective number of genetic effects. Our approach not only increases the power to detect disease-associated variants but also controls the Type I error. We illustrate and evaluate our method with real and simulated data sets from genetic association studies. The method has been implemented in our freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/).

  3. A high-throughput screening approach to discovering good forms of biologically inspired visual representation.

    Directory of Open Access Journals (Sweden)

    Nicolas Pinto

    2009-11-01

    Full Text Available While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor. In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.

  4. Disseminating perinatal depression screening as a public health initiative: a train-the-trainer approach.

    Science.gov (United States)

    Segre, Lisa S; Brock, Rebecca L; O'Hara, Michael W; Gorman, Laura L; Engeldinger, Jane

    2011-08-01

    This case report describes the development and implementation of the Train-the-Trainer: Maternal Depression Screening Program (TTT), a novel approach to disseminating perinatal depression screening. We trained screeners according to a standard pyramid scheme of train-the-trainer programs: three experts trained representatives from health care agencies (the TTT trainers), who in turn trained their staff and implemented depression screening at their home agencies. The TTT trainers had little or no prior mental health experience so "enhanced" components were added to ensure thorough instruction. Although TTT was implemented primarily as a services project, we evaluated both the statewide dissemination and the screening rates achieved by TTT programs. Thirty-two social service or health agencies implemented maternal depression screening in 20 counties throughout Iowa; this reached 58.2% of the Iowa population. For the 16 agencies that provided screening data, the average screening rate (number of women screened/number eligible to be screened) for the first 3 months of screening was 73.2%, 80.5% and 79.0%. We compared screening rates of our TTT programs with those of Healthy Start, a program in which screening was established via an intensive consultation model. We found the screening rates in 62.5% of TTT agencies were comparable to those in Healthy Start. Our "enhanced" train-the-trainer method is a promising approach for broadly implementing depression-screening programs in agencies serving pregnant and postpartum women.

  5. Preimplantation Genetic Screening: An Effective Testing for Infertile and Repeated Miscarriage Patients?

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2010-01-01

    Full Text Available Aneuploidy in pregnancy is known to increase with advanced maternal age (AMA and associate with repeated implantation failure (RIF, and repeated miscarriage (RM. Preimplantation genetic screening (PGS has been introduced into clinical practice, screening, and eliminating aneuploidy embryos, which can improve the chance of conceptions for infertility cases with poor prognosis. These patients are a good target group to assess the possible benefit of aneuploidy screening. Although practiced widely throughout the world, there still exist some doubts about the efficacy of this technique. Recent randomized trials were not as desirable as we expected, suggesting that PGS needs to be reconsidered. The aim of this review is to discuss the efficacy of PGS.

  6. Statement of The American Society of Human Genetics on cystic fibrosis carrier screening

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The identification in 1989 of the cystic fibrosis (CF) gene and its most common mutation immediately raised the possibility of CF carrier detection by DNA analysis. The American Society of Human Genetics (ASHG) issued a statement recommending that CF carrier testing should be made available to individuals with a family history of CF. It was also stated that screening of individuals or couples in the general population should not be offered until the rate of CF carrier detection improves. An additional prerequisite emphasized the need for the establishment of effective educational and counseling programs consistent with previous widely accepted principles. An NIH workshop reached similar conclusions. ASHG recommendations are that screening be limited to individuals with a family history of CF, testing should be accompanied by education and counseling, screening should be voluntary and confidential with appropriate laboratory quality controls, and efforts should be expanded to educate health care providers and the public.

  7. A multiobjective approach to the genetic code adaptability problem.

    Science.gov (United States)

    de Oliveira, Lariza Laura; de Oliveira, Paulo S L; Tinós, Renato

    2015-02-19

    The organization of the canonical code has intrigued researches since it was first described. If we consider all codes mapping the 64 codes into 20 amino acids and one stop codon, there are more than 1.51×10(84) possible genetic codes. The main question related to the organization of the genetic code is why exactly the canonical code was selected among this huge number of possible genetic codes. Many researchers argue that the organization of the canonical code is a product of natural selection and that the code's robustness against mutations would support this hypothesis. In order to investigate the natural selection hypothesis, some researches employ optimization algorithms to identify regions of the genetic code space where best codes, according to a given evaluation function, can be found (engineering approach). The optimization process uses only one objective to evaluate the codes, generally based on the robustness for an amino acid property. Only one objective is also employed in the statistical approach for the comparison of the canonical code with random codes. We propose a multiobjective approach where two or more objectives are considered simultaneously to evaluate the genetic codes. In order to test our hypothesis that the multiobjective approach is useful for the analysis of the genetic code adaptability, we implemented a multiobjective optimization algorithm where two objectives are simultaneously optimized. Using as objectives the robustness against mutation with the amino acids properties polar requirement (objective 1) and robustness with respect to hydropathy index or molecular volume (objective 2), we found solutions closer to the canonical genetic code in terms of robustness, when compared with the results using only one objective reported by other authors. Using more objectives, more optimal solutions are obtained and, as a consequence, more information can be used to investigate the adaptability of the genetic code. The multiobjective approach

  8. [Biochemical screening and genetic diagnosis of thalassemia in children from Kunming].

    Science.gov (United States)

    Wen, Bai-Ping; Fan, Mao; Dai, Hong-Jian; Zhuang, Yu; Liu, Hong-Ling; Yang, Jun-Yi; Yang, Xiao-Hong; Deng, Wen-Guo

    2011-02-01

    To investigate the types and frequency of gene mutations in children with thalassemia in Kunming, Yunan Province. A biochemical screening for thalassemia was performed by testing RBC fragility, MCV and hemoglobin electrophoresis on 1338 children from Kunming, Yunnan Province. Genetic diagnosis was performed on the children with α-thalassemia by gap-PCR and on the children with β-thalassemia by PCR-RDB. The positive rate of the biochemical screening for thalassemia was 11.36% (152 cases). The positive rate of genetic diagnosis was 8.59% (115 cases). Of the 115 cases, α-thalassemia was found in 43 cases, β-thalassemia in 68 cases and α-combined-β thalassemia in 4 cases.--SEA/αα accounted for 47%, -α4.2/αα accounted for 21%, and HbH disease accounted for 14%. Six genotypes were found in 68 cases of β-thalassemia and the mutation frequency of βE was the highest (32%), followed by CD41-42 (24%), CD17 (23%), IVS-II654 (10%), CD71-72 (10%), and -28 (1%). The frequency of gene mutations for thalassemia is high in children from Kunming, Yunnan Province. Premarital and prenatal screenings and genetic diagnosis for thalassemia should be carried out in this area.

  9. Large genetic screens for gynogenesis and androgenesis haploid inducers in Arabidopsis thaliana failed to identify mutants

    Directory of Open Access Journals (Sweden)

    Virginie ePortemer

    2015-03-01

    Full Text Available Gynogenesis is a process in which the embryo genome originates exclusively from female origin, following embryogenesis stimulation by a male gamete. In contrast, androgenesis is the development of embryos that contain only the male nuclear genetic background. Both phenomena are of great interest in plant breeding as haploidisation is an efficient tool to reduce the length of breeding schemes to create varieties. Although few inducer lines have been described, the genetic control of these phenomena is poorly understood. We developed genetic screens to identify mutations that would induce gynogenesis or androgenesis in Arabidopsis thaliana. The ability of mutant pollen to induce either gynogenesis or androgenesis was tested by crossing mutagenized plants as males. Seedlings from these crosses were screened with recessive phenotypic markers, one genetically controlled by the female genome and another by the male genome. Positive and negative controls confirmed the unambiguous detection of both gynogenesis and androgenesis events. This strategy was applied to 1,666 EMS-mutagenised lines and 47 distant Arabidopsis strains. While an internal control suggested that the mutagenesis reached saturation, no gynogenesis or androgenesis inducer was found. However, spontaneous gynogenesis was observed at a frequency of 1/10,800. Altogether, these results suggest that no simple EMS-induced mutation in the male genome is able to induce gynogenesis or androgenesis in Arabidopsis.

  10. Screening of CACNA1A and ATP1A2 genes in hemiplegic migraine: clinical, genetic, and functional studies

    Science.gov (United States)

    Carreño, Oriel; Corominas, Roser; Serra, Selma Angèlica; Sintas, Cèlia; Fernández-Castillo, Noèlia; Vila-Pueyo, Marta; Toma, Claudio; Gené, Gemma G; Pons, Roser; Llaneza, Miguel; Sobrido, María-Jesús; Grinberg, Daniel; Valverde, Miguel Ángel; Fernández-Fernández, José Manuel; Macaya, Alfons; Cormand, Bru

    2013-01-01

    Hemiplegic migraine (HM) is a rare and severe subtype of autosomal dominant migraine, characterized by a complex aura including some degree of motor weakness. Mutations in four genes (CACNA1A, ATP1A2, SCN1A and PRRT2) have been detected in familial and in sporadic cases. This genetically and clinically heterogeneous disorder is often accompanied by permanent ataxia, epileptic seizures, mental retardation, and chronic progressive cerebellar atrophy. Here we report a mutation screening in the CACNA1A and ATP1A2 genes in 18 patients with HM. Furthermore, intragenic copy number variant (CNV) analysis was performed in CACNA1A using quantitative approaches. We identified four previously described missense CACNA1A mutations (p.Ser218Leu, p.Thr501Met, p.Arg583Gln, and p.Thr666Met) and two missense changes in the ATP1A2 gene, the previously described p.Ala606Thr and the novel variant p.Glu825Lys. No structural variants were found. This genetic screening allowed the identification of more than 30% of the disease alleles, all present in a heterozygous state. Functional consequences of the CACNA1A-p.Thr501Met mutation, previously described only in association with episodic ataxia, and ATP1A2-p.Glu825Lys, were investigated by means of electrophysiological studies, cell viability assays or Western blot analysis. Our data suggest that both these variants are disease-causing. PMID:24498617

  11. Population Genetic Diversity in the Australian 'Seascape': A Bioregion Approach.

    Directory of Open Access Journals (Sweden)

    Lisa C Pope

    Full Text Available Genetic diversity within species may promote resilience to environmental change, yet little is known about how such variation is distributed at broad geographic scales. Here we develop a novel Bayesian methodology to analyse multi-species genetic diversity data in order to identify regions of high or low genetic diversity. We apply this method to co-distributed taxa from Australian marine waters. We extracted published summary statistics of population genetic diversity from 118 studies of 101 species and > 1000 populations from the Australian marine economic zone. We analysed these data using two approaches: a linear mixed model for standardised data, and a mixed beta-regression for unstandardised data, within a Bayesian framework. Our beta-regression approach performed better than models using standardised data, based on posterior predictive tests. The best model included region (Integrated Marine and Coastal Regionalisation of Australia (IMCRA bioregions, latitude and latitude squared. Removing region as an explanatory variable greatly reduced model performance (delta DIC 23.4. Several bioregions were identified as possessing notably high genetic diversity. Genetic diversity increased towards the equator with a 'hump' in diversity across the range studied (-9.4 to -43.7°S. Our results suggest that factors correlated with both region and latitude play a role in shaping intra-specific genetic diversity, and that bioregion can be a useful management unit for intra-specific as well as species biodiversity. Our novel statistical model should prove useful for future analyses of within species genetic diversity at broad taxonomic and geographic scales.

  12. Genetic and genomic approaches to understanding macrophage identity and function.

    Science.gov (United States)

    Glass, Christopher K

    2015-04-01

    A major goal of our laboratory is to understand the molecular mechanisms that underlie the development and functions of diverse macrophage phenotypes in health and disease. Recent studies using genetic and genomic approaches suggest a relatively simple model of collaborative and hierarchical interactions between lineage-determining and signal-dependent transcription factors that enable selection and activation of transcriptional enhancers that specify macrophage identity and function. In addition, we have found that it is possible to use natural genetic variation as a powerful tool for advancing our understanding of how the macrophage deciphers the information encoded by the genome to attain specific phenotypes in a context-dependent manner. Here, I will describe our recent efforts to extend genetic and genomic approaches to investigate the roles of distinct tissue environments in determining the phenotypes of different resident populations of macrophages.

  13. Broad target chemical screening approach used as tool for rapid assessment of groundwater quality

    NARCIS (Netherlands)

    ter Laak, T.L.; Puijker, L.M.; van Leerdam, J.A.; Raat, K.J.; Kolkman, A.; de Voogt, P.; van Wezel, A.P.

    2012-01-01

    The chemical water quality is often assessed by screening for a limited set of target chemicals. This ‘conventional’ target analysis approach inevitably misses chemicals present in the samples. In this study a ‘broad’ target screening approach for water quality assessment using high resolution and a

  14. Review: domestic animal forensic genetics - biological evidence, genetic markers, analytical approaches and challenges.

    Science.gov (United States)

    Kanthaswamy, S

    2015-10-01

    This review highlights the importance of domestic animal genetic evidence sources, genetic testing, markers and analytical approaches as well as the challenges this field is facing in view of the de facto 'gold standard' human DNA identification. Because of the genetic similarity between humans and domestic animals, genetic analysis of domestic animal hair, saliva, urine, blood and other biological material has generated vital investigative leads that have been admitted into a variety of court proceedings, including criminal and civil litigation. Information on validated short tandem repeat, single nucleotide polymorphism and mitochondrial DNA markers and public access to genetic databases for forensic DNA analysis is becoming readily available. Although the fundamental aspects of animal forensic genetic testing may be reliable and acceptable, animal forensic testing still lacks the standardized testing protocols that human genetic profiling requires, probably because of the absence of monetary support from government agencies and the difficulty in promoting cooperation among competing laboratories. Moreover, there is a lack in consensus about how to best present the results and expert opinion to comply with court standards and bear judicial scrutiny. This has been the single most persistent challenge ever since the earliest use of domestic animal forensic genetic testing in a criminal case in the mid-1990s. Crime laboratory accreditation ensures that genetic test results have the courts' confidence. Because accreditation requires significant commitments of effort, time and resources, the vast majority of animal forensic genetic laboratories are not accredited nor are their analysts certified forensic examiners. The relevance of domestic animal forensic genetics in the criminal justice system is undeniable. However, further improvements are needed in a wide range of supporting resources, including standardized quality assurance and control protocols for sample

  15. Understanding the Science-Learning Environment: A Genetically Sensitive Approach

    Science.gov (United States)

    Haworth, Claire M. A.; Davis, Oliver S. P.; Hanscombe, Ken B.; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2013-01-01

    Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000…

  16. Screening of herbal extracts influencing hematopoiesis and their chemical genetic effects in embryonic zebrafish

    Institute of Scientific and Technical Information of China (English)

    Rajaretinam Rajesh Kannan; Samuel Gnana Prakash Vincent

    2012-01-01

    Objective: To screen the herbal extracts influencing the hematopoietic stem cells (HSC) in zebrafish embryos and their chemical genetic effects. Methods: The herbals used in this study had been widely applicable in Siddha medicines in South India. Herbal extracts were treated in zebrafish embryos at 4 d post fertilization and the extracts inducing the HSC were enumerated in hemocytometer. The biocompatibility and the organogenesis of the screened extracts were assessed in the zebrafish embryos for their chemical genetic effects. The LC50 values were calculated with their parallel control. The blood cells were enumerated. Results: The level of RBC was found increased in the Bergera koenigii (B. koenigii) at 15 μg/mL (P<0.05), Mimosa pudica (M. pudica) at 20 μg/mL (P<0.05) and Solanum trilobatum (S. trilobatum) at 25 μg/mL (P<0.05) and decreased RBC level was found in Phyllanthus niruri (P. niruri) at 30 μg/mL (P<0.05). The WBC count was found increased in S. trilobatum at 20 μg/mL (P<0.05) and Annona muricata (Annona muricata) at 15 μg/mL (P<0.05) and the Vitis quadrangularis (V. quadrangularis) at 20 μg/mL (P<0.05) decreased the WBC level. There were no notable effects in heart beats and the chemical genetic effects were observed at higher concentration of the extract resulting in Pericardial bulging, trunk tail flexure with heart edema, fin fold deformities etc. Conclusions: This in vivo based screening of Hematopoiesis is an inexpensive assay to screen herbal compounds and found that S. trilobatum extract influenced embryonic HSC in zebrafish, which could be a therapeutic for blood related disorders.

  17. A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway.

    Directory of Open Access Journals (Sweden)

    Andrew M Arsham

    Full Text Available The highly conserved autophagy-lysosome pathway is the primary mechanism for breakdown and recycling of macromolecular and organellar cargo in the eukaryotic cell. Autophagy has recently been implicated in protection against cancer, neurodegeneration, and infection, and interest is increasing in additional roles of autophagy in human health, disease, and aging. To search for novel cytoprotective features of this pathway, we carried out a genetic mosaic screen for mutations causing increased lysosomal and/or autophagic activity in the Drosophila melanogaster larval fat body. By combining Drosophila genetics with live-cell imaging of the fluorescent dye LysoTracker Red and fixed-cell imaging of autophagy-specific fluorescent protein markers, the screen was designed to identify essential metazoan genes whose disruption causes increased flux through the autophagy-lysosome pathway. The screen identified a large number of genes associated with the protein synthesis and ER-secretory pathways (e.g. aminoacyl tRNA synthetases, Oligosaccharyl transferase, Sec61alpha, and with mitochondrial function and dynamics (e.g. Rieske iron-sulfur protein, Dynamin-related protein 1. We also observed that increased lysosomal and autophagic activity were consistently associated with decreased cell size. Our work demonstrates that disruption of the synthesis, transport, folding, or glycosylation of ER-targeted proteins at any of multiple steps leads to autophagy induction. In addition to illuminating cytoprotective features of autophagy in response to cellular damage, this screen establishes a genetic methodology for investigating cell biological phenotypes in live cells, in the context of viable wild type organisms.

  18. Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening.

    Science.gov (United States)

    Guazzaroni, María-Eugenia; Silva-Rocha, Rafael; Ward, Richard John

    2015-01-01

    There is a growing demand for enzymes with improved catalytic performance or tolerance to process-specific parameters, and biotechnology plays a crucial role in the development of biocatalysts for use in industry, agriculture, medicine and energy generation. Metagenomics takes advantage of the wealth of genetic and biochemical diversity present in the genomes of microorganisms found in environmental samples, and provides a set of new technologies directed towards screening for new catalytic activities from environmental samples with potential biotechnology applications. However, biased and low level of expression of heterologous proteins in Escherichia coli together with the use of non-optimal cloning vectors for the construction of metagenomic libraries generally results in an extremely low success rate for enzyme identification. The bottleneck arising from inefficient screening of enzymatic activities has been addressed from several perspectives; however, the limitations related to biased expression in heterologous hosts cannot be overcome by using a single approach, but rather requires the synergetic implementation of multiple methodologies. Here, we review some of the principal constraints regarding the discovery of new enzymes in metagenomic libraries and discuss how these might be resolved by using synthetic biology methods.

  19. Primary health care approach for prevention, screening and ...

    African Journals Online (AJOL)

    (IGT) or impaired fasting glucose (IFG), screening of high-risk individuals has merit. During ... a precedent for effectively altering lifestyle in patients with a high risk for .... syndrome, a family history of Type 2 diabetes, a history of gestational.

  20. The Wisconsin approach to newborn screening for severe combined immunodeficiency.

    Science.gov (United States)

    Verbsky, James; Thakar, Monica; Routes, John

    2012-03-01

    Severe combined immunodeficiency (SCID) is a life-threatening disease of infants that is curable with hematopoietic cell transplantation if detected early. Population-based screening for SCID using the T-cell receptor excision circle (TREC) assay began in Wisconsin in 2008; 5 infants with SCID or other forms of severe T-cell lymphopenia (TCL) have been detected, and no infants with SCID have been missed. This review will provide an overview of the TREC screening assay and an update of the findings from Wisconsin on all infants screened from January 1, 2008, until December 31, 2010. Importantly, we give practical recommendations regarding newborn population-based screening using the TREC assay, including the evaluation and care of infants detected.

  1. Molecular Approaches to Screen Bioactive Compounds from Endophytic Fungi

    OpenAIRE

    Vasundhara, M.; Anil Kumar; M. Sudhakara Reddy

    2016-01-01

    Endophytic fungi are capable of producing plant associated metabolites and their analogs with therapeutic value. In order to identify the potential endophytic isolates producing bioactive compounds, one need to screen all isolated endophytes, which may run into hundreds. Isolation of endophytic fungi is relatively a simple process; but screening of the isolated fungi for required metabolite production is a cumbersome process. Endophytic fungi producing plant associated metabolites may contain...

  2. WONOEP appraisal: new genetic approaches to study epilepsy

    Science.gov (United States)

    Rossignol, Elsa; Kobow, Katja; Simonato, Michele; Loeb, Jeffrey A.; Grisar, Thierry; Gilby, Krista L.; Vinet, Jonathan; Kadam, Shilpa D.; Becker, Albert J.

    2014-01-01

    Objective New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming and optogenetic manipulations within epileptic networks are progressively unravelling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiological impacts of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. Methods This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy in Quebec, Canada. Results Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and have revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell-types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knockdown approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. Genetically-encoded cell-type labeling is also providing new means to assess the role of the non-neuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and non

  3. Neonatal Screening: Some Ethical Issues of Expanding Spectrum for Genetically Determined Diseases

    Directory of Open Access Journals (Sweden)

    S. S. Deryabina

    2015-01-01

    Full Text Available The article considers philosophical questions of neonatal screening technology. The main focus is on ethical and methodological issues that inevitably arise when expanding the number of scanned nosologies and applying genetic research methods. Questions concerning the existing discrepancy between technical capacity and the practical level of healthcare delivery and the probabilistic nature of results obtained by molecular testing are analyzed in terms of methodology. Access to information about the DNA-testing of newborns and the linkage between neonatal screening and prenatal diagnostics are among the most topical ethical problems raised within this article. One of the purposes of this article is to draw the attention of the public — especially it concerns current and prospective parents and volunteer organizations — to these contemporary problems.

  4. Large-Scale Forward Genetic Screening Analysis of Development of Hematopoiesis in Zebrafish

    Institute of Scientific and Technical Information of China (English)

    Kun Wang; Ning Ma; Yiyue Zhang; Wenqing Zhang; Zhibin Huang; Lingfeng Zhao; Wei Liu; Xiaohui Chen; Ping Meng; Qing Lin; Yali Chi; Mengchang Xu

    2012-01-01

    Zebrafish is a powerful model for the investigation of hematopoiesis.In order to isolate novel mutants with hematopoietic defects,large-scale mutagenesis screening of zebrafish was performed.By scoring specific hematopoietic markers,52 mutants were identified and then classified into four types based on specific phenotypic traits.Each mutant represented a putative mutation of a gene regulating the relevant aspect of hematopoiesis,including early macrophage development,early granulopoiesis,embryonic myelopoiesis,and definitive erythropoiesis/lymphopoiesis.Our method should be applicable for other types of genetic screening in zebrafish.In addition,further study of the mutants we identified may help to unveil the molecular basis of hematopoiesis.

  5. Genetic screens and functional genomics using CRISPR/Cas9 technology.

    Science.gov (United States)

    Hartenian, Ella; Doench, John G

    2015-04-01

    Functional genomics attempts to understand the genome by perturbing the flow of information from DNA to RNA to protein, in order to learn how gene dysfunction leads to disease. CRISPR/Cas9 technology is the newest tool in the geneticist's toolbox, allowing researchers to edit DNA with unprecedented ease, speed and accuracy, and representing a novel means to perform genome-wide genetic screens to discover gene function. In this review, we first summarize the discovery and characterization of CRISPR/Cas9, and then compare it to other genome engineering technologies. We discuss its initial use in screening applications, with a focus on optimizing on-target activity and minimizing off-target effects. Finally, we comment on future challenges and opportunities afforded by this technology.

  6. Genetic Screening for Bacterial Mutants in Liquid Growth Media By Fluorescence-Activated Cell Sorting

    Science.gov (United States)

    Abuaita, Basel H.; Withey, Jeffrey H.

    2010-01-01

    Many bacterial pathogens have defined in vitro virulence inducing conditions in liquid media which lead to production of virulence factors important during an infection. Identifying mutants that no longer respond to virulence inducing conditions will increase our understanding of bacterial pathogenesis. However, traditional genetic screens require growth on solid media. Bacteria in a single colony are in every phase of the growth curve, which complicates the analysis and make screens for growth phase-specific mutants problematic. Here, we utilize fluorescence-activated cell sorting in conjunction with random transposon mutagenesis to isolate bacteria grown in liquid media that are defective in virulence activation. This method permits analysis of an entire bacterial population in real time and selection of individual bacterial mutants with the desired gene expression profile at any time point after induction. We have used this method to identify Vibrio cholerae mutants defective in virulence induction. PMID:21094189

  7. Malformations of cortical development: genetic mechanisms and diagnostic approach

    Science.gov (United States)

    2017-01-01

    Malformations of cortical development are rare congenital anomalies of the cerebral cortex, wherein patients present with intractable epilepsy and various degrees of developmental delay. Cases show a spectrum of anomalous cortical formations with diverse anatomic and morphological abnormalities, a variety of genetic causes, and different clinical presentations. Brain magnetic resonance imaging has been of great help in determining the exact morphologies of cortical malformations. The hypothetical mechanisms of malformation include interruptions during the formation of cerebral cortex in the form of viral infection, genetic causes, and vascular events. Recent remarkable developments in genetic analysis methods have improved our understanding of these pathological mechanisms. The present review will discuss normal cortical development, the current proposed malformation classifications, and the diagnostic approach for malformations of cortical development. PMID:28203254

  8. Development of a Cargo Screening Process Simulator: A First Approach

    CERN Document Server

    Siebers, Peer-Olaf; Aickelin, Uwe

    2010-01-01

    The efficiency of current cargo screening processes at sea and air ports is largely unknown as few benchmarks exists against which they could be measured. Some manufacturers provide benchmarks for individual sensors but we found no benchmarks that take a holistic view of the overall screening procedures and no benchmarks that take operator variability into account. Just adding up resources and manpower used is not an effective way for assessing systems where human decision-making and operator compliance to rules play a vital role. Our aim is to develop a decision support tool (cargo-screening system simulator) that will map the right technology and manpower to the right commodity-threat combination in order to maximise detection rates. In this paper we present our ideas for developing such a system and highlight the research challenges we have identified. Then we introduce our first case study and report on the progress we have made so far.

  9. The distinguishable cluster approach from a screened Coulomb formalism.

    Science.gov (United States)

    Kats, Daniel

    2016-01-28

    The distinguishable cluster doubles equations have been derived starting from an effective screened Coulomb formalism and a particle-hole symmetric formulation of the Fock matrix. A perturbative triples correction to the distinguishable cluster with singles and doubles (DCSD) has been introduced employing the screened integrals. It is shown that the resulting DCSD(T) method is more accurate than DCSD for reaction energies and is less sensitive to the static correlation than coupled cluster with singles and doubles with a perturbative triples correction.

  10. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Aitor Nogales

    2016-12-01

    Full Text Available Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines.

  11. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Science.gov (United States)

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  12. A Genetic Screen Identifies Hypothalamic Fgf15 as a Regulator of Glucagon Secretion

    Directory of Open Access Journals (Sweden)

    Alexandre Picard

    2016-11-01

    Full Text Available The counterregulatory response to hypoglycemia, which restores normal blood glucose levels to ensure sufficient provision of glucose to the brain, is critical for survival. To discover underlying brain regulatory systems, we performed a genetic screen in recombinant inbred mice for quantitative trait loci (QTL controlling glucagon secretion in response to neuroglucopenia. We identified a QTL on the distal part of chromosome 7 and combined this genetic information with transcriptomic analysis of hypothalami. This revealed Fgf15 as the strongest candidate to control the glucagon response. Fgf15 was expressed by neurons of the dorsomedial hypothalamus and the perifornical area. Intracerebroventricular injection of FGF19, the human ortholog of Fgf15, reduced activation by neuroglucopenia of dorsal vagal complex neurons, of the parasympathetic nerve, and lowered glucagon secretion. In contrast, silencing Fgf15 in the dorsomedial hypothalamus increased neuroglucopenia-induced glucagon secretion. These data identify hypothalamic Fgf15 as a regulator of glucagon secretion.

  13. Quick genetic screening using targeted next-generation sequencing in patients with tuberous sclerosis.

    Science.gov (United States)

    Liu, Qing; Huang, Yan; Zhang, Mingrong; Wang, Lian Qing; Guo, Xia Nan; Si, Nuo; Qi, Zhan; Zhou, Xiang Qin; Cui, Li-ying

    2015-04-01

    Tuberous sclerosis complex is an autosomal dominant disorder characterized by hamartomas in multiple organ systems. Mutations in the 2 large genes TSC1 and TSC2 have been demonstrated to be associated with tuberous sclerosis complex by various mutation screening methods. Targeted next-generation sequencing for genetic analysis is performed in the current study and is proved to be less cost, labor, and time consuming compared with Sanger sequencing. Two de novo and 1 recurrent TSC2 mutation in patients with tuberous sclerosis complex were revealed. Clinical details of patients were described and the underlying mechanism of the 2 novel TSC2 mutations, c.245G>A(p.W82X) and c.5405_5408dupACTT(p.P1803Lfs*25), were discussed. These results added to variability of TSC mutation spectrum and suggest that targeted next-generation sequencing could be the primary choice over Sanger sequencing in future tuberous sclerosis complex genetic counseling.

  14. New Advances of Preimplantation and Prenatal Genetic Screening and Noninvasive Testing as a Potential Predictor of Health Status of Babies

    Directory of Open Access Journals (Sweden)

    Tanya Milachich

    2014-01-01

    Full Text Available The current morphologically based selection of human embryos for transfer cannot detect chromosome aneuploidies. So far, only biopsy techniques have been able to screen for chromosomal aneuploidies in the in vitro fertilization (IVF embryos. Preimplantation genetic diagnosis (PGD or screening (PGS involves the biopsy of oocyte polar bodies or embryonic cells and has become a routine clinical procedure in many IVF clinics worldwide, including recent development of comprehensive chromosome screening of all 23 pairs of chromosomes by microarrays for aneuploidy screening. The routine preimplantation and prenatal genetic diagnosis (PND require testing in an aggressive manner. These procedures may be invasive to the growing embryo and fetus and potentially could compromise the clinical outcome. Therefore the aim of this review is to summarize not only the new knowledge on preimplantation and prenatal genetic diagnosis in humans, but also on the development of potential noninvasive embryo and fetal testing that might play an important role in the future.

  15. Network medicine approaches to the genetics of complex diseases.

    Science.gov (United States)

    Silverman, Edwin K; Loscalzo, Joseph

    2012-08-01

    Complex diseases are caused by perturbations of biological networks. Genetic analysis approaches focused on individual genetic determinants are unlikely to characterize the network architecture of complex diseases comprehensively. Network medicine, which applies systems biology and network science to complex molecular networks underlying human disease, focuses on identifying the interacting genes and proteins which lead to disease pathogenesis. The long biological path between a genetic risk variant and development of a complex disease involves a range of biochemical intermediates, including coding and non-coding RNA, proteins, and metabolites. Transcriptomics, proteomics, metabolomics, and other -omics technologies have the potential to provide insights into complex disease pathogenesis, especially if they are applied within a network biology framework. Most previous efforts to relate genetics to -omics data have focused on a single -omics platform; the next generation of complex disease genetics studies will require integration of multiple types of -omics data sets in a network context. Network medicine may also provide insight into complex disease heterogeneity, serve as the basis for new disease classifications that reflect underlying disease pathogenesis, and guide rational therapeutic and preventive strategies.

  16. Chemical genetics approaches for selective intervention in epigenetics.

    Science.gov (United States)

    Runcie, Andrew C; Chan, Kwok-Ho; Zengerle, Michael; Ciulli, Alessio

    2016-08-01

    Chemical genetics is the use of biologically active small molecules (chemical probes) to investigate the functions of gene products, through the modulation of protein activity. Recent years have seen significant progress in the application of chemical genetics to study epigenetics, following the development of new chemical probes, a growing appreciation of the role of epigenetics in disease and a recognition of the need and utility of high-quality, cell-active chemical probes. In this review, we single out the bromodomain reader domains as a prime example of both the success, and challenges facing chemical genetics. The difficulty in generating single-target selectivity has long been a thorn in the side of chemical genetics, however, recent developments in advanced forms of chemical genetics promise to bypass this, and other, limitations. The 'bump-and-hole' approach has now been used to probe - for the first time - the BET bromodomain subfamily with single-target selectivity and may be applicable to other epigenetic domains. Meanwhile, PROTAC compounds have been shown to be significantly more efficacious than standard domain inhibitors, and have the potential to enhance target selectivity.

  17. OPTIMIZING LOCALIZATION ROUTE USING PARTICLE SWARM-A GENETIC APPROACH

    Directory of Open Access Journals (Sweden)

    L. Lakshmanan

    2014-01-01

    Full Text Available One of the most key problems in wireless sensor networks is finding optimal algorithms for sending packets from source node to destination node. Several algorithms exist in literature, since some are in vital role other may not. Since WSN focus on low power consumption during packet transmission and receiving, finally we adopt by merging swarm particle based algorithm with genetic approach. Initially we order the nodes based on their energy criterion and then focusing towards node path; this can be done using Proactive route algorithm for finding optimal path between Source-Destination (S-D nodes. Fast processing and pre traversal can be done using selective flooding approach and results are in genetic. We have improved our results with high accuracy and optimality in rendering routes.

  18. Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods.

    Science.gov (United States)

    Turpin, Williams; Humblot, Christèle; Guyot, Jean-Pierre

    2011-12-01

    Lactic acid bacteria (LAB) (n = 152) in African pearl millet slurries and in the metagenomes of amylaceous fermented foods were investigated by screening 33 genes involved in probiotic and nutritional functions. All isolates belonged to six species of the genera Pediococcus and Lactobacillus, and Lactobacillus fermentum was the dominant species. We screened the isolates for the abilities to survive passage through the gastrointestinal tract and to synthesize folate and riboflavin. The isolates were also tested in vitro for their abilities to survive exposure to bile salts and to survive at pH 2. Because the ability to hydrolyze starch confers an ecological advantage on LAB that grow in starchy matrixes as well as improving the nutritional properties of the gruels, we screened for genes involved in starch metabolism. The results showed that genes with the potential ability to survive passage through the gastrointestinal tract were widely distributed among isolates and metagenomes, whereas in vitro tests showed that only a limited set of isolates, mainly those belonging to L. fermentum, could tolerate a low pH. In contrast, the wide distribution of genes associated with bile salt tolerance, in particular bsh, is consistent with the high frequency of tolerance to bile salts observed. Genetic screening revealed a potential for folate and riboflavin synthesis in both isolates and metagenomes, as well as high variability among genes related to starch metabolism. Genetic screening of isolates and metagenomes from fermented foods is thus a promising approach for assessing the functional potential of food microbiotas.

  19. Genetic Screening of Functional Properties of Lactic Acid Bacteria in a Fermented Pearl Millet Slurry and in the Metagenome of Fermented Starchy Foods▿

    Science.gov (United States)

    Turpin, Williams; Humblot, Christèle; Guyot, Jean-Pierre

    2011-01-01

    Lactic acid bacteria (LAB) (n = 152) in African pearl millet slurries and in the metagenomes of amylaceous fermented foods were investigated by screening 33 genes involved in probiotic and nutritional functions. All isolates belonged to six species of the genera Pediococcus and Lactobacillus, and Lactobacillus fermentum was the dominant species. We screened the isolates for the abilities to survive passage through the gastrointestinal tract and to synthesize folate and riboflavin. The isolates were also tested in vitro for their abilities to survive exposure to bile salts and to survive at pH 2. Because the ability to hydrolyze starch confers an ecological advantage on LAB that grow in starchy matrixes as well as improving the nutritional properties of the gruels, we screened for genes involved in starch metabolism. The results showed that genes with the potential ability to survive passage through the gastrointestinal tract were widely distributed among isolates and metagenomes, whereas in vitro tests showed that only a limited set of isolates, mainly those belonging to L. fermentum, could tolerate a low pH. In contrast, the wide distribution of genes associated with bile salt tolerance, in particular bsh, is consistent with the high frequency of tolerance to bile salts observed. Genetic screening revealed a potential for folate and riboflavin synthesis in both isolates and metagenomes, as well as high variability among genes related to starch metabolism. Genetic screening of isolates and metagenomes from fermented foods is thus a promising approach for assessing the functional potential of food microbiotas. PMID:22003019

  20. NeuroChip: a microfluidic electrophysiological device for genetic and chemical biology screening of Caenorhabditis elegans adult and larvae.

    Science.gov (United States)

    Hu, Chunxiao; Dillon, James; Kearn, James; Murray, Caitriona; O'Connor, Vincent; Holden-Dye, Lindy; Morgan, Hywel

    2013-01-01

    Genetic and chemical biology screens of C. elegans have been of enormous benefit in providing fundamental insight into neural function and neuroactive drugs. Recently the exploitation of microfluidic devices has added greater power to this experimental approach providing more discrete and higher throughput phenotypic analysis of neural systems. Here we make a significant addition to this repertoire through the design of a semi-automated microfluidic device, NeuroChip, which has been optimised for selecting worms based on the electrophysiological features of the pharyngeal neural network. We demonstrate this device has the capability to sort mutant from wild-type worms based on high definition extracellular electrophysiological recordings. NeuroChip resolves discrete differences in excitatory, inhibitory and neuromodulatory components of the neural network from individual animals. Worms may be fed into the device consecutively from a reservoir and recovered unharmed. It combines microfluidics with integrated electrode recording for sequential trapping, restraining, recording, releasing and recovering of C. elegans. Thus mutant worms may be selected, recovered and propagated enabling mutagenesis screens based on an electrophysiological phenotype. Drugs may be rapidly applied during the recording thus permitting compound screening. For toxicology, this analysis can provide a precise description of sub-lethal effects on neural function. The chamber has been modified to accommodate L2 larval stages showing applicability for small size nematodes including parasitic species which otherwise are not tractable to this experimental approach. We also combine NeuroChip with optogenetics for targeted interrogation of the function of the neural circuit. NeuroChip thus adds a new tool for exploitation of C. elegans and has applications in neurogenetics, drug discovery and neurotoxicology.

  1. NeuroChip: a microfluidic electrophysiological device for genetic and chemical biology screening of Caenorhabditis elegans adult and larvae.

    Directory of Open Access Journals (Sweden)

    Chunxiao Hu

    Full Text Available Genetic and chemical biology screens of C. elegans have been of enormous benefit in providing fundamental insight into neural function and neuroactive drugs. Recently the exploitation of microfluidic devices has added greater power to this experimental approach providing more discrete and higher throughput phenotypic analysis of neural systems. Here we make a significant addition to this repertoire through the design of a semi-automated microfluidic device, NeuroChip, which has been optimised for selecting worms based on the electrophysiological features of the pharyngeal neural network. We demonstrate this device has the capability to sort mutant from wild-type worms based on high definition extracellular electrophysiological recordings. NeuroChip resolves discrete differences in excitatory, inhibitory and neuromodulatory components of the neural network from individual animals. Worms may be fed into the device consecutively from a reservoir and recovered unharmed. It combines microfluidics with integrated electrode recording for sequential trapping, restraining, recording, releasing and recovering of C. elegans. Thus mutant worms may be selected, recovered and propagated enabling mutagenesis screens based on an electrophysiological phenotype. Drugs may be rapidly applied during the recording thus permitting compound screening. For toxicology, this analysis can provide a precise description of sub-lethal effects on neural function. The chamber has been modified to accommodate L2 larval stages showing applicability for small size nematodes including parasitic species which otherwise are not tractable to this experimental approach. We also combine NeuroChip with optogenetics for targeted interrogation of the function of the neural circuit. NeuroChip thus adds a new tool for exploitation of C. elegans and has applications in neurogenetics, drug discovery and neurotoxicology.

  2. Intrusion detection: a novel approach that combines boosting genetic fuzzy classifier and data mining techniques

    Science.gov (United States)

    Ozyer, Tansel; Alhajj, Reda; Barker, Ken

    2005-03-01

    This paper proposes an intelligent intrusion detection system (IDS) which is an integrated approach that employs fuzziness and two of the well-known data mining techniques: namely classification and association rule mining. By using these two techniques, we adopted the idea of using an iterative rule learning that extracts out rules from the data set. Our final intention is to predict different behaviors in networked computers. To achieve this, we propose to use a fuzzy rule based genetic classifier. Our approach has two main stages. First, fuzzy association rule mining is applied and a large number of candidate rules are generated for each class. Then the rules pass through pre-screening mechanism in order to reduce the fuzzy rule search space. Candidate rules obtained after pre-screening are used in genetic fuzzy classifier to generate rules for the specified classes. Classes are defined as Normal, PRB-probe, DOS-denial of service, U2R-user to root and R2L- remote to local. Second, an iterative rule learning mechanism is employed for each class to find its fuzzy rules required to classify data each time a fuzzy rule is extracted and included in the system. A Boosting mechanism evaluates the weight of each data item in order to help the rule extraction mechanism focus more on data having relatively higher weight. Finally, extracted fuzzy rules having the corresponding weight values are aggregated on class basis to find the vote of each class label for each data item.

  3. A genetic algorithm approach to routine gamma spectra analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carlevaro, C M [Instituto de FIsica de LIquidos y Sistemas Biologicos, Calle 59 No 789, B1900BTE La Plata (Argentina); Wilkinson, M V [Autoridad Regulatoria Nuclear, Avda. del Libertador 8250, C1429BNP Buenos Aires (Argentina); Barrios, L A [Autoridad Regulatoria Nuclear, Avda. del Libertador 8250, C1429BNP Buenos Aires (Argentina)

    2008-01-15

    In this work we present an alternative method for performing routine gamma spectra analysis based on genetic algorithm techniques. The main idea is to search for patterns of single nuclide spectra obtained by simulation in a sample spectrum targeted for analysis. We show how this approach is applied to the analysis of simulated and real target spectra, and also to the study of interference resolution.

  4. A PCR-based forward genetics screening, using expression domain-specific markers, identifies mutants in endosperm transfer cell development

    Directory of Open Access Journals (Sweden)

    Luis Miguel Muñiz

    2014-04-01

    Full Text Available Mutant collections are an invaluable source of material on which forward genetic approaches allow the identification of genes affecting a wide variety of biological processes. However, some particular developmental stages and morphological structures may resist analysis due to their physical inaccessibility or to deleterious effects associated to their modification. Furthermore, lethal mutations acting early in development may escape detection. We have approached the characterisation of 101 maize seed mutants, selected from a collection of 27500 visually screened Mu-insertion lines, using a molecular marker approach based on a set of genes previously ascribed to different tissue compartments within the early developing kernel. A streamlined combination of qRT-PCR assays has allowed us to preliminary pinpoint the affected compartment, establish developmental comparisons to WT siblings and select mutant lines with alterations in the different compartments. Furthermore, clusters of markers co-affected by the underlying mutation were identified. We have analysed more extensively a set of lines presenting significant variation in transfer cell-associated expression markers, and have performed morphological observations, and immunolocalization experiments to confirm the results, validating this approach as an efficient mutant description tool.

  5. The genetics of multiple sclerosis: principles, background and updated results of the United Kingdom systematic genome screen.

    Science.gov (United States)

    Chataway, J; Feakes, R; Coraddu, F; Gray, J; Deans, J; Fraser, M; Robertson, N; Broadley, S; Jones, H; Clayton, D; Goodfellow, P; Sawcer, S; Compston, A

    1998-10-01

    Genetic susceptibility to multiple sclerosis is implicated on the basis of classical family studies and phenotype analyses. The only reproducible legacy from the candidate gene approach has been the discovery of population associations with alleles of the major histocompatibility complex. Systematic genome scanning has since been applied using a panel of anonymous markers to identify areas of linkage in co-affected siblings. Here, we describe the principles of genome screening and update the UK survey of multiple sclerosis. This identified 20 regions of potential interest, but in none was there unequivocal linkage. In theory, attempting to replicate these findings in a second set of sibling pair families is the most appropriate way to distinguish true from false positives, but unfortunately the number of families required to do this reliably is prohibitively large. We used three approaches to increase the definition achieved by the screen: (i) the number of sibling pairs typed in an identified region of potential linkage was extended; (ii) the information extraction was increased in an identified region; and (iii) a search was made for missed regions of potential linkage. Each of these approaches has considerable limitations. A chromosome-by-chromosome account is given to direct future searches. Although an additional marker placed distal to the 'hit' on chromosome 14q increased linkage in this area, and typing extra sibling pairs increased linkage on chromosomes 6p and 17q, evidence for linkage was more commonly reduced and no additional regions of interest were found. A further refinement of the genome screen was undertaken by conditioning for the presence of HLA-DR15. This produced a surprising degree of segregation among the regions of interest, which divided into two distinct groups depending on DR15 sharing: the DR15-sharing cohort comprised loci on chromosomal areas 1p, 17q and X; and the DR15-non-sharing cohort was made up of loci on 1cen, 3p, 7p, 14q and

  6. DNA enrichment approaches to identify unauthorized genetically modified organisms (GMOs).

    Science.gov (United States)

    Arulandhu, Alfred J; van Dijk, Jeroen P; Dobnik, David; Holst-Jensen, Arne; Shi, Jianxin; Zel, Jana; Kok, Esther J

    2016-07-01

    With the increased global production of different genetically modified (GM) plant varieties, chances increase that unauthorized GM organisms (UGMOs) may enter the food chain. At the same time, the detection of UGMOs is a challenging task because of the limited sequence information that will generally be available. PCR-based methods are available to detect and quantify known UGMOs in specific cases. If this approach is not feasible, DNA enrichment of the unknown adjacent sequences of known GMO elements is one way to detect the presence of UGMOs in a food or feed product. These enrichment approaches are also known as chromosome walking or gene walking (GW). In recent years, enrichment approaches have been coupled with next generation sequencing (NGS) analysis and implemented in, amongst others, the medical and microbiological fields. The present review will provide an overview of these approaches and an evaluation of their applicability in the identification of UGMOs in complex food or feed samples.

  7. A Hybrid Intelligent Diagnosis Approach for Quick Screening of Alzheimer’s Disease Based on Multiple Neuropsychological Rating Scales

    Directory of Open Access Journals (Sweden)

    Ziming Yin

    2015-01-01

    Full Text Available Neuropsychological testing is an effective means for the screening of Alzheimer’s disease. Multiple neuropsychological rating scales should be used together to get subjects’ comprehensive cognitive state due to the limitation of a single scale, but it is difficult to operate in primary clinical settings because of the inadequacy of time and qualified clinicians. Aiming at identifying AD’s stages more accurately and conveniently in screening, we proposed a computer-aided diagnosis approach based on critical items extracted from multiple neuropsychological scales. The proposed hybrid intelligent approach combines the strengths of rough sets, genetic algorithm, and Bayesian network. There are two stages: one is attributes reduction technique based on rough sets and genetic algorithm, which can find out the most discriminative items for AD diagnosis in scales; the other is uncertain reasoning technique based on Bayesian network, which can forecast the probability of suffering from AD. The experimental data set consists of 500 cases collected by a top hospital in China and each case is determined by the expert panel. The results showed that the proposed approach could not only reduce items drastically with the same classification precision, but also perform better on identifying different stages of AD comparing with other existing scales.

  8. Review:Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods

    Institute of Scientific and Technical Information of China (English)

    WANG Jun-ping; RAMAN Harsh; ZHANG Guo-ping; MENDHAM Neville; ZHOU Mei-xue

    2006-01-01

    Aluminium (Al) toxicity is one of the major limiting factors for barley production on acid soils. It inhibits root cell division and elongation, thus reducing water and nutrient uptake, consequently resulting in poor plant growth and yield. Plants tolerate Al either through external resistance mechanisms, by which Al is excluded from plant tissues or internal tolerance mechanisms, conferring the ability of plants to tolerate Al ion in the plant symplasm where Al that has permeated the plasmalemma is sequestered or converted into an innocuous form. Barley is considered to be most sensitive to Al toxicity among cereal species. Al tolerance in barley has been assessed by several methods, such as nutrient solution culture, soil bioassay and field screening. Genetic and molecular mapping research has shown that Al tolerance in barley is controlled by a single locus which is located on chromosome 4H. Molecular markers linked with Al tolerance loci have been identified and validated in a range of diverse populations. This paper reviews the (1) screening methods for evaluating Al tolerance, (2) genetics and (3) mechanisms underlying Al tolerance in barley.

  9. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia.

    Science.gov (United States)

    Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric

    2014-06-01

    In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia.

  10. Generation of Mouse Haploid Somatic Cells by Small Molecules for Genome-wide Genetic Screening

    Directory of Open Access Journals (Sweden)

    Zheng-Quan He

    2017-08-01

    Full Text Available The recent success of derivation of mammalian haploid embryonic stem cells (haESCs has provided a powerful tool for large-scale functional analysis of the mammalian genome. However, haESCs rapidly become diploidized after differentiation, posing challenges for genetic analysis. Here, we show that the spontaneous diploidization of haESCs happens in metaphase due to mitotic slippage. Diploidization can be suppressed by small-molecule-mediated inhibition of CDK1 and ROCK. Through ROCK inhibition, we can generate haploid somatic cells of all three germ layers from haESCs, including terminally differentiated neurons. Using piggyBac transposon-based insertional mutagenesis, we generated a haploid neural cell library harboring genome-wide mutations for genetic screening. As a proof of concept, we screened for Mn2+-mediated toxicity and identified the Park2 gene. Our findings expand the applications of mouse haploid cell technology to somatic cell types and may also shed light on the mechanisms of ploidy maintenance.

  11. Advanced Lung Cancer Screening: An Individualized Molecular Nanotechnology Approach

    Science.gov (United States)

    2014-08-01

    lung tumors in Asian populations than in the Baltimore region. Our plans for implementation of this panel for detection in plasma and sputum were...increase in amplifiable DNA, on average. Having developed an optimal panel and improved upon methods for processing the DNA as planned , we...CT Densitometry of Screening Participants CT scans were analyzed for emphysema using Pulmonary Workstation 2.0 software ( Vida Diagnosis, Iowa City

  12. Microfluidic Approaches for Manipulating, Imaging, and Screening C. elegans

    Directory of Open Access Journals (Sweden)

    Bhagwati P. Gupta

    2016-07-01

    Full Text Available The nematode C. elegans (worm is a small invertebrate animal widely used in studies related to fundamental biological processes, disease modelling, and drug discovery. Due to their small size and transparent body, these worms are highly suitable for experimental manipulations. In recent years several microfluidic devices and platforms have been developed to accelerate worm handling, phenotypic studies and screens. Here we review major tools and briefly discuss their usage in C. elegans research.

  13. Screening Twilight: critical approaches to a cinematic phenomenon

    OpenAIRE

    Clayton, Wickham; Harman, Sarah

    2014-01-01

    The Twilight saga, a series of five films adapted from Stephanie Meyer's four vampire novels, has been a sensation, both at the box office and through the attention it has won from its predominantly teenaged fans. This series has also been the subject of criticism and sometimes derision - often from critics and on occasion even from fans. However, it also offers rich opportunities for analytic and critical attention, which the contributors to Screening Twilight demonstrate with energy and sty...

  14. Flow Cytometry Enables Multiplexed Measurements of Genetically Encoded Intramolecular FRET Sensors Suitable for Screening.

    Science.gov (United States)

    Doucette, Jaimee; Zhao, Ziyan; Geyer, Rory J; Barra, Melanie M; Balunas, Marcy J; Zweifach, Adam

    2016-07-01

    Genetically encoded sensors based on intramolecular FRET between CFP and YFP are used extensively in cell biology research. Flow cytometry has been shown to offer a means to measure CFP-YFP FRET; we suspected it would provide a unique way to conduct multiplexed measurements from cells expressing different FRET sensors, which is difficult to do with microscopy, and that this could be used for screening. We confirmed that flow cytometry accurately measures FRET signals using cells transiently transfected with an ERK activity reporter, comparing responses measured with imaging and cytometry. We created polyclonal long-term transfectant lines, each expressing a different intramolecular FRET sensor, and devised a way to bar-code four distinct populations of cells. We demonstrated the feasibility of multiplexed measurements and determined that robust multiplexed measurements can be conducted in plate format. To validate the suitability of the method for screening, we measured responses from a plate of bacterial extracts that in unrelated experiments we had determined contained the protein kinase C (PKC)-activating compound teleocidin A-1. The multiplexed assay correctly identifying the teleocidin A-1-containing well. We propose that multiplexed cytometric FRET measurements will be useful for analyzing cellular function and for screening compound collections.

  15. Genetic analysis and SOD1 mutation screening in Iranian amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Alavi, Afagh; Nafissi, Shahriar; Rohani, Mohammad; Zamani, Babak; Sedighi, Behnaz; Shamshiri, Hosein; Fan, Jian-Bing; Ronaghi, Mostafa; Elahi, Elahe

    2013-05-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, and the most common in European populations. Results of genetic analysis and mutation screening of SOD1 in a cohort of 60 Iranian ALS patients are here reported. Initially, linkage analysis in 4 families identified a disease-linked locus that included the known ALS gene, SOD1. Screening of SOD1 identified homozygous p.Asp90Ala causing mutations in all the linked families. Haplotype analysis suggests that the p.Asp90Ala alleles in the Iranian patients might share a common founder with the renowned Scandinavian recessive p.Asp90Ala allele. Subsequent screening in all the patients resulted in identification of 3 other mutations in SOD1, including p.Leu84Phe in the homozygous state. Phenotypic features of the mutation-bearing patients are presented. SOD1 mutations were found in 11.7% of the cohort, 38.5% of the familial ALS probands, and 4.25% of the sporadic ALS cases. SOD1 mutations contribute significantly to ALS among Iranians.

  16. New multiplex PCR methods for rapid screening of genetically modified organisms in foods

    Directory of Open Access Journals (Sweden)

    Nelly eDatukishvili

    2015-07-01

    Full Text Available We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs. New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  17. New multiplex PCR methods for rapid screening of genetically modified organisms in foods.

    Science.gov (United States)

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  18. Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques.

    Science.gov (United States)

    Petříčková, Kateřina; Chroňáková, Alica; Zelenka, Tomáš; Chrudimský, Tomáš; Pospíšil, Stanislav; Petříček, Miroslav; Krištůfek, Václav

    2015-01-01

    A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products) in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike "classical" primary metabolism ALAS, the C5N unit-forming cyclizing ALAS (cALAS) catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of "classical" ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87% putatively encoding cALAS. Phylogenetic analysis of the hemA homologs revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers.

  19. Identification of small molecule and genetic modulators of AON-induced dystrophin exon skipping by high-throughput screening.

    Directory of Open Access Journals (Sweden)

    Debra A O'Leary

    Full Text Available One therapeutic approach to Duchenne Muscular Dystrophy (DMD recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD, by employing antisense oligonucleotides (AONs targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of AON-dependent and independent exon skipping, we screened approximately 10,000 known small molecule drugs, >17,000 cDNA clones, and >2,000 kinase- targeted siRNAs against a 5.6 kb luciferase minigene construct, encompassing exon 71 to exon 73 of human dystrophin. As a result, we identified several enhancers of exon skipping, acting on both the reporter construct as well as endogenous dystrophin in mdx cells. Multiple mechanisms of action were identified, including histone deacetylase inhibition, tubulin modulation and pre-mRNA processing. Among others, the nucleolar protein NOL8 and staufen RNA binding protein homolog 2 (Stau2 were found to induce endogenous exon skipping in mdx cells in an AON-dependent fashion. An unexpected but recurrent theme observed in our screening efforts was the apparent link between the inhibition of cell cycle progression and the induction of exon skipping.

  20. A genetic screen for components of the mammalian RNA interference pathway in Bloom-deficient mouse embryonic stem cells.

    Science.gov (United States)

    Trombly, Melanie I; Su, Hong; Wang, Xiaozhong

    2009-03-01

    Genetic screens performed in model organisms have helped identify key components of the RNA interference (RNAi) pathway. Recessive genetic screens have recently become feasible through the use of mouse embryonic stem (ES) cells that are Bloom's syndrome protein (Blm) deficient. Here, we developed and performed a recessive genetic screen to identify components of the mammalian RNAi pathway in Blm-deficient ES cells. Genome-wide mutagenesis using a retroviral gene trap strategy resulted in the isolation of putative homozygous RNAi mutant cells. Candidate clones were confirmed by an independent RNAi-based reporter assay and the causative gene trap integration site was identified using molecular techniques. Our screen identified multiple mutant cell lines of Argonaute 2 (Ago2), a known essential component of the RNAi pathway. This result demonstrates that true RNAi components can be isolated by this screening strategy. Furthermore, Ago2 homozygous mutant ES cells provide a null genetic background to perform mutational analyses of the Ago2 protein. Using genetic rescue, we resolve an important controversy regarding the role of two phenylalanine residues in Ago2 activity.

  1. Impact of genomics approaches on plant genetics and physiology.

    Science.gov (United States)

    Tabata, Satoshi

    2002-08-01

    Comprehensive analysis of genetic information in higher plants is under way for several plants of biological and agronomical importance. Among them, Arabidopsis thaliana, a member of Brassica family, and Oryza sativa(rice) have been chosen as model plants most suitable for genome analysis. Sequencing of the genome of A. thaliana was completed in December 2000, and rice genome sequencing is in progress. The accumulated genome sequences, together with the hundreds of thousands of ESTs from several tens of plant species, have drastically changed the strategy of plant genetics. By utilizing the information on the genome and gene structures, comprehensive approaches for genome-wide functional analysis of the genes, including transcriptome analysis using microarray systems and a comprehensive analysis of a large number of insertion mutant lines, have been widely adopted. As a consequence, a large quantity of information on both the structure and function of genes in these model plants has been accumulated. However, other plant species may have their own characteristics and advantages to study individual phenomena. Application of knowledge from the model plants to other plant species and vice versa through the common language, namely the genome information, should facilitate understanding of the genetic systems underlying a variety of biological phenomena. Introduction of this common language may not be very simple, especially in the case of complex pathways such as a process of cell-covering formation. Nevertheless, it should be emphasized that genomics approaches are the most promising way to understand these processes.

  2. An Airborne Conflict Resolution Approach Using a Genetic Algorithm

    Science.gov (United States)

    Mondoloni, Stephane; Conway, Sheila

    2001-01-01

    An airborne conflict resolution approach is presented that is capable of providing flight plans forecast to be conflict-free with both area and traffic hazards. This approach is capable of meeting constraints on the flight plan such as required times of arrival (RTA) at a fix. The conflict resolution algorithm is based upon a genetic algorithm, and can thus seek conflict-free flight plans meeting broader flight planning objectives such as minimum time, fuel or total cost. The method has been applied to conflicts occurring 6 to 25 minutes in the future in climb, cruise and descent phases of flight. The conflict resolution approach separates the detection, trajectory generation and flight rules function from the resolution algorithm. The method is capable of supporting pilot-constructed resolutions, cooperative and non-cooperative maneuvers, and also providing conflict resolution on trajectories forecast by an onboard FMC.

  3. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs

    Directory of Open Access Journals (Sweden)

    Matt Q. Clark

    2016-07-01

    Full Text Available Drosophila larval crawling is an attractive system to study rhythmic motor output at the level of animal behavior. Larval crawling consists of waves of muscle contractions generating forward or reverse locomotion. In addition, larvae undergo additional behaviors, including head casts, turning, and feeding. It is likely that some neurons (e.g., motor neurons are used in all these behaviors, but the identity (or even existence of neurons dedicated to specific aspects of behavior is unclear. To identify neurons that regulate specific aspects of larval locomotion, we performed a genetic screen to identify neurons that, when activated, could elicit distinct motor programs. We used 165 Janelia CRM-Gal4 lines—chosen for sparse neuronal expression—to ectopically express the warmth-inducible neuronal activator TrpA1, and screened for locomotor defects. The primary screen measured forward locomotion velocity, and we identified 63 lines that had locomotion velocities significantly slower than controls following TrpA1 activation (28°. A secondary screen was performed on these lines, revealing multiple discrete behavioral phenotypes, including slow forward locomotion, excessive reverse locomotion, excessive turning, excessive feeding, immobile, rigid paralysis, and delayed paralysis. While many of the Gal4 lines had motor, sensory, or muscle expression that may account for some or all of the phenotype, some lines showed specific expression in a sparse pattern of interneurons. Our results show that distinct motor programs utilize distinct subsets of interneurons, and provide an entry point for characterizing interneurons governing different elements of the larval motor program.

  4. Preliminary Study on Thalassemia Screening and Genetic Counseling in Selective Hmong People in Saraburi Province, Thailand

    Directory of Open Access Journals (Sweden)

    Pa Vang

    2008-01-01

    Full Text Available it can lead to the destruction of red blood cells. Studies have shown that there is a high prevalence of thalassemia in Southeast Asia. The Institute of Health Research, Chulalongkorn University developed a successful “Module” to screen for thalassemia in the Thai population, however, it has not been implemented in the minority population in Thailand. In this study, we investigated the feasibility of the newly developed educational and thalassemia screening program with the Hmong population. The primary aim of this study was to test this program. The secondary aim was to determine the prevalence of thalassemia in the Hmong and provide education. A third aim was to determine the reliability of two different screening methods in the Hmong population. A pre-test and post-test design was used; participants (N=12 were individuals residing in Thailand with the ability to read English and between the ages 18-50. The participants met twice with the researchers to complete the program. The first contact consisted of assessing participants’ knowledge about thalassemia, providing thalassemia information and education about genetic counseling, and drawing blood samples. The second contact consisted of assessing knowledge, providing a written report of individual blood sample results and counseling. The initial interview revealed that the majority of the participants (82% did not know anything about thalassemia prior to participation. The program was easy to understand by most participants (90%. Of the eleven Hmong participants, two tested positive for being a possible carrier for thalassemia. In order to reduce the prevalence of thalassemia, it is necessary to engage in risk reduction health services. The modified screening method proved to be as effective as the standard method. Therefore, the program can expand and be used in other regional populations with low cost.

  5. Genetic screening and evaluation for chromosomal abnormalities of infertile males in Jilin Province, China.

    Science.gov (United States)

    Zhang, M; Fan, H-T; Zhang, Q-S; Wang, X-Y; Yang, X; Tian, W-J; Li, R-W

    2015-12-08

    Chromosomal abnormality is the most common genetic cause of male infertility, particularly in cases of azoospermia, oligozoospermia, and recurrent spontaneous abortion. Chromosomal rearrangement may interrupt an important gene or exert position effects. The functionality of genes at specific breakpoints, perhaps with a specific role in spermatogenesis, may be altered by such rearrangements. Structural chromosome abnormalities are furthermore known to increase the risk of pregnancy loss. In this study, we aimed to assess chromosomal defects in infertile men from Jilin Province, China, by genetic screening and to evaluate the relationship between structural chromosome abnormalities and male infertility. The prevalence of chromosomal abnormalities among the study participants (receiving genetic counseling in Jilin Province, China) was 10.55%. The most common chromosome abnormality was Klinefelter syndrome, and the study findings suggested that azoospermia and oligospermia may result from structural chromosomal abnormalities. Chromosome 1 was shown to be most commonly involved in male infertility and balanced chromosomal translocation was identified as one of the causes of recurrent spontaneous abortion. Chromosomes 4, 7, and 10 were the most commonly involved chromosomes in male partners of women experiencing repeated abortion.

  6. Genetic Evolutionary Approach for Cutting Forces Prediction in Hard Milling

    Science.gov (United States)

    Taylan, Fatih; Kayacan, Cengiz

    2011-11-01

    Hard milling is a very common used machining procedure in the last years. Therefore the prediction of cutting forces is important. The paper deals with this prediction using genetic evolutionary programming (GEP) approach to set mathematical expression for out cutting forces. In this study, face milling was performed using DIN1.2842 (90MnCrV8) cold work tool steel, with a hardness of 61 HRC. Experimental parameters were selected using stability measurements and simulations. In the hard milling experiments, cutting force data in a total of three axes were collected. Feed direction (Fx) and tangential direction (Fy) cutting forces generated using genetic evolutionary programming were modelled. Cutting speed and feed rate values were treated as inputs in the models, and average cutting force values as output. Mathematical expressions were created to predict average Fxand Fy forces that can be generated in hard material milling.

  7. Breast cancer genetic risk profile is differentially associated with interval and screen-detected breast cancers.

    Science.gov (United States)

    Li, J; Holm, J; Bergh, J; Eriksson, M; Darabi, H; Lindström, L S; Törnberg, S; Hall, P; Czene, K

    2015-03-01

    Polygenic risk profiles computed from multiple common susceptibility alleles for breast cancer have been shown to identify women at different levels of breast cancer risk. We evaluated whether this genetic risk stratification can also be applied to discriminate between screen-detected and interval cancers, which are usually associated with clinicopathological and survival differences. A 77 single-nucleotide polymorphism polygenic risk score (PRS) was constructed for breast cancer overall and by estrogen receptor (ER) status. PRS was inspected as a continuous (per standard deviation increment) variable in a case-only design. Modification of the PRS by mammographic density was evaluated by fitting an additional interaction term. PRS weighted by breast cancer overall estimates was found to be differentially associated with 1865 screen-detected and 782 interval cancers in the LIBRO-1 study {age-adjusted odds ratio (OR)perSD [95% confidence interval (CI)] 0.91 [0.83-0.99], P = 0.023}. The association was found to be more significant for PRS weighted by ER-positive breast cancer estimates [ORperSD = 0.90 (0.82-0.98), P = 0.011]. This result was corroborated by two independent studies [combined ORperSD = 0.87 (0.76-1.00), P = 0.058] with no evidence of heterogeneity. When enriched for 'true' interval cancers among nondense breasts, the difference in the association with PRS in screen-detected and interval cancers became more pronounced [ORperSD = 0.74 (0.62-0.89), P = 0.001], with a significant interaction effect between PRS and mammographic density (Pinteraction = 0.017). To our knowledge, this is the first report looking into the genetic differences between screen-detected and interval cancers. It is an affirmation that the two types of breast cancer may have unique underlying biology. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. An analytical approach to the implementation of genetically modified crops

    DEFF Research Database (Denmark)

    Borch, K.; Rasmussen, B.

    2000-01-01

    Public scepticism towards genetically modified (GM) crops is increasing. To address this, the risks and benefits of GM crops must be examined across scientific disciplines, and be discussed with the authorities, the agricultural industry and the consumers. In a feasibility study we have...... systematically analysed the challenges of the development and marketing of GM crops in Europe. A life-cycle inventory was used together with established technology foresight techniques in an interdisciplinary and empirical framework. The approach taken in this study established a dialogue between stakeholders...... and provided a framework for discussions about the future direction of GM crops....

  9. A reverse genetics approach to study feline infectious peritonitis.

    Science.gov (United States)

    Tekes, Gergely; Spies, Danica; Bank-Wolf, Barbara; Thiel, Volker; Thiel, Heinz-Jürgen

    2012-06-01

    Feline infectious peritonitis (FIP) is a lethal immunopathological disease caused by feline coronaviruses (FCoVs). Here, we describe a reverse genetics approach to study FIP by assessing the pathogenicity of recombinant type I and type II and chimeric type I/type II FCoVs. All recombinant FCoVs established productive infection in cats, and recombinant type II FCoV (strain 79-1146) induced FIP. Virus sequence analyses from FIP-diseased cats revealed that the 3c gene stop codon of strain 79-1146 has changed to restore a full-length open reading frame (ORF).

  10. Focal congenital hyperinsulinism managed by medical treatment: a diagnostic algorithm based on molecular genetic screening.

    Science.gov (United States)

    Maiorana, Arianna; Barbetti, Fabrizio; Boiani, Arianna; Rufini, Vittoria; Pizzoferro, Milena; Francalanci, Paola; Faletra, Flavio; Nichols, Colin G; Grimaldi, Chiara; de Ville de Goyet, Jean; Rahier, Jacques; Henquin, Jean-Claude; Dionisi-Vici, Carlo

    2014-11-01

    Congenital hyperinsulinism (CHI) requires rapid diagnosis and treatment to avoid irreversible neurological sequelae due to hypoglycaemia. Aetiological diagnosis is instrumental in directing the appropriate therapy. Current diagnostic algorithms provide a complete set of diagnostic tools including (i) biochemical assays, (ii) genetic facility and (iii) state-of-the-art imaging. They consider the response to a therapeutic diazoxide trial an early, crucial step before proceeding (or not) to specific genetic testing and eventually imaging, aimed at distinguishing diffuse vs focal CHI. However, interpretation of the diazoxide test is not trivial and can vary between research groups, which may lead to inappropriate decisions. Objective of this report is proposing a new algorithm in which early genetic screening, rather than diazoxide trial, dictates subsequent clinical decisions. Two CHI patients weaned from parenteral glucose infusion and glucagon after starting diazoxide. No hypoglycaemia was registered during a 72-h continuous glucose monitoring (CGMS), or hypoglycaemic episodes were present for no longer than 3% of 72-h. Normoglycaemia was obtained by low-medium dose diazoxide combined with frequent carbohydrate feeds for several years. We identified monoallelic, paternally inherited mutations in KATP channel genes, and (18) F-DOPA PET-CT revealed a focal lesion that was surgically resected, resulting in complete remission of hypoglycaemia. Although rare, some patients with focal lesions may be responsive to diazoxide. As a consequence, we propose an algorithm that is not based on a 'formal' diazoxide response but on genetic testing, in which patients carrying paternally inherited ABCC8 or KCNJ11 mutations should always be subjected to (18) F-DOPA PET-CT. © 2014 John Wiley & Sons Ltd.

  11. Scanning probe and micropatterning approaches for biomolecular screening applications

    CERN Document Server

    Wilde, L M

    2002-01-01

    Force mapping using atomic force microscopy (AFM) allows for the simultaneous acquisition of topography and probe-sample interaction data. For example, AFM probes functionalised with an antigen can be employed to map the spatial distribution of recognition events on a substrate functionalised with the complementary specific antibody. However, this technique is currently limited to the detection of a single receptor-ligand species. Were the detection of multiple receptor-ligand interactions possible, AFM force mapping would offer greater scope as a sensitive tool for bioassay and screening applications. This thesis outlines developments in probe and substrate immobilisation methods to facilitate this process. We have developed an immobilisation strategy, which allows two antigen species, human serum albumin (HSA) and the beta subunit of human chorionic gonadotropin (beta hCG) to be simultaneously present on an AFM probe. Single point force spectroscopy results have revealed the ability of such probes to discri...

  12. Discovering Fuzzy Censored Classification Rules (Fccrs: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Renu Bala

    2012-08-01

    Full Text Available Classification Rules (CRs are often discovered in the form of ‘If-Then’ Production Rules (PRs. PRs, beinghigh level symbolic rules, are comprehensible and easy to implement. However, they are not capable ofdealing with cognitive uncertainties like vagueness and ambiguity imperative to real word decision makingsituations. Fuzzy Classification Rules (FCRs based on fuzzy logic provide a framework for a flexiblehuman like reasoning involving linguistic variables. Moreover, a classification system consisting of simple‘If-Then’ rules is not competent in handling exceptional circumstances. In this paper, we propose aGenetic Algorithm approach to discover Fuzzy Censored Classification Rules (FCCRs. A FCCR is aFuzzy Classification Rule (FCRs augmented with censors. Here, censors are exceptional conditions inwhich the behaviour of a rule gets modified. The proposed algorithm works in two phases. In the firstphase, the Genetic Algorithm discovers Fuzzy Classification Rules. Subsequently, these FuzzyClassification Rules are mutated to produce FCCRs in the second phase. The appropriate encodingscheme, fitness function and genetic operators are designed for the discovery of FCCRs. The proposedapproach for discovering FCCRs is then illustrated on a synthetic dataset.

  13. Expanded carrier screening in reproductive medicine-points to consider: a joint statement of the American College of Medical Genetics and Genomics, American College of Obstetricians and Gynecologists, National Society of Genetic Counselors, Perinatal Quality Foundation, and Society for Maternal-Fetal Medicine.

    Science.gov (United States)

    Edwards, Janice G; Feldman, Gerald; Goldberg, James; Gregg, Anthony R; Norton, Mary E; Rose, Nancy C; Schneider, Adele; Stoll, Katie; Wapner, Ronald; Watson, Michael S

    2015-03-01

    The Perinatal Quality Foundation and the American College of Medical Genetics and Genomics, in association with the American College of Obstetricians and Gynecologists, the Society for Maternal-Fetal Medicine, and the National Society of Genetic Counselors, have collaborated to provide education for clinicians and laboratories regarding the use of expanded genetic carrier screening in reproductive medicine. This statement does not replace current screening guidelines, which are published by individual organizations to direct the practice of their constituents. As organizations develop practice guidelines for expanded carrier screening, further direction is likely. The current statement demonstrates an approach for health care providers and laboratories who wish to or who are currently offering expanded carrier screening to their patients.

  14. Familial Mediterranean fever without cardinal symptoms and role of genetic screening.

    Science.gov (United States)

    Ulas, T; Buyukhatipoglu, H; Bes, C; Dal, M S; Hacıbekiroglu, I; Apucu, H G; Borlu, F

    2012-07-19

    Familial Mediterranean fever is an autosomal recessive disorder characterized by paroxysmal episodes of fever and serosal inflammation. The classical presentation is fever and severe recurrent abdominal pain due to serositis that lasts for one to three days and the resolves spontaneously. Between the episodes patients are asymptomatic. Ninety-five percent of patients with familial mediterranean fever have painful episodes localized to the abdomen, which is usually the dominant manifestation of the disease. Herein, we present a case of 34-year-old man with incomplete abdominal pain episode of familial mediterranean fever limited to the epigastrum and had no cardinals symptoms of this disease. The diagnosis was made by genetic screening. Successful treatment response was achieved by colchicine.

  15. Familial Mediterranean fever without cardinal symptoms and role of genetic screening

    Directory of Open Access Journals (Sweden)

    I. Hacıbekiroglu

    2012-07-01

    Full Text Available Familial mediterranean fever is an autosomal recessive disorder characterized by paroxysmal episodes of fever and serosal inflammation. The classical presentation is fever and severe recurrent abdominal pain due to serositis that lasts for one to three days and the resolves spontaneously. Between the episodes patients are asymptomatic. Ninety-five percent of patients with familial mediterranean fever have painful episodes localized to the abdomen, which is usually the dominant manifestation of the disease. Herein, we present a case of 34-year-old man with incomplete abdominal pain episode of familial mediterranean fever limited to the epigastrum and had no cardinals symptoms of this disease. The diagnosis was made by genetic screening. Succesful treatment response was achieved by colchicine.

  16. Designer babies on tap? Medical students' attitudes to pre-implantation genetic screening.

    Science.gov (United States)

    Meisenberg, Gerhard

    2009-03-01

    This paper describes two studies about the determinants of attitudes to pre-implantation genetic screening in a multicultural sample of medical students from the United States. Sample sizes were 292 in study 1 and 1464 in study 2. Attitudes were of an undifferentiated nature, but respondents did make a major distinction between use for disease prevention and use for enhancement. No strong distinctions were made between embryo selection and germ line gene manipulations, and between somatic gene therapy and germ line gene manipulations. Religiosity was negatively associated with acceptance of "designer baby" technology for Christians and Muslims but not Hindus. However, the strongest and most consistent influence was an apparently moralistic stance against active and aggressive interference with natural processes in general. Trust in individuals and institutions was unrelated to acceptance of the technology, indicating that fear of abuse by irresponsible individuals and corporations is not an important determinant of opposition.

  17. Universal screening test based on analysis of circulating organ-enriched microRNAs: a novel approach to diagnostic screening.

    Science.gov (United States)

    Sheinerman, Kira S; Umansky, Samuil

    2015-03-01

    Early disease detection leads to more effective and cost-efficient treatment. It is especially important for cancer and neurodegenerative diseases, because progression of these pathologies leads to significant and frequently irreversible changes in underlying pathophysiological processes. At the same time, the development of specific screening tests for detection of each of the hundreds of human pathologies in asymptomatic stage may be impractical. Here, we discuss a recently proposed concept: the development of minimally invasive Universal Screening Test (UST) based on analysis of organ-enriched microRNAs in plasma and other bodily fluids. The UST is designed to detect the presence of a pathology in particular organ systems, organs, tissues or cell types without diagnosing a specific disease. Once the pathology is detected, more specific, and if necessary invasive and expensive, tests can be administered to precisely define the nature of the disease. Here, we discuss recent studies and analyze the data supporting the UST approach.

  18. Controlling Risk Exposure in Periodic Environments: A Genetic Algorithm Approach

    CERN Document Server

    Navarro, Emeterio

    2007-01-01

    In this paper, we compare the performance of different agent's investment strategies in an investment scenario with periodic returns and different types and levels of noise. We consider an investment model, where an agent decides the percentage of budget to risk at each time step. Afterwards, agent's investment is evaluated in the market via a return on investment (RoI), which we assume is a stochastic process with unknown periodicities and different levels of noise. To control the risk exposure, we investigate approaches based on: technical analysis (Moving Least Squares, MLS), and evolutionary computation (Genetic Algorithms, GA). In our comparison, we also consider two reference strategies for zero-knowledge and complete-knowledge behaviors, respectively. In our approach, the performance of a strategy corresponds to the average budget that can be obtained with this strategy over a certain number of time steps. To this end, we perform some computer experiments, where for each strategy the budget obtained af...

  19. Impact of human genome initiative-derived technology on genetic testing, screening and counseling: Cultural, ethical and legal issues. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Trottier, R.W.; Hodgin, F.C.; Imara, M.; Phoenix, D.; Lybrook, S. [Morehouse Coll., Atlanta, GA (United States). School of Medicine; Crandall, L.A.; Moseley, R.E.; Armotrading, D. [Florida Univ., Gainesville, FL (United States). Coll. of Medicine

    1993-03-01

    Genetic medical services provided by the Georgia Division of Public Health in two northern and two central districts are compared to services provided in a district in which a tertiary care facility is located. Genetics outreach public health nurses play key roles in Georgia`s system of Children`s Health Services Genetics Program, including significant roles as counselors and information sources on special needs social services and support organizations. Unique features of individual health districts, (e.g., the changing face of some rural communities in ethnocultural diversity and socioeconomic character), present new challenges to current and future genetics services delivery. Preparedness as to educational needs of both health professionals and the lay population is of foremost concern in light of the ever expanding knowledge and technology in medical genetics. Perspectives on genetics and an overview of services offered by a local private sector counselor are included for comparison to state supported services. The nature of the interactions which transpire between private and public genetic services resources in Georgia will be described. A special focus of this research includes issues associated with sickle cell disease newborn screening service delivery process in Georgia, with particular attention paid to patient follow-up and transition to primary care. Of particular interest to this focus is the problem of loss to follow-up in the current system. Critical factors in education and counseling of sickle cell patients and the expectations of expanding roles of primary care physicians are discussed. The Florida approach to the delivery of genetic services contrasts to the Georgia model by placing more emphasis on a consultant-specialist team approach.

  20. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    Science.gov (United States)

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. © FASEB.

  1. Genetic modifier screens reveal new components that interact with the Drosophila dystroglycan-dystrophin complex.

    Directory of Open Access Journals (Sweden)

    Mariya M Kucherenko

    Full Text Available The Dystroglycan-Dystrophin (Dg-Dys complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-beta and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought.

  2. The minisequencing method: a simple strategy for genetic screening of MEN 2 families

    Directory of Open Access Journals (Sweden)

    Domingues Rita

    2002-05-01

    Full Text Available Abstract Background Multiple endocrine neoplasia type 2 is an autosomal dominant disorder. MEN 2A is characterized by medullary thyroid carcinoma, pheochromocytoma and hyperparathyroidism; MEN 2B by medullary thyroid carcinoma, pheochromocytoma and characteristic stigmata. Activating germline mutations of the RET proto oncogene are responsible for this hereditary syndrome. Codon 634 mutations are the most common mutations occurring in MEN 2A families whereas a specific mutation at codon 918 is observed in the great majority of MEN 2B families. Analysis of these codons will provide a final diagnosis in the great majority of affected families making unnecessary further studies. To specifically study the codons 634 and 918 we used a minisequencing method as an alternative method to complete sequencing. Results Using this mutation detection method we were able to reproduce in all cases, representative of 7 families, the information previously obtained by direct sequencing of PCR products. Depending on the number of primers used in the minisequencing reaction, we were able to interrogate either only one nucleotide of the target codon or the three nucleotides simultaneously. Conclusions This technique appears as a simple, rapid and efficient method for genetic screening of MEN 2 families. It can be utilized to seek for unknown mutations at specific codons or to screen for previously identified mutations and is therefore of interest to study index cases or individuals at risk. Results suggest that complete sequencing is unnecessary.

  3. Genetic screening for chromosomal abnormalities and Y chromosome microdeletions in Chinese infertile men.

    Science.gov (United States)

    Fu, Li; Xiong, Da-Ke; Ding, Xian-Ping; Li, Chuang; Zhang, Li-Yuan; Ding, Min; Nie, Shuang-Shuang; Quan, Qiang

    2012-06-01

    To investigate the frequency and type of both chromosomal abnormalities and Y chromosome microdeletions and analyze their association with defective spermatogenesis in Chinese infertile men. This is a single center study. Karyotyping using G-banding and screening for Y chromosome microdeletion by multiplex polymerase chain reaction(PCR)were performed in 200 controls and 1,333 infertile men, including 945 patients with non-obstructive azoospermia and 388 patients with severe oligozoospermia. Out of 1,333 infertile patients, 154(11.55%) presented chromosomal abnormalities. Of these, 139 of 945 (14.71%) were from the azoospermic and 15 of 388 (3.87%) from the severe oligozoospermic patient groups. The incidence of sex chromosomal abnormalities in men with azoospermia was 11.53% compared with 1.03% in men with severe oligozoospermia (P chromosome microdeletions. The incidence of azoospermia factor(AZF) microdeletion was 11.75% and 8.51% in patients with azoospermia and severe oligozoospermia respectively. Deletion of AZFc was the most common and deletions in AZFa or AZFab or AZFabc were found in azoospermic men. In addition, 34 patients had chromosomal abnormalities among the 144 patients with Y chromosome microdeletions. No chromosomal abnormality and microdeletion in AZF region were detected in controls. There was a high incidence (19.80%) of chromosomal abnormalities and Y chromosomal microdeletions in Chinese infertile males with azoospermia or severe oligozoospermia. These findings strongly suggest that genetic screening should be advised to infertile men before starting assisted reproductive treatments.

  4. A genetic algorithm approach to recognition and data mining

    Energy Technology Data Exchange (ETDEWEB)

    Punch, W.F.; Goodman, E.D.; Min, Pei [Michigan State Univ., East Lansing, MI (United States)] [and others

    1996-12-31

    We review here our use of genetic algorithm (GA) and genetic programming (GP) techniques to perform {open_quotes}data mining,{close_quotes} the discovery of particular/important data within large datasets, by finding optimal data classifications using known examples. Our first experiments concentrated on the use of a K-nearest neighbor algorithm in combination with a GA. The GA selected weights for each feature so as to optimize knn classification based on a linear combination of features. This combined GA-knn approach was successfully applied to both generated and real-world data. We later extended this work by substituting a GP for the GA. The GP-knn could not only optimize data classification via linear combinations of features but also determine functional relationships among the features. This allowed for improved performance and new information on important relationships among features. We review the effectiveness of the overall approach on examples from biology and compare the effectiveness of the GA and GP.

  5. Targeted genetic dependency screen facilitates identification of actionable mutations in FGFR4, MAP3K9, and PAK5 in lung cancer.

    Science.gov (United States)

    Fawdar, Shameem; Trotter, Eleanor W; Li, Yaoyong; Stephenson, Natalie L; Hanke, Franziska; Marusiak, Anna A; Edwards, Zoe C; Ientile, Sara; Waszkowycz, Bohdan; Miller, Crispin J; Brognard, John

    2013-07-23

    Approximately 70% of patients with non-small-cell lung cancer present with late-stage disease and have limited treatment options, so there is a pressing need to develop efficacious targeted therapies for these patients. This remains a major challenge as the underlying genetic causes of ~50% of non-small-cell lung cancers remain unknown. Here we demonstrate that a targeted genetic dependency screen is an efficient approach to identify somatic cancer alterations that are functionally important. By using this approach, we have identified three kinases with gain-of-function mutations in lung cancer, namely FGFR4, MAP3K9, and PAK5. Mutations in these kinases are activating toward the ERK pathway, and targeted depletion of the mutated kinases inhibits proliferation, suppresses constitutive activation of downstream signaling pathways, and results in specific killing of the lung cancer cells. Genomic profiling of patients with lung cancer is ushering in an era of personalized medicine; however, lack of actionable mutations presents a significant hurdle. Our study indicates that targeted genetic dependency screens will be an effective strategy to elucidate somatic variants that are essential for lung cancer cell viability.

  6. Consensus virtual screening approaches to predict protein ligands.

    Science.gov (United States)

    Kukol, Andreas

    2011-09-01

    In order to exploit the advantages of receptor-based virtual screening, namely time/cost saving and specificity, it is important to rely on algorithms that predict a high number of active ligands at the top ranks of a small molecule database. Towards that goal consensus methods combining the results of several docking algorithms were developed and compared against the individual algorithms. Furthermore, a recently proposed rescoring method based on drug efficiency indices was evaluated. Among AutoDock Vina 1.0, AutoDock 4.2 and GemDock, AutoDock Vina was the best performing single method in predicting high affinity ligands from a database of known ligands and decoys. The rescoring of predicted binding energies with the water/octanol partition coefficient did not lead to an improvement averaged over ten receptor targets. Various consensus algorithms were investigated and a simple combination of AutoDock and AutoDock Vina results gave the most consistent performance that showed early enrichment of known ligands for all receptor targets investigated. In case a number of ligands is known for a specific target, every method proposed in this study should be evaluated. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. Screening for Learning and Memory Mutations: A New Approach

    Science.gov (United States)

    Gallistel, C. R.; King, A. P.; Daniel, A. M.; Freestone, D.; Papachristos, E. B.; Balci, F.; Kheifets, A.; Zhang, J.; Su, X.; Schiff, G.; Kourtev, H.

    2010-01-01

    We describe a fully automated, live-in 24/7 test environment, with experimental protocols that measure the accuracy and precision with which mice match the ratio of their expected visit durations to the ratio of the incomes obtained from two hoppers, the progress of instrumental and classical conditioning (trials-to-acquisition), the accuracy and precision of interval timing, the effect of relative probability on the choice of a timed departure target, and the accuracy and precision of memory for the times of day at which food is available. The system is compact; it obviates the handling of the mice during testing; it requires negligible amounts of experimenter/technician time; and it delivers clear and extensive results from 3 protocols within a total of 7–9 days after the mice are placed in the test environment. Only a single 24-hour period is required for the completion of first protocol (the matching protocol), which is strong test of temporal and spatial estimation and memory mechanisms. Thus, the system permits the extensive screening of many mice in a short period of time and in limited space. The software is publicly available. PMID:20352069

  8. GAPscreener: An automatic tool for screening human genetic association literature in PubMed using the support vector machine technique

    Directory of Open Access Journals (Sweden)

    Khoury Muin J

    2008-04-01

    Full Text Available Abstract Background Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM, a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. Results The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. Conclusion GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge.

  9. A combined array-based comparative genomic hybridization and functional library screening approach identifies mir-30d as an oncomir in cancer.

    Science.gov (United States)

    Li, Ning; Kaur, Sippy; Greshock, Joel; Lassus, Heini; Zhong, Xiaomin; Wang, Yanling; Leminen, Arto; Shao, Zhongjun; Hu, Xiaowen; Liang, Shun; Katsaros, Dionyssios; Huang, Qihong; Bützow, Ralf; Weber, Barbara L; Coukos, George; Zhang, Lin

    2012-01-01

    Oncomirs are microRNAs (miRNA) that acts as oncogenes or tumor suppressor genes. Efficient identification of oncomirs remains a challenge. Here we report a novel, clinically guided genetic screening approach for the identification of oncomirs, identifying mir-30d through this strategy. mir-30d regulates tumor cell proliferation, apoptosis, senescence, and migration. The chromosomal locus harboring mir-30d was amplified in more than 30% of multiple types of human solid tumors (n = 1,283). Importantly, higher levels of mir-30d expression were associated significantly with poor clinical outcomes in ovarian cancer patients (n = 330, P = 0.0016). Mechanistic investigations suggested that mir-30d regulates a large number of cancer-associated genes, including the apoptotic caspase CASP3. The guided genetic screening approach validated by this study offers a powerful tool to identify oncomirs that may have utility as biomarkers or targets for drug development.

  10. The promises of genomic screening: building a governance infrastructure. Special issue: genetics and democracy.

    Science.gov (United States)

    Cornel, Martina C; van El, Carla G; Dondorp, Wybo J

    2012-04-01

    New screening possibilities become available at a high rate, both useful and unsound possibilities. All screening programmes do harm, and only few have more advantages than disadvantages at reasonable cost. Horizon scanning is needed to identify those few possibilities with more pros than cons. Attunement is needed between actors involved: scientists developing new high-throughput screening techniques and treatment, health care workers, patients and consumers and governmental agencies. The product of a process of attunement may be a quality mark as a norm for professional conduct, rather than legal measures, as the field is moving fast. As actors may have varying perspectives, a governance structure is needed to develop an agenda that is agreed upon by all or most actors involved. A standing committee might oversee the evaluation of benefits and disadvantages in an integrated approach, taking evidence, economics and ethics into account. A proactive role of governmental agencies is needed to facilitate agenda setting and attunement. Policy making has to be transparent and open to stakeholder engagement.

  11. A Genetic Screen for Mutants with Supersized Lipid Droplets in Caenorhabditis elegans

    Science.gov (United States)

    Li, Shiwei; Xu, Shibin; Ma, Yanli; Wu, Shuang; Feng, Yu; Cui, Qingpo; Chen, Lifeng; Zhou, Shuang; Kong, Yuanyuan; Zhang, Xiaoyu; Yu, Jialei; Wu, Mengdi; Zhang, Shaobing O.

    2016-01-01

    To identify genes that regulate the dynamics of lipid droplet (LD) size, we have used the genetically tractable model organism Caenorhabditis elegans, whose wild-type LD population displays a steady state of size with an upper limit of 3 μm in diameter. From a saturated forward genetic screen of 6.7 × 105 mutagenized haploid genomes, we isolated 118 mutants with supersized intestinal LDs often reaching 10 μm. These mutants define nine novel complementation groups, in addition to four known genes (maoc-1, dhs-28, daf-22, and prx-10). The nine groups are named drop (lipid droplet abnormal) and categorized into four classes. Class I mutants drop-5 and drop-9, similar to prx-10, are up-regulated in ACS-22-DGAT-2-dependent LD growth, resistant to LD hydrolysis, and defective in peroxisome import. Class II mutants drop-2, drop-3, drop-6, and drop-7 are up-regulated in LD growth, are resistant to LD hydrolysis, but are not defective in peroxisome import. Class III mutants drop-1 and drop-8 are neither up-regulated in LD growth nor resistant to LD hydrolysis, but seemingly up-regulated in LD fusion. Class IV mutant drop-4 is cloned as sams-1 and, different to the other three classes, is ACS-22-independent and hydrolysis-resistant. These four classes of supersized LD mutants should be valuable for mechanistic studies of LD cellular processes including growth, hydrolysis, and fusion. PMID:27261001

  12. A Genetic Screen for Mutants with Supersized Lipid Droplets in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Shiwei Li

    2016-08-01

    Full Text Available To identify genes that regulate the dynamics of lipid droplet (LD size, we have used the genetically tractable model organism Caenorhabditis elegans, whose wild-type LD population displays a steady state of size with an upper limit of 3 μm in diameter. From a saturated forward genetic screen of 6.7 × 105 mutagenized haploid genomes, we isolated 118 mutants with supersized intestinal LDs often reaching 10 μm. These mutants define nine novel complementation groups, in addition to four known genes (maoc-1, dhs-28, daf-22, and prx-10. The nine groups are named drop (lipid droplet abnormal and categorized into four classes. Class I mutants drop-5 and drop-9, similar to prx-10, are up-regulated in ACS-22-DGAT-2-dependent LD growth, resistant to LD hydrolysis, and defective in peroxisome import. Class II mutants drop-2, drop-3, drop-6, and drop-7 are up-regulated in LD growth, are resistant to LD hydrolysis, but are not defective in peroxisome import. Class III mutants drop-1 and drop-8 are neither up-regulated in LD growth nor resistant to LD hydrolysis, but seemingly up-regulated in LD fusion. Class IV mutant drop-4 is cloned as sams-1 and, different to the other three classes, is ACS-22-independent and hydrolysis-resistant. These four classes of supersized LD mutants should be valuable for mechanistic studies of LD cellular processes including growth, hydrolysis, and fusion.

  13. Patients' ratings of genetic conditions validate a taxonomy to simplify decisions about preconception carrier screening via genome sequencing.

    Science.gov (United States)

    Leo, Michael C; McMullen, Carmit; Wilfond, Benjamin S; Lynch, Frances L; Reiss, Jacob A; Gilmore, Marian J; Himes, Patricia; Kauffman, Tia L; Davis, James V; Jarvik, Gail P; Berg, Jonathan S; Harding, Cary; Kennedy, Kathleen A; Simpson, Dana Kostiner; Quigley, Denise I; Richards, C Sue; Rope, Alan F; Goddard, Katrina A B

    2016-03-01

    Advances in genome sequencing and gene discovery have created opportunities to efficiently assess more genetic conditions than ever before. Given the large number of conditions that can be screened, the implementation of expanded carrier screening using genome sequencing will require practical methods of simplifying decisions about the conditions for which patients want to be screened. One method to simplify decision making is to generate a taxonomy based on expert judgment. However, expert perceptions of condition attributes used to classify these conditions may differ from those used by patients. To understand whether expert and patient perceptions differ, we asked women who had received preconception genetic carrier screening in the last 3 years to fill out a survey to rate the attributes (predictability, controllability, visibility, and severity) of several autosomal recessive or X-linked genetic conditions. These conditions were classified into one of five taxonomy categories developed by subject experts (significantly shortened lifespan, serious medical problems, mild medical problems, unpredictable medical outcomes, and adult-onset conditions). A total of 193 women provided 739 usable ratings across 20 conditions. The mean ratings and correlations demonstrated that participants made distinctions across both attributes and categories. Aggregated mean attribute ratings across categories demonstrated logical consistency between the key features of each attribute and category, although participants perceived little difference between the mild and serious categories. This study provides empirical evidence for the validity of our proposed taxonomy, which will simplify patient decisions for results they would like to receive from preconception carrier screening via genome sequencing.

  14. Psychosocial Aspects of Hereditary Cancer (PAHC) questionnaire: development and testing of a screening questionnaire for use in clinical cancer genetics

    NARCIS (Netherlands)

    Eijzenga, W.; Bleiker, E.M.A.; Hahn, D.E.E.; Kluijt, I.; Sidharta, G.N.; Gundy, C.; Aaronson, N.K.

    2014-01-01

    Background: Up to three-quarters of individuals who undergo cancer genetic counseling and testing report psychosocial problems specifically related to that setting. The objectives of this study were to develop and evaluate the screening properties of a questionnaire designed to assess specific psych

  15. Use of the Photoactic Ability of a Bacterium to Teach the Genetic Principles of Random Mutagenesis & Mutant Screening

    Science.gov (United States)

    Din, Neena; Bird, Terry H.; Berleman, James E.

    2007-01-01

    In this article, the authors present a laboratory activity that relies on the use of a very versatile bacterial system to introduce the concept of how mutagenesis can be used for molecular and genetic analysis of living organisms. They have used the techniques of random mutagenesis and selection/screening to obtain strains of the organism "R.…

  16. Identifying genetic risk variants for coronary heart disease in familial hypercholesterolemia: an extreme genetics approach

    Science.gov (United States)

    Versmissen, Jorie; Oosterveer, Daniëlla M; Yazdanpanah, Mojgan; Dehghan, Abbas; Hólm, Hilma; Erdman, Jeanette; Aulchenko, Yurii S; Thorleifsson, Gudmar; Schunkert, Heribert; Huijgen, Roeland; Vongpromek, Ranitha; Uitterlinden, André G; Defesche, Joep C; van Duijn, Cornelia M; Mulder, Monique; Dadd, Tony; Karlsson, Hróbjartur D; Ordovas, Jose; Kindt, Iris; Jarman, Amelia; Hofman, Albert; van Vark-van der Zee, Leonie; Blommesteijn-Touw, Adriana C; Kwekkeboom, Jaap; Liem, Anho H; van der Ouderaa, Frans J; Calandra, Sebastiano; Bertolini, Stefano; Averna, Maurizio; Langslet, Gisle; Ose, Leiv; Ros, Emilio; Almagro, Fátima; de Leeuw, Peter W; Civeira, Fernando; Masana, Luis; Pintó, Xavier; Simoons, Maarten L; Schinkel, Arend FL; Green, Martin R; Zwinderman, Aeilko H; Johnson, Keith J; Schaefer, Arne; Neil, Andrew; Witteman, Jacqueline CM; Humphries, Steve E; Kastelein, John JP; Sijbrands, Eric JG

    2015-01-01

    Mutations in the low-density lipoprotein receptor (LDLR) gene cause familial hypercholesterolemia (FH), a disorder characterized by coronary heart disease (CHD) at young age. We aimed to apply an extreme sampling method to enhance the statistical power to identify novel genetic risk variants for CHD in individuals with FH. We selected cases and controls with an extreme contrast in CHD risk from 17 000 FH patients from the Netherlands, whose functional LDLR mutation was unequivocally established. The genome-wide association (GWA) study was performed on 249 very young FH cases with CHD and 217 old FH controls without CHD (above 65 years for males and 70 years of age for females) using the Illumina HumanHap550K chip. In the next stage, two independent samples (one from the Netherlands and one from Italy, Norway, Spain, and the United Kingdom) of FH patients were used as replication samples. In the initial GWA analysis, we identified 29 independent single nucleotide polymorphisms (SNPs) with suggestive associations with premature CHD (P<1 × 10−4). We examined the association of these SNPs with CHD risk in the replication samples. After Bonferroni correction, none of the SNPs either replicated or reached genome-wide significance after combining the discovery and replication samples. Therefore, we conclude that the genetics of CHD risk in FH is complex and even applying an ‘extreme genetics' approach we did not identify new genetic risk variants. Most likely, this method is not as effective in leveraging effect size as anticipated, and may, therefore, not lead to significant gains in statistical power. PMID:24916650

  17. A Genetic Predictive Model for Canine Hip Dysplasia: Integration of Genome Wide Association Study (GWAS) and Candidate Gene Approaches

    Science.gov (United States)

    Bartolomé, Nerea; Segarra, Sergi; Artieda, Marta; Francino, Olga; Sánchez, Elisenda; Szczypiorska, Magdalena; Casellas, Joaquim; Tejedor, Diego; Cerdeira, Joaquín; Martínez, Antonio; Velasco, Alfonso; Sánchez, Armand

    2015-01-01

    Canine hip dysplasia is one of the most prevalent developmental orthopedic diseases in dogs worldwide. Unfortunately, the success of eradication programs against this disease based on radiographic diagnosis is low. Adding the use of diagnostic genetic tools to the current phenotype-based approach might be beneficial. The aim of this study was to develop a genetic prognostic test for early diagnosis of hip dysplasia in Labrador Retrievers. To develop our DNA test, 775 Labrador Retrievers were recruited. For each dog, a blood sample and a ventrodorsal hip radiograph were taken. Dogs were divided into two groups according to their FCI hip score: control (A/B) and case (D/E). C dogs were not included in the sample. Genetic characterization combining a GWAS and a candidate gene strategy using SNPs allowed a case-control population association study. A mathematical model which included 7 SNPs was developed using logistic regression. The model showed a good accuracy (Area under the ROC curve = 0.85) and was validated in an independent population of 114 dogs. This prognostic genetic test represents a useful tool for choosing the most appropriate therapeutic approach once genetic predisposition to hip dysplasia is known. Therefore, it allows a more individualized management of the disease. It is also applicable during genetic selection processes, since breeders can benefit from the information given by this test as soon as a blood sample can be collected, and act accordingly. In the authors’ opinion, a shift towards genomic screening might importantly contribute to reducing canine hip dysplasia in the future. In conclusion, based on genetic and radiographic information from Labrador Retrievers with hip dysplasia, we developed an accurate predictive genetic test for early diagnosis of hip dysplasia in Labrador Retrievers. However, further research is warranted in order to evaluate the validity of this genetic test in other dog breeds. PMID:25874693

  18. A genetic predictive model for canine hip dysplasia: integration of Genome Wide Association Study (GWAS and candidate gene approaches.

    Directory of Open Access Journals (Sweden)

    Nerea Bartolomé

    Full Text Available Canine hip dysplasia is one of the most prevalent developmental orthopedic diseases in dogs worldwide. Unfortunately, the success of eradication programs against this disease based on radiographic diagnosis is low. Adding the use of diagnostic genetic tools to the current phenotype-based approach might be beneficial. The aim of this study was to develop a genetic prognostic test for early diagnosis of hip dysplasia in Labrador Retrievers. To develop our DNA test, 775 Labrador Retrievers were recruited. For each dog, a blood sample and a ventrodorsal hip radiograph were taken. Dogs were divided into two groups according to their FCI hip score: control (A/B and case (D/E. C dogs were not included in the sample. Genetic characterization combining a GWAS and a candidate gene strategy using SNPs allowed a case-control population association study. A mathematical model which included 7 SNPs was developed using logistic regression. The model showed a good accuracy (Area under the ROC curve = 0.85 and was validated in an independent population of 114 dogs. This prognostic genetic test represents a useful tool for choosing the most appropriate therapeutic approach once genetic predisposition to hip dysplasia is known. Therefore, it allows a more individualized management of the disease. It is also applicable during genetic selection processes, since breeders can benefit from the information given by this test as soon as a blood sample can be collected, and act accordingly. In the authors' opinion, a shift towards genomic screening might importantly contribute to reducing canine hip dysplasia in the future. In conclusion, based on genetic and radiographic information from Labrador Retrievers with hip dysplasia, we developed an accurate predictive genetic test for early diagnosis of hip dysplasia in Labrador Retrievers. However, further research is warranted in order to evaluate the validity of this genetic test in other dog breeds.

  19. A genetic predictive model for canine hip dysplasia: integration of Genome Wide Association Study (GWAS) and candidate gene approaches.

    Science.gov (United States)

    Bartolomé, Nerea; Segarra, Sergi; Artieda, Marta; Francino, Olga; Sánchez, Elisenda; Szczypiorska, Magdalena; Casellas, Joaquim; Tejedor, Diego; Cerdeira, Joaquín; Martínez, Antonio; Velasco, Alfonso; Sánchez, Armand

    2015-01-01

    Canine hip dysplasia is one of the most prevalent developmental orthopedic diseases in dogs worldwide. Unfortunately, the success of eradication programs against this disease based on radiographic diagnosis is low. Adding the use of diagnostic genetic tools to the current phenotype-based approach might be beneficial. The aim of this study was to develop a genetic prognostic test for early diagnosis of hip dysplasia in Labrador Retrievers. To develop our DNA test, 775 Labrador Retrievers were recruited. For each dog, a blood sample and a ventrodorsal hip radiograph were taken. Dogs were divided into two groups according to their FCI hip score: control (A/B) and case (D/E). C dogs were not included in the sample. Genetic characterization combining a GWAS and a candidate gene strategy using SNPs allowed a case-control population association study. A mathematical model which included 7 SNPs was developed using logistic regression. The model showed a good accuracy (Area under the ROC curve = 0.85) and was validated in an independent population of 114 dogs. This prognostic genetic test represents a useful tool for choosing the most appropriate therapeutic approach once genetic predisposition to hip dysplasia is known. Therefore, it allows a more individualized management of the disease. It is also applicable during genetic selection processes, since breeders can benefit from the information given by this test as soon as a blood sample can be collected, and act accordingly. In the authors' opinion, a shift towards genomic screening might importantly contribute to reducing canine hip dysplasia in the future. In conclusion, based on genetic and radiographic information from Labrador Retrievers with hip dysplasia, we developed an accurate predictive genetic test for early diagnosis of hip dysplasia in Labrador Retrievers. However, further research is warranted in order to evaluate the validity of this genetic test in other dog breeds.

  20. Genetic Approach for the Fast Discovery of Phenazine Producing Bacteria

    Directory of Open Access Journals (Sweden)

    Johannes F. Imhoff

    2011-05-01

    Full Text Available A fast and efficient approach was established to identify bacteria possessing the potential to biosynthesize phenazines, which are of special interest regarding their antimicrobial activities. Sequences of phzE genes, which are part of the phenazine biosynthetic pathway, were used to design one universal primer system and to analyze the ability of bacteria to produce phenazine. Diverse bacteria from different marine habitats and belonging to six major phylogenetic lines were investigated. Bacteria exhibiting phzE gene fragments affiliated to Firmicutes, Alpha- and Gammaproteobacteria, and Actinobacteria. Thus, these are the first primers for amplifying gene fragments from Firmicutes and Alphaproteobacteria. The genetic potential for phenazine production was shown for four type strains belonging to the genera Streptomyces and Pseudomonas as well as for 13 environmental isolates from marine habitats. For the first time, the genetic ability of phenazine biosynthesis was verified by analyzing the metabolite pattern of all PCR-positive strains via HPLC-UV/MS. Phenazine production was demonstrated for the type strains known to produce endophenazines, 2-hydroxy-phenazine, phenazine-1-carboxylic acid, phenazine-1,6-dicarboxylic acid, and chlororaphin as well as for members of marine Actinobacteria. Interestingly, a number of unidentified phenazines possibly represent new phenazine structures.

  1. Estimating Sampling Selection Bias in Human Genetics: A Phenomenological Approach

    Science.gov (United States)

    Risso, Davide; Taglioli, Luca; De Iasio, Sergio; Gueresi, Paola; Alfani, Guido; Nelli, Sergio; Rossi, Paolo; Paoli, Giorgio; Tofanelli, Sergio

    2015-01-01

    This research is the first empirical attempt to calculate the various components of the hidden bias associated with the sampling strategies routinely-used in human genetics, with special reference to surname-based strategies. We reconstructed surname distributions of 26 Italian communities with different demographic features across the last six centuries (years 1447–2001). The degree of overlapping between "reference founding core" distributions and the distributions obtained from sampling the present day communities by probabilistic and selective methods was quantified under different conditions and models. When taking into account only one individual per surname (low kinship model), the average discrepancy was 59.5%, with a peak of 84% by random sampling. When multiple individuals per surname were considered (high kinship model), the discrepancy decreased by 8–30% at the cost of a larger variance. Criteria aimed at maximizing locally-spread patrilineages and long-term residency appeared to be affected by recent gene flows much more than expected. Selection of the more frequent family names following low kinship criteria proved to be a suitable approach only for historically stable communities. In any other case true random sampling, despite its high variance, did not return more biased estimates than other selective methods. Our results indicate that the sampling of individuals bearing historically documented surnames (founders' method) should be applied, especially when studying the male-specific genome, to prevent an over-stratification of ancient and recent genetic components that heavily biases inferences and statistics. PMID:26452043

  2. Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: Outcomes for genetic screening techniques

    Directory of Open Access Journals (Sweden)

    Katerina ePetrickova

    2015-08-01

    Full Text Available A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike classical primary metabolism ALAS, the C5N unit-forming cALAS (cyclizing ALAS catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of classical ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87 % putatively encoding cALAS. Phylogenetic analysis of the hemA homologues revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GeneBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers.

  3. A screen for genetic suppressor elements of hepatitis C virus identifies a supercharged protein inhibitor of viral replication.

    Science.gov (United States)

    Simeon, Rudo L; Chen, Zhilei

    2013-01-01

    Genetic suppressor elements (GSEs) are biomolecules derived from a gene or genome of interest that act as transdominant inhibitors of biological functions presumably by disruption of critical biological interfaces. We exploited a cell death reporter cell line for hepatitis C virus (HCV) infection, n4mBid, to develop an iterative selection/enrichment strategy for the identification of anti-HCV GSEs. Using this approach, a library of fragments of an HCV genome was screened for sequences that suppress HCV infection. A 244 amino acid gene fragment, B1, was strongly enriched after 5 rounds of selection. B1 derives from a single-base frameshift of the enhanced green fluorescent protein (eGFP) which was used as a filler during fragment cloning. B1 has a very high net positive charge of 43 at neutral pH and a high charge-to-mass (kDa) ratio of 1.5. We show that B1 expression specifically inhibits HCV replication. In addition, five highly positively charged B1 fragments produced from progressive truncation at the C-terminus all retain the ability to inhibit HCV, suggesting that a high positive charge, rather than a particular motif in B1, likely accounts for B1's anti-HCV activity. Another supercharged protein, +36GFP, was also found to strongly inhibit HCV replication when added to cells at the time of infection. This study reports a new methodology for HCV inhibitor screening and points to the anti-HCV potential of positively charged proteins/peptides.

  4. Innovative approaches to cervical cancer screening for sex trade workers: an international scoping review.

    Science.gov (United States)

    Thulien, Naomi S

    2014-03-01

    Female sex trade workers are among those at highest risk for developing and dying of cervical cancer, and yet many-particularly the most marginalized-are less likely than other women to be screened. This review summarizes global findings on innovative approaches to cervical cancer screening for female sex trade workers, highlights current gaps in the delivery of cervical cancer screening for female sex trade workers globally, and suggests areas for future research and policy development. A scoping review of peer-reviewed publications and grey literature was conducted. Medline (OVID), PubMed, EMBASE, and SCOPUS were searched for relevant studies written in English. There were no limitations placed on dates. Grey literature was identified by hand searching and through discussion with health care providers and community outreach workers currently working with sex trade workers. Twenty-five articles were deemed suitable for review. Articles detailing innovative ways for female sex trade workers to access cervical cancer screening were included. Articles about screening for sexually transmitted infections were also included if the findings could be generalized to screening for cervical cancer. Articles limited to exploring risk factors, knowledge, awareness, education, prevalence, and incidence of cervical cancer among sex trade workers were excluded from the review. Successful screening initiatives identified in the studies reviewed had unconventional hours of operation, understood the difference between street-based and venue-based sex trade workers, and/or used peers for outreach. Two significant gaps in health care service delivery were highlighted in this review: the limited use of unorthodox hours and the nearly exclusive practice of providing sexually transmitted infection screening for female sex trade workers without cervical cancer screening. In addition, although street-based (as opposed to venue-based) sex trade workers are likely at higher risk for

  5. A Full Bayesian Approach for Boolean Genetic Network Inference

    Science.gov (United States)

    Han, Shengtong; Wong, Raymond K. W.; Lee, Thomas C. M.; Shen, Linghao; Li, Shuo-Yen R.; Fan, Xiaodan

    2014-01-01

    Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data. PMID:25551820

  6. A full bayesian approach for boolean genetic network inference.

    Directory of Open Access Journals (Sweden)

    Shengtong Han

    Full Text Available Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.

  7. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach

    Science.gov (United States)

    Chaturvedi, Swati; Singh, Ashok K.; Maity, Siddhartha; Sarkar, Srimanta

    2016-01-01

    One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches. PMID:27051561

  8. A genetic epidemiology approach to cyber-security.

    Science.gov (United States)

    Gil, Santiago; Kott, Alexander; Barabási, Albert-László

    2014-07-16

    While much attention has been paid to the vulnerability of computer networks to node and link failure, there is limited systematic understanding of the factors that determine the likelihood that a node (computer) is compromised. We therefore collect threat log data in a university network to study the patterns of threat activity for individual hosts. We relate this information to the properties of each host as observed through network-wide scans, establishing associations between the network services a host is running and the kinds of threats to which it is susceptible. We propose a methodology to associate services to threats inspired by the tools used in genetics to identify statistical associations between mutations and diseases. The proposed approach allows us to determine probabilities of infection directly from observation, offering an automated high-throughput strategy to develop comprehensive metrics for cyber-security.

  9. A novel genetic programming approach for epileptic seizure detection.

    Science.gov (United States)

    Bhardwaj, Arpit; Tiwari, Aruna; Krishna, Ramesh; Varma, Vishaal

    2016-02-01

    The human brain is a delicate mix of neurons (brain cells), electrical impulses and chemicals, known as neurotransmitters. Any damage has the potential to disrupt the workings of the brain and cause seizures. These epileptic seizures are the manifestations of epilepsy. The electroencephalograph (EEG) signals register average neuronal activity from the cerebral cortex and label changes in activity over large areas. A detailed analysis of these electroencephalograph (EEG) signals provides valuable insights into the mechanisms instigating epileptic disorders. Moreover, the detection of interictal spikes and epileptic seizures in an EEG signal plays an important role in the diagnosis of epilepsy. Automatic seizure detection methods are required, as these epileptic seizures are volatile and unpredictable. This paper deals with an automated detection of epileptic seizures in EEG signals using empirical mode decomposition (EMD) for feature extraction and proposes a novel genetic programming (GP) approach for classifying the EEG signals. Improvements in the standard GP approach are made using a Constructive Genetic Programming (CGP) in which constructive crossover and constructive subtree mutation operators are introduced. A hill climbing search is integrated in crossover and mutation operators to remove the destructive nature of these operators. A new concept of selecting the Globally Prime offspring is also presented to select the best fitness offspring generated during crossover. To decrease the time complexity of GP, a new dynamic fitness value computation (DFVC) is employed to increase the computational speed. We conducted five different sets of experiments to evaluate the performance of the proposed model in the classification of different mixtures of normal, interictal and ictal signals, and the accuracies achieved are outstandingly high. The experimental results are compared with the existing methods on same datasets, and these results affirm the potential use of

  10. Bacteria-based in vivo peptide library screening using biopanning approach.

    Science.gov (United States)

    Choi, Ji-Hyeon; Park, Sang-Hyun

    2011-10-01

    Traditionally, library screening has been performed to identify biologically active agents including small molecules or peptides that inhibit target proteins or molecules with therapeutic interests. Due to its chemical nature, library screening is usually performed under in vitro environments using purified proteins and molecules. However, active agents identified from in vitro screenings often fail to exhibit biological activities in cells. To overcome this inherent limitation, we have developed an in vivo peptide library screening system that allows for the identification of dissociative inhibitors of protein interactions of interest. The screening is based on the reconstitution of the cI repressor from bacteriophage lambda with high-density expression peptide library and is entirely performed in bacteria cells. Furthermore, to enhance the efficacy and sensitivity of the screening, a multiple-round biopanning approach was employed for amplification and enrichment of positive peptides. Overall, this in vivo screening should provide a fast and efficient tool for identification of biologically active peptide molecules against target protein assembly.

  11. Screening for EIA in India: enhancing effectiveness through ecological carrying capacity approach.

    Science.gov (United States)

    Rajaram, T; Das, Ashutosh

    2011-01-01

    Developing countries across the world have embraced the policy of high economic growth as a means to reduce poverty. This economic growth largely based on industrial output is fast degrading the ecosystems, jeopardizing their long term sustainability. Environmental Impact Assessment (EIA) has long been recognized as a tool which can help in protecting the ecosystems and aid sustainable development. The Screening guidelines for EIA reflect the level of commitment the nation displays towards tightening its environmental protection system. The paper analyses the screening process for EIA in India and dissects the rationale behind the exclusions and thresholds set in the screening process. The screening process in India is compared with that of the European Union with the aim of understanding the extent of deviations from a screening approach in the context of better economic development. It is found that the Indian system excludes many activities from the purview of screening itself when compared to the EU. The constraints responsible for these exclusions are discussed and the shortcomings of the current command and control system of environmental management in India are also explained. It is suggested that an ecosystem carrying capacity based management system can provide significant inputs to enhance the effectiveness of EIA process from screening to monitoring.

  12. An Automated Microscale Thermophoresis Screening Approach for Fragment-Based Lead Discovery.

    Science.gov (United States)

    Linke, Pawel; Amaning, Kwame; Maschberger, Melanie; Vallee, Francois; Steier, Valerie; Baaske, Philipp; Duhr, Stefan; Breitsprecher, Dennis; Rak, Alexey

    2016-04-01

    Fragment-based lead discovery has proved to be an effective alternative to high-throughput screenings in identifying chemical matter that can be developed into robust lead compounds. The search for optimal combinations of biophysical techniques that can correctly and efficiently identify and quantify binding can be challenging due to the physicochemical properties of fragments. In order to minimize the time and costs of screening, optimal combinations of biophysical techniques with maximal information content, sensitivity, and robustness are needed. Here we describe an approach utilizing automated microscale thermophoresis (MST) affinity screening to identify fragments active against MEK1 kinase. MST identified multiple hits that were confirmed by X-ray crystallography but not detected by orthogonal methods. Furthermore, MST also provided information about ligand-induced aggregation and protein denaturation. The technique delivered a large number of binders while reducing experimentation time and sample consumption, demonstrating the potential of MST to execute and maximize the efficacy of fragment screening campaigns.

  13. Next-generation sequencing approaches in genetic rodent model systems to study functional effects of human genetic variation

    NARCIS (Netherlands)

    Guryev, Victor; Cuppen, Edwin

    2009-01-01

    Rapid advances in DNA sequencing improve existing techniques and enable new approaches in genetics and functional genomics, bringing about unprecedented coverage, resolution and sensitivity. Enhanced toolsets can facilitate the untangling of connections between genomic variation, environmental

  14. Next-generation sequencing approaches in genetic rodent model systems to study functional effects of human genetic variation.

    NARCIS (Netherlands)

    Guryev, V.; Cuppen, E.

    2009-01-01

    Rapid advances in DNA sequencing improve existing techniques and enable new approaches in genetics and functional genomics, bringing about unprecedented coverage, resolution and sensitivity. Enhanced toolsets can facilitate the untangling of connections between genomic variation, environmental facto

  15. Next-generation sequencing approaches in genetic rodent model systems to study functional effects of human genetic variation

    NARCIS (Netherlands)

    Guryev, Victor; Cuppen, Edwin

    2009-01-01

    Rapid advances in DNA sequencing improve existing techniques and enable new approaches in genetics and functional genomics, bringing about unprecedented coverage, resolution and sensitivity. Enhanced toolsets can facilitate the untangling of connections between genomic variation, environmental facto

  16. A Genetic Screen To Assess Dopamine Receptor (DopR1 Dependent Sleep Regulation in Drosophila

    Directory of Open Access Journals (Sweden)

    Yiqin Jiang

    2016-12-01

    Full Text Available Sleep is an essential behavioral state of rest that is regulated by homeostatic drives to ensure a balance of sleep and activity, as well as independent arousal mechanisms in the central brain. Dopamine has been identified as a critical regulator of both sleep behavior and arousal. Here, we present results of a genetic screen that selectively restored the Dopamine Receptor (DopR/DopR1/dumb to specific neuroanatomical regions of the adult Drosophila brain to assess requirements for DopR in sleep behavior. We have identified subsets of the mushroom body that utilizes DopR in daytime sleep regulation. These data are supported by multiple examples of spatially restricted genetic rescue data in discrete circuits of the mushroom body, as well as immunohistochemistry that corroborates the localization of DopR protein within mushroom body circuits. Independent loss of function data using an inducible RNAi construct in the same specific circuits also supports a requirement for DopR in daytime sleep. Additional circuit activation of discrete DopR+ mushroom body neurons also suggests roles for these subpopulations in sleep behavior. These conclusions support a new separable function for DopR in daytime sleep regulation within the mushroom body. This daytime regulation is independent of the known role of DopR in nighttime sleep, which is regulated within the Fan-Shaped Body (FSB. This study provides new neuroanatomical loci for exploration of dopaminergic sleep functions in Drosophila, and expands our understanding of sleep regulation during the day vs. night.

  17. Evaluation of a novel electronic genetic screening and clinical decision support tool in prenatal clinical settings.

    Science.gov (United States)

    Edelman, Emily A; Lin, Bruce K; Doksum, Teresa; Drohan, Brian; Edelson, Vaughn; Dolan, Siobhan M; Hughes, Kevin; O'Leary, James; Vasquez, Lisa; Copeland, Sara; Galvin, Shelley L; DeGroat, Nicole; Pardanani, Setul; Gregory Feero, W; Adams, Claire; Jones, Renee; Scott, Joan

    2014-07-01

    "The Pregnancy and Health Profile" (PHP) is a free prenatal genetic screening and clinical decision support (CDS) software tool for prenatal providers. PHP collects family health history (FHH) during intake and provides point-of-care risk assessment for providers and education for patients. This pilot study evaluated patient and provider responses to PHP and effects of using PHP in practice. PHP was implemented in four clinics. Surveys assessed provider confidence and knowledge and patient and provider satisfaction with PHP. Data on the implementation process were obtained through semi-structured interviews with administrators. Quantitative survey data were analyzed using Chi square test, Fisher's exact test, paired t tests, and multivariate logistic regression. Open-ended survey questions and interviews were analyzed using qualitative thematic analysis. Of the 83% (513/618) of patients that provided feedback, 97% felt PHP was easy to use and 98% easy to understand. Thirty percent (21/71) of participating physicians completed both pre- and post-implementation feedback surveys [13 obstetricians (OBs) and 8 family medicine physicians (FPs)]. Confidence in managing genetic risks significantly improved for OBs on 2/6 measures (p values ≤0.001) but not for FPs. Physician knowledge did not significantly change. Providers reported value in added patient engagement and reported mixed feedback about the CDS report. We identified key steps, resources, and staff support required to implement PHP in a clinical setting. To our knowledge, this study is the first to report on the integration of patient-completed, electronically captured and CDS-enabled FHH software into primary prenatal practice. PHP is acceptable to patients and providers. Key to successful implementation in the future will be customization options and interoperability with electronic health records.

  18. Genetic studies of Polish migraine patients: screening for causative mutations in four migraine-associated genes.

    Science.gov (United States)

    Domitrz, Izabela; Kosiorek, Michalina; Żekanowski, Cezary; Kamińska, Anna

    2016-01-08

    Migraine is the most common neurological disorder, affecting approximately 12 % of the adult population worldwide, caused by both environmental and genetic factors. Three causative genes have been identified in familial hemiplegic migraine (FHM) families: CACNA1A, ATP1A2, and SCNA1A. Recently, several mutations in KCNK18 have also been found as causative factors in migraine development. The aim of our study was to identify the genetic background of migraine in the Polish population. Sixty patients with migraine without aura (MO) or with different types of migraine with aura (MA), including sporadic hemiplegic, familial hemiplegic, and probable familial hemiplegic, were screened for mutations in the four genes previously linked with different types of migraine (ATP1A2, CACNA1A, SCN1A, and KCNK18). Two missense mutations were found. One novel mutation in SCN1A, encoding α subunit of sodium channel, causing amino acid change M1500V localized to a region encoding inactivation loop between transmembrane domains III and IV of the channel, was detected in a female FHM patient. The M1500V mutation was absent in a group of 62 controls, as well as in the ExAC database. The second, already known missense mutation S231P in KCNK18 was found in a female MA patient. Additionally, a novel intronic polymorphism possibly affecting alternative splicing of SCN1A, at chr2:16685249, g.77659T>C, and c.4581+32A>G, located between exons 24 and 25, in a region encoding the inactivation loop of the sodium channel was found in a female MO patient. No mutations in ATP1A2 or CACNA1A were found in the study group. The presence of SCN1A mutations and absence of mutations in ATP1A2 or CACNA1A suggest that the Polish patients represent FHM type 3. On the other hand, the presence of KCNK18 mutation indicated another FHM subtype. It could be speculated that contrary to other European populations, the genetic basis of migraine in the Polish population involves mutations in genes not included in the

  19. Genetics in psychosomatic medicine : research designs and statistical approaches

    NARCIS (Netherlands)

    McCaffery, Jeanne M.; Snieder, Harold; Dong, Yanbin; de Geus, Eco

    2007-01-01

    It has become increasingly clear that genetic factors influence many of the behaviors and disease endpoints of interest to psychosomatic medicine researchers. There has been increasing interest in incorporating genetic variation markers into psychosomatic research. In this Statistical Corner article

  20. Screening and genetic manipulation of green organisms for establishment of biological life support systems in space.

    Science.gov (United States)

    Saei, Amir Ata; Omidi, Amir Ali; Barzegari, Abolfazl

    2013-01-01

    Curiosity has driven humankind to explore and conquer space. However, today, space research is not a means to relieve this curiosity anymore, but instead has turned into a need. To support the crew in distant expeditions, supplies should either be delivered from the Earth, or prepared for short durations through physiochemical methods aboard the space station. Thus, research continues to devise reliable regenerative systems. Biological life support systems may be the only answer to human autonomy in outposts beyond Earth. For construction of an artificial extraterrestrial ecosystem, it is necessary to search for highly adaptable super-organisms capable of growth in harsh space environments. Indeed, a number of organisms have been proposed for cultivation in space. Meanwhile, some manipulations can be done to increase their photosynthetic potential and stress tolerance. Genetic manipulation and screening of plants, microalgae and cyanobacteria is currently a fascinating topic in space bioengineering. In this commentary, we will provide a viewpoint on the realities, limitations and promises in designing biological life support system based on engineered and/or selected green organism. Special focus will be devoted to the engineering of key photosynthetic enzymes in pioneer green organisms and their potential use in establishment of transgenic photobioreactors in space.

  1. Successful birth of South India's first twins after preimplantation genetic screening of embryos

    Directory of Open Access Journals (Sweden)

    Priya Selvaraj

    2016-01-01

    Full Text Available We report the first documented successful birth of twins following preimplantation genetic screening (PGS of cleavage stage embryos by array comparative genomic hybridization (CGH technology, in South India. The case was a 28-year-old woman with the previous history of preclinical pregnancy and a miscarriage in two attempted in vitro fertilization cycles. Day 3 cleavage stage embryos were generated by conventional long protocol with the use of a gonadotropin-releasing hormone analog and a combination of recombinant folliculotropins and human menopausal gonadotropins. Intracytoplasmic sperm injection of oocytes thus obtained was performed, and 10 selected embryos underwent PGS using the array CGH technique. Two normal blastocysts were transferred to the patient, and she conceived twins. She delivered at 35 weeks of gestation by elective cesarean on November 19, 2014. She delivered a healthy male and female baby weighing 2.19 kg and 2.26 kg, respectively. Postnatal evaluation of babies was also normal, and the hospital course was uneventful. PGS has a definitive indication in assisted reproductive technology programs and can be utilized to improve pregnancy rates significantly.

  2. A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans

    Science.gov (United States)

    Neal, Scott J.; Park, JiSoo; DiTirro, Danielle; Yoon, Jason; Shibuya, Mayumi; Choi, Woochan; Schroeder, Frank C.; Butcher, Rebecca A.; Kim, Kyuhyung; Sengupta, Piali

    2016-01-01

    Animals must constantly assess their surroundings and integrate sensory cues to make appropriate behavioral and developmental decisions. Pheromones produced by conspecific individuals provide critical information regarding environmental conditions. Ascaroside pheromone concentration and composition are instructive in the decision of Caenorhabditis elegans to either develop into a reproductive adult or enter into the stress-resistant alternate dauer developmental stage. Pheromones are sensed by a small set of sensory neurons, and integrated with additional environmental cues, to regulate neuroendocrine signaling and dauer formation. To identify molecules required for pheromone-induced dauer formation, we performed an unbiased forward genetic screen and identified phd (pheromone response-defective dauer) mutants. Here, we describe new roles in dauer formation for previously identified neuronal molecules such as the WD40 domain protein QUI-1 and MACO-1 Macoilin, report new roles for nociceptive neurons in modulating pheromone-induced dauer formation, and identify tau tubulin kinases as new genes involved in dauer formation. Thus, phd mutants define loci required for the detection, transmission, or integration of pheromone signals in the regulation of dauer formation. PMID:26976437

  3. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis

    Science.gov (United States)

    Moriarity, Branden S; Otto, George M; Rahrmann, Eric P; Rathe, Susan K; Wolf, Natalie K; Weg, Madison T; Manlove, Luke A; LaRue, Rebecca S; Temiz, Nuri A; Molyneux, Sam D; Choi, Kwangmin; Holly, Kevin J; Sarver, Aaron L; Scott, Milcah C; Forster, Colleen L; Modiano, Jaime F; Khanna, Chand; Hewitt, Stephen M; Khokha, Rama; Yang, Yi; Gorlick, Richard; Dyer, Michael A; Largaespada, David A

    2016-01-01

    Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma. PMID:25961939

  4. Genome-wide screening for genetic loci associated with noise-induced hearing loss.

    Science.gov (United States)

    White, Cory H; Ohmen, Jeffrey D; Sheth, Sonal; Zebboudj, Amina F; McHugh, Richard K; Hoffman, Larry F; Lusis, Aldons J; Davis, Richard C; Friedman, Rick A

    2009-04-01

    Noise-induced hearing loss (NIHL) is one of the more common sources of environmentally induced hearing loss in adults. In a mouse model, Castaneous (CAST/Ei) is an inbred strain that is resistant to NIHL, while the C57BL/6J strain is susceptible. We have used the genome-tagged mice (GTM) library of congenic strains, carrying defined segments of the CAST/Ei genome introgressed onto the C57BL/6J background, to search for loci modifying the noise-induced damage seen in the C57BL/6J strain. NIHL was induced by exposing 6-8-week old mice to 108 dB SPL intensity noise. We tested the hearing of each mouse strain up to 23 days after noise exposure using auditory brainstem response (ABR). This study identifies a number of genetic loci that modify the initial response to damaging noise, as well as long-term recovery. The data suggest that multiple alleles within the CAST/Ei genome modify the pathogenesis of NIHL and that screening congenic libraries for loci that underlie traits of interest can be easily carried out in a high-throughput fashion.

  5. Screening genetically modified organisms using multiplex-PCR coupled with oligonucleotide microarray.

    Science.gov (United States)

    Xu, Jia; Miao, Haizhen; Wu, Houfei; Huang, Wensheng; Tang, Rong; Qiu, Minyan; Wen, Jianguo; Zhu, Shuifang; Li, Yao

    2006-07-15

    In this research, we developed a multiplex polymerase chain reaction (multiplex-PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a consecutive reaction to detect a genetically modified organism (GMO). There are a total of 20 probes for detecting a GMO in a DNA microarray which can be classified into three categories according to their purpose: the first for screening GMO from un-transgenic plants based on the common elements such as promoter, reporter and terminator genes; the second for specific gene confirmation based on the target gene sequences such as herbicide-resistance or insect-resistance genes; the third for species-specific genes which the sequences are unique for different plant species. To ensure the reliability of this method, different kinds of positive and negative controls were used in DNA microarray. Commercial GM soybean, maize, rapeseed and cotton were identified by means of this method and further confirmed by PCR analysis and sequencing. The results indicate that this method discriminates between the GMOs very quickly and in a cost-saving and more time efficient way. It can detect more than 95% of currently commercial GMO plants and the limits of detection are 0.5% for soybean and 1% for maize. This method is proved to be a new method for routine analysis of GMOs.

  6. Data on screening and identification of genetically modified papaya in food supplements.

    Science.gov (United States)

    Prins, Theo W; Scholtens, Ingrid M J; Bak, Arno W; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Laurensse, Emile J; Kok, Esther J

    2016-12-01

    This article contains data related to the research article entitled "A case study to determine the geographical origin of unknown GM papaya in routine food sample analysis, followed by identification of papaya events 16-0-1 and 18-2-4" (Prins et al., 2016) [1]. Quantitative real-time PCR (qPCR) with targets that are putatively present in genetically modified (GM) papaya was used as a first screening to narrow down the vast array of candidates. The combination of elements P-nos and nptII was further confirmed by amplification and subsequent sequencing of the P-nos/nptII construct. Next, presence of the candidate GM papayas 16-0-1 and 18-2-4 were investigated by amplification and sequencing of event-spanning regions on the left and right border. This data article reports the Cq values for GM elements, the nucleotide sequence of the P-nos/nptII construct and the presence of GM papaya events 18-2-4 and/or 16-0-1 in five samples that were randomly sampled to be analysed in the framework of the official Dutch GMO monitoring program for food.

  7. Dehydroepiandrosterone (DHEA) reduces embryo aneuploidy: direct evidence from preimplantation genetic screening (PGS).

    Science.gov (United States)

    Gleicher, Norbert; Weghofer, Andrea; Barad, David H

    2010-11-10

    Dehydroepiandrosterone (DHEA) has been reported to improve pregnancy chances in women with diminished ovarian reserve (DOR), and to reduce miscarriage rates by 50-80%. Such an effect is mathematically inconceivable without beneficial effects on embryo ploidy. This study, therefore, assesses effects of DHEA on embryo aneuploidy. In a 1:2, matched case control study 22 consecutive women with DOR, supplemented with DHEA, underwent preimplantation genetic screening (PGS) of embryos during in vitro fertilization (IVF) cycles. Each was matched by patient age and time period of IVF with two control IVF cycles without DHEA supplementation (n = 44). PGS was performed for chromosomes X, Y, 13, 16, 18, 21 and 22, and involved determination of numbers and percentages of aneuploid embryos. DHEA supplementation to a significant degree reduced number (P = 0.029) and percentages (P DHEA effects on DOR patients, at least partially, are the likely consequence of lower embryo aneuploidy. DHEA supplementation also deserves investigation in older fertile women, attempting to conceive, where a similar effect, potentially, could positively affect public health.

  8. Preimplantation genetic screening (PGS) still in search of a clinical application: a systematic review

    Science.gov (United States)

    2014-01-01

    Only a few years ago the American Society of Assisted Reproductive Medicine (ASRM), the European Society for Human Reproduction and Embryology (ESHRE) and the British Fertility Society declared preimplantation genetic screening (PGS#1) ineffective in improving in vitro fertilization (IVF) pregnancy rates and in reducing miscarriage rates. A presumably upgraded form of the procedure (PGS#2) has recently been reintroduced, and is here assessed in a systematic review. PGS#2 in comparison to PGS#1 is characterized by: (i) trophectoderm biopsy on day 5/6 embryos in place of day-3 embryo biopsy; and (ii) fluorescence in-situ hybridization (FISH) of limited chromosome numbers is replaced by techniques, allowing aneuploidy assessments of all 24 chromosome pairs. Reviewing the literature, we were unable to identify properly conducted prospective clinical trials in which IVF outcomes were assessed based on “intent to treat”. Whether PGS#2 improves IVF outcomes can, therefore, not be determined. Reassessments of data, alleged to support the efficacy of PGS#2, indeed, suggest the opposite. Like with PGS#1, the introduction of PGS#2 into unrestricted IVF practice again appears premature, and threatens to repeat the PGS#1 experience, when thousands of women experienced reductions in IVF pregnancy chances, while expecting improvements. PGS#2 is an unproven and still experimental procedure, which, until evidence suggests otherwise, should only be offered under study conditions, and with appropriate informed consents. PMID:24628895

  9. A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Scott J. Neal

    2016-05-01

    Full Text Available Animals must constantly assess their surroundings and integrate sensory cues to make appropriate behavioral and developmental decisions. Pheromones produced by conspecific individuals provide critical information regarding environmental conditions. Ascaroside pheromone concentration and composition are instructive in the decision of Caenorhabditis elegans to either develop into a reproductive adult or enter into the stress-resistant alternate dauer developmental stage. Pheromones are sensed by a small set of sensory neurons, and integrated with additional environmental cues, to regulate neuroendocrine signaling and dauer formation. To identify molecules required for pheromone-induced dauer formation, we performed an unbiased forward genetic screen and identified phd (pheromone response-defective dauer mutants. Here, we describe new roles in dauer formation for previously identified neuronal molecules such as the WD40 domain protein QUI-1 and MACO-1 Macoilin, report new roles for nociceptive neurons in modulating pheromone-induced dauer formation, and identify tau tubulin kinases as new genes involved in dauer formation. Thus, phd mutants define loci required for the detection, transmission, or integration of pheromone signals in the regulation of dauer formation.

  10. A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans.

    Science.gov (United States)

    Neal, Scott J; Park, JiSoo; DiTirro, Danielle; Yoon, Jason; Shibuya, Mayumi; Choi, Woochan; Schroeder, Frank C; Butcher, Rebecca A; Kim, Kyuhyung; Sengupta, Piali

    2016-05-03

    Animals must constantly assess their surroundings and integrate sensory cues to make appropriate behavioral and developmental decisions. Pheromones produced by conspecific individuals provide critical information regarding environmental conditions. Ascaroside pheromone concentration and composition are instructive in the decision of Caenorhabditis elegans to either develop into a reproductive adult or enter into the stress-resistant alternate dauer developmental stage. Pheromones are sensed by a small set of sensory neurons, and integrated with additional environmental cues, to regulate neuroendocrine signaling and dauer formation. To identify molecules required for pheromone-induced dauer formation, we performed an unbiased forward genetic screen and identified phd (pheromone response-defective dauer) mutants. Here, we describe new roles in dauer formation for previously identified neuronal molecules such as the WD40 domain protein QUI-1 and MACO-1 Macoilin, report new roles for nociceptive neurons in modulating pheromone-induced dauer formation, and identify tau tubulin kinases as new genes involved in dauer formation. Thus, phd mutants define loci required for the detection, transmission, or integration of pheromone signals in the regulation of dauer formation.

  11. New approach for high-throughput screening of drug activity on Plasmodium liver stages.

    NARCIS (Netherlands)

    Gego, A.; Silvie, O.; Franetich, J.F.; Farhati, K.; Hannoun, L.; Luty, A.J.F.; Sauerwein, R.W.; Boucheix, C.; Rubinstein, E.; Mazier, D.

    2006-01-01

    Plasmodium liver stages represent potential targets for antimalarial prophylactic drugs. Nevertheless, there is a lack of molecules active on these stages. We have now developed a new approach for the high-throughput screening of drug activity on Plasmodium liver stages in vitro, based on an

  12. Cost-effectiveness of screening programs for Chlamydia trachomatis - A population-based dynamic approach

    NARCIS (Netherlands)

    Welte, R; Kretzschmar, M; Leidl, R; Van den Hoek, A; Jager, JC; Postma, MJ

    2000-01-01

    Background: Models commonly used for the economic assessment of chamydial screening programs do not consider population effects. Goal: To develop a novel dynamic approach for the economic evaluation of chlamydial prevention measures and to determine the cost-effectiveness of a general practitioner-b

  13. New approach for high-throughput screening of drug activity on Plasmodium liver stages.

    NARCIS (Netherlands)

    Gego, A.; Silvie, O.; Franetich, J.F.; Farhati, K.; Hannoun, L.; Luty, A.J.F.; Sauerwein, R.W.; Boucheix, C.; Rubinstein, E.; Mazier, D.

    2006-01-01

    Plasmodium liver stages represent potential targets for antimalarial prophylactic drugs. Nevertheless, there is a lack of molecules active on these stages. We have now developed a new approach for the high-throughput screening of drug activity on Plasmodium liver stages in vitro, based on an infrare

  14. An industrial engineering approach to laboratory automation for high throughput screening

    OpenAIRE

    Menke, Karl C.

    2000-01-01

    Across the pharmaceutical industry, there are a variety of approaches to laboratory automation for high throughput screening. At Sphinx Pharmaceuticals, the principles of industrial engineering have been applied to systematically identify and develop those automated solutions that provide the greatest value to the scientists engaged in lead generation.

  15. Cost-effectiveness of screening programs for Chlamydia trachomatis - A population-based dynamic approach

    NARCIS (Netherlands)

    Welte, R; Kretzschmar, M; Leidl, R; Van den Hoek, A; Jager, JC; Postma, MJ

    2000-01-01

    Background: Models commonly used for the economic assessment of chamydial screening programs do not consider population effects. Goal: To develop a novel dynamic approach for the economic evaluation of chlamydial prevention measures and to determine the cost-effectiveness of a general

  16. A Culturally Relevant and Responsive Approach to Screening for Perinatal Depression

    Science.gov (United States)

    Price, Sarah Kye; Handrick, Sandii Leland

    2009-01-01

    Objectives: This study presents the design, implementation, and evaluation of a culturally relevant and responsive approach to screening for perinatal depression in low-income, predominantly African American women. Method: The study details the development of the community-informed instrument and subsequent evaluation of its psychometric…

  17. Forward genetics screens using macrophages to identify Toxoplasma gondii genes important for resistance to IFN-γ-dependent cell autonomous immunity.

    Science.gov (United States)

    Walwyn, Odaelys; Skariah, Sini; Lynch, Brian; Kim, Nathaniel; Ueda, Yukari; Vohora, Neal; Choe, Josh; Mordue, Dana G

    2015-03-12

    Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan pathogen. The parasite invades and replicates within virtually any warm blooded vertebrate cell type. During parasite invasion of a host cell, the parasite creates a parasitophorous vacuole (PV) that originates from the host cell membrane independent of phagocytosis within which the parasite replicates. While IFN-dependent-innate and cell mediated immunity is important for eventual control of infection, innate immune cells, including neutrophils, monocytes and dendritic cells, can also serve as vehicles for systemic dissemination of the parasite early in infection. An approach is described that utilizes the host innate immune response, in this case macrophages, in a forward genetic screen to identify parasite mutants with a fitness defect in infected macrophages following activation but normal invasion and replication in naïve macrophages. Thus, the screen isolates parasite mutants that have a specific defect in their ability to resist the effects of macrophage activation. The paper describes two broad phenotypes of mutant parasites following activation of infected macrophages: parasite stasis versus parasite degradation, often in amorphous vacuoles. The parasite mutants are then analyzed to identify the responsible parasite genes specifically important for resistance to induced mediators of cell autonomous immunity. The paper presents a general approach for the forward genetics screen that, in theory, can be modified to target parasite genes important for resistance to specific antimicrobial mediators. It also describes an approach to evaluate the specific macrophage antimicrobial mediators to which the parasite mutant is susceptible. Activation of infected macrophages can also promote parasite differentiation from the tachyzoite to bradyzoite stage that maintains chronic infection. Therefore, methodology is presented to evaluate the importance of the identified

  18. Small molecule screening in zebrafish: an in vivo approach to identifying new chemical tools and drug leads

    Directory of Open Access Journals (Sweden)

    Patton E Elizabeth

    2010-06-01

    Full Text Available Abstract In the past two decades, zebrafish genetic screens have identified a wealth of mutations that have been essential to the understanding of development and disease biology. More recently, chemical screens in zebrafish have identified small molecules that can modulate specific developmental and behavioural processes. Zebrafish are a unique vertebrate system in which to study chemical genetic systems, identify drug leads, and explore new applications for known drugs. Here, we discuss some of the advantages of using zebrafish in chemical biology, and describe some important and creative examples of small molecule screening, drug discovery and target identification.

  19. Trypanothione reductase: a target protein for a combined in vitro and in silico screening approach.

    Directory of Open Access Journals (Sweden)

    Mathias Beig

    Full Text Available With the goal to identify novel trypanothione reductase (TR inhibitors, we performed a combination of in vitro and in silico screening approaches. Starting from a highly diverse compound set of 2,816 compounds, 21 novel TR inhibiting compounds could be identified in the initial in vitro screening campaign against T. cruzi TR. All 21 in vitro hits were used in a subsequent similarity search-based in silico screening on a database containing 200,000 physically available compounds. The similarity search resulted in a data set containing 1,204 potential TR inhibitors, which was subjected to a second in vitro screening campaign leading to 61 additional active compounds. This corresponds to an approximately 10-fold enrichment compared to the initial pure in vitro screening. In total, 82 novel TR inhibitors with activities down to the nM range could be identified proving the validity of our combined in vitro/in silico approach. Moreover, the four most active compounds, showing IC50 values of <1 μM, were selected for determining the inhibitor constant. In first on parasites assays, three compounds inhibited the proliferation of bloodstream T. brucei cell line 449 with EC50 values down to 2 μM.

  20. Tele-cytology: An innovative approach for cervical cancer screening in resource-poor settings

    Directory of Open Access Journals (Sweden)

    Sandeep Singh

    2016-01-01

    Full Text Available Carcinoma cervix remains a leading cause of cancer mortality among women in countries lacking any screening program. The existing screening policy and approach via conventional cytology centered mainly in Tertiary Care Center, is totally unaffordable to Indian women, especially in the remote areas. This suggests the need of depolarizing the resources via generating the near real time modalities which could be used at the door step of the needy ones. For any screening modality to be effective it should be adequately sensitive, specific, reproducible, cheap, simple, affordable, and the most important is should be real time to ensure wide coverage and curtail loss to follow-up. Incorporating telecytology as a screening tool could make the dream come true. Telecytology is the interpretation of cytology material at a distance using digital images. Use of mobile telecytology unit housed in a van carrying satellite equipment and the automated image capturing systems is the central theme behind this idea. The imaging equipment would be carrying out the imaging of Papanicolaou smears prepared at the screening site and sending the images to the central laboratories situated at some tertiary care level. This concept could overcome the hindrance of trained cytology infrastructure in the resource poor settings and could provide an efficient and economical way of screening patients. There is possibility that the designed approach may not detect the entire women positive for the disease but if the desired objective was to diagnose as many cases as possible in resource poor setting, then this process offers an advantage over no screening at all.

  1. Clinical and genetic aspects of bicuspid aortic valve: a proposed model for family screening based on a review of literature

    Directory of Open Access Journals (Sweden)

    Hubert Baars

    2015-04-01

    Full Text Available Bicuspid aortic valve (BAV is the most common congenital cardiac defect causing serious morbidity including valvular dysfunction and thoracic aortic aneurysms (TAA in around 30% of BAV patients. Cardiological screening of first-degree relatives is advised in recent guidelines given the observed familial clustering of BAV. However, guidelines regarding screening of family members and DNA testing are not unequivocal. The aim of this review is to provide an overview of the literature on echocardiographic screening in first-degree relatives of BAV patients and to propose a model for family screening. In addition, we provide a flowchart for DNA testing. We performed a PubMed search and included studies providing data on echocardiographic screening in asymptomatic relatives of BAV patients. Nine studies were included. In 5.8-47.4% of the families BAV was shown to be familial. Of the screened first-degree relatives 1.8-11% was found to be affected with BAV. Results regarding a potential risk of TAA in first-degree relatives with a tricuspid aortic valve (TAV were conflicting. The reported familial clustering of BAV underlines the importance of cardiological screening in relatives. After reviewing the available family history, patient characteristics and the results of cardiological screening in relatives, follow-up in relatives with a TAV and/or DNA testing may be advised in a subset of families. In this study we propose a model for the clinical and genetic work-up in BAV families, based on the most extensive literature review on family screening performed until now.

  2. 'Psychotropics caught in a trap' - adopting a screening approach to specific needs.

    Science.gov (United States)

    Kempf, Jürgen; Traber, Jessica; Auwärter, Volker; Huppertz, Laura M

    2014-10-01

    In the field of forensic toxicology, numerous strategies using different types of LC-MS platforms have been developed to set up an ultimate comprehensive screening method. Despite all this research, the question for the detection of a dedicated set of substances arises quite often in daily routine work. In this project, a screening method for the detection of psychotropic drugs based on the open library concept of a recently developed LC-MS(n) screening approach was developed and the effectiveness of a heated ESI-source was evaluated. To set up an individual spectral library all available data of psychotropics from the Toxtyper™ library was transferred to a new library format and complemented by MS, MS(2) and MS(3) data of additional psychotropic compounds. Precursor masses and retention time information of the library were used to trigger data dependent acquisition of MS(n)-spectra. Serum samples were analysed after alkaline liquid-liquid extraction on a Dionex RSLC (Acclaim™ C18 100×2.1C) coupled to a Bruker amaZon speed ion trap. A conventional ESI-source and an ionBooster™ source (IB) were used for ionization. All other LC and MS parameters were adopted from the original screening approach. Identification and result reporting was carried out by a fully automated software script. This screening method finally contains the individual precursor mass and retention time of 105 psychotropic substances and metabolites. Method evaluation was performed using pooled serum samples fortified with 12 different mixtures containing a total of 99 compounds at low therapeutic concentrations (cLOW and 2×cLOW). The customized method (ESI/IB) led to a higher rate of identifications (92%) - especially at low concentration levels (cLOW) - as the comprehensive screening approach (87%). Results from routine analysis with known intake of psychotropic drugs were confirmed with positive findings, if the concentration range was above or around the assumed limit of detection from

  3. A simple screened exact-exchange approach for excitonic properties in solids

    OpenAIRE

    Yang, Zeng-hui; Sottile, Francesco; Ullrich, Carsten A.

    2015-01-01

    We present a screened exact-exchange (SXX) method for the efficient and accurate calculation of the optical properties of solids, where the screening is achieved through the zero-wavevector limit of the inverse dielectric function. The SXX approach can be viewed as a simplification of the Bethe-Salpeter equation (BSE) or, in the context of time-dependent density-functional theory, as a first step towards a new class of hybrid functionals for the optical properties of solids. SXX performs well...

  4. A multi-functional imaging approach to high-content protein interaction screening.

    Directory of Open Access Journals (Sweden)

    Daniel R Matthews

    Full Text Available Functional imaging can provide a level of quantification that is not possible in what might be termed traditional high-content screening. This is due to the fact that the current state-of-the-art high-content screening systems take the approach of scaling-up single cell assays, and are therefore based on essentially pictorial measures as assay indicators. Such phenotypic analyses have become extremely sophisticated, advancing screening enormously, but this approach can still be somewhat subjective. We describe the development, and validation, of a prototype high-content screening platform that combines steady-state fluorescence anisotropy imaging with fluorescence lifetime imaging (FLIM. This functional approach allows objective, quantitative screening of small molecule libraries in protein-protein interaction assays. We discuss the development of the instrumentation, the process by which information on fluorescence resonance energy transfer (FRET can be extracted from wide-field, acceptor fluorescence anisotropy imaging and cross-checking of this modality using lifetime imaging by time-correlated single-photon counting. Imaging of cells expressing protein constructs where eGFP and mRFP1 are linked with amino-acid chains of various lengths (7, 19 and 32 amino acids shows the two methodologies to be highly correlated. We validate our approach using a small-scale inhibitor screen of a Cdc42 FRET biosensor probe expressed in epidermoid cancer cells (A431 in a 96 microwell-plate format. We also show that acceptor fluorescence anisotropy can be used to measure variations in hetero-FRET in protein-protein interactions. We demonstrate this using a screen of inhibitors of internalization of the transmembrane receptor, CXCR4. These assays enable us to demonstrate all the capabilities of the instrument, image processing and analytical techniques that have been developed. Direct correlation between acceptor anisotropy and donor FLIM is observed for FRET

  5. Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4.

    Science.gov (United States)

    Voet, Arnout R D; Kumar, Ashutosh; Berenger, Francois; Zhang, Kam Y J

    2014-04-01

    The SAMPL challenges provide an ideal opportunity for unbiased evaluation and comparison of different approaches used in computational drug design. During the fourth round of this SAMPL challenge, we participated in the virtual screening and binding pose prediction on inhibitors targeting the HIV-1 integrase enzyme. For virtual screening, we used well known and widely used in silico methods combined with personal in cerebro insights and experience. Regular docking only performed slightly better than random selection, but the performance was significantly improved upon incorporation of additional filters based on pharmacophore queries and electrostatic similarities. The best performance was achieved when logical selection was added. For the pose prediction, we utilized a similar consensus approach that amalgamated the results of the Glide-XP docking with structural knowledge and rescoring. The pose prediction results revealed that docking displayed reasonable performance in predicting the binding poses. However, prediction performance can be improved utilizing scientific experience and rescoring approaches. In both the virtual screening and pose prediction challenges, the top performance was achieved by our approaches. Here we describe the methods and strategies used in our approaches and discuss the rationale of their performances.

  6. A genetic screen for replication initiation defective (rid mutants in Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Locovei Alexandra M

    2010-08-01

    Full Text Available Abstract In fission yeast the intra-S phase and DNA damage checkpoints are activated in response to inhibition of DNA replication or DNA damage, respectively. The intra-S phase checkpoint responds to stalled replication forks leading to the activation of the Cds1 kinase that both delays cell cycle progression and stabilizes DNA replication forks. The DNA damage checkpoint, that operates during the G2 phase of the cell cycle delays mitotic progression through activation of the checkpoint kinase, Chk1. Delay of the cell cycle is believed to be essential to allow time for either replication restart (in S phase or DNA damage repair (in G2. Previously, our laboratory showed that fission yeast cells deleted for the N-terminal half of DNA polymerase ε (Cdc20 are delayed in S phase, but surprisingly require Chk1 rather than Cds1 to maintain cell viability. Several additional DNA replication mutants were then tested for their dependency on Chk1 or Cds1 when grown under semi-permissive temperatures. We discovered that mutants defective in DNA replication initiation are sensitive only to loss of Chk1, whilst mutations that inhibit DNA replication elongation are sensitive to loss of both Cds1 and Chk1. To confirm that the Chk1-sensitive, Cds1-insensitive phenotype (rid phenotype is specific to mutants defective in DNA replication initiation, we completed a genetic screen for cell cycle mutants that require Chk1, but not Cds1 to maintain cell viability when grown at semi-permissive temperatures. Our screen identified two mutants, rid1-1 and rid2-1, that are defective in Orc1 and Mcm4, respectively. Both mutants show defects in DNA replication initiation consistent with our hypothesis that the rid phenotype is replication initiation specific. In the case of Mcm4, the mutation has been mapped to a highly conserved region of the protein that appears to be required for DNA replication initiation, but not elongation. Therefore, we conclude that the cellular

  7. A large-scale complex haploinsufficiency-based genetic interaction screen in Candida albicans: analysis of the RAM network during morphogenesis.

    Directory of Open Access Journals (Sweden)

    Nike Bharucha

    2011-04-01

    Full Text Available The morphogenetic transition between yeast and filamentous forms of the human fungal pathogen Candida albicans is regulated by a variety of signaling pathways. How these pathways interact to orchestrate morphogenesis, however, has not been as well characterized. To address this question and to identify genes that interact with the Regulation of Ace2 and Morphogenesis (RAM pathway during filamentation, we report the first large-scale genetic interaction screen in C. albicans.Our strategy for this screen was based on the concept of complex haploinsufficiency (CHI. A heterozygous mutant of CBK1(cbk1Δ/CBK1, a key RAM pathway protein kinase, was subjected to transposon-mediated, insertional mutagenesis. The resulting double heterozygous mutants (6,528 independent strains were screened for decreased filamentation on SpiderMedium (SM. From the 441 mutants showing altered filamentation, 139 transposon insertion sites were sequenced,yielding 41 unique CBK1-interacting genes. This gene set was enriched in transcriptional targets of Ace2 and, strikingly, the cAMP-dependent protein kinase A (PKA pathway, suggesting an interaction between these two pathways. Further analysis indicates that the RAM and PKA pathways co-regulate a common set of genes during morphogenesis and that hyperactivation of the PKA pathway may compensate for loss of RAM pathway function. Our data also indicate that the PKA–regulated transcription factor Efg1 primarily localizes to yeast phase cells while the RAM–pathway regulated transcription factor Ace2 localizes to daughter nuclei of filamentous cells, suggesting that Efg1 and Ace2 regulate a common set of genes at separate stages of morphogenesis. Taken together, our observations indicate that CHI–based screening is a useful approach to genetic interaction analysis in C. albicans and support a model in which these two pathways regulate a common set of genes at different stages of filamentation.

  8. Exploring the Effectiveness of Mandatory Premarital Screening and Genetic Counselling Programmes for β-Thalassaemia in the Middle East: A Scoping Review.

    Science.gov (United States)

    Saffi, Marwa; Howard, Natasha

    2015-01-01

    β-Thalassaemia is a common genetic blood disorder in the Middle Eastern region. Mandatory premarital screening and genetic counselling (PMSGC) programmes are implemented in 8 Middle East countries to reduce at-risk marriages and thus disease prevalence. A scoping review was conducted to explore the effectiveness of these programmes. The 6-stage scoping framework of Arksey and O'Malley [Int J Soc Res Methodol 2005;8:19-32] was used. Reported outcomes were analysed per country, with success defined as achieving a 65% reduction in at-risk marriages and/or thalassaemia-affected births. Emergent enablers and barriers were analysed thematically. Twenty-one sources were included from the 1,348 identified, discussing 7 country programmes, with 95% (20/21) published during 2003-2013. Five publications each were included for Iran and Saudi Arabia, 3 for Turkey, 2 each for Bahrain and Iraq (Kurdistan), and 1 for the United Arab Emirates, plus 2 multi-country evaluations. No programme achieved a 65% at-risk marriage cancellation rate. Though data on thalassaemia-affected birth reductions were minimal, programmes in Iran, Turkey and Iraq reported at least 65% reductions. A thematic analysis found that screening timing, access to prenatal detection and abortion, socio-religious issues, awareness and counselling affected decisions. This review found that PMSGC programmes were unsuccessful in discouraging at-risk marriages but successful in reducing the prevalence of affected births in countries providing prenatal detection and therapeutic abortion. A life cycle approach to prevention, incorporation of school screening, awareness campaigns, reconsideration of therapeutic abortion, and screening and counselling of couples married prior to programme inception are likely to improve the effectiveness of such programmes in the Middle Eastern region. © 2015 S. Karger AG, Basel.

  9. Genetic braid optimization: A heuristic approach to compute quasiparticle braids

    Science.gov (United States)

    McDonald, Ross B.; Katzgraber, Helmut G.

    2013-02-01

    In topologically protected quantum computation, quantum gates can be carried out by adiabatically braiding two-dimensional quasiparticles, reminiscent of entangled world lines. Bonesteel [Phys. Rev. Lett.10.1103/PhysRevLett.95.140503 95, 140503 (2005)], as well as Leijnse and Flensberg [Phys. Rev. B10.1103/PhysRevB.86.104511 86, 104511 (2012)], recently provided schemes for computing quantum gates from quasiparticle braids. Mathematically, the problem of executing a gate becomes that of finding a product of the generators (matrices) in that set that approximates the gate best, up to an error. To date, efficient methods to compute these gates only strive to optimize for accuracy. We explore the possibility of using a generic approach applicable to a variety of braiding problems based on evolutionary (genetic) algorithms. The method efficiently finds optimal braids while allowing the user to optimize for the relative utilities of accuracy and/or length. Furthermore, when optimizing for error only, the method can quickly produce efficient braids.

  10. Genetic programming approach to evaluate complexity of texture images

    Science.gov (United States)

    Ciocca, Gianluigi; Corchs, Silvia; Gasparini, Francesca

    2016-11-01

    We adopt genetic programming (GP) to define a measure that can predict complexity perception of texture images. We perform psychophysical experiments on three different datasets to collect data on the perceived complexity. The subjective data are used for training, validation, and test of the proposed measure. These data are also used to evaluate several possible candidate measures of texture complexity related to both low level and high level image features. We select four of them (namely roughness, number of regions, chroma variance, and memorability) to be combined in a GP framework. This approach allows a nonlinear combination of the measures and could give hints on how the related image features interact in complexity perception. The proposed complexity measure M exhibits Pearson correlation coefficients of 0.890 on the training set, 0.728 on the validation set, and 0.724 on the test set. M outperforms each of all the single measures considered. From the statistical analysis of different GP candidate solutions, we found that the roughness measure evaluated on the gray level image is the most dominant one, followed by the memorability, the number of regions, and finally the chroma variance.

  11. An unbiased systems genetics approach to mapping genetic loci modulating susceptibility to severe streptococcal sepsis.

    Directory of Open Access Journals (Sweden)

    Nourtan F Abdeltawab

    2008-04-01

    Full Text Available Striking individual differences in severity of group A streptococcal (GAS sepsis have been noted, even among patients infected with the same bacterial strain. We had provided evidence that HLA class II allelic variation contributes significantly to differences in systemic disease severity by modulating host responses to streptococcal superantigens. Inasmuch as the bacteria produce additional virulence factors that participate in the pathogenesis of this complex disease, we sought to identify additional gene networks modulating GAS sepsis. Accordingly, we applied a systems genetics approach using a panel of advanced recombinant inbred mice. By analyzing disease phenotypes in the context of mice genotypes we identified a highly significant quantitative trait locus (QTL on Chromosome 2 between 22 and 34 Mb that strongly predicts disease severity, accounting for 25%-30% of variance. This QTL harbors several polymorphic genes known to regulate immune responses to bacterial infections. We evaluated candidate genes within this QTL using multiple parameters that included linkage, gene ontology, variation in gene expression, cocitation networks, and biological relevance, and identified interleukin1 alpha and prostaglandin E synthases pathways as key networks involved in modulating GAS sepsis severity. The association of GAS sepsis with multiple pathways underscores the complexity of traits modulating GAS sepsis and provides a powerful approach for analyzing interactive traits affecting outcomes of other infectious diseases.

  12. piggyBac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART for genetic screens in mice.

    Directory of Open Access Journals (Sweden)

    Sean F Landrette

    Full Text Available Somatic forward genetic screens have the power to interrogate thousands of genes in a single animal. Retroviral and transposon mutagenesis systems in mice have been designed and deployed in somatic tissues for surveying hematopoietic and solid tumor formation. In the context of cancer, the ability to visually mark mutant cells would present tremendous advantages for identifying tumor formation, monitoring tumor growth over time, and tracking tumor infiltrations and metastases into wild-type tissues. Furthermore, locating mutant clones is a prerequisite for screening and analyzing most other somatic phenotypes. For this purpose, we developed a system using the piggyBac (PB transposon for somatic mutagenesis with an activated reporter and tracker, called PB-SMART. The PB-SMART mouse genetic screening system can simultaneously induce somatic mutations and mark mutated cells using bioluminescence or fluorescence. The marking of mutant cells enable analyses that are not possible with current somatic mutagenesis systems, such as tracking cell proliferation and tumor growth, detecting tumor cell infiltrations, and reporting tissue mutagenesis levels by a simple ex vivo visual readout. We demonstrate that PB-SMART is highly mutagenic, capable of tumor induction with low copy transposons, which facilitates the mapping and identification of causative insertions. We further integrated a conditional transposase with the PB-SMART system, permitting tissue-specific mutagenesis with a single cross to any available Cre line. Targeting the germline, the system could also be used to conduct F1 screens. With these features, PB-SMART provides an integrated platform for individual investigators to harness the power of somatic mutagenesis and phenotypic screens to decipher the genetic basis of mammalian biology and disease.

  13. A Sleeping Beauty DNA transposon-based genetic sensor for functional screening of vitamin D3 analogues

    DEFF Research Database (Denmark)

    Staunstrup, Nicklas Heine; Sharma, Nynne; Bak, Rasmus Otkjær;

    2011-01-01

    Analogues of vitamin D3 are extensively used in the treatment of various illnesses, such as osteoporosis, inflammatory skin diseases, and cancer. Functional testing of new vitamin D3 analogues and formulations for improved systemic and topical administration is supported by sensitive screening me...... analogues. The tri-cistronic genetic sensor encodes a drug-sensoring protein, a reporter protein expressed from an activated sensor-responsive promoter, and a resistance marker....

  14. [Genetic screening of patients with familial hypercholesterolemia and insurability for life insurance policies and disability cover policies].

    Science.gov (United States)

    Homsma, S J; Lansberg, P J; Kastelein, J J

    2004-03-01

    In the Netherlands, people with familial hypercholesterolaemia (FH) have been actively screened since 1994 by means of DNA analysis. Recently, the Stichting Opsporing Erfelijke Hypercholesterolemie (Foundation for the Detection of Familial Hypercholesterolaemia) initiated a large scale-screening programme aimed at finding all 40,000 people. The Dutch ministry of Health, Welfare and Sport is providing the financial support. Genetic screening has social implications and raises questions on insurability. The Dutch Medical Examination Act prohibits insurers from posing questions about untreatable, serious inheritable conditions for insured sums under a certain value: for life-insurance policies policies insurers can request information for the purpose of an accurate risk classification. Insurance contracts can be accepted at normal rates if the target value of LDL-cholesterol < 4 mmol/l and additional risk factors such as smoking and an abnormal BMI are absent; the risk is determined by the phenotype and clinical factors and not by the genotype.

  15. [Large-scale population-based genetic screening and prenatal diagnosis for thalassemias in Zhuhai City of Guangdong Province].

    Science.gov (United States)

    Zhou, Yu-qiu; Shang, Xuan; Yin, Bao-min; Xiong, Fu; Xiao, Qi-zhi; Zhou, Wan-jun; Zhang, Yong-liang; Xu, Xiang-min

    2012-02-01

    To report the results of preventive control program of severe thalassemias in Zhuhai City of Guangdong Province from 1998 to 2010. As the guide centre of marriage and childbearing and the greatest maternity hospital in Zhuhai City of Guangdong Province, Zhuhai Municipal Maternity and Child Healthcare Hospital constructed the genetic screening network for thalassemias testing and referred for follow-up and for genetic counseling. The couples for premarital medical examination or regular healthcare examination in pregnancy were enrolled to this preventive control program. A conventional strategy of screening for heterozygote was used to identify the α- and β-thalassemia traits in women and their spouses according to the standard procedures of hematological phenotype analysis which was recommended by Thalassemia International Federation (TIF). Then those suspected couples at risk were diagnosed for α- and β-thalassemia by PCR-based DNA assays. The couples at risk for severe thalassemias were counseled and offered prenatal diagnosis and termination of pregnancy in case of an affected fetus in the rights of consent and of option voluntarily. From January 1998 to December 2010, 85 522 brides and grooms-to-be for premarital screening and 41 503 pregnant women in addition to 14 141 partners for prenatal screening were recorded, the covering rates of premarital screening and prenatal screening in the city were 92.698% (from 1998 to 2003) and 27.667% (from 2004 to 2010), respectively. Totally 10 726 cases were found to be the carriers of thalassemias, with 7393 for α-thalassemia (5.237%, 7 393/141 166) and 3333 for β-thalassemia (2.361%, 3 333/141 166). A total of 257 couples at-risk for severe thalassemias were detected including 190 for α-thalassemia and 67 for β-thalassemia. Among them, 251 (97.7%, 251/257) couples were performed prenatal diagnosis. During the preventive control program, a total of 72 fetuses with severe thalassemias including hemoglobin H disease

  16. DVT prophylaxis after TKA: routine anticoagulation vs risk screening approach - a randomized study.

    Science.gov (United States)

    Kulshrestha, Vikas; Kumar, Santhosh

    2013-12-01

    The American College of Chest Physicians (ACCP) recommended routine anticoagulation for thromboprophylaxis in patients undergoing lower limb arthroplasty. We compared results of routine anticoagulation Vs risk stratified approach for Deep Venous Thrombosis (DVT) prophylaxis after TKA in terms of symptomatic DVT and wound complications. Nine hundred TKAs done in 673 patients were randomized after DVT risk screening to routine anticoagulation (n = 450) or to risk stratification (n = 450) and selective anticoagulation. 194 patients in the risk screening group received only Aspirin. Primary outcome was symptomatic DVT and wound complication. This randomized study showed that the symptomatic DVT rates after TKA were similar whether patients were routinely anticoagulated or selectively anticoagulated after risk screening. However there was a significantly higher incidence of wound complications (P < 0.014) after routine anticoagulation.

  17. Forward Genetic Approaches for Elucidation of Novel Regulators of Lyme Arthritis Severity

    Directory of Open Access Journals (Sweden)

    Kenneth K.C. Bramwell

    2014-06-01

    Full Text Available Patients experiencing natural infection with Borrelia burgdorferi display a spectrum of associated symptoms and severity, strongly implicating the impact of genetically determined host factors in the pathogenesis of Lyme disease. Herein, we provide a summary of the host genetic factors that have been demonstrated to influence the severity and chronicity of Lyme arthritis symptoms, and a review of the resources available, current progress, and added value of a forward genetic approach for identification of novel genetic regulators.

  18. Electrochemical sensor for multiplex screening of genetically modified DNA: identification of biotech crops by logic-based biomolecular analysis.

    Science.gov (United States)

    Liao, Wei-Ching; Chuang, Min-Chieh; Ho, Ja-An Annie

    2013-12-15

    Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Automated, quantitative cognitive/behavioral screening of mice: for genetics, pharmacology, animal cognition and undergraduate instruction.

    Science.gov (United States)

    Gallistel, C R; Balci, Fuat; Freestone, David; Kheifets, Aaron; King, Adam

    2014-02-26

    We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be

  20. Establishment of a system based on universal multiplex-PCR for screening genetically modified crops.

    Science.gov (United States)

    Lu, I-Jen; Lin, Chih-Hui; Pan, Tzu-Ming

    2010-03-01

    The rapid development of many genetically modified (GM) crops in the past two decades makes it necessary to introduce an alternative strategy for routine screening and identification. In this study, we established a universal multiplex PCR detection system which will effectively reduce the number of reactions needed for sample identification. The PCR targets of this system include the six most frequently used transgenic elements: cauliflower mosaic virus (CaMV) 35S promoter, Agrobacterium tumefaciens nopaline synthase (nos) promoter, Agrobacterium tumefaciens nopaline synthase (nos) terminator, the neomycin phosphotransferase II (nptII) gene, the 5-enolpyruvylshikimate-3-phosphate synthase (CP4 epsps) gene of Agrobacterium tumefaciens strain CP4, and the phosphinothricin N-acetyltransferase (pat) gene. According to the AGBIOS database, the coverage of this detection system is 93% of commercial GM crops. This detection system could detect all certified reference materials (CRMs) at the 1.0% level. The correct combination of all the CRM amplicon patterns proved the specificity of this multiplex PCR system. Furthermore, the amplicon patterns of this multiplex PCR detection system could be used as an index of classification which will narrow the range of possible GM products. The simulation result of this multiplex PCR detection system on all commercialized 139 GM products in the AGBIOS database showed that the maximum number of PCR reactions needed to identify an unknown sample can be reduced to 13. In this study, we established a high-throughput multiplex PCR detection system with feasible sensitivity, specificity, and cost. By incorporating this detection system, the routine GM crop-detection process will meet the challenges resulting from a rapid increase in the number of GM crops in the future.

  1. Representing genetic variation as continuous surfaces: An approach for identifying spatial dependency in landscape genetic studies

    Science.gov (United States)

    Melanie A. Murphy; Jeffrey S. Evans; Samuel A. Cushman; Andrew Storfer

    2008-01-01

    Landscape genetics, an emerging field integrating landscape ecology and population genetics, has great potential to influence our understanding of habitat connectivity and distribution of organisms. Whereas typical population genetics studies summarize gene flow as pairwise measures between sampling localities, landscape characteristics that influence population...

  2. The Genetic Blues: Understanding Genetic Principles Using a Practical Approach and a Historical Perspective.

    Science.gov (United States)

    Mysliwiec, Tami H.

    2003-01-01

    Incorporates history and genetics to explain how genetic traits are passed on to the next generation by focusing on methemoglobinemia, a rare genetic disease, and discusses how oxygen is carried by hemoglobin. Includes individual pedigree analysis and class pedigree analysis. (YDS)

  3. Infrastructure and Educational Needs of Newborn Screening Short-Term Follow-Up Programs within the Southeast Regional Newborn Screening & Genetics Collaborative: A Pilot Survey

    Directory of Open Access Journals (Sweden)

    Cecelia A. Bellcross

    2015-10-01

    Full Text Available Newborn screening (NBS follow-up protocols vary significantly by state, and there is a need to better understand the infrastructure and communication flow of NBS programs. In addition, assessment of the educational needs of families and providers with regard to the implications of NBS results is required to inform the development of appropriate informational resources and training opportunities. To begin to address these issues, we administered a web-based survey to state NBS coordinators within the Southeast Regional Newborn Screening & Genetics Collaborative (SERC. Fourteen coordinators responded to the survey, including at least one from each of the 10 SERC states/territories. Over one-third of respondents had never received formal training regarding the metabolic conditions identified on NBS. Most communicated results via telephone or fax, though two centers indicated use of a web-based platform. Only two programs were involved in directly reporting results to the family. Four programs reported a long-term follow-up protocol. Deficits were noted for primary care provider (PCP knowledge of metabolic disorders identified on NBS, and how to inform parents of abnormal results. Close to half indicated that the adequacy of the number of genetic counselors, dietitians, and medical/biochemical geneticists was minimal to insufficient. Respondents uniformly recognized the importance of providing additional educational and informational resources in multiple categories to NBS staff, PCPs, and families.

  4. New approaches to cervical cancer screening in Latin America and the Caribbean.

    Science.gov (United States)

    Herrero, Rolando; Ferreccio, Catterina; Salmerón, Jorge; Almonte, Maribel; Sánchez, Gloria Ines; Lazcano-Ponce, Eduardo; Jerónimo, José

    2008-08-19

    Cervical cancer remains an important public health problem in the Latin America and Caribbean region (LAC), with an expected significant increase in disease burden in the next decades as a result of population ageing. Prophylactic human papillomavirus (HPV) vaccine is currently unaffordable in LAC countries. However, even if vaccination was implemented, an additional two decades will be required to observe its impact on HPV related disease and cancer. With some exceptions, cytology-based screening programs have been largely ineffective to control the problem in the region, and there is a need for new approaches to the organization of screening and for use of newly developed techniques. Several research groups in LAC have conducted research on new screening methods, some of which are summarized in this paper. A recommendation to reorganize screening programs is presented considering visual inspection for very low resource areas, improvement of cytology where it is operating successfully and HPV DNA testing followed by visual inspection with acetic acid (VIA) or cytology as soon as this method becomes technically and economically sustainable. This could be facilitated by the incorporation of new, low-cost HPV DNA testing methods and the use of self-collected vaginal specimens for selected groups of the population. An important requisite for screening based on HPV testing will be the quality assurance of the laboratory and the technique by validation and certification measures.

  5. Predictive Modeling of Tacrolimus Dose Requirement Based on High-Throughput Genetic Screening.

    Science.gov (United States)

    Damon, C; Luck, M; Toullec, L; Etienne, I; Buchler, M; Hurault de Ligny, B; Choukroun, G; Thierry, A; Vigneau, C; Moulin, B; Heng, A-E; Subra, J-F; Legendre, C; Monnot, A; Yartseva, A; Bateson, M; Laurent-Puig, P; Anglicheau, D; Beaune, P; Loriot, M A; Thervet, E; Pallet, N

    2017-04-01

    Any biochemical reaction underlying drug metabolism depends on individual gene-drug interactions and on groups of genes interacting together. Based on a high-throughput genetic approach, we sought to identify a set of covariant single-nucleotide polymorphisms predictive of interindividual tacrolimus (Tac) dose requirement variability. Tac blood concentrations (Tac C0 ) of 229 kidney transplant recipients were repeatedly monitored after transplantation over 3 mo. Given the high dimension of the genomic data in comparison to the low number of observations and the high multicolinearity among the variables (gene variants), we developed an original predictive approach that integrates an ensemble variable-selection strategy to reinforce the stability of the variable-selection process and multivariate modeling. Our predictive models explained up to 70% of total variability in Tac C0 per dose with a maximum of 44 gene variants (p-value <0.001 with a permutation test). These models included molecular networks of drug metabolism with oxidoreductase activities and the multidrug-resistant ABCC8 transporter, which was found in the most stringent model. Finally, we identified an intronic variant of the gene encoding SLC28A3, a drug transporter, as a key gene involved in Tac metabolism, and we confirmed it in an independent validation cohort. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  6. Integrated screening concept in women with genetic predisposition for breast cancer; Integriertes Frueherkennungskonzept bei Frauen mit genetischer Praedisposition fuer Brustkrebs

    Energy Technology Data Exchange (ETDEWEB)

    Bick, U. [Muenster Univ. (Germany). Inst. fuer Klinische Radiologie

    1997-08-01

    Breast cancer is in 5% of cases due to a genetic disposition. BRCA1 and BRCA2 are by far the most common breast cancer susceptibility genes. For a woman with a genetic predisposition, the individual risk of developing breast cancer sometime in her life is between 70 and 90%. Compared to the spontaneous forms of breast cancer, woman with a genetic predisposition often develop breast cancer at a much younger age. This is why conventional screening programs on the basis of mammography alone cannot be applied without modification to this high-risk group. In this article, an integrated screening concept for women with genetic prodisposition for breast cancer using breast self-examination, clinical examination, ultrasound, mammography and magnetic resonance imaging is introduced. (orig.) [Deutsch] Mammakarzinome sind in etwa 5% auf eine genetische Disposition zurueckzufuehren. Am haeufigsten finden sich Mutationen im Bereich der Gene BRCA1 und BRCA2. Frauen mit einer genetischen Disposition erkranken in etwa 70-90% im Laufe ihres Lebens an einem Mammakarzinom. Das Erkrankungsalter bei diesen Frauen liegt in der Regel deutlich niedriger als bei den spontanen Formen des Mammakarzinoms, so dass vorhandene Frueherkennungskonzepte auf der Basis eines Mammographiescrennings nicht ohne weiteres auf dieses Hochrisikokollektiv uebertragbar sind. Im folgenden wird ein integriertes Konzept zur Frueherkennung bei Frauen mit genetischer Praedisposition fuer ein Mammakarzinom auf der Basis von Brustselbstuntersuchung, klinischer Untersuchung, Sonographie, Mammographie und Magnetresonanztomographie vorgestellt. (orig.)

  7. CONTEMPORARY APPROACH TO DIAGNOSIS OF GENETIC CAUSES OF INTELLECTUAL DISABILITY

    Directory of Open Access Journals (Sweden)

    Ana PETERLIN

    2016-09-01

    Full Text Available Intellectual disability is a lifelong debilitating developmental disorder with important genetic contribution, which remains challenging to investigate due to high clinical and genetic variability. Finding the etiologic diagnosis of ID, however comes with great benefits for patients and their families, therefore establishing a genetic diagnostic pathway with right combination and succession of diagnostic tools is crucial for both prevention and appropriate treatment and/or rehabilitation of patients with ID. New diagnostic tools in genetics such as array comparative genomic hybridization (aCGH and next-generation sequencing (NGS have much higher detection rate for genetic aberrations responsible for ID and have enormous potential to shorten the path to diagnosis, as early diagnosis is a cornerstone for medical and non-medical management of persons suffering from ID.

  8. Space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b and screening of higher yielding strains.

    Science.gov (United States)

    Wang, Junfeng; Liu, Changting; Liu, Jinyi; Fang, Xiangqun; Xu, Chen; Guo, Yinghua; Chang, De; Su, Longxiang

    2014-03-01

    The aim of this study was to investigate the space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b. The genetically engineered bacteria expressing the recombinant interferon α1b were sent into outer space on the Chinese Shenzhou VIII spacecraft. After the 17 day space flight, mutant strains that highly expressed the target gene were identified. After a series of screening of spaceflight-treated bacteria and the quantitative comparison of the mutant strains and original strain, we found five strains that showed a significantly higher production of target proteins, compared with the original strain. Our results support the notion that the outer space environment has unique effects on the mutation breeding of microorganisms, including genetically engineered strains. Mutant strains that highly express the target protein could be obtained through spaceflight-induced mutagenesis.

  9. Rational drug design of antineoplastic agents using 3D-QSAR, cheminformatic, and virtual screening approaches.

    Science.gov (United States)

    Vucicevic, Jelica; Nikolic, Katarina; Mitchell, John B O

    2017-07-12

    Computer-Aided Drug Design has strongly accelerated the development of novel antineoplastic agents by helping in the hit identification, optimization, and evaluation. Computational approaches such as cheminformatic search, virtual screening, pharmacophore modeling, molecular docking and dynamics have been developed and applied to explain the activity of bioactive molecules, design novel agents, increase the success rate of drug research, and decrease the total costs of drug discovery. Similarity searches and virtual screening are used to identify molecules with an increased probability to interact with drug targets of interest, while the other computational approaches are applied for the design and evaluation of molecules with enhanced activity and improved safety profile. In this review are described the main in silico techniques used in rational drug design of antineoplastic agents and presented optimal combinations of computational methods for design of more efficient antineoplastic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Inhibitors of the Yersinia protein tyrosine phosphatase through high throughput and virtual screening approaches.

    Science.gov (United States)

    Hu, Xin; Vujanac, Milos; Southall, Noel; Stebbins, C Erec

    2013-02-15

    The bacterial protein tyrosine phosphatase YopH is an essential virulence determinant in Yersinia pestis and a potential antibacterial drug target. Here we report our studies of screening for small molecule inhibitors of YopH using both high throughput and in silico approaches. The identified inhibitors represent a diversity of chemotypes and novel pTyr mimetics, providing a starting point for further development and fragment-based design of multi-site binding inhibitors. We demonstrate that the applications of high throughput and virtual screening, when guided by structural binding mode analysis, is an effective approach for identifying potent and selective inhibitors of YopH and other protein phosphatases for rational drug design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Improving toxicity screening and drug development by using genetically defined strains.

    Science.gov (United States)

    Festing, Michael F W

    2010-01-01

    According to the US Food and Drugs Administration (Food and Drug Administration (2004) Challenge and opportunity on the critical path to new medical products.) "The inability to better assess and predict product safety leads to failures during clinical development and, occasionally, after marketing". This increases the cost of new drugs as clinical trials are even more expensive than pre-clinical testing.One relatively easy way of improving toxicity testing is to improve the design of animal experiments. A fundamental principle when designing an experiment is to control all variables except the one of interest: the treatment. Toxicologist and pharmacologists have widely ignored this principle by using genetically heterogeneous "outbred" rats and mice, increasing the chance of false-negative results. By using isogenic (inbred or F1 hybrid, see Note 1) rats and mice instead of outbred stocks the signal/noise ratio and the power of the experiments can be increased at little extra cost whilst using no more animals. Moreover, the power of the experiment can be further increased by using more than one strain, as this reduces the chance of selecting one which is resistant to the test chemical. This can also be done without increasing the total number of animals by using a factorial experimental design, e.g. if the ten outbred animals per treatment group in a 28-day toxicity test were replaced by two animals of each of five strains (still ten animals per treatment group) selected to be as genetically diverse as possible, this would increase the signal/noise ratio and power of the experiment. This would allow safety to be assessed using the most sensitive strain.Toxicologists should also consider making more use of the mouse instead of the rat. They are less costly to maintain, use less test substance, there are many inbred and genetically modified strains, and it is easier to identify gene loci controlling variation in response to xenobiotics in this species.We demonstrate

  12. Identification and validation of vesicant therapeutic targets using a high, throughput siRNA screening approach

    Science.gov (United States)

    2014-12-24

    CONTRACT NUMBER siRNA screening approach 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Ruff, AL, Beach, S, Lehman , J, Rothwell, C...Sarah Beach · John Lehman · Cristin Rothwell · James F. Dillman Received: 15 September 2014 / Accepted: 25 November 2014 / Published online: 24...Defense, or the US Government. A. L. Ruff (*) · S. Beach · J. Lehman · C. Rothwell · J. F. Dillman Cell and Molecular Biology Branch, Research

  13. Six-year outcome of the national premarital screening and genetic counseling program for sickle cell disease and β-thalassemia in Saudi Arabia

    National Research Council Canada - National Science Library

    Memish, Ziad Ahmed; Saeedi, Mohammad Y

    2011-01-01

    Saudi Arabia has a high prevalence of hereditary hemoglobin disorders. Data has been collected by the Saudi Premarital Screening and Genetic Counseling Program on the prevalence of sickle cell disease and β...

  14. Pre-marital screening for sickle cell haemoglobin and genetic counseling: awareness and acceptability among undergraduate students of a Nigerian University

    OpenAIRE

    Ugwu N.I.

    2016-01-01

    Background: Sickle cell disease (SCD) is a genetic disease which is more prevalent in developing countries. Pre-marital screening for sickle cell disorder is helpful in the prevention and control of the condition. Aim: The aim of this study was to assess the level of awareness and acceptability of premarital genetic counseling and screening for sickle cell haemoglobin among undergraduate students of Ebonyi State University Abakaliki, South eastern, Nigeria. Methods: A cross-sectio...

  15. Investigating an Ethical Approach to Genetically Modified Crops in ...

    African Journals Online (AJOL)

    4carolinebell@gmail.com

    Genetically modified (GM) crops gained attention in southern Africa in the ... cited in Webster, 1999:414) states that political institutions find themselves .... means that risks are socially invisible and must clearly be brought to consciousness, ...

  16. Mobile transporter path planning using a genetic algorithm approach

    Science.gov (United States)

    Baffes, Paul; Wang, Lui

    1988-01-01

    The use of an optimization technique known as a genetic algorithm for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the Space Station which must be able to reach any point of the structure autonomously. Specific elements of the genetic algorithm are explored in both a theoretical and experimental sense. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research. However, trajectory planning problems are common in space systems and the genetic algorithm provides an attractive alternative to the classical techniques used to solve these problems.

  17. Congenital hydrocephalus in clinical practice : A genetic diagnostic approach

    NARCIS (Netherlands)

    Verhagen, J. M. A.; Schrander-Stumpel, C. T. R. M.; Krapels, P. C.; de Die-Smulders, C. E. M.; van Lint, F. H. M.; Willekes, C.; Weber, J. W.; Gavilanes, A. W. D.; Macville, M. V. E.; Stegmann, A. P. A.; Engelen, J. J. M.; Bakker, J.; Vos, Y. J.; Frints, S. G. M.

    2011-01-01

    Congenital hydrocephalus is a common and often disabling disorder. The etiology is very heterogeneous. Little is known about the genetic causes of congenital hydrocephalus. A retrospective survey was performed including patients with primary congenital hydrocephalus referred to the Department of

  18. Integrating demographic and genetic approaches in plant conservation

    NARCIS (Netherlands)

    Oostermeijer, J.G.B.; Luijten, S.H.; den Nijs, J.C.M.

    2003-01-01

    We summarize the problems that populations of formerly common plants may encounter when habitat fragmentation isolates them and reduces population size. Genetic erosion, inbreeding depression, Allee-effects on reproductive success, catastrophes and environmental stochasticity are illustrated with st

  19. A group approach to genetic counselling of cardiomyopathy patients : satisfaction and psychological outcomes sufficient for further implementation

    NARCIS (Netherlands)

    Otten, Ellen; Birnie, Erwin; Ranchor, Adelita V.; van Tintelen, J. Peter; van Langen, Irene M.

    2015-01-01

    The introduction of next-generation sequencing in everyday clinical genetics practise is increasing the number of genetic disorders that can be confirmed at DNA-level, and consequently increases the possibilities for cascade screening. This leads to a greater need for genetic counselling, whereas th

  20. Potential International Approaches to Ownership/Control of Human Genetic Resources.

    Science.gov (United States)

    Rhodes, Catherine

    2016-09-01

    In its governance activities for genetic resources, the international community has adopted various approaches to their ownership, including: free access; common heritage of mankind; intellectual property rights; and state sovereign rights. They have also created systems which combine elements of these approaches. While governance of plant and animal genetic resources is well-established internationally, there has not yet been a clear approach selected for human genetic resources. Based on assessment of the goals which international governance of human genetic resources ought to serve, and the implications for how they will be accessed and utilised, it is argued that common heritage of mankind will be the most appropriate approach to adopt to their ownership/control. It does this with the aim of stimulating discussion in this area and providing a starting point for deeper consideration of how a common heritage of mankind, or similar, regime for human genetic resources would function and be implemented.

  1. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    Science.gov (United States)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  2. Combining Single (Mixed) Metric Approach and Genetic Algorithm for QoS Routing Problem

    Institute of Scientific and Technical Information of China (English)

    胡世余; 谢剑英

    2004-01-01

    A hybrid algorithm for the delay constrained least cost path problem is proposed through combination of single (mixed) metric approach and genetic algorithm. Compared with the known genetic algorithm for the same problem, the new algorithm adopts integral coding scheme and new genetic operator, which reduces the search space and improves the efficiency of genetic operation. Meanwhile, the single (mixed) approach accelerates the convergence speed. Simulation results indicate that the proposed algorithm can find near-optimal even optimal solutions within moderate numbers of generations.

  3. SYBR® Green qPCR Screening Methods for Detection of Anti-herbicide Genes in Genetically Modiifed Processed Products

    Institute of Scientific and Technical Information of China (English)

    Zhen Zhen; Lv Wei; Tang Zhi-fen; Liu Ying; Ao Jin-xia; Yuan Xiao-han; Zhang Ming-hui; Qiu You-wen; Gao Xue-jun

    2016-01-01

    The use of genetically modified organisms (GMOs) as food products becomes more and more widespread. The European Union has implemented a set of very strict procedures for the approval to grow, import and/or utilize GMOs as food or food ingredients. Thus, analytical methods for detection of GMOs are necessary in order to verify compliance with labelling requirements. There are few effective screening methods for processed GM (genetically modified) products. Three anti-herbicide genes (CP4-EPSPS,BAR andPAT) are common exogenous genes used in commercialized transgenic soybean, maize and rice. In the present study, a new SYBR® Green qPCR screening method was developed to simultaneously detect the three exogenous anti-herbicide genes and one endogenous gene in a run. We tested seven samples of representative processed products (soya lecithin, soya protein powder, chocolate beverage, infant rice cereal, maize protein powder, maize starch, and maize jam) using the developed method, and amplicons of endogenous gene and transgenic fragments were obtained from all the processed products, and the sensitivity was 0.1%. These results indicated that SYBR® Green qPCR screening method was appropriate for qualitative detection of transgenic soybean, maize and rice in processed products.

  4. Functional genomic screening approaches in mechanistic toxicology and potential future applications of CRISPR-Cas9.

    Science.gov (United States)

    Shen, Hua; McHale, Cliona M; Smith, Martyn T; Zhang, Luoping

    2015-01-01

    Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide

  5. Bioethical – Theological and Legal approach in genetic testing of adult persons

    Directory of Open Access Journals (Sweden)

    George Katsimigas

    2012-07-01

    Full Text Available Thorough genetic testing gives possibility's diagnosis of genetic diseases or identity individuals, who genetic predisposed for disease outbreak Aims: To present/identify the ethical and religious issues, which arise from the application of genetic testing in humans. Furthermore, the principles from the European and Greek legislation regarding genetic testing will be discussed. Materials & Methods: A literature review based on both review and research literature, conducted during the period of (1993-2010, derived from MEDLINE, SCOPUS and ΙΑΤΡΟΤΕΚ databases using as key words: Bioethics, genetic testing, bioethics, access, genetic information, orthodox ethics, Legislation. Results: Genetic testing for disease prevention is of primary importance. The main ethical concerns however, are related to the dissemination/ disclosure and use of this information from insurance companies, healthcare authorities, scientists, forensic departments/services and employers. Similarly, the orthodox religion accepts the use of genetic testing for the prevention and treatment of diseases as long as there is no break of confidentiality. Finally, considering the legal issues, it is apparent that genetic information is regarded as personal information and as such it is protected from the national (Greek and international law. Conclusions: It is necessary to ensure that the public authorities protect the rights of their citizens regarding genetic testing and all insurance companies, employers, schools etc. should not be allowed to have access to genetic information. Such an approach will ensure that social discrimination, obstructions or other inequalities between people on the basis of genetic information is avoided.

  6. Investigating the viability of genetic screening/testing for RA susceptibility using combinations of five confirmed risk loci

    Science.gov (United States)

    McClure, Annie; Lunt, Mark; Eyre, Steve; Ke, Xiayi; Thomson, Wendy; Hinks, Anne; Bowes, John; Gibbons, Laura; Plant, Darren; Wilson, Anthony G.; Marinou, Ioanna; Morgan, Ann W.; Emery, Paul; Steer, Sophia; Hocking, Lynne J.; Reid, David M.; Wordsworth, Paul; Harrison, Pille; Worthington, Jane

    2009-01-01

    Objective. Five loci—the shared epitope (SE) of HLA-DRB1, the PTPN22 gene, a locus on 6q23, the STAT4 gene and a locus mapping to the TRAF1/C5 genetic region—have now been unequivocally confirmed as conferring susceptibility to RA. The largest single effect is conferred by SE. We hypothesized that combinations of susceptibility alleles may increase risk over and above that of any individual locus alone. Methods. We analysed data from 4238 RA cases and 1811 controls, for which genotypes were available at all five loci. Results. Statistical analysis identified eight high-risk combinations conferring an odds ratio >6 compared with carriage of no susceptibility variants and, interestingly, 10% population controls carried a combination conferring high risk. All high-risk combinations included SE, and all but one contained PTPN22. Statistical modelling showed that a model containing only these two loci could achieve comparable sensitivity and specificity to a model including all five. Furthermore, replacing SE (which requires full subtyping at the HLA-DRB1 gene) with DRB1*1/4/10 carriage resulted in little further loss of information (correlation coefficient between models = 0.93). Conclusions. This represents the first exploration of the viability of population screening for RA and identifies several high-risk genetic combinations. However, given the population incidence of RA, genetic screening based on these loci alone is neither sufficiently sensitive nor specific at the current time. PMID:19741008

  7. Maine Coon renal screening: ultrasonographical characterisation and preliminary genetic analysis for common genes in cats with renal cysts.

    Science.gov (United States)

    Gendron, Karine; Owczarek-Lipska, Marta; Lang, Johann; Leeb, Tosso

    2013-12-01

    The objective of this study was to assess the prevalence of renal cysts and other renal abnormalities in purebred Maine Coon cats, and to characterise these through genetic typing. Voluntary pre-breeding screening programmes for polycystic kidney disease (PKD) are offered for this breed throughout Switzerland, Germany and other northern European countries. We performed a retrospective evaluation of Maine Coon screening for renal disease at one institution over an 8-year period. Renal ultrasonography was performed in 187 healthy Maine Coon cats. Renal changes were observed in 27 of these cats. Renal cysts were found in seven cats, and were mostly single and unilateral (6/7, 85.7%), small (mean 3.6 mm) and located at the corticomedullary junction (4/6, 66.7%). Sonographical changes indicating chronic kidney disease (CKD) were observed in 10/187 (5.3%) cats and changes of unknown significance were documented in 11/187 (5.9%) cats. All six cats genetically tested for PKD1 were negative for the mutation, and gene sequencing of these cats did not demonstrate any common genetic sequences. Cystic renal disease occurs with a low prevalence in Maine Coons and is unrelated to the PKD observed in Persians and related breeds. Ultrasonographical findings compatible with CKD are not uncommon in juvenile Maine Coons.

  8. A microarray-based genetic screen for yeast chronological aging factors.

    Directory of Open Access Journals (Sweden)

    Mirela Matecic

    2010-04-01

    Full Text Available Model organisms have played an important role in the elucidation of multiple genes and cellular processes that regulate aging. In this study we utilized the budding yeast, Saccharomyces cerevisiae, in a large-scale screen for genes that function in the regulation of chronological lifespan, which is defined by the number of days that non-dividing cells remain viable. A pooled collection of viable haploid gene deletion mutants, each tagged with unique identifying DNA "bar-code" sequences was chronologically aged in liquid culture. Viable mutants in the aging population were selected at several time points and then detected using a microarray DNA hybridization technique that quantifies abundance of the barcode tags. Multiple short- and long-lived mutants were identified using this approach. Among the confirmed short-lived mutants were those defective for autophagy, indicating a key requirement for the recycling of cellular organelles in longevity. Defects in autophagy also prevented lifespan extension induced by limitation of amino acids in the growth media. Among the confirmed long-lived mutants were those defective in the highly conserved de novo purine biosynthesis pathway (the ADE genes, which ultimately produces IMP and AMP. Blocking this pathway extended lifespan to the same degree as calorie (glucose restriction. A recently discovered cell-extrinsic mechanism of chronological aging involving acetic acid secretion and toxicity was suppressed in a long-lived ade4Delta mutant and exacerbated by a short-lived atg16Delta autophagy mutant. The identification of multiple novel effectors of yeast chronological lifespan will greatly aid in the elucidation of mechanisms that cells and organisms utilize in slowing down the aging process.

  9. Cultural Concerns when Counseling Orthodox Jewish Couples for Genetic Screening and PGD.

    Science.gov (United States)

    Grazi, Richard V; Wolowelsky, Joel B

    2015-12-01

    There is a spectrum of attitudes within the Orthodox Jewish community towards genetic testing and PGD. Increased understanding of the belief systems of the Orthodox Jewish population will enhance the genetic counselors' ability to better serve this unique group of patients. By improving cultural competence, genetic counselors can help patients choose the testing options that they deem appropriate, while simultaneously respecting the patient's belief system.

  10. Genetic screening for Krabbe disease: learning from the past and looking to the future.

    Science.gov (United States)

    Macarov, Michal; Zlotogora, Joel; Meiner, Vardiella; Khatib, Zinab; Sury, Vivi; Mengistu, Getu; Bargal, Ruth; Shmueli, Esther; Meidan, Bela; Zeigler, Marsha

    2011-03-01

    In Israel, Krabbe disease is frequent in two Moslem Arab villages in the Jerusalem area. In this paper we present our experience of almost four decades with diagnosis of Krabbe disease, carrier screening and prenatal diagnosis. The screening program is well accepted by the community, and there is a clear trend towards premarital testing. The screening program and prenatal diagnosis have led to a decrease in the incidence of Krabbe disease from 1.6 per 1,000 live births to 0.82 per 1,000. Copyright © 2011 Wiley-Liss, Inc.

  11. Color features as an approach for the automated screening of Salmonella strain

    Science.gov (United States)

    Trujillo, Alejandra Serrano; González, Viridiana Contreras; Andrade Rincón, Saulo E.; Palafox, Luis E.

    2016-11-01

    We present the implementation of a feature extraction approach for the automated screening of Salmonella sp., a task visually carried out by a microbiologist, where the resulting color characteristics of the culture media plate indicate the presence of this strain. The screening of Salmonella sp. is based on the inoculation and incubation of a sample on an agar plate, allowing the isolation of this strain, if present. This process uses three media: Xylose lysine deoxycholate, Salmonella Shigella, and Brilliant Green agar plates, which exhibit specific color characteristics over the colonies and over the surrounding medium for a presumed positive interpretation. Under a controlled illumination environment, images of plates are captured and the characteristics found over each agar are processed separately. Each agar is analyzed using statistical descriptors for texture, to determine the presence of colonies, followed by the extraction of color features. A comparison among the color features seen over the three media, according to the FDA Bacteriological Analytical Manual, determines the presence of Salmonella sp. on a given sample. The implemented process proves that the task addressed can be accomplished under an image processing approach, leading to the future validation and automation of additional screening processes.

  12. SCREENING APPROACHES FOR METHANE MITIGATING POTENTIAL OF TANNIN-CONTAINING PLANTS UNDER IN VITRO RUMEN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2012-12-01

    Full Text Available The aim of the present study was to conduct univariate, bivariate and multivariate (principal component analysis, PCA approaches in the screening of tannin-containing plants from various collection sites for their CH4 mitigating properties. Plant samples were obtained from various collection sites in different countries, i.e. Indonesia (n = 27 species, Mongolia (n = 14, Switzerland (n = 16 and Germany (n = 3. The plants were incubated in vitro with buffered-rumen fluid at 39oC for 24 h. Total gas production was recorded as an indicator of feed quality and emission of CH4 was measured. Results showed that, based on bivariate screening, generally, plants possessed low CH4 production had low quality or low total gas production except Rhus typhina, i.e. 43 ml/200 mg DM. The loading plot of PCA showed that all phenolic fractions were in the opposite direction with CH4 and total gas production. Plants clustered together in reverse direction to that of CH4 were Bergenia crassifolia root and leaf, Swietenia mahagoni, Clidemia hirta, Peltiphyllum peltatum, Acacia villosa and R. typhina. It was conluded that, for tannin-containing plants, screenings based on univariate, bivariate and multivariate approaches in relation to ruminal CH4 emission led to similar results

  13. A propensity score approach to correction for bias due to population stratification using genetic and non-genetic factors.

    Science.gov (United States)

    Zhao, Huaqing; Rebbeck, Timothy R; Mitra, Nandita

    2009-12-01

    Confounding due to population stratification (PS) arises when differences in both allele and disease frequencies exist in a population of mixed racial/ethnic subpopulations. Genomic control, structured association, principal components analysis (PCA), and multidimensional scaling (MDS) approaches have been proposed to address this bias using genetic markers. However, confounding due to PS can also be due to non-genetic factors. Propensity scores are widely used to address confounding in observational studies but have not been adapted to deal with PS in genetic association studies. We propose a genomic propensity score (GPS) approach to correct for bias due to PS that considers both genetic and non-genetic factors. We compare the GPS method with PCA and MDS using simulation studies. Our results show that GPS can adequately adjust and consistently correct for bias due to PS. Under no/mild, moderate, and severe PS, GPS yielded estimated with bias close to 0 (mean=-0.0044, standard error=0.0087). Under moderate or severe PS, the GPS method consistently outperforms the PCA method in terms of bias, coverage probability (CP), and type I error. Under moderate PS, the GPS method consistently outperforms the MDS method in terms of CP. PCA maintains relatively high power compared to both MDS and GPS methods under the simulated situations. GPS and MDS are comparable in terms of statistical properties such as bias, type I error, and power. The GPS method provides a novel and robust tool for obtaining less-biased estimates of genetic associations that can consider both genetic and non-genetic factors.

  14. A genetic algorithm approach in interface and surface structure optimization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.

  15. A Novel Frizzled-Based Screening Tool Identifies Genetic Modifiers of Planar Cell Polarity in Drosophila Wings

    Directory of Open Access Journals (Sweden)

    Jose Maria Carvajal-Gonzalez

    2016-12-01

    Full Text Available Most mutant alleles in the Fz-PCP pathway genes were discovered in classic Drosophila screens looking for recessive loss-of-function (LOF mutations. Nonetheless, although Fz-PCP signaling is sensitive to increased doses of PCP gene products, not many screens have been performed in the wing under genetically engineered Fz overexpression conditions, mostly because the Fz phenotypes were strong and/or not easy to score and quantify. Here, we present a screen based on an unexpected mild Frizzled gain-of-function (GOF phenotype. The leakiness of a chimeric Frizzled protein designed to be accumulated in the endoplasmic reticulum (ER generated a reproducible Frizzled GOF phenotype in Drosophila wings. Using this genotype, we first screened a genome-wide collection of large deficiencies and found 16 strongly interacting genomic regions. Next, we narrowed down seven of those regions to finally test 116 candidate genes. We were, thus, able to identify eight new loci with a potential function in the PCP context. We further analyzed and confirmed krasavietz and its interactor short-stop as new genes acting during planar cell polarity establishment with a function related to actin and microtubule dynamics.

  16. [Molecular genetic bases of adaptation processes and approaches to their analysis].

    Science.gov (United States)

    Salmenkova, E A

    2013-01-01

    Great interest in studying the molecular genetic bases of the adaptation processes is explained by their importance in understanding evolutionary changes, in the development ofintraspecific and interspecific genetic diversity, and in the creation of approaches and programs for maintaining and restoring the population. The article examines the sources and conditions for generating adaptive genetic variability and contribution of neutral and adaptive genetic variability to the population structure of the species; methods for identifying the adaptive genetic variability on the genome level are also described. Considerable attention is paid to the potential of new technologies of genome analysis, including next-generation sequencing and some accompanying methods. In conclusion, the important role of the joint use of genomics and proteomics approaches in understanding the molecular genetic bases of adaptation is emphasized.

  17. Screening Out Controversy: Human Genetics, Emerging Techniques of Diagnosis, and the Origins of the Social Issues Committee of the American Society of Human Genetics, 1964-1973.

    Science.gov (United States)

    Mitchell, M X

    2017-05-01

    In the years following World War II, and increasingly during the 1960s and 1970s, professional scientific societies developed internal sub-committees to address the social implications of their scientific expertise (Moore, Disrupting Science: Social Movements, American Scientists, and the Politics of the Military, 1945-1975. Princeton: Princeton University Press, 2008). This article explores the early years of one such committee, the American Society of Human Genetics' "Social Issues Committee," founded in 1967. Although the committee's name might suggest it was founded to increase the ASHG's public and policy engagement, exploration of the committee's early years reveals a more complicated reality. Affronted by legislators' recent unwillingness to seek the expert advice of human geneticists before adopting widespread neonatal screening programs for phenylketonuria (PKU), and feeling pressed to establish their relevance in an increasingly resource-scarce funding environment, committee members sought to increase the discipline's expert authority. Painfully aware of controversy over abortion rights and haunted by the taint of the discipline's eugenic past, however, the committee proceeded with great caution. Seeking to harness interest in and assert professional control over emerging techniques of genetic diagnosis, the committee strove to protect the society's image by relegating ethical and policy questions about their use to the individual consciences of member scientists. It was not until 1973, after the committee's modest success in organizing support for a retrospective public health study of PKU screening and following the legalization of abortion on demand, that the committee decided to take a more publicly engaged stance.

  18. Horizontal symmetry in the algebraic approach of genetic code

    CERN Document Server

    Godina-Nava, J J

    2013-01-01

    Using concepts of physics of elementary particles concerning the breaking of symmetry and grannd unified theory we propose to study with the algebraic approximation the degeneracy finded in the genetic code with the incorporation of a horizontal symmetry used in gauge theories to fit the contents of the multiplets of the genetic code. It is used the algebraic approch of Hornos et. al. \\cite{main,PRL71,PRE,MPLB}. We propose an example for the incorporation of horizontal symmetry to study mixtures of elements of the multiplets.

  19. Horizontal symmetry in the algebraic approach of genetic code

    OpenAIRE

    Godina-Nava, J. J.

    2013-01-01

    Using concepts of physics of elementary particles concerning the breaking of symmetry and grannd unified theory we propose to study with the algebraic approximation the degeneracy finded in the genetic code with the incorporation of a horizontal symmetry used in gauge theories to fit the contents of the multiplets of the genetic code. It is used the algebraic approch of Hornos et. al. \\cite{main,PRL71,PRE,MPLB}. We propose an example for the incorporation of horizontal symmetry to study mixtu...

  20. Simple screened exact-exchange approach for excitonic properties in solids

    Science.gov (United States)

    Yang, Zeng-hui; Sottile, Francesco; Ullrich, Carsten A.

    2015-07-01

    We present a screened exact-exchange (SXX) method for the efficient and accurate calculation of the optical properties of solids, where the screening is achieved through the zero-wave-vector limit of the inverse dielectric function. The SXX approach can be viewed as a simplification of the Bethe-Salpeter equation (BSE) or, in the context of time-dependent density-functional theory, as a first step towards a new class of hybrid functionals for the optical properties of solids. SXX performs well for bound excitons and continuum spectra in both small-gap semiconductors and large-gap insulators, with a computational cost much lower than that of the BSE.

  1. Sniffer dogs as part of a bimodal bionic research approach to develop a lung cancer screening.

    Science.gov (United States)

    Boedeker, Enole; Friedel, Godehard; Walles, Thorsten

    2012-05-01

    Lung cancer (LC) continues to represent a heavy burden for health care systems worldwide. Epidemiological studies predict that its role will increase in the near future. While patient prognosis is strongly associated with tumour stage and early detection of disease, no screening test exists so far. It has been suggested that electronic sensor devices, commonly referred to as 'electronic noses', may be applicable to identify cancer-specific volatile organic compounds in the breath of patients and therefore may represent promising screening technologies. However, three decades of research did not bring forward a clinically applicable device. Here, we propose a new research approach by involving specially trained sniffer dogs into research strategies by making use of their ability to identify LC in the breath sample of patients.

  2. A Community Capacity-Enhancement Approach to Breast and Cervical Cancer Screening among Older Women of Color

    Science.gov (United States)

    Bullock, Karen; McGraw, Sarah A.

    2006-01-01

    In the Screening Older Minority Women project, the authors applied a community capacity-enhancement approach to promoting breast and cervical cancer screening among older women of color. Members of informal support networks were recruited for this health promotion intervention to empower Latina and African American women to engage in positive…

  3. [The significance of pedigree genetic screening and rapid immunological parameters in the diagnosis of primary hemophagocytic lymphohistiocytosis].

    Science.gov (United States)

    Zhang, J; Wang, Y N; Wang, J S; Wu, L; Wei, N; Fu, L; Gao, Z; Chen, J H; Pei, R J; Wang, Z

    2016-07-01

    To investigate the significance of pedigree genetic screening and rapid immunological parameters in the diagnosis of primary hemophagocytic lymphohistiocytosis (HLH). Four cases of primary HLH patients with PRF1, UNC13D and SH2D1A gene mutations were conducted pedigree investigation, including family genetic screening and detections of immunological parameters (NK cell activity, CD107a degranulation and expression of HLH related defective protein), to evaluate the significance of these different indicators in the diagnosis of primary HLH and explore their correlations. The DNA mutations of the four families included missense mutation c.T172C (p.S58P) and non- frameshift deletions c.1083_1094del (p.361_365del), missense mutation c.C1349T (p.T450M) and frameshift mutation c.1090_1091delCT (p.T364fsX93) in PRF1 gene, missense mutation c.G2588A (p.G863D) in UNC13D gene and hemizygous mutation c.32T>G (p.I11S) in SH2D1A gene. The patients and their family members presented decreased NK cell activities. Individuals who carried mutations of PRF1 gene and SH2D1A gene showed low expression of perforin (PRF1) and signaling lymphocytic activation molecule associated protein (SAP). And the patient with UNC13D gene mutation and his family member with identical mutation showed significant reducing cytotoxic degranulation function (expression of CD107a). Pedigree genetic screening and rapid detection of immunological parameters might play an important role in the diagnosis of primary HLH, and both of them had good consistency. As an efficient detection means, the rapid immunological detection indicators would provide reliable basis for the early diagnosis of the primary HLH.

  4. DNA enrichment approaches to identify unauthorized genetically modified organisms (GMOs)

    NARCIS (Netherlands)

    Arulandhu, Alfred J.; Dijk, van Jeroen P.; Dobnik, David; Holst-Jensen, Arne; Shi, Jianxin; Zel, Jana; Kok, Esther J.

    2016-01-01

    With the increased global production of different genetically modified (GM) plant varieties, chances increase that unauthorized GM organisms (UGMOs) may enter the food chain. At the same time, the detection of UGMOs is a challenging task because of the limited sequence information that will gener

  5. Congenital hydrocephalus in clinical practice : A genetic diagnostic approach

    NARCIS (Netherlands)

    Verhagen, J. M. A.; Schrander-Stumpel, C. T. R. M.; Krapels, P. C.; de Die-Smulders, C. E. M.; van Lint, F. H. M.; Willekes, C.; Weber, J. W.; Gavilanes, A. W. D.; Macville, M. V. E.; Stegmann, A. P. A.; Engelen, J. J. M.; Bakker, J.; Vos, Y. J.; Frints, S. G. M.

    2011-01-01

    Congenital hydrocephalus is a common and often disabling disorder. The etiology is very heterogeneous. Little is known about the genetic causes of congenital hydrocephalus. A retrospective survey was performed including patients with primary congenital hydrocephalus referred to the Department of Cli

  6. The characterization of goat genetic diversity : Towards a genomic approach

    NARCIS (Netherlands)

    Ajmone-Marsan, P.; Colli, L.; Han, J. L.; Achilli, A.; Lancioni, H.; Joost, S.; Crepaldi, P.; Pilla, F.; Stella, A.; Taberlet, P.; Boettcher, P.; Negrini, R.; Lenstra, J. A.

    2014-01-01

    The investigation of genetic diversity at molecular level has been proposed as a valuable complement and sometimes proxy to phenotypic diversity of local breeds and is presently considered as one of the FAO priorities for breed characterization. By recommending a set of selected molecular markers fo

  7. The characterization of goat genetic diversity : Towards a genomic approach

    NARCIS (Netherlands)

    Ajmone-Marsan, P.; Colli, L.; Han, J. L.; Achilli, A.; Lancioni, H.; Joost, S.; Crepaldi, P.; Pilla, F.; Stella, A.; Taberlet, P.; Boettcher, P.; Negrini, R.; Lenstra, J. A.|info:eu-repo/dai/nl/067852335

    2014-01-01

    The investigation of genetic diversity at molecular level has been proposed as a valuable complement and sometimes proxy to phenotypic diversity of local breeds and is presently considered as one of the FAO priorities for breed characterization. By recommending a set of selected molecular markers

  8. A Fuzzy Genetic Algorithm Approach to an Adaptive Information Retrieval Agent.

    Science.gov (United States)

    Martin-Bautista, Maria J.; Vila, Maria-Amparo; Larsen, Henrik Legind

    1999-01-01

    Presents an approach to a Genetic Information Retrieval Agent Filter (GIRAF) that filters and ranks documents retrieved from the Internet according to users' preferences by using a Genetic Algorithm and fuzzy set theory to handle the imprecision of users' preferences and users' evaluation of the retrieved documents. (Author/LRW)

  9. Food Control and a Citizen Science Approach for Improving Teaching of Genetics in Universities

    Science.gov (United States)

    Borrell, Y. J.; Muñoz-Colmenero, A. M.; Dopico, E.; Miralles, L.; Garcia-Vazquez, E.

    2016-01-01

    A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home ("students as samplers") were employed as teaching material in three different courses of Genetics during the academic…

  10. State of the Art High-Throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet

    Science.gov (United States)

    State of the Art High-Throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet (Presented by Dr. Marilyn J. Aardema, Chief Scientific Advisor, Toxicology, Dr. Leon Stankowski, et. al. (6/28/2012)

  11. Estimating P-coverage of biosynthetic pathways in DNA libraries and screening by genetic selection: biotin biosynthesis in the marine microorganism Chromohalobacter.

    Science.gov (United States)

    Kim, Eun Jin; Angell, Scott; Janes, Jeff; Watanabe, Coran M H

    2008-06-01

    Traditional approaches to natural product discovery involve cell-based screening of natural product extracts followed by compound isolation and characterization. Their importance notwithstanding, continued mining leads to depletion of natural resources and the reisolation of previously identified metabolites. Metagenomic strategies aimed at localizing the biosynthetic cluster genes and expressing them in surrogate hosts offers one possible alternative. A fundamental question that naturally arises when pursuing such a strategy is, how large must the genomic library be to effectively represent the genome of an organism(s) and the biosynthetic gene clusters they harbor? Such an issue is certainly augmented in the absence of expensive robotics to expedite colony picking and/or screening of clones. We have developed an algorism, named BPC (biosynthetic pathway coverage), supported by molecular simulations to deduce the number of BAC clones required to achieve proper coverage of the genome and their respective biosynthetic pathways. The strategy has been applied to the construction of a large-insert BAC library from a marine microorganism, Hon6 (isolated from Honokohau, Maui) thought to represent a new species. The genomic library is constructed with a BAC yeast shuttle vector pClasper lacZ paving the way for the culturing of libraries in both prokaryotic and eukaryotic hosts. Flow cytometric methods are utilized to estimate the genome size of the organism and BPC implemented to assess P-coverage or percent coverage. A genetic selection strategy is illustrated, applications of which could expedite screening efforts in the identification and localization of biosynthetic pathways from marine microbial consortia, offering a powerful complement to genome sequencing and degenerate probe strategies. Implementing this approach, we report on the biotin biosynthetic pathway from the marine microorganism Hon6.

  12. A molecular-genetic approach to studying source-sink interactions in Arabidopsis thalian. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S. I.

    2000-06-01

    This is a final report describing the results of the research funded by the DOE Energy Biosciences Program grant entitled ''A Molecular-Genetic Approach to Studying Source-Sink Interactions in Arabidiopsis thaliana''.

  13. A systems genetics approach provides a bridge from discovered genetic variants to biological pathways in rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Hirofumi Nakaoka

    Full Text Available Genome-wide association studies (GWAS have yielded novel genetic loci underlying common diseases. We propose a systems genetics approach to utilize these discoveries for better understanding of the genetic architecture of rheumatoid arthritis (RA. Current evidence of genetic associations with RA was sought through PubMed and the NHGRI GWAS catalog. The associations of 15 single nucleotide polymorphisms and HLA-DRB1 alleles were confirmed in 1,287 cases and 1,500 controls of Japanese subjects. Among these, HLA-DRB1 alleles and eight SNPs showed significant associations and all but one of the variants had the same direction of effect as identified in the previous studies, indicating that the genetic risk factors underlying RA are shared across populations. By receiver operating characteristic curve analysis, the area under the curve (AUC for the genetic risk score based on the selected variants was 68.4%. For seropositive RA patients only, the AUC improved to 70.9%, indicating good but suboptimal predictive ability. A simulation study shows that more than 200 additional loci with similar effect size as recent GWAS findings or 20 rare variants with intermediate effects are needed to achieve AUC = 80.0%. We performed the random walk with restart (RWR algorithm to prioritize genes for future mapping studies. The performance of the algorithm was confirmed by leave-one-out cross-validation. The RWR algorithm pointed to ZAP70 in the first rank, in which mutation causes RA-like autoimmune arthritis in mice. By applying the hierarchical clustering method to a subnetwork comprising RA-associated genes and top-ranked genes by the RWR, we found three functional modules relevant to RA etiology: "leukocyte activation and differentiation", "pattern-recognition receptor signaling pathway", and "chemokines and their receptors".These results suggest that the systems genetics approach is useful to find directions of future mapping strategies to illuminate

  14. Energy Efficient Routing in Wireless Sensor Networks: A Genetic Approach

    CERN Document Server

    Chakraborty, Ayon; Naskar, Mrinal Kanti

    2011-01-01

    The key parameters that need to be addressed while designing protocols for sensor networks are its energy awareness and computational feasibility in resource constrained sensor nodes. Variation in the distances of nodes from the Base Station and differences in inter-nodal distances are primary factors causing unequal energy dissipation among the nodes. Thus energy difference among the nodes increases with time resulting in degraded network performance. The LEACH and PEGASIS schemes which provided elegant solutions to the problem suffer due to randomization of cluster heads and greedy chain formation respectively. In this paper, we propose a Genetic algorithm inspired ROUting Protocol (GROUP) which shows enhanced performance in terms of energy efficiency and network lifetime over other schemes. GROUP increases the network performance by ensuring a sub-optimal energy dissipation of the individual nodes despite their random deployment. It employs modern heuristics like Genetic Algorithms along with Simulated Ann...

  15. Genetic Approach to Elucidation of Sasang Constitutional Medicine

    OpenAIRE

    Bu-Yeo Kim; Seongwon Cha; Hee-Jeong Jin; Sangkyun Jeong

    2009-01-01

    Sasang Constitutional Medicine (SCM) offers a medical principle that classifies humans into four constitution groups and guides their treatment with constitution-matched medical assistance. The principle of this traditional medicine, although requires significant scientific support, appears to suggest a genetic influence on constitution type. The relative frequency of constitution types in a population, for instance, has remained relatively constant since Jema Lee first described them from hi...

  16. SCREENING APPROACHES FOR METHANE MITIGATING POTENTIAL OF TANNIN-CONTAINING PLANTS UNDER IN VITRO RUMEN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2014-10-01

    Full Text Available The aim of the present study was to conduct univariate, bivariate and multivariate (principalcomponent analysis, PCA approaches in the screening of tannin-containing plants from variouscollection sites for their CH4 mitigating properties. Plant samples were obtained from various collectionsites in different countries, i.e. Indonesia (n = 27 species, Mongolia (n = 14, Switzerland (n = 16 andGermany (n = 3. The plants were incubated in vitro with buffered-rumen fluid at 39oC for 24 h. Totalgas production was recorded as an indicator of feed quality and emission of CH4 was measured. Resultsshowed that, based on bivariate screening, generally, plants possessed low CH4 production had lowquality or low total gas production except Rhus typhina, i.e. 43 ml/200 mg DM. The loading plot of PCAshowed that all phenolic fractions were in the opposite direction with CH4 and total gas production.Plants clustered together in reverse direction to that of CH4 were Bergenia crassifolia root and leaf,Swietenia mahagoni, Clidemia hirta, Peltiphyllum peltatum, Acacia villosa and R. typhina. It wasconluded that, for tannin-containing plants, screenings based on univariate, bivariate and multivariateapproaches in relation to ruminal CH4 emission led to similar results.

  17. Hierarchical Genetic Algorithm Approach to Determine Pulse Sequences in NMR

    CERN Document Server

    Ajoy, Ashok

    2009-01-01

    We develop a new class of genetic algorithm that computationally determines efficient pulse sequences to implement a quantum gate U in a three-qubit system. The method is shown to be quite general, and the same algorithm can be used to derive efficient sequences for a variety of target matrices. We demonstrate this by implementing the inversion-on-equality gate efficiently when the spin-spin coupling constants $J_{12}=J_{23}=J$ and $J_{13}=0$. We also propose new pulse sequences to implement the Parity gate and Fanout gate, which are about 50% more efficient than the previous best efforts. Moreover, these sequences are shown to require significantly less RF power for their implementation. The proposed algorithm introduces several new features in the conventional genetic algorithm framework. We use matrices instead of linear chains, and the columns of these matrices have a well defined hierarchy. The algorithm is a genetic algorithm coupled to a fast local optimizer, and is hence a hybrid GA. It shows fast con...

  18. High acceptance of an early dyslexia screening test involving genetic analyses in Germany

    National Research Council Canada - National Science Library

    Wilcke, Arndt; Müller, Bent; Schaadt, Gesa; Kirsten, Holger; Boltze, Johannes

    2016-01-01

    ... the end of the 2nd grade, resulting in the loss of several years for early therapy. Currently, research is focusing on the development of early tests for dyslexia, which may be based on EEG and genetics...

  19. Characterization of new bacterial catabolic genes and mobile genetic elements by high throughput genetic screening of a soil metagenomic library.

    Science.gov (United States)

    Jacquiod, Samuel; Demanèche, Sandrine; Franqueville, Laure; Ausec, Luka; Xu, Zhuofei; Delmont, Tom O; Dunon, Vincent; Cagnon, Christine; Mandic-Mulec, Ines; Vogel, Timothy M; Simonet, Pascal

    2014-11-20

    A mix of oligonucleotide probes was used to hybridize soil metagenomic DNA from a fosmid clone library spotted on high density membranes. The pooled radio-labeled probes were designed to target genes encoding glycoside hydrolases GH18, dehalogenases, bacterial laccases and mobile genetic elements (integrases from integrons and insertion sequences). Positive hybridizing spots were affiliated to the corresponding clones in the library and the metagenomic inserts were sequenced. After assembly and annotation, new coding DNA sequences related to genes of interest were identified with low protein similarity against the closest hits in databases. This work highlights the sensitivity of DNA/DNA hybridization techniques as an effective and complementary way to recover novel genes from large metagenomic clone libraries. This study also supports that some of the identified catabolic genes might be associated with horizontal transfer events.

  20. Food control and a citizen science approach for improving teaching of Genetics in universities.

    Science.gov (United States)

    Borrell, Y J; Muñoz-Colmenero, A M; Dopico, E; Miralles, L; Garcia-Vazquez, E

    2016-09-10

    A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home (students as samplers) were employed as teaching material in three different courses of Genetics during the academic year 2014-2015: Experimental Methods in Food Production (MBTA) (Master level), and Applied Molecular Biology (BMA) and Conservation Genetics and Breeding (COMGE) (Bachelor/Degree level). Molecular genetics based on PCR amplification of DNA markers was employed for species identification of 22 seafood products in COMGE and MBTA, and for detection of genetically modified (GM) maize from nine products in BMA. In total six seafood products incorrectly labeled (27%), and two undeclared GM maize (22%) were found. A post-Laboratory survey was applied for assessing the efficacy of the approach for improving motivation in the Laboratory Practices of Genetics. Results confirmed that students that worked on their own samples from local markets were significantly more motivated and better evaluated their Genetic laboratory practices than control students (χ(2)  = 12.11 p = 0.033). Our results suggest that citizen science approaches could not be only useful for improving teaching of Genetics in universities but also to incorporate students and citizens as active agents in food control. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):450-462, 2016.

  1. RNA sequencing of Sleeping Beauty transposon-induced tumors detects transposon-RNA fusions in forward genetic cancer screens

    Science.gov (United States)

    Temiz, Nuri A.; Moriarity, Branden S.; Wolf, Natalie K.; Riordan, Jesse D.; Dupuy, Adam J.; Largaespada, David A.; Sarver, Aaron L.

    2016-01-01

    Forward genetic screens using Sleeping Beauty (SB)-mobilized T2/Onc transposons have been used to identify common insertion sites (CISs) associated with tumor formation. Recurrent sites of transposon insertion are commonly identified using ligation-mediated PCR (LM-PCR). Here, we use RNA sequencing (RNA-seq) data to directly identify transcriptional events mediated by T2/Onc. Surprisingly, the majority (∼80%) of LM-PCR identified junction fragments do not lead to observable changes in RNA transcripts. However, in CIS regions, direct transcriptional effects of transposon insertions are observed. We developed an automated method to systematically identify T2/Onc-genome RNA fusion sequences in RNA-seq data. RNA fusion-based CISs were identified corresponding to both DNA-based CISs (Cdkn2a, Mycl1, Nf2, Pten, Sema6d, and Rere) and additional regions strongly associated with cancer that were not observed by LM-PCR (Myc, Akt1, Pth, Csf1r, Fgfr2, Wisp1, Map3k5, and Map4k3). In addition to calculating recurrent CISs, we also present complementary methods to identify potential driver events via determination of strongly supported fusions and fusions with large transcript level changes in the absence of multitumor recurrence. These methods independently identify CIS regions and also point to cancer-associated genes like Braf. We anticipate RNA-seq analyses of tumors from forward genetic screens will become an efficient tool to identify causal events. PMID:26553456

  2. RNA sequencing of Sleeping Beauty transposon-induced tumors detects transposon-RNA fusions in forward genetic cancer screens.

    Science.gov (United States)

    Temiz, Nuri A; Moriarity, Branden S; Wolf, Natalie K; Riordan, Jesse D; Dupuy, Adam J; Largaespada, David A; Sarver, Aaron L

    2016-01-01

    Forward genetic screens using Sleeping Beauty (SB)-mobilized T2/Onc transposons have been used to identify common insertion sites (CISs) associated with tumor formation. Recurrent sites of transposon insertion are commonly identified using ligation-mediated PCR (LM-PCR). Here, we use RNA sequencing (RNA-seq) data to directly identify transcriptional events mediated by T2/Onc. Surprisingly, the majority (∼80%) of LM-PCR identified junction fragments do not lead to observable changes in RNA transcripts. However, in CIS regions, direct transcriptional effects of transposon insertions are observed. We developed an automated method to systematically identify T2/Onc-genome RNA fusion sequences in RNA-seq data. RNA fusion-based CISs were identified corresponding to both DNA-based CISs (Cdkn2a, Mycl1, Nf2, Pten, Sema6d, and Rere) and additional regions strongly associated with cancer that were not observed by LM-PCR (Myc, Akt1, Pth, Csf1r, Fgfr2, Wisp1, Map3k5, and Map4k3). In addition to calculating recurrent CISs, we also present complementary methods to identify potential driver events via determination of strongly supported fusions and fusions with large transcript level changes in the absence of multitumor recurrence. These methods independently identify CIS regions and also point to cancer-associated genes like Braf. We anticipate RNA-seq analyses of tumors from forward genetic screens will become an efficient tool to identify causal events.

  3. Pre-implantation genetic screening using fluorescence in situ hybridization in couples of Indian ethnicity: Is there a scope?

    Directory of Open Access Journals (Sweden)

    Shailaja Gada Saxena

    2014-01-01

    Full Text Available Context: There is a high incidence of numerical chromosomal aberration in couples with repeated in vitro fertilization (IVF failure, advanced maternal age, repeated unexplained abortions, severe male factor infertility and unexplained infertility. Pre-implantation genetic screening (PGS, a variant of pre-implantation genetic diagnosis, screens numerical chromosomal aberrations in couples with normal karyotype, experiencing poor reproductive outcome. The present study includes the results of the initial pilot study on 9 couples who underwent 10 PGS cycles. Aim: The aim of the present study was to evaluate the beneficial effects of PGS in couples with poor reproductive outcome. Settings and Design: Data of initial 9 couples who underwent 10 PGS for various indications was evaluated. Subjects and Methods: Blastomere biopsy was performed on cleavage stage embryos and subjected to two round fluorescence in situ hybridization (FISH testing for chromosomes 13, 18, 21, X and Y as a two-step procedure. Results: Six of the 9 couples (10 PGS cycles conceived, including a twin pregnancy in a couple with male factor infertility, singleton pregnancies in a couple with secondary infertility, in three couples with adverse obstetric outcome in earlier pregnancies and in one couple with repeated IVF failure. Conclusion: In the absence of availability of array-comparative genomic hybridization in diagnostic clinical scenario for PGS and promising results with FISH based PGS as evident from the current pilot study, it is imperative to offer the best available services in the present scenario for better pregnancy outcome for patients.

  4. Identification of previously unrecognized antiestrogenic chemicals using a novel virtual screening approach.

    Science.gov (United States)

    Wang, Ching Y; Ai, Ni; Arora, Sonia; Erenrich, Eric; Nagarajan, Karthigeyan; Zauhar, Randy; Young, Douglas; Welsh, William J

    2006-12-01

    The physiological roles of estrogen in sexual differentiation and development, female and male reproductive processes, and bone health are complex and diverse. Numerous natural and synthetic chemical compounds, commonly known as endocrine disrupting chemicals (EDCs), have been shown to alter the physiological effects of estrogen in humans and wildlife. As such, these EDCs may cause unanticipated and even undesirable effects. Large-scale in vitro and in vivo screening of chemicals to assess their estrogenic activity would demand a prodigious investment of time, labor, and money and would require animal testing on an unprecedented scale. Approaches in silico are increasingly recognized as playing a vital role in screening and prioritizing chemicals to extend limited resources available for experimental testing. Here, we evaluated a multistep procedure that is suitable for in silico (virtual) screening of large chemical databases to identify compounds exhibiting estrogenic activity. This procedure incorporates Shape Signatures, a novel computational tool that rapidly compares molecules on the basis of similarity in shape, polarity, and other bio-relevant properties. Using 4-hydroxy tamoxifen (4-OH TAM) and diethylstilbestrol (DES) as input queries, we employed this scheme to search a sample database of approximately 200,000 commercially available organic chemicals for matches (hits). Of the eight compounds identified computationally as potentially (anti)estrogenic, biological evaluation confirmed two as heretofore unknown estrogen antagonists. Subsequent radioligand binding assays confirmed that two of these three compounds exhibit antiestrogenic activities comparable to 4-OH TAM. Molecular modeling studies of these ligands docked inside the binding pocket of estrogen receptor alpha (ERalpha) elucidated key ligand-receptor interactions that corroborate these experimental findings. The present study demonstrates the utility of our computational scheme for this and

  5. Computational approaches to screen candidate ligands with anti- Parkinson's activity using R programming.

    Science.gov (United States)

    Jayadeepa, R M; Niveditha, M S

    2012-01-01

    It is estimated that by 2050 over 100 million people will be affected by the Parkinson's disease (PD). We propose various computational approaches to screen suitable candidate ligand with anti-Parkinson's activity from phytochemicals. Five different types of dopamine receptors have been identified in the brain, D1-D5. Dopamine receptor D3 was selected as the target receptor. The D3 receptor exists in areas of the brain outside the basal ganglia, such as the limbic system, and thus may play a role in the cognitive and emotional changes noted in Parkinson's disease. A ligand library of 100 molecules with anti-Parkinson's activity was collected from literature survey. Nature is the best combinatorial chemist and possibly has answers to all diseases of mankind. Failure of some synthetic drugs and its side effects have prompted many researches to go back to ancient healing methods which use herbal medicines to give relief. Hence, the candidate ligands with anti-Parkinson's were selected from herbal sources through literature survey. Lipinski rules were applied to screen the suitable molecules for the study, the resulting 88 molecules were energy minimized, and subjected to docking using Autodock Vina. The top eleven molecules were screened according to the docking score generated by Autodock Vina Commercial drug Ropinirole was computed similarly and was compared with the 11 phytochemicals score, the screened molecules were subjected to toxicity analysis and to verify toxic property of phytochemicals. R Programming was applied to remove the bias from the top eleven molecules. Using cluster analysis and Confusion Matrix two phytochemicals were computationally selected namely Rosmarinic acid and Gingkolide A for further studies on the disease Parkinson's.

  6. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Gang Li

    2013-05-01

    Full Text Available Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA, there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10(-9. Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10(-9, a finding corroborated by expression quantitative trait loci (eQTL analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2 and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65, a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L and conduct an HTS of 1,982 chemical compounds and FDA-approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel

  7. Human Genetics in Rheumatoid Arthritis Guides a High-Throughput Drug Screen of the CD40 Signaling Pathway

    Science.gov (United States)

    Li, Gang; Diogo, Dorothée; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J.; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L.; Siminovitch, Katherine A.; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K.; Worthington, Jane; Gupta, Namrata; Clemons, Paul A.; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M.

    2013-01-01

    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10−9). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10−9), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA–approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in

  8. Genetic Variance for Autism Screening Items in an Unselected Sample of Toddler-Age Twins

    Science.gov (United States)

    Stilp, Rebecca L. H.; Gernsbacher, Morton Ann; Schweigert, Emily K.; Arneson, Carrie L.; Goldsmith, H. Hill

    2010-01-01

    Objective: Twin and family studies of autistic traits and of cases diagnosed with autism suggest high heritability; however, the heritability of autistic traits in toddlers has not been investigated. Therefore, this study's goals were (1) to screen a statewide twin population using items similar to the six critical social and communication items…

  9. Genetical studies of resistance to Phytophthora porri in Allium porrum, using a new early screening method.

    NARCIS (Netherlands)

    Smilde, W.D.; Nes, van M.; Reinink, K.; Kik, C.

    1997-01-01

    A new screening method was developed to evaluate resistance of leek (Allium porrum) to Phytophthora porri, based on inoculation by 24 h-immersion of leek plantlets in the 3–6 leaf stage in a suspension of ca. 100 zoospores.ml-1. The immersion test was used for identifying new sources of resistance a

  10. Screening a core collection of citrus genetic resources for resistance to Fusarium solani (Mart) Sacc

    Science.gov (United States)

    A causal agent for Dry root rot (DRR) of citrus has not been definitively identified, but the organism most consistently associated with DRR is Fusarium solani (Mart.) Sacc. To efficiently screen a citrus germplasm collection for resistance to F. solani, a core subset of the collection was evaluated...

  11. Effects and Costs of Breast Cancer screening in women with a familial or genetic predisposition

    NARCIS (Netherlands)

    A.J. Rijnsburger (Rian)

    2005-01-01

    textabstract"Women with a BRCA1 or BRCA2 mutation, who have a considerable increased risk of developing breast cancer, now face the choice of intensive screening, prophylactic surgery or chemoprevention. The efficacy of the various medical options and the durability of its effects are of major

  12. The practice of genetic counselling: a Ccmparative approach to understanding genetic counselling in China

    NARCIS (Netherlands)

    Suli, S.

    2009-01-01

    This article provides an empirical account of the application of genetic counselling in China based on interviews, clinical observation and literature research during a field study from September 2008 to February 2009, carried out mainly in China and partly in Hong Kong and the United Kingdom.

  13. The practice of genetic counselling: a Ccmparative approach to understanding genetic counselling in China

    NARCIS (Netherlands)

    Suli, S.

    2009-01-01

    This article provides an empirical account of the application of genetic counselling in China based on interviews, clinical observation and literature research during a field study from September 2008 to February 2009, carried out mainly in China and partly in Hong Kong and the United Kingdom. Makin

  14. Invasion success in Cogongrass (Imperata cylindrica): A population genetic approach exploring genetic diversity and historical introductions

    Science.gov (United States)

    Rima D. Lucardi; Lisa E. Wallace; Gary N. Ervin

    2014-01-01

    Propagule pressure significantly contributes to and limits the potential success of a biological invasion, especially during transport, introduction, and establishment. Events such as multiple introductions of foreign parent material and gene flow among them can increase genetic diversity in founding populations, often leading to greater invasion success. We applied...

  15. Linkage intensity learning approach with genetic algorithm for causality diagram

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-liang; CHEN Juan-juan

    2007-01-01

    The causality diagram theory, which adopts graphical expression of knowledge and direct intensity of causality, overcomes some shortages in belief network and has evolved into a mixed causality diagram methodology for discrete and continuous variable. But to give linkage intensity of causality diagram is difficult, particularly in many working conditions in which sampling data are limited or noisy. The classic learning algorithm is hard to be adopted. We used genetic algorithm to learn linkage intensity from limited data. The simulation results demonstrate that this algorithm is more suitable than the classic algorithm in the condition of sample shortage such as space shuttle's fault diagnoisis.

  16. A Genetic-Algorithms-Based Approach for Programming Linear and Quadratic Optimization Problems with Uncertainty

    Directory of Open Access Journals (Sweden)

    Weihua Jin

    2013-01-01

    Full Text Available This paper proposes a genetic-algorithms-based approach as an all-purpose problem-solving method for operation programming problems under uncertainty. The proposed method was applied for management of a municipal solid waste treatment system. Compared to the traditional interactive binary analysis, this approach has fewer limitations and is able to reduce the complexity in solving the inexact linear programming problems and inexact quadratic programming problems. The implementation of this approach was performed using the Genetic Algorithm Solver of MATLAB (trademark of MathWorks. The paper explains the genetic-algorithms-based method and presents details on the computation procedures for each type of inexact operation programming problems. A comparison of the results generated by the proposed method based on genetic algorithms with those produced by the traditional interactive binary analysis method is also presented.

  17. Contact-based ligand-clustering approach for the identification of active compounds in virtual screening

    Directory of Open Access Journals (Sweden)

    Mantsyzov AB

    2012-09-01

    Full Text Available Alexey B Mantsyzov,1 Guillaume Bouvier,2 Nathalie Evrard-Todeschi,1 Gildas Bertho11Université Paris Descartes, Sorbonne, Paris, France; 2Institut Pasteur, Paris, FranceAbstract: Evaluation of docking results is one of the most important problems for virtual screening and in silico drug design. Modern approaches for the identification of active compounds in a large data set of docked molecules use energy scoring functions. One of the general and most significant limitations of these methods relates to inaccurate binding energy estimation, which results in false scoring of docked compounds. Automatic analysis of poses using self-organizing maps (AuPosSOM represents an alternative approach for the evaluation of docking results based on the clustering of compounds by the similarity of their contacts with the receptor. A scoring function was developed for the identification of the active compounds in the AuPosSOM clustered dataset. In addition, the AuPosSOM efficiency for the clustering of compounds and the identification of key contacts considered as important for its activity, were also improved. Benchmark tests for several targets revealed that together with the developed scoring function, AuPosSOM represents a good alternative to the energy-based scoring functions for the evaluation of docking results.Keywords: scoring, docking, virtual screening, CAR, AuPosSOM

  18. Classical mechanics approach applied to analysis of genetic oscillators.

    Science.gov (United States)

    Vasylchenkova, Anastasiia; Mraz, Miha; Zimic, Nikolaj; Moskon, Miha

    2016-04-05

    Biological oscillators present a fundamental part of several regulatory mechanisms that control the response of various biological systems. Several analytical approaches for their analysis have been reported recently. They are, however, limited to only specific oscillator topologies and/or to giving only qualitative answers, i.e., is the dynamics of an oscillator given the parameter space oscillatory or not. Here we present a general analytical approach that can be applied to the analysis of biological oscillators. It relies on the projection of biological systems to classical mechanics systems. The approach is able to provide us with relatively accurate results in the meaning of type of behaviour system reflects (i.e. oscillatory or not) and periods of potential oscillations without the necessity to conduct expensive numerical simulations. We demonstrate and verify the proposed approach on three different implementations of amplified negative feedback oscillator.

  19. Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs).

    Science.gov (United States)

    Dörries, Hans-Henno; Remus, Ivonne; Grönewald, Astrid; Grönewald, Cordt; Berghof-Jäger, Kornelia

    2010-03-01

    The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.

  20. DRD2 genetic variation in relation to smoking and obesity in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.

    Science.gov (United States)

    Morton, Lindsay M; Wang, Sophia S; Bergen, Andrew W; Chatterjee, Nilanjan; Kvale, Paul; Welch, Robert; Yeager, Meredith; Hayes, Richard B; Chanock, Stephen J; Caporaso, Neil E

    2006-12-01

    Cigarette smoking is the leading cause of morbidity and mortality worldwide. We investigated the association between smoking behavior and genetic variations in the D2 dopamine receptor (DRD2), which mediates nicotine dependence. To assess the specificity of genetic effects, we also investigated other reward-motivated characteristics (obesity, alcohol consumption). Four single nucleotide polymorphisms in DRD2 were genotyped in 2374 participants selected randomly from the screening arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial after stratifying by sex, age, and smoking status. Smoking, obesity, and alcohol consumption were assessed by questionnaire. Single nucleotide polymorphism and haplotype associations were estimated using odds ratios (ORs) and 95% confidence intervals derived from conditional logistic regression models, adjusted for race/ethnicity. DRD2 polymorphisms were associated with the risk of remaining a current smoker and obesity. Current smokers were more likely than former smokers to possess the variant TaqIA allele (rsmusical sharp1800497) in a dose-dependent model (ORCT=1.2, ORTT=1.5, P for linear trend=0.007). The DRD2 haplotype T-C-T-A [TaqIA(C/T)-957(T/C)-IVS6-83(G/T)- -50977(A/G)] was more common among current than former smokers (OR=1.3, P=0.006), particularly among heavy smokers (21+ cigarettes per day; OR=1.6, P=0.006), and was more common among obese than normal weight individuals (OR=1.4, P=0.02). Genetic variation in DRD2 is a modifier of the reward-motivated characteristics, smoking and obesity. As fewer than 15% of smokers who attempt to quit are able to maintain abstinence for greater than 3 months, our results support that DRD2 is an appropriate molecular target for smoking cessation treatments. Our results further support evaluation of DRD2 antagonists for obesity therapies.

  1. Introduction: integrating genetic and cultural evolutionary approaches to language.

    Science.gov (United States)

    Mesoudi, Alex; McElligott, Alan G; Adger, David

    2011-04-01

    The papers in this special issue of Human Biology address recent research in the field of language evolution, both the genetic evolution of the language faculty and the cultural evolution of specific languages. While both of these areas have received increasing interest in recent years, there is also a need to integrate these somewhat separate efforts and explore the relevant gene-culture coevolutionary interactions. Here we summarize the individual contributions, set them in the context of the wider literature, and identify outstanding future research questions. The first set of papers concerns the comparative study of nonhuman communication in primates and birds from both a behavioral and neurobiological perspective, revealing evidence for several common language-related traits in various nonhuman species and providing clues as to the evolutionary origin and function of the human language faculty. The second set of papers discusses the consequences of viewing language as a culturally evolving system in its own right, including claims that this removes the need for strong genetic biases for language acquisition, and that phylogenetic evolutionary methods can be used to reconstruct language histories. We conclude by highlighting outstanding areas for future research, including identifying the precise selection pressures that gave rise to the language faculty in ancestral hominin species, and determining the strength, domain specificity, and origin of the cultural transmission biases that shape languages as they pass along successive generations of language learners.

  2. Expanding the Spectrum of Genes Involved in Huntington Disease Using a Combined Clinical and Genetic Approach.

    Science.gov (United States)

    Mariani, Louise-Laure; Tesson, Christelle; Charles, Perrine; Cazeneuve, Cécile; Hahn, Valérie; Youssov, Katia; Freeman, Leorah; Grabli, David; Roze, Emmanuel; Noël, Sandrine; Peuvion, Jean-Noel; Bachoud-Levi, Anne-Catherine; Brice, Alexis; Stevanin, Giovanni; Durr, Alexandra

    2016-09-01

    Huntington disease (HD), a prototypic monogenic disease, is caused by an expanded CAG repeat in the HTT gene exceeding 35 units. However, not all patients with an HD phenotype carry the pathological expansion in HTT, and the positive diagnosis rate is poor. To examine patients with HD phenotypes to determine the frequency of HD phenocopies with typical features of HD but without pathological CAG repeat expansions in HTT in an attempt to improve the positive diagnosis rate. Between January 1, 2004, and April 18, 2011, a total of 226 consecutive index patients with an HD phenotype were referred to specialized clinics of the French National Huntington Disease Reference Centre for Rare Diseases. They underwent detailed clinical examination and follow-up, as well as neuropsychological, biological, imaging, and genetic examinations. Nucleotide expansions in JPH3, ATN1, TBP, and C9ORF72 and mutations in PRNP, as well as acquired conditions commonly causing HD phenocopies, were first screened. The diagnostic rate of HD phenocopies and frequency of other etiologies using deep clinical phenotyping and next generation sequencing. Our goal was to improve the genetic diagnosis of HD phenocopies and to identify new HD related genes. One hundred ninety-eight patients carried a pathological CAG repeat expansion in HTT, whereas 28 patients (12 women and 16 men) did not. Huntington disease phenocopies accounted for 12.4%, and their mean (SD) age at onset was similar to those of the HD-HTT group (47.3 [12.7] years vs 50.3 [16.4] years, P = .29). We first identified 3 patients with abnormal CTG expansions in JPH3, a fourth patient with an antiphospholipid syndrome, and a fifth patient with B12 avitaminosis. A custom-made 63-gene panel was generated based on clinical evolution and exome sequencing. It contained genes responsible for HD phenocopies and other neurodegenerative conditions, as well as candidate genes from exome sequencing in 3 index cases with imaging features of brain

  3. Polar body biopsy: a viable alternative to preimplantation genetic diagnosis and screening.

    Science.gov (United States)

    Montag, M; van der Ven, K; Rösing, B; van der Ven, H

    2009-01-01

    Polar body diagnosis (PBD) is a diagnostic method for the indirect genetic analysis of oocytes. Polar bodies are by-products of the meiotic cell cycle, which have no influence on further embryo development. The biopsy of polar bodies can be accomplished either by zona drilling or laser drilling within a very short time period. However, the paternal contribution to the genetic constitution of the developing embryo cannot be diagnosed by PBD. The major application of PBD is the detection of maternally derived chromosomal aneuploidies and translocations in oocytes. For these indications, PBD may offer a viable alternative to blastomere biopsy as the embryo's integrity remains unaffected, in contrast to preimplantation genetic diagnosis (PGD) by blastomere biopsy. The rapid pace of developments in the field of molecular diagnostics will also influence the advantages of PBD, and probably allow more general diagnostic applications in the future.

  4. A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis

    Science.gov (United States)

    Khan, Bibi Rafeiza; Faure, Lionel; Chapman, Kent D.; Blancaflor, Elison B.

    2017-01-01

    N-Acylethanolamines (NAEs) are a group of fatty acid amides that play signaling roles in diverse physiological processes in eukaryotes. Fatty acid amide hydrolase (FAAH) degrades NAE into ethanolamine and free fatty acid to terminate its signaling function. In animals, chemical inhibitors of FAAH have been used for therapeutic treatment of pain and as tools to probe deeper into biochemical properties of FAAH. In a chemical genetic screen for small molecules that dampened the inhibitory effect of N-lauroylethanolamine (NAE 12:0) on Arabidopsis thaliana seedling growth, we identified 6-(2-methoxyphenyl)-1,3-dimethyl-5-phenyl-1H-pyrrolo[3,4-d]pyrimidine-2,4(3 H,6 H)-dione (or MDPD). MDPD alleviated the growth inhibitory effects of NAE 12:0, in part by enhancing the enzymatic activity of Arabidopsis FAAH (AtFAAH). In vitro, biochemical assays showed that MDPD enhanced the apparent Vmax of AtFAAH but did not alter the affinity of AtFAAH for its NAE substrates. Structural analogs of MDPD did not affect AtFAAH activity or dampen the inhibitory effect of NAE 12:0 on seedling growth indicating that MDPD is a specific synthetic chemical activator of AtFAAH. Collectively, our study demonstrates the feasibility of using an unbiased chemical genetic approach to identify new pharmacological tools for manipulating FAAH- and NAE-mediated physiological processes in plants. PMID:28112243

  5. A first approach to a neuropsychological screening tool using eye-tracking for bedside cognitive testing based on the Edinburgh Cognitive and Behavioural ALS Screen.

    Science.gov (United States)

    Keller, Jürgen; Krimly, Amon; Bauer, Lisa; Schulenburg, Sarah; Böhm, Sarah; Aho-Özhan, Helena E A; Uttner, Ingo; Gorges, Martin; Kassubek, Jan; Pinkhardt, Elmar H; Abrahams, Sharon; Ludolph, Albert C; Lulé, Dorothée

    2017-08-01

    Reliable assessment of cognitive functions is a challenging task in amyotrophic lateral sclerosis (ALS) patients unable to speak and write. We therefore present an eye-tracking based neuropsychological screening tool based on the Edinburgh Cognitive and Behavioural ALS Screen (ECAS), a standard screening tool for cognitive deficits in ALS. In total, 46 ALS patients and 50 healthy controls matched for age, gender and education were tested with an oculomotor based and a standard paper-and-pencil version of the ECAS. Significant correlation between both versions was observed for ALS patients and healthy controls in the ECAS total score and in all of its ALS-specific domains (all r > 0.3; all p eye-tracking version of the ECAS reliably distinguished between ALS patients and healthy controls in the ECAS total score (p eye-tracking based ECAS version is a promising approach for assessing cognitive deficits in ALS patients who are unable to speak or write.

  6. AGROBACTERIUM-MEDIATED GENETIC TRANSFORMATION OF SORGHUM USING TISSUE CULTURE-BASED AND POLLEN-MEDIATED APPROACHES

    OpenAIRE

    Elkonin L.A.; O.N. Nosova; J.V. Italianskaya

    2012-01-01

    Genetic transformation is a powerful tool for genetic improvement of arable crops. Genetic engineering approaches are especially important for modification of starch and protein contents, vitamin and micronutrient concentration, improvement of nutritive value of protein fractions, and increase tolerance to environmental stresses. Application of transgenic technologies for genetic improvement of sorghum, a highly productive heat tolerant and drought resistant crop, is extremely important since...

  7. The conditional nature of genetic interactions: the consequences of wild-type backgrounds on mutational interactions in a genome-wide modifier screen.

    Directory of Open Access Journals (Sweden)

    Sudarshan Chari

    Full Text Available The phenotypic outcome of a mutation cannot be simply mapped onto the underlying DNA variant. Instead, the phenotype is a function of the allele, the genetic background in which it occurs and the environment where the mutational effects are expressed. While the influence of genetic background on the expressivity of individual mutations is recognized, its consequences on the interactions between genes, or the genetic network they form, is largely unknown. The description of genetic networks is essential for much of biology; yet if, and how, the topologies of such networks are influenced by background is unknown. Furthermore, a comprehensive examination of the background dependent nature of genetic interactions may lead to identification of novel modifiers of biological processes. Previous work in Drosophila melanogaster demonstrated that wild-type genetic background influences the effects of an allele of scalloped (sd, with respect to both its principal consequence on wing development and its interactions with a mutation in optomotor blind. In this study we address whether the background dependence of mutational interactions is a general property of genetic systems by performing a genome wide dominant modifier screen of the sd(E3 allele in two wild-type genetic backgrounds using molecularly defined deletions. We demonstrate that ~74% of all modifiers of the sd(E3 phenotype are background-dependent due in part to differential sensitivity to genetic perturbation. These background dependent interactions include some with qualitative differences in the phenotypic outcome, as well as instances of sign epistasis. This suggests that genetic interactions are often contingent on genetic background, with flexibility in genetic networks due to segregating variation in populations. Such background dependent effects can substantially alter conclusions about how genes influence biological processes, the potential for genetic screens in alternative wild

  8. The Sociopolitical Importance of Genetic, Phenomenological Approaches to Science Teaching and Learning

    Science.gov (United States)

    Bazzul, Jesse

    2015-01-01

    This article discusses Wolff-Michael Roth's theoretical framework for a phenomenological, genetic approach to science teaching and learning based on the work of Edmund Husserl. This approach advocates the inclusion of student lifeworlds in science education and underlines the importance of thinking about subjectivity in both science and science…

  9. A Genetic Algorithms-based Approach for Optimized Self-protection in a Pervasive Service Middleware

    DEFF Research Database (Denmark)

    Zhang, Weishan; Ingstrup, Mads; Hansen, Klaus Marius

    2009-01-01

    the constraints of heterogeneous devices and networks. In this paper, we present a Genetic Algorithms-based approach for obtaining optimized security configurations at run time, supported by a set of security OWL ontologies and an event-driven framework. This approach has been realized as a prototype for self...

  10. The Sociopolitical Importance of Genetic, Phenomenological Approaches to Science Teaching and Learning

    Science.gov (United States)

    Bazzul, Jesse

    2015-01-01

    This article discusses Wolff-Michael Roth's theoretical framework for a phenomenological, genetic approach to science teaching and learning based on the work of Edmund Husserl. This approach advocates the inclusion of student lifeworlds in science education and underlines the importance of thinking about subjectivity in both science and science…

  11. An approach for in vitro genetic networks assembly

    Science.gov (United States)

    Noireaux, Vincent; Bar-Ziv, Roy; Libchaber, Albert

    2004-03-01

    A cell-free expression extract has been used to assemble genetic circuits in vitro. The extract, which does not contained endogenous DNA and RNA, is used as a battery to carry out transcription and translation of genes inserted into plasmids. We engineered transcriptional activation and repression cascades, in which the protein product of each stage is the input required to drive or block the following stage. Although we can find regions of linear response for single stages, cascading to subsequent stages requires working in non-linear regimes. Substantial time delays and dramatic decreases in output production are incurred with each additional stage, due to a bottleneck at the translation machinery. Faster turnover of RNA message can relieve competition between genes and stabilize output against variations in input and parameters.

  12. Data Mining Using Neural–Genetic Approach: A Review

    Directory of Open Access Journals (Sweden)

    Parvez Rahi

    2014-04-01

    Full Text Available In the advance age of technology, there is an increasing availability of digital documents in various languages in various fields. Data mining is gaining popularity in field of knowledge discovery. Data mining is the knowledge discovery process by which we can analyze the large amounts of data from various data repositories and summarizing it into information useful to us. Due to its importance of extracting information/ knowledge from the large data repositories, data mining has become an essential part of human life in various fields. Data mining has a very wide area of applications, and these applications have enriched the human life in various fields including scientific, medical, business, education etc. Here in this paper we will discuss the emphasis of Neural Network and Genetic Algorithm in the field of data mining.

  13. A genetic approach to understanding asthma and lung function development

    DEFF Research Database (Denmark)

    Kreiner-Møller, Eskil

    2014-01-01

    Asthma is a common heritable disease of the airways with recurrent episodes of symptoms and reversible airflow obstruction that has increased dramatically in prevalence. The disease is highly heterogeneous with varying age at onset and clinical presentation and most likely represents several...... different subtypes of disease associated with distinct clinical features, divergent underlying molecular mechanisms, and individual treatment responses. Information obtained from genetic studies may be an important way of understanding underlying disease subtypes. Genome wide association studies (GWAS) have......, related traits and objective measures in order to disentangle the underlying pathophysiological disease mechanisms for the subtypes of disease. Several genes and loci have been found to be associated with adult lung function in GWAS, but it is currently unknown at what time in life these genes exert...

  14. Screening Genetic Resources of Capsicum Peppers in Their Primary Center of Diversity in Bolivia and Peru.

    Directory of Open Access Journals (Sweden)

    Maarten van Zonneveld

    Full Text Available For most crops, like Capsicum, their diversity remains under-researched for traits of interest for food, nutrition and other purposes. A small investment in screening this diversity for a wide range of traits is likely to reveal many traditional varieties with distinguished values. One objective of this study was to demonstrate, with Capsicum as model crop, the application of indicators of phenotypic and geographic diversity as effective criteria for selecting promising genebank accessions for multiple uses from crop centers of diversity. A second objective was to evaluate the expression of biochemical and agromorphological properties of the selected Capsicum accessions in different conditions. Four steps were involved: 1 Develop the necessary diversity by expanding genebank collections in Bolivia and Peru; 2 Establish representative subsets of ~100 accessions for biochemical screening of Capsicum fruits; 3 Select promising accessions for different uses after screening; and 4 Examine how these promising accessions express biochemical and agromorphological properties when grown in different environmental conditions. The Peruvian Capsicum collection now contains 712 accessions encompassing all five domesticated species (C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens. The collection in Bolivia now contains 487 accessions, representing all five domesticates plus four wild taxa (C. baccatum var. baccatum, C. caballeroi, C. cardenasii, and C. eximium. Following the biochemical screening, 44 Bolivian and 39 Peruvian accessions were selected as promising, representing wide variation in levels of antioxidant capacity, capsaicinoids, fat, flavonoids, polyphenols, quercetins, tocopherols, and color. In Peru, 23 promising accessions performed well in different environments, while each of the promising Bolivian accessions only performed well in a certain environment. Differences in Capsicum diversity and local contexts led to distinct

  15. Screening Genetic Resources of Capsicum Peppers in Their Primary Center of Diversity in Bolivia and Peru.

    Science.gov (United States)

    van Zonneveld, Maarten; Ramirez, Marleni; Williams, David E; Petz, Michael; Meckelmann, Sven; Avila, Teresa; Bejarano, Carlos; Ríos, Llermé; Peña, Karla; Jäger, Matthias; Libreros, Dimary; Amaya, Karen; Scheldeman, Xavier

    2015-01-01

    For most crops, like Capsicum, their diversity remains under-researched for traits of interest for food, nutrition and other purposes. A small investment in screening this diversity for a wide range of traits is likely to reveal many traditional varieties with distinguished values. One objective of this study was to demonstrate, with Capsicum as model crop, the application of indicators of phenotypic and geographic diversity as effective criteria for selecting promising genebank accessions for multiple uses from crop centers of diversity. A second objective was to evaluate the expression of biochemical and agromorphological properties of the selected Capsicum accessions in different conditions. Four steps were involved: 1) Develop the necessary diversity by expanding genebank collections in Bolivia and Peru; 2) Establish representative subsets of ~100 accessions for biochemical screening of Capsicum fruits; 3) Select promising accessions for different uses after screening; and 4) Examine how these promising accessions express biochemical and agromorphological properties when grown in different environmental conditions. The Peruvian Capsicum collection now contains 712 accessions encompassing all five domesticated species (C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens). The collection in Bolivia now contains 487 accessions, representing all five domesticates plus four wild taxa (C. baccatum var. baccatum, C. caballeroi, C. cardenasii, and C. eximium). Following the biochemical screening, 44 Bolivian and 39 Peruvian accessions were selected as promising, representing wide variation in levels of antioxidant capacity, capsaicinoids, fat, flavonoids, polyphenols, quercetins, tocopherols, and color. In Peru, 23 promising accessions performed well in different environments, while each of the promising Bolivian accessions only performed well in a certain environment. Differences in Capsicum diversity and local contexts led to distinct outcomes in

  16. [Mendelian randomisation - a genetic approach to an epidemiological method].

    Science.gov (United States)

    Stensrud, Mats Julius

    2016-06-01

    BACKGROUND Genetic information is becoming more easily available, and rapid progress is being made in developing methods of illuminating issues of interest. Mendelian randomisation makes it possible to study causes of disease using observational data. The name refers to the random distribution of gene variants in meiosis. The methodology makes use of genes that influence a risk factor for a disease, without influencing the disease itself. In this review article I explain the principles behind Mendelian randomisation and present the areas of application for this methodology.MATERIAL AND METHOD Methodology articles describing Mendelian randomisation were reviewed. The articles were found through a search in PubMed with the combination «mendelian randomization» OR «mendelian randomisation», and a search in McMaster Plus with the combination «mendelian randomization». A total of 15 methodology articles were read in full text. Methodology articles were supplemented by clinical studies found in the PubMed search.RESULTS In contrast to traditional observational studies, Mendelian randomisation studies are not affected by two important sources of error: conventional confounding variables and reverse causation. Mendelian randomisation is therefore a promising tool for studying causality. Mendelian randomisation studies have already provided valuable knowledge on the risk factors for a wide range of diseases. It is nevertheless important to be aware of the limitations of the methodology. As a result of the rapid developments in genetics research, Mendelian randomisation will probably be widely used in future years.INTERPRETATION If Mendelian randomisation studies are conducted correctly, they may help to reveal both modifiable and non-modifiable causes of disease.

  17. Graphical approach to evaluate genetic estimates of calf survival.

    Science.gov (United States)

    Schlesser, H N; Shanks, R D; Berger, P J; Healey, M H

    2009-05-01

    Genetic variation and resemblance among relatives are fundamentals of quantitative genetics. Our purpose was to identify bulls with a bimodal pattern of inheritance in the quest for new discoveries about the inheritance of calf survival. A bimodal pattern of inheritance for calf survival was identified in sons of Holstein bulls. A bimodal pattern of inheritance indicates 2 groups of sons resulting from an allele effect, a grandsire effect, or some other common factor. Different combinations (AA, Aa, aa) of 2 alleles at a locus cause varying phenotypes to be expressed. Bulls that are heterozygous for loci affecting reproductive performance may have a bimodal pattern of inheritance if the difference in effect of the 2 alleles is large. If the bimodal pattern is caused by an allele effect, then molecular markers can be identified for use in marker-assisted selection breeding programs. Data on predicted transmitting ability for perinatal survival for the first parity of 8,678 sons of 599 sires were collected from 1984 through 1997 from the National Association of Animal Breeders calving ease database, which included 7 Midwestern states. Sixteen bulls were identified with a potential bimodal pattern of inheritance because they had 2 distinct groups of sons. The 2 groups of sons were separated by calculating the coefficient of variation for each possible combination of sons; the combination that gave the smallest coefficient of variation difference between the 2 groups was considered the correct distribution of the sons into those groups. Bulls with a bimodal distribution were analyzed to determine the distribution of the grandsons among the maternal grandsires (MGS) of the 2 groups of the bimodal distribution. The bimodal distribution may be a result of heterozygous sires or MGS that are homozygous for low or high survival. If the bimodal distribution is caused by a MGS effect, then marker-assisted selection can still be used by evaluating the MGS instead of the sires.

  18. High acceptance of an early dyslexia screening test involving genetic analyses in Germany.

    Science.gov (United States)

    Wilcke, Arndt; Müller, Bent; Schaadt, Gesa; Kirsten, Holger; Boltze, Johannes

    2016-02-01

    Dyslexia is a developmental disorder characterized by severe problems in the acquisition of reading and writing skills. It has a strong neurobiological basis. Genetic influence is estimated at 50-70%. One of the central problems with dyslexia is its late diagnosis, normally not before the end of the 2nd grade, resulting in the loss of several years for early therapy. Currently, research is focusing on the development of early tests for dyslexia, which may be based on EEG and genetics. Our aim was to determine the acceptance of such a future test among parents. We conducted a representative survey in Germany with 1000 parents of children aged 3-7 years, with and without experience of dyslexia. 88.7% of the parents supported the introduction of an early test for dyslexia based on EEG and genetics; 82.8% would have their own children tested, and 57.9% were willing to pay for the test if health insurance did not cover the costs. Test acceptance was significantly higher if parents had prior experience with dyslexia. The perceived benefits of such a test were early recognition and remediation and, preventing deficits. Concerns regarded the precision of the test, its potentially stigmatizing effect and its costs. The high overall support for the test leads to the conclusion that parents would accept a test for dyslexia based on EEG and genetics.

  19. High acceptance of an early dyslexia screening test involving genetic analyses in Germany

    Science.gov (United States)

    Wilcke, Arndt; Müller, Bent; Schaadt, Gesa; Kirsten, Holger; Boltze, Johannes; Angela, h c; Friederici, D; Emmrich, Frank; Brauer, Jens; Wilcke, Arndt; Neef, Nicole; Boltze, Johannes; Skeide, Michael; Kirsten, Holger; Schaadt, Gesa; Müller, Bent; Kraft, Indra; Czepezauer, Ivonne; Bobovnikov, Nadin

    2016-01-01

    Dyslexia is a developmental disorder characterized by severe problems in the acquisition of reading and writing skills. It has a strong neurobiological basis. Genetic influence is estimated at 50–70%. One of the central problems with dyslexia is its late diagnosis, normally not before the end of the 2nd grade, resulting in the loss of several years for early therapy. Currently, research is focusing on the development of early tests for dyslexia, which may be based on EEG and genetics. Our aim was to determine the acceptance of such a future test among parents. We conducted a representative survey in Germany with 1000 parents of children aged 3–7 years, with and without experience of dyslexia. 88.7% of the parents supported the introduction of an early test for dyslexia based on EEG and genetics; 82.8% would have their own children tested, and 57.9% were willing to pay for the test if health insurance did not cover the costs. Test acceptance was significantly higher if parents had prior experience with dyslexia. The perceived benefits of such a test were early recognition and remediation and, preventing deficits. Concerns regarded the precision of the test, its potentially stigmatizing effect and its costs. The high overall support for the test leads to the conclusion that parents would accept a test for dyslexia based on EEG and genetics. PMID:26036858

  20. BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing

    NARCIS (Netherlands)

    Domingo, E; Laiho, P; Ollikainen, M; Pinto, M; Wang, L; French, AJ; Westra, J.; Frebourg, T; Espin, E; Armengol, M; Hamelin, R; Yamamoto, H; Hofstra, RMW; Seruca, R; Lindblom, A; Peltomaki, P; Thibodeau, SN; Aaltonen, LA; Schwartz, S

    2004-01-01

    Background: According to the international criteria for hereditary non-polyposis colorectal cancer (HNPCC) diagnostics, cancer patients with a family history or early onset of colorectal tumours showing high microsatellite instability (MSI-H) should receive genetic counselling and be offered testing

  1. Development of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    Science.gov (United States)

    Oguchi, Taichi; Onishi, Mari; Minegishi, Yasutaka; Kurosawa, Yasunori; Kasahara, Masaki; Akiyama, Hiroshi; Teshima, Reiko; Futo, Satoshi; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2009-06-01

    A duplex real-time PCR method was developed for quantitative screening analysis of GM maize. The duplex real-time PCR simultaneously detected two GM-specific segments, namely the cauliflower mosaic virus (CaMV) 35S promoter (P35S) segment and an event-specific segment for GA21 maize which does not contain P35S. Calibration was performed with a plasmid calibrant specially designed for the duplex PCR. The result of an in-house evaluation suggested that the analytical precision of the developed method was almost equivalent to those of simplex real-time PCR methods, which have been adopted as ISO standard methods for the analysis of GMOs in foodstuffs and have also been employed for the analysis of GMOs in Japan. In addition, this method will reduce both the cost and time requirement of routine GMO analysis by half. The high analytical performance demonstrated in the current study would be useful for the quantitative screening analysis of GM maize. We believe the developed method will be useful for practical screening analysis of GM maize, although interlaboratory collaborative studies should be conducted to confirm this.

  2. Cervical cancer screening and treatment of cervical intraepithelial neoplasia in female sex workers using “screen and treat” approach

    Directory of Open Access Journals (Sweden)

    Joshi S

    2015-05-01

    Full Text Available Smita Joshi,1 Vinay Kulkarni,2 Trupti Darak,2 Uma Mahajan,1 Yogesh Srivastava,3 Sanjay Gupta,3 Sumitra Krishnan,1 Mahesh Mandolkar,2 Alok Chandra Bharti31Hirabai Cowasji Jehangir Medical Research Institute (HCJMRI, Jehangir Hospital Premises, Pune, Maharashtra, India; 2Prayas Health Group, Amrita Clinic, Pune, India; 3Institute for Cytology and Preventive Oncology, Indian Council of Medical Research, New Delhi, IndiaObjective: Female sex workers (FSWs are at an increased risk of human immunodeficiency virus (HIV as well as human papillomavirus (HPV infections and thus have an increased risk of cervical intraepithelial neoplasia (CIN and cervical cancer. We evaluated the feasibility of “screen and treat approach” for cervical cancer prevention and the performance of different screening tests among FSWs.Methods: Women were screened using cytology, VIA (visual inspection with acetic acid, and VILI (visual inspection with Lugol’s iodine and underwent colposcopy, biopsy, and immediate treatment using cold coagulation, if indicated, at the same visit.Results: We screened 300 FSWs of whom 200 (66.67% were HIV uninfected and 100 (33.34% were HIV infected. The overall prevalence of CIN 2–3 lesions was 4.7%. But all women with CIN 2–3 lesions were HIV infected, and thus the prevalence of CIN 2–3 lesions in HIV-infected FSWs was 14/100 (14%, 95% confidence interval: 7.2–20.8. All of them screened positive by all three screening tests. Cold coagulation was well tolerated, with no appreciable side effects.Conclusion: Cervical cancer prevention by “screen and treat” approach using VIA, followed by ablative treatment, in this high-risk group of women is feasible and can be implemented through various targeted intervention programs. Keywords: cytology, VIA, VILI, CIN, cold coagulation, cervical cancer, HPV, FSWs

  3. Evaluation of mass screening for cancer : a model-based approach

    NARCIS (Netherlands)

    G.J. van Oortmarssen (Gerrit)

    1995-01-01

    textabstractThe main goal in evaluation of screening for cancer is to assist in decision making about a screening program: Should it be initiated at all? What screening policies can be recommended: what age groups, what frequency of screening. Should special attention be paid to high risk groups? If

  4. Genetic Approaches to Appearance and Ancestry : Improving Forensic DNA Analysis

    NARCIS (Netherlands)

    L.C. Chaitanya (Lakshmi)

    2016-01-01

    textabstractTraditionally, routine forensic casework is based on comparative grounds. DNA profiles obtained from crime-scenes are compared with those of potential suspects or DNA profiles deposited in forensic DNA databases. The principal limitation of such comparative approach is that trace donors

  5. Molecular Genetic Approaches to Human Diseases Involving Mental Retardation.

    Science.gov (United States)

    Latt, Samuel A.; And Others

    1984-01-01

    Recombinant DNA techniques provide new approaches to the diagnosis and analysis of inherited human diseases associated with mental retardation, such as Lesch-Nyhan syndrome, phenylketonauria, the Fragile X syndrome, Down syndrome, and those associated with deletions or duplications of subchromosomal regions. (Author/CL)

  6. Genetic and metabolomic approaches for coronary heart disease risk prediction

    NARCIS (Netherlands)

    Vaarhorst, Anika Antoinette Maria

    2014-01-01

    The prediction of coronary heart disease (CHD) risk is currently based on traditional risk factors (TRFs) like age, sex, lipid levels, blood pressure. Here we investigated, using the CAREMA cohort, whether this prediction can potentially be improved by applying a metabolomics approach and by includi

  7. The underlying mechanisms of genetic innovation and speciation in the family Corynebacteriaceae: A phylogenomics approach.

    Science.gov (United States)

    Zhi, Xiao-Yang; Jiang, Zhao; Yang, Ling-Ling; Huang, Ying

    2017-02-01

    The pangenome of a bacterial species population is formed by genetic reduction and genetic expansion over the long course of evolution. Gene loss is a pervasive source of genetic reduction, and (exogenous and endogenous) gene gain is the main driver of genetic expansion. To understand the genetic innovation and speciation of the family Corynebacteriaceae, which cause a wide range of serious infections in humans and animals, we analyzed the pangenome of this family, and reconstructed its phylogeny using a phylogenomics approach. Genetic variations have occurred throughout the whole evolutionary history of the Corynebacteriaceae. Gene loss has been the primary force causing genetic changes, not only in terms of the number of protein families affected, but also because of its continuity on the time series. The variation in metabolism caused by these genetic changes mainly occurred for membrane transporters, two-component systems, and metabolism related to amino acids and carbohydrates. Interestingly, horizontal gene transfer (HGT) not only caused changes related to pathogenicity, but also triggered the acquisition of antimicrobial resistance. The Darwinian theory of evolution did not adequately explain the effects of dispersive HGT and/or gene loss in the evolution of the Corynebacteriaceae. These findings provide new insight into the evolution and speciation of Corynebacteriaceae and advance our understanding of the genetic innovation in microbial populations.

  8. A large health system's approach to utilization of the genetic counselor CPT® 96040 code.

    Science.gov (United States)

    Gustafson, Shanna L; Pfeiffer, Gail; Eng, Charis

    2011-12-01

    : In 2007, CPT® code 96040 was approved for genetic counseling services provided by nonphysician providers. Because of professional recognition and licensure limitations, experiences in direct billing by genetic counselors for these services are limited. A minority of genetics clinics report using this code because of limitations, including perceived denial of the code and confusion regarding compliant use of this code. We present results of our approach to 96040 billing for genetic counseling services under a supervising physicians National Provider ID number in a strategy for integration of genetics services within nongenetics specialty departments of a large academic medical center. : The 96040 billing encounters were tracked for a 14-month period and analyzed for reimbursement by private payers. Association of denial by diagnosis code or specialty of genetics service was statistically analyzed. Descriptive data regarding appointment availability are also summarized. : Of 350 encounters January 2008 to February 2009, 289 (82%) were billed to private payers. Of these, 62.6% received some level of reimbursement. No association was seen for denial when analyzed by the diagnosis code or by genetics focus. Through this model, genetics appointment availability minimally doubled. : Using 96040 allowed for expanding access to genetics services, increased appointment availability, and was successful in obtaining reimbursement for more than half of encounters billed.

  9. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    Science.gov (United States)

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent.

  10. Chemical Genetics Approach to Engineer Kinesins with Sensitivity towards a Small-Molecule Inhibitor of Eg5.

    Science.gov (United States)

    Möckel, Martin M; Hund, Corinna; Mayer, Thomas U

    2016-11-03

    Due to their fast and often reversible mode of action, small molecules are ideally suited to dissect biological processes. Yet, the validity of small-molecule studies is intimately tied to the specificity of the applied compounds, thus imposing a great challenge to screens for novel inhibitors. Here, we applied a chemical-genetics approach to render kinesin motor proteins sensitive to inhibition by the well-characterized small molecule S-Trityl-l-cysteine (STLC). STLC specifically inhibits the kinesin Eg5 through binding to a known allosteric site within the motor domain. Transfer of this allosteric binding site into the motor domain of the human kinesins Kif3A and Kif4A sensitizes them towards STLC. Single-molecule microscopy analyses confirmed that STLC inhibits the movement of chimeric but not wild-type Kif4A along microtubules. Thus, our proof-of-concept study revealed that this chemical-genetic approach provides a powerful strategy to specifically inhibit kinesins in vitro for which small-molecule inhibitors are not yet available. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Surface plasmon resonance biosensing: Approaches for screening and characterising antibodies for food diagnostics.

    Science.gov (United States)

    Yakes, B J; Buijs, J; Elliott, C T; Campbell, K

    2016-08-15

    Research in biosensing approaches as alternative techniques for food diagnostics for the detection of chemical contaminants and foodborne pathogens has increased over the last twenty years. The key component of such tests is the biorecognition element whereby polyclonal or monoclonal antibodies still dominate the market. Traditionally the screening of sera or cell culture media for the selection of polyclonal or monoclonal candidate antibodies respectively has been performed by enzyme immunoassays. For niche toxin compounds, enzyme immunoassays can be expensive and/or prohibitive methodologies for antibody production due to limitations in toxin supply for conjugate production. Automated, self-regenerating, chip-based biosensors proven in food diagnostics may be utilised as rapid screening tools for antibody candidate selection. This work describes the use of both single channel and multi-channel surface plasmon resonance (SPR) biosensors for the selection and characterisation of antibodies, and their evaluation in shellfish tissue as standard techniques for the detection of domoic acid, as a model toxin compound. The key advantages in the use of these biosensor techniques for screening hybridomas in monoclonal antibody production were the real time observation of molecular interaction and rapid turnaround time in analysis compared to enzyme immunoassays. The multichannel prototype instrument was superior with 96 analyses completed in 2h compared to 12h for the single channel and over 24h for the ELISA immunoassay. Antibodies of high sensitivity, IC50's ranging from 4.8 to 6.9ng/mL for monoclonal and 2.3-6.0ng/mL for polyclonal, for the detection of domoic acid in a 1min analysis time were selected. Although there is a progression for biosensor technology towards low cost, multiplexed portable diagnostics for the food industry, there remains a place for laboratory-based SPR instrumentation for antibody development for food diagnostics as shown herein.

  12. A Domain-Independent Window Approach to Multiclass Object Detection Using Genetic Programming

    Directory of Open Access Journals (Sweden)

    Mengjie Zhang

    2003-07-01

    Full Text Available This paper describes a domain-independent approach to the use of genetic programming for object detection problems in which the locations of small objects of multiple classes in large images must be found. The evolved program is scanned over the large images to locate the objects of interest. The paper develops three terminal sets based on domain-independent pixel statistics and considers two different function sets. The fitness function is based on the detection rate and the false alarm rate. We have tested the method on three object detection problems of increasing difficulty. This work not only extends genetic programming to multiclass-object detection problems, but also shows how to use a single evolved genetic program for both object classification and localisation. The object classification map developed in this approach can be used as a general classification strategy in genetic programming for multiple-class classification problems.

  13. Genetic approaches to the molecular/neuronal mechanisms underlying learning and memory in the mouse.

    Science.gov (United States)

    Nakajima, Akira; Tang, Ya-Ping

    2005-09-01

    Learning and memory is an essential component of human intelligence. To understand its underlying molecular and neuronal mechanisms is currently an extensive focus in the field of cognitive neuroscience. We have employed advanced mouse genetic approaches to analyze the molecular and neuronal bases for learning and memory, and our results showed that brain region-specific genetic manipulations (including transgenic and knockout), inducible/reversible knockout, genetic/chemical kinase inactivation, and neuronal-based genetic approach are very powerful tools for studying the involvements of various molecules or neuronal substrates in the processes of learning and memory. Studies using these techniques may eventually lead to the understanding of how new information is acquired and how learned information is memorized in the brain.

  14. Search for genetic virulence markers in viral haemorrhagic septicaemia virus (VHSV) using a reverse genetics approach

    DEFF Research Database (Denmark)

    Stegmann, Anders; Biacchesi, S.; Bremont, M.

    2011-01-01

    VHSV is a negative strand RNA virus causing serious disease in farmed rainbow trout. Although VHSV has been eradicated by stamping out procedures in several fresh water bodies, recently including all streams in Denmark, the wildlife marine reservoir still represents a threat against rainbow trout...... farming. Particularly in Scandinavia, outbreaks of VHS in sea reared rainbow trout have demonstrated that although marine variants of VHSV are considered to be avirulent to rainbow trout, the virus is potentially able to adapt to this host and cause disease. Limited knowledge about the genetic background...

  15. A Detailed look of Audio Steganography Techniques using LSB and Genetic Algorithm Approach

    OpenAIRE

    Gunjan Nehru; Puja Dhar

    2012-01-01

    This paper is the study of various techniques of audio steganography using different algorithmis like genetic algorithm approach and LSB approach. We have tried some approaches that helps in audio steganography. As we know it is the art and science of writing hidden messages in such a way that no one, apart from the sender and intended recipient, suspects the existence of the message, a form of security through obscurity. In steganography, the message used to hide secret message is called hos...

  16. Repositioning approved drugs for the treatment of problematic cancers using a screening approach.

    Science.gov (United States)

    Varbanov, Hristo P; Kuttler, Fabien; Banfi, Damiano; Turcatti, Gerardo; Dyson, Paul J

    2017-01-01

    Advances in treatment strategies together with an earlier diagnosis have considerably increased the average survival of cancer patients over the last four decades. Nevertheless, despite the growing number of new antineoplastic agents introduced each year, there is still no adequate therapy for problematic malignancies such as pancreatic, lung and stomach cancers. Consequently, it is important to ensure that existing drugs used to treat other types of cancers, and potentially other diseases, are not overlooked when searching for new chemotherapy regimens for these problematic cancer types. We describe a screening approach that identifies chemotherapeutics for the treatment of lung and pancreatic cancers, based on drugs already approved for other applications. Initially, the 1280 chemically and pharmacologically diverse compounds from the Prestwick Chemical Library® (PCL) were screened against A549 (lung cancer) and PANC-1 (pancreatic carcinoma) cells using the PrestoBlue fluorescent-based cell viability assay. More than 100 compounds from the PCL were identified as hits in one or both cell lines (80 of them, being drugs used to treat diseases other than cancer). Selected PCL hits were further evaluated in a dose-response manner. Promising candidates for repositioning emanating from this study include antiparasitics, cardiac glycosides, as well as the anticancer drugs vorinostat and topotecan.

  17. Discovery of new [Formula: see text] proteasome inhibitors using a knowledge-based computational screening approach.

    Science.gov (United States)

    Mehra, Rukmankesh; Chib, Reena; Munagala, Gurunadham; Yempalla, Kushalava Reddy; Khan, Inshad Ali; Singh, Parvinder Pal; Khan, Farrah Gul; Nargotra, Amit

    2015-11-01

    Mycobacterium tuberculosis bacteria cause deadly infections in patients [Corrected]. The rise of multidrug resistance associated with tuberculosis further makes the situation worse in treating the disease. M. tuberculosis proteasome is necessary for the pathogenesis of the bacterium validated as an anti-tubercular target, thus making it an attractive enzyme for designing Mtb inhibitors. In this study, a computational screening approach was applied to identify new proteasome inhibitor candidates from a library of 50,000 compounds. This chemical library was procured from the ChemBridge (20,000 compounds) and the ChemDiv (30,000 compounds) databases. After a detailed analysis of the computational screening results, 50 in silico hits were retrieved and tested in vitro finding 15 compounds with [Formula: see text] values ranging from 35.32 to 64.15 [Formula: see text]M on lysate. A structural analysis of these hits revealed that 14 of these compounds probably have non-covalent mode of binding to the target and have not reported for anti-tubercular or anti-proteasome activity. The binding interactions of all the 14 protein-inhibitor complexes were analyzed using molecular docking studies. Further, molecular dynamics simulations of the protein in complex with the two most promising hits were carried out so as to identify the key interactions and validate the structural stability.

  18. A Suggested Approach to Simplify and Improve Cervical Screening in the United States.

    Science.gov (United States)

    Schiffman, Mark; Wentzensen, Nicolas

    2016-01-01

    Cervical cancer prevention strategies in the United States have become complicated and even controversial, despite advanced understanding of carcinogenic human papillomavirus (HPV) infection as the necessary causal agent. Twenty years ago, etiologic and methodologic studies had already yielded 2 powerful preventive approaches. There are excellent vaccines to prevent the most carcinogenic types of HPV infection; reduced HPV endemicity will ultimately prevent a large fraction of cervical precancer and cancers. For prevention of cervical cancer in the interim, sensitive HPV tests that target women at risk of cancer, by detection of the DNA/RNA of approximately a dozen carcinogenic HPV types, permit early diagnosis and treatment of precancers.Although HPV vaccines and tests have continued to improve, implementation of these new HPV-based prevention methods has been relatively slow in the United States and in most places worldwide. Increasing vaccination rates is the clearest and most vital long-term priority. But, for decades to come, screening will also be important. To promote useful discussion, this commentary will raise some current critical issues in simplifying and speeding the rational introduction of HPV molecular methods into US cervical screening.

  19. Repositioning approved drugs for the treatment of problematic cancers using a screening approach

    Science.gov (United States)

    Kuttler, Fabien; Banfi, Damiano; Turcatti, Gerardo; Dyson, Paul J.

    2017-01-01

    Advances in treatment strategies together with an earlier diagnosis have considerably increased the average survival of cancer patients over the last four decades. Nevertheless, despite the growing number of new antineoplastic agents introduced each year, there is still no adequate therapy for problematic malignancies such as pancreatic, lung and stomach cancers. Consequently, it is important to ensure that existing drugs used to treat other types of cancers, and potentially other diseases, are not overlooked when searching for new chemotherapy regimens for these problematic cancer types. We describe a screening approach that identifies chemotherapeutics for the treatment of lung and pancreatic cancers, based on drugs already approved for other applications. Initially, the 1280 chemically and pharmacologically diverse compounds from the Prestwick Chemical Library® (PCL) were screened against A549 (lung cancer) and PANC-1 (pancreatic carcinoma) cells using the PrestoBlue fluorescent-based cell viability assay. More than 100 compounds from the PCL were identified as hits in one or both cell lines (80 of them, being drugs used to treat diseases other than cancer). Selected PCL hits were further evaluated in a dose-response manner. Promising candidates for repositioning emanating from this study include antiparasitics, cardiac glycosides, as well as the anticancer drugs vorinostat and topotecan. PMID:28166232

  20. Integrative screening approach identifies regulators of polyploidization and targets for acute megakaryocytic leukemia

    Science.gov (United States)

    Wen, Qiang; Goldenson, Benjamin; Silver, Serena J.; Schenone, Monica; Dancik, Vladimir; Huang, Zan; Wang, Ling-Zhi; Lewis, Timothy; An, W. Frank; Li, Xiaoyu; Bray, Mark-Anthony; Thiollier, Clarisse; Diebold, Lauren; Gilles, Laure; Vokes, Martha S.; Moore, Christopher B.; Bliss-Moreau, Meghan; VerPlank, Lynn; Tolliday, Nicola J.; Mishra, Rama; Vemula, Sasidhar; Shi, Jianjian; Wei, Lei; Kapur, Reuben; Lopez, Cécile K.; Gerby, Bastien; Ballerini, Paola; Pflumio, Francoise; Gilliland, D. Gary; Goldberg, Liat; Birger, Yehudit; Izraeli, Shai; Gamis, Alan S.; Smith, Franklin O.; Woods, William G.; Taub, Jeffrey; Scherer, Christina A.; Bradner, James; Goh, Boon-Cher; Mercher, Thomas; Carpenter, Anne E.; Gould, Robert J.; Clemons, Paul A.; Carr, Steven A.; Root, David E.; Schreiber, Stuart L.; Stern, Andrew M.; Crispino, John D.

    2012-01-01

    Summary The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. We found that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. A broadly applicable, highly integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora A kinase (AURKA), which has not been studied extensively in megakaryocytes. Moreover, we discovered that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in AMKL blasts and displayed potent anti-AMKL activity in vivo. This research provides the rationale to support clinical trials of MLN8237 and other inducers of polyploidization in AMKL. Finally, we have identified five networks of kinases that regulate the switch to polyploidy. PMID:22863010

  1. A Genetic Algorithms Based Approach for Group Multicast Routing

    Directory of Open Access Journals (Sweden)

    Luca Sanna Randaccio

    2006-08-01

    Full Text Available Whereas multicast transmission in one-to-many communications allows the operator to drastically save network resources, it also makes the routing of the traffic flows more complex then in unicast transmissions. A huge amount of possible trees have to be considered and analyzed to find the appropriate routing paths. To address this problem, we propose the use of the genetic algorithms (GA, which considerably reduce the number of solutions to be evaluated. A heuristic procedure is first used to discern a set of possible trees for each multicast session in isolation. Then, the GA are applied to find the appropriate combination of the trees to comply with the bandwidth needs of the group of multicast sessions simultaneously. The goodness of each solution is assessed by means of an expression that weights both network bandwidth allocation and one-way delay. The resulting cost function is guided by few parameters that can be easily tuned during traffic engineering operations; an appropriate setting of these parameters allows the operator to configure the desired balance between network resource utilization and provided quality of service. Simulations have been performed to compare the proposed algorithm with alternative solutions in terms of bandwidth utilization and transmission delay.

  2. Hybrid genetic algorithm approach for selective harmonic control

    Energy Technology Data Exchange (ETDEWEB)

    Dahidah, Mohamed S.A. [Faculty of Engineering, Multimedia University, 63100, Jalan Multimedia-Cyberjaya, Selangor (Malaysia); Agelidis, Vassilios G. [School of Electrical and Information Engineering, The University of Sydney, NSW (Australia); Rao, Machavaram V. [Faculty of Engineering and Technology, Multimedia University, 75450, Jalan Ayer Keroh Lama-Melaka (Malaysia)

    2008-02-15

    The paper presents an optimal solution for a selective harmonic elimination pulse width modulated (SHE-PWM) technique suitable for a high power inverter used in constant frequency utility applications. The main challenge of solving the associated non-linear equations, which are transcendental in nature and, therefore, have multiple solutions, is the convergence, and therefore, an initial point selected considerably close to the exact solution is required. The paper discusses an efficient hybrid real coded genetic algorithm (HRCGA) that reduces significantly the computational burden, resulting in fast convergence. An objective function describing a measure of the effectiveness of eliminating selected orders of harmonics while controlling the fundamental, namely a weighted total harmonic distortion (WTHD) is derived, and a comparison of different operating points is reported. It is observed that the method was able to find the optimal solution for a modulation index that is higher than unity. The theoretical considerations reported in this paper are verified through simulation and experimentally on a low power laboratory prototype. (author)

  3. Structural modification of polysaccharides: A biochemical-genetic approach

    Science.gov (United States)

    Kern, Roger G.; Petersen, Gene R.

    1991-01-01

    Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.

  4. Attitudes of young adults to prenatal screening and genetic correction for human attributes and psychiatric conditions.

    Science.gov (United States)

    Milner, K K; Collins, E E; Connors, G R; Petty, E M

    1998-03-05

    With recent advances in DNA technology, questions have arisen as to how this technology should be appropriately used. In this article, results obtained from a survey designed to elicit attitudes of college students to prenatal testing and gene therapy for human attributes and psychiatric conditions are reported. The eleven hypothetical disease phenotypes included schizophrenia, alcoholism, tendency toward violent behavior, attention deficit/hyperactivity disorder, depression requiring medical treatment, obesity, involvement in "dangerous" sports activities, homosexuality, borderline normal IQ (80-100), proportional short stature, and inability to detect perfect pitch. Most students supported prenatal genetic testing for psychiatric disorders and behavior that might result in harm to others (i.e., tendency towards violent behavior) and found prenatal genetic testing for human attributes less desirable. However, the lack of unilateral agreement or disagreement toward any one condition or attribute suggests the potential difficulties ahead in the quest for guidelines for the application of new technologies available to manipulate the human genome.

  5. Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources.

    Science.gov (United States)

    Yi, Gibum; Lim, Sooyeon; Chae, Won Byoung; Park, Jeong Eun; Park, Hye Rang; Lee, Eun Jin; Huh, Jin Hoe

    2016-01-13

    Radish (Raphanus sativus L.), a root vegetable, is rich in glucosinolates (GLs), which are beneficial secondary metabolites for human health. To investigate the genetic variations in GL content in radish roots and the relationship with other root phenotypes, we analyzed 71 accessions from 23 different countries for GLs using HPLC. The most abundant GL in radish roots was glucoraphasatin, a GL with four-carbon aliphatic side chain. The content of glucoraphasatin represented at least 84.5% of the total GL content. Indolyl GL represented only 3.1% of the total GL at its maximum. The principal component analysis of GL profiles with various root phenotypes showed that four different genotypes exist in the 71 accessions. Although no strong correlation with GL content and root phenotype was observed, the varied GL content levels demonstrate the genetic diversity of GL content, and the amount that GLs could be potentially improved by breeding in radishes.

  6. [Rare diseases: specific ethical and legal aspects of genetic counseling and screening].

    Science.gov (United States)

    Sánchez-Caro, Javier

    2011-01-01

    This article analyses the specific rights of patients with rare diseases from a dual perspective. On the one hand, they concern a new generation of patients' rights that arise once the consolidation of basic rights has occurred, fundamentally after the application of Law 41/2002 (on Regulating Patient Autonomy and Rights and Obligations in the Field of Health Documentation and Information) and its development by the autonomous communities. On the other hand, the fundamental question raises a serious issue related to these patients, which involves the principles of equality, equity, non-discrimination and solidarity. This is aimed at promoting legislative measures to protect patients' equality of access to health and social services, with the ultimate aim of improving their quality of life. The author has given special relevance in his study to the treatment of rare diseases that are genetic in origin, and to the importance of adequate genetic counseling.

  7. Genetically designed biosensing systems for high-throughput screening of pharmaceuticals, clinical diagnostics, and environmental monitoring

    Science.gov (United States)

    Wenner, Brett R.; Douglass, Phillip; Shrestha, Suresh; Sharma, Bethel V.; Lai, Siyi; Madou, Marc J.; Daunert, Sylvia

    2001-05-01

    The genetically-modified binding proteins calmodulin, the phosphate binding protein, the sulfate binding protein, and the galactose/glucose binding protein have been successfully employed as biosensing elements for the detection of phenothiazines, phosphate, sulfate, and glucose, respectively. Mutant proteins containing unique cysteine residues were utilized in the site-specific labeling of environment-sensitive fluorescent probes. Changes in the environment of the probes upon ligand-induced conformational changes of the proteins result in changes in fluorescence intensity.

  8. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Arnaud De Muyt

    2009-09-01

    Full Text Available Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes.

  9. Diagnostic/genetic sreening - approach for genetic diagnoses and prevention of cleft lip and/or palate.

    Science.gov (United States)

    Natsume, Nagato; Kato, Tomoki; Hayakawa, Toko; Imura, Hideto

    2013-01-01

    The treatment, research and volunteer work for cleft lip and/or palate (CL/P) has been led for over 30 years by our team. Within this period, more than 4,000 cases of CL/P were treated and at the same time, and approximately 400 papers were published as the first or partner researcher in Nature Genetics, New England Journal of Medicine and others. In addition, with $20 million that was donated from companies and laypeople, and the grant from the Japanese government, CL/P centres in many countries and in Japan, the oral and craniofacial congenital anomaly gene bank in our CL/P centre was established by our leadership. In the bank there are genes from approximately more than 8,000 cases. The genes were mapped with Professor Jeffery Murray of Iowa University in the United States, the findings about genetic syndromes such as Van der Woude Syndrome and basal cell nevus syndrome were applied in clinical settings. The genetic counselling section that specialises in the oral and maxillofacial field was established by our effort for the first time in Japan. In this review, our clinical experience and approach for genetic diagnoses and prevention of cleft lip and/or palate will be discussed.

  10. BIOCHEMICAL GENETIC STUDIES ON CUTTLEFISH SEPIELLA MAINDRONI (CEPHALOPODA: SEPIIDAE)- ACTIVE LOCI SCREENING OF ISOZYME

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Screening of 46 putative enzyme-coding loci and 4 different kinds of tissues of Sepiella maindroni de Rochebrone, 1884 for enzymatic activities using starch gel electrophoretic technique proved that the 21 enzymes such as AAT, AK, ALP, AP, CK, DIA, ES, FBP, G3PDH, GPI, GRS,IDH, LDH, MDH, MEP, MPI, NP, PGDH, PGM, SOD and XO* , were active to Sepiella maindroni after being stained. The tissue exhibiting stable and clear bands was also determined. Among tissues tested, mantle muscle tissue was the best for electrophoretic survey of isozymes. Buccal bulb muscle, eye and liver were fairly good for some special enzymes, such as DIA, ES, MPI, NP, etc.

  11. Development of a screening approach for exploring cell factory potential through metabolic flux analysis and physiology

    DEFF Research Database (Denmark)

    Knudsen, Peter Boldsen; Nielsen, Kristian Fog; Thykær, Jette

    2012-01-01

    The recent developments within the field of metabolic engineering have significantly increased the speed by which fungal recombinant strains are being constructed, pushing focus towards physiological characterisation and analysis. This raises demand for a tool for diligent analysis of the recombi...... and work-load connected with screening and selection of potential cell factories with attractive properties, compared with more “traditional” methodologies where metabolic flux analysis is applied at a much later state in the characterisation process.......The recent developments within the field of metabolic engineering have significantly increased the speed by which fungal recombinant strains are being constructed, pushing focus towards physiological characterisation and analysis. This raises demand for a tool for diligent analysis...... on a Hamilton robotic system. This method aimed at characterising physiology at two levels: (1) An approach focusing on the traditional growth related parameters, i.e. growth rate, yield coefficients and extracellular metabolites. (2) 13C-labelling experiments, where metabolic fluxes are quantified...

  12. Detailed screening of the soil faunal diversity using a tiered DNA metabarcoding approach

    DEFF Research Database (Denmark)

    Groot, G.A. de; Geisen, S.; Costa, D.

    for automated identification of six different groups of soil fauna at high taxonomic detail, with a single integrated method. We adopted a tiered approach, in which a general eukaryotic marker is used to screen for the presence of different eukaryotic clades and a set of more specific markers is simultaneously...... analyzed to obtain high resolution data for six different groups: mites, collembola, enchytraeids, nematodes, earthworms and protists. New primer sets, as well as reference barcode datasets were established for several of them. Here, we show the results of two test runs based on 454 pyrosequencing...... results for DNA pools that contained different relative amounts of DNA of the six groups, we could show that for most markers the number of taxa of the targeted group recovered depended on the presence of DNA from non-targeted groups. In the second run we moved towards the analysis of actual soil (e...

  13. CE: Tuberculosis: A New Screening Recommendation and an Expanded Approach to Elimination in the United States.

    Science.gov (United States)

    Parmer, John; Allen, Leeanna; Walton, Wanda

    2017-08-01

    : Nurses play a critical role in the diagnosis and treatment of tuberculosis and in the prevention of tuberculosis transmission through infection control practices. To eliminate tuberculosis in the United States, however, an expanded approach to testing and treating people with latent tuberculosis infection must be implemented. Recently, the U.S. Preventive Services Task Force (USPSTF) issued a new recommendation statement on latent tuberculosis infection testing that expands nurses' opportunities to identify at-risk populations for tuberculosis prevention. In combination with newer testing methodologies and shorter treatment regimens, implementation of the USPSTF recommendation has the potential to remove previously existing barriers to screening and treatment of both patients and health care providers. This article provides a general overview of tuberculosis transmission, pathogenesis, and epidemiology; presents preventive care recommendations for targeted testing among high-risk groups; and discusses the USPSTF recommendation's applicability to public health and primary care practice in the United States.

  14. The Effect of Screen Size on Mobile Phone User Comprehension of Health Information and Application Structure: An Experimental Approach.

    Science.gov (United States)

    Al Ghamdi, Ebtisam; Yunus, Faisal; Da'ar, Omar; El-Metwally, Ashraf; Khalifa, Mohamed; Aldossari, Bakheet; Househ, Mowafa

    2016-01-01

    This research analyzes the impact of mobile phone screen size on user comprehension of health information and application structure. Applying experimental approach, we asked randomly selected users to read content and conduct tasks on a commonly used diabetes mobile application using three different mobile phone screen sizes. We timed and tracked a number of parameters, including correctness, effectiveness of completing tasks, content ease of reading, clarity of information organization, and comprehension. The impact of screen size on user comprehension/retention, clarity of information organization, and reading time were mixed. It is assumed on first glance that mobile screen size would affect all qualities of information reading and comprehension, including clarity of displayed information organization, reading time and user comprehension/retention of displayed information, but actually the screen size, in this experimental research, did not have significant impact on user comprehension/retention of the content or on understanding the application structure. However, it did have significant impact on clarity of information organization and reading time. Participants with larger screen size took shorter time reading the content with a significant difference in the ease of reading. While there was no significant difference in the comprehension of information or the application structures, there were a higher task completion rate and a lower number of errors with the bigger screen size. Screen size does not directly affect user comprehension of health information. However, it does affect clarity of information organization, reading time and user's ability to recall information.

  15. [Approach to depressogenic genes from genetic analyses of animal models].

    Science.gov (United States)

    Yoshikawa, Takeo

    2004-01-01

    Human depression or mood disorder is defined as a complex disease, making positional cloning of susceptibility genes a formidable task. We have undertaken genetic analyses of three different animal models for depression, comparing our results with advanced database resources. We first performed quantitative trait loci (QTL) analysis on two mouse models of "despair", namely, the forced swim test (FST) and tail suspension test (TST), and detected multiple chromosomal loci that control immobility time in these tests. Since one QTL detected on mouse chromosome 11 harbors the GABA A receptor subunit genes, we tested these genes for association in human mood disorder patients. We obtained significant associations of the alpha 1 and alpha 6 subunit genes with the disease, particularly in females. This result was striking, because we had previously detected an epistatic interaction between mouse chromosomes 11 and X that regulates immobility time in these animals. Next, we performed genome-wide expression analyses using a rat model of depression, learned helplessness (LH). We found that in the frontal cortex of LH rats, a disease implicated region, the LIM kinase 1 gene (Limk 1) showed greatest alteration, in this case down-regulation. By combining data from the QTL analysis of FST/TST and DNA microarray analysis of mouse frontal cortex, we identified adenylyl cyclase-associated CAP protein 1 (Cap 1) as another candidate gene for depression susceptibility. Both Limk 1 and Cap 1 are key players in the modulation of actin G-F conversion. In summary, our current study using animal models suggests disturbances of GABAergic neurotransmission and actin turnover as potential pathophysiologies for mood disorder.

  16. A genetic programming approach to oral cancer prognosis

    Directory of Open Access Journals (Sweden)

    Mei Sze Tan

    2016-09-01

    Full Text Available Background The potential of genetic programming (GP on various fields has been attained in recent years. In bio-medical field, many researches in GP are focused on the recognition of cancerous cells and also on gene expression profiling data. In this research, the aim is to study the performance of GP on the survival prediction of a small sample size of oral cancer prognosis dataset, which is the first study in the field of oral cancer prognosis. Method GP is applied on an oral cancer dataset that contains 31 cases collected from the Malaysia Oral Cancer Database and Tissue Bank System (MOCDTBS. The feature subsets that is automatically selected through GP were noted and the influences of this subset on the results of GP were recorded. In addition, a comparison between the GP performance and that of the Support Vector Machine (SVM and logistic regression (LR are also done in order to verify the predictive capabilities of the GP. Result The result shows that GP performed the best (average accuracy of 83.87% and average AUROC of 0.8341 when the features selected are smoking, drinking, chewing, histological differentiation of SCC, and oncogene p63. In addition, based on the comparison results, we found that the GP outperformed the SVM and LR in oral cancer prognosis. Discussion Some of the features in the dataset are found to be statistically co-related. This is because the accuracy of the GP prediction drops when one of the feature in the best feature subset is excluded. Thus, GP provides an automatic feature selection function, which chooses features that are highly correlated to the prognosis of oral cancer. This makes GP an ideal prediction model for cancer clinical and genomic data that can be used to aid physicians in their decision making stage of diagnosis or prognosis.

  17. Genetics

    Science.gov (United States)

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  18. Genetic Screen Reveals the Role of Purine Metabolism in Staphylococcus aureus Persistence to Rifampicin

    Directory of Open Access Journals (Sweden)

    Rebecca Yee

    2015-12-01

    Full Text Available Chronic infections with Staphylococcus aureus such as septicemia, osteomyelitis, endocarditis, and biofilm infections are difficult to treat because of persisters. Despite many efforts in understanding bacterial persistence, the mechanisms of persister formation in S. aureus remain elusive. Here, we performed a genome-wide screen of a transposon mutant library to study the molecular mechanisms involved in persistence of community-acquired S. aureus. Screening of the library for mutants defective in persistence or tolerance to rifampicin revealed many genes involved in metabolic pathways that are important for antibiotic persistence. In particular, the identified mutants belonged to metabolic pathways involved in carbohydrate, amino acid, lipid, vitamin and purine biosynthesis. Five mutants played a role in purine biosynthesis and two mutants, purB, an adenylosuccinate lyase, and purM, a phosphoribosylaminoimidazole synthetase, were selected for further confirmation. Mutants purB and purM showed defective persistence compared to the parental strain USA300 in multiple stress conditions including various antibiotics, low pH, and heat stress. The defect in persistence was restored by complementation with the wildtype purB and purM gene in the respective mutants. These findings provide new insights into the mechanisms of persistence in S. aureus and provide novel therapeutic targets for developing more effective treatment for persistent infections due to S. aureus.

  19. Genetic algorithm based image binarization approach and its quantitative evaluation via pooling

    Science.gov (United States)

    Hu, Huijun; Liu, Ya; Liu, Maofu

    2015-12-01

    The binarized image is very critical to image visual feature extraction, especially shape feature, and the image binarization approaches have been attracted more attentions in the past decades. In this paper, the genetic algorithm is applied to optimizing the binarization threshold of the strip steel defect image. In order to evaluate our genetic algorithm based image binarization approach in terms of quantity, we propose the novel pooling based evaluation metric, motivated by information retrieval community, to avoid the lack of ground-truth binary image. Experimental results show that our genetic algorithm based binarization approach is effective and efficiency in the strip steel defect images and our quantitative evaluation metric on image binarization via pooling is also feasible and practical.

  20. [Modern evolutional developmental biology: mechanical and molecular genetic or phenotypic approaches?].

    Science.gov (United States)

    Vorob'eva, É I

    2010-01-01

    Heightened interest in the evolutionary problems of developmental biology in the 1980s was due to the success of molecular genetics and disappointment in the synthetic theory of evolution, where the chapters of embryology and developmental biology seem to have been left out. Modern evo-devo, which turned out to be antipodean to the methodology of the synthetic theory of evolution, propagandized in the development of evolutionary problems only the mechanical and molecular genetic approach to the evolution of ontogenesis, based on cellular and intercellular interactions. The phonotypical approach to the evaluation of evolutionary occurrences in ontogenesis, which aids in the joining of the genetic and epigenetic levels of research, the theory of natural selection, the nomogenetic conception, and the problem of the wholeness of the organism in onto- and phylogenesis may be against this. The phenotypic approach to ontogenesis is methodologically the most perspective for evolutionary developmental biology.

  1. Multiplex polymerase chain reaction-capillary gel electrophoresis: a promising tool for GMO screening--assay for simultaneous detection of five genetically modified cotton events and species.

    Science.gov (United States)

    Nadal, Anna; Esteve, Teresa; Pla, Maria

    2009-01-01

    A multiplex polymerase chain reaction assay coupled to capillary gel electrophoresis for amplicon identification by size and color (multiplex PCR-CGE-SC) was developed for simultaneous detection of cotton species and 5 events of genetically modified (GM) cotton. Validated real-time-PCR reactions targeting Bollgard, Bollgard II, Roundup Ready, 3006-210-23, and 281-24-236 junction sequences, and the cotton reference gene acp1 were adapted to detect more than half of the European Union-approved individual or stacked GM cotton events in one reaction. The assay was fully specific (PCR-CGE-SC assay to allow simultaneous detection of 6 cotton and 5 maize targets (two endogenous genes and 9 GM events) in two multiplex PCRs and a single CGE, making the approach more economic. Besides allowing simultaneous detection of many targets with adequate specificity and sensitivity, the multiplex PCR-CGE-SC approach has high throughput and automation capabilities, while keeping a very simple protocol, e.g., amplification and labeling in one step. Thus, it is an easy and inexpensive tool for initial screening, to be complemented with quantitative assays if necessary.

  2. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    Science.gov (United States)

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.

  3. Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy

    Science.gov (United States)

    Fujita, Naonobu; Huang, Wilson; Lin, Tzu-han; Groulx, Jean-Francois; Jean, Steve; Nguyen, Jen; Kuchitsu, Yoshihiko; Koyama-Honda, Ikuko; Mizushima, Noboru; Fukuda, Mitsunori; Kiger, Amy A

    2017-01-01

    Transverse (T)-tubules make-up a specialized network of tubulated muscle cell membranes involved in excitation-contraction coupling for power of contraction. Little is known about how T-tubules maintain highly organized structures and contacts throughout the contractile system despite the ongoing muscle remodeling that occurs with muscle atrophy, damage and aging. We uncovered an essential role for autophagy in T-tubule remodeling with genetic screens of a developmentally regulated remodeling program in Drosophila abdominal muscles. Here, we show that autophagy is both upregulated with and required for progression through T-tubule disassembly stages. Along with known mediators of autophagosome-lysosome fusion, our screens uncovered an unexpected shared role for Rab2 with a broadly conserved function in autophagic clearance. Rab2 localizes to autophagosomes and binds to HOPS complex members, suggesting a direct role in autophagosome tethering/fusion. Together, the high membrane flux with muscle remodeling permits unprecedented analysis both of T-tubule dynamics and fundamental trafficking mechanisms. DOI: http://dx.doi.org/10.7554/eLife.23367.001 PMID:28063257

  4. Multiplex PCR-based simultaneous amplification of selectable marker and reporter genes for the screening of genetically modified crops.

    Science.gov (United States)

    Randhawa, Gurinder Jit; Chhabra, Rashmi; Singh, Monika

    2009-06-24

    The development and commercialization of genetically modified (GM) crops with enhanced insect and herbicide resistance, abiotic stress tolerance, and improved nutritional quality has expanded dramatically. Notwithstanding the huge potential benefits of GM crops, the perceived environmental risks associated with these crops need to be addressed in proper perspective. One critical concern is the adventitious presence or unintentional mixing of GM seed in non-GM seed lots, which can seriously affect the global seed market. It would therefore be necessary though a challenging task to develop reliable, efficient, and economical assays for GM detection, identification, and quantification in non-GM seed lots. This can be systematically undertaken by preliminary screening for control elements and selectable or scorable (reporter) marker genes. In this study, simplex and multiplex polymerase chain reaction (PCR) assays individually as well as simultaneously amplifying the commonly used selectable marker genes, i.e., aadA, bar, hpt, nptII, pat encoding, respectively, for aminoglycoside-3'-adenyltransferase, Streptococcus viridochromogenes phosphinothricin-N-acetyltransferase, hygromycin phosphotransferase, neomycin phosphotransferase, Streptococcus hygroscopicus phosphinothricin-N-acetyltransferase, and a reporter gene uidA encoding beta-d-glucuronidase, were developed as a reliable tool for qualitative screening of GM crops. The efficiency of the assays was also standardized in the test samples prepared by artificial mixing of transgenic seed samples in different proportions. The developed multiplex PCR assays will be useful in verifying the GM status of a sample irrespective of the crop and GM trait.

  5. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment.

    Science.gov (United States)

    Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang

    2015-08-04

    Digital PCR has developed rapidly since it was first reported in the 1990 s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products.

  6. Skin Cancer Screening

    Science.gov (United States)

    ... Genetics of Skin Cancer Skin Cancer Screening Research Skin Cancer Screening (PDQ®)–Patient Version What is screening? ... These are called diagnostic tests . General Information About Skin Cancer Key Points Skin cancer is a disease ...

  7. Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches

    Directory of Open Access Journals (Sweden)

    Pathan AAK

    2016-05-01

    Full Text Available Akbar Ali Khan Pathan,1,2,* Bhavana Panthi,3,* Zahid Khan,1 Purushotham Reddy Koppula,4–6 Mohammed Saud Alanazi,1 Sachchidanand,3 Narasimha Reddy Parine,1 Mukesh Chourasia3,* 1Genome Research Chair (GRC, Department of Biochemistry, College of Science, King Saud University, 2Integrated Gulf Biosystems, Riyadh, Kingdom of Saudi Arabia; 3Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hajipur, India; 4Department of Internal Medicine, School of Medicine, 5Harry S. Truman Memorial Veterans Affairs Hospital, 6Department of Radiology, School of Medicine, Columbia, MO, USA *These authors contributed equally to this work Objective: Kirsten rat sarcoma (K-Ras protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods: In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results: Interestingly, the designed compounds exhibit a binding preference for the

  8. A genetic screen identifies Tor as an interactor of VAPB in a Drosophila model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Senthilkumar Deivasigamani

    2014-10-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a progressive neurodegenerative disorder characterized by selective death of motor neurons. In 5–10% of the familial cases, the disease is inherited because of mutations. One such mutation, P56S, was identified in human VAPB that behaves in a dominant negative manner, sequestering wild type protein into cytoplasmic inclusions. We have conducted a reverse genetic screen to identify interactors of Drosophila VAPB. We screened 2635 genes and identified 103 interactors, of which 45 were enhancers and 58 were suppressors of VAPB function. Interestingly, the screen identified known ALS loci – TBPH, alsin2 and SOD1. Also identified were genes involved in cellular energetics and homeostasis which were used to build a gene regulatory network of VAPB modifiers. One key modifier identified was Tor, whose knockdown reversed the large bouton phenotype associated with VAP(P58S expression in neurons. A similar reversal was seen by over-expressing Tuberous Sclerosis Complex (Tsc1,2 that negatively regulates TOR signaling as also by reduction of S6K activity. In comparison, the small bouton phenotype associated with VAP(wt expression was reversed with Tsc1 knock down as well as S6K-CA expression. Tor therefore interacts with both VAP(wt and VAP(P58S, but in a contrasting manner. Reversal of VAP(P58S bouton phenotypes in larvae fed with the TOR inhibitor Rapamycin suggests upregulation of TOR signaling in response to VAP(P58S expression. The VAPB network and further mechanistic understanding of interactions with key pathways, such as the TOR cassette, will pave the way for a better understanding of the mechanisms of onset and progression of motor neuron disease.

  9. A genetic screen identifies Tor as an interactor of VAPB in a Drosophila model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Deivasigamani, Senthilkumar; Verma, Hemant Kumar; Ueda, Ryu; Ratnaparkhi, Anuradha; Ratnaparkhi, Girish S

    2014-10-31

    Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder characterized by selective death of motor neurons. In 5-10% of the familial cases, the disease is inherited because of mutations. One such mutation, P56S, was identified in human VAPB that behaves in a dominant negative manner, sequestering wild type protein into cytoplasmic inclusions. We have conducted a reverse genetic screen to identify interactors of Drosophila VAPB. We screened 2635 genes and identified 103 interactors, of which 45 were enhancers and 58 were suppressors of VAPB function. Interestingly, the screen identified known ALS loci - TBPH, alsin2 and SOD1. Also identified were genes involved in cellular energetics and homeostasis which were used to build a gene regulatory network of VAPB modifiers. One key modifier identified was Tor, whose knockdown reversed the large bouton phenotype associated with VAP(P58S) expression in neurons. A similar reversal was seen by over-expressing Tuberous Sclerosis Complex (Tsc1,2) that negatively regulates TOR signaling as also by reduction of S6K activity. In comparison, the small bouton phenotype associated with VAP(wt) expression was reversed with Tsc1 knock down as well as S6K-CA expression. Tor therefore interacts with both VAP(wt) and VAP(P58S), but in a contrasting manner. Reversal of VAP(P58S) bouton phenotypes in larvae fed with the TOR inhibitor Rapamycin suggests upregulation of TOR signaling in response to VAP(P58S) expression. The VAPB network and further mechanistic understanding of interactions with key pathways, such as the TOR cassette, will pave the way for a better understanding of the mechanisms of onset and progression of motor neuron disease.

  10. In vitro fertilization with preimplantation genetic screening improves implantation and live birth in women age 40 through 43.

    Science.gov (United States)

    Lee, Hsiao-Ling; McCulloh, David H; Hodes-Wertz, Brooke; Adler, Alexis; McCaffrey, Caroline; Grifo, James A

    2015-03-01

    In Vitro Fertilization is an effective treatment for infertility; however, it has relatively low success in women of advanced maternal age (>37) who have a high risk of producing aneuploid embryos, resulting in implantation failure, a higher rate of miscarriage or birth of a child with chromosome abnormalities. The purpose of this study was to compare the implantation, miscarriage and live birth rates with and without preimplantation genetic screening (PGS) of embryos from patients aged 40 through 43 years. This is a retrospective cohort study, comparing embryos screened for ploidy using trophectoderm biopsy and array comparative genomic hybridization to embryos that were not screened. We compared pregnancy outcomes for traditional fresh IVF cycles with day 5 embryo transfers, Frozen Embryo Transfer (FET) cycles without PGS and PGS-FET (FET of only euploid embryos) cycles of patients with maternal ages ranging from 40 to 43 years, undergoing oocyte retrievals during the period between 1/1/2011 and 12/31/2012. The implantation rate of euploid embryos transferred in FET cycles (50.9%) was significantly greater than for unscreened embryos transferred in either fresh (23.8%) or FET (25.4%) cycles. The incidence of live birth per transferred embryo for PGS-FET (45.5%) was significantly greater than for No PGS fresh (15.8%) or No PGS FET (19.0 %) cycles. The incidences of live birth per implanted sac for PGS FET cycles (89.3%), No PGS fresh cycles (66.7%) and No PGS FET cycles (75.0%) were not significantly different. The present data provides evidence of the benefits of PGS with regard to improved implantation and live birth rate per embryo transferred.

  11. A Cell-Based Approach for the Biosynthesis/Screening of Cyclic Peptide Libraries against Bacterial Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A; Kimura, R; Woo, Y; Cantor, J; Steenblock, E

    2007-10-24

    Available methods for developing and screening small drug-like molecules able to knockout toxins or pathogenic microorganisms have some limitations. In order to be useful, these new methods must provide high-throughput analysis and identify specific binders in a short period of time. To meet this need, we are developing an approach that uses living cells to generate libraries of small biomolecules, which are then screened inside the cell for activity. Our group is using this new, combined approach to find highly specific ligands capable of disabling anthrax Lethal Factor (LF) as proof of principle. Key to our approach is the development of a method for the biosynthesis of libraries of cyclic peptides, and an efficient screening process that can be carried out inside the cell.

  12. Chemical Genetic Screens for TDP-43 Modifiers and ALS Drug Discovery

    Science.gov (United States)

    2013-10-01

    Jean-Pierre Julien Betty Diamond 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: p.drapeau@umontreal.ca 5f. WORK UNIT NUMBER 7... Ash PE, Zhang YJ, Roberts CM, Saldi T, Hutter H, et al. (2010) Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet. 30. Zhang T...elegans. PloS One 7, e31321. Vaccaro, A., Tauffenberger, A., Ash , P.E., Carlomagno, Y., Petrucelli, L., Parker, J.A., 2012b. TDP-1/TDP-43 regulates

  13. The role of experiential knowledge within attitudes towards genetic carrier screening: A comparison of people with and without experience of spinal muscular atrophy.

    Science.gov (United States)

    Boardman, Felicity K; Young, Philip J; Warren, Oliver; Griffiths, Frances E

    2017-07-13

    Autosomal recessive conditions, while individually rare, are a significant health burden with limited treatment options. Population carrier screening has been suggested as a means of tackling them. Little is known, however, about the attitudes of the general public towards such carrier screening and still less about the views of people living with candidate genetic diseases. Here, we focus on the role that such experience has on screening attitudes by comparing views towards screening of people with and without prior experience of the monogenetic disorder, Spinal Muscular Atrophy. An exploratory sequential mixed methods design was adopted. In-depth qualitative interviews were used to develop two surveys. The surveys addressed attitudes towards carrier screening (pre-conceptual and prenatal) for SMA. 337 participants with SMA experience completed the SMA Screening Survey (UK) and 336 participants with no prior experience of SMA completed the UK GenPop Survey, an amended version of the SMA Screening Survey (UK). The majority of both cohorts were in favour of pre-conception and prenatal carrier screening, however people with experience of type II SMA were least likely to support either. Key differences emerged around perceptions of SMA, with those without SMA experience taking a dimmer view of the condition than those with. This study underscores the significance of prior experience with the condition to screening attitudes. It highlights the need for accurate and high-quality educational resources to support any future carrier screening programmes, that particularly in relation to rare genetic disorders like SMA that will fall outside the remit of everyday experience for the majority of the population. © 2017 The Authors Health Expectations Published by John Wiley & Sons Ltd.

  14. Screening and genetic diagnosis of Hemoglobinopathies in Southern and Northern Europe: Two examples

    Directory of Open Access Journals (Sweden)

    Antonio Amato

    2009-08-01

    Full Text Available Prevention of Hemoglobinopathies has developed around the world based upon the experience done in pioneering endemic countries and is now facing a new phase in non-endemic areas with a recent immigration history. We describe two situations, taking Latium (central Italy and The Netherlands as two models for endemic and non-endemic countries both confronted with a large multi-ethnic immigrant society. We present prevention results and discuss aspects such as local knowledge and organization. We illustrate the importance of issues like information, carrier diagnostics, screening, counseling and prenatal diagnosis in particular situation of contrasting interest an different ethical opinions. We conclude by underlining the importance of implementing primary prevention at the European level, based upon better information, diagnostics and counseling.

  15. A genetic screen of the mutations in the Korean patients with early-onset Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    An SS

    2016-12-01

    Full Text Available Seong Soo An,1,* Sun Ah Park,2,* Eva Bagyinszky,1 Sun Oh Bae,1 Yoon-Jeong Kim,2 Ji Young Im,2 Kyung Won Park,3 Kee Hyung Park,4 Eun-Joo Kim,5 Jee Hyang Jeong,6 Jong Hun Kim,7 Hyun Jeong Han,8 Seong Hye Choi,9 SangYun Kim10 1Department of Bionano Technology, Gachon University, Seongnam-si, 2Department of Neurology, Soonchunhyang University Bucheon Hospital, Bucheon, 3Department of Neurology, Dong-A University College of Medicine and Institute of Convergence Bio-Health, Busan, 4Department of Neurology, Gachon University Gil Medical Center, Incheon, 5Department of Neurology, Pusan National University Hospital, Busan, 6Department of Neurology, Ewha Womans University Mokdong Hospital, Seoul, 7Department of Neurology, Ilsan Hospital, National Health Insurance Corporation, 8Department of Neurology, Myongii Hospital, Goyang, 9Department of Neurology, Inha University School of Medicine, Incheon, 10Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea *These authors contributed equally to this work Abstract: Early-onset Alzheimer’s disease (EOAD has distinct clinical characteristics in comparison to late-onset Alzheimer’s disease (LOAD. The genetic contribution is suggested to be more potent in EOAD. However, the frequency of causative mutations in EOAD could be variable depending on studies. Moreover, no mutation screening study has been performed yet employing large population in Korea. Previously, we reported that the rate of family history of dementia in EOAD patients was 18.7% in a nationwide hospital-based cohort study, the Clinical Research Center for Dementia of South Korea (CREDOS study. This rate is much lower than in other countries and is even comparable to the frequency of LOAD patients in our country. To understand the genetic characteristics of EOAD in Korea, we screened the common Alzheimer’s disease (AD

  16. Screening and genetic improvement of pectinolytic fungi for degumming of textile fibers

    Directory of Open Access Journals (Sweden)

    Molina Silvia M.G.

    2001-01-01

    Full Text Available Aiming at contributing to technological improvements in plant fiber processing methods, this paper reports research work on the obtainment of more efficient pectinase-producing fungi strains. More specifically, this work reports the analysis of 18 strains of filamentous fungi, with the purpose of obtaining enzymes for textile fibers degumming. The strains were evaluated for production of pectinolytic enzymes under several growth conditions (culture medium and growth temperature. Production of pectinases was measured by an enzymatic index (EI in solid pectin medium. Among the tested strains, Penicillium chrysogenum IFO 4626 (Q 176 showed the best performance. Genetic improvement of this strain was carried out to increase its pectinase production, while keeping cellulase activity down to a negligible level, since cellulases are known to decrease the resistance of the fiber. Variability was induced through several cycles of mutation and selection by exposing conidea to ultra-violet light (UV. We selected 39 out of 390 isolated colonies. Resulting mutants produced nine times more pectin lyase (PL than the original strain in terms of PL specific activity, and five times more in terms of PL activity (i.e. mmoles liberated per minute of reaction per mL of medium. Periodically, mutant performance was evaluated in solid pectin medium. Genetic stability was maintained for four years after isolation.

  17. Pharmacological chaperone approaches for rescuing GPCR mutants: Current state, challenges, and screening strategies.

    Science.gov (United States)

    Beerepoot, Pieter; Nazari, Reza; Salahpour, Ali

    2017-03-01

    A substantial number of G-protein coupled receptors (GPCRs) genetic disorders are due to mutations that cause misfolding or dysfunction of the receptor product. Pharmacological chaperoning approaches can rescue such mutant receptors by stabilizing protein conformations that behave similar to the wild type protein. For example, this can be achieved by improving folding efficiency and/or interaction with chaperone proteins. Although efficacy of pharmacological chaperones has been demonstrated in vitro for a variety of GPCRs, translation to clinical use has been limited. In this paper we discuss the history of pharmacological chaperones of GPCR's and other membrane proteins, the challenges in translation to the clinic, and the use of different assays for pharmacological chaperone discovery.

  18. Genetic and Modeling Approaches Reveal Distinct Components of Impulsive Behavior.

    Science.gov (United States)

    Nautiyal, Katherine M; Wall, Melanie M; Wang, Shuai; Magalong, Valerie M; Ahmari, Susanne E; Balsam, Peter D; Blanco, Carlos; Hen, René

    2017-01-18

    Impulsivity is an endophenotype found in many psychiatric disorders including substance use disorders, pathological gambling, and attention deficit hyperactivity disorder. Two behavioral features often considered in impulsive behavior are behavioral inhibition (impulsive action) and delayed gratification (impulsive choice). However, the extent to which these behavioral constructs represent distinct facets of behavior with discrete biological bases is unclear. To test the hypothesis that impulsive action and impulsive choice represent statistically independent behavioral constructs in mice, we collected behavioral measures of impulsivity in a single cohort of mice using well-validated operant behavioral paradigms. Mice with manipulation of serotonin 1B receptor (5-HT1BR) expression were included as a model of disordered impulsivity. A factor analysis was used to characterize correlations between the measures of impulsivity and to identify covariates. Using two approaches, we dissociated impulsive action from impulsive choice. First, the absence of 5-HT1BRs caused increased impulsive action, but not impulsive choice. Second, based on an exploratory factor analysis, a two-factor model described the data well, with measures of impulsive action and choice separating into two independent factors. A multiple-indicator multiple-causes analysis showed that 5-HT1BR expression and sex were significant covariates of impulsivity. Males displayed increased impulsivity in both dimensions, whereas 5-HT1BR expression was a predictor of increased impulsive action only. These data support the conclusion that impulsive action and impulsive choice are distinct behavioral phenotypes with dissociable biological influences that can be modeled in mice. Our work may help inform better classification, diagnosis, and treatment of psychiatric disorders, which present with disordered impulsivity.Neuropsychopharmacology advance online publication, 18 January 2017; doi:10.1038/npp.2016.277.

  19. Pregnancy outcome after preimplantation genetic screening or natural conception in couples with unexplained recurrent miscarriage: a systematic review of the best available evidence.

    NARCIS (Netherlands)

    Musters, A.M.; Repping, S.; Korevaar, J.C.; Mastenbroek, S.; Limpens, J.; Veen, F. van der; Goddijn, M.

    2011-01-01

    The objective of this systematic review was to assess live birth rates and miscarriage rates after preimplantation genetic screening or natural conception for unexplained recurrent miscarriage. There were no randomized controlled trials or comparative studies found on this topic. Until data from ran

  20. Preimplantation genetic screening as an alternative to prenatal testing for Down syndrome : preferences of women undergoing in vitro fertilization/intracytoplasmic sperm injection treatment

    NARCIS (Netherlands)

    Twisk, Moniek; Haadsma, Maaike L.; van der Veen, Fulco; Repping, Sjoerd; Mastenbroek, Sebastiaan; Heineman, Maas-Jan; Bossuyt, Patrick M. M.; Korevaar, Johanna C.

    2007-01-01

    Objective: Although the primary goal of preimplantation genetic screening (PGS) is to increase pregnancy rates in women undergoing IVF/intracytoplasmic sperm injection treatment, it has been suggested that it may also be used as an alternative to prenatal testing for Down syndrome. Design: Trade-off

  1. Improving the accuracy of density-functional theory calculation: the genetic algorithm and neural network approach.

    Science.gov (United States)

    Li, Hui; Shi, LiLi; Zhang, Min; Su, Zhongmin; Wang, XiuJun; Hu, LiHong; Chen, GuanHua

    2007-04-14

    The combination of genetic algorithm and neural network approach (GANN) has been developed to improve the calculation accuracy of density functional theory. As a demonstration, this combined quantum mechanical calculation and GANN correction approach has been applied to evaluate the optical absorption energies of 150 organic molecules. The neural network approach reduces the root-mean-square (rms) deviation of the calculated absorption energies of 150 organic molecules from 0.47 to 0.22 eV for the TDDFTB3LYP6-31G(d) calculation, and the newly developed GANN correction approach reduces the rms deviation to 0.16 eV.

  2. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    Science.gov (United States)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  3. Solving an aggregate production planning problem by using multi-objective genetic algorithm (MOGA approach

    Directory of Open Access Journals (Sweden)

    Ripon Kumar Chakrabortty

    2013-01-01

    Full Text Available In hierarchical production planning system, Aggregate Production Planning (APP falls between the broad decisions of long-range planning and the highly specific and detailed short-range planning decisions. This study develops an interactive Multi-Objective Genetic Algorithm (MOGA approach for solving the multi-product, multi-period aggregate production planning (APP with forecasted demand, related operating costs, and capacity. The proposed approach attempts to minimize total costs with reference to inventory levels, labor levels, overtime, subcontracting and backordering levels, and labor, machine and warehouse capacity. Here several genetic algorithm parameters are considered for solving NP-hard problem (APP problem and their relative comparisons are focused to choose the most auspicious combination for solving multiple objective problems. An industrial case demonstrates the feasibility of applying the proposed approach to real APP decision problems. Consequently, the proposed MOGA approach yields an efficient APP compromise solution for large-scale problems.

  4. A loss-of-function genetic screening identifies novel mediators of thyroid cancer cell viability

    Science.gov (United States)

    Cantisani, Maria Carmela; Parascandolo, Alessia; Perälä, Merja; Allocca, Chiara; Fey, Vidal; Sahlberg, Niko; Merolla, Francesco; Basolo, Fulvio; Laukkanen, Mikko O.; Kallioniemi, Olli Pekka; Santoro, Massimo; Castellone, Maria Domenica

    2016-01-01

    RET, BRAF and other protein kinases have been identified as major molecular players in thyroid cancer. To identify novel kinases required for the viability of thyroid carcinoma cells, we performed a RNA interference screening in the RET/PTC1(CCDC6-RET)-positive papillary thyroid cancer cell line TPC1 using a library of synthetic small interfering RNAs (siRNAs) targeting the human kinome and related proteins. We identified 14 hits whose silencing was able to significantly reduce the viability and the proliferation of TPC1 cells; most of them were active also in BRAF-mutant BCPAP (papillary thyroid cancer) and 8505C (anaplastic thyroid cancer) and in RAS-mutant CAL62 (anaplastic thyroid cancer) cells. These included members of EPH receptor tyrosine kinase family as well as SRC and MAPK (mitogen activated protein kinases) families. Importantly, silencing of the identified hits did not affect significantly the viability of Nthy-ori 3-1 (hereafter referred to as NTHY) cells derived from normal thyroid tissue, suggesting cancer cell specificity. The identified proteins are worth exploring as potential novel druggable thyroid cancer targets. PMID:27058903

  5. A Phenotypic Based Target Screening Approach Delivers New Antitubercular CTP Synthetase Inhibitors.

    Science.gov (United States)

    Esposito, Marta; Szadocka, Sára; Degiacomi, Giulia; Orena, Beatrice S; Mori, Giorgia; Piano, Valentina; Boldrin, Francesca; Zemanová, Júlia; Huszár, Stanislav; Barros, David; Ekins, Sean; Lelièvre, Joel; Manganelli, Riccardo; Mattevi, Andrea; Pasca, Maria Rosalia; Riccardi, Giovanna; Ballell, Lluis; Mikušová, Katarína; Chiarelli, Laurent R

    2017-06-09

    Despite its great potential, the target-based approach has been mostly unsuccessful in tuberculosis drug discovery, while whole cell phenotypic screening has delivered several active compounds. However, for many of these hits, the cellular target has not yet been identified, thus preventing further target-based optimization of the compounds. In this context, the newly validated drug target CTP synthetase PyrG was exploited to assess a target-based approach of already known, but untargeted, antimycobacterial compounds. To this purpose the publically available GlaxoSmithKline antimycobacterial compound set was assayed, uncovering a series of 4-(pyridin-2-yl)thiazole derivatives which efficiently inhibit the Mycobacterium tuberculosis PyrG enzyme activity, one of them showing low activity against the human CTP synthetase. The three best compounds were ATP binding site competitive inhibitors, with Ki values ranging from 3 to 20 μM, but did not show any activity against a small panel of different prokaryotic and eukaryotic kinases, thus demonstrating specificity for the CTP synthetases. Metabolic labeling experiments demonstrated that the compounds directly interfere not only with CTP biosynthesis, but also with other CTP dependent biochemical pathways, such as lipid biosynthesis. Moreover, using a M. tuberculosis pyrG conditional knock-down strain, it was shown that the activity of two compounds is dependent on the intracellular concentration of the CTP synthetase. All these results strongly suggest a role of PyrG as a target of these compounds, thus strengthening the value of this kind of approach for the identification of new scaffolds for drug development.

  6. Genetic and Molecular Approaches to Study Neuronal Migration in the Developing Cerebral Cortex.

    Science.gov (United States)

    Dudok, Jacobus J; Leonards, Pim E G; Wijnholds, Jan

    2017-05-05

    The migration of neuronal cells in the developing cerebral cortex is essential for proper development of the brain and brain networks. Disturbances in this process, due to genetic abnormalities or exogenous factors, leads to aberrant brain formation, brain network formation, and brain function. In the last decade, there has been extensive research in the field of neuronal migration. In this review, we describe different methods and approaches to assess and study neuronal migration in the developing cerebral cortex. First, we discuss several genetic methods, techniques and genetic models that have been used to study neuronal migration in the developing cortex. Second, we describe several molecular approaches to study aberrant neuronal migration in the cortex which can be used to elucidate the underlying mechanisms of neuronal migration. Finally, we describe model systems to investigate and assess the potential toxicity effect of prenatal exposure to environmental chemicals on proper brain formation and neuronal migration.

  7. On Generating Optimal Signal Probabilities for Random Tests: A Genetic Approach

    Directory of Open Access Journals (Sweden)

    M. Srinivas

    1996-01-01

    Full Text Available Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed. A brief overview of Genetic Algorithms (GAs and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance of our GAbased approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger.

  8. Approaches for the Identification of Genetic Modifiers of Nutrient Dependent Phenotypes: Examples from Folate

    OpenAIRE

    MacFarlane, Amanda J.; Ian eZinck

    2014-01-01

    By combining the sciences of nutrition, bioinformatics, genomics, population genetics, and epidemiology, nutrigenomics is improving our understanding of how diet and nutrient intake can interact with or modify gene expression and disease risk. In this review, we explore various approaches to examine gene–nutrient interactions and the modifying role of nutrient consumption, as they relate to nutrient status and disease risk in human populations. Two common approaches include the use of SNPs in...

  9. A Genetic Algorithm Approach for Group Formation in Collaborative Learning Considering Multiple Student Characteristics

    Science.gov (United States)

    Moreno, Julian; Ovalle, Demetrio A.; Vicari, Rosa M.

    2012-01-01

    Considering that group formation is one of the key processes in collaborative learning, the aim of this paper is to propose a method based on a genetic algorithm approach for achieving inter-homogeneous and intra-heterogeneous groups. The main feature of such a method is that it allows for the consideration of as many student characteristics as…

  10. Integrating Genetic, Psychopharmacological and Neuroimaging Studies: A Converging Methods Approach to Understanding the Neurobiology of ADHD

    Science.gov (United States)

    Durston, Sarah; Konrad, Kerstin

    2007-01-01

    This paper aims to illustrate how combining multiple approaches can inform us about the neurobiology of ADHD. Converging evidence from genetic, psychopharmacological and functional neuroimaging studies has implicated dopaminergic fronto-striatal circuitry in ADHD. However, while the observation of converging evidence from multiple vantage points…

  11. A Genetic Algorithm Approach for Group Formation in Collaborative Learning Considering Multiple Student Characteristics

    Science.gov (United States)

    Moreno, Julian; Ovalle, Demetrio A.; Vicari, Rosa M.

    2012-01-01

    Considering that group formation is one of the key processes in collaborative learning, the aim of this paper is to propose a method based on a genetic algorithm approach for achieving inter-homogeneous and intra-heterogeneous groups. The main feature of such a method is that it allows for the consideration of as many student characteristics as…

  12. Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building.

    Science.gov (United States)

    Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R

    2012-08-01

    A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three

  13. Epigenetic-genetic chromosome dosage approach for fetal trisomy 21 detection using an autosomal genetic reference marker.

    Directory of Open Access Journals (Sweden)

    Yu K Tong

    Full Text Available BACKGROUND: The putative promoter of the holocarboxylase synthetase (HLCS gene on chromosome 21 is hypermethylated in placental tissues and could be detected as a fetal-specific DNA marker in maternal plasma. Detection of fetal trisomy 21 (T21 has been demonstrated by an epigenetic-genetic chromosome dosage approach where the amount of hypermethylated HLCS in maternal plasma is normalized using a fetal genetic marker on the Y chromosome as a chromosome dosage reference marker. We explore if this method can be applied on both male and female fetuses with the use of a paternally-inherited fetal single nucleotide polymorphism (SNP allele on a reference chromosome for chromosome dosage normalization. METHODOLOGY: We quantified hypermethylated HLCS molecules using methylation-sensitive restriction endonuclease digestion followed by real-time or digital PCR analyses. For chromosome dosage analysis, we compared the amount of digestion-resistant HLCS to that of a SNP allele (rs6636, a C/G SNP that the fetus has inherited from the father but absent in the pregnant mother. PRINCIPAL FINDINGS: Using a fetal-specific SNP allele on a reference chromosome, we analyzed 20 euploid and nine T21 placental tissue samples. All samples with the fetal-specific C allele were correctly classified. One sample from each of the euploid and T21 groups were misclassified when the fetal-specific G allele was used as the reference marker. We then analyzed 33 euploid and 14 T21 maternal plasma samples. All but one sample from each of the euploid and T21 groups were correctly classified using the fetal-specific C allele, while correct classification was achieved for all samples using the fetal-specific G allele as the reference marker. CONCLUSIONS: As a proof-of-concept study, we have demonstrated that the epigenetic-genetic chromosome dosage approach can be applied to the prenatal diagnosis of trisomy 21 for both male and female fetuses.

  14. Micro-TLC Approach for Fast Screening of Environmental Samples Derived from Surface and Sewage Waters.

    Science.gov (United States)

    Zarzycki, Paweł K; Slączka, Magdalena M; Włodarczyk, Elżbieta; Baran, Michał J

    2013-01-01

    In this work we demonstrated analytical capability of micro-planar (micro-TLC) technique comprising one and two-dimensional (2D) separation modes to generate fingerprints of environmental samples originated from sewage and ecosystems waters. We showed that elaborated separation and detection protocols are complementary to previously invented HPLC method based on temperature-dependent inclusion chromatography and UV-DAD detection. Presented 1D and 2D micro-TLC chromatograms of SPE (solid-phase extraction) extracts were optimized for fast and low-cost screening of water samples collected from lakes and rivers located in the area of Middle Pomerania in northern part of Poland. Moreover, we studied highly organic compounds loaded in the treated and untreated sewage waters obtained from municipal wastewater treatment plant "Jamno" near Koszalin City (Poland). Analyzed environmental samples contained number of substances characterized by polarity range from estetrol to progesterone as well as chlorophyll-related dyes previously isolated and pre-purified by simple SPE protocol involving C18 cartridges. Optimization of micro-TLC separation and quantification protocols of such samples were discussed from the practical point of view using simple separation efficiency criteria including total peaks number, log(product ΔhRF), signal intensity and peak asymmetry. Outcomes of the presented analytical approach, especially using detection involving direct fluorescence (UV366/Vis) and phosphomolybdic acid (PMA) visualization are compared with UV-DAD HPLC-generated data reported previously. Chemometric investigation based on principal components analysis revealed that SPE extracts separated by micro-TLC and detected under fluorescence and PMA visualization modes can be used for robust sample fingerprinting even after long-term storage of the extracts (up to 4 years) at subambient temperature (-20 °C). Such approach allows characterization of wide range of sample components that

  15. Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part I.

    Science.gov (United States)

    Geromichalos, George D; Alifieris, Constantinos E; Geromichalou, Elena G; Trafalis, Dimitrios T

    2016-01-01

    Conventional drug design embraces the "one gene, one drug, one disease" philosophy. Nowadays, new generation of anti- cancer drugs, able to inhibit more than one pathway, is believed to play a major role in contemporary anticancer drug research. In this way, polypharmacology, focusing on multi-target drugs, has emerged as a new paradigm in drug discovery. A number of recent successful drugs have in part or in whole emerged from a structure-based research approach. Many advances including crystallography and informatics are behind these successes. Increasing insight into the genetics and molecular biology of cancer has resulted in the identification of an increasing number of potential molecular targets, for anticancer drug discovery and development. These targets can be approached through exploitation of emerging structural biology, "rational" drug design, screening of chemical libraries, or a combination of these methods. The result is the rapid discovery of new anticancer drugs. In this article we discuss the application of molecular modeling, molecular docking and virtual high-throughput screening to multi-targeted anticancer drug discovery. Efforts have been made to employ in silico methods for facilitating the search and design of selective multi-target agents. These computer aided molecular design methods have shown promising potential in facilitating drug discovery directed at selective multiple targets and is expected to contribute to intelligent lead anticancer drugs.

  16. Genetic screening and functional characterization of PDGFRB mutations associated with Basal Ganglia Calcification of Unknown Etiology

    Science.gov (United States)

    Sanchez-Contreras, Monica; Baker, Matthew C.; Finch, NiCole A.; Nicholson, Alexandra; Wojtas, Aleksandra; Wszolek, Zbigniew K.; Ross, Owen A.; Dickson, Dennis W.; Rademakers, Rosa

    2014-01-01

    Three causal genes for Idiopathic Basal Ganglia Calcification (IBGC) have been identified. Most recently, mutations in PDGFRB, encoding a member of the platelet-derived growth factor receptor family type β, and PDGFB, encoding PDGF-B, the specific ligand of PDGFRβ, were found implicating the PDGF-B/PDGFRβ pathway in abnormal brain calcification. In this study we aimed to identify and study mutations in PDGFRB and PDGFB in a series of 26 patients from the Mayo Clinic Florida Brain Bank with moderate to severe basal ganglia calcification (BCG) of unknown etiology. No mutations in PDGFB were found. However, we identified one mutation in PDGFRB, p.R695C located in the tyrosine kinase domain, in one BGC patient. We further studied the function of p.R695C mutant PDGFRβ and two previously reported mutants, p.L658P and p.R987W PDGFRβ in cell culture. We show that, in response to PDGF-BB stimulation, the p.L658P mutation completely suppresses PDGFRβ autophosphorylation whereas the p.R695C mutation results in partial loss of autophosphorylation. For the p.R987W mutation, our data suggest a different mechanism involving reduced protein levels. These genetic and functional studies provide the first insight into the pathogenic mechanisms associated with PDGFRB mutations and provide further support for a pathogenic role of PDGFRB mutations in BGC. PMID:24796542

  17. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    Science.gov (United States)

    2015-10-01

    Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...SUBTITLE Developiing Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER Carcinoma Using Genetically Engineered Mouse Models and 5b...biomarkers. 15. SUBJECT TERMS Small cell lung cancer (SCLC), Genetically engineered mouse model (GEMM), BH3 mimetic, TORC inhibitor, Apoptosis

  18. Identification of a novel NR2B-selective NMDA receptor antagonist using a virtual screening approach.

    Science.gov (United States)

    Mony, Laetitia; Triballeau, Nicolas; Paoletti, Pierre; Acher, Francine C; Bertrand, Hugues-Olivier

    2010-09-15

    We report the identification of a novel NR2B-selective NMDAR antagonist with an original scaffold, LSP10-0500. This compound was identified by a virtual high-throughput screening approach on the basis of a quantitative pharmacophore model of NR2B-specific NMDAR antagonists. A SAR study around LSP10-0500 is also described.

  19. Genetic screening of new genes responsible for cellular adaptation to hypoxia using a genome-wide shRNA library.

    Science.gov (United States)

    Yoshino, Seiko; Hara, Toshiro; Weng, Jane S; Takahashi, Yuka; Seiki, Motoharu; Sakamoto, Takeharu

    2012-01-01

    Oxygen is a vital requirement for multi-cellular organisms to generate energy and cells have developed multiple compensatory mechanisms to adapt to stressful hypoxic conditions. Such adaptive mechanisms are intricately interconnected with other signaling pathways that regulate cellular functions such as cell growth. However, our understanding of the overall system governing the cellular response to the availability of oxygen remains limited. To identify new genes involved in the response to hypoxic stress, we have performed a genome-wide gene knockdown analysis in human lung carcinoma PC8 cells using an shRNA library carried by a lentiviral vector. The knockdown analysis was performed under both normoxic and hypoxic conditions to identify shRNA sequences enriched or lost in the resulting selected cell populations. Consequently, we identified 56 candidate genes that might contribute to the cellular response to hypoxia. Subsequent individual knockdown of each gene demonstrated that 13 of these have a significant effect upon oxygen-sensitive cell growth. The identification of BCL2L1, which encodes a Bcl-2 family protein that plays a role in cell survival by preventing apoptosis, validates the successful design of our screen. The other selected genes have not previously been directly implicated in the cellular response to hypoxia. Interestingly, hypoxia did not directly enhance the expression of any of the identified genes, suggesting that we have identified a new class of genes that have been missed by conventional gene expression analyses to identify hypoxia response genes. Thus, our genetic screening method using a genome-wide shRNA library and the newly-identified genes represent useful tools to analyze the cellular systems that respond to hypoxic stress.

  20. A Novel Genetic Screen Identifies Modifiers of Age-Dependent Amyloid β Toxicity in the Drosophila Brain

    Science.gov (United States)

    Belfiori-Carrasco, Lautaro F.; Marcora, María S.; Bocai, Nadia I.; Ceriani, M. Fernanda; Morelli, Laura; Castaño, Eduardo M.

    2017-01-01

    The accumulation of amyloid β peptide (Aβ) in the brain of Alzheimer’s disease (AD) patients begins many years before clinical onset. Such process has been proposed to be pathogenic through the toxicity of Aβ soluble oligomers leading to synaptic dysfunction, phospho-tau aggregation and neuronal loss. Yet, a massive accumulation of Aβ can be found in approximately 30% of aged individuals with preserved cognitive function. Therefore, within the frame of the “amyloid hypothesis”, compensatory mechanisms and/or additional neurotoxic or protective factors need to be considered and investigated. Here we describe a modifier genetic screen in Drosophila designed to identify genes that modulate toxicity of Aβ42 in the CNS. The expression of Aβ42 led to its accumulation in the brain and a moderate impairment of negative geotaxis at 18 days post-eclosion (d.p.e) as compared with genetic or parental controls. These flies were mated with a collection of lines carrying chromosomal deletions and negative geotaxis was assessed at 5 and 18 d.p.e. Our screen is the first to take into account all of the following features, relevant to sporadic AD: (1) pan-neuronal expression of wild-type Aβ42; (2) a quantifiable complex behavior; (3) Aβ neurotoxicity associated with progressive accumulation of the peptide; and (4) improvement or worsening of climbing ability only evident in aged animals. One hundred and ninety-nine deficiency (Df) lines accounting for ~6300 genes were analyzed. Six lines, including the deletion of 52 Drosophila genes with human orthologs, significantly modified Aβ42 neurotoxicity in 18-day-old flies. So far, we have validated CG11796 and identified CG17249 as a strong candidate (whose human orthologs are HPD and PRCC, respectively) by using RNAi or mutant hemizygous lines. PRCC encodes proline-rich protein PRCC (ppPRCC) of unknown function associated with papillary renal cell carcinoma. HPD encodes 4-hydroxyphenylpyruvate dioxygenase (HPPD), a key

  1. Metabolic and Genetic Screening of Electromagnetic Hypersensitive Subjects as a Feasible Tool for Diagnostics and Intervention

    Directory of Open Access Journals (Sweden)

    Chiara De Luca

    2014-01-01

    Full Text Available Growing numbers of “electromagnetic hypersensitive” (EHS people worldwide self-report severely disabling, multiorgan, non-specific symptoms when exposed to low-dose electromagnetic radiations, often associated with symptoms of multiple chemical sensitivity (MCS and/or other environmental “sensitivity-related illnesses” (SRI. This cluster of chronic inflammatory disorders still lacks validated pathogenetic mechanism, diagnostic biomarkers, and management guidelines. We hypothesized that SRI, not being merely psychogenic, may share organic determinants of impaired detoxification of common physic-chemical stressors. Based on our previous MCS studies, we tested a panel of 12 metabolic blood redox-related parameters and of selected drug-metabolizing-enzyme gene polymorphisms, on 153 EHS, 147 MCS, and 132 control Italians, confirming MCS altered (P<0.05–0.0001 glutathione-(GSH, GSH-peroxidase/S-transferase, and catalase erythrocyte activities. We first described comparable—though milder—metabolic pro-oxidant/proinflammatory alterations in EHS with distinctively increased plasma coenzyme-Q10 oxidation ratio. Severe depletion of erythrocyte membrane polyunsaturated fatty acids with increased ω6/ω3 ratio was confirmed in MCS, but not in EHS. We also identified significantly (P=0.003 altered distribution-versus-control of the CYP2C19*1/*2 SNP variants in EHS, and a 9.7-fold increased risk (OR: 95% C.I.=1.3–74.5 of developing EHS for the haplotype (nullGSTT1 + (nullGSTM1 variants. Altogether, results on MCS and EHS strengthen our proposal to adopt this blood metabolic/genetic biomarkers’ panel as suitable diagnostic tool for SRI.

  2. Understanding the complex etiologies of developmental disorders: behavioral and molecular genetic approaches.

    Science.gov (United States)

    Willcutt, Erik G; Pennington, Bruce F; Duncan, Laramie; Smith, Shelley D; Keenan, Janice M; Wadsworth, Sally; Defries, John C; Olson, Richard K

    2010-09-01

    This article has 2 primary goals. First, a brief tutorial on behavioral and molecular genetic methods is provided for readers without extensive training in these areas. To illustrate the application of these approaches to developmental disorders, etiologically informative studies of reading disability (RD), math disability (MD), and attention-deficit hyperactivity disorder (ADHD) are then reviewed. Implications of the results for these specific disorders and for developmental disabilities as a whole are discussed, and novel directions for future research are highlighted. Previous family and twin studies of RD, MD, and ADHD are reviewed systematically, and the extensive molecular genetic literatures on each disorder are summarized. To illustrate 4 novel extensions of these etiologically informative approaches, new data are presented from the Colorado Learning Disabilities Research Center, an ongoing twin study of the etiology of RD, ADHD, MD, and related disorders. RD, MD, and ADHD are familial and heritable, and co-occur more frequently than expected by chance. Molecular genetic studies suggest that all 3 disorders have complex etiologies, with multiple genetic and environmental risk factors each contributing to overall risk for each disorder. Neuropsychological analyses indicate that the 3 disorders are each associated with multiple neuropsychological weaknesses, and initial evidence suggests that comorbidity between the 3 disorders is due to common genetic risk factors that lead to slow processing speed.

  3. A high-throughput strategy for screening of bacterial artificial chromosome libraries and anchoring of clones on a genetic map constructed with single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Deal Karin R

    2009-01-01

    Full Text Available Abstract Background Current techniques of screening bacterial artificial chromosome (BAC libraries for molecular markers during the construction of physical maps are slow, laborious and often assign multiple BAC contigs to a single locus on a genetic map. These limitations are the principal impediment in the construction of physical maps of large eukaryotic genomes. It is hypothesized that this impediment can be overcome by screening multidimensional pools of BAC clones using the highly parallel Illumina GoldenGate™ assay. Results To test the efficacy of the Golden Gate assay in BAC library screening, multidimensional pools involving 302976 Aegilops tauschii BAC clones were genotyped for the presence/absence of specific gene sequences with multiplexed Illumina GoldenGate oligonucleotide assays previously used to place single nucleotide polymorphisms on an Ae. tauschii genetic map. Of 1384 allele-informative oligonucleotide assays, 87.6% successfully clustered BAC pools into those positive for a BAC clone harboring a specific gene locus and those negative for it. The location of the positive BAC clones within contigs assembled from 199190 fingerprinted Ae. tauschii BAC clones was used to evaluate the precision of anchoring of BAC clones and contigs on the Ae. tauschii genetic map. For 41 (95% assays, positive BAC clones were neighbors in single contigs. Those contigs could be unequivocally assigned to loci on the genetic map. For two (5% assays, positive clones were in two different contigs and the relationships of these contigs to loci on the Ae. tauschii genetic map were equivocal. Screening of BAC libraries with a simple five-dimensional BAC pooling strategy was evaluated and shown to allow direct detection of positive BAC clones without the need for manual deconvolution of BAC clone pools. Conclusion The highly parallel Illumina oligonucleotide assay is shown here to be an efficient tool for screening BAC libraries and a strategy for high

  4. Design a usable protocol screening database: the user-centered approach.

    Science.gov (United States)

    Xie, Zhong; Suki, Dima; Graham, Susan; Sawaya, Raymond

    2005-01-01

    Patient eligibility screening is a very important component of clinical research. Data obtained from such a task can serve valuable purposes beyond the specific protocol they are generated for and therefore should be captured and stored. We applied a user-centered design framework to evaluate the existing screening process and database at the Neurosurgery Department, M. D. Anderson Cancer Center and to design and develop a usable protocol patient screening interface.

  5. Mass Spectrometry-Based Diagnosis of Hemoglobinopathies: A Potential Tool for the Screening of Genetic Disorder.

    Science.gov (United States)

    Das, Rajdeep; Mitra, Gopa; Mathew, Boby; Bhat, Vijay; Ross, Cecil; Pal, Debnath; Mandal, Amit Kumar

    2016-12-01

    Hemoglobinopathies are caused by point mutation in globin gene that results in structural variant of hemoglobin. While 7 % of world populations are carrier of hemoglobinopathies, the prevalence of the disease varies between 3 to 17 % across different population groups in India. In a diagnostic laboratory, alkaline gel electrophoresis and cation exchange-based HPLC (CE-HPLC) are most widely used techniques for characterization of hemoglobin variants. In the above methods, the differential surface charge of hemoglobin molecule in variants is exploited for their characterization. Sometime, co-migration of variants in gel electrophoresis and co-elution or elution with unknown retention time in automated CE-HPLC might lead to ambiguity in the analysis of hemoglobinopathies. Under such circumstances, it is necessary to use other analytical methods that provide unambiguous results. Mass spectrometry-based proteomics approach and DNA sequence analysis are examples of such alternative methods. In the present study, liquid chromatography coupled to mass spectrometry has been used for three commonly observed variants in India, e.g., HbE, HbQ India and HbD Punjab that appeared with inappropriate results in the conventional analysis. A customized hemoglobin variant database has been used in the mass spectrometry-based analysis of those three variants. Mass spectrometry-based proteomics approach was used to analyze above variant sample accurately.

  6. Integrating experimental and analytic approaches to improve data quality in genome-wide RNAi screens.

    Science.gov (United States)

    Zhang, Xiaohua Douglas; Espeseth, Amy S; Johnson, Eric N; Chin, Jayne; Gates, Adam; Mitnaul, Lyndon J; Marine, Shane D; Tian, Jenny; Stec, Eric M; Kunapuli, Priya; Holder, Dan J; Heyse, Joseph F; Strulovici, Berta; Ferrer, Marc

    2008-06-01

    RNA interference (RNAi) not only plays an important role in drug discovery but can also be developed directly into drugs. RNAi high-throughput screening (HTS) biotechnology allows us to conduct genome-wide RNAi research. A central challenge in genome-wide RNAi research is to integrate both experimental and computational approaches to obtain high quality RNAi HTS assays. Based on our daily practice in RNAi HTS experiments, we propose the implementation of 3 experimental and analytic processes to improve the quality of data from RNAi HTS biotechnology: (1) select effective biological controls; (2) adopt appropriate plate designs to display and/or adjust for systematic errors of measurement; and (3) use effective analytic metrics to assess data quality. The applications in 5 real RNAi HTS experiments demonstrate the effectiveness of integrating these processes to improve data quality. Due to the effectiveness in improving data quality in RNAi HTS experiments, the methods and guidelines contained in the 3 experimental and analytic processes are likely to have broad utility in genome-wide RNAi research.

  7. A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, N.C. [Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450 Melaka (Malaysia); Prasad, K. [Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450 Melaka (Malaysia)

    2006-11-15

    This paper presents a fuzzy genetic approach for reconfiguration of radial distribution systems (RDS) so as to maximize the voltage stability of the network for a specific set of loads. The network reconfiguration involves a mechanism for selection of the best set of branches to be opened, one from each loop, such that the reconfigured RDS possesses desired performance characteristics. This discrete solution space is better handled by the proposed scheme, which maximizes a suitable optimizing function (computed using two different approaches). In the first approach, this function is chosen as the average of a voltage stability index of all the buses in the RDS, while in the second approach, the complete RDS is reduced to a two bus equivalent system and the optimizing function is the voltage stability index of this reduced two bus system. The fuzzy genetic algorithm uses a suitable coding and decoding scheme for maintaining the radial nature of the network at every stage of genetic evolution, and it also uses a fuzzy rule based mutation controller for efficient search of the solution space. This method, tested on 69 bus and 33 bus RDSs, shows promising results for the both approaches. It is also observed that the network losses are reduced when the voltage stability is enhanced by the network reconfiguration. (author)

  8. Facebook Usage as Social Screening. Exploring the Approach of Admissions Officers from Management Colleges

    Directory of Open Access Journals (Sweden)

    Elena - Mădălina VĂTĂMĂNESCU

    2015-03-01

    Full Text Available The online social networks allow individuals to continuously create and model their self-presentations and representations. Facebook stands for a relevant example as people are given the uncensored opportunity to unfold their online selves according to their interests, preferences, goals and expectations. As a social networking site, Facebook is particularly used for reasons related to social documentation (social searching and maintaining preexisting close relationships (bonding social capital that imply knowledge of new information about persons met offline, and less for social exploration (social browsing that refers to using Facebook to initiate new contacts. The extant recent literature often approach the usage of Facebook as a pre-employment screening tool with a view to select the fittest candidates for the job. Still, there are few studies which address the professors’ endeavor to use social media, in general and Facebook, in particular, as a complementary criterion when selecting future students. At this level, Facebook profiles are liable to stand for cogent indicators for the prospects’ personalities and potential, for their predispositions and professional perspectives. Starting from this point, the current research aims at investigating the approaches on the aforementioned issue of several professors from Management colleges in Romania who are in charge of settling the evaluation reference points of the college admissions procedure. The research is the more relevant so as the future graduate managers should possess some key characteristics which may be anticipated or pre-assessed based on their Facebook profile cues. In order to test the subjects’ openness to consider the implications of Facebook usage as a thorough social documentation tool, nineteen in-depth interviews were conducted. The findings show that there is a high degree of skepticism towards using Facebook as a source of reliable information.

  9. Arbitrariness is not enough: towards a functional approach to the genetic code.

    Science.gov (United States)

    Lacková, Ľudmila; Matlach, Vladimír; Faltýnek, Dan

    2017-05-09

    Arbitrariness in the genetic code is one of the main reasons for a linguistic approach to molecular biology: the genetic code is usually understood as an arbitrary relation between amino acids and nucleobases. However, from a semiotic point of view, arbitrariness should not be the only condition for definition of a code, consequently it is not completely correct to talk about "code" in this case. Yet we suppose that there exist a code in the process of protein synthesis, but on a higher level than the nucleic bases chains. Semiotically, a code should be always associated with a function and we propose to define the genetic code not only relationally (in basis of relation between nucleobases and amino acids) but also in terms of function (function of a protein as meaning of the code). Even if the functional definition of meaning in the genetic code has been discussed in the field of biosemiotics, its further implications have not been considered. In fact, if the function of a protein represents the meaning of the genetic code (the sign's object), then it is crucial to reconsider the notion of its expression (the sign) as well. In our contribution, we will show that the actual model of the genetic code is not the only possible and we will propose a more appropriate model from a semiotic point of view.

  10. [Recent progress in gene mapping through high-throughput sequencing technology and forward genetic approaches].

    Science.gov (United States)

    Lu, Cairui; Zou, Changsong; Song, Guoli

    2015-08-01

    Traditional gene mapping using forward genetic approaches is conducted primarily through construction of a genetic linkage map, the process of which is tedious and time-consuming, and often results in low accuracy of mapping and large mapping intervals. With the rapid development of high-throughput sequencing technology and decreasing cost of sequencing, a variety of simple and quick methods of gene mapping through sequencing have been developed, including direct sequencing of the mutant genome, sequencing of selective mutant DNA pooling, genetic map construction through sequencing of individuals in population, as well as sequencing of transcriptome and partial genome. These methods can be used to identify mutations at the nucleotide level and has been applied in complex genetic background. Recent reports have shown that sequencing mapping could be even done without the reference of genome sequence, hybridization, and genetic linkage information, which made it possible to perform forward genetic study in many non-model species. In this review, we summarized these new technologies and their application in gene mapping.

  11. Service innovation: a comparison of two approaches for physical screening of psychiatric inpatients.

    Science.gov (United States)

    Harrison, Mark Richard; McMillan, Catherine Frances; Dickinson, Timothy

    2012-06-01

    Psychiatric medications have clear links to obesity, diabetes, dyslipidaemia, hypertension, hyperprolactinaemia and movement disorders. These disorders are a common cause of morbidity and mortality in psychiatric patients but physical screening by health services is often haphazard. We report the findings of an audit of physical screening across two hospital wards. Each ward undertook a process of service improvement. One ward modified the admissions proforma and the other developed a discharge screening clinic. The effectiveness of each of these interventions was then compared through a reaudit of practice across both wards. At baseline, screening was performed inconsistently and infrequently. On average, the modified admissions proforma increased screening rates by 4.7% compared to 30.7% for discharge screening clinics. The discharge screening clinic demonstrated statistically significant improvements in screening rates and effectively delivered health promotion advice. Discharge screening clinics are significantly more likely than improved admissions procedures to detect clinically significant abnormalities. If these abnormalities are detected and treated then the long-term physical health of psychiatric patients may be improved.

  12. Genetics of schizophrenia and smoking: an approach to studying their comorbidity based on epidemiological findings

    Science.gov (United States)

    de Leon, Jose; Diaz, Francisco J.

    2012-01-01

    The association between schizophrenia and tobacco smoking has been described in more than 1,000 articles, many with inadequate methodology. The studies on this association can focus on: (1) current smoking, ever smoking or smoking cessation; (2) non-psychiatric controls or controls with severe mental illness (e.g., bipolar disorder); and (3) higher smoking frequency or greater usage in smokers. The association with the most potential for genetic studies is that between ever daily smoking and schizophrenia; it may reflect a shared genetic vulnerability. To reduce the number of false-positive genes, we propose a three-stage approach derived from epidemiological knowledge. In the first stage, only genetic variations associated with ever daily smoking that are simultaneously significant within the non-psychiatric controls, the bipolar disorder controls and the schizophrenia cases will be selected. Only those genetic variations that are simultaneously significant in the three hypothesis tests will be tested in the second stage, where the prevalence of the genes must be significantly higher in schizophrenia than in bipolar disorder, and significantly higher in bipolar disorder than in controls. The genes simultaneously significant in the second stage will be included in a third stage where the gene variations must be significantly more frequent in schizophrenia patients who did not start smoking daily until their 20s (late start) versus those who had an early start. Any genetic approach to psychiatric disorders may fail if attention is not given to comorbidity and epidemiological studies that suggest which comorbidities are likely to be explained by genetics and which are not. Our approach, which examines the results of epidemiological studies on comorbidities and then looks for genes that simultaneously satisfy epidemiologically suggested sets of hypotheses, may also apply to the study of other major illnesses. PMID:22190153

  13. Studies of Resurgent Bed Bugs: Population Genetic Structure, Impact of Aggregation on Development and Molecular Screening for Bartonella

    Science.gov (United States)

    Saenz, Virna Lisa

    The recent resurgence of bed bugs (Cimex lectularius L.) has created an unprecedented demand for research on its biology. The main objectives of this dissertation research were to investigate several aspects of bed bug biology: infestation and dispersal dynamics at a large and small geographical scale using molecular markers, to determine the impact of aggregation on bed bug development and to screen bed bug populations for a re-emergent pathogen. First, we studied the infestation and dispersal dynamics of bed bugs at large geographical scale (e.g., across cities, states). Although bed bug infestations are on the rise, there is a poor understanding of their dispersal patterns and sources of infestation. We conducted a genetic study of 21 bed bug infestations from the eastern United States. We genotyped samples comprised of 8 - 10 individuals per infestation at nine polymorphic microsatellite loci. Despite high genetic diversity across all infestations, with 5 -- 17 alleles per locus (mean = 10.3), we found low genetic diversity (1 -- 4 alleles per locus) within all but one of the infestations. These results suggest that nearly all the studied infestations were started by a small propagule possibly consisting of a singly mated female and/or her progeny. All infestations were strongly genetically differentiated from each other (mean pairwise FST between populations = 0.68) and we did not find strong evidence of a geographic pattern of structuring. The high level of genetic diversity across infestations from the eastern United States together with the lack of geographically organized structure is consistent with multiple introductions into the United States from foreign sources. This work is described in Chapter 2 and was published in the Journal of Medical Entomology in 2012. Second, we investigated dispersal and infestation dynamics of bed bugs at a fine geographical scale within three multistory apartment buildings: one from Raleigh, NC and two from Jersey City, NJ

  14. Gene Prioritization for Imaging Genetics Studies Using Gene Ontology and a Stratified False Discovery Rate Approach.

    Science.gov (United States)

    Patel, Sejal; Park, Min Tae M; Chakravarty, M Mallar; Knight, Jo

    2016-01-01

    Imaging genetics is an emerging field in which the association between genes and neuroimaging-based quantitative phenotypes are used to explore the functional role of genes in neuroanatomy and neurophysiology in the context of healthy function and neuropsychiatric disorders. The main obstacle for researchers in the field is the high dimensionality of the data in both the imaging phenotypes and the genetic variants commonly typed. In this article, we develop a novel method that utilizes Gene Ontology, an online database, to select and prioritize certain genes, employing a stratified false discovery rate (sFDR) approach to investigate their associations with imaging phenotypes. sFDR has the potential to increase power in genome wide association studies (GWAS), and is quickly gaining traction as a method for multiple testing correction. Our novel approach addresses both the pressing need in genetic research to move beyond candidate gene studies, while not being overburdened with a loss of power due to multiple testing. As an example of our methodology, we perform a GWAS of hippocampal volume using both the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA2) and the Alzheimer's Disease Neuroimaging Initiative datasets. The analysis of ENIGMA2 data yielded a set of SNPs with sFDR values between 10 and 20%. Our approach demonstrates a potential method to prioritize genes based on biological systems impaired in a disease.

  15. Phosphorylation networks regulating JNK activity in diverse genetic backgrounds

    DEFF Research Database (Denmark)

    Bakal, Chris; Linding, Rune; Llense, Flora;

    2008-01-01

    Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have suc...

  16. A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection

    Directory of Open Access Journals (Sweden)

    Dalton Meitei Thounaojam

    2016-01-01

    Full Text Available This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter.

  17. A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection.

    Science.gov (United States)

    Thounaojam, Dalton Meitei; Khelchandra, Thongam; Manglem Singh, Kh; Roy, Sudipta

    2016-01-01

    This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter.

  18. Persuasive Interventions for Controversial Cancer Screening Recommendations: Testing a Novel Approach to Help Patients Make Evidence-Based Decisions.

    Science.gov (United States)

    Saver, Barry G; Mazor, Kathleen M; Luckmann, Roger; Cutrona, Sarah L; Hayes, Marcela; Gorodetsky, Tatyana; Esparza, Nancy; Bacigalupe, Gonzalo

    2017-01-01

    We wanted to evaluate novel decision aids designed to help patients trust and accept the controversial, evidence-based, US Preventive Services Task Force recommendations about prostate cancer screening (from 2012) and mammography screening for women aged 40 to 49 years (from 2009). We created recorded vignettes of physician-patient discussions about prostate cancer screening and mammography, accompanied by illustrative slides, based on principles derived from preceding qualitative work and behavioral science literature. We conducted a randomized crossover study with repeated measures with 27 men aged 50 to 74 years and 35 women aged 40 to 49 years. All participants saw a video intervention and a more traditional, paper-based decision aid intervention in random order. At entry and after seeing each intervention, they were surveyed about screening intentions, perceptions of benefits and harm, and decisional conflict. Changes in screening intentions were analyzed without regard to order of intervention after an initial analyses showed no evidence of an order effect. At baseline, 69% of men and 86% of women reported wanting screening, with 31% and 6%, respectively, unsure. Mean change on a 3-point, yes, unsure, no scale was -0.93 (P = <.001) for men and -0.50 (P = <.001) for women after seeing the video interventions vs 0.0 and -0.06 (P = .75) after seeing the print interventions. At the study end, 33% of men and 49% of women wanted screening, and 11% and 20%, respectively, were unsure. Our novel, persuasive video interventions significantly changed the screening intentions of substantial proportions of viewers. Our approach needs further testing but may provide a model for helping patients to consider and accept evidence-based, counterintuitive recommendations. © 2017 Annals of Family Medicine, Inc.

  19. Development and validation of duplex, triplex, and pentaplex real-time PCR screening assays for the detection of genetically modified organisms in food and feed.

    Science.gov (United States)

    Huber, Ingrid; Block, Annette; Sebah, Daniela; Debode, Frédéric; Morisset, Dany; Grohmann, Lutz; Berben, Gilbert; Stebih, Dejan; Milavec, Mojca; Zel, Jana; Busch, Ulrich

    2013-10-30

    Worldwide, qualitative methods based on PCR are most commonly used as screening tools for genetically modified material in food and feed. However, the increasing number and diversity of genetically modified organisms (GMO) require effective methods for simultaneously detecting several genetic elements marking the presence of transgenic events. Herein we describe the development and validation of a pentaplex, as well as complementary triplex and duplex real-time PCR assays, for the detection of the most common screening elements found in commercialized GMOs: P-35S, T-nos, ctp2-cp4-epsps, bar, and pat. The use of these screening assays allows the coverage of many GMO events globally approved for commercialization. Each multiplex real-time PCR assay shows high specificity and sensitivity with an absolute limit of detection below 20 copies for the targeted sequences. We demonstrate by intra- and interlaboratory tests that the assays are robust as well as cost- and time-effective for GMO screening if applied in routine GMO analysis.

  20. Application of a cocktail approach to screen cytochrome P450 BM3 libraries for metabolic activity and diversity.

    Science.gov (United States)

    Reinen, Jelle; Postma, Geert; Tump, Cornelis; Bloemberg, Tom; Engel, Jasper; Vermeulen, Nico P E; Commandeur, Jan N M; Honing, Maarten

    2016-02-01

    In the present study, the validity of using a cocktail screening method in combination with a chemometrical data mining approach to evaluate metabolic activity and diversity of drug-metabolizing bacterial Cytochrome P450 (CYP) BM3 mutants was investigated. In addition, the concept of utilizing an in-house-developed library of CYP BM3 mutants as a unique biocatalytic synthetic tool to support medicinal chemistry was evaluated. Metabolic efficiency of the mutant library towards a selection of CYP model substrates, being amitriptyline (AMI), buspirone (BUS), coumarine (COU), dextromethorphan (DEX), diclofenac (DIC) and norethisterone (NET), was investigated. First, metabolic activity of a selection of CYP BM3 mutants was screened against AMI and BUS. Subsequently, for a single CYP BM3 mutant, the effect of co-administration of multiple drugs on the metabolic activity and diversity towards AMI and BUS was investigated. Finally, a cocktail of AMI, BUS, COU, DEX, DIC and NET was screened against the whole in-house CYP BM3 library. Different validated quantitative and qualitative (U)HPLC-MS/MS-based analytical methods were applied to screen for substrate depletion and targeted product formation, followed by a more in-depth screen for metabolic diversity. A chemometrical approach was used to mine all data to search for unique metabolic properties of the mutants and allow classification of the mutants. The latter would open the possibility of obtaining a more in-depth mechanistic understanding of the metabolites. The presented method is the first MS-based method to screen CYP BM3 mutant libraries for diversity in combination with a chemometrical approach to interpret results and visualize differences between the tested mutants.