WorldWideScience

Sample records for genetic resistance

  1. Genetics Home Reference: clopidogrel resistance

    Science.gov (United States)

    ... Me Understand Genetics Home Health Conditions clopidogrel resistance clopidogrel resistance Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Clopidogrel resistance is a condition in which the drug ...

  2. Genetics Home Reference: warfarin resistance

    Science.gov (United States)

    ... the VKORC1 enzyme, the result is complete warfarin resistance . While changes in specific genes affect how the body reacts ... conditions diagnosed? How are genetic conditions treated or managed? What is genetic testing? How can ... coumarin resistance poor metabolism of coumarin Related Information How are ...

  3. Creating genetic resistance to HIV.

    Science.gov (United States)

    Burnett, John C; Zaia, John A; Rossi, John J

    2012-10-01

    HIV/AIDS remains a chronic and incurable disease, in spite of the notable successes of combination antiretroviral therapy. Gene therapy offers the prospect of creating genetic resistance to HIV that supplants the need for antiviral drugs. In sight of this goal, a variety of anti-HIV genes have reached clinical testing, including gene-editing enzymes, protein-based inhibitors, and RNA-based therapeutics. Combinations of therapeutic genes against viral and host targets are designed to improve the overall antiviral potency and reduce the likelihood of viral resistance. In cell-based therapies, therapeutic genes are expressed in gene modified T lymphocytes or in hematopoietic stem cells that generate an HIV-resistant immune system. Such strategies must promote the selective proliferation of the transplanted cells and the prolonged expression of therapeutic genes. This review focuses on the current advances and limitations in genetic therapies against HIV, including the status of several recent and ongoing clinical studies.

  4. Genetics of fungal resistance to systemic fungicides

    NARCIS (Netherlands)

    Tuyl, van J.M.

    1977-01-01

    Since the introduction of the systemic fungicides, fungicide resistance has become a serious problem in plant disease control. This study was carried out in order to contribute to the knowledge about the genetics of fungal resistance to fungicides both from a practical and a fundamental point of vie

  5. Modeling resistance to genetic control of insects.

    Science.gov (United States)

    Alphey, Nina; Bonsall, Michael B; Alphey, Luke

    2011-02-07

    The sterile insect technique is an area-wide pest control method that reduces pest populations by releasing mass-reared sterile insects which compete for mates with wild insects. Modern molecular tools have created possibilities for improving and extending the sterile insect technique. As with any new insect control method, questions arise about potential resistance. Genetic RIDL(®)(1) (Release of Insects carrying a Dominant Lethal) technology is a proposed modification of the technique, releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation. Hypothetical resistance to the lethal mechanism is a potential threat to RIDL strategies' effectiveness. Using population genetic and population dynamic models, we assess the circumstances under which monogenic biochemically based resistance could have a significant impact on the effectiveness of releases for population control. We assume that released insects would be homozygous susceptible to the lethal genetic construct and therefore releases would have a built-in element of resistance dilution. We find that this effect could prevent or limit the spread of resistance to RIDL constructs; the outcomes are subject to competing selective forces deriving from the fitness properties of resistance and the release ratio. Resistance that is spreading and capable of having a significant detrimental impact on population reduction is identifiable, signaling in advance a need for mitigating action.

  6. Genetic variation in dieback resistance

    DEFF Research Database (Denmark)

    Lobo, Albin; Hansen, Jon Kehlet; McKinney, Lea Vig

    2014-01-01

    -eastern Zealand, Denmark, and confirmed the presence of substantial genetic variation in ash dieback susceptibility. The average crown damage increased in the trial from 61% in 2009 to 66% in 2012 and 72% in 2014, while the estimated heritability was 0.42 in both 2009 and 2012 but increased to 0.53 in 2014....... Genetic correlation between assessments was 0.88 between 2009 and 2012 and 0.91 between 2009 and 2014, suggesting fairly good possibilities for early selection of superior genotypes in the presence of high infection levels in the trial. The level of crown damage had strong negative effect on growth...

  7. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  8. [Resistance profile and genetic barrier of dolutegravir].

    Science.gov (United States)

    Llibre, Josep M; Clotet, Bonaventura

    2015-03-01

    The resistance profile of dolutegravir differs significantly from those of earlier integrase inhibitors (INI). Dolutegravir displays in vitro activity against mutant HIV-1 harboring any isolated resistance mutations selected during failures to raltegravir or elvitegravir (Y143C/H/, N155H, Q148H/K/R, E92G/Q, T66A/I/K, T97A, E138A/K, G140A/S). Its activity is only compromised by Q148X mutations combined with other mutations, particularly > 1 mutation. The drug has pharmacokinetic/pharmacodynamic properties (plasmatic t1/2 15.3 h, inhibitory quotient 19, dissociative t1/2 from the IN-DNA complex 71 h) that favor a high genetic barrier to resistance. In vitro the selection of HIV-1 resistance to dolutegravir is extremely difficult to achieve. The mutations eventually selected (R263K, H51Y and E138K) do not confer significant resistance, and induce a fitness cost that prevents HIV-1 from evading drug pressure. Suprisingly, HIV-1 is not able to compensate, leading the virus to a previously unnoticed evolutionary pathway with very low chances of developing resistance to INI or the backbone. No treatment-naïve patients starting dolutegravir therapy (+TDF/FTC o ABC/3TC) have selected resistance in IN or against the backbone. No INI- naïve patients with prior virologic failure selected phenotypic dolutegravir resistance. Only 4 out of 354 patients selected resistance mutations in IN, and rates of selection of mutations in IN or against the backbone were significantly lower than with raltegravir. In multitreated patients with widespread resistance including IN resistance, the high efficacy of dolutegravir was confirmed, irrespective of the previous pattern of IN mutations, provided that Q148X associated with other mutations was absent. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  9. Genetically modified organisms : herbicide-resistance

    OpenAIRE

    Sánchez Retuerta, Violeta

    2014-01-01

    Pòster Due to the overgrowth of weeds, and the fact that herbicides cannot differentiate between crops and weeds, herbicide-resistant crops have been developed. This kind of genetically modified organisms (GMO) allows farmers to eliminate all weeds in a unique implementation of the herbicide meaning: less spraying, less “traffic” in the field and lower operating costs. However, this, like any other innovation, has generated much controversy

  10. Genetic Barriers to Resistance and Impact on Clinical Response

    Directory of Open Access Journals (Sweden)

    Luber Andrew D

    2005-07-01

    Full Text Available Abstract The development of drug resistance and cross-resistance continues to pose a challenge to successful long-term antiretroviral therapy despite the availability of new antiretroviral agents. The genetic barrier to resistance of a regimen does not directly correlate with its effectiveness. For some regimens with a low genetic barrier to resistance, however, the emergence of only 1 or 2 key resistance mutations may confer drug resistance not only to that regimen but also to other agents, thereby limiting subsequent treatment options. In addition to the genetic barrier to resistance, factors such as efficacy, safety, tolerability, convenience, and adherence must be considered when choosing a regimen.

  11. Genetic resistance of maize inbred lines to anthracnose leaf blight

    Directory of Open Access Journals (Sweden)

    Hellen Christine Prochno

    2016-03-01

    Full Text Available The objectives of this study were to evaluate the resistance of maize inbred lines to anthracnose leaf blight (Colletotrichum graminicola Ces., and to estimate genetic parameters associated with resistance. Sixteen lines (S5 were evaluated for resistance to anthracnose leaf blight in three experiments, in a randomized block design with four replications. From three evaluations of severity, it was estimated the area under the disease progress curve (AUDPC, and the genetic parameters associated with resistance. Results showed the existence of genetic variability for resistance to anthracnose leaf blight in the set of studied lines. Five lines stood out for the high resistance pattern to anthracnose leaf blight, presenting the lowest AUDPC values in the three experiments, and thus were considered important sources of C. graminicola resistance genes. Estimates of genetic parameters indicated low participation of the environment and highlighted the possibility of genetic gains with artificial selection for resistance in this pathosystem.

  12. Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Mariana Pagano

    Full Text Available Abstract Acinetobacter baumannii is widely recognized as an important pathogen associated with nosocomial infections. The treatment of these infections is often difficult due to the acquisition of resistance genes. A. baumannii presents a high genetic plasticity which allows the accumulation of these resistance determinants leading to multidrug resistance. It is highlighted the importance of the horizontal transfer of resistance genes, through mobile genetic elements and its relationship with increased incidence of multidrug resistant A. baumannii in hospitals. Considering that resistance to carbapenems is very important from the clinical and epidemiological point of view, the aim of this article is to present an overview of the current knowledge about genetic elements related to carbapenem resistance in A. baumannii such as integrons, transposons, resistance islands and insertion sequences.

  13. Genetical genomics identifies the genetic architecture for growth and weevil resistance in spruce.

    Science.gov (United States)

    Porth, Ilga; White, Richard; Jaquish, Barry; Alfaro, René; Ritland, Carol; Ritland, Kermit

    2012-01-01

    In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce.

  14. Genetical genomics identifies the genetic architecture for growth and weevil resistance in spruce.

    Directory of Open Access Journals (Sweden)

    Ilga Porth

    Full Text Available In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck. in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1 genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2 master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce.

  15. Steroid Resistant Nephrotic Syndrome-Genetic Consideration.

    Science.gov (United States)

    Tasic, Velibor; Gucev, Zoran; Polenakovic, Momir

    2015-01-01

    Nephrotic syndrome is defined as the association of massive proteinuria, hypoalbuminaemia, edema, and hyperlipidemia. It is separated to steroid-sensitive or steroid-resistant (SRNS) forms in respect to the response to intensive steroid therapy. SRNS usually progresses to end-stage renal failure. According to the North American Pediatric Renal Trials and Collaborative Studies SRNS constitutes the second most frequent cause of ESRD in the first two decades of life. Unfortunately, there is no curative treatment for majority of patients. Majority of the SRNS patients have the histologic picture of focal segmental glomerulosclerosis. Interestingly, the risk of recurrence in the kidney graft in patients with hereditary SRNS is lower than in those who do not have genetic background. The etiology and pathogenesis of SRSN has remained enigma for decades. The discovery of 39 dominant or recessive SRNS genes enabled better understanding of the function of the glomerular podocytes and slit membrane. Hildebrandt's group has shown that 85% of the SRNS cases with onset by 3 months of age and 66% with onset by 1 year of age can be explained by recessive mutations in one of four genes only (NPHS1, NPHS2, LAMB2, or WT1). The same group used modern diagnostic techniques such as the next generation sequencing and tested a large international cohort of SRNS patients (n = 1783 families). The diagnostic panel included 21 genes with a recessive mode of inheritance and 6 genes with a dominant mode of inheritance. Single-gene cause was detected in 29.5% (526 of 1783) of the families with SRNS that manifested before 25 years of age. The identification of causative single-gene mutations may have important therapeutic consequences in some cases. This is very important for patients who carry mutations in a gene of coenzyme Q10 biosynthesis (COQ2, COQ6, ADCK4, or PDSS2). In these patients the treatment with coenzyme Q10 may be indicated. Also, patients with recessive mutations in PLCE1 may

  16. Modeling evolution of insect resistance to genetically modified crops

    OpenAIRE

    2015-01-01

    Genetically modified crops producing insecticidal proteins from Bacillus thuringiensis (Bt) for insect control have been planted on more than 200 million ha worldwide since 1996 [1]. Evolution of resistance by insect pests threatens the continued success of Bt crops [2, 3]. To delay pest resistance, refuges of non-Bt crops are planted near Bt crops to allow survival of susceptible pests [4, 5]. We used computer simulations of a population genetic model to determine if predictions from the the...

  17. Genetic parameter estimates for tick resistance in Bonsmara cattle

    African Journals Online (AJOL)

    user

    East Coast fever in sub-Saharan Africa during 1989 alone (Mukhebi et al., 1992). ... in natural disease resistance appears to be of genetic origin (Adams & ..... unknown phenotypic variation that was not accounted for by the effects in the model. ... Genetic parameters for tropical beef cattle in northern Australia: A Review.

  18. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    OpenAIRE

    A. Sh. Mannapova; Z. A. Kanarskaya; A. V. Kanarskii; G. P. Shuvaeva

    2015-01-01

    Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment ...

  19. Genetic determinants of resistance to gastrointestinal nematodes in ruminants

    Science.gov (United States)

    Genetic markers for host resistance to gastrointestinal parasites have long been sought by the livestock industry as a way to select more resistant individuals, and alternatively, to help farmers with parasite control because high egg shedders will be removed from the flock and reduce parasite trans...

  20. The Genetic and Molecular Basis of Plant Resistance to Pathogens

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Thomas Lubberstedt; Mingliang Xu

    2013-01-01

    Plant pathogens have evolved numerous strategies to obtain nutritive materials from their host,and plants in turn have evolved the preformed physical and chemical barriers as well as sophisticated two-tiered immune system to combat pathogen attacks.Genetically,plant resistance to pathogens can be divided into qualitative and quantitative disease resistance,conditioned by major gene(s) and multiple genes with minor effects,respectively.Qualitative disease resistance has been mostly detected in plant defense against biotrophic pathogens,whereas quantitative disease resistance is involved in defense response to all plant pathogens,from biotrophs,hemibiotrophs to necrotrophs.Plant resistance is achieved through interception of pathogen-derived effectors and elicitation of defense response.In recent years,great progress has been made related to the molecular basis underlying host-pathogen interactions.In this review,we would like to provide an update on genetic and molecular aspects of plant resistance to pathogens.

  1. Genetic Mechanisms of Antimicrobial Resistance of Acinetobacter baumannii.

    Science.gov (United States)

    Esterly, John S; Richardson, Chad L; Eltoukhy, Noha S; Qi, Chao; Scheetz, Marc H

    2011-02-01

    To summarize published data identifying known genetic mechanisms of antibiotic resistance in Acinetobacter baumannii and the correlating phenotypic expression of antibiotic resistance. MEDLINE databases (1966-July 15, 2010) were searched to identify original reports of genetic mechanisms of antibiotic resistance in A. baumannii. Numerous genetic mechanisms of resistance to multiple classes of antibiotics are known to exist in A. baumannii, a gram-negative bacterium increasingly implicated in nosocomial infections. Mechanisms may be constitutive or acquired via plasmids, integrons, and transposons. Methods of resistance include enzymatic modification of antibiotic molecules, modification of antibiotic target sites, expression of efflux pumps, and downregulation of cell membrane porin channel expression. Resistance to β-lactams appears to be primarily caused by β-lactamase production, including extended spectrum β-lactamases (b/aTEM, blaSHV, b/aTX-M,b/aKPC), metallo-β-lactamases (blaMP, blaVIM, bla, SIM), and most commonly, oxacillinases (blaOXA). Antibiotic target site alterations confer resistance to fluoroquinolones (gyrA, parC) and aminoglycosides (arm, rmt), and to a much lesser extent, β-lactams. Efflux pumps (tet, ade, abe) contribute to resistance against β-lactams, tetracyclines, fluoroquinolones, and aminoglycosides. Finally, porin channel deletion (carO, oprD) appears to contribute to β-lactam resistance and may contribute to rarely seen polymyxin resistance. Of note, efflux pumps and porin deletions as solitary mechanisms may not render clinical resistance to A. baumannii. A. baumannii possesses copious genetic resistance mechanisms. Knowledge of local genotypes and expressed phenotypes for A. baumannii may aid clinicians more than phenotypic susceptibilities reported in large epidemiologic studies. © 2011 SAGE Publications.

  2. An Update on Genetic Resistance of Chickpea to Ascochyta Blight

    Directory of Open Access Journals (Sweden)

    Mamta Sharma

    2016-03-01

    Full Text Available Ascochyta blight (AB caused by Ascochyta rabiei (Pass. Labr. is an important and widespread disease of chickpea (Cicer arietinum L. worldwide. The disease is particularly severe under cool and humid weather conditions. Breeding for host resistance is an efficient means to combat this disease. In this paper, attempts have been made to summarize the progress made in identifying resistance sources, genetics and breeding for resistance, and genetic variation among the pathogen population. The search for resistance to AB in chickpea germplasm, breeding lines and land races using various screening methods has been updated. Importance of the genotype × environment (GE interaction in elucidating the aggressiveness among isolates from different locations and the identification of pathotypes and stable sources of resistance have also been discussed. Current and modern breeding programs for AB resistance based on crossing resistant/multiple resistant and high-yielding cultivars, stability of the breeding lines through multi-location testing and molecular marker-assisted selection method have been discussed. Gene pyramiding and the use of resistant genes present in wild relatives can be useful methods in the future. Identification of additional sources of resistance genes, good characterization of the host–pathogen system, and identification of molecular markers linked to resistance genes are suggested as the key areas for future study.

  3. Genetic diversity in soybean genotypes with resistance to Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Ana Paula Oliveira Nogueira

    2011-01-01

    Full Text Available The purpose of this study was to analyze the genetic diversity among soybean genotypes inoculated with Heteroderaglycines race 3. The experiments were conducted in a greenhouse. In two performance tests of morphological characteristics andresistance to the pathogen, 27 soybean genotypes were assessed. The coefficient of genotypic determination was estimated by themethod of analysis of variance and the genetic diversity analyzed based on dendrograms and optimization method. The estimatedcoefficients of determination indicated a predominantly genetic origin of the genotypic differences in the traits. The genetic variabilitywas maintained in the superior genotypes, which can be used in breeding programs for resistance to soybean cyst nematode

  4. Chapter VIII. Contributions of propagation techniques and genetic modification to breeding - genetic engineering for disease resistance

    Science.gov (United States)

    Genetic engineering offers an opportunity to develop flower bulb crops with resistance to fungal, viral, and bacterial pathogens. Several of the flower bulb crops, Lilium spp., Gladiolus, Zantedeschia, Muscari, Hyacinthus, Narcissus, Ornithogalum, Iris, and Alstroemeria, have been transformed with t...

  5. Genetic markers for western corn rootworm resistance to Bt toxin.

    Science.gov (United States)

    Flagel, Lex E; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L; Michel, Andrew P; Head, Graham P; Goldman, Barry S

    2015-01-07

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genetic markers for resistance will help in characterizing the extent of existing issues, predicting where future field failures may occur, improving insect resistance management strategies, and in designing and sustainably implementing forthcoming WCR control products. Here, we discover and validate genetic markers in WCR that are associated with resistance to the Cry3Bb1 Bt toxin. A field-derived WCR population known to be resistant to the Cry3Bb1 Bt toxin was used to generate a genetic map and to identify a genomic region associated with Cry3Bb1 resistance. Our results indicate that resistance is inherited in a nearly recessive manner and associated with a single autosomal linkage group. Markers tightly linked with resistance were validated using WCR populations collected from Cry3Bb1 maize fields showing significant WCR damage from across the US Corn Belt. Two markers were found to be correlated with both diet (R2 = 0.14) and plant (R2 = 0.23) bioassays for resistance. These results will assist in assessing resistance risk for different WCR populations, and can be used to improve insect resistance management strategies.

  6. Genetics of resistance against lettuce downy mildew

    Science.gov (United States)

    Lettuce (Lactuca sativa) is one of the most valuable vegetable crops in the U.S. Downy mildew (DM), caused by Bremia lactucae, is the most important foliar disease of lettuce worldwide, which decreases the quality of the marketable portion of the crop. The use of resistant varieties carrying dominan...

  7. Determinants of Genetic Diversity of Spontaneous Drug Resistance in Bacteria.

    Science.gov (United States)

    Couce, Alejandro; Rodríguez-Rojas, Alexandro; Blázquez, Jesús

    2016-07-01

    Any pathogen population sufficiently large is expected to harbor spontaneous drug-resistant mutants, often responsible for disease relapse after antibiotic therapy. It is seldom appreciated, however, that while larger populations harbor more mutants, the abundance distribution of these mutants is expected to be markedly uneven. This is because a larger population size allows early mutants to expand for longer, exacerbating their predominance in the final mutant subpopulation. Here, we investigate the extent to which this reduction in evenness can constrain the genetic diversity of spontaneous drug resistance in bacteria. Combining theory and experiments, we show that even small variations in growth rate between resistant mutants and the wild type result in orders-of-magnitude differences in genetic diversity. Indeed, only a slight fitness advantage for the mutant is enough to keep diversity low and independent of population size. These results have important clinical implications. Genetic diversity at antibiotic resistance loci can determine a population's capacity to cope with future challenges (i.e., second-line therapy). We thus revealed an unanticipated way in which the fitness effects of antibiotic resistance can affect the evolvability of pathogens surviving a drug-induced bottleneck. This insight will assist in the fight against multidrug-resistant microbes, as well as contribute to theories aimed at predicting cancer evolution.

  8. genetic diversity and prevalence of antiretroviral drug resistance ...

    African Journals Online (AJOL)

    PROGMANAGER

    2013-04-24

    Apr 24, 2013 ... Human immunodeficiency virus type-1 (HIV-1) genetic ... enrolled for HIV care at the Jos University Teaching Hospital (JUTH) HIV Treatment Center between ... algorithm. ..... and RT sequences revealed distribution of HIV-1 subtype's diversity circulating .... resistance position 210W; which is a rare finding.

  9. Genetic variation in resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, F.J.

    1992-01-01

    Results of an investigation of the gene coding for Cu, Zn superoxide dismutase (Sod) in Drosophila melanogaster seeking to understand the enzyme's role in cell protection against ionizing radiation are reported. Components of the investigation include molecular characterization of the gene; measuring the response of different genotypes to increasing levels of radiation; and investigation of the processes that maintain the Sod polymorphism in populations. While two alleles, S and F, are commonly found at the Sod locus in natural populations of D. melanogaster we have isolated from a natural population a null (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide a model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CAl. The radioprotective effects of SOD can be established by showing protective effects for the various genotypes that correspond to those inequalities. Because the allele variants studied are derived from natural populations, the proposed investigation avoids problems that arise when mutants obtained my mutagenesis are used. Moreover, each allele is studied in multiple genetic backgrounds, so that we correct for effects attributable to other loci by randomizing these effects.

  10. Towards a durable management of genetic resistances to Leptosphaeria maculans

    Directory of Open Access Journals (Sweden)

    Pinochet Xavier

    2003-05-01

    Full Text Available Blackeg is the major disease of winter oilseed rape in France. For an efficient control of the disease several tools could be combined, but mainly plant breeding has been used to increase winter oilseed rape resistance to blackleg. A useful step was reached in the nineties, using a specific resistance gene (Rlm1. After being widely used this resistance was broken down by an increase of the virulent sub-populations of the fungus. Such a situation worried the different actors and raised the question of the promotion of a durable management of genetic resistances to Leptosphaeria. After a synthetic presentation of the state of the art in the fields of genetics of resistance, of Leptosphaeria populations and on agronomic practices able to control the pathogen, the promotion of a durable management of resistances is discussed. This target needs to precise the strategy, to improve methodologies to characterise genotypes, to promote proper agronomic practices, to follow Leptosphaeria population behaviour and to motivate economic actors.

  11. Molecular genetics of mosquito resistance to malaria parasites.

    Science.gov (United States)

    Vernick, K D; Oduol, F; Lazzaro, B P; Glazebrook, J; Xu, J; Riehle, M; Li, J

    2005-01-01

    Malaria parasites are transmitted by the bite of an infected mosquito, but even efficient vector species possess multiple mechanisms that together destroy most of the parasites present in an infection. Variation between individual mosquitoes has allowed genetic analysis and mapping of loci controlling several resistance traits, and the underlying mechanisms of mosquito response to infection are being described using genomic tools such as transcriptional and proteomic analysis. Malaria infection imposes fitness costs on the vector, but various forms of resistance inflict their own costs, likely leading to an evolutionary tradeoff between infection and resistance. Plasmodium development can be successfully completed onlyin compatible mosquito-parasite species combinations, and resistance also appears to have parasite specificity. Studies of Drosophila, where genetic variation in immunocompetence is pervasive in wild populations, offer a comparative context for understanding coevolution of the mosquito-malaria relationship. More broadly, plants also possess systems of pathogen resistance with features that are structurally conserved in animal innate immunity, including insects, and genomic datasets now permit useful comparisons of resistance models even between such diverse organisms.

  12. Genetic resistance to rhabdovirus infection in teleost fish is paralleled to the derived cell resistance status.

    Directory of Open Access Journals (Sweden)

    Eloi R Verrier

    Full Text Available Genetic factors of resistance and predisposition to viral diseases explain a significant part of the clinical variability observed within host populations. Predisposition to viral diseases has been associated to MHC haplotypes and T cell immunity, but a growing repertoire of innate/intrinsic factors are implicated in the genetic determinism of the host susceptibility to viruses. In a long-term study of the genetics of host resistance to fish rhabdoviruses, we produced a collection of double-haploid rainbow trout clones showing a wide range of susceptibility to Viral Hemorrhagic Septicemia Virus (VHSV waterborne infection. The susceptibility of fibroblastic cell lines derived from these clonal fish was fully consistent with the susceptibility of the parental fish clones. The mechanisms determining the host resistance therefore did not associate with specific host immunity, but rather with innate or intrinsic factors. One cell line was resistant to rhabdovirus infection due to the combination of an early interferon IFN induction--that was not observed in the susceptible cells--and of yet unknown factors that hamper the first steps of the viral cycle. The implication of IFN was well consistent with the wide range of resistance of this genetic background to VSHV and IHNV, to the birnavirus IPNV and the orthomyxovirus ISAV. Another cell line was even more refractory to the VHSV infection through different antiviral mechanisms. This collection of clonal fish and isogenic cell lines provides an interesting model to analyze the relative contribution of antiviral pathways to the resistance to different viruses.

  13. Resistance to hepatitis C virus: potential genetic and immunological determinants.

    Science.gov (United States)

    Mina, Michael M; Luciani, Fabio; Cameron, Barbara; Bull, Rowena A; Beard, Michael R; Booth, David; Lloyd, Andrew R

    2015-04-01

    Studies of individuals who were highly exposed but seronegative (HESN) for HIV infection led to the discovery that homozygosity for the Δ32 deletion mutation in the CCR5 gene prevents viral entry into target cells, and is associated with resistance to infection. Additionally, evidence for protective immunity has been noted in some HESN groups, such as sex workers in The Gambia. Population studies of individuals at high risk for hepatitis C virus infection suggest that an HESN phenotype exists. The body of evidence, which suggests that protective immunity allows clearance of hepatitis C virus without seroconversion is growing. Furthermore, proof-of-principle evidence from in-vitro studies shows that genetic polymorphisms can confer resistance to establishment of infection. This Review discusses the possibility that genetic mutations confer resistance against hepatitis C virus, and also explores evidence for protective immunity, including via genetically programmed variations in host responses. The data generally strengthens the notion that investigations of naturally arising polymorphisms within the hepatitis C virus interactome, and genetic association studies of well characterised HESN individuals, could identify potential targets for vaccine design and inform novel therapies.

  14. Genetic parameters for resistance to trichostrongylid infection in dairy sheep.

    Science.gov (United States)

    Gutiérrez-Gil, B; Pérez, J; de la Fuente, L F; Meana, A; Martínez-Valladares, M; San Primitivo, F; Rojo-Vázquez, F A; Arranz, J J

    2010-04-01

    In sheep, the traditional chemical control of gastrointestinal nematode (GIN) parasites with anthelmintics has led to the widespread development of anthelmintic resistance. The selection of sheep with enhanced resistance to GIN parasites has been suggested as an alternative strategy to develop sustainable control of parasite infections. Most of the estimations of the genetic parameters for sheep resistance to GIN parasites have been obtained from young animals belonging to meat- and/or wool-specialised breeds. We present here the estimated genetic parameters for four parasite resistance traits studied in a commercial population of adult Spanish Churra dairy ewes. These involved two faecal egg counts (FECs) (LFEC0 and LFEC1) and two serum indicator traits, the anti-Teladorsagia circumcincta fourth stage larvae IgA (IgA) and the pepsinogen (Peps) levels. In addition, this study has allowed us to identify the environmental factors influencing parasite resistance in naturally infected Spanish Churra sheep and to quantify the genetic component of this complex phenotype. The heritabilities estimated for the two FECs analysed (0.12 for LFEC0 and 0.09 for LFEC1) were lower than those obtained for the examined serum indicators (0.19 for IgA and 0.21 for Peps). The genetic correlations between the traits ranged from 0.43 (Peps-IgA) to 0.82 (LFEC0-LFEC1) and were higher than their phenotypic counterparts, which ranged between 0.07 and 0.10. The heritabilities estimated for the studied traits were lower than previously reported in lambs. This may be due to the differences in the immune mechanisms controlling the infection in young (antibody reactions) and adult (hypersensitivity reactions) animals/sheep. In summary, this study demonstrates the presence of heritable variation in parasite resistance indicator traits in the Churra population studied, which suggests that genetic improvement is feasible for this complex trait in this population. However, further studies in which

  15. Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum

    OpenAIRE

    2010-01-01

    The dynamics of herbicide resistance evolution in plants are influenced by many factors, especially the biochemical and genetic basis of resistance. Herbicide resistance can be endowed by enhanced rates of herbicide metabolism because of the activity of cytochrome P450 enzymes, although in weedy plants the genetic control of cytochrome P450-endowed herbicide resistance is poorly understood. In this study we have examined the genetic control of P450 metabolism-based herbicide resistance in a w...

  16. Scab resistance in 'Geneva' apple is conditioned by a resistance gene cluster with complex genetic control.

    Science.gov (United States)

    Bastiaanse, Héloïse; Bassett, Heather C M; Kirk, Christopher; Gardiner, Susan E; Deng, Cecilia; Groenworld, Remmelt; Chagné, David; Bus, Vincent G M

    2016-02-01

    Apple scab, caused by the fungal pathogen Venturia inaequalis, is one of the most severe diseases of apple worldwide. It is the most studied plant-pathogen interaction involving a woody species using modern genetic, genomic, proteomic and bioinformatic approaches in both species. Although 'Geneva' apple was recognized long ago as a potential source of resistance to scab, this resistance has not been characterized previously. Differential interactions between various monoconidial isolates of V. inaequalis and six segregating F1 and F2 populations indicate the presence of at least five loci governing the resistance in 'Geneva'. The 17 chromosomes of apple were screened using genotyping-by-sequencing, as well as single marker mapping, to position loci controlling the V. inaequalis resistance on linkage group 4. Next, we fine mapped a 5-cM region containing five loci conferring both dominant and recessive scab resistance to the distal end of the linkage group. This region corresponds to 2.2 Mbp (from 20.3 to 22.5 Mbp) on the physical map of 'Golden Delicious' containing nine candidate nucleotide-binding site leucine-rich repeat (NBS-LRR) resistance genes. This study increases our understanding of the complex genetic basis of apple scab resistance conferred by 'Geneva', as well as the gene-for-gene (GfG) relationships between the effector genes in the pathogen and resistance genes in the host.

  17. Genetics of resistant hypertension: a novel pharmacogenomics phenotype.

    Science.gov (United States)

    El Rouby, Nihal; Cooper-DeHoff, Rhonda M

    2015-09-01

    Resistant hypertension (RHTN), defined as an uncontrolled blood pressure despite the use of multiple antihypertensive medications, is an increasing clinical problem associated with increased cardiovascular (CV) risk, including stroke and target organ damage. Genetic variability in blood pressure (BP)-regulating genes and pathways may, in part, account for the variability in BP response to antihypertensive agents, when taken alone or in combination, and may contribute to the RHTN phenotype. Pharmacogenomics focuses on the identification of genetic factors responsible for inter-individual variability in drug response. Expanding pharmacogenomics research to include patients with RHTN taking multiple BP-lowering medications may identify genetic markers associated with RHTN. To date, the available evidence surrounding pharmacogenomics in RHTN is limited and primarily focused on candidate genes. In this review, we summarize the most current data in RHTN pharmacogenomics and offer some recommendations on how to advance the field.

  18. Genetic mapping of turnip mosaic virus resistance in Lactuca sativa.

    Science.gov (United States)

    Robbins, M A; Witsenboer, H; Michelmore, R W; Laliberte, J F; Fortin, M G

    1994-11-01

    Presence of the dominant Tu gene in Lactuca sativa is sufficient to confer resistance to infection by turnip mosaic virus (TuMV). In order to obtain an immunological assay for the presence of TuMV in inoculated plants, the TuMV coat protein (CP) gene was cloned by amplification of a cDNA corresponding to the viral genome using degenerate primers designed from conserved potyvirus CP sequences. The TuMV CP was overexpressed in Escherichia coli, and polyclonal antibodies were produced. To locate Tu on the L. sativa genetic map, F3 families from a cross between cvs "Cobbham Green" (resistant to TuMV) and "Calmar" (susceptible) were genotyped for Tu. Families known to be recombinant in the region containing Tu were infected with TuMV and tested by the indirect enzyme-linked immunosorbent assay (ELISA) using the anti-CP serum. This assay placed Tu between two random amplified polymorphic DNA (RAPD) markers and 3.2 cM from Dm5/8 (which confers resistance to Bremia lactucae). Also, bulked segregant analysis was used to screen for additional RAPD markers tightly linked to the Tu locus. Five new markers linked to Tu were identified in this region, and their location on the genetic map was determined using informative recombinants in the region. Six markers were identified as being linked within 2.5 cM of Tu.

  19. Genetically enhanced cows resist intramammary Staphylococcus aureus infection.

    Science.gov (United States)

    Wall, Robert J; Powell, Anne M; Paape, Max J; Kerr, David E; Bannerman, Douglas D; Pursel, Vernon G; Wells, Kevin D; Talbot, Neil; Hawk, Harold W

    2005-04-01

    Mastitis, the most consequential disease in dairy cattle, costs the US dairy industry billions of dollars annually. To test the feasibility of protecting animals through genetic engineering, transgenic cows secreting lysostaphin at concentrations ranging from 0.9 to 14 micrograms/ml [corrected] in their milk were produced. In vitro assays demonstrated the milk's ability to kill Staphylococcus aureus. Intramammary infusions of S. aureus were administered to three transgenic and ten nontransgenic cows. Increases in milk somatic cells, elevated body temperatures and induced acute phase proteins, each indicative of infection, were observed in all of the nontransgenic cows but in none of the transgenic animals. Protection against S. aureus mastitis appears to be achievable with as little as 3 micrograms/ml [corrected] of lysostaphin in milk. Our results indicate that genetic engineering can provide a viable tool for enhancing resistance to disease and improve the well-being of livestock.

  20. Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance.

    Science.gov (United States)

    Rasmussen, Angela L; Okumura, Atsushi; Ferris, Martin T; Green, Richard; Feldmann, Friederike; Kelly, Sara M; Scott, Dana P; Safronetz, David; Haddock, Elaine; LaCasse, Rachel; Thomas, Matthew J; Sova, Pavel; Carter, Victoria S; Weiss, Jeffrey M; Miller, Darla R; Shaw, Ginger D; Korth, Marcus J; Heise, Mark T; Baric, Ralph S; de Villena, Fernando Pardo-Manuel; Feldmann, Heinz; Katze, Michael G

    2014-11-21

    Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation nor death from shock, thus restricting pathogenesis studies to nonhuman primates. Here we show that mice from the Collaborative Cross panel of recombinant inbred mice exhibit distinct disease phenotypes after mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, probably mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever.

  1. Advances in Research on Genetically Engineered Plants for Metal Resistance

    Institute of Scientific and Technical Information of China (English)

    Ri-Qing Zhang; Chun-Fang Tang; Shi-Zhi Wen; Yun-Guo Liu; Ke-Lin Li

    2006-01-01

    The engineering application of natural hyperaccumulators in removing or inactivating metal pollutants from soil and surface water in field trials mostly presents the insurmountable shortcoming of low efficiency owing to their little biomass and slow growth. Based on further understanding of the molecular mechanism of metal uptake, translocation, and also the separation, identification, and cloning of some related functional genes, this article highlights and summarizes in detail the advances in research on transgenic techniques, such as Agrobacterium tumefaciens-mediated transformation and particle bombardment, in breeding of plants for metal resistance and accumulation, and points out that deepening the development of transgenic plants is one of the efficient approaches to improving phytoremediation efficiency of metal-contaminated environments. From the viewpoint of sustainable development, governments should strengthen support to the development of genetic engineering for metal resistance and accumulation in plants.

  2. Genetic mapping of resistance factors to Phytophthora palmivora in cocoa.

    Science.gov (United States)

    Flament, M H; Kebe, I; Clément, D; Pieretti, I; Risterucci, A M; N'Goran, J A; Cilas, C; Despréaux, D; Lanaud, C

    2001-02-01

    Phytophthora palmivora causes pod rot, a serious disease on cocoa widespread throughout the producing regions. In order to ascertain the genetic determination of cocoa resistance to P. palmivora, a study was carried out on two progenies derived from crosses between a heterozygous, moderately resistant Forastero clone, T60/887, and two closely related and highly susceptible Forastero clones, one completely homozygous, IFC2, and one partially heterozygous, IFC5. The cumulative size of both progenies was 112 individuals. Plants were subjected to natural and artificial inoculation of P. palmivora in C te d'Ivoire. The genetic maps of T60/887 and of IFC5 were constructed using amplified fragment length polymorphism (AFLP) markers and microsatellites. The map of T60/887 comprised 198 markers assembled in 11 linkage groups and representing a total length of 793 cM. The map of IFC5 comprised 55 AFLP markers that were assembled into six linkage groups for a total length of 244 cM. Ratio of rotten over total number of fruit under natural infection was measured for each tree over two harvests. Artificial inoculations were performed on leaves and pods. These tests were weakly correlated with the pod rot rate in the field. Five quantitative trait loci (QTLs) of resistance were detected for T60/887 but none were common between the three traits measured. Stability and reliability of the experimental procedures are discussed and revealed the difficult use of these artificial tests on adult trees for a good prediction of field resistance.

  3. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance.

    Science.gov (United States)

    Tabashnik, Bruce E; Huang, Fangneng; Ghimire, Mukti N; Leonard, B Rogers; Siegfried, Blair D; Rangasamy, Murugesan; Yang, Yajun; Wu, Yidong; Gahan, Linda J; Heckel, David G; Bravo, Alejandra; Soberón, Mario

    2011-10-09

    Transgenic crops that produce Bacillus thuringiensis (Bt) toxins are grown widely for pest control, but insect adaptation can reduce their efficacy. The genetically modified Bt toxins Cry1AbMod and Cry1AcMod were designed to counter insect resistance to native Bt toxins Cry1Ab and Cry1Ac. Previous results suggested that the modified toxins would be effective only if resistance was linked with mutations in genes encoding toxin-binding cadherin proteins. Here we report evidence from five major crop pests refuting this hypothesis. Relative to native toxins, the potency of modified toxins was >350-fold higher against resistant strains of Plutella xylostella and Ostrinia nubilalis in which resistance was not linked with cadherin mutations. Conversely, the modified toxins provided little or no advantage against some resistant strains of three other pests with altered cadherin. Independent of the presence of cadherin mutations, the relative potency of the modified toxins was generally higher against the most resistant strains.

  4. Genetic basis for nitrate resistance in Desulfovibrio strains

    Directory of Open Access Journals (Sweden)

    Hannah eKorte

    2014-04-01

    Full Text Available Nitrate is an inhibitor of sulfate-reducing bacteria (SRB. In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702, as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605 that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance.

  5. Genetics of chloroquine-resistant malaria: a haplotypic view

    Directory of Open Access Journals (Sweden)

    Gauri Awasthi

    2013-12-01

    Full Text Available The development and rapid spread of chloroquine resistance (CQR in Plasmodium falciparum have triggered the identification of several genetic target(s in the P. falciparum genome. In particular, mutations in the Pfcrt gene, specifically, K76T and mutations in three other amino acids in the region adjoining K76 (residues 72, 74, 75 and 76, are considered to be highly related to CQR. These various mutations form several different haplotypes and Pfcrt gene polymorphisms and the global distribution of the different CQR- Pfcrt haplotypes in endemic and non-endemic regions of P. falciparum malaria have been the subject of extensive study. Despite the fact that the Pfcrt gene is considered to be the primary CQR gene in P. falciparum , several studies have suggested that this may not be the case. Furthermore, there is a poor correlation between the evolutionary implications of the Pfcrt haplotypes and the inferred migration of CQR P. falciparum based on CQR epidemiological surveillance data. The present paper aims to clarify the existing knowledge on the genetic basis of the different CQR- Pfcrt haplotypes that are prevalent in worldwide populations based on the published literature and to analyse the data to generate hypotheses on the genetics and evolution of CQR malaria.

  6. Resistance to valproic acid as predictor of treatment resistance in genetic generalized epilepsies

    DEFF Research Database (Denmark)

    Gesche, Joanna; Khanevski, Marina; Solberg, Carl

    2017-01-01

    to the International League Against Epilepsy (ILAE) definition. Psychiatric comorbidities, age at first diagnosis, and absences were associated with worse seizure control, whereas focal changes in EEG remained without prognostic impact. Resistance to valproic acid was the most important prognostic factor......This study aimed at defining clinical predictors of drug resistance in adults with genetic generalized epilepsy (GGE) who were treated with a broad spectrum of antiepileptic drugs. Of a cohort of 137 unselected adult GGE patients with long-term follow up, clinical and demographic data, putative...... prognostic factors (e.g., psychiatric comorbidities, electroencephalography [EEG]), treatment response, and data indicative of social status were collected. Fifty-eight patients had seizures within the past year. Thirty-three patients met the definition of "drug-resistant epilepsy" according...

  7. Entomic Resistance Genes for Genetic Engineering in Agricultural Furtherance

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar

    2015-02-01

    Full Text Available Genetic engineering for insect pest’s management in crop plants offers the potential of a user-friendly, environmentfriendly and consumer-friendly method of crop protection to meet the demands of sustainable agriculture. Food and energy insecurities are currently two foremost problems being faced worldwide. Losses due to pests and diseases have been estimated to be around 37% of the agricultural production worldwide, with 13% due to insects. Engineering insect resistance in transgenic plants has been achieved through the use of insect control protein genes of Bacillus thuringiensis. Till now, researchers have focused on the introduction of genes for expression of modified Bacillus thuringiensis (Bt toxins. Successful results on the control of Bt-susceptible pests have been achieved in the laboratory and finally in the field and now commercialized Bt transgenic crops are used worldwide. Other alternative methods exploit plant-derived insect control genes with promising results. Today insect-resistance transgenes, whether of plant, bacterial or other origin, can be introduced in to plants to increase the level of insect resistance so as to contribute to sustainable agricultural practices.

  8. The development of genetic resistance to myxomatosis in wild rabbits in Britain.

    OpenAIRE

    Ross, J; Sanders, M. F.

    1984-01-01

    The presence of genetic resistance to myxomatosis in a sample of wild rabbits from one area in England was reported in 1977. Rabbits from three other areas in Great Britain have been tested subsequently, and all cases showed similar resistance to a moderately virulent strain of myxoma virus. Rabbits from one area also showed a significant degree of resistance to a fully virulent strain of virus. It is concluded that genetic resistance to myxomatosis is widespread in wild rabbit populations in...

  9. Genetical studies on dieldrin-resistance in Aëdes aegypti and its cross-resistance to DDT

    Science.gov (United States)

    Khan, N. H.; Brown, A. W. A.

    1961-01-01

    A strain of Aëdes aegypti was recently found in Puerto Rico which proved to be resistant to both DDT and dieldrin. This paper reports on genetical studies of this strain to determine whether a single entity is involved or two distinct resistances. Tests carried out by repeated back-crossing combined with selection pressure from DDT and dieldrin and by crossing with a strain with marker genes indicate that a single entity is responsible (dieldrin-resistance with cross-resistance to DDT) and that its genetic factor is located on chromosome 2 at a distance of 25 from locus ”yellow”. PMID:13755610

  10. Mechanisms of noise-resistance in genetic oscillators

    CERN Document Server

    Gómez-Vilar, J M; Barkai, N; Leibler, S; Vilar, Jose M.G.; Kueh, Hao Yuan; Barkai, Naama; Leibler, Stanislas

    2002-01-01

    A wide range of organisms use circadian clocks to keep internal sense of daily time and regulate their behavior accordingly. Most of these clocks use intracellular genetic networks based on positive and negative regulatory elements. The integration of these "circuits" at the cellular level imposes strong constraints on their functioning and design. Here we study a recently proposed model [N. Barkai and S. Leibler, Nature, 403:267--268, 2000] that incorporates just the essential elements found experimentally. We show that this type of oscillator is driven mainly by two elements: the concentration of a repressor protein and the dynamics of an activator protein forming an inactive complex with the repressor. Thus the clock does not need to rely on mRNA dynamics to oscillate, which makes it especially resistant to fluctuations. Oscillations can be present even when the time average of the number of mRNA molecules goes below one. Under some conditions, this oscillator is not only resistant to but paradoxically als...

  11. Genetic improvement of Trichoderma ability to induce systemic resistance

    Institute of Scientific and Technical Information of China (English)

    Ciliento R; Mach R L; Lorito M; Woo S L; Di Benedetto P; Ruocco M; Scala F; Soriente I; Ferraioli S; Brunner K; Zeilinger S

    2004-01-01

    @@ The beneficial applications of Trichoderma spp. in agriculture include not only the control of plant pathogens, but also the improvement of plant growth, micronutrient availability, and plant tolerance to abiotic stress. In addition, it has been suggested that these fungi are able to increase plant disease resistance by activating induced systemic resistance (ISR) . The mode of action of these beneficial fungi in the Trichoderma -plant-pathogen interaction are many, complex and not completely understood. Numerous lytic enzymes have been characterized, the encoding genes (ech42 gluc78,nag1 from T. atroviride strain P1) cloned, and their role in biocontrol demonstrated. The corresponding biocontrol-related inducible promoters have been used in a reporter system based on the Aspergillus niger glucose oxidase gene (goxA) to monitor biocontrol activity. Glucose oxidase catalyzes the oxygen-dependent oxidation of D-glucose to D-glucono-1, 5-lactone and hydrogen peroxide; this latter compound is known to have an antifungal effect and activate the plant defence cascade, thus increasing resistance to pathogen attack. T. atroviride P1 transformants with various promoters gox were tested as seed coating treatments on bean seeds planted in soil infested with a soilborne fungal pathogen. Successively, the emergent leaves were inoculated with a foliar pathogen to determine the effect of the GOX transformants on biocontrol and resistance to pathogen attack.Inoculations with the P1-GOX transformants not only reduced disease symptoms caused by a soil pathogen, but also the lesions of various foliar pathogens applied far from the Trichoderma colonization, thus activating ISR. A similar approach is being use to genetically improve T.harzianum T22, a rhizosphere competent and commercially marketed strain not transformed yet, by using four different gox gene constructs under the control of constitutive and inducible promoters.Plasmids have been introduced in Trichoderma by

  12. Genetic resistance to scrapie infection in experimentally challenged goats.

    Science.gov (United States)

    Lacroux, Caroline; Perrin-Chauvineau, Cécile; Corbière, Fabien; Aron, Naima; Aguilar-Calvo, Patricia; Torres, Juan Maria; Costes, Pierrette; Brémaud, Isabelle; Lugan, Séverine; Schelcher, François; Barillet, Francis; Andréoletti, Olivier

    2014-03-01

    In goats, several field studies have identified coding mutations of the gene encoding the prion protein (I/M142, N/D146, S/D146, R/Q211, and Q/K222) that are associated with a lower risk of developing classical scrapie. However, the data related to the levels of resistance to transmissible spongiform encephalopathies (TSEs) of these different PRNP gene mutations are still considered insufficient for developing large-scale genetic selection against scrapie in this species. In this study, we inoculated wild-type (WT) PRNP (I142R154R211Q222) goats and homozygous and/or heterozygous I/M142, R/H154, R/Q211, and Q/K222 goats with a goat natural scrapie isolate by either the oral or the intracerebral (i.c.) route. Our results indicate that the I/M142 PRNP polymorphism does not provide substantial resistance to scrapie infection following intracerebral or oral inoculation. They also demonstrate that H154, Q211, and K222 PRNP allele carriers are all resistant to scrapie infection following oral exposure. However, in comparison to WT animals, the H154 and Q211 allele carriers displayed only moderate increases in the incubation period following i.c. challenge. After i.c. challenge, heterozygous K222 and a small proportion of homozygous K222 goats also developed the disease, but with incubation periods that were 4 to 5 times longer than those in WT animals. These results support the contention that the K222 goat prion protein variant provides a strong but not absolutely protective effect against classical scrapie.

  13. The genetic basis for mating-induced sex differences in starvation resistance in Drosophila melanogaster.

    Science.gov (United States)

    Jang, Taehwan; Lee, Kwang Pum

    2015-11-01

    Multiple genetic and environmental factors interact to influence starvation resistance, which is an important determinant of fitness in many organisms, including Drosophila melanogaster. Recent studies have revealed that mating can alter starvation resistance in female D. melanogaster, but little is known about the behavioral and physiological mechanisms underlying such mating-mediated changes in starvation resistance. In the present study, we first investigated whether the effect of mating on starvation resistance is sex-specific in D. melanogaster. As indicated by a significant sex×mating status interaction, mating increased starvation resistance in females but not in males. In female D. melanogaster, post-mating increase in starvation resistance was mainly attributed to increases in food intake and in the level of lipid storage relative to lean body weight. We then performed quantitative genetic analysis to estimate the proportion of the total phenotypic variance attributable to genetic differences (i.e., heritability) for starvation resistance in mated male and female D. melanogaster. The narrow-sense heritability (h(2)) of starvation resistance was 0.235 and 0.155 for males and females, respectively. Mated females were more resistant to starvation than males in all genotypes, but the degree of such sexual dimorphism varied substantially among genotypes, as indicated by a significant sex×genotype interaction for starvation resistance. Cross-sex genetic correlation was greater than 0 but less than l for starvation resistance, implying that the genetic architecture of this trait was partially shared between the two sexes. For both sexes, starvation resistance was positively correlated with longevity and lipid storage at genetic level. The present study suggests that sex differences in starvation resistance depend on mating status and have a genetic basis in D. melanogaster. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Bovine salmonellosis in Northeast of Iran: Frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp.

    Directory of Open Access Journals (Sweden)

    Hessam A. Halimi

    2014-01-01

    Conclusion: The emergence of multiple antibiotic-resistant strains of Salmonella Typhimurium should be of great concern to the public. No correlation between ERIC fingerprinting and resistance patterns of Salmonella isolates was found, which indicates resistance to antimicrobial agents was not related to specific genetic background.

  15. Genetic basis of benzimidazole resistance in Teladorsagia circumcincta in Ireland.

    Science.gov (United States)

    Keegan, Jason D; Good, Barbara; de Waal, Theo; Fanning, June; Keane, Orla M

    2017-01-01

    Resistance to benzimidazole (BZ) anthelmintics is common in ovine nematodes of economic importance. Single nucleotide polymorphisms (SNP) at three positions in the isotype 1 β- tubulin gene have been associated with BZ resistance and molecular tests for the detection of BZ resistance have been developed. In order to determine if such tests are practicable in Ireland the polymorphisms associated with BZ resistance must be identified. To this end, BZ-resistant nematodes were recovered from four farms in Ireland. Resistant Teladorsagia circumcincta, Cooperia curticei and Trichostrongylus colubriformis were recovered, with resistant T. circumcincta the most common and the only species studied further. Sequencing of the isotype 1 β-tubulin gene from resistant T. circumcincta identified a T - A transition, resulting in an F200Y substitution known to be responsible for BZ-resistance, on three of the farms. However, on the fourth farm the frequency of the resistant A allele was only 0.33 indicating another BZ resistance mechanism may be present on this farm. An additional polymorphism resulting in a substitution of glutamate for leucine (E198L) was also found on this farm at low frequency (0.17). No polymorphisms at position 167 were identified on any farm. Therefore, molecular tests to detect BZ resistance in T. circumcincta in Ireland could prove useful; however, they may result in some instances of resistance remaining undetected.

  16. The development of genetic resistance to myxomatosis in wild rabbits in Britain.

    Science.gov (United States)

    Ross, J; Sanders, M F

    1984-06-01

    The presence of genetic resistance to myxomatosis in a sample of wild rabbits from one area in England was reported in 1977. Rabbits from three other areas in Great Britain have been tested subsequently, and all cases showed similar resistance to a moderately virulent strain of myxoma virus. Rabbits from one area also showed a significant degree of resistance to a fully virulent strain of virus. It is concluded that genetic resistance to myxomatosis is widespread in wild rabbit populations in Britain. The implications of the results are discussed in relation to the co-evolution of the disease and its host.

  17. Macrocyclic lactone resistance in Dirofilaria immitis: Failure of heartworm preventives and investigation of genetic markers for resistance.

    Science.gov (United States)

    Bourguinat, Catherine; Lee, Alice C Y; Lizundia, Regina; Blagburn, Byron L; Liotta, Janice L; Kraus, Marc S; Keller, Kathy; Epe, Christian; Letourneau, Louis; Kleinman, Claudia L; Paterson, Tara; Gomez, Elena Carreton; Montoya-Alonso, José Alberto; Smith, Hubert; Bhan, Aron; Peregrine, Andrew S; Carmichael, James; Drake, Jason; Schenker, Rudolf; Kaminsky, Ronald; Bowman, Dwight D; Geary, Timothy G; Prichard, Roger K

    2015-06-15

    Macrocyclic lactone (ML) endectocides are used as chemoprophylaxis for heartworm infection (Dirofilaria immitis) in dogs and cats. Claims of loss of efficacy (LOE) of ML heartworm preventives have become common in some locations in the USA. We directly tested whether resistance to MLs exists in LOE isolates of D. immitis and identified genetic markers that are correlated with, and therefore can predict ML resistance. ML controlled studies showed that LOE strains of D. immitis established infections in dogs despite chemoprophylaxis with oral ivermectin or injectable moxidectin. A whole genome approach was used to search for loci associated with the resistance phenotype. Many loci showed highly significant differences between pools of susceptible and LOE D. immitis. Based on 186 potential marker loci, Sequenom(®) SNP frequency analyses were conducted on 663 individual parasites (adult worms and microfilariae) which were phenotypically characterized as susceptible (SUS), confirmed ML treatment survivors/resistant (RES), or suspected resistant/loss of efficacy (LOE) parasites. There was a subset of SNP loci which appears to be promising markers for predicting ML resistance, including SNPs in some genes that have been associated with ML resistance in other parasites. These data provide unequivocal proof of ML resistance in D. immitis and identify genetic markers that could be used to monitor for ML resistance in heartworms.

  18. Toward genetic transformation of mitochondria in mammalian cells using a recoded drug-resistant selection marker

    Institute of Scientific and Technical Information of China (English)

    Young Geol Yoon; Michael Duane Koob

    2011-01-01

    Due to technical difficulties, the genetic transformation of mitochondria in mammalian cells is still a challenge. In this report, we described our attempts to transform mammalian mitochondria with an engineered mitochondrial genome based on selection using a drug resistance gene. Because the standard drug-resistant neomycin phosphotransferase confers resistance to high concentrations of G418 when targeted to the mitochondria, we generated a recoded neomycin resistance gene that uses the mammalian mitochondrial genetic code to direct the synthesis of this protein in the mitochondria, but not in the nucleus (mitochondrial version). We also generated a universal version of the recoded neomycin resistance gene that allows synthesis of the drug-resistant proteins both in the mitochondria and nucleus. When we transfected these recoded neomycin resistance genes that were incorporated into the mouse mitochondrial genome clones into mouse tissue culture cells by electroporation, no DNA constructs were delivered into the mitochondria. We found that the universal version of the recoded neomycin resistance gene was expressed in the nucleus and thus conferred drug resistance to G418 selection, while the synthetic mitochondrial version of the gene produced no background drug-resistant cells from nuclear transformation. These recoded synthetic drug-resistant genes could be a useful tool for selecting mitochondrial genetic transformants as a precise technology for mitochondrial transformation is developed.

  19. Molecular genetics and evolution of disease resistance in cereals.

    Science.gov (United States)

    Krattinger, Simon G; Keller, Beat

    2016-10-01

    Contents 320 I. 320 II. 321 III. 321 IV. 322 V. 324 VI. 328 VII. 329 330 References 330 SUMMARY: Cereal crops produce a large part of the globally consumed food and feed. Because of the constant presence of devastating pathogens, the molecular characterization of disease resistance is a major research area and highly relevant for breeding. There has been recent and accelerating progress in the understanding of three distinct resistance mechanisms in cereals: resistance conferred by plasma membrane-localized receptor proteins; race-specific resistance conferred by intracellular immune receptors; and quantitative disease resistance. Intracellular immune receptors provide a particularly rich source for evolutionary studies, and have, for example, resulted in the recent discovery of a novel detection mechanism based on integrated decoy domains. Evolutionary studies have also revealed the origins of active resistance genes in both wild progenitors of today's cereals as well as in cultivated forms. In addition, independent evolution of orthologous genes in related cereals has resulted in resistance to different pathogen species. Quantitative resistance genes have been best characterized in wheat. The quantitative resistance genes identified so far in wheat encode transporter proteins or unusual kinase proteins. The recent discoveries in these three different resistance mechanisms have contributed to the basic molecular understanding of cereal immunity against pathogens and have suggested novel applications for resistance breeding.

  20. Genetic variability of woolly aphid (Adelges laricis Vall.) resistance in European larch (Larix decidua Mill.)

    Energy Technology Data Exchange (ETDEWEB)

    Blada, I. [Forest Research Inst., Bucharest (Romania)

    1995-12-31

    One hundred and eleven clones of European larch were exposed to the woolly aphid and then outplanted in three locations using a randomized complete block design. At ages 11 and 19 years resistance was measured on 102 clones at 2 locations. Highly significant genetic differences were observed among the clones at both locations and at both ages. Highly significant clone x location, clone x location x age interactions were also observed. Differences between the most resistant and most susceptible clones was 483%. Sufficient genetic variation for a breeding program was present. Broad-sense heritability estimates for Adelges resistance varied by location. Significant age to age, location to location and age to location phenotypic correlation for resistance were found. Larch resistance seems to be under polygenic control. A substantial genetic gain could be achieved by selecting the best clones and using vegetative propagation, including somaclonal embryogenesis, for multiplication. 23 refs, 2 figs, 8 tabs

  1. Genetics of resistance to septoria tritici blotch in the Portuguese wheat breeding line TE 9111.

    Science.gov (United States)

    Chartrain, L; Joaquim, P; Berry, S T; Arraiano, L S; Azanza, F; Brown, J K M

    2005-04-01

    We report the genetics of resistance of the Portuguese wheat breeding line TE 9111 to septoria tritici blotch (STB), which is caused by Mycosphaerella graminicola. TE 9111 is the most resistant line known in Europe and combines isolate-non-specific, partial resistance with several isolate-specific resistances. We show that, in addition to high levels of partial resistance to STB, TE 9111 has a new gene for resistance to M. graminicola isolate IPO90012, named Stb11, that maps on chromosome 1BS, the Stb6 gene for resistance to isolate IPO323 and, probably, the Stb7 gene for resistance to isolate IPO87019. All of these genes are closely linked to microsatellite markers, which can be used for marker-assisted selection. TE 9111 may therefore be a valuable source of resistance to STB for wheat breeding, especially in Mediterranean environments.

  2. Resistance Genes and Genetic Elements Associated with Antibiotic Resistance in Clinical and Commensal Isolates of Streptococcus salivarius.

    Science.gov (United States)

    Chaffanel, Fanny; Charron-Bourgoin, Florence; Libante, Virginie; Leblond-Bourget, Nathalie; Payot, Sophie

    2015-06-15

    The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Effect of mutation and genetic background on drug resistance in Mycobacterium tuberculosis.

    Science.gov (United States)

    Fenner, Lukas; Egger, Matthias; Bodmer, Thomas; Altpeter, Ekkehardt; Zwahlen, Marcel; Jaton, Katia; Pfyffer, Gaby E; Borrell, Sonia; Dubuis, Olivier; Bruderer, Thomas; Siegrist, Hans H; Furrer, Hansjakob; Calmy, Alexandra; Fehr, Jan; Stalder, Jesica Mazza; Ninet, Béatrice; Böttger, Erik C; Gagneux, Sebastien

    2012-06-01

    Bacterial factors may contribute to the global emergence and spread of drug-resistant tuberculosis (TB). Only a few studies have reported on the interactions between different bacterial factors. We studied drug-resistant Mycobacterium tuberculosis isolates from a nationwide study conducted from 2000 to 2008 in Switzerland. We determined quantitative drug resistance levels of first-line drugs by using Bactec MGIT-960 and drug resistance genotypes by sequencing the hot-spot regions of the relevant genes. We determined recent transmission by molecular methods and collected clinical data. Overall, we analyzed 158 isolates that were resistant to isoniazid, rifampin, or ethambutol, 48 (30.4%) of which were multidrug resistant. Among 154 isoniazid-resistant strains, katG mutations were associated with high-level and inhA promoter mutations with low-level drug resistance. Only katG(S315T) (65.6% of all isoniazid-resistant strains) and inhA promoter -15C/T (22.7%) were found in molecular clusters. M. tuberculosis lineage 2 (includes Beijing genotype) was associated with any drug resistance (adjusted odds ratio [OR], 3.0; 95% confidence interval [CI], 1.7 to 5.6; P mutations (OR, 6.4; 95% CI, 2.0 to 20.7; P = 0.002). We found that the genetic strain background influences the level of isoniazid resistance conveyed by particular mutations (interaction tests of drug resistance mutations across all lineages; P tuberculosis drug resistance mutations were associated with various levels of drug resistance and transmission, and M. tuberculosis lineages were associated with particular drug resistance-conferring mutations and phenotypic drug resistance. Our study also supports a role for epistatic interactions between different drug resistance mutations and strain genetic backgrounds in M. tuberculosis drug resistance.

  4. Ray Wu, Cornell's acclaimed pioneer of genetic engineering and developer of insect-resistant rice

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ ITHACA, N.Y. - Ray J. Wu, Comell University professor of molecular biology and genetics, who was widely recognized as one of the fathers of genetic engineering and who developed and sought to feed the world with a higher yielding rice that resists insects and drought, died of cardiac arrest in Ithaca, Feb. 10.

  5. Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes

    Science.gov (United States)

    Samuel A. Cushman; Andrew J. Shirk; Erin L. Landguth

    2012-01-01

    Little is known about how variation in landscape mosaics affects genetic differentiation. The goal of this paper is to quantify the relative importance of habitat area and configuration, as well as the contrast in resistance between habitat and non-habitat, on genetic differentiation. We hypothesized that habitat configuration would be more influential than habitat...

  6. Short communication: Genetic characterization of antimicrobial resistance in Acinetobacter isolates recovered from bulk tank milk.

    Science.gov (United States)

    Tamang, M D; Gurung, M; Nam, H M; Kim, S R; Jang, G C; Jung, S C; Lim, S K

    2014-02-01

    A total of 176 Acinetobacter isolates, including 57 Acinetobacter baumannii originally obtained from 2,287 bulk tank milk (BTM) samples in Korea was investigated for the genetic basis of antimicrobial resistance using molecular methods. In addition, the occurrence and cassette content of integrons were examined and the genetic diversity of A. baumannii strains identified was evaluated. Aminoglycoside-modifying enzyme genes were detected in 15 (88.2%) of the 17 aminoglycoside-resistant Acinetobacter isolates tested. The most common aminoglycoside-modifying enzyme gene identified was adenylyltransferase gene aadB (n = 9), followed by phosphotransferase genes aphA6 (n = 7) and aphA1 (n = 5). Of the 31 isolates resistant to tetracycline, tet(39) was detected in 20 of them. The genetic basis of resistance to sulfonamide was identified in 15 (53.6%) of 28 trimethoprim-sulfamethoxazole-resistant isolates and 9 (32.1%) of them carried both sul1 and sul2 genes. A blaADC-7-like gene was detected in 1 β-lactam-resistant A. baumannii. Furthermore, class 1 integron was identified in 11 Acinetobacter isolates. Two gene cassettes dfrA15, conferring resistance to trimethoprim, and aadA2, conferring resistance to aminoglycosides, were identified in 8 Acinetobacter isolates. None of the isolates was positive for class 2 or class 3 integrons. Pulsed-field gel electrophoresis revealed that most of the A. baumannii strains from BTM samples were genetically diverse, indicating that the occurrence of A. baumannii strains in BTM was not the result of dissemination of a single clone. Elucidation of resistance mechanisms associated with the resistance phenotype and a better understanding of resistance genes may help in the development of strategies to control infections, such as mastitis, and to prevent further dissemination of antibiotic resistance genes. To the best of our knowledge, this is the first report of molecular characterization of antimicrobial-resistant Acinetobacter spp. from

  7. Genetic characteristics of vancomycin resistance gene cluster in Enterococcus spp.

    Science.gov (United States)

    Chunhui, Chen; Xiaogang, Xu

    2015-05-01

    Vancomycin resistant enterococci has become an important nosocomial pathogen since it is discovered in late 1980s. The products, encoded by vancomycin resistant gene cluster in enterococci, catalyze the synthesis of peptidoglycan precursors with low affinity with glycopeptide antibiotics including vancomycin and teicoplanin and lead to resistance. These vancomycin resistant gene clusters are classified into nine types according to their gene sequences and organization, or D-Ala:D-Lac (VanA, VanB, VanD and VanM) and D-Ala:D-Ser (VanC, VanE, VanG, VanL and VanN) ligase gene clusters based on the differences of their encoded ligases. Moreover, these gene clusters are characterized by their different resistance levels and infection models. In this review, we summarize the classification, gene organization and infection model of vancomycin resistant gene cluster in Enterococcus spp.

  8. Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum.

    Science.gov (United States)

    Busi, R; Vila-Aiub, M M; Powles, S B

    2011-05-01

    The dynamics of herbicide resistance evolution in plants are influenced by many factors, especially the biochemical and genetic basis of resistance. Herbicide resistance can be endowed by enhanced rates of herbicide metabolism because of the activity of cytochrome P450 enzymes, although in weedy plants the genetic control of cytochrome P450-endowed herbicide resistance is poorly understood. In this study we have examined the genetic control of P450 metabolism-based herbicide resistance in a well-characterized Lolium rigidum biotype. The phenotypic resistance segregation in herbicide resistant and susceptible parents, F1, F2 and backcross (BC) families was analyzed as plant survival following treatment with the chemically unrelated herbicides diclofop-methyl or chlorsulfuron. Dominance and nuclear gene inheritance was observed in F1 families when treated at the recommended field doses of both herbicides. The segregation values of P450 herbicide resistance phenotypic traits observed in F2 and BC families was consistent with resistance endowed by two additive genes in most cases. In obligate out-crossing species such as L. rigidum, herbicide selection can easily result in accumulation of resistance genes within individuals.

  9. Virus resistant plums through genetic engineering - from lab to market

    Science.gov (United States)

    Genetic engineering (GE) has the potential to revolutionize the genetic improvement of fruit trees and other specialty crops, to provide greater flexibility and speed in responding to changes in climate, production systems and market demands, and to maintain the competitiveness of American agricultu...

  10. The effect of genetic selection for Johne's disease resistance n dairy cattle: Results of a genetic-epidemiological model

    NARCIS (Netherlands)

    Hulzen, van K.J.E.; Koets, A.P.; Nielen, M.; Heuven, H.C.M.; Arendonk, van J.A.M.; Klinkenberg, D.

    2014-01-01

    The objective of this study was to model genetic selection for Johne’s disease resistance and to study the effect of different selection strategies on the prevalence in the dairy cattle population. In the Netherlands, a certification-and-surveillance program is in use to reduce prevalence and presen

  11. Genetic differentiation between resistance phenotypes in the phytophagous flea beetle, Phyllotreta nemorum

    NARCIS (Netherlands)

    Jong, de P.W.; Breuker, C.J.; Vos, de H.; Vermeer, K.M.C.A.; Oku, K.; Verbaarschot, P.G.H.; Nielsen, J.K.; Brakefield, P.M.

    2009-01-01

    The flea beetle Phyllotreta nemorum L. (Coleoptera: Chrysomelidae) is genetically polymorphic for resistance against the defences of one of its host plants, Barbarea vulgaris R.Br. (Brassicales: Brassicaceae). Whereas resistant flea beetles are able to use B. vulgaris as well as other cruciferous pl

  12. A meta-analysis of genetic correlations between plant resistances to multiple enemies.

    Science.gov (United States)

    Leimu, Roosa; Koricheva, Julia

    2006-07-01

    Genetic correlations between plant resistances to multiple natural enemies are important because they have the potential to determine the mode of selection that natural enemies impose on a host plant, the structure of herbivore and pathogen communities, and the success of plant breeding for resistance to multiple diseases and pests. We conducted a meta-analysis of 29 published studies of 16 different plant species reporting a total of 467 genetic correlations between resistances to multiple herbivores or pathogens. In general, genetic associations between resistances to multiple natural enemies tended to be positive regardless of the breeding design, type of attacker, and type of host plant. Positive genetic correlations between resistances were stronger when both attackers were pathogens or generalist herbivores and when resistance to different enemies was tested independently, suggesting that generalists may be affected by the same plant resistance traits and that interactions among natural enemies are common. Although the mean associations between resistances were positive, indicating the prevalence of diffuse selection and generalized defenses against multiple enemies, the large variation in both the strength and the direction of the associations suggests a continuum between pairwise and diffuse selection.

  13. Southern Blight (Sclerotium rolfsii Sacc.) of Cowpea: Genetic Characterization of Two Sources of Resistance

    Science.gov (United States)

    Field studies were conducted to determine the inheritance of resistance to southern blight (caused by Sclerotium rolfsii Sacc.) exhibited by the cowpea [Vigna unguiculta (L.) Walp.] cultivars Carolina Cream and Brown Crowder, and to determine if a genetic relationship exists for this resistance betw...

  14. Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L

    Science.gov (United States)

    The target leaf spot (TLS) is a very important fungal disease in cucumber. In this study, we conducted fine genetic mapping of a recessively inherited resistance gene, cca-2 against TLS with 1,083 F2 plants derived from the resistant cucumber inbred line D31 and the susceptible line D5. Initial mapp...

  15. Genetic makeup of amantadine-resistant and oseltamivir-resistant human influenza A/H1N1 viruses.

    Science.gov (United States)

    Zaraket, Hassan; Saito, Reiko; Suzuki, Yasushi; Baranovich, Tatiana; Dapat, Clyde; Caperig-Dapat, Isolde; Suzuki, Hiroshi

    2010-04-01

    The emergence and widespread occurrence of antiviral drug-resistant seasonal human influenza A viruses, especially oseltamivir-resistant A/H1N1 virus, are major concerns. To understand the genetic background of antiviral drug-resistant A/H1N1 viruses, we performed full genome sequencing of prepandemic A/H1N1 strains. Seasonal influenza A/H1N1 viruses, including antiviral-susceptible viruses, amantadine-resistant viruses, and oseltamivir-resistant viruses, obtained from several areas in Japan during the 2007-2008 and 2008-2009 influenza seasons were analyzed. Sequencing of the full genomes of these viruses was performed, and the phylogenetic relationships among the sequences of each individual genome segment were inferred. Reference genome sequences from the Influenza Virus Resource database were included to determine the closest ancestor for each segment. Phylogenetic analysis revealed that the oseltamivir-resistant strain evolved from a reassortant oseltamivir-susceptible strain (clade 2B) which circulated in the 2007-2008 season by acquiring the H275Y resistance-conferring mutation in the NA gene. The oseltamivir-resistant lineage (corresponding to the Northern European resistant lineage) represented 100% of the H1N1 isolates from the 2008-2009 season and further acquired at least one mutation in each of the polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), hemagglutinin (HA), and neuraminidase (NA) genes. Therefore, a reassortment event involving two distinct oseltamivir-susceptible lineages, followed by the H275Y substitution in the NA gene and other mutations elsewhere in the genome, contributed to the emergence of the oseltamivir-resistant lineage. In contrast, amantadine-resistant viruses from the 2007-2008 season distinctly clustered in clade 2C and were characterized by extensive amino acid substitutions across their genomes, suggesting that a fitness gap among its genetic components might have driven these mutations to maintain it in the

  16. Molecular dissection of white pine genetic resistance to Cronartium ribicola

    Science.gov (United States)

    Jun-Jun Liu; Richard Sniezko

    2011-01-01

    Pinus monticola (Dougl. ex D. Don.) maintains a complex defence system that detects white pine blister rust pathogen (Cronartium ribicola J.C.Fisch.) and activates resistance responses. A thorough understanding of how it functions at the molecular level would provide us new strategies for creating forest trees with durable disease resistance. Our research focuses on...

  17. Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from Hefei (2014?2015): genetic characteristics of antimicrobial resistance

    OpenAIRE

    Jiang, Fa-Xing; Lan, Qian; Le, Wen-Jing; Su, Xiao-Hong

    2017-01-01

    Background Antimicrobial resistance (AMR) and genetic determinants of resistance of N. gonorrhoeae isolates from Hefei, China, were characterized adding a breadth of information to the molecular epidemiology of gonococcal resistance in China. Methods 126?N. gonorrhoeae isolates from a hospital clinic in Hefei, were collected between January, 2014, and November, 2015. The minimum inhibitory concentration (MIC) of N. gonorrhoeae isolates for seven antimicrobials were determined by the agar dilu...

  18. Genetic Conservation of Phosphine Resistance in the Rice Weevil Sitophilus oryzae (L.).

    Science.gov (United States)

    Nguyen, Tam T; Collins, Patrick J; Duong, Tu M; Schlipalius, David I; Ebert, Paul R

    2016-05-01

    High levels of resistance to phosphine in the rice weevil Sitophilus oryzae have been detected in Asian countries including China and Vietnam, however there is limited knowledge of the genetic mechanism of resistance in these strains. We find that the genetic basis of strong phosphine resistance is conserved between strains of S. oryzae from China, Vietnam, and Australia. Each of 4 strongly resistant strains has an identical amino acid variant in the encoded dihydrolipoamide dehydrogenase (DLD) enzyme that was previously identified as a resistance factor in Rhyzopertha dominica and Tribolium castaneum. The unique amino acid substitution, Asparagine > Threonine (N505T) of all strongly resistant S. oryzae corresponds to the position of an Asparagine > Histidine variant (N506H) that was previously reported in strongly resistant R. dominica. Progeny (F16 and F18) from 2 independent crosses showed absolute linkage of N505T to the strong resistance phenotype, indicating that if N505T was not itself the resistance variant that it resided within 1 or 2 genes of the resistance factor. Non-complementation between the strains confirmed the shared genetic basis of strong resistance, which was supported by the very similar level of resistance between the strains, with LC50 values ranging from 0.20 to 0.36 mg L(-1) for a 48-h exposure at 25 °C. Thus, the mechanism of high-level resistance to phosphine is strongly conserved between R. dominica, T. castaneum and S. oryzae. A fitness cost associated with strongly resistant allele was observed in segregating populations in the absence of selection.

  19. Resistance Selection of Tetranychus cinnabarinus to Fenpropathrin and Genetic Analysis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The resistant inheritance mode of Tetranychus cinnabarinus to fenpropathrin were studied based on the resistance selection in laboratory. After 40 generations selection, T. cinnabarinus developed 68.5-fold resistance to fenpropathrin.The methods of cross and back-cross between resistant (R) and sensitive (S) strains were used for exploring the inheritance mode of the resistance of this mite to fenpropathrin. The log (Lc)-p equation of F1 got from obverse (SR) and reverse (RS)crosses was intermediate between S and R and inclined to S, the dominant indices DSR and DRS were -0.83 and -0.29,respectively, which indicated that the resistance is controlled by the incompletely recessive gene; the 95% confidence limit of this two dominant indices do not superpose showing DSR and DRS have significant difference and the maternal or external karyon effect may be existed in resistance inheritance; the back-cross results of heterozygote F1 with its parents suggested that the separation of progenies F2(SR()×S()and RS()×R())was cosistent with Mendel's single gene inheritance model.

  20. Genetic analysis of resistance to ticks, gastrointestinal nematodes and Eimeria spp. in Nellore cattle.

    Science.gov (United States)

    Passafaro, Tiago Luciano; Carrera, Juan Pablo Botero; dos Santos, Livia Loiola; Raidan, Fernanda Santos Silva; dos Santos, Dalinne Chrystian Carvalho; Cardoso, Eduardo Penteado; Leite, Romário Cerqueira; Toral, Fabio Luiz Buranelo

    2015-06-15

    The aim of the present study was to obtain genetic parameters for resistance to ticks, gastrointestinal nematodes (worms) and Eimeria spp. in Nellore cattle, analyze the inclusion of resistance traits in Nellore breeding programs and evaluate genetic selection as a complementary tool in parasite control programs. Counting of ticks, gastrointestinal nematode eggs and Eimeria spp. oocysts per gram of feces totaling 4270; 3872 and 3872 records from 1188; 1142 and 1142 animals, respectively, aged 146 to 597 days were used. The animals were classified as resistant (counts equal to zero) or susceptible (counts above zero) to each parasite. The statistical models included systematics effects of contemporary groups and the mean trajectory. The random effects included additive genetic effects, direct permanent environmental effects and residual. The mean trajectory and random effects were modeled with linear Legendre polynomials for all traits except for the mean trajectory of resistance to Eimeria spp., which employed the cubic polynomial. Heritability estimates were of low to moderate magnitude and ranged from 0.06 to 0.30, 0.06 to 0.33 and 0.04 to 0.33 for resistance to ticks, gastrointestinal nematodes and Eimeria spp., respectively. The posterior mean of genetic and environmental correlations for the same trait at different ages (205, 365, 450 and 550 days) were favorable at adjacent ages and unfavorable at distant ages. In general, the posterior mean of the genetic and environmental correlations between traits of resistance were low and high-density intervals were large and included zero in many cases. The heritability estimates support the inclusion of resistance to ticks, gastrointestinal nematodes and Eimeria spp. in Nellore breeding programs. Genetic selection can increase the frequency of resistant animals and be used as a complementary tool in parasite control programs.

  1. genetic analysis of resistance to rice bacterial blight in uganda ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    African Crop Science Journal, Vol. ... in Uganda and as part of strategies to develop resistant cultivars, it is ... However, the cost-effective way to control this ... the pathogen continue to evolve and overcome ..... Changes in race frequency of.

  2. Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii.

    Science.gov (United States)

    Kröger, Carsten; Kary, Stefani C; Schauer, Kristina; Cameron, Andrew D S

    2016-12-28

    Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into virulence mechanisms, an increasing number of researchers are working to identify virulence factors and to study antibiotic resistance. Here, we review current knowledge regarding the regulation of virulence genes and antibiotic resistance in Acinetobacter baumannii. A survey of the two-component systems AdeRS, BaeSR, GacSA and PmrAB explains how each contributes to antibiotic resistance and virulence gene expression, while BfmRS regulates cell envelope structures important for pathogen persistence. A. baumannii uses the transcription factors Fur and Zur to sense iron or zinc depletion and upregulate genes for metal scavenging as a critical survival tool in an animal host. Quorum sensing, nucleoid-associated proteins, and non-classical transcription factors such as AtfA and small regulatory RNAs are discussed in the context of virulence and antibiotic resistance.

  3. Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Carsten Kröger

    2016-12-01

    Full Text Available Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into virulence mechanisms, an increasing number of researchers are working to identify virulence factors and to study antibiotic resistance. Here, we review current knowledge regarding the regulation of virulence genes and antibiotic resistance in Acinetobacter baumannii. A survey of the two-component systems AdeRS, BaeSR, GacSA and PmrAB explains how each contributes to antibiotic resistance and virulence gene expression, while BfmRS regulates cell envelope structures important for pathogen persistence. A. baumannii uses the transcription factors Fur and Zur to sense iron or zinc depletion and upregulate genes for metal scavenging as a critical survival tool in an animal host. Quorum sensing, nucleoid-associated proteins, and non-classical transcription factors such as AtfA and small regulatory RNAs are discussed in the context of virulence and antibiotic resistance.

  4. Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii

    Science.gov (United States)

    Kröger, Carsten; Kary, Stefani C.; Schauer, Kristina; Cameron, Andrew D. S.

    2016-01-01

    Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into virulence mechanisms, an increasing number of researchers are working to identify virulence factors and to study antibiotic resistance. Here, we review current knowledge regarding the regulation of virulence genes and antibiotic resistance in Acinetobacter baumannii. A survey of the two-component systems AdeRS, BaeSR, GacSA and PmrAB explains how each contributes to antibiotic resistance and virulence gene expression, while BfmRS regulates cell envelope structures important for pathogen persistence. A. baumannii uses the transcription factors Fur and Zur to sense iron or zinc depletion and upregulate genes for metal scavenging as a critical survival tool in an animal host. Quorum sensing, nucleoid-associated proteins, and non-classical transcription factors such as AtfA and small regulatory RNAs are discussed in the context of virulence and antibiotic resistance. PMID:28036056

  5. Genetic Architecture of Charcoal Rot (Macrophomina phaseolina Resistance in Soybean Revealed Using a Diverse Panel

    Directory of Open Access Journals (Sweden)

    Sara M. Coser

    2017-09-01

    Full Text Available Charcoal rot (CR disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methods available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient information available on the genetic mechanisms related to resistance. Genome-wide association studies (GWAS enable unraveling the genetic architecture of resistance and identification of causal genes. The aims of this study were to identify new sources of resistance to CR in a collection of 459 diverse plant introductions from the USDA Soybean Germplasm Core Collection using field and greenhouse screenings, and to conduct GWAS to identify candidate genes and associated molecular markers. New sources for CR resistance were identified from both field and greenhouse screening from maturity groups I, II, and III. Five significant single nucleotide polymorphism (SNP and putative candidate genes related to abiotic and biotic stress responses are reported from the field screening; while greenhouse screening revealed eight loci associated with eight candidate gene families, all associated with functions controlling plant defense response. No overlap of markers or genes was observed between field and greenhouse screenings suggesting a complex molecular mechanism underlying resistance to CR in soybean with varied response to different environments; but our findings provide useful information for advancing breeding for CR resistance as well as the genetic mechanism of resistance.

  6. Quantitative resistance against Bemisia tabaci in Solanum pennellii:Genetics and metabolomics

    Institute of Scientific and Technical Information of China (English)

    Alejandro F Lucatti; Sjaak van Heusden; Colette Broekgaarden; Roland Mumm; Marcel Dicke; Ben Vosman

    2016-01-01

    The whitefly Bemisia tabaci is a serious threat in tomato cultivation worldwide as all varieties grown today are highly susceptible to this devastating herbivorous insect. Many accessions of the tomato wild relative Solanum pennellii show a high resistance towards B. tabaci. A mapping approach was used to elucidate the genetic background of whitefly-resistance related traits and associated biochemical traits in this species. Minor quantitative trait loci (QTLs) for whitefly adult survival (AS) and oviposition rate (OR) were identified and some were confirmed in an F2BC1 population, where they showed increased percentages of explained variance (more than 30%). Bulked segregant analyses on pools of whitefly-resistant and-susceptible F2 plants enabled the identification of metabolites that correlate either with resistance or susceptibility. Genetic mapping of these metabolites showed that a large number of them co-localize with whitefly-resistance QTLs. Some of these whitefly-resistance QTLs are hotspots for metabolite QTLs. Although a large number of metabolite QTLs correlated to whitefly resistance or suscepti-bility, most of them are yet unknown compounds and further studies are needed to identify the metabolic pathways and genes involved. The results indicate a direct genetic correla-tion between biochemical-based resistance characteristics and reduced whitefly incidence in S. pennellii.

  7. The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts.

    Science.gov (United States)

    MacLean, R Craig; Hall, Alex R; Perron, Gabriel G; Buckling, Angus

    2010-06-01

    Despite efforts from a range of disciplines, our ability to predict and combat the evolution of antibiotic resistance in pathogenic bacteria is limited. This is because resistance evolution involves a complex interplay between the specific drug, bacterial genetics and both natural and treatment ecology. Incorporating details of the molecular mechanisms of drug resistance and ecology into evolutionary models has proved useful in predicting the dynamics of resistance evolution. However, putting these models to practical use will require extensive collaboration between mathematicians, molecular biologists, evolutionary ecologists and clinicians.

  8. Genetic and sexual separation between insect resistant and susceptible Barbarea vulgaris plants in Denmark

    DEFF Research Database (Denmark)

    Toneatto, Fiorello; Nielsen, Jens Kvist; Ørgaard, Marian

    2010-01-01

    . In the cruciferous plant Barbarea vulgaris, some Danish individuals are resistant to herbivory by flea beetles (Phyllotreta nemorum), whereas others are not. The flea beetles are, in parallel, either resistant or susceptible to the plants defenses. To understand the historical-evolutionary framework...... was determined by analysis of molecular markers. Resistant and susceptible Danish plants were genetically strongly differentiated and produced significantly fewer hybrids than expected from random mating or nearest neighbour mating. Our results suggest that the two types belong to different evolutionary lineages...... regions. If so, resistance and susceptibility has for unknown reasons become associated with the different evolutionary lineages....

  9. Drug resistance and genetic diversity of Plasmodium falciparum parasites from suriname.

    Science.gov (United States)

    Peek, Ron; VAN Gool, Tom; Panchoe, Daynand; Greve, Sophie; Bus, Ellen; Resida, Lesley

    2005-11-01

    Plasmodium falciparum in Suriname was studied for the presence of drug resistance and genetic variation in blood samples of 86 patients with symptomatic malaria. Drug resistance was predicted by determining point mutations in the chloroquine resistance marker of the P. falciparum chloroquine resistance transporter (pfcrt) gene (codon 76) and the pyrimethamine-sulfadoxine resistance markers in the dihydrofolate reductase (dhfr) gene (codons 16, 51, 59, 108, and 164) and dihydropteroate synthase (dhps) gene (codons 436, 437, 540, 581, and 613). Genetic variability was determined by sequence analysis of the polymorphic segments of the merozoite surface protein 2 (msp-2) and glutamate-rich protein (glurp) genes. Mutations in the pfcrt, dhps, and dhfr genes were found in all samples tested, suggesting that resistance to chloroquine and antifolate drugs is present at a high frequency. A low number of alleles was found for the msp-2 and glurp genes. This indicates limited genetic diversity and, based on geographic data, a genetically homogeneous P. falciparum population in Suriname.

  10. Potato leafroll virus : molecular analysis and genetically engineered resistance

    NARCIS (Netherlands)

    Wilk, van der F.

    1995-01-01

    The nucleotide sequence of the genomic RNA of potato leafroll virus (PLRV) was elucidated and its genetic organization deduced (Chapter 2). Six open reading frames (ORFs) were shown to be present on the genome. Both the PLRV coat protein gene and the RNA- dependent RNA polymerase gene were

  11. Genetics of Resistance and Pathogenicity in the Maize/Setosphaeria turcica Pathosystem and Implications for Breeding

    Directory of Open Access Journals (Sweden)

    Ana L. Galiano-Carneiro

    2017-08-01

    Full Text Available Northern corn leaf blight (NCLB, the most devastating leaf pathogen in maize (Zea mays L., is caused by the heterothallic ascomycete Setosphaeria turcica. The pathogen population shows an extremely high genetic diversity in tropical and subtropical regions. Varietal resistance is the most efficient technique to control NCLB. Host resistance can be qualitative based on race-specific Ht genes or quantitative controlled by many genes with small effects. Quantitative resistance is moderately to highly effective and should be more durable combatting all races of the pathogen. Quantitative resistance must, however, be analyzed in many environments (= location × year combinations to select stable resistances. In the tropical and subtropical environments, quantitative resistance is the preferred option to manage NCLB epidemics. Resistance level can be increased in practical breeding programs by several recurrent selection cycles based on disease severity rating and/or by genomic selection. This review aims to address two important aspects of the NCLB pathosystem: the genetics of the fungus S. turcica and the modes of inheritance of the host plant maize, including successful breeding strategies regarding NCLB resistance. Both drivers of this pathosystem, pathogen, and host, must be taken into account to result in more durable resistance.

  12. Evaluation and Genetic Analysis of Five Parental Varieties Resistant to Rice Blast Pathogen in Heilongjiang Province

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhong-chen; Liu Hong-liang; Gao Hong-xiu; Liu Hai-ying; Jin Zheng-xun

    2012-01-01

    Five F2 segregation populations, derived from crosses between the susceptible japonica cultivars (cvs.) Kongyul31 and donor cvs. Aichi Asahi (AA), BL1, Digu, Pai-kan-tao (PKT) and Oryzica Llanos 5 (ORL5), were used to evaluate their natural resistance to blast in cold region. The field test of their blast resistance was conducted in 858 Farm, which showed that Aichi Asahi, BL 1 and Digu were highly resistant to either leaf blast or neck blast and could be used to develop molecular breeding by design, and genetic analysis indicated that the field resistance of Aichi Asahi, BLland Digu to leaf blast and neck blast was controlled by a single dominant gene, and the leaf blast and neck blast resistance in the donor cv. Pai-kan-tao was inherited as a single recessive gene, the neck blast resistance of the donor cv. Oryzica Llanos 5 was controlled by a single recessive gene while its leaf blast resistance was not controlled by this gene. These results suggested that five parental varieties positively contributed to resistance to either leaf blast or neck blast and could be used to expand the genetic germplasms resistant to blast in cold region using molecular assisted selection.

  13. Genetic Basis of Tetracycline Resistance in Bifidobacterium animalis subsp lactis

    NARCIS (Netherlands)

    Gueimonde, M.; Florez, A.B.; Hoek, van A.H.A.M.; Stuer-Lauridsen, B.; Stroman, P.; Reyes-Gavilan, de los C.G.; Margolles, A.

    2010-01-01

    All strains of Bifidobacterium animalis subsp. lactis described to date show medium level resistance to tetracycline. Screening of 26 strains from a variety of sources revealed the presence of tet(W) in all isolates. A transposase gene upstream of tet(W) was found in all strains, and both genes were

  14. Early blight resistance in tomato: screening and genetic study

    NARCIS (Netherlands)

    Chaerani, R.

    2006-01-01

    Tomato early blight (EB) caused by the fungus Alternaria solani is a field disease with a worldwide distribution, including Indonesia. The disease is currently controlled using frequent applications of fungicides. The use of resistant cultivar would be an attractive way to reduce fungicide applicati

  15. Genetic analysis of root-knot nematode resistance in potato

    NARCIS (Netherlands)

    Draaistra, J.

    2006-01-01

    The development of potato varieties with resistance towards the potato cyst nematode, allowed a dramatic decrease of the use of nematicides. Subsequently the population of the free living nematodes and the root-knot nematodes ( Meloidogyne spp.) has increased. Among the root-knot nematodes, three Me

  16. Genetic variability in progenies of Eucalyptus dunnii Maiden for resistance to Puccinia psidii

    Directory of Open Access Journals (Sweden)

    Cleber da Silva Pinto

    2014-10-01

    Full Text Available This study investigated the genetic variability in progenies of Eucalyptus dunnii Maiden for resistance against rust (Puccinia psidii. Field experiments were installed in two regions with different soil-climatic conditions. Open-pollinated progenies were established in a randomized complete block design. Sixty and 48 progenies were evaluated under field conditions at two sites, respectively, with six replications and eight trees per plot. In another experiment in a controlled environment, 53 progenies were evaluated in randomized blocks with six replications and nine plants per plot. The following traits were evaluated: plant height, severity of pest attack and the most susceptible stage to the leaf disease. The genetic variability for rust resistance in the E. dunnii population under study was high, with a genetic coefficient of variation of 36.07%; 7% of the evaluated progenies were rust-resistant. It indicates a high potential for selection and breeding of the species.

  17. Genetics and preliminary mechanism of chlorpyrifos resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae).

    Science.gov (United States)

    Afzal, Muhammad Babar Shahzad; Ijaz, Mamuna; Farooq, Zahra; Shad, Sarfraz Ali; Abbas, Naeem

    2015-03-01

    Cotton mealybug, Phenacoccus solenopsis Tinsley, is a serious pest of cotton and other crops and infestation by this pest results in yield losses that affect the economy of Pakistan. Various groups of insecticides have been used to control this pest but resistance development is a major factor that inhibits its control in the field. Chlorpyrifos is a common insecticide used against many pests including P. solenopsis. The present experiment was designed to assess the genetics and mechanism of chlorpyrifos resistance and to develop a better resistance management strategy and assess the genetics and mechanism of chlorpyrifos resistance. Before selection, the field strain showed 3.1-fold resistance compared to the susceptible strain (CSS). After 8 rounds of selection with chlorpyrifos, a selected population developed a 191.0-fold resistance compared to the CSS. The LC50 values of F1 (CRR ♀ × CSS ♂) and F1(†) (CRR ♂ × CSS ♀) strains were not significantly different and dominance (DLC) values were 0.42 and 0.55. Reciprocal crosses between chlorpyrifos susceptible and resistant strains indicated that resistance was autosomal and incompletely recessive. The monogenic model of fit test and calculation of number of genes segregating in the chlorpyrifos resistant strain demonstrated that resistance is controlled by multiple genes. A value of 0.59 was calculated for realized heritability for chlorpyrifos resistance. Synergism bioassays with piperonyl butoxide and S, S, S-butyl phosphorotrithioate showed that chlorpyrifos resistance was associated with microsomal oxidases and esterases. It was concluded that chlorpyrifos resistance in P. solenopsis was autosomally inherited, incompletely recessive and polygenic. These findings would be helpful to improve the management of P. solenopsis.

  18. Genetic variation underlying resistance to infectious hematopoietic necrosis virus in a steelhead trout (Oncorhynchus mykiss) population

    Science.gov (United States)

    Brieuc, Marine S. O.; Purcell, Maureen K.; Palmer, Alexander D.; Naish, Kerry A.

    2015-01-01

    Understanding the mechanisms of host resistance to pathogens will allow insights into the response of wild populations to the emergence of new pathogens. Infectious hematopoietic necrosis virus (IHNV) is endemic to the Pacific Northwest and infectious to Pacific salmon and trout (Oncorhynchus spp.). Emergence of the M genogroup of IHNV in steelhead trout O. mykiss in the coastal streams of Washington State, between 2007 and 2011, was geographically heterogeneous. Differences in host resistance due to genetic change were hypothesized to be a factor influencing the IHNV emergence patterns. For example, juvenile steelhead trout losses at the Quinault National Fish Hatchery (QNFH) were much lower than those at a nearby facility that cultures a stock originally derived from the same source population. Using a classical quantitative genetic approach, we determined the potential for the QNFH steelhead trout population to respond to selection caused by the pathogen, by estimating the heritability for 2 traits indicative of IHNV resistance, mortality (h2 = 0.377 (0.226 - 0.550)) and days to death (h2 = 0.093 (0.018 - 0.203)). These results confirm that there is a genetic basis for resistance and that this population has the potential to adapt to IHNV. Additionally, genetic correlation between days to death and fish length suggests a correlated response in these traits to selection. Reduction of genetic variation, as well as the presence or absence of resistant alleles, could affect the ability of populations to adapt to the pathogen. Identification of the genetic basis for IHNV resistance could allow the assessment of the susceptibility of other steelhead populations.

  19. Genetic variation underlying resistance to infectious hematopoietic necrosis virus in a steelhead trout (Oncorhynchus mykiss) population.

    Science.gov (United States)

    Brieuc, Marine S O; Purcell, Maureen K; Palmer, Alexander D; Naish, Kerry A

    2015-11-17

    Understanding the mechanisms of host resistance to pathogens will allow insights into the response of wild populations to the emergence of new pathogens. Infectious hematopoietic necrosis virus (IHNV) is endemic to the Pacific Northwest and infectious to Pacific salmon and trout (Oncorhynchus spp.). Emergence of the M genogroup of IHNV in steelhead trout O. mykiss in the coastal streams of Washington State, between 2007 and 2011, was geographically heterogeneous. Differences in host resistance due to genetic change were hypothesized to be a factor influencing the IHNV emergence patterns. For example, juvenile steelhead trout losses at the Quinault National Fish Hatchery (QNFH) were much lower than those at a nearby facility that cultures a stock originally derived from the same source population. Using a classical quantitative genetic approach, we determined the potential for the QNFH steelhead trout population to respond to selection caused by the pathogen, by estimating the heritability for 2 traits indicative of IHNV resistance, mortality (h² = 0.377 (0.226 - 0.550)) and days to death (h² = 0.093 (0.018 - 0.203)). These results confirm that there is a genetic basis for resistance and that this population has the potential to adapt to IHNV. Additionally, genetic correlation between days to death and fish length suggests a correlated response in these traits to selection. Reduction of genetic variation, as well as the presence or absence of resistant alleles, could affect the ability of populations to adapt to the pathogen. Identification of the genetic basis for IHNV resistance could allow the assessment of the susceptibility of other steelhead populations.

  20. Genetic analyses of the antibiotic resistance of Bifidobacterium bifidum strain Yakult YIT 4007.

    Science.gov (United States)

    Sato, Takashi; Iino, Tohru

    2010-02-28

    Bifidobacterium bifidum strain Yakult YIT 4007 (abbreviated as B. bifidum YIT 4007) is a commercial strain and resistant to erythromycin, neomycin, and streptomycin. Resistances to these antibiotics were endowed by sequential isolation of resistant mutants from its susceptible progenitor strain YIT 4001. Comparison of nucleotide sequences of various candidate genes of both strains led us to find that B. bifidum YIT 4007 had mutations on three copies of 23S ribosomal RNA genes, an 8 bp deletion of the rluD gene for pseudouridine synthase, and a mutation on the rpsL gene for ribosomal protein S12. The responsibility of these mutations to antibiotic resistances was supported by analyses of newly isolated mutants resistant to these antibiotics. The antibiotic resistances of B. bifidum YIT 4007 were evidently acquired by mutations of the structural genes on the chromosome and not associated with mobile genetic elements like insertion sequences, phages, and plasmids.

  1. Genetic diversity, population structure, and resistance to Phytophthora capsici of a worldwide collection of eggplant germplasm.

    Directory of Open Access Journals (Sweden)

    Rachel P Naegele

    Full Text Available Eggplant (Solanum melongena L. is an important solanaceous crop with high phenotypic diversity and moderate genotypic diversity. Ninety-nine genotypes of eggplant germplasm (species (S. melongena, S. incanum, S. linnaeanum and S. gilo, landraces and heirloom cultivars from 32 countries and five continents were evaluated for genetic diversity, population structure, fruit shape, and disease resistance to Phytophthora fruit rot. Fruits from each line were measured for fruit shape and evaluated for resistance to two Phytophthora capsici isolates seven days post inoculation. Only one accession (PI 413784 was completely resistant to both isolates evaluated. Partial resistance to Phytophthora fruit rot was found in accessions from all four eggplant species evaluated in this study. Genetic diversity and population structure were assessed using 22 polymorphic simple sequence repeats (SSRs. The polymorphism information content (PIC for the population was moderate (0.49 in the population. Genetic analyses using the program STRUCTURE indicated the existence of four genetic clusters within the eggplant collection. Population structure was detected when eggplant lines were grouped by species, continent of origin, country of origin, fruit shape and disease resistance.

  2. Toward elucidation of genetic and functional genetic mechanisms in corn host resistance to Aspergillus flavus infection and aflatoxin contamination

    Directory of Open Access Journals (Sweden)

    Xueyan eShan

    2014-07-01

    Full Text Available Aflatoxins are carcinogenic mycotoxins produced by some species in the Aspergillus genus, such as A. flavus and A. parasiticus. Contamination of aflatoxins in corn profusely happens at pre-harvest stage when heat and drought field conditions favor A. flavus colonization. Commercial corn hybrids are generally susceptible to A. flavus infection. An ideal strategy for preventing aflatoxin contamination is through the enhancement of corn host resistance to Aspergillus infection and aflatoxin production. Constant efforts have been made by corn breeders to develop resistant corn genotypes. Significantly low levels of aflatoxin accumulation have been determined in certain resistant corn inbred lines. A number of reports of quantitative trait loci (QTLs have provided compelling evidence supporting the quantitative trait genetic basis of corn host resistance to aflatoxin accumulation. Important findings have also been obtained from the investigation on candidate resistance genes through transcriptomics approach. Elucidation of molecular mechanisms will provide in-depth understanding of the host-pathogen interactions and hence facilitate the breeding of corn with resistance to A. falvus infection and aflatoxin accumulation.

  3. Unraveling the genetics of Botrytis cinerea resistance in Gerbera hybrida

    OpenAIRE

    Fu, Yiqian

    2017-01-01

    Gerbera hybrida is one of the top five cut flowers. It is well-known to people for its variation in flower color and patterning. Gerbera breeding at the moment is done using conventional methods which are based on a phenotypic selection. This has drawbacks in breeding speed and efficiency, especially for complex traits like disease resistance. Gerbera gray mold, promoted by high humidity during the production in greenhouses or by an accumulation of condensate during transportation, is a consi...

  4. New Drugs and Drug Resistance in Malaria: Molecular Genetic Analysis.

    Science.gov (United States)

    1996-06-26

    heterologous expressions system in yeast for potential drug target enzymes. The yeast expression system should allow rapid screening of new drugs , greatly...medication yet the world faces a crisis-drug resistance is emerging and spreading faster than drugs are being developed and the flow in the pipeline of new ... drugs has all but stopped. This represents a particular threat to the US Military. In a short time there may be parts of the world where no effective

  5. Disease Resistance and the Definition of Genetic Enhancement

    OpenAIRE

    So, Derek; Kleiderman, Erika; Touré, Seydina B.; Joly, Yann

    2017-01-01

    Recent gene editing experiments carried out in human embryos have raised the question of whether interventions like the introduction of a CCR5-Δ32 deletion, which could provide heritable resistance to HIV infection, ought to be considered enhancements. Many authors have used the term “enhancement” in different ways, some based on patients’ biomedical outcomes and others on their social context. These classifications are often considered overly imprecise. Nevertheless, the concept of “enhancem...

  6. Assessment of genetic variation for pathogen-specific mastitis resistance in Valle del Belice dairy sheep.

    Science.gov (United States)

    Tolone, Marco; Larrondo, Cristian; Yáñez, José M; Newman, Scott; Sardina, Maria Teresa; Portolano, Baldassare

    2016-07-28

    Mastitis resistance is a complex and multifactorial trait, and its expression depends on both genetic and environmental factors, including infection pressure. The objective of this research was to determine the genetic basis of mastitis resistance to specific pathogens using a repeatability threshold probit animal model. The most prevalent isolated pathogens were coagulase-negative staphylococci (CNS); 39 % of records and 77 % of the animals infected at least one time in the whole period of study. There was significant genetic variation only for Streptococci (STR). In addition, there was a positive genetic correlation between STR and all pathogens together (ALL) (0.36 ± 0.22), and CNS and ALL (0.92 ± 0.04). The results of our study support the presence of significant genetic variation for mastitis caused by Streptococci and suggest the importance of discriminating between different pathogens causing mastitis due to the fact that they most likely influence different genetic traits. Low heritabilities for pathogen specific-mastitis resistance may be considered when including bacteriological status as a measure of mastitis presence to implement breeding strategies for improving udder health in dairy ewes.

  7. Genetic dissection of nonhost resistance of wild lettuce, Lactuca saligna, to downy mildew

    OpenAIRE

    Zhang, N.

    2008-01-01

    Lettuce downy mildew is the most destructive disease in lettuce (Lactuca spp.) cultivation and is caused by Bremia lactucae. The successful cross between its host L. sativa and the nonhost, L. saligna, and offers a rare chance to study the genetics of the nonhost resistance. From a set of 29 Backcross Inbred Lines (BILs) representing in total 96% of the L. saligna genome, 15 introgressions were identified to contribute to this resistance at one to four tested lettuce developmental stages and ...

  8. Bacteroides mobilizable and conjugative genetic elements: antibiotic resistance among clinical isolates.

    Science.gov (United States)

    Quesada-Gómez, Carlos

    2011-12-01

    The conjugation is one of the most important mechanisms of horizontal gene transfer in prokaryotes, leading to genetic variation within a species and the acquisition of new traits, such as antibiotic resistance. Bacteroides is an obligate anaerobe of the colon and a significant opportunistic pathogen. Antibiotic resistance among Bacteroides spp. is rapidly increasing, largely due to the dissemination of DNA transfer factors (plasmids and transposons) harbored by members of this genus. Transfer factors can be divided into two classes, conjugative and mobilizable. Species of the intestinal Bacteroides have yielded different resistance plasmids, all of which have been intensely studied, the plasmids encode high-level MLS resistance conferred by a conserved erm gene. It has been reported an interesting observation associated with the transfer of several of these types of elements, all of which conferred Tcr and displayed greatly increased transfer efficiency following exposure to tetracycline. Many of the conjugative transposons (CTns) in Bacteroides are related to various genetic elements (such as CTnDOT, CTnERL, NBU and others). CTnDOT carries a tetracycline resistance gene, tetQ, and an erythromycin resistance gene, ermF. Resistance to drugs used to treat Bacteroides infections, such as clindamycin, has also been increasing. These conjugal elements have been found in Bacteroides clinical isolates. Thus, horizontal gene transfer could conceivably have played a role in the rising incidence of resistance in this bacterial group.

  9. Breeding, genetic and genomic of citrus for disease resistance

    Directory of Open Access Journals (Sweden)

    Marcos A. Machado

    2011-10-01

    Full Text Available Although the citriculture is one of the most important economic activities in Brazil, it is based on a small number of varieties. This fact has contributed for the vulnerability of the culture regarding the phytosanitary problems. A higher number of varieties/genotypes with potential for commercial growing, either for the industry or fresh market, has been one of the main objectives of citrus breeding programs. The genetic breeding of citrus has improved, in the last decades, due to the possibility of an association between biotechnological tools and classical methods of breeding. The use of molecular markers for early selection of zygotic seedlings from controlled crosses resulted in the possibility of selection of a high number of new combination and, as a consequence, the establishment of a great number of hybrids in field experiments. The faster new tools are incorporated in the program, the faster is possibility to reach new genotypes that can be tested as a new variety. Good traits should be kept or incorporate, whereas bad traits have to be excluded or minimized in the new genotype. Scion and rootstock can not be considered separately, and graft compatibility, fruit quality and productivity are essential traits to be evaluated in the last stages of the program. The mapping of QTLs has favored breeding programs of several perennial species and in citrus it was possible to map several characteristics with qualitative and quantitative inheritance. The existence of linkage maps and QTLs already mapped, the development of EST and BAC library and the sequencing of the Citrus complete genome altogether make very demanding and urgent the exploration of such data to launch a wider genetic study of citrus. The rising of information on genome of several organisms has opened new approaches looking for integration between breeding, genetic and genome. Genome assisted selection (GAS involves more than gene or complete genome sequencing and is becoming

  10. Molecular Genetics of Drug-resistance in Epilepsies

    Directory of Open Access Journals (Sweden)

    Kurupath Radhakrishnan

    2015-06-01

    Full Text Available Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive to antiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genes encoding the proteins that regulate the pharmacokinetics such as P-glycoprotein [ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1, ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7], and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABA receptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intense investigation to unravel the mysteries of AED-resistance. However, till today, a consistent and reliable result that could help the clinician either to predict drug resistance or to overcome it has not been forthcoming. The discrepant results may be related to variations in the definition of drug-resistance, heterogeneous patient populations, ethnic variations in the frequency distribution of single nucleotide polymorphisms (SNPs and the selection of SNPs. Understanding of these limitations of existing studies, hopefully, will help in designing better studies. Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive toantiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genesencoding the proteins that regulate the pharmacokinetics such as P-glycoprotein[ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1,ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7],and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABAreceptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intenseinvestigation to unravel the mysteries of AED-resistance. However, till today, aconsistent and reliable result that could help the clinician either to predict drugresistanceor to overcome it has not been forthcoming. The discrepant results may berelated to variations in the definition of drug-resistance, heterogeneous patientpopulations, ethnic

  11. Human Genetic Marker for Resistance to Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    DR. Howard B. Lieberman

    2001-05-11

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage.

  12. Determining resistance to mastitis in a bovine subject comprises detecting the presence or absence of a genetic marker that is linked to a trait indicative of mastitis resistance

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method for determining mastitis resistance in bovine subjects, wherein mastitis resistance comprise resistance to both sub-clinical and clinical mastitis. In particular, the method of the invention involves identification of genetic markers and/or Quantitative Trait Locus...... (QTL) for the determination of mastitis resistance in a bovine subject. The determination of mastitis resistance involves resolution of the specific microsatellite status. Furthermore, the invention relates to a diagnostic kit for detection of genetic marker(s) associated with mastitis resistance....... The method and kit of the present invention can be applied for selection of bovine subjects for breeding purposes. Thus, the invention provides a method of genetically selecting bovine subjects with mastitis resistance, thereby yielding cows less prone to mastitis...

  13. Mechanisms of Resistance to Endocrine Therapy in Breast Cancer: Focus on Signaling Pathways, miRNAs and Genetically Based Resistance

    Science.gov (United States)

    García-Becerra, Rocío; Santos, Nancy; Díaz, Lorenza; Camacho, Javier

    2013-01-01

    Breast cancer is the most frequent malignancy diagnosed in women. Approximately 70% of breast tumors express the estrogen receptor (ER). Tamoxifen and aromatase inhibitors (AIs) are the most common and effective therapies for patients with ERα-positive breast cancer. Alone or combined with chemotherapy, tamoxifen significantly reduces disease progression and is associated with more favorable impact on survival in patients. Unfortunately, endocrine resistance occurs, either de novo or acquired during the course of the treatment. The mechanisms that contribute to hormonal resistance include loss or modification in the ERα expression, regulation of signal transduction pathways, altered expression of specific microRNAs, balance of co-regulatory proteins, and genetic polymorphisms involved in tamoxifen metabolic activity. Because of the clinical consequences of endocrine resistance, new treatment strategies are arising to make the cells sensitive to tamoxifen. Here, we will review the current knowledge on mechanisms of endocrine resistance in breast cancer cells. In addition, we will discuss novel therapeutic strategies to overcome such resistance. Undoubtedly, circumventing endocrine resistance should help to improve therapy for the benefit of breast cancer patients. PMID:23344024

  14. Genetic analysis of resistance gene analogues from a sugarcane cultivar resistant to red rot disease

    Science.gov (United States)

    One of the important approaches for disease control in sugarcane is to develop a disease resistant variety; this may be accomplished through identification of resistance genes in sugarcane. In this study, PCR primers targeting the conserved motifs of the nucleotide-binding site (NBS) class and kinas...

  15. Determining resistance to mastitis in a bovine subject comprises detecting the presence or absence of a genetic marker that is linked to a trait indicative of mastitis resistance

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method for determining mastitis resistance in bovine subjects, wherein mastitis resistance comprise resistance to both sub-clinical and clinical mastitis. In particular, the method of the invention involves identification of genetic markers and/or Quantitative Trait Loc...

  16. Genetic diversity of penicillin-resistant Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    T. A. Savinova

    2009-01-01

    Full Text Available Fifty five Streptococcus pneumoniae isolates with reduced susceptibility to penicillin, obtained from patients with respiratory tract infections during 2003 –2007, were analyzed by MLST. Ten isolates were identified by MLST as Streptococcus «viridians» group. Among the remaining isolates 33,3% (n=15 belonged to global clonal complex CC81 and demonstrated reduced susceptibility to macrolides, tetracyclynes and chloramphenicol, three isolates were additionally resistant to levofloxacin. Clonal complex CC271 was represented by 5 isolated (11,1%, CC315 – by 4 (8,9%, CC315 – by 3 (6,7%, CC156, CC280 and CC1012 were represented by 2 (4,4% isolates each. Isolates of clonal complexes 271 and 315 demonstrated high level of associated resistance to macrolides. Twelve clonal complexes were represented by single isolates. More than 50% of isolates with reduced susceptibility to penicillin belonged to three global clonal complexes. Probably these clonal complexes were imported to Russia from other geographical regions.

  17. Disease Resistance and the Definition of Genetic Enhancement.

    Science.gov (United States)

    So, Derek; Kleiderman, Erika; Touré, Seydina B; Joly, Yann

    2017-01-01

    Recent gene editing experiments carried out in human embryos have raised the question of whether interventions like the introduction of a CCR5-Δ32 deletion, which could provide heritable resistance to HIV infection, ought to be considered enhancements. Many authors have used the term "enhancement" in different ways, some based on patients' biomedical outcomes and others on their social context. These classifications are often considered overly imprecise. Nevertheless, the concept of "enhancement" could affect the ways in which these applications are regulated in different jurisdictions, the availability of coverage by insurers or public health care, and the force of public opinion in shaping future policy on gene editing. In order to ethically situate resistance to communicable disease with reference to other techniques, this article provides an overview of its similarities and differences with disease gene therapy in embryos, gene therapy in consenting adults, and vaccination. In discussing key ethical features of CCR5-Δ32 deletion (including its frequency in various populations, biological mechanism, benefits for individuals, and use in previous clinical trials) we offer some potential guideposts for the continuing discussion on how to classify "enhancements" in the age of CRISPR gene editing.

  18. Genetic analysis of Karnal bunt (Neovossia indica) resistance in wheat

    Indian Academy of Sciences (India)

    M Kumar; O P Luthra; V Chawla; N R Yadav; R Kumar; A Khar

    2003-03-01

    Embryos excised from seeds of six generations (P1, P2, F1, BC1, BC2 and F2) of a cross WH 283 × WH 533 were cultured on modified MS medium already inoculated with secondary sporidia of Neovossia indica. Significant variations for callusing response (CR) (54.55–75.55%) were observed among generations but the presence or absence of N. indicia did not affect callusing response. A clear inhibition zone (IZ) was formed around each embryo showing callusing. The diameter of IZ varied significantly among generations and was maximum in the resistant genotype, WH 283 (3.60 cm). Fresh weight and dry weight of calli, initiated from embryo cultured and inoculated with N. indica, varied significantly among generations. Coefficient of infection as well as percentage of infection reflected the overdominance of susceptibility. Generation mean analysis showed that the three parameter model was adequate for diameter of IZ only. Six-parameter model showed that additive (in presence of N. indica), additive and additive × dominance (in absence of N. indica) effects were also significant. Complementary type of epistasis for fresh weight of calli and dominance, and dominance × dominance effects for dry weight of calli were observed in the presence of N. indica. Magnitude of additive effects was higher for diameter of IZ in three parameter model. Therefore, selection might assist in improving this trait and thus indirectly help in attaining the resistance towards N. indica.

  19. Monitoring of Insecticide Resistance and Genetic Analysis of Triazophos Resistance in Chilo suppressalis (Lepidoptera:Pyralidae)

    Institute of Scientific and Technical Information of China (English)

    LIU Ze-wen; CAO Ming-zhang; HAN Zhao-jun; SHEN Jin-liang; ZHANG Ling-chun; ZHANG Jin-zhen; LU Mei; LIU Xiao-yu; ZHOU Wei-jun

    2004-01-01

    During 2001 and 2002, insecticide resistance in the fourth instar larvae of striped stem borer (Chilo suppressalis), which were collected from Zhejiang, Jiangsu, Anhui and Jiangxi provinces in China, was monitored using topical application method. Low level of resistance to fipronil (6.5-fold) was detected for the first time in RA (Rui'an) population from southeast Zhejiang, but the other six populations tested remained susceptible to this recently introduced insecticide. No resistance to abamectin had been found after examining six populations from Zhejiang, Jiangsu and Anhui provinces. Resistance to triazophos was monitored in ten populations from the four Provinces, and very high level resistance(163.1-fold) was found in RA population, moderate (18.2-fold) in WZ (Wenzhou, Zhejiang Province) population, and low (6.7- to 9.7-fold) in populations of CS (Changshu), XS (Xishan) and JT (Jintan) from south Jiangsu, whereas the other five populations were susceptible. All the nine populations monitored were resistant to monosultap with varying degree, i.e. high level (113.7- and 57.6-fold, respectively) of resistance in RA and YF (Yifeng, Jiangxi Province) populations, moderate (11.0- to 29.7-fold) in WZ, CS, JT and TH (Taihu, Anhui Province) populations, low (6.7- and 7.5-fold, respectively) in XY (Xinyang, Jiangsu Province) and XS populations, and the lowest (3.7-fold) in GY (Guanyun, Jiangsu Province) population. Inheritance of resistance in triazophos selected strain Rts was studied through reciprocal cross and backcross experiments. The preliminary results indicated that inheritance of triazophos resistance in Rts strain was incompletely dominant, with degrees of dominance being 0.46 and 0.68 for reciprocal crosses, and that the resistance was controlled by a major gene, though minor modifying gene(s) might be involved.

  20. Genetic dissection of nonhost resistance of wild lettuce, Lactuca saligna, to downy mildew

    NARCIS (Netherlands)

    Zhang, N.

    2008-01-01

    Lettuce downy mildew is the most destructive disease in lettuce (Lactuca spp.) cultivation and is caused by Bremia lactucae. The successful cross between its host L. sativa and the nonhost, L. saligna, and offers a rare chance to study the genetics of the nonhost resistance. From a set of 29 Backcro

  1. The genetics of non-host resistance to the lettuce pathogen Bremia lactucae in Lactuca saligna

    NARCIS (Netherlands)

    Jeuken, M.J.W.

    2002-01-01

    Plants are continuously exposed to a wide variety of pathogens. However, all plant species are non-hosts for the majority of the potential plant pathogens. The genetic dissection of non-host resistance is hampered by the lack of segregating population from crosses between host and non-host species,

  2. QTL analysis of the genetic architecture determining resistance to fire blight in an apple progeny

    NARCIS (Netherlands)

    Calenge, F.; Drouet, D.; Weg, van de W.E.; Brisset, M.N.; Paulin, J.P.; Durel, C.E.

    2004-01-01

    Fire blight, caused by the bacterial pathogen Erwinia amylovora, is one of the most destructive diseases of apple (Malus x domestica). In order to analyse the genetic determinism of resistance to fire blight in apple, a quantitative trait analysis (QTL) approach was used. A F1 progeny of 164

  3. Characterization of mobile genetic elements in antibiotic resistant Salmonella enterica isolates from food animals

    Science.gov (United States)

    Antibiotic resistance (AR) is a major concern for the agricultural industry in the U.S. and globally. The problem of AR is further complicated by AR genes often being located on mobile genetic elements (MGEs) resulting in their spread among bacteria. In order to investigate the relationship between ...

  4. Altered distribution of susceptibility phenotypes implies environmental modulation of genetic resistance

    Science.gov (United States)

    Thomas R. Gordon; Neil McRoberts

    2012-01-01

    Resistance to disease is determined by the genetic capacity of a plant to recognize and respond to a pathogen, as modified to varying degrees by the environment in which the interaction occurs. Physical factors such as temperature and moisture can limit the ability of a pathogen to infect and cause disease, and may also influence the response of the host through...

  5. Genetic, environmental and cultural factors influencing the resistance to septoria tritici blotch (Mycosphaerella graminicola) in wheat

    NARCIS (Netherlands)

    Simón, M.R.

    2003-01-01

    KeyWord:Genetic, environmental and cultural factors influencing the resistance to septoria tritici blotch (Mycosphaerella

  6. QTL analysis of the genetic architecture determining resistance to fire blight in an apple progeny

    NARCIS (Netherlands)

    Calenge, F.; Drouet, D.; Weg, van de W.E.; Brisset, M.N.; Paulin, J.P.; Durel, C.E.

    2004-01-01

    Fire blight, caused by the bacterial pathogen Erwinia amylovora, is one of the most destructive diseases of apple (Malus x domestica). In order to analyse the genetic determinism of resistance to fire blight in apple, a quantitative trait analysis (QTL) approach was used. A F1 progeny of 164 individ

  7. Genetic mapping shows intraspecific variation and transgressive segregation for caterpillar-induced aphid resistance in maize

    Science.gov (United States)

    Plants in nature have inducible defenses that sometimes lead to targeted resistance against particular herbivores, but susceptibility to others. The metabolic diversity and genetic resources available for maize (Zea mays) make this a suitable system for a mechanistic study of within- species variati...

  8. Genetic, environmental and cultural factors influencing the resistance to septoria tritici blotch (Mycosphaerella graminicola) in wheat

    NARCIS (Netherlands)

    Simón, M.R.

    2003-01-01

    KeyWord:Genetic, environmental and cultural factors influencing the resistance to septoria tritici blotch (Mycosphaerella

  9. General overview of genetic research and experimentation on coconut varieties tolerant/resistant to Lethal Yellowing

    Directory of Open Access Journals (Sweden)

    Baudouin Luc

    2009-03-01

    Full Text Available The Lethal Yellowing (LY disease is one of the main threats to coconut industry in many parts of Africa and the Caribbean. Planting resistant varieties has long been recognized as one of the most promising ways of controlling the disease. Considerable efforts have been devoted throughout the world to screening suitable varieties and have often involved international cooperation. It has proven to be a lengthy and difficult task. We present an overview of these efforts with special mention to Ghana, Jamaica and Mexico. Although no variety so far has been proven fully and permanently resistant, treating resistance level as a threshold trait makes it possible to demonstrate significant differences among varieties, which can be exploited effectively to make genetic improvement a component of an integrated control strategy. Based on past experience, we make a few suggestions to increase the diversity of resistance sources and increase the level and the sustainability of resistance to LY in coconut.

  10. The calculated genetic barrier for antiretroviral drug resistance substitutions is largely similar for different HIV-1 subtypes

    NARCIS (Netherlands)

    Vijver, D.A. van de; Wensing, A.M.J.; Angarano, G.; Asjo, B.; Balotta, C.; Camacho, R.; Chaix, M.; Costagliola, D.; De Luca, A.; Derdelinckx, I.; Grossman, Z.; Hamouda, O.; Hatzakis, A.; Hemmer, R.; Hoepelman, A.I.M.; Horban, A.; Korn, K.; Kücherer, C.; Leitner, T.; Loveday, C.; MacRae, E.; Maljkovic, I.; Mendoza, C. de; Meyer, L.; Nielsen, C.; Op de Coul, E.L.M.; Omaasen, V.; Paraskevis, D.; Perrin, L.; Puchhammer-Stöckl, E.; Salminen, M.; Schmit, J.; Scheider, F.; Schuurman, R.; Soriano, V.; Stanczak, G.; Stanojevic, M.; Vandamme, A.; Laethem, K. van; Violin, M.; Wilde, K.; Yerly, S.; Zazzi, M.; Boucher, C.A.B.

    2006-01-01

    The genetic barrier, defined as the number of mutations required to overcome drug-selective pressure, is an important factor for the development of HIV drug resistance. Because of high variability between subtypes, particular HIV-1 subtypes could have different genetic barriers for drug resistance s

  11. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants.

    Science.gov (United States)

    Schütte, Gesine; Eckerstorfer, Michael; Rastelli, Valentina; Reichenbecher, Wolfram; Restrepo-Vassalli, Sara; Ruohonen-Lehto, Marja; Saucy, Anne-Gabrielle Wuest; Mertens, Martha

    2017-01-01

    Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide-resistant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show that the adoption of herbicide-resistant crops impacts agronomy, agricultural practice, and weed management and contributes to biodiversity loss in several ways: (i) many studies show that glyphosate-based herbicides, which were commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intestinal microflora and plant disease resistance; the increased use of 2,4-D or dicamba, linked to new herbicide-resistant crops, causes special concerns. (ii) The adoption of herbicide-resistant crops has reduced crop rotation and favoured weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate-resistant weed species worldwide. Although recommended for many years, farmers did not counter resistance development in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional herbicide resistance genes. (iv) Agricultural management based on broad-spectrum herbicides as in herbicide-resistant crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland animals. Taken together, adverse impacts of herbicide-resistant crops on biodiversity, when widely adopted, should be expected and are indeed very hard

  12. Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection

    Directory of Open Access Journals (Sweden)

    Peter Bulli

    2016-08-01

    Full Text Available Virulence shifts in populations of Puccinia striiformis f. sp. tritici (Pst, the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of Pst, necessitating the identification and introgression of new sources of resistance. Germplasm core collections that reflect the range of genetic and phenotypic diversity of crop species are ideal platforms for examining the genetic architecture of complex traits such as resistance to stripe rust. We report the results of genetic characterization and genome-wide association analysis (GWAS for resistance to stripe rust in a core subset of 1175 accessions in the National Small Grains Collection (NSGC winter wheat germplasm collection, based on genotyping with the wheat 9K single nucleotide polymorphism (SNP iSelect assay and phenotyping of seedling and adult plants under natural disease epidemics in four environments. High correlations among the field data translated into high heritability values within and across locations. Population structure was evident when accessions were grouped by stripe rust reaction. GWAS identified 127 resistance loci that were effective across at least two environments, including 20 with significant genome-wide adjusted P-values. Based on relative map positions of previously reported genes and QTL, five of the QTL with significant genome-wide adjusted P-values in this study represent potentially new loci. This study provides an overview of the diversity of Pst resistance in the NSGC winter wheat germplasm core collection, which can be exploited for diversification of stripe rust resistance in breeding programs.

  13. Allele mining in barley genetic resources reveals genes of race-nonspecific powdery mildew resistance

    Directory of Open Access Journals (Sweden)

    Annika eSpies

    2012-01-01

    Full Text Available Race-nonspecific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL and therefore difficult to handle in practice. Knowing the genes that underlie race-nonspecific resistance would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worlwide collection of spring barley accessions for candidate genes of race-nonspecific resistance to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh and combined data with results from QTL-mapping- as well as functional-genomics approaches. This led to the idenfication of 11 associated genes with converging evidence for an important role in race-nonspecific resistance in the presence of the Mlo-gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches accelerates the discovery of genes underlying race-nonspecific resistance in barley and other crop plants.

  14. Genetic analysis of soybean resistance to Fusarium solani f.sp. glycines

    Directory of Open Access Journals (Sweden)

    Vanoli Fronza

    2004-01-01

    Full Text Available In order to study the genetic control of soybean resistance to sudden death syndrome (SDS, a 5 x 5 diallel with the F2 generation, without the reciprocals, was carried out in a greenhouse. The following parents were used: Forrest, MG/BR-46 (Conquista, IAC-4, FT-Cristalina, and FT-Estrela. The first two cultivars are more resistant to SDS than IAC-4, which is considered to be moderately resistant to SDS, and the last two cultivars are highly susceptible. The fungus was inoculated with three colonized sorghum grains placed at the bottom of the holes with two soybean seeds. Single plants were evaluated between 14 and 37 days after emergency based on foliar severity symptoms (1-5 of SDS. The disease incidence and a disease index were also calculated for each plot (clay pots with five plants each. The analysis for severity and disease index was performed only with the data of the 37th day after emergence. Additive and dominant genetic effects were detected by Jinks-Hayman's analysis, but the dominant genetic effects were higher. The genetic parameters estimated indicated that the average degree of dominance showed the presence of overdominance; at least three loci or genic blocks that exhibited dominance were responsible for the genetic control of SDS resistance; the estimates of narrow-sense heritabilities were moderate (0.48 to 0.62, but in the broad-sense they were higher (0.90 to 0.95, thus reinforcing the presence of dominance effects; and the resistance to SDS was controlled mostly by dominant alleles. Five microsatellite markers (Satt163, Satt309, Satt354, Satt371 and Satt570, reported as linked to five QRLs of the SDS, were used to genotype the parents and showed the possibility of occurrence of multiallelism in those loci, but this evidence did not invalidate the fitting of the data to the Jinks-Hayman's model.

  15. Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of Nematode Resistance for Peanut

    Science.gov (United States)

    Leal-Bertioli, Soraya C. M.; Moretzsohn, Márcio C.; Roberts, Philip A.; Ballén-Taborda, Carolina; Borba, Tereza C. O.; Valdisser, Paula A.; Vianello, Rosana P.; Araújo, Ana Cláudia G; Guimarães, Patricia M.; Bertioli, David J.

    2015-01-01

    Root-knot nematodes (RKN; Meloidogyne sp.) are a major threat to crops in tropical and subtropical regions worldwide. The use of resistant crop varieties is the preferred method of control because nematicides are expensive, and hazardous to humans and the environment. Peanut (Arachis hypogaea) is infected by four species of RKN, the most damaging being M. arenaria, and commercial cultivars rely on a single source of resistance. In this study, we genetically characterize RKN resistance of the wild Arachis species A. stenosperma using a population of 93 recombinant inbred lines developed from a cross between A. duranensis and A. stenosperma. Four quantitative trait loci (QTL) located on linkage groups 02, 04, and 09 strongly influenced nematode root galling and egg production. Drought-related, domestication and agronomically relevant traits were also evaluated, revealing several QTL. Using the newly available Arachis genome sequence, easy-to-use KASP (kompetitive allele specific PCR) markers linked to the newly identified RKN resistance loci were developed and validated in a tetraploid context. Therefore, we consider that A. stenosperma has high potential as a new source of RKN resistance in peanut breeding programs. PMID:26656152

  16. Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of Nematode Resistance for Peanut

    Directory of Open Access Journals (Sweden)

    Soraya C. M. Leal-Bertioli

    2016-02-01

    Full Text Available Root-knot nematodes (RKN; Meloidogyne sp. are a major threat to crops in tropical and subtropical regions worldwide. The use of resistant crop varieties is the preferred method of control because nematicides are expensive, and hazardous to humans and the environment. Peanut (Arachis hypogaea is infected by four species of RKN, the most damaging being M. arenaria, and commercial cultivars rely on a single source of resistance. In this study, we genetically characterize RKN resistance of the wild Arachis species A. stenosperma using a population of 93 recombinant inbred lines developed from a cross between A. duranensis and A. stenosperma. Four quantitative trait loci (QTL located on linkage groups 02, 04, and 09 strongly influenced nematode root galling and egg production. Drought-related, domestication and agronomically relevant traits were also evaluated, revealing several QTL. Using the newly available Arachis genome sequence, easy-to-use KASP (kompetitive allele specific PCR markers linked to the newly identified RKN resistance loci were developed and validated in a tetraploid context. Therefore, we consider that A. stenosperma has high potential as a new source of RKN resistance in peanut breeding programs.

  17. Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering.

    Science.gov (United States)

    Alifano, Pietro; Palumbo, Carla; Pasanisi, Daniela; Talà, Adelfia

    2015-05-20

    Following its introduction in 1967, rifampicin has become a mainstay of therapy in the treatment of tuberculosis, leprosy and many other widespread diseases. Its potent antibacterial activity is due to specific inhibition of bacterial RNA polymerase. However, resistance to rifampicin was reported shortly after its introduction in the medical practice. Studies in the model organism Escherichia coli helped to define the molecular mechanism of rifampicin-resistance demonstrating that resistance is mostly due to chromosomal mutations in rpoB gene encoding the RNA polymerase β chain. These studies also revealed the amazing potential of the molecular genetics to elucidate the structure-function relationships in bacterial RNA polymerase. The scope of this paper is to illustrate how rifampicin-resistance has been recently exploited to better understand the regulatory mechanisms that control bacterial cell physiology and virulence, and how this information has been used to maneuver, on a global scale, gene expression in bacteria of industrial interest. In particular, we reviewed recent literature regarding: (i) the effects of rpoB mutations conferring rifampicin-resistance on transcription dynamics, bacterial fitness, physiology, metabolism and virulence; (ii) the occurrence in nature of "mutant-type" or duplicated rifampicin-resistant RNA polymerases; and (iii) the RNA polymerase genetic engineering method for strain improvement and drug discovery.

  18. The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites.

    Science.gov (United States)

    Kover, P X; Caicedo, A L

    2001-01-01

    Parasites represent strong selection on host populations because they are ubiquitous and can drastically reduce host fitness. It has been hypothesized that parasite selection could explain the widespread occurrence of recombination because it is a coevolving force that favours new genetic combinations in the host. A review of deterministic models for the maintenance of recombination reveals that for recombination to be favoured, multiple genes that interact with each other must be under selection. To evaluate whether parasite selection can explain the maintenance of recombination, we review 85 studies that investigated the genetic architecture of plant disease resistance and discuss whether they conform to the requirements that emerge from theoretical models. General characteristics of disease resistance in plants and problems in evaluating resistance experimentally are also discussed. We found strong evidence that disease resistance in plants is determined by multiple loci. Furthermore, in most cases where loci were tested for interactions, epistasis between loci that affect resistance was found. However, we found weak support for the idea that specific allelic combinations determine resistance to different host genotypes and there was little data on whether epistasis between resistance genes is negative or positive. Thus, the current data indicate that it is possible that parasite selection can favour recombination, but more studies in natural populations that specifically address the nature of the interactions between resistance genes are necessary. The data summarized here suggest that disease resistance is a complex trait and that environmental effects and fitness trade-offs should be considered in future models of the coevolutionary dynamics of host and parasites.

  19. Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation

    OpenAIRE

    2012-01-01

    The interaction between environment and genetic traits under selection is the basis of evolution. In this study, we have investigated the genetic basis of herbicide resistance in a highly characterized initially herbicide-susceptible Lolium rigidum population recurrently selected with low (below recommended label) doses of the herbicide diclofop-methyl. We report the variability in herbicide resistance levels observed in F1 families and the segregation of resistance observed in F2 and back-cr...

  20. Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation

    OpenAIRE

    2013-01-01

    The interaction between environment and genetic traits under selection is the basis of evolution. In this study, we have investigated the genetic basis of herbicide resistance in a highly characterized initially herbicide-susceptible Lolium rigidum population recurrently selected with low (below recommended label) doses of the herbicide diclofop-methyl. We report the variability in herbicide resistance levels observed in F1 families and the segregation of resistance observed in F2 and back-cr...

  1. Genetic analysis of seedling resistance to crown rust in five diploid oat (Avena strigosa) accessions.

    Science.gov (United States)

    Cabral, A L; Park, R F

    2016-02-01

    Crown rust, caused by Puccinia coronata Corda f. sp. avenae Eriks., is a serious menace in oats, for which resistance is an effective means of control. Wild diploid oat accessions are a source of novel resistances that first need to be characterised prior to introgression into locally adapted oat cultivars. A genetic analysis of resistance to crown rust was carried out in three diverse diploid oat accessions (CIav6956, CIav9020, PI292226) and two cultivars (Saia and Glabrota) of A. strigosa. A single major gene conditioning resistance to Australian crown rust pathotype (Pt) 0000-2 was identified in each of the three accessions. Allelism tests suggested that these genes are either the same, allelic, or tightly linked with less than 1 % recombination. Similarly, a single gene was identified in Glabrota, and possibly two genes in Saia; both cultivars previously reported to carry two and three crown rust resistance genes, respectively. The identified seedling resistance genes could be deployed in combination with other resistance gene(s) to enhance durability of resistance to crown rust in hexaploid oat. Current diploid and hexaploid linkage maps and molecular anchor markers (simple sequence repeat [SSR] and diversity array technology [DArT] markers) should facilitate their mapping and introgression into hexaploid oat.

  2. Genetics, realized heritability and possible mechanism of chlorfenapyr resistance in Oxycarenus hyalinipennis (Lygaeidae: Hemiptera).

    Science.gov (United States)

    Ullah, Saif; Shah, Rizwan Mustafa; Shad, Sarfraz Ali

    2016-10-01

    Dusky cotton bug (DCB), Oxycarenus hyalinipennis (Lygaeidae: Hemiptera) is a serious pest of cotton and other malvaceous plants. Chlorfenapyr, a broad spectrum, N-substituted, halogenated pyrrole insecticide is used extensively to control many insect pests in cotton, including DCB. In this study, we investigated a field strain of DCB to assess its potential to develop resistance to chlorfenapyr. After six generations of continuous selection pressure with chlorfenapyr, DCB had a 7.24-fold and 149.06-fold resistance ratio (RR) at G1 and G6, respectively. The genetic basis of inheritance of chlorfenapyr resistance was also studied by crossing the chlorfenapyr selected (Chlorfenapyr-SEL) and laboratory population (Lab-PK). Results revealed an autosomal and incompletely dominant mode of inheritance for chlorfenapyr resistance in the Chlorfenapyr-SEL population of DCB. The results of the monogenic model test showed chlorfenapyr resistance was controlled by multiple genes. Estimated realized heritability for chlorfenapyr resistance in the tested DCB strain was 0.123. Synergism bioassays with piperonyl butoxide and S, S, S-butyl phosphorotrithioate revealed chlorfenapyr resistance might be due to esterase activity. These results would be useful for devising an effective resistance management strategy against DCB. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  4. Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis.

    Science.gov (United States)

    Upadhyaya, Hari D; Wang, Yi-Hong; Sharma, Rajan; Sharma, Shivali

    2013-06-01

    Anthracnose in sorghum caused by Colletotrichum sublineolum is one of the most destructive diseases affecting sorghum production under warm and humid conditions. Markers and genes linked to resistance to the disease are important for plant breeding. Using 14,739 SNP markers, we have mapped eight loci linked to resistance in sorghum through association analysis of a sorghum mini-core collection consisting of 242 diverse accessions evaluated for anthracnose resistance for 2 years in the field. The mini-core was representative of the International Crops Research Institute for the Semi-Arid Tropics' world-wide sorghum landrace collection. Eight marker loci were associated with anthracnose resistance in both years. Except locus 8, disease resistance-related genes were found in all loci based on their physical distance from linked SNP markers. These include two NB-ARC class of R genes on chromosome 10 that were partially homologous to the rice blast resistance gene Pib, two hypersensitive response-related genes: autophagy-related protein 3 on chromosome 1 and 4 harpin-induced 1 (Hin1) homologs on chromosome 8, a RAV transcription factor that is also part of R gene pathway, an oxysterol-binding protein that functions in the non-specific host resistance, and homologs of menthone:neomenthol reductase (MNR) that catalyzes a menthone reduction to produce the antimicrobial neomenthol. These genes and markers may be developed into molecular tools for genetic improvement of anthracnose resistance in sorghum.

  5. Resistance to cancer treatment: the role of somatic genetic events and the challenges for targeted therapies

    Directory of Open Access Journals (Sweden)

    Gerald eBatist

    2011-10-01

    Full Text Available Therapeutic resistance remains a major cause of cancer-related deaths. Resistance can occur from the outset of treatment or as an acquired phenomenon after an initial clinical response. Therapeutic resistance is an almost universal phenomenon in the treatment of metastatic cancers. The advent of molecularly targeted treatments brought greater efficacy in patients whose tumors express a particular target or molecular signature. However, resistance remains a predictable challenge. This article provides an overview of somatic genomic events that confer resistance to cancer therapies. Some examples, including BCR-ABL, EML4-ALK, and the androgen receptor, contain mutations in the target itself, which hamper binding and inhibitory functions of therapeutic agents. There are also examples of somatic genetic changes in other genes or pathways that result in resistance by circumventing the inhibitor, as in resistance to trastuzumab and BRAF inhibitors. Yet other examples results in activation of cytoprotective genes. The fact that all of these mechanisms of resistance are due to somatic changes in the tumor’s genome makes targeting them selectively a feasible goal. To identify and validate these changes, it is important to obtain biopsies o

  6. Genetic mapping of two genes conferring resistance to powdery mildew in common bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Pérez-Vega, Elena; Trabanco, Noemí; Campa, Ana; Ferreira, Juan José

    2013-06-01

    Powdery mildew (PM) is a serious disease in many legume species, including the common bean (Phaseolus vulgaris L.). This study investigated the genetic control behind resistance reaction to PM in the bean genotype, Cornell 49242. The results revealed evidence supporting a qualitative mode of inheritance for resistance and the involvement of two independent genes in the resistance reaction. The location of these resistance genes was investigated in a linkage genetic map developed for the XC RIL population. Contingency tests revealed significant associations for 28 loci out of a total of 329 mapped loci. Fifteen were isolated or formed groups with less than two loci. The thirteen remaining loci were located at three regions in linkage groups Pv04, Pv09, and Pv11. The involvement of Pv09 was discarded due to the observed segregation in the subpopulation obtained from the Xana genotype for the loci located in this region. In contrast, the two subpopulations obtained from the Xana genotype for the BM161 locus, linked to the Co-3/9 anthracnose resistance gene (Pv04), and from the Xana genotype for the SCAReoli locus, linked to the Co-2 anthracnose resistance gene (Pv11), exhibited monogenic segregations, suggesting that both regions were involved in the genetic control of resistance. A genetic dissection was carried out to verify the involvement of both regions in the reaction to PM. Two resistant recombinant lines were selected, according to their genotypes, for the block of loci included in the Co-2 and Co-3/9 regions, and they were crossed with the susceptible parent, Xana. Linkage analysis in the respective F2 populations supported the hypothesis that a dominant gene (Pm1) was located in the linkage group Pv11 and another gene (Pm2) was located in the linkage group Pv04. This is the first report showing the localization of resistance genes against powdery mildew in Phaseolus vulgaris and the results offer the opportunity to increase the efficiency of breeding

  7. Genetic Based Plant Resistance and Susceptibility Traits to Herbivory Influence Needle and Root Litter Nutrient Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Aimee T [ORNL; Chapman, Samantha K. [Smithsonian Environmental Research Center, Edgewater, MD; Whitham, Thomas G [Northern Arizona University; Hart, Stephen C [Northern Arizona University; Koch, George W [Northern Arizona University

    2007-01-01

    It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimental removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting carbon and

  8. Genetic mapping of resistance to Fusarium oxysporum f. sp. tulipae in tulip.

    Science.gov (United States)

    Tang, Nan; van der Lee, Theo; Shahin, Arwa; Holdinga, Maarten; Bijman, Paul; Caser, Matteo; Visser, Richard G F; van Tuyl, Jaap M; Arens, Paul

    Fusarium oxysporum is a major problem in the production of tulip bulbs. Breeding for resistant cultivars through a conventional approach is a slow process due to the long life cycle of tulip. Until now, marker-assisted selection (MAS) has been hampered by the large genome size and the absence of a genetic map. This study is aimed at construction of the first genetic map for tulip and at the identification of loci associated with resistance to F. oxysporum. A cross-pollinated population of 125 individuals segregating for Fusarium resistance was obtained from Tulipa gesneriana "Kees Nelis" and T. fosteriana "Cantata." Fusarium resistance of the mapping population was evaluated through a soil infection test in two consecutive years, and a spot inoculation test in which a green fluorescent protein tagged Fusarium strain was used for inoculation. The genetic maps have been constructed for the parents separately. The genetic map of "Kees Nelis" comprised 342 markers on 27 linkage groups covering 1707 cM, while the map of "Cantata" comprised 300 markers on 21 linkage groups covering 1201 cM. Median distance between markers was 3.9 cM for "Kees Nelis" and 3.1 cM for "Cantata." Six putative quantitative trait loci (QTLs) for Fusarium resistance were identified, derived from both parents. QTL2, QTL3, and QTL6 were significant in all disease tests. For the flanking markers of the QTLs, phenotypic means of the two allelic groups, segregating from a parent for such a marker, were significantly different. These markers will be useful for the development of MAS in tulip breeding.

  9. Genetic analysis of induced systemic resistance in Arabidopsis thaliana: association between induced and basal resistance

    NARCIS (Netherlands)

    Ton, J.; Pieterse, C.M.J.; Loon, L.C. van

    1998-01-01

    Selected nonpathogenic rhizobacteria are able to elicit induced systemic resistance (ISR) in plants. Different ecotypes of Arabidopsis thaliana were screened for expression of ISR against infection by Pseudomonas syringae pv. tomato, after treatment of the roots with the nonpathogenic P. fluorescens

  10. Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross.

    Science.gov (United States)

    Xu, K; Riaz, S; Roncoroni, N C; Jin, Y; Hu, R; Zhou, R; Walker, M A

    2008-01-01

    Resistance to the dagger nematode Xiphinema index has been an important objective in grape rootstock breeding programs. This nematode not only causes severe feeding damage to the root system, but it also vectors grapevine fanleaf virus (GFLV), the causal agent of fanleaf degeneration and one of the most severe viral diseases of grape. The established screening procedures for dagger nematode resistance are time consuming and can produce inconsistent results. A fast and reliable greenhouse-based system for screening resistance to X. index that is suitable for genetic studies and capable of evaluating breeding populations is needed. In this report, the dynamics of nematode numbers, gall formation, and root weight loss were investigated using a variety of soil mixes and pot sizes over a 52-week period. Results indicated that the number of galls formed was correlated with the size of the nematode population and with the degree of root weight loss. After inoculation with 100 nematodes, gall formation could be reliably evaluated in 4-8 weeks in most plant growth conditions and results were obtained 6 months more rapidly than past evaluation methods. This modified X. index resistance screening method was successfully applied to 185 of the 188 F(1) progeny from a cross of D8909-15 x F8909-17 (the 9621 population), which segregates for a form of X. index resistance originally derived from Vitis arizonica. Quantitative trait loci (QTL) analysis was carried out on both parental genetic maps of 255 markers using MapQTL 4.0. Results revealed that X. index resistance is controlled by a major QTL, designated Xiphinema index Resistance 1 (XiR1), near marker VMC5a10 on chromosome 19. The XiR1 QTL was supported by a LOD score of 36.9 and explained 59.9% of the resistance variance in the mapping population.

  11. Genetic analysis of a pediatric clinical isolate of Moraxella catarrhalis with resistance to macrolides and quinolones.

    Science.gov (United States)

    Iwata, Satoshi; Sato, Yoshitake; Toyonaga, Yoshikiyo; Hanaki, Hideaki; Sunakawa, Keisuke

    2015-04-01

    During the surveillance conducted in 2012 by the Drug-resistant Pathogen Surveillance Group in Pediatric Infectious Disease, we isolated a strain of Moraxella catarrhalis that demonstrated resistance to both macrolides and quinolones from a male pediatric patient aged 1.5 years who had developed acute bronchitis. Then we evaluated the susceptibility of this strain to different types of antibacterial agents and conducted a genetic analysis. The results of the susceptibility evaluation showed that the MIC values of azithromycin, clarithromycin, and rokitamycin were >64 μg/mL, >64 μg/mL, and 4 μg/mL, respectively; clearly demonstrating resistance to macrolides. The MIC values of the quinolones levofloxacin, tosufloxacin, and garenoxacin were 4 μg/mL, 2 μg/mL, and 1 μg/mL, respectively; indicating decreased susceptibility. The genetic analysis of this strain revealed one mutation in 23s rRNA with a replacement of adenine by thymine at nucleotide position 2330 (A2330T) and another mutation in gyrB at nucleotide position 1481 by replacement of adenine with guanine (A1481G) that caused a substitution of the 494 th asparagine acid by glycine, as being associated with the observed resistance to macrolides and quinolones, respectively. Similar to drug-resistant bacteria Streptococcus pneumoniae and Haemophilus influenzae, the prevalence of which has recently increased, the treatment of drug-resistant M. catarrhalis infections is considered difficult due to the development of resistance to different types of antibacterial agents. It is vital to maintain an unwavering focus on the trend toward an increasing number of drug-resistant M. catarrhalis strains and ensure the proper use of each antibacterial agent.

  12. Evaluation of Resistance to Ralstonia solanacearum in Tomato Genetic Resources at Seedling Stage

    Directory of Open Access Journals (Sweden)

    Sang Gyu Kim

    2016-02-01

    Full Text Available Bacterial wilt of tomatoes caused by Ralstonia solanacearum is a devastating disease that limits the production of tomato in Korea. The best way to control this disease is using genetically resistant tomato plant. The resistance degree to R. solanacearum was evaluated for 285 tomato accessions conserved in the National Agrobiodiversity Center of Rural Development Administration. These accessions of tomato were originated from 23 countries. Disease severity of tomato accessions was investigated from 7 days to 14 days at an interval of 7 days after inoculation of R. solanacearum under greenhouse conditions. A total of 279 accessions of tomato germplasm were susceptible to R. solanacearum, resulting in wilt and death in 70 to 90% of these plants. Two tomato accessions were moderately resistant to R. solanacearum. Only four accessions showed high resistance against R. solanacearum. No distinct symptom of bacterial wilt appeared on the resistant tomato germplasms for up to 14 days after inoculation of R. solanacearum. Microscopy of resistant tomato stems infected with R. solanacearum revealed limited bacterial spread with thickening of pit membrane and gum production. Therefore, these four resistant tomato germplasms could be used in tomato breeding program against bacterial wilt.

  13. Evaluation of Resistance to Ralstonia solanacearum in Tomato Genetic Resources at Seedling Stage.

    Science.gov (United States)

    Kim, Sang Gyu; Hur, On-Sook; Ro, Na-Young; Ko, Ho-Cheol; Rhee, Ju-Hee; Sung, Jung Sook; Ryu, Kyoung-Yul; Lee, Sok-Young; Baek, Hyung Jin

    2016-02-01

    Bacterial wilt of tomatoes caused by Ralstonia solanacearum is a devastating disease that limits the production of tomato in Korea. The best way to control this disease is using genetically resistant tomato plant. The resistance degree to R. solanacearum was evaluated for 285 tomato accessions conserved in the National Agrobiodiversity Center of Rural Development Administration. These accessions of tomato were originated from 23 countries. Disease severity of tomato accessions was investigated from 7 days to 14 days at an interval of 7 days after inoculation of R. solanacearum under greenhouse conditions. A total of 279 accessions of tomato germplasm were susceptible to R. solanacearum, resulting in wilt and death in 70 to 90% of these plants. Two tomato accessions were moderately resistant to R. solanacearum. Only four accessions showed high resistance against R. solanacearum. No distinct symptom of bacterial wilt appeared on the resistant tomato germplasms for up to 14 days after inoculation of R. solanacearum. Microscopy of resistant tomato stems infected with R. solanacearum revealed limited bacterial spread with thickening of pit membrane and gum production. Therefore, these four resistant tomato germplasms could be used in tomato breeding program against bacterial wilt.

  14. Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate insecticide resistance mechanisms.

    Directory of Open Access Journals (Sweden)

    Predrag Kalajdzic

    Full Text Available Insecticide resistance is a worldwide problem with major impact on agriculture and human health. Understanding the underlying molecular mechanisms is crucial for the management of the phenomenon; however, this information often comes late with respect to the implementation of efficient counter-measures, particularly in the case of metabolism-based resistance mechanisms. We employed a genome-wide insertional mutagenesis screen to Drosophila melanogaster, using a Minos-based construct, and retrieved a line (MiT[w(-]3R2 resistant to the neonicotinoid insecticide Imidacloprid. Biochemical and bioassay data indicated that resistance was due to increased P450 detoxification. Deep sequencing transcriptomic analysis revealed substantial over- and under-representation of 357 transcripts in the resistant line, including statistically significant changes in mixed function oxidases, peptidases and cuticular proteins. Three P450 genes (Cyp4p2, Cyp6a2 and Cyp6g1 located on the 2R chromosome, are highly up-regulated in mutant flies compared to susceptible Drosophila. One of them (Cyp6g1 has been already described as a major factor for Imidacloprid resistance, which validated the approach. Elevated expression of the Cyp4p2 was not previously documented in Drosophila lines resistant to neonicotinoids. In silico analysis using the Drosophila reference genome failed to detect transcription binding factors or microRNAs associated with the over-expressed Cyp genes. The resistant line did not contain a Minos insertion in its chromosomes, suggesting a hit-and-run event, i.e. an insertion of the transposable element, followed by an excision which caused the mutation. Genetic mapping placed the resistance locus to the right arm of the second chromosome, within a ∼1 Mb region, where the highly up-regulated Cyp6g1 gene is located. The nature of the unknown mutation that causes resistance is discussed on the basis of these results.

  15. [HIV genetic subtypes and HIV drug resistance in China: a Meta-analysis].

    Science.gov (United States)

    Wu, N N; Yin, Y Q; Yuan, R; Wang, B

    2016-11-10

    Objective: To assess the relationship between HIV genetic subtypes and HIV resistance in China. Methods: The literature retrieval was conducted by using Chinese Science-Technology Journal Database (VIP), Wanfang Data, Chinese Journal Full-text Database (CNKI), PubMed and Web of Science to select the papers on the relationship between HIV subtypes and HIV drug resistance in China during 2005-2015. Eligible papers were included according to the inclusion. Meta-analysis was performed by using software Stata 12.0. Results: A total of 43 papers were selected and the pooled rate of drug resistance was 15.1% and the rate of primary drug resistance was 9.5%, the subtypes associated drug resistance were CRF01_AE, CRF07_BC, CRF08_ BC, B/B'and C. The pooled rates of drug resistance of each subtype were 12.8%, 7.4%, 14.3%, 25.7% and 34.9% and the rates of primary drug resistance of each subtype were 7.3%, 5.7%, 11.5%,15.5% and 23.9%, respectively. Subgroup analysis showed that both treated and area subgroup showed a significant difference among groups (PChina and southwestern China were higher than that in southern China. Conclusion: The distribution of HIV genotypes in China was complex and the prevalence of primary drug resistance of each subtype was high, together with a significant difference among subtypes. It is necessary to strengthen the monitoring of different subtypes of drug resistant strains in China to prevent the recombination and spreading of resistant strains.

  16. Virulence and pathogenesis of the MSW and MSD strains of Californian myxoma virus in European rabbits with genetic resistance to myxomatosis compared to rabbits with no genetic resistance.

    Science.gov (United States)

    Silvers, L; Inglis, B; Labudovic, A; Janssens, P A; van Leeuwen, B H; Kerr, P J

    2006-04-25

    The pathogenesis of two Californian strains of myxoma virus (MSW and MSD) was examined in European rabbits (Oryctolagus cuniculus) that were either susceptible to myxomatosis (laboratory rabbits) or had undergone natural selection for genetic resistance to myxomatosis (Australian wild rabbits). MSW was highly lethal for both types of rabbits with average survival times of 7.3 and 9.4 days, respectively, and 100% mortality. Classical clinical signs of myxomatosis were not present except in one rabbit that survived for 13 days following infection. Previously described clinical signs of trembling and shaking were observed in laboratory but not wild rabbits. Despite the high resistance of wild rabbits to myxomatosis caused by South American strains of myxoma virus, the MSW strain was of such high virulence that it was able to overcome resistance. The acute nature of the infection, relatively low viral titers in the tissues and destruction of lymphoid tissues, suggested that death was probably due to an acute and overwhelming immunopathological response to the virus. No virus was found in the brain. The MSD strain was attenuated compared to previously published descriptions and therefore was only characterized in laboratory rabbits. It is concluded that Californian MSW strain of myxoma virus is at the extreme end of a continuum of myxoma virus virulence but that the basic pathophysiology of the disease induced is not broadly different to other strains of myxoma virus.

  17. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    DEFF Research Database (Denmark)

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A

    2012-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance...... in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology....

  18. Rapid Increase of Genetically Diverse Methicillin-Resistant Staphylococcus aureus, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Bartels, Mette Damkjær; Boye, Kit; Larsen, Anders Rhod

    2007-01-01

    In Copenhagen, methicillin-resistant Staphylococcus aureus (MRSA) accounted for <15 isolates per year during 1980-2002. However, since 2003 an epidemic increase has been observed, with 33 MRSA cases in 2003 and 110 in 2004. We analyzed these 143 cases epidemiologically and characterized isolates ...... and soft tissue infections dominated. CO-MRSA with diverse genetic backgrounds is rapidly emerging in a low MRSA prevalence area. Udgivelsesdato: October...

  19. Rapid increase of genetically diverse methicillin-resistant Staphylococcus aureus, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Bartels, Mette Damkjaer; Boye, Kit; Rhod Larsen, Anders

    2007-01-01

    In Copenhagen, methicillin-resistant Staphylococcus aureus (MRSA) accounted for <15 isolates per year during 1980-2002. However, since 2003 an epidemic increase has been observed, with 33 MRSA cases in 2003 and 110 in 2004. We analyzed these 143 cases epidemiologically and characterized isolates ...... and soft tissue infections dominated. CO-MRSA with diverse genetic backgrounds is rapidly emerging in a low MRSA prevalence area....

  20. Genetic parameters for pathogen-specific mastitis resistance in Danish Holstein cattle

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Madsen, P.; Mark, Thomas;

    2009-01-01

    . uberis, respectively. The heritabilities of groups of pathogen ranged from 0.053 to 0.087. Genetic correlations among the pathogen-specific mastitis traits ranged from 0.45 to 0.77. These estimates tended to be lowest for bacteria eliciting very different immune responses, which can be considered...... as the overall pleiotropic effect of genes affecting resistance to a specific pathogen, and highest for bacteria sharing characteritics regarding immune response. The genetic correlations between the groups of pathogens were high, 0.73 and 0.83. Results showed that the pathogen-specific traits used in this study......The objective of this study was to estimate heritabilities for and genetic correlations among different pathogen-specific mastitis traits. The traits were unspecific mastitis, which is all mastitis treatments regardless of the causative pathogen as well as mastitis caused by Streptococcus...

  1. Cyanobacteria: photosynthetic factories combining biodiversity, radiation resistance, and genetics to facilitate drug discovery.

    Science.gov (United States)

    Cassier-Chauvat, Corinne; Dive, Vincent; Chauvat, Franck

    2017-02-01

    Cyanobacteria are ancient, abundant, and widely diverse photosynthetic prokaryotes, which are viewed as promising cell factories for the ecologically responsible production of chemicals. Natural cyanobacteria synthesize a vast array of biologically active (secondary) metabolites with great potential for human health, while a few genetic models can be engineered for the (low level) production of biofuels. Recently, genome sequencing and mining has revealed that natural cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The corresponding panoply of enzymes (polyketide synthases and non-ribosomal peptide synthases) of interest for synthetic biology can still be increased through gene manipulations with the tools available for the few genetically manipulable strains. In this review, we propose to exploit the metabolic diversity and radiation resistance of cyanobacteria, and when required the genetics of model strains, for the production and radioactive ((14)C) labeling of bioactive products, in order to facilitate the screening for new drugs.

  2. Genetic resistance to natural coccidiosis infection in goats in a semi-arid region of India

    Directory of Open Access Journals (Sweden)

    P.K. Rout

    2015-12-01

    Full Text Available Coccidiosis is one of the major causes of kid mortality in tropical regions and causes significant loss to farmers by affecting growth and feed efficiency in the growing kid. The strategy to control the coccidiosis is mainly through drug usage and is not efficacious at present. Therefore, an alternative strategy is required to control the disease in goats. Increasing genetic resistance to coccidiosis may be an appropriate complementary control strategy. The purpose of this study was to analyse the genetic variation in severity of natural coccidiosis infections in kids in the semi-arid region. The observations were recorded in 227 kids of Barbari and Jamunapari goats. Barbari goats had higher mean faecal oocyst counts (FOC than Jamunapari goats at 3 and 6 months of age. The heritability for FOC was 0.05 and 0.15 at 3 and 6 months of age, respectively. All phenotypic and environmental correlations between FOC and live weight traits were low and negative, indicating a tendency for more heavily infected kids in the flock to grow more slowly. Genetic correlations were largely similar, but had large standard errors. The results suggest that genetic resistance control strategy can potentially be useful for the better performance in the existing managemental condition.

  3. Genetic parameters for resistance to the Salmonella abortusovis vaccinal strain Rv6 in sheep

    Directory of Open Access Journals (Sweden)

    Bouix Jacques

    2003-03-01

    Full Text Available Abstract An experimental population (1216 lambs from 30 sires of the Inra401 sheep was created in an Inra flock to allow QTL detection for susceptibility to Salmonella infection, wool and carcass traits. The Inra401 is a sheep composite line developed from two breeds: Berrichon du Cher and Romanov. At 113 days of age on average, the lambs were inoculated intravenously with 108 Salmonella abortusovis Rv6 (vaccinal strain. They were slaughtered 10 days after the inoculation. Several traits were measured at inoculation and/or slaughtering to estimate the genetic resistance of the lambs to Salmonella infection: specific IgM and IgG1 antibody titres, body weight loss, spleen and pre-scapular node weights and counts of viable Salmonella persisting in these organs. This paper presents a quantitative analysis of the genetic variability of the traits related to salmonellosis susceptibility. The heritabilities of the traits varied between 0.10 and 0.64 (significantly different from zero. Thus, in sheep as well as in other species, the determinism of resistance to Salmonella infection is under genetic control. Moreover, the correlations between the traits are in agreement with the known immune mechanisms. The genetic variability observed should help QTL detection.

  4. Estimation of genetic parameters for resistance to gastro-intestinal nematodes in pure blood Arabian horses.

    Science.gov (United States)

    Kornaś, Sławomir; Sallé, Guillaume; Skalska, Marta; David, Ingrid; Ricard, Anne; Cabaret, Jacques

    2015-03-01

    Equine internal parasites, mostly cyathostomins, affect both horse welfare and performance. The appearance of anthelmintic-resistant parasites creates a pressing need for optimising drenching schemes. This optimization may be achieved by identifying genetic markers associated with host susceptibility to infection and then to drench carriers of these markers. The aim of our study was to characterise the genetics of horse resistance to strongyle infection by estimating heritability of this trait in an Arabian pure blood population. A population of 789 Arabian pure blood horses from the Michałów stud farm, Poland were measured for strongyle egg excretion twice a year, over 8 years. Low repeatability values were found for faecal egg counts. Our analyses showed that less than 10% of the observed variation for strongyle faecal egg counts in this population had a genetic origin. However, additional analyses highlighted an age-dependent increase in heritability which was 0.04 (±0.02) in young horses (up to 3 years of age) but 0.21 (±0.04) in older ones. These results suggest that a significant part of the inter-individual variation has a genetic origin. This paves the way to a genomic dissection of horse-nematode interactions which might provide predictive markers of susceptibility, allowing individualised drenching schemes. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  5. Antimicrobial Resistance Mechanisms and Genetic Diversity of Multidrug-Resistant Acinetobacter baumannii Isolated from a Teaching Hospital in Malaysia.

    Science.gov (United States)

    Biglari, Shirin; Hanafiah, Alfizah; Mohd Puzi, Shaliawani; Ramli, Ramliza; Rahman, Mostafizur; Lopes, Bruno Silvester

    2017-07-01

    Multidrug-resistant (MDR) Acinetobacter baumannii has increasingly emerged as an important nosocomial pathogen. The aim of this study was to determine the resistance profiles and genetic diversity in A. baumannii clinical isolates in a tertiary medical center in Malaysia. The minimum inhibitory concentrations of carbapenems (imipenem and meropenem), cephalosporins (ceftazidime and cefepime), and ciprofloxacin were determined by E-test. PCR and sequencing were carried out for the detection of antibiotic resistance genes and mutations. Clonal relatedness among A. baumannii isolates was determined by REP-PCR. Sequence-based typing of OXA-51 and multilocus sequence typing were performed. One hundred twenty-five of 162 (77.2%) A. baumannii isolates had MDR phenotype. From the 162 A. baumannii isolates, 20 strain types were identified and majority of A. baumannii isolates (66%, n = 107) were classified as strain type 1 and were positive for ISAba1-blaOXA-23 and ISAba1-blaADC and had mutations in both gyrA and parC genes at positions, 83 and 80, resulting in serine-to-leucine conversion. REP-PCR analysis showed 129 REP types that generated 31 clones with a 90% similarity cutoff value. OXA-66 variant of the blaOXA-51-like genes was predominantly detected among our A. baumannii clinical isolates belonging to ST195 (found in six clones: 1, 8, 9, 19, 27, and 30) and ST208 (found in clone 21). The study helps us in understanding the genetic diversity of A. baumannii isolates in our setting and confirms that international clone II is the most widely distributed clone in Universiti Kebangsaan Malaysia Medical Centre, Malaysia.

  6. Antimicrobial resistance, virulence determinants and genetic profiles of clinical and nonclinical Enterococcus cecorum from poultry.

    Science.gov (United States)

    Jackson, C R; Kariyawasam, S; Borst, L B; Frye, J G; Barrett, J B; Hiott, L M; Woodley, T A

    2015-02-01

    Enterococcus cecorum has been implicated as a possible cause of disease in poultry. However, the characteristics that contribute to pathogenesis of Ent. cecorum in poultry have not been defined. In this study, Ent. cecorum from carcass rinsates (n = 75) and diseased broilers and broiler breeders (n = 30) were compared based upon antimicrobial resistance phenotype, the presence of virulence determinants and genetic relatedness using pulsed-field gel electrophoresis (PFGE). Of the 16 antimicrobials tested, Ent. cecorum from carcass rinsates and clinical cases were resistant to ten and six of the antimicrobials, respectively. The majority of Ent. cecorum from carcass rinsates was resistant to lincomycin (54/75; 72%) and tetracycline (46/75; 61.3%) while the highest level of resistance among clinical Ent. cecorum was to tetracycline (22/30; 73.3%) and erythromycin (11/30; 36.7%). Multidrug resistance (resistance to ≥2 antimicrobials) was identified in Ent. cecorum from carcass rinsates (53/75; 70.7%) and diseased poultry (18/30; 60%). Of the virulence determinants tested, efaAfm was present in almost all of the isolates (104/105; 99%). Using PFGE, the majority of clinical isolates clustered together; however, a few clinical isolates grouped with Ent. cecorum from carcass rinsates. These data suggest that distinguishing the two groups of isolates is difficult based upon the characterization criteria used.

  7. Gene interactions and genetics of blast resistance and yield attributes in rice (Oryza sativa L.)

    Indian Academy of Sciences (India)

    B. Divya; A. Biswas; S. Robin; R. Rabindran; A. John Joel

    2014-08-01

    Blast disease caused by the pathogen Pyricularia oryzae is a serious threat to rice production. Six generations viz., P1, P2, F1, F2, B1 and B2 of a cross between blast susceptible high-yielding rice cultivar ADT 43 and resistant near isogenic line (NIL) CT13432-3R, carrying four blast resistance genes Pi1, Pi2, Pi33 and Pi54 in combination were used to study the nature and magnitude of gene action for disease resistance and yield attributes. The epistatic interaction model was found adequate to explain the gene action in most of the traits. The interaction was complementary for number of productive tillers, economic yield, lesion number, infected leaf area and potential disease incidence but duplicate epistasis was observed for the remaining traits. Among the genotypes tested under epiphytotic conditions, gene pyramided lines were highly resistant to blast compared to individuals with single genes indicating that the nonallelic genes have a complementary effect when present together. The information on genetics of various contributing traits of resistance will further aid plant breeders in choosing appropriate breeding strategy for blast resistance and yield enhancement in rice.

  8. Fitness cost due to herbicide resistance may trigger genetic background evolution.

    Science.gov (United States)

    Darmency, Henri; Menchari, Yosra; Le Corre, Valérie; Délye, Christophe

    2015-01-01

    This article investigates the possible existence of mechanisms counterbalancing the negative pleiotropic effects on development and reproduction that are conferred by alleles responsible for herbicide resistance in the weed Alopecurus myosuroides. We considered three herbicide-resistant, mutant acetyl-coenzyme A carboxylase (ACCase) alleles, Leu1781, Asn2041, and Gly2078, found in eight resistant populations. Of these, Gly2078 is the only allele with a known fitness cost. We compared plants homozygous for wild-type ACCase alleles that were siblings of plants carrying a given mutant resistant ACCase allele with plants from three populations where resistance did not evolve. In each of two series of experiments, we measured germination dynamics, seedling vigor, plant height, vegetative biomass, and seed production. The wild-type siblings of plants carrying Gly2078 performed better in the field, on average, than wild-type plants that were sibling of plants carrying other mutant ACCase alleles, and particularly those carrying Leu1781. We propose that rapid evolution of the genetic background of plants from the populations where the Gly2078 allele originally arose could partially counterbalance Gly2078 fitness cost, enhancing the spread of the resistant genotypes.

  9. Genetically engineered virus-resistant plants in developing countries: current status and future prospects.

    Science.gov (United States)

    Reddy, D V R; Sudarshana, M R; Fuchs, M; Rao, N C; Thottappilly, G

    2009-01-01

    Plant viruses cause severe crop losses worldwide. Conventional control strategies, such as cultural methods and biocide applications against arthropod, nematode, and plasmodiophorid vectors, have limited success at mitigating the impact of plant viruses. Planting resistant cultivars is the most effective and economical way to control plant virus diseases. Natural sources of resistance have been exploited extensively to develop virus-resistant plants by conventional breeding. Non-conventional methods have also been used successfully to confer virus resistance by transferring primarily virus-derived genes, including viral coat protein, replicase, movement protein, defective interfering RNA, non-coding RNA sequences, and protease, into susceptible plants. Non-viral genes (R genes, microRNAs, ribosome-inactivating proteins, protease inhibitors, dsRNAse, RNA modifying enzymes, and scFvs) have also been used successfully to engineer resistance to viruses in plants. Very few genetically engineered (GE) virus resistant (VR) crops have been released for cultivation and none is available yet in developing countries. However, a number of economically important GEVR crops, transformed with viral genes are of great interest in developing countries. The major issues confronting the production and deregulation of GEVR crops in developing countries are primarily socio-economic and related to intellectual property rights, biosafety regulatory frameworks, expenditure to generate GE crops and opposition by non-governmental activists. Suggestions for satisfactory resolution of these factors, presumably leading to field tests and deregulation of GEVR crops in developing countries, are given.

  10. Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources.

    Science.gov (United States)

    Ibekwe, A Mark; Murinda, Shelton E; Graves, Alexandria K

    2011-01-01

    Escherichia coli are widely used as indicators of fecal contamination, and in some cases to identify host sources of fecal contamination in surface water. Prevalence, genetic diversity and antimicrobial susceptibility were determined for 600 generic E. coli isolates obtained from surface water and sediment from creeks and channels along the middle Santa Ana River (MSAR) watershed of southern California, USA, after a 12 month study. Evaluation of E. coli populations along the creeks and channels showed that E. coli were more prevalent in sediment compared to surface water. E. coli populations were not significantly different (P = 0.05) between urban runoff sources and agricultural sources, however, E. coli genotypes determined by pulsed-field gel electrophoresis (PFGE) were less diverse in the agricultural sources than in urban runoff sources. PFGE also showed that E. coli populations in surface water were more diverse than in the sediment, suggesting isolates in sediment may be dominated by clonal populations.Twenty four percent (144 isolates) of the 600 isolates exhibited resistance to more than one antimicrobial agent. Most multiple resistances were associated with inputs from urban runoff and involved the antimicrobials rifampicin, tetracycline, and erythromycin. The occurrence of a greater number of E. coli with multiple antibiotic resistances from urban runoff sources than agricultural sources in this watershed provides useful evidence in planning strategies for water quality management and public health protection.

  11. HIV-1 Genetic Diversity and Drug Resistance Mutations Among Treatment-Naive Adult Patients in Suriname.

    Science.gov (United States)

    Abdoel Wahid, Firoz; Sno, Rachel; Darcissac, Edith; Lavergne, Anne; Adhin, Malti R; Lacoste, Vincent

    2016-12-01

    The molecular epidemiologic profile of HIV-1 in Suriname was determined through protease (PR) and reverse transcriptase (RT) sequences obtained from HIV-1 strains collected from 100 drug-naive HIV-1-infected persons. Subtype determination revealed that most viruses were of subtype B (94.9%) in both PR and RT genomic regions, followed by B/D recombinants (5.1%). Analysis of drug resistance mutations showed only one transmitted dug resistance mutation (TDRM) (V75M) in a single strain. The genetic data obtained can serve as a baseline for Suriname to monitor emerging mutations. This study reveals that the HIV-1 epidemic in Suriname is still characterized by a low TDRM rate (1%) and a low level of subtype diversity. However, both genes display a high genetic polymorphism. This high polymorphism may ultimately lead to drug resistance. Continuous monitoring of the baseline resistance is therefore a prerequisite to safeguard effective long-term treatment for people living with HIV-1 in Suriname.

  12. A study into the genetic basis of aspirin resistance in Pakistani patients with coronary artery disease.

    Science.gov (United States)

    Mukarram, Osama; Akhtar, Naveed; Junaid, Ayesha; Mohyuddin, Aisha

    2016-07-01

    Aspirin is a key player in the management and prevention of stroke and myocardial infarction in patients with atherothrombosis. About 12% of Pakistanis suffering from coronary artery disease are resistant to aspirin's effects. Clinical, biochemical and genetic factors are known to be responsible for this phenomenon. We conducted this study to investigate whether previously studied polymorphisms in COX-1, GPIIIa, GPIa and P2RYI genes could be the cause of aspirin resistance in our population. Blood samples were collected from 29 aspirin non-responders and 60 ethnically matched responders. Aspirin response assay was performed on IMPACT-R and DNA prepared from blood using the phenol: chloroform method. Genotyping was carried out for four SNPS including COX-1 C50T (rs3842787), GPIIIA PIA1/A2 polymorphism (rs5918), GPIA C807T (rs1126643) and p2RY1 C893T (rs1065776). No statistically significant differences were observed in the allele or genotype frequencies between the aspirin non responders and responders indicating the possible involvement of different genetic determinants of aspirin resistance in our population. This study paves the way for further research into the field of aspirin resistance in Pakistan.

  13. Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners

    Science.gov (United States)

    Carvalho, A.C.; Barbosa, A.V.; Arais, L.R.; Ribeiro, P.F.; Carneiro, V.C.; Cerqueira, A.M.F.

    2016-01-01

    Antimicrobial resistance in Escherichia coli isolated from pet dogs can be considered a potential threat of infection for the human population. Our objective was to characterize the resistance pattern, extended spectrum beta-lactamase production and genetic relatedness of multiresistant E. coli strains isolated from dogs (n = 134), their owners (n = 134), and humans who claim to have no contact with dogs (n = 44, control), searching for sharing of strains. The strains were assessed for their genetic relatedness by phylogenetic grouping and pulsed-field gel electrophoresis. Multiresistant E. coli strains were isolated from 42 (31.3%) fecal samples from pairs of dogs and owners, totaling 84 isolates, and from 19 (43.1%) control group subjects. The strains showed high levels of resistance to ampicillin, streptomycin, tetracycline, trimethoprim and sulfamethoxazole regardless of host species or group of origin. The blaTEM, blaCTX-M, and blaSHV genes were detected in similar proportions in all groups. All isolates positive for bla genes were ESBL producers. The phylogenetic group A was the most prevalent, irrespective of the host species. None of the strains belonging to the B2 group contained bla genes. Similar resistance patterns were found for strains from dogs, owners and controls; furthermore, identical PFGE profiles were detected in four (9.5%) isolate pairs from dogs and owners, denoting the sharing of strains. Pet dogs were shown to be a potential household source of multiresistant E. coli strains. PMID:26887238

  14. Genetics and mapping of a new anthracnose resistance locus in Andean common bean Paloma.

    Science.gov (United States)

    de Lima Castro, Sandra Aparecida; Gonçalves-Vidigal, Maria Celeste; Gilio, Thiago Alexandre Santana; Lacanallo, Giselly Figueiredo; Valentini, Giseli; da Silva Ramos Martins, Vanusa; Song, Qijian; Galván, Marta Zulema; Hurtado-Gonzales, Oscar P; Pastor-Corrales, Marcial Antonio

    2017-04-18

    The Andean cultivar Paloma is resistant to Mesoamerican and Andean races of Colletotrichum lindemuthianum, the fungal pathogen that causes the destructive anthracnose disease in common bean. Remarkably, Paloma is resistant to Mesoamerican races 2047 and 3481, which are among the most virulent races of the anthracnose pathogen. Most genes conferring anthracnose resistance in common bean are overcome by these races. The genetic mapping and the relationship between the resistant Co-Pa gene of Paloma and previously characterized anthracnose resistance genes can be a great contribution for breeding programs. The inheritance of resistance studies for Paloma was performed in F2 population from the cross Paloma (resistant) × Cornell 49-242 (susceptible) inoculated with race 2047, and in F2 and F2:3 generations from the cross Paloma (resistant) × PI 207262 (susceptible) inoculated with race 3481. The results of these studies demonstrated that a single dominant gene confers the resistance in Paloma. Allelism tests performed with multiple races of C. lindemuthianum showed that the resistance gene in Paloma, provisionally named Co-Pa, is independent from the anthracnose resistance genes Co-1, Co-2, Co-3, Co-4, Co-5, Co-6, Co-12, Co-13, Co-14, Co-15 and Co-16. Bulk segregant analysis using the SNP chip BARCBean6K_3 positioned the approximate location of Co-Pa in the lower arm of chromosome Pv01. Further mapping analysis located the Co-Pa gene at a 390 kb region of Pv01 flanked by SNP markers SS82 and SS83 at a distance of 1.3 and 2.1 cM, respectively. The results presented here showed that Paloma cultivar has a new dominant gene conferring resistance to anthracnose, which is independent from those genes previously described. The linkage between the Co-Pa gene and the SS82 and SS83 SNP markers will be extremely important for marker-assisted introgression of the gene into elite cultivars in order to enhance resistance.

  15. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels

    DEFF Research Database (Denmark)

    Mahendran, Yuvaraj; Jonsson, Anna; Have, Christian T

    2017-01-01

    AIMS/HYPOTHESIS: Fasting plasma levels of branched-chain amino acids (BCAAs) are associated with insulin resistance, but it remains unclear whether there is a causal relation between the two. We aimed to disentangle the causal relations by performing a Mendelian randomisation study using genetic...... variants associated with circulating BCAA levels and insulin resistance as instrumental variables. METHODS: We measured circulating BCAA levels in blood plasma by NMR spectroscopy in 1,321 individuals from the ADDITION-PRO cohort. We complemented our analyses by using previously published genome...... variable for insulin resistance. A GRS of three variants increasing circulating BCAA levels was used as an instrumental variable for circulating BCAA levels. RESULTS: Fasting plasma BCAA levels were associated with higher HOMA-IR in ADDITION-PRO (β 0.137 [95% CI 0.08, 0.19] p = 6 × 10(-7)). However...

  16. Genetic barrier and variant fitness in hepatitis C as critical parameters for drug resistance development.

    Science.gov (United States)

    Welsch, Christoph

    2014-03-01

    The approval of direct-acting antiviral agents (DAAs) has marked a pivotal change in the treatment landscape of chronic hepatitis C. As for DAAs targeting other viral diseases, there are concerns regarding the development of resistant viral variants. Their selection allows the virus to escape from drug pressure with subsequent treatment failure. The emergence of resistant variants depends on multiple factors that range from genetic barriers to mutations to the fitness of viral variants. This article illustrates the basic mechanisms underlying development of resistance to specific antiviral agents with a special emphasis on NS3 protease inhibitors. The role of fitness deficits and compensation for variant selection and persistence is discussed together with technical issues in sequencing as well as clinical implications in the use of DAAs now and in the future.

  17. Genetic molecular diversity, production and resistance to witches’ broom in cacao clones

    Directory of Open Access Journals (Sweden)

    José Luis Pires

    2013-06-01

    Full Text Available The 32 cacao clones selected as being resistant following the witches’ broom epidemic and for having distinct productivitywere characterized according to their genetic diversity and were submitted to a new selection. These plants were assessed for eightyears at the Oceania Farm (FO in Itagibá, Bahia, Brazil. The 13 microsatellite primers generated an average of 11.7 amplicons perlocus, and based on them it was demonstrated that the 32 clones distribute themselves in groups apart from the nine clones used ascontrols. The 32 materials displayed significant differences in relation to the characters assessed in the field. Two criteria were formedfrom the classification of the most productive and resistant plants, and then used to select plants within the clusters. The selected plantsdisplayed potential for the cacao improvement program, that they have a high production and high resistance to witches’ broom.

  18. Genetic variation and gains in resistance of strawberry to Colletotrichum gloeosporioides.

    Science.gov (United States)

    Osorio, L F; Pattison, J A; Peres, N A; Whitaker, V M

    2014-01-01

    Anthracnose crown rot is an important disease of strawberry primarily caused by Colletotrichum gloeosporioides in Florida and North Carolina. Information on the magnitude of additive and nonadditive genetic variation is required to define breeding strategies and to estimate potential genetic gains. However, little is known about the genetic control of resistance and its utility in breeding. Our objectives were to obtain estimates of heritabilities and of components of genetic variances, genotype-environment interactions, and gains for resistance, and to examine the effects of locations and transplant types on the estimates. An incomplete diallel mating design generated 42 full-sib families, which were propagated in plugs from seed (seedling tests) and as bare-root runner plants (clonal tests) of different genotypes of the same families. Both seedlings and clones were inoculated with C. gloeosporioides under field conditions in North Carolina and Florida during the 2010-11 season. Narrow-sense heritability (h(2)) and broad-sense heritability (H(2)) for both clones and seedlings were higher at the North Carolina location (h(2) = 0.34 to 0.62 and H(2) = 0.46 to 0.85) than at the Florida location (h(2) = 0.16 to 0.22 and H(2) = 0.37 to 0.46). Likewise, the seedling tests showed higher genetic control than the clonal tests at both locations. Estimates of dominance variance were approximately one-third of the additive variance at North Carolina and were even larger at Florida. Epistasis was negative at both locations and assumed zero for heritability (H(2)) calculations. Genotype-environment interactions were different by transplant type, suggesting rank changes across locations. 'Pelican' was the most resistant parent at both locations, followed by 'NCH09-68' at the NC location and 'Winter Dawn' at the Florida location. Selection and deployment of the most resistant clone within each of the five best families is estimated to produce average genetic gains of 53.0 and 73

  19. Resistance to Bacillus thuringiensis Toxin Cry2Ab in Trichoplusia ni Is Conferred by a Novel Genetic Mechanism

    Science.gov (United States)

    Song, Xiaozhao; Kain, Wendy; Cassidy, Douglas

    2015-01-01

    The resistance to the Bacillus thuringiensis (Bt) toxin Cry2Ab in a greenhouse-originated Trichoplusia ni strain resistant to both Bt toxins Cry1Ac and Cry2Ab was characterized. Biological assays determined that the Cry2Ab resistance in the T. ni strain was a monogenic recessive trait independent of Cry1Ac resistance, and there existed no significant cross-resistance between Cry1Ac and Cry2Ab in T. ni. From the dual-toxin-resistant T. ni strain, a strain resistant to Cry2Ab only was isolated, and the Cry2Ab resistance trait was introgressed into a susceptible laboratory strain to facilitate comparative analysis of the Cry2Ab resistance with the susceptible T. ni strain. Results from biochemical analysis showed no significant difference between the Cry2Ab-resistant and -susceptible T. ni larvae in midgut proteases, including caseinolytic proteolytic activity and zymogram profile and serine protease activities, in midgut aminopeptidase and alkaline phosphatase activity, and in midgut esterases and hemolymph plasma melanization activity. For analysis of genetic linkage of Cry2Ab resistance with potential Cry toxin receptor genes, molecular markers for the midgut cadherin, alkaline phosphatase (ALP), and aminopeptidase N (APN) genes were identified between the original greenhouse-derived dual-toxin-resistant and the susceptible laboratory T. ni strains. Genetic linkage analysis showed that the Cry2Ab resistance in T. ni was not genetically associated with the midgut genes coding for the cadherin, ALP, and 6 APNs (APN1 to APN6) nor associated with the ABC transporter gene ABCC2. Therefore, the Cry2Ab resistance in T. ni is conferred by a novel but unknown genetic mechanism. PMID:26025894

  20. Insecticide resistance and genetic variability in natural populations of Aedes (Stegomyia aegypti (Diptera: Culicidae from Colombia

    Directory of Open Access Journals (Sweden)

    Oscar A. Aguirre-Obando

    2015-02-01

    Full Text Available Mosquito control prevails as the most efficient method to protect humans from the dengue virus, despite recent efforts to find a vaccine for this disease. We evaluated insecticide resistance and genetic variability in natural populations of Aedes aegypti (Linnaeus, 1762 from Colombia. This is the first Colombian study examining kdr mutations and population structure. Bioassays with larvae of three mosquito populations (Armenia, Calarcá and Montenegro were performed according to the World Health Organization (WHO guidelines, using Temephos. For the analysis of the Val1016Ile mutation and genetic diversity, we sampled recently-emerged adults from four mosquito populations (Armenia, Calarcá, Montenegro and Barcelona. Following the WHO protocol, bioassays implemented with larvae showed resistance to Temephos in mosquito populations from Armenia (77% ± 2 and Calarcá (62% ± 14, and an incipient altered susceptibility at Montenegro (88% ± 8. The RR95 of mosquito populations ranged from 3.7 (Montenegro to 6.0 (Calarca. The Val1016Ile mutation analysis of 107 genotyped samples indicates that 94% of the specimens were homozygous for the wild allele (1016Val and 6% were heterozygous (Val1016Ile. The 1016Ile allele was not found in Barcelona. Genetic variability analysis found three mitochondrial lineages with low genetic diversity and gene flow. In comparison with haplotypes from the American continent, those from this study suggest connections with Mexican and North American populations. These results confirm that a continuous monitoring and managing program of A. aegypti resistance in the state of Quindío is required.

  1. Antibiotic Resistance, Virulence, and Genetic Background of Community-Acquired Uropathogenic Escherichia coli from Algeria.

    Science.gov (United States)

    Yahiaoui, Merzouk; Robin, Frédéric; Bakour, Rabah; Hamidi, Moufida; Bonnet, Richard; Messai, Yamina

    2015-10-01

    The aim of the study was to investigate antibiotic resistance mechanisms, virulence traits, and genetic background of 150 nonrepetitive community-acquired uropathogenic Escherichia coli (CA-UPEC) from Algeria. A rate of 46.7% of isolates was multidrug resistant. bla genes detected were blaTEM (96.8% of amoxicillin-resistant isolates), blaCTX-M-15 (4%), overexpressed blaAmpC (4%), blaSHV-2a, blaTEM-4, blaTEM-31, and blaTEM-35 (0.7%). All tetracycline-resistant isolates (51.3%) had tetA and/or tetB genes. Sulfonamides and trimethoprim resistance genes were sul2 (60.8%), sul1 (45.9%), sul3 (6.7%), dfrA14 (25.4%), dfrA1 (18.2%), dfrA12 (16.3%), and dfrA25 (5.4%). High-level fluoroquinolone resistance (22.7%) was mediated by mutations in gyrA (S83L-D87N) and parC (S80I-E84G/V or S80I) genes. qnrB5, qnrS1, and aac(6')-Ib-cr were rare (5.3%). Class 1 and/or class 2 integrons were detected (40.7%). Isolates belonged to phylogroups B2+D (50%), A+B1 (36%), and F+C+Clade I (13%). Most of D (72.2%) and 38.6% of B2 isolates were multidrug resistant; they belong to 14 different sequence types, including international successful ST131, ST73, and ST69, reported for the first time in the community in Algeria and new ST4494 and ST4529 described in this study. Besides multidrug resistance, B2 and D isolates possessed virulence factors of colonization, invasion, and long-term persistence. The study highlighted multidrug-resistant CA-UPEC with high virulence traits and an epidemic genetic background.

  2. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    OpenAIRE

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik

    2012-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associat...

  3. Genetic diversity of rhg1 and Rhg4 loci in wild soybeans resistant to soybean cyst nematode race 3.

    Science.gov (United States)

    Yuan, C P; Wang, Y J; Zhao, H K; Zhang, L; Wang, Y M; Liu, X D; Zhong, X F; Dong, Y S

    2016-06-10

    Over-utilization of germplasms that are resistant to the soybean cyst nematode (SCN) in soybean breeding programs can lead to genetic vulnerability in resistant cultivars. Resistant wild soybean (Glycine soja) is considered an invaluable gene source for increasing the genetic diversity of SCN resistance. In this study, we genotyped 23 G. soja accessions that are resistant to SCN race 3 for polymorphisms in the resistance genes, rhg1, Rhg4, and SHMT, and investigated their genetic relationship with eight Glycine max resistant cultivars. We identified 89 single nucleotide polymorphisms (SNPs) and 11 DNA insertion-deletions (InDels), of which 70 SNPs and 8 InDels were found in rhg1, 9 SNPs were found in Rhg4, and 10 SNPs and 3 InDels were found in SHMT. Nucleotide diversity was π = 0.00238 and θ = 0.00235, and haplotype diversity was 1.000. A phylogenetic tree comprising four clusters was constructed using sequence variations of the 23 G. soja and 8 G. max resistant accessions. Five G. soja accessions in subcluster A2, and four G. soja accessions in cluster B were genetically distant from G. max genotypes. Eight resistance-associated SNPs in the three resistance genes formed nine haplotypes in total. G. soja resistant accessions had different haplotypes (H2, H4, H5, H6, H7, and H8) compared with those of G. max (H1, H3, and H9). These results provide vital information on the use of wild soybeans for broadening the genetic base of SCN resistance.

  4. The genetic basis for the selection of dairy goats with enhanced resistance to gastrointestinal nematodes

    Science.gov (United States)

    Heckendorn, Felix; Bieber, Anna; Werne, Steffen; Saratsis, Anastasios; Maurer, Veronika; Stricker, Chris

    2017-01-01

    Gastrointestinal nematodes (GIN) severely affect small ruminant production worldwide. Increasing problems of anthelmintic resistance have given strong impetus to the search for alternative strategies to control GIN. Selection of animals with an enhanced resistance to GIN has been shown to be successful in sheep. In goats, the corresponding information is comparatively poor. Therefore, the present study was designed to provide reliable data on heritabilities of and genetic correlations between phenotypic traits linked to GIN and milk yield in two major dairy goat breeds (Alpine and Saanen). In all, 20 herds totalling 1303 goats were enrolled in the study. All herds had (i) a history of gastrointestinal nematode infection, (ii) uniform GIN exposure on pasture and (iii) regular milk recordings. For all goats, individual recordings of faecal egg counts (FEC), FAMACHA© eye score, packed cell volume (PCV) and milk yield were performed twice a year with an anthelmintic treatment in between. The collected phenotypic data were multivariately modelled using animal as a random effect with its covariance structure inferred from the pedigree, enabling estimation of the heritabilities of the respective traits and the genetic correlation between them. The heritabilities of FEC, FAMACHA© and PCV were 0.07, 0.22 and 0.22, respectively. The genetic correlation between FEC and FAMACHA© was close to zero and −0.41 between FEC and PCV. The phenotypic correlation between FEC and milk yield was close to zero, whereas the genetic correlation was 0.49. Our data suggest low heritability of FEC in Saanen and Alpine goats and an unfavourable genetic correlation of FEC with milk yield. PMID:28792887

  5. Genetic architecture of fusarium head blight resistance in four winter triticale populations.

    Science.gov (United States)

    Kalih, R; Maurer, H P; Miedaner, T

    2015-03-01

    Fusarium head blight (FHB) is a devastating disease that causes significant reductions in yield and quality in wheat, rye, and triticale. In triticale, knowledge of the genetic architecture of FHB resistance is missing but essential due to modern breeding requirements. In our study, four doubled-haploid triticale populations (N=120 to 200) were evaluated for resistance to FHB caused by artificial inoculation with Fusarium culmorum in four environments. DArT markers were used to genotype triticale populations. Seventeen quantitative trait loci (QTL) for FHB resistance were detected across all populations; six of them were derived from rye genome and located on chromosomes 4R, 5R, and 7R, which are here reported for the first time. The total cross-validated ratio of the explained phenotypic variance for all detected QTL in each population was 41 to 68%. In all, 17 QTL for plant height and 18 QTL for heading stage were also detected across all populations; 3 and 5 of them, respectively, were overlapping with QTL for FHB. In conclusion, FHB resistance in triticale is caused by a multitude of QTL, and pyramiding them contributes to higher resistance.

  6. Molecular Genetic Analysis of Multi-drug Resistance in Indian Isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Noman Siddiqi

    1998-09-01

    Full Text Available A total of 116 isolates from patients attending the out-patient department at the All India Institute of Medical Sciences, New Delhi and the New Delhi Tuberculosis Centre, New Delhi, India were collected. They were analyzed for resistance to drugs prescribed in the treatment for tuberculosis. The drug resistance was initially determined by microbiological techniques. The Bactec 460TB system was employed to determine the type and level of resistance in each isolate. The isolates were further characterized at molecular level. The multi-drug loci corresponding to rpo b, gyr A, kat G were studied for mutation(s by the polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP technique. The SSCP positive samples were sequenced to characterize the mutations in rpo b, and gyr A loci. While previously reported mutations in the gyr A and rpo b loci were found to be present, several novel mutations were also scored in the rpo b locus. Interestingly, analysis of the gyr A locus showed the presence of point mutation(s that could not be detected by PCR-SSCP. Furthermore, rifampicin resistance was found to be an important marker for checking multi-drug resistance (MDR in clinical isolates of Mycobacterium tuberculosis. This is the first report on molecular genetic analysis of MDR tuberculosis one from India, highlights the increasing incidence of MDR in the Indian isolates of M. tuberculosis.

  7. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula

    KAUST Repository

    Kamphuis, L. G.

    2013-09-21

    Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)]. Aphid performance and plant damage were compared among three accessions. A20 is highly susceptible, A17 has moderate resistance, and Jester is strongly resistant. Subsequent analyses using A17 and A20, reciprocal F1s and an A17×A20 recombinant inbred line (RIL) population revealed that this moderate resistance is phloem mediated and involves antibiosis and tolerance but not antixenosis. Electrical penetration graph analysis also identified a novel waveform termed extended potential drop, which occurred following SAA infestation of M. truncatula. Genetic dissection using the RIL population revealed three quantitative trait loci on chromosomes 3, 6, and 7 involved in distinct modes of aphid defence including antibiosis and tolerance. An antibiosis locus resides on linkage group 3 (LG3) and is derived from A17, whereas a plant tolerance and antibiosis locus resides on LG6 and is derived from A20, which exhibits strong temporary tolerance. The loci identified reside in regions harbouring classical resistance genes, and introgression of these loci in current medic cultivars may help provide durable resistance to SAA, while elucidation of their molecular mechanisms may provide valuable insight into other aphid–plant interactions.

  8. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs and mobile genetic elements (MGEs in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP. Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.

  9. Exploring the Genetic Resistance to Gastrointestinal Nematodes Infection in Goat Using RNA-Sequencing

    Directory of Open Access Journals (Sweden)

    Ali Akbar Bhuiyan

    2017-04-01

    Full Text Available Gastrointestinal nematodes (GINs are one of the most economically important parasites of small ruminants and a major animal health concern in many regions of the world. However, the molecular mechanisms of the host response to GIN infections in goat are still little known. In this study, two genetically distinct goat populations, one relatively resistant and the other susceptible to GIN infections, were identified in Yichang goat and then four individuals in each group were chosen to compare mRNA expression profiles using RNA-seq. Field experiment showed lower worm burden, delayed and reduced egg production in the relatively resistant group than the susceptible group. The analysis of RNA-seq showed that 2369 genes, 1407 of which were up-regulated and 962 down-regulated, were significantly (p < 0.001 differentially expressed between these two groups. Functional annotation of the 298 genes more highly expressed in the resistant group yielded a total of 46 significant (p < 0.05 functional annotation clusters including 31 genes (9 in innate immunity, 13 in immunity, and 9 in innate immune response related to immune biosynthetic process as well as transforming growth factor (TGF-β, mitogen-activated protein kinase (MAPK, and cell adhesion molecules (CAMs pathways. Our findings provide insights that are immediately relevant for the improvement of host resistance to GIN infections and which will make it possible to know the mechanisms underlying the resistance of goats to GIN infections.

  10. Ray Wu,Cornell’s acclaimed pioneer of genetic engineering and developer of insect-resistant rice

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    ITHACA, N.Y. -- Ray J. Wu, Cornell University professor of molecular biology and genetics, who was widely recog-nized as one of the fathers of genetic engineering and who developed and sought to feed the world with a higher yield-ing rice that resists insects and drought, died of cardiac arrest in Ithaca, Feb. 10.

  11. Genetic variation between Biomphalaria alexandrina snails susceptible and resistant to Schistosoma mansoni infection.

    Science.gov (United States)

    El-Nassery, Suzanne M F; Abou-El-Naga, Iman F; Allam, Sonia R; Shaat, Eman A; Mady, Rasha F M

    2013-01-01

    Much effort has been made to control schistosomiasis infection in Egypt. However, enduring effects from such strategies have not yet been achieved. In this study, we sought to determine the genetic variability related to the interaction between Biomphalaria alexandrina snails and Schistosoma mansoni. Using RAPD-PCR with eight (10 mers) random primers, we were able to determine the polymorphic markers that differed between snails susceptible and resistant to Schistosoma mansoni infection using five primers out of the eight. Our results suggest that the RAPD-PCR technique is an efficient means by which to compare genomes and to detect genetic variations between schistosomiasis intermediate hosts. The RAPD technique with the above-noted primers can identify genomic markers that are specifically related to the Biomphalaria alexandrina/Schistosoma mansoni relationship in the absence of specific nucleotide sequence information. This approach could be used in epidemiologic surveys to investigate genetic diversity among Biomphalaria alexandrina snails. The ability to determine resistant markers in Biomphalaria alexandrina snails could potentially lead to further studies that use refractory snails as agents to control the spread of schistosomiasis.

  12. Genetic Variation between Biomphalaria alexandrina Snails Susceptible and Resistant to Schistosoma mansoni Infection

    Directory of Open Access Journals (Sweden)

    Suzanne M. F. El-Nassery

    2013-01-01

    Full Text Available Much effort has been made to control schistosomiasis infection in Egypt. However, enduring effects from such strategies have not yet been achieved. In this study, we sought to determine the genetic variability related to the interaction between Biomphalaria alexandrina snails and Schistosoma mansoni. Using RAPD-PCR with eight (10 mers random primers, we were able to determine the polymorphic markers that differed between snails susceptible and resistant to Schistosoma mansoni infection using five primers out of the eight. Our results suggest that the RAPD-PCR technique is an efficient means by which to compare genomes and to detect genetic variations between schistosomiasis intermediate hosts. The RAPD technique with the above-noted primers can identify genomic markers that are specifically related to the Biomphalaria alexandrina/Schistosoma mansoni relationship in the absence of specific nucleotide sequence information. This approach could be used in epidemiologic surveys to investigate genetic diversity among Biomphalaria alexandrina snails. The ability to determine resistant markers in Biomphalaria alexandrina snails could potentially lead to further studies that use refractory snails as agents to control the spread of schistosomiasis.

  13. GENETIC DIVERSITY OF S3 MAIZE GENOTYPES RESISTANT TO DOWNY MILDEW BASED ON SSR MARKERS

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-02-01

    Full Text Available The compulsory requirement for releasing new high yielding maize varieties is resistance to downy mildew. The study aimed to determine the level of homozygosity, genetic diversity, and  genetic distance of 30 S3 genotypes of maize. Number of primers to be used were 30 polymorphic SSR loci which are distributed over the entire maize genomes. The S3 genotypes used were resistant to downy mildew with homozygosity level of >80%, genetic distance between the test and tester strains >0.7, and anthesis silking interval (ASI between inbred lines and tester lines was maximum 3 days. The results showed that 30 SSR primers used were spread evenly across the maize genomes which were manifested in the representation of SSR loci on each chromosome of a total of 10 chromosomes. The levels of polymorphism ranged from 0.13 to 0.78, an average of 0.51, and the number of alleles ranged from 2 to 8 alleles per SSR locus, an average of 4 alleles per SSR locus. The size of nucleotides in each locus also varied from 70 to 553 bp. Cophenetic correlation value (r at 0.67 indicated that the Unweighted Pair-Group Method Using Arithmetic Averages (UPGMA was less reliable for differentiating genotypes in five groups. Of the total of 30 genotypes analyzed, 17 genotypes had homozygosity level of >80% so it can be included in the hybrid assembly program.

  14. Mapping of stripe rust resistance gene in an Aegilops caudata introgression line in wheat and its genetic association with leaf rust resistance

    Indian Academy of Sciences (India)

    PUNEET INDER TOOR; SATINDER KAUR; MITALY BANSAL; BHARAT YADAV; PARVEEN CHHUNEJA

    2016-12-01

    A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcrossrecombinant inbred line (BC-RIL) population derived from the cross of a wheat–Ae. caudata introgression line (IL) T291-2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distanceof 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.

  15. Commensal E. coli as an Important Reservoir of Resistance Encoding Genetic Elements

    Directory of Open Access Journals (Sweden)

    Azam Mahmoudi-Aznaveh

    2013-11-01

    Full Text Available Background: Diarrheagenic E. coli is the most important cause of diarrhea in children and is a public health concern in developing countries. A major public problem is acquisition and transmission of antimicrobial resistance via mobile genetic elements including plasmids, conjugative transposons, and integrons which may occur through horizontal gene transfer. Objectives: The aim of this study was to investigate the distribution of class 1 and 2 integrons among commensal and enteropathogenic E. coli isolates and assess the role of commensal E. coli population as a reservoir in the acquisition and transmission of antimicrobial resistance. Materials and Methods: Swabs were collected directly from stool samples of the children with diarrhea admitted to three hospitals in Tehran, Iran during July 2012 through October 2012. Antimicrobial susceptibility testing and PCR analysis were performed for analysis of the resistance pattern and integron content of isolates. Results: A total of 20 enteropathogenic E.coli (identified as eae+stx1-stx2- and 20 commensal E.coli were selected for analysis. The resistance pattern in commensal and pathogenic E.coli was very similar. In both groups a high rate of resistance was seen to tetracycline, streptomycin, cotrimoxazole, nalidixic acid, and minocycline. Of 20 EPEC strains, 3 strains (15 % and 1 strain (5% had positive results for int and hep genes, respectively. Among 20 commensal, 65% (13 strains and 10% (2 strains had positive results for int and hep genes, respectively. Conclusions: The higher rate of class 1 integron occurrence among commensal population proposes the commensal intestinal organisms as a potential reservoir of mobile resistance gene elements which could transfer the resistance gene cassettes to other pathogenic and/or nonpathogenic organisms in the intestinal lumen at different occasions.

  16. The Genetics of Resistance to Morinda Fruit Toxin During the Postembryonic Stages in Drosophila sechellia.

    Science.gov (United States)

    Huang, Yan; Erezyilmaz, Deniz

    2015-10-01

    Although a great deal has been learned regarding the genetic changes that give rise to adaptation in bacteria and yeast, an understanding of how new complex traits arise in multicellular organisms is far less complete. Many phytophagous insect species are ecological specialists that have adapted to utilize a single host plant. Drosophila sechellia is a specialist that utilizes the ripe fruit of Morinda citrifolia, which is toxic to its sibling species, D. simulans. Here we apply multiplexed shotgun genotyping and QTL analysis to examine the genetic basis of resistance to M. citrifolia fruit toxin in interspecific hybrids. We identify a locus of large effect on the third chromosome (QTL-IIIsima) in the D. simulans backcross that was not detected in previous analyses. We also identify a highly significant QTL of large effect on the X chromosome, QTL-Xsim. Additional smaller-effect loci were also identified in the D. simulans and D. sechellia backcrosses. We did not detect significant epistasis between loci. Instead, our analysis reveals large and smaller-effect loci that contribute to M. citrifolia resistance additively. The additive effect of each locus suggests that partial resistance to lower levels of M. citrifolia toxin could be passed through introgression from D. sechellia to D. simulans in nature. The identification of the major effect loci, QTL-IIIsima and QTL-Xsim, is an important step toward identifying the molecular basis of adaptation in a multicellular organism.

  17. Large resistive 2D Micromegas with genetic multiplexing and some imaging applications

    Science.gov (United States)

    Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.

    2016-10-01

    The performance of the first large resistive Micromegas detectors with 2D readout and genetic multiplexing is presented. These detectors have a 50 × 50cm2 active area and are equipped with 1024 strips both in X- and Y-directions. The same genetic multiplexing pattern is applied on both coordinates, resulting in the compression of signals on 2 × 61 readout channels. Four such detectors have been built at CERN, and extensively tested with cosmics. The resistive strip film allows for very high gain operation, compensating for the charge spread on the 2 dimensions as well as the S / N loss due to the huge, 1 nF input capacitance. This film also creates a significantly different signal shape in the X- and Y-coordinates due to the charge evacuation along the resistive strips. All in all a detection efficiency above 95% is achieved with a 1 cm drift gap. Though not yet optimal, the measured 300 μm spatial resolution allows for very precise imaging in the field of muon tomography, and some applications of these detectors are presented.

  18. Genetic diversity and antimicrobial resistance of Campylobacter and Salmonella strains isolated from decoys and raptors.

    Science.gov (United States)

    Jurado-Tarifa, E; Torralbo, A; Borge, C; Cerdà-Cuéllar, M; Ayats, T; Carbonero, A; García-Bocanegra, I

    2016-10-01

    Infections caused by thermotolerant Campylobacter spp. and Salmonella spp. are the leading causes of human gastroenteritis worldwide. Wild birds can act as reservoirs of both pathogens. A survey was carried out to determine the prevalence, genetic diversity and antimicrobial resistance of thermotolerant Campylobacter and Salmonella in waterfowl used as decoys and wild raptors in Andalusia (Southern Spain). The overall prevalence detected for Campylobacter was 5.9% (18/306; CI95%: 3.25-8.52) in decoys and 2.3% (9/387; CI95%: 0.82-3.83) in wild raptors. Isolates were identified as C. jejuni, C. coli and C. lari in both bird groups. Salmonella was isolated in 3.3% (10/306; CI95%: 2.3-4.3) and 4.6% (18/394; CI95%: 3.5-5.6) of the decoys and raptors, respectively. Salmonella Enteritidis and Typhimurium were the most frequently identified serovars, although Salmonella serovars Anatum, Bredeney, London and Mikawasima were also isolated. Pulsed-field gel electrophoresis analysis of isolates showed higher genetic diversity within Campylobacter species compared to Salmonella serovars. Campylobacter isolates showed resistance to gentamicin, ciprofloxacin and tetracycline, while resistance to erythromycin and tetracycline was found in Salmonella isolates. The results indicate that both decoys and raptors can act as natural carriers of Campylobacter and Salmonella in Spain, which may have important implications for public and animal health.

  19. Genetic diversity for Russian wheat aphid resistance as determined by genome-wide association mapping and inheritance in progeny

    Science.gov (United States)

    Russian wheat aphid (RWA) is an increasing problem on barley throughout the world. Genetic resistance has been identified and used to create barley germplasm and cultivars adapted to the US. Several mapping studies have been conducted to identify loci associated with resistance, but questions remain...

  20. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    NARCIS (Netherlands)

    Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Boettcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbaton-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V.; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M.; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S.; Franzosi, Maria Grazia; Franks, Paul W.; Frayling, Timothy M.; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Goeran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A.; Johnson, Paul C. D.; Jukema, J. Wouter; Jula, Antti; Kao, W. H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G. Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stephane; Loos, Ruth J. F.; Luan, Jian'an; Lyssenko, Valeriya; Magi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A.; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Raikkonen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J. G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stancakova, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Toenjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikstrom, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M.; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C. M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josee; Meigs, James B.; Langenberg, Claudia

    2012-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathw

  1. Population genetics structure of glyphosate-resistant Johnsongrass (Sorghum halepense L. Pers) does not support a single origin of the resistance.

    Science.gov (United States)

    Fernández, Luis; de Haro, Luis Alejandro; Distefano, Ana J; Carolina Martínez, Maria; Lía, Verónica; Papa, Juan C; Olea, Ignacio; Tosto, Daniela; Esteban Hopp, Horacio

    2013-09-01

    Single sequence repeats (SSR) developed for Sorghum bicolor were used to characterize the genetic distance of 46 different Sorghum halepense (Johnsongrass) accessions from Argentina some of which have evolved toward glyphosate resistance. Since Johnsongrass is an allotetraploid and only one subgenome is homologous to cultivated sorghum, some SSR loci amplified up to two alleles while others (presumably more conserved loci) amplified up to four alleles. Twelve SSR providing information of 24 loci representative of Johnsongrass genome were selected for genetic distance characterization. All of them were highly polymorphic, which was evidenced by the number of different alleles found in the samples studied, in some of them up to 20. UPGMA and Mantel analysis showed that Johnsongrass glyphosate-resistant accessions that belong to different geographic regions do not share similar genetic backgrounds. In contrast, they show closer similarity to their neighboring susceptible counterparts. Discriminant Analysis of Principal Components using the clusters identified by K-means support the lack of a clear pattern of association among samples and resistance status or province of origin. Consequently, these results do not support a single genetic origin of glyphosate resistance. Nucleotide sequencing of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from glyphosate-resistant and susceptible accessions collected from different geographic origins showed that none presented expected mutations in aminoacid positions 101 and 106 which are diagnostic of target-site resistance mechanism.

  2. The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes.

    Science.gov (United States)

    Hsam, Sai L K; Mohler, Volker; Zeller, Friedrich J

    2014-05-01

    The genetics of resistance to powdery mildew caused by Blumeria graminis f. sp. avenae of four cultivated oats was studied using monosomic analysis. Cultivar 'Bruno' carries a gene (Pm6) that shows a recessive mode of inheritance and is located on chromosome 10D. Cultivar 'Jumbo' possesses a dominant resistance gene (Pm1) on chromosome 1C. In cultivar 'Rollo', in addition to the gene Pm3 on chromosome 17A, a second dominant resistance gene (Pm8) was identified and assigned to chromosome 4C. In breeding line APR 122, resistance was conditioned by a dominant resistance gene (Pm7) that was allocated to chromosome 13A. Genetic maps established for resistance genes Pm1, Pm6 and Pm7 employing amplified fragment length polymorphism (AFLP) markers indicated that these genes are independent of each other, supporting the results from monosomic analysis.

  3. Additive genetic variation in resistance traits of an exotic pine species: little evidence for constraints on evolution of resistance against native herbivores

    Science.gov (United States)

    Moreira, X; Zas, R; Sampedro, L

    2013-01-01

    The apparent failure of invasions by alien pines in Europe has been explained by the co-occurrence of native pine congeners supporting herbivores that might easily recognize the new plants as hosts. Previous studies have reported that exotic pines show reduced tolerance and capacity to induce resistance to those native herbivores. We hypothesize that limited genetic variation in resistance to native herbivores and the existence of evolutionary trade-offs between growth and resistance could represent additional potential constraints on the evolution of invasiveness of exotic pines outside their natural range. In this paper, we examined genetic variation for constitutive and induced chemical defences (measured as non-volatile resin in the stem and total phenolics in the needles) and resistance to two major native generalist herbivores of pines in cafeteria bioassays (the phloem-feeder Hylobius abietis and the defoliator Thaumetopoea pityocampa) using half-sib families drawn from a sample of the population of Pinus radiata introduced to Spain in the mid-19th century. We found (i) significant genetic variation, with moderate-to-high narrow-sense heritabilities for both the production of constitutive non-volatile resin and induced total phenolics, and for constitutive resistance against T. pityocampa in bioassays, (ii) no evolutionary trade-offs between plant resistance and growth traits or between the production of different quantitative chemical defences and (iii) a positive genetic correlation between constitutive resistance to the two studied herbivores. Overall, results of our study indicate that the exotic pine P. radiata has limited genetic constraints on the evolution of resistance against herbivores in its introduced range, suggesting that, at least in terms of interactions with these enemies, this pine species has potential to become invasive in the future. PMID:23232833

  4. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs

    Science.gov (United States)

    Barbary, Arnaud; Djian-Caporalino, Caroline; Marteu, Nathalie; Fazari, Ariane; Caromel, Bernard; Castagnone-Sereno, Philippe; Palloix, Alain

    2016-01-01

    With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS–LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes. PMID:27242835

  5. Plant genetic background increasing the efficiency and durability of major resistance genes to root-knot nematodes can be resolved into a few resistance QTLs

    Directory of Open Access Journals (Sweden)

    Arnaud eBarbary

    2016-05-01

    Full Text Available With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes. However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a QTL analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, M. incognita, M. arenaria and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS-LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes.

  6. Control of porcine reproductive and respiratory syndrome (PRRS through genetic improvements in disease resistance and tolerance

    Directory of Open Access Journals (Sweden)

    Raymond eRowland

    2012-12-01

    Full Text Available Infections caused by porcine reproductive and respiratory syndrome virus (PRRSV have a severe economic impact on pig production in North America, Europe and Asia. The emergence and eventual predominance of PRRS in the 1990s are the likely result of changes in the pork industry initiated in the late 1970s, which allowed the virus to occupy a unique niche within a modern commercial production system. PRRSV infection is responsible for severe clinical disease, but can maintain a life-long subclinical infection, as well as participate in several polymicrobial syndromes. Current vaccines lessen clinical signs, but are of limited use for disease control and elimination. The relatively poor protective immunity following vaccination is a function of the virus’s capacity to generate a large degree of genetic diversity, combined with several strategies to evade innate and adaptive immune responses. In 2007, the PRRS Host Genetics consortium (PHGC was established to explore the role of host genetics as as an avenue for PRRS control. The PHGC model for PRRS incorporates the experimental infection of large numbers of growing pigs and has created the opportunity to study experimental PRRSV infection at the population level. The results show that pigs can be placed into distinct phenotypic groups, including pigs that show resistance or pigs that exhibit tolerance to infection. Tolerance is best illustrated by pigs that gain weight normally in the face of a relatively high virus load. Genome-wide association analysis has identified a region on chromosome 4 (SSC4 correlated with resistance; i.e., higher weight gain combined with lower virus load. The genomic region is near a family of genes involved in innate immunity. These results create the opportunity to develop breeding programs that will produce pigs with increased resistance to PRRS. The identification of genomic markers involved in tolerance will likely prove more difficult, primarily because tolerance

  7. Genetic variation for growth rate, feed conversion efficiency, and disease resistance exists within a farmed population of rainbow trout

    DEFF Research Database (Denmark)

    Henryon, Mark; Jokumsen, Alfred; Berg, Peer

    2002-01-01

    The objective of this study was to test that additive genetic (co)variation for survival, growth rate, feed conversion efficiency, and resistance to viral haemorrhagic septicaemia (VHS) exists within a farmed population of rainbow trout. Thirty sires and 30 dams were mated by a partly factorial...... the predicted breeding values for VHS resistance and the predicted breeding values for the body weights, body length, and feed conversion efficiencies. These results demonstrate that additive genetic (co)variation for growth rate, feed conversion efficiency, and VHS resistance does exist within the farmed...

  8. Genetic diversity of Plasmodium falciparum and distribution of drug resistance haplotypes in Yemen

    Science.gov (United States)

    2013-01-01

    Background Despite evident success of malaria control in many sites in the Arabian Peninsula, malaria remains endemic in a few spots, in Yemen and south-west of Saudi Arabia. In addition to local transmission, imported malaria sustains an extra source of parasites that can challenge the strengths of local control strategies. This study examined the genetic diversity of Plasmodium falciparum in Yemen and mutations of drug resistant genes, to elucidate parasite structure and distribution of drug resistance genotypes in the region. Methods Five polymorphic loci (MSP-2, Pfg377 and three microsatellites on chromosome 8) not involved in anti-malarial drug resistance, and four drug resistant genes (pfcrt, pfmdr1, dhfr and dhps) were genotyped in 108 P. falciparum isolates collected in three sites in Yemen: Dhamar, Hodeidah and Taiz. Results High diversity was seen in non-drug genes, pfg377 (He = 0.66), msp-2 (He = 0.80) and three microsatellites on chr 8, 7.7 kb (He = 0.88), 4.3 kb (He = 0.77) and 0.8 kb (He = 0.71). There was a high level of mixed-genotype infections (57%), with an average 1.8 genotypes per patient. No linkage disequilibrium was seen between drug resistant genes and the non-drug markers (p < 0.05). Genetic differentiation between populations was low (most pair-wise FST values <0.03), indicating extensive gene flow between the parasites in the three sites. There was a high prevalence of mutations in pfmdr1, pfcrt and dhfr; with four mutant pfmdr1 genotypes (NFCDD[57%], NFSND[21%], YFCDD[13%] and YFSND[8% ]), two mutant pfcrt genotypes (CVIET[89%] and SVMNT[4%]) and one mutant dhfr genotype (ICNI[53.7%]). However, no dhps mutations were detected. Conclusion The high diversity of P. falciparum in Yemen is indicative of a large parasite reservoir, which represents a challenge to control efforts. The presence of two distinct pfcrt genotype, CVIET and SVMNT, suggests that chloroquine resistance can possibly be related to a migratory

  9. The geographic mosaic of herbicide resistance evolution in the common morning glory, Ipomoea purpurea: Evidence for resistance hotspots and low genetic differentiation across the landscape.

    Science.gov (United States)

    Kuester, Adam; Chang, Shu-Mei; Baucom, Regina S

    2015-09-01

    Strong human-mediated selection via herbicide application in agroecosystems has repeatedly led to the evolution of resistance in weedy plants. Although resistance can occur among separate populations of a species across the landscape, the spatial scale of resistance in many weeds is often left unexamined. We assessed the potential that resistance to the herbicide glyphosate in the agricultural weed Ipomoea purpurea has evolved independently multiple times across its North American range. We examined both adaptive and neutral genetic variations in 44 populations of I. purpurea by pairing a replicated dose-response greenhouse experiment with SSR genotyping of experimental individuals. We uncovered a mosaic pattern of resistance across the landscape, with some populations exhibiting high-survival postherbicide and other populations showing high death. SSR genotyping revealed little evidence of isolation by distance and very little neutral genetic structure associated with geography. An approximate Bayesian computation (ABC) analysis uncovered evidence for migration and admixture among populations before the widespread use of glyphosate rather than the very recent contemporary gene flow. The pattern of adaptive and neutral genetic variations indicates that resistance in this mixed-mating weed species appears to have evolved in independent hotspots rather than through transmission of resistance alleles across the landscape.

  10. Genetic, individual, and group facilitation of disease resistance in insect societies.

    Science.gov (United States)

    Wilson-Rich, Noah; Spivak, Marla; Fefferman, Nina H; Starks, Philip T

    2009-01-01

    In this review, we provide a current reference on disease resistance in insect societies. We start with the genetics of immunity in the context of behavioral and physiological processes and scale up levels of biological organization until we reach populations. A significant component of this review focuses on Apis mellifera and its role as a model system for studies on social immunity. We additionally review the models that have been applied to disease transmission in social insects and elucidate areas for future study in the field of social immunity.

  11. Osmoregulation Mechanism of Drought Stress and Genetic Engineering Strategies for Improving Drought Resistance in Plants

    Institute of Scientific and Technical Information of China (English)

    Du Jinyou; Chen Xiaoyang; Li Wei; Gao Qiong

    2004-01-01

    Drought, one of the main adverse environmental factors, obviously affected plant growth and development. Many adaptive strategies have been developed in plants for coping with drought or water stress, among which osmoregulation is one of the important factors of plant drought tolerance. Many substances play important roles in plant osmoregulation for drought resistance, including proline, glycine betaine, Lea proteins and soluble sugars such as levan, trehalose, sucrose, etc. The osmoregulation mechanism and the genetic engineering of plant drought-tolerance are reviewed in this paper.

  12. A Genetic Algorithm for Simultaneous Determination of Thin Films Thermal Transport Properties and Contact Resistance

    Institute of Scientific and Technical Information of China (English)

    Zhengxing HUANG; Zhen'an TANG; Ziqiang XU; Haitao DING; Yuqin GU

    2006-01-01

    A genetic algorithm (GA) was studied to simultaneously determine the thermal transport properties and the contact resistance of thin films deposited on a thick substrate. A pulsed photothermal reflectance (PPR) system was employed for the measurements. The GA was used to extract the thermal properties. Measurements were performed on SiO2 thin films of different thicknesses on silicon substrate. The results show that the GA accompanied with the PPR system is useful for the simultaneous determination of thermal properties of thin films on a substrate.

  13. Unraveling the genetic driving forces enabling antibiotic resistance at the single cell level

    Science.gov (United States)

    Bos, Julia

    Bacteria are champions at finding ways to quickly respond and adapt to environments like the human gut, known as the epicentre of antibiotic resistance. How do they do it? Combining molecular biology tools to microfluidic and fluorescence microscopy technologies, we monitor the behavior of bacteria at the single cell level in the presence of non-toxic doses of antibiotics. By tracking the chromosome dynamics of Escherichia coli cells upon antibiotic treatment, we examine the changes in the number, localization and content of the chromosome copies within one cell compartment or between adjacent cells. I will discuss how our work pictures the bacterial genomic plasticity as a driving force in evolution and how it provides access to the mechanisms controlling the subtle balance between genetic diversity and stability in the development of antibiotic resistance.

  14. [Recent findings on the genetics of gastro-intestinal nematode resistance in ruminants].

    Science.gov (United States)

    Carta, A; Scala, A

    2004-06-01

    The control of helminthiases in ruminants raised in open pasture has been mainly undertaken by using prophylactic measures in the environment, but these are often inadequate due to incorrect application. With the appearance of anthelmintics, the strategy for controlling these parasitoses, passed to pharmacological treatments which became effective in reducing their impact. However, the frequent and incorrect utilisation of these molecules resulted in resistance to anthelmintics and the presence of chemical residues in animal products for human consumption. Anthelmintic resistance is widespread throughout the world, heterogeneous and probably underestimated. This has encouraged the introduction of homeopathic agents and products derived from plants whose effectiveness has not been scientifically assessed. It is well known that it is possible to detect differences in resistance to the most important parasites between breeds. In Europe, it has been reported that some ovine autochthonous breeds, Scottish Blackface and Lacaune, showed higher resistance. The implementation of breeding strategies aimed at obtaining animals with naturally low susceptibility to nematode infestations could therefore play an increasingly important role. Standard animal breeding techniques have been largely successful in improving the performance of domestic animals in the last century. Standard quantitative selection requires field data on: i) individual phenotype performance; ii) expected covariance among animals due to blood relationship between them. The whole process of predicting the breeding value of animals in order to select subsequently the genetically superior parents of the next generation is entirely based on sophisticated computations (BLUP-animal model). In sheep, the main objective is always selecting for milk yield and sometimes, in addition, milk composition. However, due to the evolution of the EU agricultural policy and consumer demand in terms of healthy and organic food

  15. The effects of the genetic background on herbicide resistance fitness cost and its associated dominance in Arabidopsis thaliana.

    Science.gov (United States)

    Paris, M; Roux, F; Bérard, A; Reboud, X

    2008-12-01

    The advantage of the resistance conferred by a mutation can sometimes be offset by a high fitness-cost penalty. This balance will affect possible fate of the resistance allele. Few studies have explored the impact of the genetic background on the expression of the resistance fitness cost and none has attempted to measure the variation in fitness-cost dominance. However, both the fitness penalty and its dominance may modify evolutionary trajectory and outcome. Here the impact of Arabidopsis thaliana intraspecific genetic diversity on fitness cost and its associated dominance was investigated by analysing 12 quantitative traits in crosses between a mutant conferring resistance to the herbicide 2,4-D and nine different natural genetic backgrounds. Fitness cost values were found to be more affected by intraspecific genetic diversity than fitness cost dominance, even though this effect depends on the quantitative trait measured. This observation has implications for the choice of the best strategy for preventing herbicide resistance development. In addition, our results pinpoint a potential compensatory improvement of the resistance fitness cost and its associated dominance by the genetic diversity locally present within a species.

  16. Quantitative genetics approaches to study evolutionary processes in ecotoxicology; a perspective from research on the evolution of resistance.

    Science.gov (United States)

    Klerks, Paul L; Xie, Lingtian; Levinton, Jeffrey S

    2011-05-01

    Quantitative genetic approaches are often used to study evolutionary processes in ecotoxicology. This paper focuses on the evolution of resistance to environmental contaminants-an important evolutionary process in ecotoxicology. Three approaches are commonly employed to study the evolution of resistance: (1) Assessing whether a contaminant-exposed population has an increased resistance relative to a control population, using either spatial or temporal comparisons. (2) Estimating a population's heritability of resistance. (3) Investigating responses in a laboratory selection experiment. All three approaches provide valuable information on the potential for contaminants to affect a population's evolutionary trajectory via natural selection. However, all three approaches have inherent limitations, including difficulty in separating the various genetic and environmental variance components, responses being dependent on specific population and testing conditions, and inability to fully capture natural conditions in the laboratory. In order to maximize insights into the long-term consequences of adaptation, it is important to not just look at resistance itself, but also at the fitness consequences and at correlated responses in characteristics other than resistance. The rapid development of molecular genetics has yielded alternatives to the "black box" approach of quantitative genetics, but the presence of different limitations and strengths in the two fields means that they should be viewed as complementary rather than exchangeable. Quantitative genetics is benefiting from the incorporation of molecular tools and remains an important field for studying evolutionary toxicology.

  17. Population genetics of Phytophthora infestans in Denmark reveals dominantly clonal populations and specific alleles linked to metalaxyl-M resistance

    DEFF Research Database (Denmark)

    Montes, Melanie Sarah; Nielsen, B.J.; Schmidt, S.G.;

    2016-01-01

    population of P. infestans was characterized over the course of the 2013 growing season, as was the population genetic structure, using simple sequence repeat (SSR) genotypes and single nucleotide polymorphism (SNP)-based mitochondrial haplotyping of over 80 isolates. Both mating types A1 and A2 were present......Control of the potato late blight pathogen Phytophthora infestans relies heavily on chemicals. The fungicide metalaxyl-M (Mefenoxam) has played an important role in controlling the disease, but insensitivity to the fungicide in certain isolates is now of major concern. A genetic basis...... for resistance to metalaxyl suggests the possibility for linking resistance phenotypes to specific population genetic markers, but in order to do this, the population genetic structure and mode of reproduction in a population must first be well described. The dynamics of metalaxyl-M resistance in the Danish...

  18. Virulence determinants, drug resistance and mobile genetic elements of Laribacter hongkongensis: a genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Lau Susanna KP

    2011-04-01

    Full Text Available Abstract Background Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements. Results For acid and bile resistance, L. hongkongensis possessed a urease gene cassette, two arc gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent Escherichia coli (E. coli and enterotoxigenic E. coli. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as E. coli, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins and intracellular cytotoxins (patatin-like proteins and enzymes for invasion (outer membrane phospholipase A. It contained a broad variety of antibiotic resistance-related genes, including genes related to β-lactam (n = 10 and multidrug efflux (n = 54. It also contained eight prophages, 17 other phage-related CDSs and 26 CDSs for transposases. Conclusions The L. hongkongensis genome possessed genes for acid and bile resistance, intestinal mucosa colonization, evasion of host defense and cytotoxicity and invasion. A broad variety of antibiotic resistance or multidrug resistance genes, a high number of prophages, other phage-related CDSs and CDSs for transposases, were also identified.

  19. Vaginal versus Obstetric Infection Escherichia coli Isolates among Pregnant Women: Antimicrobial Resistance and Genetic Virulence Profile.

    Directory of Open Access Journals (Sweden)

    Emma Sáez-López

    Full Text Available Vaginal Escherichia coli colonization is related to obstetric infections and the consequent development of infections in newborns. Ampicillin resistance among E. coli strains is increasing, which is the main choice for treating empirically many obstetric and neonatal infections. Vaginal E. coli strains are very similar to extraintestinal pathogenic E. coli with regards to the virulence factors and the belonging to phylogroup B2. We studied the antimicrobial resistance and the genetic virulence profile of 82 E. coli isolates from 638 vaginal samples and 63 isolated from endometrial aspirate, placental and amniotic fluid samples from pregnant women with obstetric infections. The prevalence of E. coli in the vaginal samples was 13%, which was significant among women with associated risk factors during pregnancy, especially premature preterm rupture of membranes (p<0.0001. Sixty-five percent of the strains were ampicillin-resistant. The E. coli isolates causing obstetric infections showed higher resistance levels than vaginal isolates, particularly for gentamicin (p = 0.001. The most prevalent virulence factor genes were those related to the iron uptake systems revealing clear targets for interventions. More than 50% of the isolates belonged to the virulent B2 group possessing the highest number of virulence factor genes. The ampicillin-resistant isolates had high number of virulence factors primarily related to pathogenicity islands, and the remarkable gentamicin resistance in E. coli isolates from women presenting obstetric infections, the choice of the most appropriate empiric treatment and clinical management of pregnant women and neonates should be carefully made. Taking into account host-susceptibility, the heterogeneity of E. coli due to evolution over time and the geographical area, characterization of E. coli isolates colonizing the vagina and causing obstetric infections in different regions may help to develop interventions and avoid the

  20. Combinatorial Genetic Modeling of pfcrt-Mediated Drug Resistance Evolution in Plasmodium falciparum.

    Science.gov (United States)

    Gabryszewski, Stanislaw J; Modchang, Charin; Musset, Lise; Chookajorn, Thanat; Fidock, David A

    2016-06-01

    The emergence of drug resistance continuously threatens global control of infectious diseases, including malaria caused by the protozoan parasite Plasmodium falciparum A critical parasite determinant is the P. falciparum chloroquine resistance transporter (PfCRT), the primary mediator of chloroquine (CQ) resistance (CQR), and a pleiotropic modulator of susceptibility to several first-line artemisinin-based combination therapy partner drugs. Aside from the validated CQR molecular marker K76T, P. falciparum parasites have acquired at least three additional pfcrt mutations, whose contributions to resistance and fitness have been heretofore unclear. Focusing on the quadruple-mutant Ecuadorian PfCRT haplotype Ecu1110 (K76T/A220S/N326D/I356L), we genetically modified the pfcrt locus of isogenic, asexual blood stage P. falciparum parasites using zinc-finger nucleases, producing all possible combinations of intermediate pfcrt alleles. Our analysis included the related quintuple-mutant PfCRT haplotype 7G8 (Ecu1110 + C72S) that is widespread throughout South America and the Western Pacific. Drug susceptibilities and in vitro growth profiles of our combinatorial pfcrt-modified parasites were used to simulate the mutational trajectories accessible to parasites as they evolved CQR. Our results uncover unique contributions to parasite drug resistance and growth for mutations beyond K76T and predict critical roles for the CQ metabolite monodesethyl-CQ and the related quinoline-type drug amodiaquine in driving mutant pfcrt evolution. Modeling outputs further highlight the influence of parasite proliferation rates alongside gains in drug resistance in dictating successful trajectories. Our findings suggest that P. falciparum parasites have navigated constrained pfcrt adaptive landscapes by means of probabilistically rare mutational bursts that led to the infrequent emergence of pfcrt alleles in the field.

  1. Identification of genetic loci required for Campylobacter resistance to fowlicidin-1, a chicken host defense peptide

    Directory of Open Access Journals (Sweden)

    Ky Van Hoang

    2012-03-01

    Full Text Available Antimicrobial peptides (AMPs are critical components of host defense limiting bacterial infections at the gastrointestinal mucosal surface. Bacterial pathogens have co-evolved with host innate immunity and developed means to counteract the effect of endogenous AMPs. However, molecular mechanisms of AMP resistance in Campylobacter, an important human food borne pathogen with poultry as a major reservoir, are still largely unknown. In this study, random transposon mutagenesis and targeted site-directed mutagenesis approaches were used to identify genetic loci contributing Campylobacter resistance to fowlicidin-1, a chicken AMP belonging to cathelicidin family. An efficient transposon mutagenesis approach (EZ::TNTM Transposome in conjunction with a microtiter plate screening identified three mutants whose susceptibilities to fowlicidin-1 were significantly increased. Backcrossing of the transposon mutations into parent strain confirmed that the AMP-sensitive phenotype in each mutant was linked to the specific transposon insertion. Direct sequencing showed that these mutants have transposon inserted in the genes encoding two-component regulator CbrR, transporter CjaB, and putative trigger factor Tig. Genomic analysis also revealed an operon (Cj1580c-1584c that is homologous to sapABCDF, an operon conferring resistance to AMP in other pathogens. Insertional inactivation of Cj1583c (sapB significantly increased susceptibility of Campylobacter to fowlicidin-1. The sapB as well as tig and cjaB mutants were significantly impaired in their ability to compete with their wild-type strain 81-176 to colonize the chicken cecum. Together, this study identified four genetic loci in Campylobacter that will be useful for characterizing molecular basis of Campylobacter resistance to AMPs, a significant knowledge gap in Campylobacter pathogenesis.

  2. Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated from chicken meat and giblets.

    Science.gov (United States)

    Abd-Elghany, S M; Sallam, K I; Abd-Elkhalek, A; Tamura, T

    2015-04-01

    SUMMARY This study was undertaken to survey the presence of Salmonella in 200 chicken samples collected from Mansoura, Egypt. Salmonella was detected in 16% (8/50), 28% (14/50), 32% (16/50) and 60% (30/50) of whole chicken carcasses, drumsticks, livers and gizzards, respectively, with an overall prevalence of 34% (68/200) among all samples. One hundred and sixty-six isolates were identified biochemically as Salmonella, and confirmed genetically by PCR, based on the presence of invA and stn genes. The spvC gene, however, was detected in only 25.3% (42/166) of the isolates. Isolates were serotyped as Salmonella Enteritidis (37.3%), S. Typhimurium (30.1%), S. Kentucky (10.8%), S. Muenster (8.4%), S. Virchow (4.8%), S. Anatum (4.8%), S. Haifa (1.2%), and four were non-typable. Antimicrobial susceptibility tests of the Salmonella isolates revealed that 100% were resistant to each of erythromycin, penicillin, and amoxicillin, while 98.8%, 96.4%, 95.2%, and 91.6% were resistant to nalidixic acid, sulphamethoxazole, oxytetracycline, and ampicillin, respectively. Multidrug resistance was evident for 92.8% of the isolates. The high contamination level of chicken meat with multidrug-resistant Salmonella can constitute a problem for public health.

  3. Genetic parameters and selection strategies for soybean genotypes resistant to the stink bug-complex.

    Science.gov (United States)

    de Godoi, Cláudio Roberto Cardoso; Pinheiro, José Baldin

    2009-04-01

    Soybean genotypes resistant to stink bugs are derived from complex breeding processes obtained through indirect selection. The aim of the present work was to estimate genetic parameters for guiding selection strategies towards resistant genotypes, based on those traits associated with responses to pod-attacking stink bugs, such as the grain filling period (GFP), leaf retention (LR), percentage index of pod damage (PIPD) and percentage of spotted seeds (PSS). We assessed the parental lines IAC-100 (resistant) and FT-Estrela (susceptible), the progenies F(2) and F (4) , 30 progenies F (2:3) , 30 progenies BC (1) F (2:3) and 30 progenies BC (2) F (2:3) , besides the cultivars BRS Celeste and MGBR-46 (Conquista). Three field experiments, using randomized complete block design with three replications, were installed in Goiânia-GO, in the 2002/03 season. Each experiment consisted of 36 treatments (6 common and 30 regular). Heritability estimates were: 74.6 and 36.1 (GFP); 51.9 and 19.9 (LR); 49.6 and 49.6 (PIPD) and 55.8 and 20.3 (PSS), in both the broad and narrow senses, respectively. Based on these results, we concluded that the best strategy for obtaining stink bug-resistant genotypes consists of selecting the PIPD trait in early generations (F (3) or F (4) ), followed by selection for the GFP, LR and PSS traits in generations with higher endogamy levels.

  4. Genetic diversity, transmission dynamics and drug resistance of Mycobacterium tuberculosis in Angola

    Science.gov (United States)

    Perdigão, João; Clemente, Sofia; Ramos, Jorge; Masakidi, Pedro; Machado, Diana; Silva, Carla; Couto, Isabel; Viveiros, Miguel; Taveira, Nuno; Portugal, Isabel

    2017-01-01

    Tuberculosis (TB) poses a serious public health problem in Angola. No surveillance data on drug resistance is available and nothing is known regarding the genetic diversity and population structure of circulating Mycobacterium tuberculosis strains. Here, we have genotyped and evaluated drug susceptibility of 89 Mycobacterium tuberculosis clinical isolates from Luanda. Thirty-three different spoligotype profiles corresponding to 24 different Shared International Types (SIT) and 9 orphan profiles were detected. SIT 20 (LAM1) was the most prevalent (n = 16, 18.2%) followed by SIT 42 (LAM9; n = 15, 17.1%). Overall, the M. tuberculosis population structure in this sample was dominated by LAM (64.8%) and T (33.0%) strains. Twenty-four-loci MIRU-VNTR analysis revealed that a total of 13 isolates were grouped in 5 distinct clusters. Drug susceptibility data showed that 22 (24.7%) of the 89 clinical isolates were resistant to one or more antibacillary drugs of which 4 (4.5%) were multidrug resistant. In conclusion, this study demonstrates a high predominance of LAM strains circulating in the Luanda setting and the presence of recent transmission events. The rate and the emergence dynamics of drug resistant TB found in this sample are significant and highlight the need of further studies specifically focused on MDR-TB transmission. PMID:28230095

  5. Prevalence and genetic relatedness of antimicrobial-resistant Escherichia coli isolated from animals, foods and humans in Iceland.

    Science.gov (United States)

    Thorsteinsdottir, T R; Haraldsson, G; Fridriksdottir, V; Kristinsson, K G; Gunnarsson, E

    2010-05-01

    The prevalence of resistant bacteria in food products in Iceland is unknown, and little is known of the prevalence in production animals. The aim of this study was to investigate the prevalence and genetic relatedness of antimicrobial-resistant Escherichia coli from healthy pigs and broiler chicken, pork, broiler meat, slaughterhouse personnel and outpatients in Iceland. A total of 419 E. coli isolates were tested for antimicrobial susceptibility using a microbroth dilution method (VetMIC), and resistant strains were compared using pulsed-field gel electrophoresis (PFGE). All samples were screened for enrofloxacin-resistant strains with selective agar plates. The resistance rates among E. coli isolates were moderate to high from caecal and meat samples of pigs (54.1% and 28%), broilers (33.6% and 52%) and slaughterhouse personnel (39.1%), whereas isolates from outpatients showed moderate resistance rates (23.1%). Of notice was resistance to quinolones (minimum inhibitory concentrations: nalidixic acid > or = 32, ciprofloxacin > or = 0.12 and enrofloxacin > or = 0.5), particularly among broiler and broiler meat isolates (18.2% and 36%), as there is no known antimicrobial selection pressure in the broiler production in Iceland. The majority (78.6%) of the resistant E. coli isolates was genotypically different, based on PFGE fingerprint analyses and clustering was limited. However, the same resistance pattern and pulsotype were found among isolates from broiler meat and a slaughterhouse worker, indicating spread of antimicrobial-resistant E. coli from animals to humans. Diverse resistance patterns and pulsotypes suggest the presence of a large population of resistant E. coli in production animals in Iceland. This study gives baseline information on the prevalence of antimicrobial-resistant E. coli from production animals, and their food products in Iceland and the moderate to high resistance rates emphasize the need for continuing surveillance. Further studies on the

  6. Genetic variation and host-parasite specificity of Striga resistance and tolerance in rice: the need for predictive breeding.

    Science.gov (United States)

    Rodenburg, Jonne; Cissoko, Mamadou; Kayongo, Nicholas; Dieng, Ibnou; Bisikwa, Jenipher; Irakiza, Runyambo; Masoka, Isaac; Midega, Charles A O; Scholes, Julie D

    2017-02-13

    The parasitic weeds Striga asiatica and Striga hermonthica cause devastating yield losses to upland rice in Africa. Little is known about genetic variation in host resistance and tolerance across rice genotypes, in relation to virulence differences across Striga species and ecotypes. Diverse rice genotypes were phenotyped for the above traits in S. asiatica- (Tanzania) and S. hermonthica-infested fields (Kenya and Uganda) and under controlled conditions. New rice genotypes with either ecotype-specific or broad-spectrum resistance were identified. Resistance identified in the field was confirmed under controlled conditions, providing evidence that resistance was largely genetically determined. Striga-resistant genotypes contributed to yield security under Striga-infested conditions, although grain yield was also determined by the genotype-specific yield potential and tolerance. Tolerance, the physiological mechanism mitigating Striga effects on host growth and physiology, was unrelated to resistance, implying that any combination of high, medium or low levels of these traits can be found across rice genotypes. Striga virulence varies across species and ecotypes. The extent of Striga-induced host damage results from the interaction between parasite virulence and genetically determined levels of host-plant resistance and tolerance. These novel findings support the need for predictive breeding strategies based on knowledge of host resistance and parasite virulence.

  7. Genetic control of resistance to salmonellosis and to Salmonella carrier-state in fowl: a review

    Directory of Open Access Journals (Sweden)

    Vignal Alain

    2010-04-01

    Full Text Available Abstract Salmonellosis is a frequent disease in poultry stocks, caused by several serotypes of the bacterial species Salmonella enterica and sometimes transmitted to humans through the consumption of contaminated meat or eggs. Symptom-free carriers of the bacteria contribute greatly to the propagation of the disease in poultry stocks. So far, several candidate genes and quantitative trait loci (QTL for resistance to carrier state or to acute disease have been identified using artificial infection of S. enterica serovar Enteritidis or S. enterica serovar Typhimurium strains in diverse genetic backgrounds, with several different infection procedures and phenotypic assessment protocols. This diversity in experimental conditions has led to a complex sum of results, but allows a more complete description of the disease. Comparisons among studies show that genes controlling resistance to Salmonella differ according to the chicken line studied, the trait assessed and the chicken's age. The loci identified are located on 25 of the 38 chicken autosomal chromosomes. Some of these loci are clustered in several genomic regions, indicating the possibility of a common genetic control for different models. In particular, the genomic regions carrying the candidate genes TLR4 and SLC11A1, the Major Histocompatibility Complex (MHC and the QTL SAL1 are interesting for more in-depth studies. This article reviews the main Salmonella infection models and chicken lines studied under a historical perspective and then the candidate genes and QTL identified so far.

  8. Genetic analysis and molecular mapping of maize (Zea mays L.) stalk rot resistant gene Rfg1.

    Science.gov (United States)

    Yang, D E; Zhang, C L; Zhang, D S; Jin, D M; Weng, M L; Chen, S J; Nguyen, H; Wang, B

    2004-02-01

    One single pathogen Fusarium graminearum Schw. was inoculated to maize inbred lines 1,145 (Resistant) and Y331 (Susceptive), and their progenies of F(1), F(2) and BC(1)F(1) populations. Field statistical data revealed that all of the F(1) individuals were resistant to the disease and that the ratio of resistant plants to susceptive plants was 3:1 in the F(2) population, and 1:1 in the BC(1)F(1 )population. The results revealed that a single dominant gene controls the resistance to F. graminearum Schw. The resistant gene to F. graminearum Schw. was denominated as Rfg1 according to the standard principle of the nomenclature of the plant disease resistant genes. RAPD (randomly amplified polymorphic DNA) combined with BSA (bulked segregant analysis) analysis was carried out in the developed F(2) and BC(1)F(1 )populations, respectively. Three RAPD products screened from the RAPD analysis with 820 Operon 10-mer primers showed the linkage relation with the resistant gene Rfg1. The three RAPD amplification products (OPD-20(1000), OPA-04(1100) and OPY-04(900)) were cloned and their copy numbers were determined. The results indicated that only OPY-04(900) was a single-copy sequence. Then, OPY-04(900) was used as a probe to map the Rfg1 gene with a RIL F(7) mapping population provided by Henry Nguyen, which was developed from the cross "S3xMo17". Rfg1 was primarily mapped on chromosome 6 between the two linked markers OPY-04(900) and umc21 (Bin 6.04-6.05). In order to confirm the primary mapping result, 25 SSR (simple sequence repeat) markers and six RFLP (restriction fragment length polymorphism) markers in the Rfg1 gene-encompassing region were selected, and their linkage relation with Rfg1 was analyzed in our F(2) population. Results indicated that SSR marker mmc0241 and RFLP marker bnl3.03 are flanking the Rfg1 gene with a genetic distance of 3.0 cM and 2.0 cM, respectively. This is the first time to name and to map a single resistant gene of maize stalk rot through a

  9. The impact of melanoma genetics on treatment response and resistance in clinical and experimental studies.

    Science.gov (United States)

    Kunz, M; Hölzel, M

    2017-02-16

    Recent attempts to characterize the melanoma mutational landscape using high-throughput sequencing technologies have identified new genes and pathways involved in the molecular pathogenesis of melanoma. Apart from mutated BRAF, NRAS, and KIT, a series of new recurrently mutated candidate genes with impact on signaling pathways have been identified such as NF1, PTEN, IDH1, RAC1, ARID2, and TP53. Under targeted treatment using BRAF and MEK1/2 inhibitors either alone or in combination, a majority of patients experience recurrences, which are due to different genetic mechanisms such as gene amplifications of BRAF or NRAS, MEK1/2 and PI3K mutations. In principle, resistance mechanisms converge on two signaling pathways, MAPK and PI3K-AKT-mTOR pathways. Resistance may be due to small subsets of resistant cells within a heterogeneous tumor mass not identified by sequencing of the bulk tumor. Future sequencing studies addressing tumor heterogeneity, e.g., by using single-cell sequencing technology, will most likely improve this situation. Gene expression patterns of metastatic lesions were also shown to predict treatment response, e.g., a MITF-low/NF-κB-high melanoma phenotype is resistant against classical targeted therapies. Finally, more recent treatment approaches using checkpoint inhibitors directed against PD-1 and CTLA-4 are very effective in melanoma and other tumor entities. Here, the mutational and neoantigen load of melanoma lesions may help to predict treatment response. Taken together, the new sequencing, molecular, and bioinformatic technologies exploiting the melanoma genome for treatment decisions have significantly improved our understanding of melanoma pathogenesis, treatment response, and resistance for either targeted treatment or immune checkpoint blockade.

  10. Vaginal versus Obstetric Infection Escherichia coli Isolates among Pregnant Women: Antimicrobial Resistance and Genetic Virulence Profile.

    Science.gov (United States)

    Sáez-López, Emma; Guiral, Elisabet; Fernández-Orth, Dietmar; Villanueva, Sonia; Goncé, Anna; López, Marta; Teixidó, Irene; Pericot, Anna; Figueras, Francesc; Palacio, Montse; Cobo, Teresa; Bosch, Jordi; Soto, Sara M

    2016-01-01

    Vaginal Escherichia coli colonization is related to obstetric infections and the consequent development of infections in newborns. Ampicillin resistance among E. coli strains is increasing, which is the main choice for treating empirically many obstetric and neonatal infections. Vaginal E. coli strains are very similar to extraintestinal pathogenic E. coli with regards to the virulence factors and the belonging to phylogroup B2. We studied the antimicrobial resistance and the genetic virulence profile of 82 E. coli isolates from 638 vaginal samples and 63 isolated from endometrial aspirate, placental and amniotic fluid samples from pregnant women with obstetric infections. The prevalence of E. coli in the vaginal samples was 13%, which was significant among women with associated risk factors during pregnancy, especially premature preterm rupture of membranes (pcoli isolates causing obstetric infections showed higher resistance levels than vaginal isolates, particularly for gentamicin (p = 0.001). The most prevalent virulence factor genes were those related to the iron uptake systems revealing clear targets for interventions. More than 50% of the isolates belonged to the virulent B2 group possessing the highest number of virulence factor genes. The ampicillin-resistant isolates had high number of virulence factors primarily related to pathogenicity islands, and the remarkable gentamicin resistance in E. coli isolates from women presenting obstetric infections, the choice of the most appropriate empiric treatment and clinical management of pregnant women and neonates should be carefully made. Taking into account host-susceptibility, the heterogeneity of E. coli due to evolution over time and the geographical area, characterization of E. coli isolates colonizing the vagina and causing obstetric infections in different regions may help to develop interventions and avoid the aetiological link between maternal carriage and obstetric and subsequent puerperal infections.

  11. Persistence of transmitted HIV-1 drug resistance mutations associated with fitness costs and viral genetic backgrounds.

    Directory of Open Access Journals (Sweden)

    Wan-Lin Yang

    2015-03-01

    Full Text Available Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS. All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V to 2.7/100-person-years;[0.7, 10.9] (for 215D. RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs. When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.

  12. Genetic and environmental relationships between change in weight and insulin resistance: the Healthy Twin Study.

    Science.gov (United States)

    Song, Yun-Mi; Lee, Kayoung; Sung, Joohon

    2014-06-01

    We aimed to investigate the association between weight change from 20 years of age and insulin resistance (IR), and genetic and environmental relationships between these traits. In 594 Korean twins and family members (209 men, 385 women, 44.0 ± 10.8 years old), the percentage of weight change was calculated using self-reported body weight at 20 years of age and currently measured bodyweight. IR traits were assessed using fasting plasma glucose and insulin, the homeostasis model assessment of IR index (HOMA-IR), and the quantitative insulin sensitivity check index (QUICKI). Linear mixed analysis was applied after adjusting for household, body mass index (BMI) at the age of 20 years, age, sex, alcohol, smoking, physical activity, and caloric intake. Heritabilities and genetic and environmental correlations were estimated after adjusting for covariates. In 55 monozygotic twin pairs discordant for HOMA-IR level by >0.3, a conditional logistic regression analysis was conducted regarding weight change. Increases in glucose, insulin, and HOMA-IR and a decrease in QUICKI were associated with a higher percentage of weight change (p change since 20 years old, after adjusting for lifestyle-related factors. In conclusion, both genetic and environmental influences played significant roles in the positive association between weight change from 20 years of age and IR.

  13. Prediction of genetic gain from selection indices for disease resistance in papaya hybrids

    Directory of Open Access Journals (Sweden)

    Marcelo Vivas

    2012-12-01

    Full Text Available In order to select superior hybrids for the concentration of favorable alleles for resistance to papaya black spot, powdery mildew and phoma spot, 67 hybrids were evaluated in two seasons, in 2007, in a randomized block design with two replications. Genetic gains were estimated from the selection indices of Smith & Hazel, Pesek & Baker, Williams, Mulamba & Mock, with selection intensity of 22.39%, corresponding to 15 hybrids. The index of Mulamba & Mock showed gains more suitable for the five traits assessed when it was used the criterion of economic weight tentatively assigned. Together, severity of black spot on leaves and on fruits, characteristics considered most relevant to the selection of resistant materials, expressed percentage gain of -44.15%. In addition, there were gains for other characteristics, with negative predicted selective percentage gain. The results showed that the index of Mulamba & Mock is the most efficient procedure for simultaneous selection of papaya hybrid resistant to black spot, powdery mildew and phoma spot.

  14. Genetic variation of resistance to mercury poisoning in steelhead (Oncorhynchus mykiss) alevins.

    Science.gov (United States)

    Blanc, J M; McIntyre, J D; Simon, R C

    2003-09-01

    Newly hatched steelhead alevins were obtained from the factorial breeding of 24 male and 10 female steelhead trout, Oncorhynchus mykiss. Each set of offspring were in a separate cell. They were tested for resistance to intoxication by methylmercuric chloride (CH3HgCl) in water at a nearly constant mercury concentration of 8 microg l(-1). High mortality (81% of the tested alevins) occurred within 2 weeks. Resistance to intoxication, as measured by the time to death, as well as by the survival rate, shared high paternal and maternal variation with negligible interaction. Heritability of time to death was 0.59 +/- 0.17; heritability of survival (all-or-none trait) was lower (0.26 +/- 0.09). Mercury in dead alevins increased with time to death, exhibiting a large environmental variation and (comparatively) negligible genetic influence. At the end of the bioassay, the mercury content in survivors varied widely (3-21 microg g(-1) wet weight). The content was greater than, but correlated with that of dead alevins from the same cells, and it showed little relation with survival rate. Thus, it seems that resistance to poisoning implies a tolerance to high levels of mercury rather than a limitation of its accumulation.

  15. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    Science.gov (United States)

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  16. Natural resistance to experimental feline infectious peritonitis virus infection is decreased rather than increased by positive genetic selection.

    Science.gov (United States)

    Pedersen, Niels C; Liu, Hongwei; Durden, Monica; Lyons, Leslie A

    2016-03-01

    A previous study demonstrated the existence of a natural resistance to feline infectious peritonitis virus (FIPV) among 36% of randomly bred laboratory cats. A genome wide association study (GWAS) on this population suggested that resistance was polygenic but failed to identify any strong specific associations. In order to enhance the power of GWAS or whole genome sequencing to identify strong genetic associations, a decision was made to positively select for resistance over three generations. The inbreeding experiment began with a genetically related parental (P) population consisting of three toms and four queens identified from among the survivors of the earlier study and belonging to a closely related subgroup (B). The subsequent effects of inbreeding were measured using 42 genome-wide STR markers. P generation cats produced 57 first filial (F1) kittens, only five of which (9.0%) demonstrated a natural resistance to FIPV infection. One of these five F1 survivors was then used to produce six F1/P-backcrosses kittens, only one of which proved resistant to FIP. Six of eight of the F1 and F1/P survivors succumbed to a secondary exposure 4-12 months later. Therefore, survival after both primary and secondary infection was decreased rather than increased by positive selection for resistance. The common genetic factor associated with this diminished resistance was a loss of heterozygosity.

  17. New insights into fluoroquinolone resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB mutations.

    Directory of Open Access Journals (Sweden)

    Seidu Malik

    Full Text Available Fluoroquinolone antibiotics are among the most potent second-line drugs used for treatment of multidrug-resistant tuberculosis (MDR TB, and resistance to this class of antibiotics is one criterion for defining extensively drug resistant tuberculosis (XDR TB. Fluoroquinolone resistance in Mycobacterium tuberculosis has been associated with modification of the quinolone resistance determining region (QRDR of gyrA. Recent studies suggest that amino acid substitutions in gyrB may also play a crucial role in resistance, but functional genetic studies of these mutations in M. tuberculosis are lacking. In this study, we examined twenty six mutations in gyrase genes gyrA (seven and gyrB (nineteen to determine the clinical relevance and role of these mutations in fluoroquinolone resistance. Transductants or clinical isolates harboring T80A, T80A+A90G, A90G, G247S and A384V gyrA mutations were susceptible to all fluoroquinolones tested. The A74S mutation conferred low-level resistance to moxifloxacin but susceptibility to ciprofloxacin, levofloxacin and ofloxacin, and the A74S+D94G double mutation conferred cross resistance to all the fluoroquinolones tested. Functional genetic analysis and structural modeling of gyrB suggest that M330I, V340L, R485C, D500A, D533A, A543T, A543V and T546M mutations are not sufficient to confer resistance as determined by agar proportion. Only three mutations, N538D, E540V and R485C+T539N, conferred resistance to all four fluoroquinolones in at least one genetic background. The D500H and D500N mutations conferred resistance only to levofloxacin and ofloxacin while N538K and E540D consistently conferred resistance to moxifloxacin only. Transductants and clinical isolates harboring T539N, T539P or N538T+T546M mutations exhibited low-level resistance to moxifloxacin only but not consistently. These findings indicate that certain mutations in gyrB confer fluoroquinolone resistance, but the level and pattern of resistance varies

  18. Genetic analysis and QTL detection for resistance to white tip disease in rice.

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    Full Text Available The inheritance of resistance to white tip disease (WTDR in rice (Oryza sativa L. was analyzed with an artificial inoculation test in a segregating population derived from the cross between Tetep, a highly resistant variety that was identified in a previous study, and a susceptible cultivar. Three resistance-associated traits, including the number of Aphelenchoides besseyi (A. besseyi individuals in 100 grains (NA, the loss rate of panicle weight (LRPW and the loss rate of the total grains per panicle (LRGPP were analyzed for the detection of the quantitative trait locus (QTL in the population after construction of a genetic map. Six QTLs distributed on chromosomes 3, 5 and 9 were mapped. qNA3 and qNA9, conferring reproduction number of A. besseyi in the panicle, accounted for 16.91% and 12.54% of the total phenotypic variance, respectively. qDRPW5a and qDRPW5b, associated with yield loss, were located at two adjacent marker intervals on chromosome 5 and explained 14.15% and 14.59% of the total phenotypic variation and possessed LOD values of 3.40 and 3.39, respectively. qDRPW9 was considered as a minor QTL and only explained 1.02% of the phenotypic variation. qLRGPP5 contributed to the loss in the number of grains and explained 10.91% of the phenotypic variation. This study provides useful information for the breeding of resistant cultivars against white tip disease in rice.

  19. Drug resistance mutations and genetic diversity in adults treated for HIV type 1 infection in Mauritania.

    Science.gov (United States)

    Fall-Malick, F-Zahra; Tchiakpé, Edmond; Ould Soufiane, Sid'Ahmed; Diop-Ndiaye, Halimatou; Mouhamedoune Baye, Abderrahmane; Ould Horma Babana, Abdallah; Touré Kane, Coumba; Lo, Baidy; Mboup, Souleymane

    2014-03-01

    The aim of this cross-sectional study was to evaluate the drug resistance mutationprofile observed in patients receiving antiretroviral therapy with virological failure and to document the HIV-1 genetic diversity in Mauritania. Eighty-six subjects were included and 65 samples were amplified successfully and sequenced. HIV-1 genotyping was performed using the Agence Nationale de Recherche sur le SIDA AC11 resistance procedure. The median treatment duration was 32 months (range: 6-88) and the median viral load, 5 log10 copies/ml (range: 3.13-7). Fifty-nine patients (90.8%) were on first line regimens including 32.0% (19/59) on triomune fixed-dose and six on second-line therapy with NonNucleoside Reverse Transcriptase plus a protease inhibitor. Forty-seven patients (72.3%) had at least one drug resistance mutation including 73.0% (43/59) on first-line therapy. For the second-line, one out of six patients presented resistance mutations and only one presented PI DRM. Overall, the most common DRMs detected were M184V/I (n = 32; 49.2%), K103N (n = 28; 43%), and Y181C (n = 13; 20%). Thymidine Analog Mutations (TAMs) were found in 26.0% (n = 17) of strains and the most common was T215Y (n = 11, 16.9%). Phylogenetic analysis revealed 17 HIV-1 variants with the predominance of CRF02_AG (n = 42; 64.6%). A high rate of DRM was found in this study and shows the potential need for a structured virological surveillance including viral load quantification and genotyping. Further studies may also be needed in regards to the great variability of HIV-1 strains in Mauritania. © 2013 Wiley Periodicals, Inc.

  20. Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat

    Directory of Open Access Journals (Sweden)

    Philip M. Coan

    2017-03-01

    Full Text Available We previously mapped hypertension-related insulin resistance quantitative trait loci (QTLs to rat chromosomes 4, 12 and 16 using adipocytes from F2 crosses between spontaneously hypertensive (SHR and Wistar Kyoto (WKY rats, and subsequently identified Cd36 as the gene underlying the chromosome 4 locus. The identity of the chromosome 12 and 16 genes remains unknown. To identify whole-body phenotypes associated with the chromosome 12 and 16 linkage regions, we generated and characterised new congenic strains, with WKY donor segments introgressed onto an SHR genetic background, for the chromosome 12 and 16 linkage regions. We found a >50% increase in insulin sensitivity in both the chromosome 12 and 16 strains. Blood pressure and left ventricular mass were reduced in the two congenic strains consistent with the congenic segments harbouring SHR genes for insulin resistance, hypertension and cardiac hypertrophy. Integrated genomic analysis, using physiological and whole-genome sequence data across 42 rat strains, identified variants within the congenic regions in Upk3bl, RGD1565131 and AABR06087018.1 that were associated with blood pressure, cardiac mass and insulin sensitivity. Quantitative trait transcript analysis across 29 recombinant inbred strains showed correlation between expression of Hspb1, Zkscan5 and Pdgfrl with adipocyte volume, systolic blood pressure and cardiac mass, respectively. Comparative genome analysis showed a marked enrichment of orthologues for human GWAS-associated genes for insulin resistance within the syntenic regions of both the chromosome 12 and 16 congenic intervals. Our study defines whole-body phenotypes associated with the SHR chromosome 12 and 16 insulin-resistance QTLs, identifies candidate genes for these SHR QTLs and finds human orthologues of rat genes in these regions that associate with related human traits. Further study of these genes in the congenic strains will lead to robust identification of the

  1. Genetics

    Science.gov (United States)

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  2. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen

    2010-01-01

    Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether...... mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies.......02), and complex V (ATP5B; p=0.005). Our data demonstrate that genetically determined insulin resistance is associated with a co-ordinated down-regulation of OxPhos components both at the transcriptional and translational level. These findings suggest that an impaired biological response to insulin in skeletal...

  3. Genetic diversity studies and identification of SSR markers associated with Fusarium wilt (Fusarium udum) resistance in cultivated pigeonpea (Cajanus cajan)

    Indian Academy of Sciences (India)

    A. K. Singh; V. P. Rai; R. Chand; R. P. Singh; M. N. Singh

    2013-08-01

    Genetic diversity and identification of simple sequence repeat markers correlated with Fusarium wilt resistance was performed in a set of 36 elite cultivated pigeonpea genotypes differing in levels of resistance to Fusarium wilt. Twenty-four polymorphic sequence repeat markers were screened across these genotypes, and amplified a total of 59 alleles with an average high polymorphic information content value of 0.52. Cluster analysis, done by UPGMA and PCA, grouped the 36 pigeonpea genotypes into two main clusters according to their Fusarium wilt reaction. Based on the Kruskal–Wallis ANOVA and simple regression analysis, six simple sequence repeat markers were found to be significantly associated with Fusarium wilt resistance. The phenotypic variation explained by these markers ranged from 23.7 to 56.4%. The present study helps in finding out feasibility of prescreened SSR markers to be used in genetic diversity analysis and their potential association with disease resistance.

  4. Genetic analysis and SSR mapping of stem rust resistance gene from wheat mutant D51

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Wheat (Triticum aestivum L.) stem rust caused by Puccinia graminis f.sp.tritici is one of the main diseases of wheat worldwide.Wheat mutant line D51,which forms a highly susceptive cultivar 'L6239' to the three races notated and cultured with immature embryos,shows resistance to prevailing races 21C3CPH,21C3CKH,and 21C3CTR of P.graminis f.sp.tritici in China.In this study,the number and the expression stages of the resistance genes in mutant D51 were studied using inoculation identification and microsatellite (SSR) marker analysis.Two F1 populations from the crosses of D51×L6239 (60 individuals) and D51 × Chinese Spring (60 individuals),their F2 populations (185 and 175 individuals respectively) at the seedling stage,and one F2 population derived from the cross of D51×L6239 (194 individuals) at the adult stage were inoculated with pathogen race 21C3CPH to test for resistance.All F1 individuals of the two crosses were immune to stem rust at both seedling and adult stages.The response pattern of the three F2 populations showed that the R:S segregation ratio was 3:1,suggesting that the stem rust resistance of D51 is controlled by a single dominant gene,and is expressed during the entire growth period.The identification of the stem rust resistance by the F3 progeny test confirmed the credibility of the F2 population test.Segregating populations and small population analyses were used to identify chromosomal regions and molecular markers linked to the gene by the SSR marker method.A total of 675 SSR markers and 185 individuals of the D51 x L6239 F2 population were used to search genetically linked markers to the target gene.Using Mapmaker 3.0 and Map-draw with Kosambi's function and other options set at default values,molecular mapping revealed that the gene was located on chromosome 5DS,linked with and flanked by two SSR markers,Xgwml90 and Xwmc150,at 18.58 and 21.33 cM,respectively.It has been reported that only one stem rust resistant gene,Sr30,is located on the

  5. Genetic Mapping of a Major Resistance Gene to Pea Aphid (Acyrthosipon pisum in the Model Legume Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Lars G. Kamphuis

    2016-07-01

    Full Text Available Resistance to the Australian pea aphid (PA; Acyrthosiphon pisum biotype in cultivar Jester of the model legume Medicago truncatula is mediated by a single dominant gene and is phloem-mediated. The genetic map position for this resistance gene, APR (Acyrthosiphon pisum resistance, is provided and shows that APR maps 39 centiMorgans (cM distal of the A. kondoi resistance (AKR locus, which mediates resistance to a closely related species of the same genus bluegreen aphid (A. kondoi. The APR region on chromosome 3 is dense in classical nucleotide binding site leucine-rich repeats (NLRs and overlaps with the region harbouring the RAP1 gene which confers resistance to a European PA biotype in the accession Jemalong A17. Further screening of a core collection of M. truncatula accessions identified seven lines with strong resistance to PA. Allelism experiments showed that the single dominant resistance to PA in M. truncatula accessions SA10481 and SA1516 are allelic to SA10733, the donor of the APR locus in cultivar Jester. While it remains unclear whether there are multiple PA resistance genes in an R-gene cluster or the resistance loci identified in the other M. truncatula accessions are allelic to APR, the introgression of APR into current M. truncatula cultivars will provide more durable resistance to PA.

  6. Natural genetic and induced plant resistance, as a control strategy to plant-parasitic nematodes alternative to pesticides.

    Science.gov (United States)

    Molinari, Sergio

    2011-03-01

    Plant-parasitic nematodes are pests of a wide range of economically important crops, causing severe losses to agriculture. Natural genetic resistance of plants is expected to be a valid solution of the many problems nematodes cause all over the world. Progress in resistance applications is particularly important for the less-developed countries of tropical and subtropical regions, since use of resistant cultivars may be the only possible and economically feasible control strategy in those farming systems. Resistance is being considered of particular importance also in modern high-input production systems of developed countries, as the customary reliance on chemical nematicides has been restricted or has come to an end. This review briefly describes the genetic bases of resistance to nematodes in plants and focuses on the chances and problems of its exploitation as a key element in an integrated management program. Much space is dedicated to the major problem of resistance durability, in that the intensive use of resistant cultivars is likely to increasingly induce the selection of virulent populations able to "break" the resistance. Protocols of pest-host suitability are described, as bioassays are being used to evaluate local nematode populations in their potential to be selected on resistant germplasm and endanger resistant crops. The recent progress in using robust and durable resistances against nematodes as an efficient method for growers in vegetable cropping systems is reported, as well as the possible use of chemicals that do not show any unfavorable impact on environment, to induce in plants resistance against plant-parasitic nematodes.

  7. Plant Resistance to Virus Diseases through Genetic Engineering: Can a Similar Approach Control Plant-parasitic Nematodes?

    OpenAIRE

    Reimann-Philipp, Ulrich; Beachy, Roger N.

    1993-01-01

    Genetically engineered resistance against plant virus diseases has been achieved by transforming plants with gene constructs that encode viral sequences. Several successful field trials of virus-resistant transgenic plants have been carried out. Specific features of virus infection make it possible to interfere with different steps of the infection and disease cycle by accumulating products of chimeric genes introduced into transgenic plants. In this paper we describe the most common methods ...

  8. A genetic component of resistance to fungal infection in frog embryos.

    Science.gov (United States)

    Sagvik, Jörgen; Uller, Tobias; Olsson, Mats

    2008-06-22

    The embryo has traditionally been considered to completely rely upon parental strategies to prevent threats to survival posed by predators and pathogens, such as fungi. However, recent evidence suggests that embryos may have hitherto neglected abilities to counter pathogens. Using artificial fertilization, we show that among-family variation in the number of Saprolegnia-infected eggs and embryos in the moor frog, Rana arvalis, cannot be explained by maternal effects. However, analysed as a within-females effect, sire identity had an effect on the degree of infection. Furthermore, relatively more eggs and embryos were infected when eggs were fertilized by sperm from the same, compared with a different, population. These effects were independent of variation in fertilization success. Thus, there is likely to be a significant genetic component in embryonic resistance to fungal infection in frog embryos. Early developmental stages may show more diverse defences against pathogens than has previously been acknowledged.

  9. Genetic Basis of Cry1F-Resistance in a Laboratory Selected Asian Corn Borer Strain and Its Cross-Resistance to Other Bacillus thuringiensis Toxins.

    Science.gov (United States)

    Wang, Yueqin; Wang, Yidong; Wang, Zhenying; Bravo, Alejandra; Soberón, Mario; He, Kanglai

    2016-01-01

    The Asian corn borer (ACB), Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), is the most destructive insect pest of corn in China. Susceptibility to the Cry1F toxin derived from Bacillus thuringiensis has been demonstrated for ACB, suggesting the potential for Cry1F inclusion as part of an insect pest management program. Insects can develop resistance to Cry toxins, which threatens the development and use of Bt formulations and Bt crops in the field. To determine possible resistance mechanisms to Cry1F, a Cry1F-resistant colony of ACB (ACB-FR) that exhibited more than 1700-fold resistance was established through selection experiments after 49 generations of selection under laboratory conditions. The ACB-FR strain showed moderate cross-resistance to Cry1Ab and Cry1Ac of 22.8- and 26.9-fold, respectively, marginally cross-resistance to Cry1Ah (3.7-fold), and no cross-resistance to Cry1Ie (0.6-fold). The bioassay responses of progeny from reciprocal F1 crosses to different Cry1 toxin concentrations indicated that the resistance trait to Cry1Ab, Cry1Ac and Cry1F has autosomal inheritance with no maternal effect or sex linked. The effective dominance (h) of F1 offspring was calculated at different concentrations of Cry1F, showing that h decreased as concentration of Cry1F increased. Finally, the analysis of actual and expected mortality of the progeny from a backcross (F1 × resistant strain) indicated that the inheritance of the resistance to Cry1F in ACB-FR was due to more than one locus. The present study provides an understanding of the genetic basis of Cry1F resistance in ACB-FR and also shows that pyramiding Cry1F with Cry1Ah or Cry1Ie could be used as a strategy to delay the development of ACB resistance to Bt proteins.

  10. Biofilm formation on tympanostomy tubes depends on methicillin-resistant Staphylococcus aureus genetic lineage.

    Science.gov (United States)

    Jotić, Ana; Božić, Dragana D; Milovanović, Jovica; Pavlović, Bojan; Ješić, Snežana; Pelemiš, Mijomir; Novaković, Marko; Ćirković, Ivana

    2016-03-01

    Bacterial biofilm formation has been implicated in the high incidence of persistent otorrhoea after tympanostomy tube insertion. The aim of the study was to investigate whether biofilm formation on tympanostomy tubes depends on the genetic profile of methicillin-resistant Staphylococcus aureus (MRSA) strains. Capacity of biofilm formation on fluoroplastic tympanostomy tubes (TTs) was tested on 30 MRSA strains. Identification and methicillin resistance were confirmed by PCR for nuc and mecA genes. Strains were genotypically characterised (SCCmec, agr and spa typing). Biofilm formation was tested in microtiter plate and on TTs. Tested MRSA strains were classified into SCCmec type I (36.7 %), III (23.3 %), IV (26.7 %) and V (13.3 %), agr type I (50 %), II (36.7 %) and III (13.3 %), and 5 clonal complexes (CCs). All tested MRSA strains showed ability to form biofilm on microtiter plate. Capacity of biofilm formation on TTs was as following: 13.3 % of strains belonged to the category of no biofilm producers, 50 % to the category of weak biofilm producers and 36.7 % to moderate biofilm producers. There was a statistically significant difference between CC, SCCmec and agr types and the category of biofilm production on TTs tubes (p biofilm, and CC8 and agrI type with a low amount of biofilm. Biofilm formation by MRSA on TTs is highly dependent on genetic characteristics of the strains. Therefore, MRSA genotyping may aid the determination of the possibility of biofilm-related post-tympanostomy tube otorrhea.

  11. Landscape refuges delay resistance of the European corn borer to Bt-maize: a demo-genetic dynamic model.

    Science.gov (United States)

    Tyutyunov, Yuri; Zhadanovskaya, Ekaterina; Bourguet, Denis; Arditi, Roger

    2008-08-01

    We constructed a reaction-diffusion model of the development of resistance to transgenic insecticidal Bt crops in pest populations. Kostitzin's demo-genetic model describes local interactions between three competing pest genotypes with alleles conferring resistance or susceptibility to transgenic plants, the spatial spread of insects being modelled by diffusion. This new approach makes it possible to combine a spatial demographic model of population dynamics with classical genetic theory. We used this model to examine the effects of pest dispersal and of the size and shape of the refuge on the efficiency of the "high-dose/refuge" strategy, which was designed to prevent the development of resistance in populations of insect pests, such as the European corn borer, Ostrinia nubilalis Hübner (Lepidoptera, Crambidae). We found that, with realistic combinations of refuge size and pest dispersal, the development of resistance could be considerably delayed. With a small to medium-sized farming area, contiguous refuge plots are more efficient than a larger number of smaller refuge patches. We also show that the formal coupling of classical Fisher-Haldane-Wright population genetics equations with diffusion terms inaccurately describes the development of resistance in a spatially heterogeneous pest population, notably overestimating the speed with which Bt resistance is selected in populations of pests targeted by Bt crops.

  12. Identification of Resistance to Wet Bubble Disease and Genetic Diversity in Wild and Cultivated Strains of Agaricus bisporus

    Directory of Open Access Journals (Sweden)

    Yongping Fu

    2016-09-01

    Full Text Available Outbreaks of wet bubble disease (WBD caused by Mycogone perniciosa are increasing across the world and seriously affecting the yield of Agaricus bisporus. However, highly WBD-resistant strains are rare. Here, we tested 28 A. bisporus strains for WBD resistance by inoculating M. perniciosa spore suspension on casing soil, and assessed genetic diversity of these strains using 17 new simple sequence repeat (SSR markers developed in this study. We found that 10 wild strains originating from the Tibetan Plateau in China were highly WBD-resistant strains, and 13 cultivated strains from six countries were highly susceptible strains. A total of 88 alleles were detected in these 28 strains, and the observed number of alleles per locus ranged from 2 to 8. Cluster and genetic structure analysis results revealed the wild resources from China have a relatively high level of genetic diversity and occur at low level of gene flow and introgression with cultivated strains. Moreover, the wild strains from China potentially have the consensus ancestral genotypes different from the cultivated strains and evolved independently. Therefore, the highly WBD-resistant wild strains from China and newly developed SSR markers could be used as novel sources for WBD-resistant breeding and quantitative trait locus (QTL mapping of WBD-resistant gene of A. bisporus.

  13. Identification of Resistance to Wet Bubble Disease and Genetic Diversity in Wild and Cultivated Strains of Agaricus bisporus

    Science.gov (United States)

    Fu, Yongping; Wang, Xinxin; Li, Dan; Liu, Yuan; Song, Bing; Zhang, Chunlan; Wang, Qi; Chen, Meiyuan; Zhang, Zhiwu; Li, Yu

    2016-01-01

    Outbreaks of wet bubble disease (WBD) caused by Mycogone perniciosa are increasing across the world and seriously affecting the yield of Agaricus bisporus. However, highly WBD-resistant strains are rare. Here, we tested 28 A. bisporus strains for WBD resistance by inoculating M. perniciosa spore suspension on casing soil, and assessed genetic diversity of these strains using 17 new simple sequence repeat (SSR) markers developed in this study. We found that 10 wild strains originating from the Tibetan Plateau in China were highly WBD-resistant strains, and 13 cultivated strains from six countries were highly susceptible strains. A total of 88 alleles were detected in these 28 strains, and the observed number of alleles per locus ranged from 2 to 8. Cluster and genetic structure analysis results revealed the wild resources from China have a relatively high level of genetic diversity and occur at low level of gene flow and introgression with cultivated strains. Moreover, the wild strains from China potentially have the consensus ancestral genotypes different from the cultivated strains and evolved independently. Therefore, the highly WBD-resistant wild strains from China and newly developed SSR markers could be used as novel sources for WBD-resistant breeding and quantitative trait locus (QTL) mapping of WBD-resistant gene of A. bisporus. PMID:27669211

  14. Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements.

    Science.gov (United States)

    Richard, D; Ravigné, V; Rieux, A; Facon, B; Boyer, C; Boyer, K; Grygiel, P; Javegny, S; Terville, M; Canteros, B I; Robène, I; Vernière, C; Chabirand, A; Pruvost, O; Lefeuvre, P

    2017-04-01

    Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the copLAB gene system. The emergence of resistant strains has since been reported in Réunion and Martinique. Using microsatellite-based genotyping and copLAB PCR, we demonstrated that the genetic structure of the copper-resistant strains from these three regions was made up of two distant clusters and varied for the detection of copLAB amplicons. In order to investigate this pattern more closely, we sequenced six copper-resistant X. citri pv. citri strains from Argentina, Martinique and Réunion, together with reference copper-resistant Xanthomonas and Stenotrophomonas strains using long-read sequencing technology. Genes involved in copper resistance were found to be strain dependent with the novel identification in X. citri pv. citri of copABCD and a cus heavy metal efflux resistance-nodulation-division system. The genes providing the adaptive trait were part of a mobile genetic element similar to Tn3-like transposons and included in a conjugative plasmid. This indicates the system's great versatility. The mining of all available bacterial genomes suggested that, within the bacterial community, the spread of copper resistance associated with mobile elements and their plasmid environments was primarily restricted to the Xanthomonadaceae family. © 2017 John Wiley & Sons Ltd.

  15. Genetic control of common bean (Phaseolus vulgaris resistance to powdery mildew (Erysiphe polygoni

    Directory of Open Access Journals (Sweden)

    Rezende Viviane Ferreira

    1999-01-01

    Full Text Available Genetic control of common bean (Phaseolus vulgaris resistance to powdery mildew (Erysiphe polygoni was studied using segregating populations from the bean variety crosses Jalo x ESAL 686 and ESAL 550 x ESAL 686. F2 plants, together with the parents, were inoculated and evaluated using a scale of values from one (plant without symptoms to nine (completely infected plant. F2 plants were harvested individually, and F2:3 families were obtained. These families were evaluated in an 11 x 11 and 12 x 12 simple lattice statistical design for the Jalo x ESAL 686 and ESAL 550 x ESAL 686 crosses, respectively, using the same value scale as the F2 generation. The segregation observed in F2 plants and F2:3 families indicated that two genes are involved in genetic control, due to a double recessive epistasis. The high linear regression coefficient (b between F2 plants and their F2:3 family, 0.66 for ESAL 550 x ESAL 686 cross, and 0.71 for Jalo x ESAL 686 cross, showed that the trait is highly heritable.

  16. Genetic Association Between Insulin Resistance And Total Cholesterol In Type 2 Diabetes Mellitus - A Preliminary Observation

    Directory of Open Access Journals (Sweden)

    Hettihewa Lukshmy Menik

    2005-05-01

    Full Text Available We investigated the degree of genetic association between insulin resistance (IR with type 2 diabetes mellitus (DM and abnormalities in lipid metabolism in 42 patients. IR was assessed by fasting insulin test (FI, McAuley (McA, HOMA and QUICKI methods. IR was detected in 34 (81% patients by FI, McA and in 39 (93% patients by HOMA and QUICKI. 26 (62% patients had family history of DM and 23 (89% of them displayed IR by FI & McA. 24 of them (92% displayed IR by HOMA and QUICKI. Our results suggest that association between the family history of DM and IR were statistically significant by chi-square test (P<0.05. Further, 29 (69% patients had elevated total cholesterol levels. Association between elevated total cholesterol and IR as assessed by FI test was also statistically significant (x2=4.6; p<0.05. Results of our study indicate the statistically significant genetic association of IR with abnormal cholesterol metabolism and family history of DM.

  17. [Genetic iron overloads and hepatic insulin-resistance iron overload syndrome: an update].

    Science.gov (United States)

    Ruivard, M

    2009-01-01

    Hepcidin inhibits intestinal absorption of iron through internalisation of ferroportin. Its discovery helps to better understand the genetic iron overloads. The insulin resistance-hepatic iron overload (IR-HIO)--also coined as the dysmetabolic iron overload syndrome--is a common cause or iron overload. This article is a review about genetic iron overloads and IR-HIO. Type 1 haemochromatosis C282Y +/+ accounts for 95% of the haemochromatosis. Hepatic fibrosis may develop if serum ferritin is higher than 1000 microg/l but can be partially reversible with phlebotomies. Juvenile haemochromatosis (type 2) and type 3 haemochromatosis (mutation of the transferrin receptor 2) are very uncommon. Several mutations of the ferroportin gene can cause usually mild iron overload of autosomal dominant inheritance. Aceruleoplasminemia is an uncommon disorder involving cerebral iron overload. The causes and consequences of the IR-HIO are unknown. Treatment of IR-HIO is focused on metabolic syndrome and phlebotomies are questionable because the overload is moderate and intestinal absorption of iron seems to be low. MRI (or other non invasive methods) is needed to truly assess iron overload because serum ferritin overestimates it in metabolic syndrome. Several points have to be elucidated: how HFE interferes with hepcidin in type 1 haemochromatosis; the causes of variability of iron overload; the benefits of populations screening; the advantage of phlebotomies in IR-HIO; the use of new oral iron chelators.

  18. Influenza virus drug resistance: a time-sampled population genetics perspective.

    Directory of Open Access Journals (Sweden)

    Matthieu Foll

    2014-02-01

    Full Text Available The challenge of distinguishing genetic drift from selection remains a central focus of population genetics. Time-sampled data may provide a powerful tool for distinguishing these processes, and we here propose approximate Bayesian, maximum likelihood, and analytical methods for the inference of demography and selection from time course data. Utilizing these novel statistical and computational tools, we evaluate whole-genome datasets of an influenza A H1N1 strain in the presence and absence of oseltamivir (an inhibitor of neuraminidase collected at thirteen time points. Results reveal a striking consistency amongst the three estimation procedures developed, showing strongly increased selection pressure in the presence of drug treatment. Importantly, these approaches re-identify the known oseltamivir resistance site, successfully validating the approaches used. Enticingly, a number of previously unknown variants have also been identified as being positively selected. Results are interpreted in the light of Fisher's Geometric Model, allowing for a quantification of the increased distance to optimum exerted by the presence of drug, and theoretical predictions regarding the distribution of beneficial fitness effects of contending mutations are empirically tested. Further, given the fit to expectations of the Geometric Model, results suggest the ability to predict certain aspects of viral evolution in response to changing host environments and novel selective pressures.

  19. Genetically Engineered Corn Rootworm Resistance: Potential for Reduction of Human Health Effects From Pesticides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective and Methods Insecticide use, grower preferences regarding genetically engineered (GE) corn resistant to corn rootworm (CRW), and the health effects of using various CRW insecticides (organophosphates, pyrethroids, fipronil and carbamates) are reviewed for current and future farm practices. Results Pest damage to corn has been reduced only one-third by insecticide applications. Health costs from insecticide use appear significant, but costs attributable to CRW control are not quantifiable from available data. Methods reducing health-related costs of insecticide-based CRW control should be evaluated. As a first step, organophosphate insecticide use has been reduced as they have high acute toxicity and risk of long-term neurological consequences. A second step is to use agents which more specifically target the CRW. Conclusion Whereas current insecticides may be poisonous to many species of insects, birds, mammals and humans, a protein derived from Bacillus thurigiensis and produced in plants via genetic modification can target the specific insect of CRW (Coleoptra), sparing other insect and non-insect species from injury.

  20. Genetic transformation of Nannochloropsis oculata with a bacterial phleomycin resistance gene as dominant selective marker

    Science.gov (United States)

    Ma, Xiaolei; Pan, Kehou; Zhang, Lin; Zhu, Baohua; Yang, Guanpin; Zhang, Xiangyang

    2016-04-01

    The gene ble from Streptoalloteichus hindustanus is widely used as a selective antibiotic marker. It can control the phleomycin resistance, and significantly increase the tolerance of hosts to zeocin. The unicellular marine microalga Nannochloropsis oculata is extremely sensitive to zeocin. We selected ble as the selective marker for the genetic transformation of N. oculata. After the algal cells at a density of 2×107 cells mL-1 was digested with 4% hemicellulase and 2% driselase for 1 h, the protoplasts accounted for 90% of the total. The ble was placed at the downstream of promoter HSP70A-RUBS2 isolated from Chlamydomonas reinhardtii, yielding a recombinant expression construct pMS188. The construct was transferred into the protoplasts through electroporation (1 kV, 15 μS). The transformed protoplasts were cultured in fresh f/2 liquid medium, and selected on solid f/2 medium supplemented with 500 ng mL-1 zeocin. The PCR result proved that ble existed in the transformants. Three transformants had been cultured for at least 5 generations without losing ble. Southern blotting analysis showed that the ble has been integrated into the genome of N. oculata. The ble will serve as a new dominant selective marker in genetic engineering N. oculata.

  1. Variability of yield traits and disease resistance in winter triticale genetic resources accessions

    Directory of Open Access Journals (Sweden)

    Wanda Kociuba

    2014-07-01

    Full Text Available A systematic gathering of winter triticale accessions was started in Poland in 1982 by the Institute of Genetics, Breeding and Seed Science at the Agricultural University in Lublin (at present its name is: Institute of Genetics, Breeding and Plant Biotechnology at the University of Life Sciences in Lublin. First, breeding lines obtained in local breeding stations were gathered. Next, accessions were imported from the following world gene banks: Beltsville, Gatersleben, and VIR. Interesting hybrid materials obtained in research centers were also included in the collection. Now, the collection includes 2349 accessions (1329 of winter triticale and 1020 of spring triticale. The evaluation is conducted in a 4-year cycle of field experiments using the same methods. The gathered accessions represent a large range of variability of both morphological and commercial traits. The large differentiation of accessions especially concerns traits such as: plant height, number and weight of grains per spi- ke, protein content in grain, field resistance to powdery mildew, brown rust and leaf and spike diseases.

  2. Nucleotide Base Variation of Blast Disease Resistance Gene Pi33 in Rice Selected Broad Genetic Background

    Directory of Open Access Journals (Sweden)

    DWINITA WIKAN UTAMI

    2011-09-01

    Full Text Available Rice is one of the most important crops for human beings, thus increasing productivity are continually persecuted. Blast disease can reduce the rate of productivity of rice cultivation. Therefore, the program of blast disease-resistant varieties needs to do effectively. One of broad-spectrum blast disease-resistant gene is Pi33. This study was aimed to identify the variation in the sequence of nucleotide bases of Pi33 gene in five interspesific lines which derived from Bio46 (IR64/Oryza rufipogon and CT13432 crossing. DNA of five rice lines were amplified using the spesific primer for Pi33, G1010. Amplification results purified through Exonuclease 1 and Shrimp Alkaline Phosphatase protocols. Labelling using fluorescent dyes done before sequencing nucleotide base using CEQ8000 instrument. The results showed that lines number 28 showed introgesion of the three control parent genome (subspecies of Indica, subspecies of Japonica, and O. rufipogon while the Lines number 79, 136, and 143 were identical to Indica genome. Strain number 195 was identical to Japonica genome. These broad genetic background lines promise as durable performance to attack the expansion of the dynamic nature of the pathogen to blast. The result of ortholog sequence analysis found conserved nucleotide base sequence (CAGCAGCC which involved in heterotrimeric G-protein group. This protein has role as plant receptor for recognizing pathogen elicitor in interaction of rice and blast pathogen.

  3. A genetic marker allele conferring resistance to Ascaris suum in pigs

    DEFF Research Database (Denmark)

    Skallerup, Per; Thamsborg, Stig M.; Jørgensen, Claus B.;

    2013-01-01

    of the AB genotype. We used different indicators of resistance (worm burden, faecal egg counts, number of liver white spots and A. suum-specific serum IgG antibody levels) of which the first two traits were considered core traits and the last two traits were associated traits. Pigs of the AA genotype had...... lower mean macroscopic worm burden (2.4 vs. 19.3), lower mean total worm burden (26.5 vs. 70.1) and excreted fewer A. suum eggs at week 8 p.i. (mean number of eggs/g faeces: 238 vs. 1259) than pigs of the AB genotype. However, none of these differences were significant (P- values of 0.06, 0.06 and 0...... a similar trend. The data presented here provide suggestive evidence that resistant pigs can be selected using a genetic marker, TXNIP, and that it is the B allele which is conferring susceptibility to A. suum infection. Our work confirmed that SNP ARNT is another diagnostic marker candidate for A. suum...

  4. Genetic basis of resistances to chlorfenapyr and etoxazole in the two-spotted spider mite (Acari: Tetranychidae).

    Science.gov (United States)

    Uesugi, R; Goka, K; Osakabe, Mh

    2002-12-01

    We studied the genetic basis of resistance to two new acaricides, chlorfenapyr and etoxazole, which have different chemical structures and modes of action in the two-spotted spider mite, Tetranychus urticae Koch. The resistance ratios calculated from the LC50s of resistant and susceptible strains were 483 for chlorfenapyr and >100,000 for etoxazole. Mortality caused by the two acaricides in F1 progeny from reciprocal crosses between the resistant and susceptible strains indicated that the modes of inheritance of resistance to chlorfenapyr and etoxazole were completely dominant and completely recessive, respectively. Mortality in F2 progeny indicated that for both acaricides, the resistance was under monogenic control. Repeated backcross experiments indicated a linkage relationship among the two acaricide resistances and malate dehydrogenase, although phosphoglucoisomerase was not linked with them. The recombination ratio between the resistances was 14.8%. From this result, we suggest that heavy spraying of the two acaricides will lead to apparent cross-resistance as a consequence of crossing over; the two resistance genes are so close to each other that it would be difficult to segregate them once they came together on the same chromosome.

  5. Genetics, realized heritability and preliminary mechanism of spinosad resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae): an invasive pest from Pakistan.

    Science.gov (United States)

    Afzal, Muhammad Babar Shahzad; Shad, Sarfraz Ali; Abbas, Naeem

    2015-12-01

    The cotton mealybug, Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae) has gained recognition as a key pest due to its invasive nature throughout the world. The P. solenopsis has a wide range of host plants and damages the cotton crop in various parts of the world. In view of the economic importance of this pest, a study on selection, inheritance and mechanism of spinosad resistance was conducted on P. solenopsis. Selection of field collected P. solenopsis for seven generations with spinosad resulted in a high resistance ratio of 282.45-fold. Genetic studies of spinosad resistance in P. solenopsis indicated that maternal effects are not involved in spinosad resistance; and resistance development is an autosomal and incompletely dominant trait. The number of genes involved in spinosad resistance was determined to be more than one, suggesting that resistance is controlled by multiple loci. The realized heritability (h (2)) value for spinosad resistance was 0.94. Synergism bioassays of spinosad with piperonyl butoxide and S,S,S-tributyl phosphorotrithioate showed that spinosad resistance in P. solenopsis could be due to esterase only. The study provides the basic information for implementation of effective resistance management strategies to control P. solenopsis.

  6. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels.

    Science.gov (United States)

    Mahendran, Yuvaraj; Jonsson, Anna; Have, Christian T; Allin, Kristine H; Witte, Daniel R; Jørgensen, Marit E; Grarup, Niels; Pedersen, Oluf; Kilpeläinen, Tuomas O; Hansen, Torben

    2017-05-01

    Fasting plasma levels of branched-chain amino acids (BCAAs) are associated with insulin resistance, but it remains unclear whether there is a causal relation between the two. We aimed to disentangle the causal relations by performing a Mendelian randomisation study using genetic variants associated with circulating BCAA levels and insulin resistance as instrumental variables. We measured circulating BCAA levels in blood plasma by NMR spectroscopy in 1,321 individuals from the ADDITION-PRO cohort. We complemented our analyses by using previously published genome-wide association study (GWAS) results from the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) (n = 46,186) and from a GWAS of serum BCAA levels (n = 24,925). We used a genetic risk score (GRS), calculated using ten established fasting serum insulin associated variants, as an instrumental variable for insulin resistance. A GRS of three variants increasing circulating BCAA levels was used as an instrumental variable for circulating BCAA levels. Fasting plasma BCAA levels were associated with higher HOMA-IR in ADDITION-PRO (β 0.137 [95% CI 0.08, 0.19] p = 6 × 10(-7)). However, the GRS for circulating BCAA levels was not associated with fasting insulin levels or HOMA-IR in ADDITION-PRO (β -0.011 [95% CI -0.053, 0.032] p = 0.6 and β -0.011 [95% CI -0.054, 0.031] p = 0.6, respectively) or in GWAS results for HOMA-IR from MAGIC (β for valine-increasing GRS -0.012 [95% CI -0.069, 0.045] p = 0.7). By contrast, the insulin-resistance-increasing GRS was significantly associated with increased BCAA levels in ADDITION-PRO (β 0.027 [95% CI 0.005, 0.048] p = 0.01) and in GWAS results for serum BCAA levels (β 1.22 [95% CI 0.71, 1.73] p = 4 × 10(-6), β 0.96 [95% CI 0.45, 1.47] p = 3 × 10(-4), and β 0.67 [95% CI 0.16, 1.18] p = 0.01 for isoleucine, leucine and valine levels, respectively) and instrumental variable analyses in ADDITION

  7. Genetic diversity, virulotyping and antimicrobial resistance susceptibility of Yersinia enterocolitica isolated from pigs and porcine products in Malaysia.

    Science.gov (United States)

    Thong, Kwai Lin; Tan, Lai Kuan; Ooi, Peck Toung

    2017-05-24

    The objectives of the present study were to determine the antimicrobial resistance, virulotypes and genetic diversity of Yersinia enterocolitica isolated from uncooked porcine food and live pigs in Malaysia. Thirty-two non-repeat Y. enterocolitica strains of three bioserotypes (3 variant/O:3, n = 27; 1B/O:8, n = 3; 1A/O:5, n = 2) were analysed. Approximately 90% of strains were multidrug-resistant with a multiple antibiotic resistance index Malaysia. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. HIV-1 genetic diversity and antiretroviral drug resistance among individuals from Roraima state, northern Brazil

    Science.gov (United States)

    Leão, Renato Augusto Carvalho; Granja, Fabiana; Naveca, Felipe Gomes

    2017-01-01

    The HIV-1 epidemic in Brazil has spread towards the Northern country region, but little is known about HIV-1 subtypes and prevalence of HIV strains with resistance mutations to antiretrovirals in some of the Northern states. HIV-1 protease (PR) and reverse transcriptase (RT) sequences were obtained from 73 treatment-naive and -experienced subjects followed between 2013 and 2014 at a public health reference unit from Roraima, the northernmost Brazilian state. The most prevalent HIV-1 clade observed in the study population was the subtype B (91%), followed by subtype C (9%). Among 12 HIV-1 strains from treatment-naïve patients, only one had a transmitted drug resistance mutation for NNRTI. Among 59 treatment-experienced patients, 12 (20%) harbored HIV-1 strains with acquired drug resistance mutations (ADRM) that reduce the susceptibility to two classes of antiretroviral drugs (NRTI and NNRTI or NRTI and PI), and five (8%) harbored HIV-1 strains with ADRM that reduced susceptibility to only one class of antiretroviral drugs (NNRTI or PI). No patients harboring HIV strains with reduced susceptibility to all three classes of antiretroviral drugs were detected. A substantial fraction of treatment-experienced patients with (63%) and without (70%) ADRM had undetectable plasma viral loads (<40 copies/ml) at the time of sampling. Among treatment-experienced with plasma viral loads above 2,000 copies/ml, 44% displayed no ADRM. This data showed that the HIV-1 epidemic in Roraima displayed a much lower level of genetic diversity and a lower prevalence of ADRM than that described in other Brazilian states. PMID:28301548

  9. Genetic knockdown and pharmacological inhibition of parasite multidrug resistance transporters disrupts egg production in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Ravi S Kasinathan

    2011-12-01

    Full Text Available P-glycoprotein (Pgp and multidrug resistance-associated proteins (MRPs are ATP-dependent transporters involved in efflux of toxins and xenobiotics from cells. When overexpressed, these transporters can mediate multidrug resistance (MDR in mammalian cells, and changes in Pgp expression and sequence are associated with drug resistance in helminths. In addition to the role they play in drug efflux, MDR transporters are essential components of normal cellular physiology, and targeting them may prove a useful strategy for development of new therapeutics or of compounds that enhance the efficacy of current anthelmintics. We previously showed that expression of Schistosoma mansoni MDR transporters increases in response to praziquantel (PZQ, the current drug of choice against schistosomiasis, and that reduced PZQ sensitivity correlates with higher levels of these parasite transporters. We have also shown that PZQ inhibits transport by SMDR2, a Pgp orthologue from S. mansoni, and that PZQ is a likely substrate of SMDR2. Here, we examine the physiological roles of SMDR2 and SmMRP1 (the S. mansoni orthologue of MRP1 in S. mansoni adults, using RNAi to knock down expression, and pharmacological agents to inhibit transporter function. We find that both types of treatments disrupt parasite egg deposition by worms in culture. Furthermore, administration of different MDR inhibitors to S. mansoni-infected mice results in a reduction in egg burden in host liver. These schistosome MDR transporters therefore appear to play essential roles in parasite egg production, and can be targeted genetically and pharmacologically. Since eggs are responsible for the major pathophysiological consequences of schistosomiasis, and since they are also the agents for transmission of the disease, these results suggest a potential strategy for reducing disease pathology and spread.

  10. Host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae: from genes to the field.

    Science.gov (United States)

    Barbary, Arnaud; Djian-Caporalino, Caroline; Palloix, Alain; Castagnone-Sereno, Philippe

    2015-12-01

    Root-knot nematodes (RKNs) heavily damage most solanaceous crops worldwide. Fortunately, major resistance genes are available in a number of plant species, and their use provides a safe and economically relevant strategy for RKN control. From a structural point of view, these genes often harbour NBS-LRR motifs (i.e. a nucleotide binding site and a leucine rich repeat region near the carboxy terminus) and are organised in syntenic clusters in solanaceous genomes. Their introgression from wild to cultivated plants remains a challenge for breeders, although facilitated by marker-assisted selection. As shown with other pathosystems, the genetic background into which the resistance genes are introgressed is of prime importance to both the expression of the resistance and its durability, as exemplified by the recent discovery of quantitative trait loci conferring quantitative resistance to RKNs in pepper. The deployment of resistance genes at a large scale may result in the emergence and spread of virulent nematode populations able to overcome them, as already reported in tomato and pepper. Therefore, careful management of the resistance genes available in solanaceous crops is crucial to avoid significant reduction in the duration of RKN genetic control in the field. From that perspective, only rational management combining breeding and cultivation practices will allow the design and implementation of innovative, sustainable crop production systems that protect the resistance genes and maintain their durability.

  11. Evolved polygenic herbicide resistance in Lolium rigidum by low-dose herbicide selection within standing genetic variation.

    Science.gov (United States)

    Busi, Roberto; Neve, Paul; Powles, Stephen

    2013-02-01

    The interaction between environment and genetic traits under selection is the basis of evolution. In this study, we have investigated the genetic basis of herbicide resistance in a highly characterized initially herbicide-susceptible Lolium rigidum population recurrently selected with low (below recommended label) doses of the herbicide diclofop-methyl. We report the variability in herbicide resistance levels observed in F1 families and the segregation of resistance observed in F2 and back-cross (BC) families. The selected herbicide resistance phenotypic trait(s) appear to be under complex polygenic control. The estimation of the effective minimum number of genes (N E), depending on the herbicide dose used, reveals at least three resistance genes had been enriched. A joint scaling test indicates that an additive-dominance model best explains gene interactions in parental, F1, F2 and BC families. The Mendelian study of six F2 and two BC segregating families confirmed involvement of more than one resistance gene. Cross-pollinated L. rigidum under selection at low herbicide dose can rapidly evolve polygenic broad-spectrum herbicide resistance by quantitative accumulation of additive genes of small effect. This can be minimized by using herbicides at the recommended dose which causes high mortality acting outside the normal range of phenotypic variation for herbicide susceptibility.

  12. Expression of rabbit IL-4 by recombinant myxoma viruses enhances virulence and overcomes genetic resistance to myxomatosis.

    Science.gov (United States)

    Kerr, P J; Perkins, H D; Inglis, B; Stagg, R; McLaughlin, E; Collins, S V; Van Leeuwen, B H

    2004-06-20

    Rabbit IL-4 was expressed in the virulent standard laboratory strain (SLS) and the attenuated Uriarra (Ur) strain of myxoma virus with the aim of creating a Th2 cytokine environment and inhibiting the development of an antiviral cell-mediated response to myxomatosis in infected rabbits. This allowed testing of a model for genetic resistance to myxomatosis in wild rabbits that have undergone 50 years of natural selection for resistance to myxomatosis. Expression of IL-4 significantly enhanced virulence of both virulent and attenuated virus strains in susceptible (laboratory) and resistant (wild) rabbits. SLS-IL-4 completely overcame genetic resistance in wild rabbits. The pathogenesis of SLS-IL-4 was compared in susceptible and resistant rabbits. The results support a model for resistance to myxomatosis of an enhanced innate immune response controlling virus replication and allowing an effective antiviral cell-mediated immune response to develop in resistant rabbits. Expression of IL-4 did not overcome immunity to myxomatosis induced by immunization.

  13. Evolution and genetic population structure of prickly lettuce (Lactuca serriola) and its RGC2 resistance gene cluster

    NARCIS (Netherlands)

    Kuang, H.; Eck, van H.J.; Sicard, D.; Michelmore, R.; Nevo, E.

    2008-01-01

    Genetic structure and diversity of natural populations of prickly lettuce (Lactuca serriola) were studied using AFLP markers and then compared with the diversity of the RGC2 disease resistance gene cluster. Screening of 696 accessions from 41 populations using 319 AFLP markers showed that eastern Tu

  14. Selection for Cry3Bb1 resistance in a genetically diverse population of nondiapausing Western Corn Rootworm (Coleoptera: Chrysomelidae)

    Science.gov (United States)

    Five short-diapause laboratory lines of western corn rootworm (Diabrotica virgifera virgifera) were selected for resistance to MON863, a variety of corn genetically modified with the Bacillus thuringiensis (Bt) transgene that expresses the Cry3Bb1 endotoxin. Three of the selecte...

  15. Registration of 42 blast resistant medium grain rice genetic stocks with suitable agronomic, yield, milling yield, and grain characteristics

    Science.gov (United States)

    Rice blast disease caused by the filamentous ascomycete fungus Magnaporthe oryzae Cav. [Magnaporthe grisea (Herbert) Barr.] is one of the most threatening rice diseases in the southern United States. In the present study, 42 rice (Oryza sativa L.) blast resistant genetic stocks (GSOR102501 to 201542...

  16. Genetic analysis and location of gene for resistance to stripe rust in wheat international differential host Strubes Dickkopf

    Indian Academy of Sciences (India)

    Feng Jing; Xu Jiao-Jiao; Lin Rin-Ming; He Yue-Qiu; Xu Shi-Chang

    2013-08-01

    Strubes Dickkopf is the sixth differential in the world set for wheat stripe (yellow) rust. It is very important to clarify its genetic character of resistance to stripe rust and to develop the molecular markers linked to resistance genes. The NIL Taichung 29*6/Strubes Dickkopf, which was obtained by Strubes Dickkopf as the gene donor and Taichung 29 as the genetic background through backcross breeding, was crossed with the recurrent parent Taichung 29, inbred, and backcrossed to obtain the F1, F2 and BC1 population. The genetic analysis of the cross Taichung 29/(Taichung 29*6/Strubes Dickkopf) was assessed by inoculating the rust race CYR26 at seedling stage. Bulked segregant analysis (BSA) and F2 segregation analysis were used for detecting polymorphic primers to locate the gene. The resistance of the NIL Taichung 29*6/Strubes Dickkopf to CYR26 was controlled by a single dominant gene, named YrSD. The primer pair Xbarc59 on 5B was linked to YrSD and the genetic distance between Xbarc59 and YrSD was 2.4 cM. The molecular marker Xbarc59 closely linked to the gene YrSD could be used in marker-assisted selection for resistance to stripe rust in wheat breeding programmes.

  17. 'HoneySweet' (C5), the first genetically engineered Plum pox virus-resistant plum (Prunus domestica L.) cultivar

    Science.gov (United States)

    ‘HoneySweet’ plum was released by the U.S. Department of Agriculture, Agricultural Research Service, to provide U.S. growers and P. domestica plum breeders with a high fruit quality plum cultivar resistant to Plum pox virus (PPV). ‘HoneySweet’ was developed through genetic engineering utilizing the...

  18. Genetic and physical analysis of a YAC contig spanning the fungal disease resistance locus Asc of tomato (Lycopersicon esculentum)

    NARCIS (Netherlands)

    Mesbah, L.A.; Kneppers, T.J.A.; Takken, F.L.W.; Laurent, P.; Hille, J.; Nijkamp, H.J.J.

    1998-01-01

    The Alternaria stem canker disease of tomato is caused by the necrotrophic fungal pathogen Alternaria alternata f. sp. lycopersici (AAL). The fungus produces AAL toxins that kill the plant tissue. Resistance to the fungus segregates as a single locus, called Asc, and has been genetically mapped on c

  19. Modelled in vivo HIV fitness under drug selective pressure and estimated genetic barrier towards resistance are predictive for virological response

    DEFF Research Database (Denmark)

    Deforche, Koen; Cozzi-Lepri, Alessandro; Theys, Kristof

    2008-01-01

    BACKGROUND: A method has been developed to estimate a fitness landscape experienced by HIV-1 under treatment selective pressure as a function of the genotypic sequence thereby also estimating the genetic barrier to resistance. METHODS: We evaluated the performance of two estimated fitness landsca...

  20. Genetic Diversity and Antibiotic Resistance Among Coagulase-Negative Staphylococci Recovered from Birds of Prey in Portugal.

    Science.gov (United States)

    Sousa, Margarida; Silva, Nuno; Igrejas, Gilberto; Sargo, Roberto; Benito, Daniel; Gómez, Paula; Lozano, Carmen; Manageiro, Vera; Torres, Carmen; Caniça, Manuela; Poeta, Patrícia

    2016-12-01

    Wild animal populations in contact with antimicrobials and antimicrobial resistant bacteria that are daily released into the environment are able to become unintentional hosts of these resistant microorganisms. To clarify this issue, our study evaluated the presence of antibiotic resistance determinants on coagulase-negative staphylococci recovered from birds of prey and studied their genetic relatedness by pulsed-field gel electrophoresis (PFGE). The unusual vga(A) and erm(T) genes, which confer resistance to clindamycin and erythromycin, respectively, were detected in Staphylococcus sciuri or Staphylococcus xylosus strains and the tet(K) gene in Staphylococcus kloosii. The PFGE patterns showed that three S. xylosus (isolated of Strix aluco and Otus scops) and two S. sciuri (recovered from Strix aluco and Milvus migrans) were clonally indistinguishable. These animals could be a source of unusual antimicrobial resistance determinants for highly used antibiotics in veterinary clinical practice.

  1. Determining resistance to mastitis in a bovine subject involves detecting presence or absence of genetic marker associated with trait indicative of mastitis resistance of the bovine subject and/or off-spring from it

    DEFF Research Database (Denmark)

    2010-01-01

    -spring from it, where the genetic marker is located on the bovine chromosome BTA11 in the region flanked by and including the zeta-chain associated protein 70kD (ZAP70) and CD8B genes, where the presence or absence of the genetic marker is indicative of mastitis resistance. USE - For determining resistance...

  2. Using Landscape Genetics Simulations for Planting Blister Rust Resistant Whitebark Pine in the US Northern Rocky Mountains

    Science.gov (United States)

    Landguth, Erin L.; Holden, Zachary A.; Mahalovich, Mary F.; Cushman, Samuel A.

    2017-01-01

    Recent population declines to the high elevation western North America foundation species whitebark pine, have been driven by the synergistic effects of the invasive blister rust pathogen, mountain pine beetle (MPB), fire exclusion, and climate change. This has led to consideration for listing whitebark pine (WBP) as a threatened or endangered species under the Endangered Species Act, which has intensified interest in developing management strategies for maintaining and restoring the species. An important, but poorly studied, aspect of WBP restoration is the spatial variation in adaptive genetic variation and the potential of blister rust resistant strains to maintain viable populations in the future. Here, we present a simulation modeling framework to improve understanding of the long-term genetic consequences of the blister rust pathogen, the evolution of rust resistance, and scenarios of planting rust resistant genotypes of whitebark pine. We combine climate niche modeling and eco-evolutionary landscape genetics modeling to evaluate the effects of different scenarios of planting rust-resistant genotypes and impacts of wind field direction on patterns of gene flow. Planting scenarios showed different levels for local extirpation of WBP and increased population-wide blister rust resistance, suggesting that the spatial arrangement and choice of planting locations can greatly affect survival rates of whitebark pine. This study presents a preliminary, but potentially important, framework for facilitating the conservation of whitebark pine. PMID:28239390

  3. Using Landscape Genetics Simulations for Planting Blister Rust Resistant Whitebark Pine in the US Northern Rocky Mountains.

    Science.gov (United States)

    Landguth, Erin L; Holden, Zachary A; Mahalovich, Mary F; Cushman, Samuel A

    2017-01-01

    Recent population declines to the high elevation western North America foundation species whitebark pine, have been driven by the synergistic effects of the invasive blister rust pathogen, mountain pine beetle (MPB), fire exclusion, and climate change. This has led to consideration for listing whitebark pine (WBP) as a threatened or endangered species under the Endangered Species Act, which has intensified interest in developing management strategies for maintaining and restoring the species. An important, but poorly studied, aspect of WBP restoration is the spatial variation in adaptive genetic variation and the potential of blister rust resistant strains to maintain viable populations in the future. Here, we present a simulation modeling framework to improve understanding of the long-term genetic consequences of the blister rust pathogen, the evolution of rust resistance, and scenarios of planting rust resistant genotypes of whitebark pine. We combine climate niche modeling and eco-evolutionary landscape genetics modeling to evaluate the effects of different scenarios of planting rust-resistant genotypes and impacts of wind field direction on patterns of gene flow. Planting scenarios showed different levels for local extirpation of WBP and increased population-wide blister rust resistance, suggesting that the spatial arrangement and choice of planting locations can greatly affect survival rates of whitebark pine. This study presents a preliminary, but potentially important, framework for facilitating the conservation of whitebark pine.

  4. Genetic variability and resistance of cultivars of cowpea [Vigna unguiculata (L.) Walp] to cowpea weevil (Callosobruchus maculatus Fabr.).

    Science.gov (United States)

    Vila Nova, M X; Leite, N G A; Houllou, L M; Medeiros, L V; Lira Neto, A C; Hsie, B S; Borges-Paluch, L R; Santos, B S; Araujo, C S F; Rocha, A A; Costa, A F

    2014-03-31

    The cowpea weevil (Callosobruchus maculatus Fabr.) is the most destructive pest of the cowpea bean; it reduces seed quality. To control this pest, resistance testing combined with genetic analysis using molecular markers has been widely applied in research. Among the markers that show reliable results, the inter-simple sequence repeats (ISSRs) (microsatellites) are noteworthy. This study was performed to evaluate the resistance of 27 cultivars of cowpea bean to cowpea weevil. We tested the resistance related to the genetic variability of these cultivars using ISSR markers. To analyze the resistance of cultivars to weevil, a completely randomized test design with 4 replicates and 27 treatments was adopted. Five pairs of the insect were placed in 30 grains per replicate. Analysis of variance showed that the number of eggs and emerged insects were significantly different in the treatments, and the means were compared by statistical tests. The analysis of the large genetic variability in all cultivars resulted in the formation of different groups. The test of resistance showed that the cultivar Inhuma was the most sensitive to both number of eggs and number of emerged adults, while the TE96-290-12-G and MNC99-537-F4 (BRS Tumucumaque) cultivars were the least sensitive to the number of eggs and the number of emerged insects, respectively.

  5. Genetic mapping, marker assisted selection and allelic relationships for the Pu 6 gene conferring rust resistance in sunflower.

    Science.gov (United States)

    Bulos, Mariano; Vergani, Pablo Nicolas; Altieri, Emiliano

    2014-09-01

    Rust resistance in the sunflower line P386 is controlled by Pu 6 , a gene which was reported to segregate independently from other rust resistant genes, such as R 4 . The objectives of this work were to map Pu 6 , to provide and validate molecular tools for its identification, and to determine the linkage relationship of Pu 6 and R 4 . Genetic mapping of Pu 6 with six markers covered 24.8 cM of genetic distance on the lower end of linkage Group 13 of the sunflower consensus map. The marker most closely linked to Pu 6 was ORS316 at 2.5 cM in the distal position. ORS316 presented five alleles when was assayed with a representative set of resistant and susceptible lines. Allelism test between Pu 6 and R 4 indicated that both genes are linked at a genetic distance of 6.25 cM. This is the first confirmation based on an allelism test that at least two members of the R adv /R 4 /R 11 / R 13a /R 13b /Pu 6 cluster of genes are at different loci. A fine elucidation of the architecture of this complex locus will allow designing and constructing completely new genomic regions combining genes from different resistant sources and the elimination of the linkage drag around each resistant gene.

  6. Transcriptome Profiling and Genetic Study Reveal Amplified Carboxylesterase Genes Implicated in Temephos Resistance, in the Asian Tiger Mosquito Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Linda Grigoraki

    2015-05-01

    Full Text Available The control of Aedes albopictus, a major vector for viral diseases, such as dengue fever and chikungunya, has been largely reliant on the use of the larvicide temephos for many decades. This insecticide remains a primary control tool for several countries and it is a potential reliable reserve, for emergency epidemics or new invasion cases, in regions such as Europe which have banned its use. Resistance to temephos has been detected in some regions, but the mechanism responsible for the trait has not been investigated.Temephos resistance was identified in an Aedes albopictus population isolated from Greece, and subsequently selected in the laboratory for a few generations. Biochemical assays suggested the association of elevated carboxylesterases (CCE, but not target site resistance (altered AChE, with this phenotype. Illumina transcriptomic analysis revealed the up-regulation of three transcripts encoding CCE genes in the temephos resistant strain. CCEae3a and CCEae6a showed the most striking up-regulation (27- and 12-folds respectively, compared to the reference susceptible strain; these genes have been previously shown to be involved in temephos resistance also in Ae. aegypti. Gene amplification was associated with elevated transcription levels of both CCEae6a and CCEae3a genes. Genetic crosses confirmed the genetic link between CCEae6a and CCEae3a amplification and temephos resistance, by demonstrating a strong association between survival to temephos exposure and gene copy numbers in the F2 generation. Other transcripts, encoding cytochrome P450s, UDP-glycosyltransferases (UGTs, cuticle and lipid biosynthesis proteins, were upregulated in resistant mosquitoes, indicating that the co-evolution of multiple mechanisms might contribute to resistance.The identification of specific genes associated with insecticide resistance in Ae. albopictus for the first time is an important pre-requirement for insecticide resistance management. The genomic

  7. Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean

    Directory of Open Access Journals (Sweden)

    Ana M. eGonzález

    2015-03-01

    Full Text Available Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes anthracnose disease in common bean. Despite the genetics of anthracnose resistance has been studied for a long time, few quantitative trait loci (QTLs studies have been conducted on this species. The present work examines the genetic basis of quantitative resistance to races 23 and 1545 of C. lindemuthianum in different organs (stem, leaf and petiole. A population of 185 recombinant inbred lines (RIL derived from the cross PMB0225 x PHA1037 was evaluated for anthracnose resistance under natural and artificial photoperiod growth conditions. Using multi-environment QTL mapping approach, 10 and 16 main effect QTLs were identified for resistance to anthracnose races 23 and 1545, respectively. The homologous genomic regions corresponding to 17 of the 26 main effect QTLs detected were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL proteins. Among them, it is worth noting that the main effect QTLs detected on linkage group 05 for resistance to race 1545 in stem, petiole and leaf were located within a 1.2 Mb region. The NL gene Phvul.005G117900 is located in this region, which can be considered an important candidate gene for the non-organ-specific QTL identified here. Furthermore, a total of 39 epistatic QTL (E-QTLs (21 for resistance to race 23 and 18 for resistance to race 1545 involved in 20 epistatic interactions (eleven and nine interactions for resistance to races 23 and 1545, respectively were identified. None of the main and epistatic QTLs detected displayed significant environment interaction effects. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for anthracnose resistance improvement in common bean through application of marker-assisted selection (MAS.

  8. Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean.

    Science.gov (United States)

    González, Ana M; Yuste-Lisbona, Fernando J; Rodiño, A Paula; De Ron, Antonio M; Capel, Carmen; García-Alcázar, Manuel; Lozano, Rafael; Santalla, Marta

    2015-01-01

    Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes anthracnose disease in common bean. Despite the genetics of anthracnose resistance has been studied for a long time, few quantitative trait loci (QTLs) studies have been conducted on this species. The present work examines the genetic basis of quantitative resistance to races 23 and 1545 of C. lindemuthianum in different organs (stem, leaf and petiole). A population of 185 recombinant inbred lines (RIL) derived from the cross PMB0225 × PHA1037 was evaluated for anthracnose resistance under natural and artificial photoperiod growth conditions. Using multi-environment QTL mapping approach, 10 and 16 main effect QTLs were identified for resistance to anthracnose races 23 and 1545, respectively. The homologous genomic regions corresponding to 17 of the 26 main effect QTLs detected were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL) proteins. Among them, it is worth noting that the main effect QTLs detected on linkage group 05 for resistance to race 1545 in stem, petiole and leaf were located within a 1.2 Mb region. The NL gene Phvul.005G117900 is located in this region, which can be considered an important candidate gene for the non-organ-specific QTL identified here. Furthermore, a total of 39 epistatic QTL (E-QTLs) (21 for resistance to race 23 and 18 for resistance to race 1545) involved in 20 epistatic interactions (eleven and nine interactions for resistance to races 23 and 1545, respectively) were identified. None of the main and epistatic QTLs detected displayed significant environment interaction effects. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for anthracnose resistance improvement in common bean through application of marker-assisted selection (MAS).

  9. Comparative analysis of antimicrobial resistance and genetic diversity of Campylobacter from broilers slaughtered in Poland.

    Science.gov (United States)

    Wieczorek, Kinga; Denis, Edyta; Osek, Jacek

    2015-10-01

    In the current study, the relationship of Campylobacter jejuni and Campylobacter coli strains isolated at slaughter was investigated using comparative analysis of antimicrobial resistance (AMR), virulence gene (VG) and PFGE profiling. A total of 254 Campylobacter isolates from poultry caeca and corresponding carcasses, including 139 C. jejuni and 115 C. coli strains were tested. The most prevalent resistance profiles observed in C. jejuni were ciprofloxacin, nalidixic acid and tetracycline (46 out of 139, 33.1% isolates) as well as ciprofloxacin, nalidixic acid, tetracycline and streptomycin among C. coli strains (34 out of 115, 29.6%). Multi-resistance was found more frequently among C. coli than C. jejuni (PCampylobacter isolates tested. All Campylobacter strains were classified into 154 different PFGE types. Among them, 56 profiles (28 C. jejuni and 28 C. coli) were common for at least two isolates including 9 clusters covering from 4 to 9 strains. Campylobacter composite types generated by a combination of 154 PFGE types, 10 AMR profiles and 19 VG patterns divided 178 distinct types with 95% similarity. The majority of the composite profiles (76 for C. jejuni and 58 for C. coli; 75.3% in total) included only one bacterial isolate. Furthermore, 11 pairs of C. jejuni and 12 pairs of C. coli from caeca and the corresponding carcasses isolated from the same places possessed the identical PFGE, AMR and VG patterns. This study demonstrated that C. jejuni and C. coli isolated from poultry in Poland showed to have a high genetic diversity and a weak clonal population structure. However, the composite analysis revealed a strong evidence for cross-contamination of chicken carcasses during the slaughter process. Additionally, our results confirm that Campylobacter may easily contaminate poultry carcasses at slaughter process and spread around country. More than half of Campylobacter strains tested (50.4%) were resistant to at least two classes of antimicrobials, i

  10. Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain.

    Directory of Open Access Journals (Sweden)

    Corey M Hudson

    Full Text Available Multidrug-resistant Enterobacteriaceae are emerging as a serious infectious disease challenge. These strains can accumulate many antibiotic resistance genes though horizontal transfer of genetic elements, those for β-lactamases being of particular concern. Some β-lactamases are active on a broad spectrum of β-lactams including the last-resort carbapenems. The gene for the broad-spectrum and carbapenem-active metallo-β-lactamase NDM-1 is rapidly spreading. We present the complete genome of Klebsiella pneumoniae ATCC BAA-2146, the first U.S. isolate found to encode NDM-1, and describe its repertoire of antibiotic-resistance genes and mutations, including genes for eight β-lactamases and 15 additional antibiotic-resistance enzymes. To elucidate the evolution of this rich repertoire, the mobile elements of the genome were characterized, including four plasmids with varying degrees of conservation and mosaicism and eleven chromosomal genomic islands. One island was identified by a novel phylogenomic approach, that further indicated the cps-lps polysaccharide synthesis locus, where operon translocation and fusion was noted. Unique plasmid segments and mosaic junctions were identified. Plasmid-borne blaCTX-M-15 was transposed recently to the chromosome by ISEcp1. None of the eleven full copies of IS26, the most frequent IS element in the genome, had the expected 8-bp direct repeat of the integration target sequence, suggesting that each copy underwent homologous recombination subsequent to its last transposition event. Comparative analysis likewise indicates IS26 as a frequent recombinational junction between plasmid ancestors, and also indicates a resolvase site. In one novel use of high-throughput sequencing, homologously recombinant subpopulations of the bacterial culture were detected. In a second novel use, circular transposition intermediates were detected for the novel insertion sequence ISKpn21 of the ISNCY family, suggesting that it uses

  11. Cross-resistance, genetics, and realized heritability of resistance to fipronil in the house fly, Musca domestica (Diptera: Muscidae): a potential vector for disease transmission.

    Science.gov (United States)

    Abbas, Naeem; Khan, Hafiz Azhar Ali; Shad, Sarfraz Ali

    2014-04-01

    Houseflies, Musca domestica (L.), are ubiquitous pests that have the potential to spread a variety of pathogens to humans, poultries, and dairies. Pesticides are commonly used for the management of this pest. Fipronil is a GABA-gated chloride channel-inhibiting insecticide that has been commonly used for the management of different pests including M. domestica throughout the world. Many pests have developed resistance to this insecticide. A field-collected strain of M. domestica was selected with fipronil for continuous 11 generations to assess the cross-resistance, genetics, and realized heritability for designing a resistance management strategy. Laboratory bioassays were performed using the feeding method of mixing insecticide concentrations with 20% sugar solutions and cotton soaks dipped in insecticide solutions were provided to tested adult flies. Bioassay results at G12 showed that the fipronil-selected strain developed a resistance ratio of 140-fold compared to the susceptible strain. Synergism bioassay with piperonyl butoxide (PBO) and S,S,S,-tributyl phosphorotrithioate (DEF) indicated that fipronil resistance was associated with microsomal oxidase and also esterase. Reciprocal crosses between resistant and susceptible strains showed an autosomal and incompletely dominant resistance to fipronil. The LC50 values of F1 and F'1 strains were not significantly different and dominance values were 0.74 and 0.64, respectively. The resistance to fipronil was completely recessive (D(ML) = 0.00) at the highest dose and incompletely dominant at the lowest dose (D(ML) = 0.87). The monogenic resistance based on chi-square goodness of fit test and calculation of the minimum number of segregating genes showed that resistance to fipronil is controlled by multiple genes. The fipronil resistance strain confirmed very low cross-resistance to emamectin benzoate and spinosad while no cross-resistance to chlorpyrifos and acetamiprid when compared to that of the field population

  12. Identification of a genetic marker associated with the resistance to Schistosoma mansoni infection using random amplified polymorphic DNA analysis

    Directory of Open Access Journals (Sweden)

    Abdel-Hamid Z Abdel-Hamid

    2006-12-01

    Full Text Available In schistosomiasis, the host/parasite interaction remains not completely understood. Many questions related to the susceptibility of snails to infection by respective trematode still remain unanswered. The control of schistosomiasis requires a good understanding of the host/parasite association. In this work, the susceptibility/resistance to Schistosoma mansoni infection within Biomphalaria alexandrina snails were studied starting one month post infection and continuing thereafter weekly up to 10 weeks after miracidia exposure. Genetic variations between susceptible and resistant strains to Schistosoma infection within B. alexandrina snails using random amplified polymorphic DNA analysis technique were also carried out. The results showed that 39.8% of the examined field snails were resistant, while 60.2% of these snails showed high infection rates.In the resistant genotype snails, OPA-02 primer produced a major low molecular weight marker 430 bp. Among the two snail strains there were interpopulational variations, while the individual specimens from the same snail strain, either susceptible or resistant, record semi-identical genetic bands. Also, the resistant character was ascendant in contrast to a decline in the susceptibility of snails from one generation to the next.

  13. Resistance Markers and Genetic Diversity in Acinetobacter baumannii Strains Recovered from Nosocomial Bloodstream Infections

    Directory of Open Access Journals (Sweden)

    Hanoch S. I. Martins

    2014-01-01

    Full Text Available In this study, phenotypic and genotypic methods were used to detect metallo-β-lactamases, cephalosporinases and oxacillinases and to assess genetic diversity among 64 multiresistant Acinetobacter baumannii strains recovered from blood cultures in five different hospitals in Brazil from December 2008 to June 2009. High rates of resistance to imipenem (93.75% and polymyxin B (39.06% were observed using the disk diffusion (DD method and by determining the minimum inhibitory concentration (MIC. Using the disk approximation method, thirty-nine strains (60.9% were phenotypically positive for class D enzymes, and 51 strains (79.6% were positive for cephalosporinase (AmpC. Using the E-test, 60 strains (93.75% were positive for metallo-β-lactamases (MβLs. All strains were positive for at least one of the 10 studied genes; 59 (92.1% contained blaVIM-1, 79.6% contained blaAmpC, 93.7% contained blaOXA23 and 84.3% contained blaOXA51. Enterobacteria Repetitive Intergenic Consensus (ERIC-PCR analysis revealed a predominance of certain clones that differed from each other. However, the same band pattern was observed in samples from the different hospitals studied, demonstrating correlation between the genotypic and phenotypic results. Thus, ERIC-PCR is an appropriate method for rapidly clustering genetically related isolates. These results suggest that defined clonal clusters are circulating within the studied hospitals. These results also show that the prevalence of MDR A. baumannii may vary among clones disseminated in specific hospitals, and they emphasize the importance of adhering to appropriate infection control measures.

  14. Adiposity in children born small for gestational age is associated with ?-cell function, genetic variants for insulin resistance and response to growth hormone treatment

    OpenAIRE

    2015-01-01

    This is the author accepted manuscript. The final version is available from Endocrine Society via http://dx.doi.org/10.1210/jc.2015-3019 Background: Genetic susceptibility to insulin resistance is associated with lower adiposity in adults. Insulin resistance, and therefore adiposity, may alter sensitivity to Growth Hormone (GH). We aimed to determine the relationship between adiposity, genetic susceptibility to insulin resistance or insulin secretion, and response to GH treatment in s...

  15. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalactiae capsular type Ib: is genetic resistance correlated?

    Science.gov (United States)

    Streptococcus (S.) iniae and S. agalactiae are both economically important Gram positive bacterial pathogens affecting the globally farmed tilapia (Oreochromis spp.). Historically control of these bacteria in tilapia culture has included biosecurity, therapeutants and vaccination strategies. Genet...

  16. Biosafety risk assessment approaches for insect-resistant genetically modified crops

    Directory of Open Access Journals (Sweden)

    Inaam Ullah

    2017-02-01

    Full Text Available Background: Environmental risk assessment (ERA is imperative for commercial release of insect resistant, genetically modified crops (IR-GMCs.An insect specific, spider venom peptideω-HXTX-Hv1a (Hvt was successfully expressed in cotton plants. The cotton plants producing Hvt protein have demonstrated resistance against economically important insect pest species. The study was performed to assess the effects of Hvt producing cotton plants on Honey bees (Apis mellifera. Methods: Three approaches were used to evaluate the effects of Hvt protein on adults of honeybees; whole plant assays in flight cages, in vitro assays with pollen of Hvt-cotton, and assays with elevated levels of purified Hvt protein. Pollens of Bt cotton or purified Bt proteins were used as control. Results: The field experiments did not yield any meaningful data due to high rate of mortality in all treatments including the control. However, the laboratory experiments provided conclusive results in which Hvt, purified or in pollens, did not affect the survival or longevity of the bees compared to the control. During the course of study we were able to compare the quality, effectiveness and economics of different experiments. Conclusions: We conclude that Hvt either purified or produced in cotton plants do not affect the survival or longevity of honey bees. We are also of the view that starting at laboratory level assays not only gives meaningful data but also saves a lot of time and money that can be spent on other important questions regarding safety of a particular transgenic crop. Hence, a purpose-based, tiered approach could be the best choice for pre-release ERA of IR-GMCs.

  17. Salmonella Indiana as a cause of abortion in ewes: Genetic diversity and resistance patterns.

    Science.gov (United States)

    Luque, I; Echeita, A; León, J; Herrera-León, S; Tarradas, C; González-Sanz, R; Huerta, B; Astorga, R J

    2009-03-02

    Salmonella enterica subspecies enterica Indiana, a food-borne serovar uncommon in most countries, was responsible for an outbreak of abortion in a flock of Lacaune dairy ewes in southern Spain. Drinking water and feedstuff samples were analysed in an attempt to determine the source of the infection. Pigeons (Columba livia) and turtledoves (Streptopelia turtur) in close contact with the ewes were captured and examined for the bacterium. Seventeen S. Indiana strains were isolated from the ewes and wild birds and the genetic similarity among them analysed by Pulsed Field Gel Electrophoresis (PFGE) after the digestion of their genomic DNA with the restriction enzyme XbaI. The results suggest the wild birds might be responsible for the outbreak in the ewes. The strains recovered were fully susceptible to 15 out of the 16 antimicrobial agents tested: ampicillin, amoxycillin clavulanate, cephalothin, ceftriaxone, gentamicin, neomycin, streptomycin, tetracycline, ciprofloxacin, enrofloxacin, sulphonamides, trimethoprim-sulphamethoxazole, apramycin, colistin and chloramphenicol. Differences in the resistance pattern to nalidixic acid were observed; 11 strains (64.7%) were nalidixic acid resistant (R-Nx) and 6 (35.3%) sensitive (S-Nx). Among the R-Nx strains, a substitution of Gly to Cys at position 81 (Gly81àCys) of the gyrA gene in 10 strains isolated from wild birds and ovine foetuses, and of Asp to Tyr at position 87 (Asp87àTyr) in one strain isolated from ewe faeces, were revealed by sequencing the gene. To control the outbreak, enrofloxacin treatment was administered for 5 days. The same therapy was used to prevent infection during following gestation cycles, administering the antimicrobial agent at presentation and over 4 weeks before birth. Anti-bird meshes and closed drinking and feeding troughs were also installed to prevent further contact of the ewes with wild birds.

  18. Genetic transformation via somatic embryogenesis to establish herbicide-resistant opium poppy.

    Science.gov (United States)

    Facchini, Peter J; Loukanina, Natalia; Blanche, Vincent

    2008-04-01

    A reliable genetic transformation protocol via somatic embryogenesis has been developed for the production of fertile, herbicide-resistant opium poppy plants. Transformation was mediated by Agrobacterium tumefaciens using the pCAMBIA3301 vector, which harbors the phosphinothricin acetyltransferase (pat) gene driven by a tandem repeat of the cauliflower mosaic virus (CaMV) 35S promoter and the beta-glucuronidase (gus) structural gene driven by a single copy of the CaMV 35S promoter between left- and right-border sequences. Co-cultivation of explants and A. tumefaciens was performed in the presence of 50 microM ATP and 50 microM MgCl(2). Root explants pre-cultured on callus induction medium were used for transformation. Herbicide-resistant, proliferating callus was obtained from explants on a medium containing both 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyladenine (BA). Globular embryogenic callus, induced by removal of the BA from the medium, was placed on a hormone-free medium to form somatic embryos, which were converted to plantlets under specific culture conditions. Plantlets with roots were transferred to soil, allowed to mature and set seed. Both pat and gus gene transcripts, and PAT and GUS enzyme activities were detected in the transgenic lines tested. Histochemical localization of GUS activity in T(1) opium poppy plants revealed transgene expression in most tissues of all plant organs. The protocol required 8-12 months to establish transgenic T(1) seed stocks and was developed using a commercial opium poppy cultivar that produces high levels of pharmaceutical alkaloids.

  19. Ethanol from lignocellulose - Fermentation inhibitors, detoxification and genetic engineering of Saccharomyces cerevisiae for enhanced resistance

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Simona

    2000-07-01

    Ethanol can be produced from lignocellulose by first hydrolysing the material to sugars, and then fermenting the hydrolysate with the yeast Saccharomyces cerevisiae. Hydrolysis using dilute sulphuric acid has advantages over other methods, however, compounds which inhibit fermentation are generated during this kind of hydrolysis. The inhibitory effect of aliphatic acids, furans, and phenolic compounds was investigated. The generation of inhibitors during hydrolysis was studied using Norway spruce as raw material. It was concluded that the decrease in the fermentability coincided with increasing harshness of the hydrolysis conditions. The decrease in fermentability was not correlated solely to the content of aliphatic acids or furan derivatives. To increase the fermentability, detoxification is often employed. Twelve detoxification methods were compared with respect to the chemical composition of the hydrolysate and the fermentability after treatment. The most efficient detoxification methods were anion-exchange at pH 10.0, overliming and enzymatic detoxification with the phenol-oxidase laccase. Detailed analyses of ion exchange revealed that anion exchange and unspecific hydrophobic interactions greatly contributed to the detoxification effect, while cation exchange did not. The comparison of detoxification methods also showed that phenolic compounds are very important fermentation inhibitors, as their selective removal with laccase had a major positive effect on the fermentability. Selected compounds; aliphatic acids, furans and phenolic compounds, were characterised with respect to their inhibitory effect on ethanolic fermentation by S. cerevisiae. When aliphatic acids or furans were compared, the inhibitory effects were found to be in the same range, but the phenolic compounds displayed widely different inhibitory effects. The possibility of genetically engineering S. cerevisiae to achieve increased inhibitor resistance was explored by heterologous expression of

  20. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine.

    Science.gov (United States)

    Marguerit, Elisa; Boury, Christophe; Manicki, Aurélie; Donnart, Martine; Butterlin, Gisèle; Némorin, Alice; Wiedemann-Merdinoglu, Sabine; Merdinoglu, Didier; Ollat, Nathalie; Decroocq, Stéphane

    2009-05-01

    A genetic linkage map of grapevine was constructed using a pseudo-testcross strategy based upon 138 individuals derived from a cross of Vitis vinifera Cabernet Sauvignon x Vitis riparia Gloire de Montpellier. A total of 212 DNA markers including 199 single sequence repeats (SSRs), 11 single strand conformation polymorphisms (SSCPs) and two morphological markers were mapped onto 19 linkage groups (LG) which covered 1,249 cM with an average of 6.7 cM between markers. The position of SSR loci in the maps presented here is consistent with the genome sequence. Quantitative traits loci (QTLs) for several traits of inflorescence and flower morphology, and downy mildew resistance were investigated. Two novel QTLs for downy mildew resistance were mapped on linkage groups 9 and 12, they explain 26.0-34.4 and 28.9-31.5% of total variance, respectively. QTLs for inflorescence morphology with a large effect (14-70% of total variance explained) were detected close to the Sex locus on LG 2. The gene of the enzyme 1-aminocyclopropane-1-carboxylic acid synthase, involved in melon male organ development and located in the confidence interval of all QTLs detected on the LG 2, could be considered as a putative candidate gene for the control of sexual traits in grapevine. Co-localisations were found between four QTLs, detected on linkage groups 1, 14, 17 and 18, and the position of the floral organ development genes GIBBERELLIN INSENSITIVE1, FRUITFULL, LEAFY and AGAMOUS. Our results demonstrate that the sex determinism locus also determines both flower and inflorescence morphological traits.

  1. Genetic Diversity among Ciprofloxacin Resistant Enterococcus faecalis Isolated from Clinical Specimens with Pulsed-Field Gel Electrophoresis (PFGE Method

    Directory of Open Access Journals (Sweden)

    Moinian M

    2013-03-01

    Full Text Available Abstract Background and objective: Resistance to ciprofloxacin among Enterococcus faecalis (E.f isolates especially in UTI makes difficulties for treatment. In this study, the genetic diversity using PFGE method and detection of resistance genes including parC, gyrA , gyrB and parE among ciprofloxacin resistant E.f isolated from clinical specimens, are determined. Materials and methods: A total of 384 entreococcal isolates were collected from 6 hospitals and 3 private laboratories in Tehran and 50 ciprofloxacin resistant E.f isolates were obtained. Identification of species and resistance genes were done by PCR method. Antimicrobial and minimum inhibitory concentration (MICs tests were assayed with standard methods and finally genotyping was accomplished using PFGE method. Results: The range of ciprofloxacin MICs was 16 to 512 µg/ml. All of these isolates contained parC, 98 % gyrA , gyrB and 80 % parE genes. PFGE analysis, grouped 50 strains in 11 common types and 7 single types. The P4, P9 and P10 genotypes were shared between hospital and community isolates. Conclusion: According to these results the E.f isolates showed high clonal diversity. Because of the ciprofloxacin high MICs level among common pulsotypes we concluded that they have various distributions which may be due to highly transmission of resistant genes among enterococci. Indeed the colonized patients with these resistant isolates are reservoir for releasing of the resistant genes to community which requires more surveillance programs.

  2. Genetic characterization of field-evolved resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Laemophloeidae: Coleoptera).

    Science.gov (United States)

    Jagadeesan, Rajeswaran; Collins, Patrick J; Nayak, Manoj K; Schlipalius, David I; Ebert, Paul R

    2016-02-01

    Inheritance of resistance to phosphine fumigant was investigated in three field-collected strains of rusty grain beetle, Cryptolestes ferrugineus, Susceptible (S-strain), Weakly Resistant (Weak-R) and Strongly Resistant (Strong-R). The strains were purified for susceptibility, weak resistance and strong resistance to phosphine, respectively, to ensure homozygosity of resistance genotype. Crosses were established between S-strain×Weak-R, S-strain×Strong-R and Weak-R×Strong-R, and the dose mortality responses to phosphine of these strains and their F1, F2 and F1-backcross progeny were obtained. The fumigations were undertaken at 25°C and 55% RH for 72h. Weak-R and Strong-R showed resistance factors of 6.3× and 505× compared with S-strain at the LC50. Both weak and strong resistances were expressed as incompletely recessive with degrees of dominance of -0.48 and -0.43 at the LC50, respectively. Responses of F2 and F1-backcross progeny indicated the existence of one major gene in Weak-R, and at least two major genes in Strong-R, one of which was allelic with the major factor in Weak-R. Phenotypic variance analyses also estimated that the number of independently segregating genes conferring weak resistance was 1 (nE=0.89) whereas there were two genes controlling strong resistance (nE=1.2). The second gene, unique to Strong-R, interacted synergistically with the first gene to confer a very high level of resistance (~80×). Neither of the two major resistance genes was sex linked. Despite the similarity of the genetics of resistance to that previously observed in other pest species, a significant proportion (~15 to 30%) of F1 individuals survived at phosphine concentrations higher than predicted. Thus it is likely that additional dominant heritable factors, present in some individuals in the population, also influenced the resistance phenotype. Our results will help in understanding the process of selection for phosphine resistance in the field which will inform

  3. Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes.

    Science.gov (United States)

    Manenti, T; Sørensen, J G; Moghadam, N N; Loeschcke, V

    2016-09-01

    Laboratory selection in thermal regimes that differed in the amplitude and the predictability of daily fluctuations had a marked effect on stress resistance and life history traits in Drosophila simulans. The observed evolutionary changes are expected to be the result of both direct and correlated responses to selection. Thus, a given trait might not evolve independently from other traits because of genetic correlations among these traits. Moreover, different test environments can induce novel genetic correlations because of the activation of environmentally dependent genes. To test whether and how genetic correlations among stress resistance and life history traits constrain evolutionary adaptation, we used three populations of D. simulans selected for 20 generations in constant, predictable and unpredictable daily fluctuating thermal regimes and tested each of these selected populations in the same three thermal regimes. We explored the relationship between genetic correlations between traits and the evolutionary potential of D. simulans by comparing genetic correlation matrices in flies selected and tested in different thermal test regimes. We observed genetic correlations mainly between productivity, body size, starvation and desiccation tolerance, suggesting that adaptation to the three thermal regimes was affected by correlations between these traits. We also found that the correlations between some traits such as body size and productivity or starvation tolerance and productivity were determined by test regime rather than selection regime that is expected to limit genetic adaptation to thermal regimes in these traits. The results of this study suggest that several traits and several environments are needed to explore adaptive responses, as genetic and environmentally induced correlations between traits as results obtained in one environment cannot be used to predict the response of the same population in another environment.

  4. The influence of age and genetics on natural resistance to experimentally induced feline infectious peritonitis.

    Science.gov (United States)

    Pedersen, Niels C; Liu, Hongwei; Gandolfi, Barbara; Lyons, Leslie A

    2014-11-15

    Naturally occurring feline infectious peritonitis (FIP) is usually fatal, giving the impression that immunity to the FIP virus (FIPV) is extremely poor. This impression may be incorrect, because not all cats experimentally exposed to FIPV develop FIP. There is also a belief that the incidence of FIP may be affected by a number of host, virus, and environmental cofactors. However, the contribution of these cofactors to immunity and disease incidence has not been determined. The present study followed 111 random-bred specific pathogen free (SPF) cats that were obtained from a single research breeding colony and experimentally infected with FIPV. The cats were from several studies conducted over the past 5 years, and as a result, some of them had prior exposure to feline enteric coronavirus (FECV) or avirulent FIPVs. The cats were housed under optimized conditions of nutrition, husbandry, and quarantine to eliminate most of the cofactors implicated in FIPV infection outcome and were uniformly challenge exposed to the same field strain of serotype 1 FIPV. Forty of the 111 (36%) cats survived their initial challenge exposure to a Type I cat-passaged field strains of FIPV. Six of these 40 survivors succumbed to FIP to a second or third challenge exposure, suggesting that immunity was not always sustained. Exposure to non-FIP-inducing feline coronaviruses prior to challenge with virulent FIPV did not significantly affect FIP incidence but did accelerate the disease course in some cats. There were no significant differences in FIP incidence between males and females, but resistance increased significantly between 6 months and 1 or more years of age. Genetic testing was done on 107 of the 111 infected cats. Multidimensional scaling (MDS) segregated the 107 cats into three distinct families based primarily on a common sire(s), and resistant and susceptible cats were equally distributed within each family. Genome-wide association studies (GWAS) on 73 cats that died of FIP

  5. Mapping and Genetic Structure Analysis of the Anthracnose Resistance Locus Co-1HY in the Common Bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Chen, Mingli; Wu, Jing; Wang, Lanfen; Mantri, Nitin; Zhang, Xiaoyan; Zhu, Zhendong; Wang, Shumin

    2017-01-01

    Anthracnose is a destructive disease of the common bean (Phaseolus vulgaris L.). The Andean cultivar Hongyundou has been demonstrated to possess strong resistance to anthracnose race 81. To study the genetics of this resistance, the Hongyundou cultivar was crossed with a susceptible genotype Jingdou. Segregation of resistance for race 81 was assessed in the F2 population and F2:3 lines under controlled conditions. Results indicate that Hongyundou carries a single dominant gene for anthracnose resistance. An allele test by crossing Hongyundou with another resistant cultivar revealed that the resistance gene is in the Co-1 locus (therefore named Co-1HY). The physical distance between this locus and the two flanking markers was 46 kb, and this region included four candidate genes, namely, Phvul.001G243500, Phvul.001G243600, Phvul.001G243700 and Phvul.001G243800. These candidate genes encoded serine/threonine-protein kinases. Expression analysis of the four candidate genes in the resistant and susceptible cultivars under control condition and inoculated treatment revealed that all the four candidate genes are expressed at significantly higher levels in the resistant genotype than in susceptible genotype. Phvul.001G243600 and Phvul.001G243700 are expressed nearly 15-fold and 90-fold higher in the resistant genotype than in the susceptible parent before inoculation, respectively. Four candidate genes will provide useful information for further research into the resistance mechanism of anthracnose in common bean. The closely linked flanking markers identified here may be useful for transferring the resistance allele Co-1HY from Hongyundou to elite anthracnose susceptible common bean lines.

  6. Genetic background specific hypoxia resistance in rat is correlated with balanced activation of a cross-chromosomal genetic network centering on physiological homeostasis

    Directory of Open Access Journals (Sweden)

    Lei eMao

    2012-10-01

    Full Text Available Genetic background of an individual can drastically influence an organism’s response upon environmental stress and pathological stimulus. Previous studies in inbred rats showed that compared to Brown Norway (BN, Dahl salt-sensitive (SS rat exerts strong hypoxia susceptibility. However, despite extensive narrow-down approaches via the chromosome substitution methodology, this genome-based physiological predisposition could not be traced back to distinct quantitative trait loci. Upon the completion and public data availability of PhysGen SS-BN consomic rat platform, I employed systems biology approach attempting to further our understanding of the molecular basis of genetic background effect in light of hypoxia response. I analyzed the physiological screening data of 22 consomic rat strains under normoxia and two-weeks of hypoxia, and cross-compared them to the parental strains. The analyses showed that SS-9BN and SS-18BN represent the most hypoxia resistant CS strains with phenotype similar to BN, whereas SS-6BN and SS-YBN segregated to the direction of SS. A meta-analysis on the transcriptomic profiles of these consomic rat strains under hypoxia treatment showed that although polymorphisms on the substituted BN chromosomes could be directly involved in hypoxia resistance, this seems to be embedded in a more complex trans-chromosomal genetic regulatory network. Via information theory based modeling approach, this hypoxia-relevant core genetic network was reverse-engineered. Network analyses showed that the protective effects of BN chromosome 9 and 18 were reflected by a balanced activation of this core network centering on physiological homeostasis. Presumably, it is the system robustness constituted on such differential network activation that acts as hypoxia response modifier. Understanding of the intrinsic link between the individual genetic background and the network robustness will set a basis in the current scientific efforts toward

  7. Genetic Background Specific Hypoxia Resistance in Rat is Correlated with Balanced Activation of a Cross-Chromosomal Genetic Network Centering on Physiological Homeostasis.

    Science.gov (United States)

    Mao, Lei

    2012-01-01

    Genetic background of an individual can drastically influence an organism's response upon environmental stress and pathological stimulus. Previous studies in inbred rats showed that compared to Brown Norway (BN), Dahl salt-sensitive (SS) rat exerts strong hypoxia susceptibility. However, despite extensive narrow-down approaches via the chromosome substitution methodology, this genome-based physiological predisposition could not be traced back to distinct quantitative trait loci. Upon the completion and public data availability of PhysGen SS-BN consomic (CS) rat platform, I employed systems biology approach attempting to further our understanding of the molecular basis of genetic background effect in light of hypoxia response. I analyzed the physiological screening data of 22 CS rat strains under normoxia and 2-weeks of hypoxia, and cross-compared them to the parental strains. The analyses showed that SS-9(BN) and SS-18(BN) represent the most hypoxia-resistant CS strains with phenotype similar to BN, whereas SS-6(BN) and SS-Y(BN) segregated to the direction of SS. A meta-analysis on the transcriptomic profiles of these CS rat strains under hypoxia treatment showed that although polymorphisms on the substituted BN chromosomes could be directly involved in hypoxia resistance, this seems to be embedded in a more complex trans-chromosomal genetic regulatory network. Via information theory based modeling approach, this hypoxia relevant core genetic network was reverse engineered. Network analyses showed that the protective effects of BN chromosome 9 and 18 were reflected by a balanced activation of this core network centering on physiological homeostasis. Presumably, it is the system robustness constituted on such differential network activation that acts as hypoxia response modifier. Understanding of the intrinsic link between the individual genetic background and the network robustness will set a basis in the current scientific efforts toward personalized medicine.

  8. Gene flow from genetically modified herbicide-resistant rapeseed to cruciferous weeds

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiangxiang; XIA Qiuxia; LU Dalei; LU Weiping; QI Cunkou; PU Huiming; LIU Geshan; ZHAO Jian; WANG Youping

    2006-01-01

    The sexual compatibility between genetically modified (GM) glyphosate-resistant rapeseed variety Q3 (Brassica napus L. ) and 5 cruciferous weeds is studied through the observation of fluorescence microscopy and cross-fertility after manual pollination. The results indicated that Q3 (as male) was highly incompatible with Thlaspi arvense L., Capsella bursa-pastoris (L.) Medic, Cardamine hirsuta L. and Rorippa palustris (L.) Besser (as female). Fluorescence microscopic observation showed that growing of pollen tubes terminated on the stigma surface or at the upper 1/3 part of the style. However, B. juncea×Q3 was compatible, and the compatibility index was 1.65. Under the neighboring growth and natural pollination conditions, the rates of gene flow from Q3 to T. arvense, C.bursa-pastoris, C. hirsute and R. palustris were all 0, while it was 0.86 % for B. juncea. These results indicate that there is difference in the rate of gene flow between GM rapeseed and cruciferous wild weeds, and frequency of gene flow is highly correlated with sexual compatibility.

  9. Genetic dissimilarity for resistance to Mononychellus tanajoa (bondar (Acari, Tetranychidae among domesticated and wild Manihot species

    Directory of Open Access Journals (Sweden)

    Verônica de Jesus Boaventura

    2015-10-01

    Full Text Available The aim of this study was to evaluate the genetic dissimilarity among wild and domesticated species of Manihot for resistance to cassava green mite during the insect life cycle. Nine accessions of wild Manihot species, M. esculenta ssp. flabellifolia, M. esculenta ssp. peruviana, and M. carthaginensis ssp. glaziovii, and two clones of M. esculenta (Cigana Preta and Sacaí were evaluated under laboratory conditions at 25 ± 1°C, 70 ± 10% RH, and a 12-h photophase. Daily observations during the mite life cycle stages (larva-adult were recorded. The data were subjected to an analysis of variance, a Scott-Knott test (5%, and Singh criterion, cluster, and principal component analyses. The larval-adult period ranged from 5.53 to 7.01 days: the longest period was observed on an M. glaziovii accession (GLA-19-DF and the shortest on an M. flabellifolia accession (FLA-025V. The UPGMA method allowed the division of the genotypes into six groups, with the greatest distance between the FLA-025V and GLA-19-DF accessions. The first two main components explained 77.50% of the total accumulated variation. The association of the longest cycle duration of M. tanajoa with the lowest larval-adult viability suggests that GLA-19-DF is less favorable to mite development compared to the other accessions. Significant variability among the genotypes was observed.

  10. Lack of relationship between Visna/maedi infection and scrapie resistance genetic markers

    Directory of Open Access Journals (Sweden)

    Eider Salazar

    2014-06-01

    Full Text Available The relationship between Visna/maedi virus (VMV antibody status and scrapie genetic resistance of 10,611 Rasa Aragonesa sheep from 17 flocks in Aragón (Spain was investigated. The fifteen most common PRNP gene haplotypes and genotypes were identified and the genotypes were classified into the corresponding scrapie risk groups (groups 1 to 5. ARQ (93.3% and ARR (31.8% were the most common haplotypes and ARQ/ARQ (56% and ARR/ARQ (25.6% were the most common genotypes. The frequencies of scrapie risk groups 1, 2, 3, 4 and 5 were 3.3%, 27.3%, 63.5%, 1.2% and 4.8%, respectively. Overall Visna/maedi seroprevalence was 53% and flock seroprevalence ranged between 21-86%. A random effects logistic regression model indicated that sheep VMV serological status (outcome variable was not associated with any particular scrapie risk group. Instead, VMV seropositivity progressively increased with age, was significantly greater in females compared to males and varied between flocks. The absence of a relationship between VMV infection and scrapie genotypes is important for VMV control and specifically for sheep participating in an ELISA-based Visna/maedi control program.

  11. Genetic diversity of community-associated methicillin-resistant Staphylococcus aureus isolated from Tenerife Island, Spain.

    Science.gov (United States)

    Rivero-Pérez, Belinda; Alcoba-Flórez, Julia; Méndez-Álvarez, Sebastián

    2012-04-01

    With the recent detection of MRSA (methicillin-resistant Staphylococcus aureus) infections in patients lacking health care-related risk factors, the term community-acquired MRSA (CA-MRSA) has been become widely recognised. Many cases of CA-MRSA spreading to the community have been described worldwide. The aim of this study was to determine the features of CA-MRSA isolates from Tenerife Island. Toward this end, one hundred MRSA isolates were collected from eight different health regions, and their molecular features were investigated. This study revealed a wide variety of MRSA clones, including an emergent ST: ST1434 (CC8) and two new spa types, t7575 (ST125) and t7678 (ST22). The PVL genes were found in only five isolates belonging to unrelated lineages, ST8, ST30 and ST22, which could indicate at least three independent introductions of PVL(+) strains to Tenerife. Moreover, we detected that hospital MRSA clones, like EMRSA-15 and EMRSA-16, had spread to the community and are now circulating in both environments. Therefore, in our study, the CDC's rules were not specific enough to distinguish CA-MRSA from HA-MRSA. Thus, we think that the current epidemiological information is not enough to discriminate between both MRSAs, and it is necessary for prevention guidelines to include the routine determination of at least the genetic background, the antimicrobial susceptibility profile, and the PVL genes of each MRSA isolate.

  12. Impact of genetically regulated T cell proliferation on acquired resistance to Listeria monocytogenes.

    Science.gov (United States)

    Berche, P; Decreusefond, C; Theodorou, I; Stiffel, C

    1989-02-01

    Two lines of mice genetically selected for high and low in vitro responses to PHA were used to evaluate the impact of T cell polyclonal expansion on acquired resistance to Listeria monocytogenes. The selective breeding induced two major consequences in low responder mice: (1) a reduction of the number of L3T4+ cells and (2) a restriction of T cell expansion upon PHA stimulation, predominantly affecting the Lyt-2+ subset, and associated with an abridgment of IL-2 production. In vivo PHA stimulation induced anti-Listeria protection in high responder mice, but was much less effective in low responder mice. Flow cytometer analysis revealed that T cell proliferation was also reduced in low responder mice during the course of Listeria infection, implying both L3T4+ and Lyt-2+ subsets. This defect did not apparently influence the kinetics of bacterial elimination in host tissues, which was similar in both lines during primary Listeria infection. In contrast, the expression of delayed-type hypersensitivity to Listeria antigens and the level of immunologic memory were significantly reduced in low responder mice. In vivo selective T cell depletion by anti-L3T4 or anti-Lyt-2 mAb allowed us to demonstrate the predominant role of Lyt-2+ cells in protection and that of L3T4+ cells in the expression of delayed-type hypersensitivity.

  13. Genetic characterization of the acetohydroxyacid synthase (AHAS) gene responsible for resistance to imidazolinone in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Thompson, Courtney; Tar'an, Bunyamin

    2014-07-01

    A point mutation in the AHAS1 gene leading to resistance to imidazolinone in chickpea was identified. The resistance is inherited as a single gene. A KASP marker targeting the mutation was developed. Weed control in chickpea (Cicer arietinum L.) is challenging due to poor crop competition ability and limited herbicide options. A chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified, but the genetic inheritance and the mechanism were unknown. In many plant species, resistance to IMI is caused by point mutation(s) in the acetohydroxyacid synthase (AHAS) gene resulting in an amino acid substitution preventing herbicide attachment to the molecule. The main objective of this research was to characterize the resistance to IMI herbicides in chickpea. Two homologous AHAS genes namely AHAS1 and AHAS2 sharing 80 % amino acid sequence similarity were identified in the chickpea genome. Cluster analysis indicated independent grouping of AHAS1 and AHAS2 across legume species. A point mutation in the AHAS1 gene at C675 to T675 resulting in an amino acid substitution from Ala205 to Val205 confers the resistance to IMI in chickpea. A KASP marker targeting the point mutation was developed and effectively predicted the response to IMI herbicides in a recombinant inbred (RI) population of chickpea. The RI population was used in molecular mapping where the major locus for the reaction to IMI herbicide was mapped to chromosome 5. Segregation analysis across an F2 population and RI population demonstrated that the resistance is inherited as a single gene in a semi-dominant fashion. The simple genetic inheritance and the availability of KASP marker generated in this study would speed up development of chickpea varieties with resistance to IMI herbicides.

  14. Genetic Basis of Cry1F-Resistance in a Laboratory Selected Asian Corn Borer Strain and Its Cross-Resistance to Other Bacillus thuringiensis Toxins

    Science.gov (United States)

    Wang, Yueqin; Wang, Yidong; Wang, Zhenying; Bravo, Alejandra; Soberón, Mario; He, Kanglai

    2016-01-01

    The Asian corn borer (ACB), Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), is the most destructive insect pest of corn in China. Susceptibility to the Cry1F toxin derived from Bacillus thuringiensis has been demonstrated for ACB, suggesting the potential for Cry1F inclusion as part of an insect pest management program. Insects can develop resistance to Cry toxins, which threatens the development and use of Bt formulations and Bt crops in the field. To determine possible resistance mechanisms to Cry1F, a Cry1F-resistant colony of ACB (ACB-FR) that exhibited more than 1700-fold resistance was established through selection experiments after 49 generations of selection under laboratory conditions. The ACB-FR strain showed moderate cross-resistance to Cry1Ab and Cry1Ac of 22.8- and 26.9-fold, respectively, marginally cross-resistance to Cry1Ah (3.7-fold), and no cross-resistance to Cry1Ie (0.6-fold). The bioassay responses of progeny from reciprocal F1 crosses to different Cry1 toxin concentrations indicated that the resistance trait to Cry1Ab, Cry1Ac and Cry1F has autosomal inheritance with no maternal effect or sex linked. The effective dominance (h) of F1 offspring was calculated at different concentrations of Cry1F, showing that h decreased as concentration of Cry1F increased. Finally, the analysis of actual and expected mortality of the progeny from a backcross (F1 × resistant strain) indicated that the inheritance of the resistance to Cry1F in ACB-FR was due to more than one locus. The present study provides an understanding of the genetic basis of Cry1F resistance in ACB-FR and also shows that pyramiding Cry1F with Cry1Ah or Cry1Ie could be used as a strategy to delay the development of ACB resistance to Bt proteins. PMID:27518813

  15. Emergence of quinolone resistance among extended-spectrum beta-lactamase-producing Enterobacteriaceae in the Central African Republic: genetic characterization

    Directory of Open Access Journals (Sweden)

    Frank Thierry

    2011-08-01

    Full Text Available Abstract Background Cross-resistance to quinolones and beta-lactams is frequent in Enterobacteriaceae, due to the wide use of these antibiotics clinically and in the food industry. Prescription of one of these categories of antibiotic may consequently select for bacteria resistant to both categories. Genetic mechanisms of resistance may be secondary to a chromosomal mutation located in quinolone resistance determining region of DNA gyrase or topoisomerase IV or to a plasmid acquisition. The insertion sequence ISCR1 is often associated with qnr and may favour its dissemination in Gram-negative bacteria. The aim of this study was to determine the genetic mechanism of quinolone resistance among extended-spectrum beta-lactamase-producing Enterobacteriaceae strains in the Central African Republic. Findings Among seventeen ESBL-producing Enterobacteriaceae isolated from urine, pus or stool between January 2003 and October 2005 in the Central African Republic, nine were resistant to ciprofloxacin (seven from community patients and two from hospitalized patients. The ESBL were previously characterized as CTX-M-15 and SHV-12. Susceptibility to nalidixic acid, norfloxacin and ciprofloxacin, and the minimal inhibitory concentrations of these drugs were determined by disc diffusion and agar dilution methods, respectively. The presence of plasmid-borne ISCR1-qnrA region was determined by PCR and amplicons, if any, were sent for sequencing. Quinolone resistance determining region of DNA gyrase gyrA gene was amplified by PCR and then sequenced for mutation characterization. We found that all CTX-M-producing strains were resistant to the tested quinolones. All the isolates had the same nucleotide mutation at codon 83 of gyrA. Two Escherichia coli strains with the highest MICs were shown to harbour an ISCR1-qnrA1 sequence. This genetic association might favour dissemination of resistance to quinolone and perhaps other antibiotics among Enterobacteriaceae

  16. Genetic Diversity of Soybean and the Establishment of a Core Collection Focused on Resistance to Soybean Cyst Nematode

    Institute of Scientific and Technical Information of China (English)

    Yan-Song Ma; Wen-Hui Wang; Li-Xia Wang; Feng-Ming Ma; Pei-Wu Wang; Ru-Zhen Chang; Li-Juan Qiu

    2006-01-01

    Soybean cyst nematode (SCN; Heterodera glycines) is one of the most important pests affecting soybean production. The best method of control of SCN is through the development of resistant cultivars. However,limited progress has been made in soybean breeding in China because most modern cultivars have no resistance to SCN. The distribution and phenotype of 432 immune or highly resistant Chinese accessions were surveyed and a primary core collection was selected as a representative sample for further analyses.Using evenly distributed simple sequence repeat markers, five selection methods were applied to the primary core collection and the optimal method was chosen to establish a core collection, which consisted of 28 accessions. These encompassed 70.8% of the allelic variation present in the overall resistant collection.The 28 accessions differed from the reference resistant accessions at the genomic level, indicating that Chinese resistant accessions are distinct from known resistant accessions. This applied core collection provides a rational framework for undertaking diversity surveys, using genetic variation for the investigation of complex traits and for the discovery of novel traits.

  17. Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major.

    Science.gov (United States)

    Coelho, Adriano C; Beverley, Stephen M; Cotrim, Paulo C

    2003-08-31

    Pentamidine (PEN) is a second-line agent in the treatment of leishmaniasis whose mode of action and resistance is not well understood. Here, we used a genetic strategy to search for loci able to mediate PEN resistance (PENr) when overexpressed in Leishmania major. A shuttle cosmid library containing genomic DNA inserts was transfected into wild-type promastigotes and screened for PEN-resistant transfectants. Two different cosmids identifying the same locus were found, which differed from other known Leishmania drug resistance genes. The PENr gene was mapped by deletion and transposon mutagenesis to an open reading frame (ORF) belonging to the P-glycoprotein (PGP)/MRP ATP-binding cassette (ABC) transporter superfamily that we named pentamidine resistance protein 1 (PRP1). The predicted PRP1 protein encodes 1,807 amino acids with the typical dimeric structure involving 10 transmembrane domains and two nucleotide-binding domains (NBDs). PRP1-mediated PENr could be reversed by verapamil and PRP1 overexpressors showed cross-resistance to trivalent antimony but not to pentavalent antimony (glucantime). Although the degree of PENr was modest (1.7- to 3.7-fold), this may be significant in clinical drug resistance given the marginal efficacy of PEN against Leishmania.

  18. Molecular genetics of Mycobacterium tuberculosis resistant to aminoglycosides and cyclic peptide testing by MTBDRsl in Armenia

    Directory of Open Access Journals (Sweden)

    Hasmik Margaryan

    2016-01-01

    Conclusion: Isolates with rrs structural gene mutations were cross-resistant to streptomycin, KAN, CAP, and AMK. Detection of the A1401G mutation appeared to be 100% specific for the detection of resistance to KAN and AMK. Being the first assessment, these data establish the presence of phenotypic drug-resistant and extensively drug-resistant strains using molecular profiling and are helpful in understanding aminoglycoside resistance on a molecular level.

  19. Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independently of obesity

    Science.gov (United States)

    Scott, Robert A; Fall, Tove; Pasko, Dorota; Barker, Adam; Sharp, Stephen J; Arriola, Larraitz; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Boeing, Heiner; Clavel-Chapelon, Françoise; Crowe, Francesca L; Dekker, Jacqueline M; Fagherazzi, Guy; Ferrannini, Ele; Forouhi, Nita G; Franks, Paul W; Gavrila, Diana; Giedraitis, Vilmantas; Grioni, Sara; Groop, Leif C; Kaaks, Rudolf; Key, Timothy J; Kühn, Tilman; Lotta, Luca A; Nilsson, Peter M; Overvad, Kim; Palli, Domenico; Panico, Salvatore; Quirós, J. Ramón; Rolandsson, Olov; Roswall, Nina; Sacerdote, Carlotta; Sala, Núria; Sánchez, María-José; Schulze, Matthias B; Siddiq, Afshan; Slimani, Nadia; Sluijs, Ivonne; Spijkerman, Annemieke MW; Tjonneland, Anne; Tumino, Rosario; van der A, Daphne L; Yaghootkar, Hanieh; McCarthy, Mark I; Semple, Robert K; Riboli, Elio; Walker, Mark; Ingelsson, Erik; Frayling, Tim M; Savage, David B

    2014-01-01

    We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterise their association with intermediate phenotypes, and to investigate their role in T2D risk among normal-weight, overweight and obese individuals.We investigated the association of genetic scores with euglycaemic-hyperinsulinaemic clamp- and OGTT-based measures of insulin resistance and secretion, and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (β in SDs-per-allele [95%CI]:−0.03[−0.04,−0.01];p=0.004). This score was associated with lower BMI (−0.01[−0.01,−0.0;p=0.02) and gluteofemoral fat-mass (−0.03[−0.05,−0.02;p=1.4×10−6), and with higher ALT (0.02[0.01,0.03];p=0.002) and gamma-GT (0.02[0.01,0.03];p=0.001). While the secretion score had a stronger association with T2D in leaner individuals (pinteraction=0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI- or waist-strata(pinteraction>0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size. PMID:24947364

  20. Resistance of genetically different common carp, Cyprinus carpio L., families against experimental bacterial challenge with Aeromonas hydrophila.

    Science.gov (United States)

    Jeney, G; Ardó, L; Rónyai, A; Bercsényi, M; Jeney, Z

    2011-01-01

    The objective of this study was to determine the differences in disease resistance against artificial infection with Aeromonas hydrophila between genetically different common carp families. Four strains differing in their origin and breeding history were selected from the live gene bank of common carp maintained at the Research Institute for Fisheries, Aquaculture and Irrigation (HAKI, Szarvas, Hungary) to establish families with wide genetic background: Szarvas 15 (15), an inbred mirror line; Tata (T) scaly noble carp; Duna (D), a Hungarian wild carp and Amur (A), an East Asian wild carp. A diallele mating structure was used to allow the assessment of genetic variation within and between the tested 96 families for a variety of traits. The existing technologies of fertilization and incubation of carp eggs, as well as larval and fingerling rearing had been modified because of the large number of baseline populations. Two challenge trials of the 96 families of carp with Aeromonas hydrophila were done. The 10 most resistant and 10 most susceptible families to A. hydrophila were identified from these two challenges. The crosses that produced the most resistant families were mainly those having parents from Tata and Szarvas 15 domesticated strains, while the most susceptible families were from the wild strains Duna and Amur.

  1. A quantitative genetic study of starvation resistance at different geographic scales in natural populations of Drosophila melanogaster.

    Science.gov (United States)

    Goenaga, Julieta; José Fanara, Juan; Hasson, Esteban

    2010-08-01

    Food shortage is a stress factor that commonly affects organisms in nature. Resistance to food shortage or starvation resistance (SR) is a complex quantitative trait with direct implications on fitness. However, surveys of natural genetic variation in SR at different geographic scales are scarce. Here, we have measured variation in SR in sets of lines derived from nine natural populations of Drosophila melanogaster collected in western Argentina. Our study shows that within population variation explained a larger proportion of overall phenotypic variance (80%) than among populations (7·2%). We also noticed that an important fraction of variation was sex-specific. Overall females were more resistant to starvation than males; however, the magnitude of the sexual dimorphism (SD) in SR varied among lines and explained a significant fraction of phenotypic variance in all populations. Estimates of cross-sex genetic correlations suggest that the genetic architecture of SR is only partially shared between sexes in the populations examined, thus, facilitating further evolution of the SD.

  2. First antimicrobial resistance data and genetic characteristics of Neisseria gonorrhoeae isolates from Estonia, 2009–2013

    Directory of Open Access Journals (Sweden)

    D. Golparian

    2014-09-01

    Full Text Available Gonorrhoea is a sexually transmitted infection with major public health implications and Neisseria gonorrhoeae has developed resistance to all antimicrobials introduced for treatment. Enhanced surveillance of antimicrobial resistance in N. gonorrhoeae is crucial globally. This is the first internationally reported antimicrobial resistance data for N. gonorrhoeae from Estonia (44 isolates cultured in 2009–2013. A high prevalence of resistance was observed for azithromycin, ciprofloxacin and tetracycline. One and two isolates with resistance and decreased susceptibility to the last remaining first-line treatment option ceftriaxone, respectively, were identified. It is crucial to implement surveillance of gonococcal antimicrobial resistance (ideally also treatment failures in Estonia.

  3. Genetic Dissection of Novel QTLs for Resistance to Leaf Spots and Tomato Spotted Wilt Virus in Peanut (Arachis hypogaea L.)

    Science.gov (United States)

    Pandey, Manish K.; Wang, Hui; Khera, Pawan; Vishwakarma, Manish K.; Kale, Sandip M.; Culbreath, Albert K.; Holbrook, C. Corley; Wang, Xingjun; Varshney, Rajeev K.; Guo, Baozhu

    2017-01-01

    Peanut is an important crop, economically and nutritiously, but high production cost is a serious challenge to peanut farmers as exemplified by chemical spray to control foliar diseases such as leaf spots and thrips, the vectors of tomato spotted wilt virus (TSWV). The objective of this research was to map the quantitative trait loci (QTLs) for resistance to leaf spots and TSWV in one recombinant inbred line (RIL) mapping population of “Tifrunner × GT-C20” for identification of linked markers for marker-assisted breeding. Here, we report the improved genetic linkage map with 418 marker loci with a marker density of 5.3 cM/loci and QTLs associated with multi-year (2010–2013) field phenotypes of foliar disease traits, including early leaf spot (ELS), late leaf spot (LLS), and TSWV. A total of 42 QTLs were identified with phenotypic variation explained (PVE) from 6.36 to 15.6%. There were nine QTLs for resistance to ELS, 22 QTLs for LLS, and 11 QTLs for TSWV, including six, five, and one major QTLs with PVE higher than 10% for resistance to each disease, respectively. Of the total 42 QTLs, 34 were mapped on the A sub-genome and eight mapped on the B sub-genome suggesting that the A sub-genome harbors more resistance genes than the B sub-genome. This genetic linkage map was also compared with two diploid peanut physical maps, and the overall co-linearity was 48.4% with an average co-linearity of 51.7% for the A sub-genome and 46.4% for the B sub-genome. The identified QTLs associated markers and potential candidate genes will be studied further for possible application in molecular breeding in peanut genetic improvement for disease resistance. PMID:28197153

  4. No benefit in diversity? The effect of genetic variation on survival and disease resistance in a polygynous social insect

    DEFF Research Database (Denmark)

    Schmidt, Anna Mosegaard; Linksvayer, Timothy Arnold; Boomsma, Jacobus Jan

    2011-01-01

    numbers of queens also benefit from increased genetic diversity.2. We used one of the very few ant species that can be reared across generations, the pharaoh ant, Monomorium pharaonis Linnaeus, to create experimental colonies with two types of enhanced genetic diversity: (i) mixed workers from three......1. Multiple mating by queens has been shown to enhance disease resistance in insect societies, because higher genetic diversity among nestmates improves collective immune defences or offers a certain level of herd immunity. However, it has remained ambiguous whether polygynous societies with large...... within-worker variation).3. We found significant differences in worker survival among the three inbred lineages, with exposure to conidiospores of the fungal pathogen Beauveria bassiana causing significant mortality to the workers independently of their diversity type. Increased diversity did not improve...

  5. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?

    Directory of Open Access Journals (Sweden)

    Joana Beatrice Meyer

    Full Text Available This study aimed to evaluate the impact of genetically modified (GM wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF. Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.

  6. Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Hawes Alicia C

    2007-11-01

    Full Text Available Abstract Background Community acquired (CA methicillin-resistant Staphylococcus aureus (MRSA increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear. Results We sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA, isolated at Texas Children's Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified. Conclusion USA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.

  7. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-22

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  8. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  9. Risk assessment of gene flow from genetically engineered virus resistant cassava to wild relatives in Africa: an expert panel report.

    Science.gov (United States)

    Hokanson, Karen E; Ellstrand, Norman C; Dixon, Alfred G O; Kulembeka, Heneriko P; Olsen, Kenneth M; Raybould, Alan

    2016-02-01

    The probability and consequences of gene flow to wild relatives is typically considered in the environmental risk assessment of genetically engineered crops. This is a report from a discussion by a group of experts who used a problem formulation approach to consider existing information for risk assessment of gene flow from cassava (Manihot esculenta) genetically engineered for virus resistance to the 'wild' (naturalized) relative M. glaziovii in East Africa. Two environmental harms were considered in this case: (1) loss of genetic diversity in the germplasm pool, and (2) loss of valued species, ecosystem resources, or crop yield and quality due to weediness or invasiveness of wild relatives. Based on existing information, it was concluded that gene flow will occur, but it is not likely that this will reduce the genetic diversity in the germplasm pool. There is little existing information about the impact of the virus in natural populations that could be used to inform a prediction about whether virus resistance would lead to an increase in reproduction or survival, hence abundance of M. glaziovii. However, an increase in the abundance of M. glaziovii should be manageable, and would not necessarily lead to the identified environmental harms.

  10. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    Science.gov (United States)

    Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2014-01-01

    Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE

  11. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    Directory of Open Access Journals (Sweden)

    Shabeesh Balan

    Full Text Available Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS (prototype for AED-resistant epilepsy; juvenile myoclonic epilepsy (JME (prototype for AED-responsive epilepsy; and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004. This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004 and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05 cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency

  12. Emergence of resistance to carbocyclic oxetanocin G in herpes simplex virus type 1 and genetic analysis of resistant mutants

    Institute of Scientific and Technical Information of China (English)

    Nan HU; Hiroshi SHIOTA

    2004-01-01

    AIM: To elucidate the potentiality of emergence of drug-resistance to carbocyclic oxetanocin G (C.OXT-G), a new effective antiviral drug for herpetic keratitis during treatment and the mechanism of this drug resistance.METHODS: A C.OXT-G resistant strain (C.OXT-Gr) was established by serially propagating the herpes simplex virus (HSV) -1 in African green monkey kidney (VERO) cells in the presence of C.OXT-G. After the drug sensitivity assay and the thymidine kinase (TK) activity assay, the molecular basis for the drug resistance was studied using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis and PCR direct sequencing technology. RESULTS: After the 10th passage in 10 μm C.OXT-G, the ED50 of the C.OXT-Gr was 17.08-fold greater than that of the original strain on the average and the TK activities of these resistant strains were extremely reduced. PCR-SSCP analysis on TK gene of the wild HSV- 1 and the C.OXT-Gr showed altered migration patterns in part 3 and part 4, while PCR-SSCP analysis on DNA polymerase gene showed no difference among the viruses. Sequence analysis revealed a deletion of G at position of 430 that caused frameshift, resulting in premature termination in the TK gene. CONCLUSION: The drug resistance to C.OXT-G may appear during the treatment due to the deficiency of TK activity caused by a single mutation in the TK gene of HSV-1.

  13. Streptococcus pneumoniae R6 interspecies transformation: genetic analysis of penicillin resistance determinants and genome-wide recombination events.

    Science.gov (United States)

    Sauerbier, Julia; Maurer, Patrick; Rieger, Martin; Hakenbeck, Regine

    2012-11-01

    Interspecies gene transfer has been implicated as the major driving force for the evolution of penicillin resistance in Streptococcus pneumoniae. Genomic alterations of S. pneumoniae R6 introduced during four successive transformations with DNA of the high-level penicillin-resistant Streptococcus mitis B6 with beta-lactam selection have now been determined and the contribution of genes to high resistance levels was analysed genetically. Essential for high level resistance to penicillins of the transformant CCCB was the combination of murM(B) (6) and the 3' region of pbp2b(B) (6) . Sequences of both genes were detected in clinical isolates of S. pneumoniae, confirming the participation of S. mitis in the global gene pool of beta-lactam resistance determinants. The S. mitis PBP1b gene which contains an authentic stop codon within the transpeptidase domain is now shown to contribute only marginal to resistance, but it is possible that the presence of its transglycosylase domain is important in the context of cognate PBPs. The genome sequence of CCCB revealed 36 recombination events, including deletion and acquisition of genes and repeat elements. A total of 78 genes were affected representing 67 kb or 3.3% of the genome, documenting extensive alterations scattered throughout the genome.

  14. Antibiotic resistance patterns and genetic relatedness of Enterococcus faecalis and Enterococcus faecium isolated from military working dogs in Korea.

    Science.gov (United States)

    Bang, Kiman; An, Jae-Uk; Kim, Woohyun; Dong, Hee-Jin; Kim, Junhyung; Cho, Seongbeom

    2017-06-30

    Enterococcus spp. are normally present in the gastrointestinal tracts of animals and humans, but can cause opportunistic infections that can be transmitted to other animals or humans with integrated antibiotic resistance. To investigate if this is a potential risk in military working dogs (MWDs), we analyzed antibiotic resistance patterns and genetic relatedness of Enterococcus spp. isolated from fecal samples of MWDs of four different age groups. Isolation rates of Enterococcus spp., Enterococcus (E.) faecalis, and E. faecium, were 87.7% (57/65), 59.6% (34/57), and 56.1% (32/57), respectively, as determined by bacterial culture and multiplex PCR. The isolation rate of E. faecalis gradually decreased with age (puppy, 100%; adolescent, 91.7%; adult, 36.4%; and senior, 14.3%). Rates of resistance to the antibiotics ciprofloxacin, gentamicin, streptomycin, sulfamethoxazole/trimethoprim, imipenem, and kanamycin among Enterococcus spp. increased in adolescents and adults and decreased in senior dogs, with some isolates having three different antibiotic resistance patterns. There were indistinguishable pulsed-field gel electrophoresis patterns among the age groups. The results suggest that Enterococcus is horizontally transferred, regardless of age. As such, periodic surveillance studies should be undertaken to monitor changes in antibiotic resistance, which may necessitate modification of antibiotic regimens to manage antibiotic resistance transmission.

  15. Molecular identification of abomasal bacteria associated with genetic resistance and susceptibility to Haemonchus contortus infection in sheep

    Directory of Open Access Journals (Sweden)

    Adriane Holtz Tirabassi

    2016-12-01

    Full Text Available The widespread occurrence of anthelmintic-resistant gastrointestinal nematodes (GINs, particularly Haemonchus contortus, in sheep production systems has magnified the need to identify and develop alternative control strategies. Strategies include the selection of genetically GIN-resistant sheep and the implementation of biological parasite control to reduce dependence on anthelmintic drugs. In this study, we aimed to establish the molecular identity of bacterial communities present in the abomasum of sheep classified as resistant or susceptible to H. contortus, an abomasal parasite. Thirty-eight sheep were experimentally infected with L3 Haemonchus contortus and analyzed for fecal egg count (FEC and hematocrit (Ht to establish haemonchosis resistance or susceptibility. Four resistant sheep (RS and four susceptible sheep (SS were selected for microbial sampling and subsequent phylogenetic analysis. Molecular identification of the bacteria was based on amplification of the bacterial 16S rRNA gene, construction of a 16S rDNA clone library, and subsequent gene sequencing. Significant differences (p = 0.05 were observed in the occurrence of different phyla identified in RS and SS libraries: Firmicutes (61.4% and 37.2%, respectively, Proteobacteria (10.2% and 37.2%, respectively, Bacteroidetes (12.8% and 5.8%, respectively, and unclassified bacteria (12.8% and 17%, respectively. Differences between the proportions of bacterial communities present in the RS and SS pool samples were observed, contributing as a first step toward the assessment of the association between the gastrointestinal tract microbiota and nematode resistance in sheep.

  16. Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize(Zea mays L.)

    Institute of Scientific and Technical Information of China (English)

    Liyu; Shi; Xiangling; Lv; Jianfeng; Weng; Hanyong; Zhu; Changlin; Liu; Zhuanfang; Hao; Yu; Zhou; Degui; Zhang; Mingshun; Li; Xiaoke; Ci; Xinhai; Li; Shihuang; Zhang

    2014-01-01

    Gray leaf spot(GLS),caused by Cercospora zeae-maydis,is an important foliar disease of maize(Zea mays L.)worldwide,resistance to which is controlled by multiple quantitative trait loci(QTL).To gain insights into the genetic architecture underlying the resistance to this disease,an association mapping population consisting of 161 inbred lines was evaluated for resistance to GLS in a plant pathology nursery at Shenyang in 2010 and 2011.Subsequently,a genome-wide association study,using 41,101 single-nucleotide polymorphisms(SNPs),identified 51 SNPs significantly(P<0.001)associated with GLS resistance,which could be converted into 31 QTL.In addition,three candidate genes related to plant defense were identified,including nucleotidebinding-site/leucine-rich repeat,receptor-like kinase genes similar to those involved in basal defense.Two genic SNPs,PZE-103142893 and PZE-109119001,associated with GLS resistance in chromosome bins 3.07 and 9.07,can be used for marker-assisted selection(MAS)of GLS resistance.These results provide an important resource for developing molecular markers closely linked with the target trait,enhancing breeding efficiency.

  17. MOLECULAR BIOLOGICAL EVIDENCES FOR THE GENETIC STABILITY OF DOXORUBICIN RESISTANT CELL LINE S-180R IN VIVO

    Institute of Scientific and Technical Information of China (English)

    Zheng Guoqiang; Han Fusheng; Zhang Tingjun; Zhan Maocheng; Chen Xiangling; Xu Guangwei

    1998-01-01

    Objective: In order to assess the genetic stability of doxorubicin resistance sarcoma S-180R cell line in vivo.Methods: The drug resistant genes and molecules were examined by flow cytometry, Southern blot, Northern blot and RT-PCR. Results: The results showed that drugefflux in S-180R increased nearly 100-folds, as compared with its parent cells, the rate of half peak width resistant cell/peak high decreased from 0.56 to 0.23 measured by flow cytometry after two years. The mdr1 gene amplified and overexpressed significantly in S-180R and the expression of topoisomerase Ⅱα gene decreased remarkably in S-180R. There was no significant different of the MRP expression between S-180R and S-180.Conclusion: These results indicated that drug resistance of S-180R was maintained and also increased. The major mechanism of drug resistance is the amplification and overexpression of mdr1 gene, the decreased expression of topoisomerase Ⅱα also contributed to it. So, S-180R is an ideal experimental model for the study of doxorubicin resistance and its reversion in vivo.

  18. Correlation between genetic features of the mef(A)-msr(D) locus and erythromycin resistance in Streptococcus pyogenes.

    Science.gov (United States)

    Vitali, Luca Agostino; Di Luca, Maria Chiara; Prenna, Manuela; Petrelli, Dezemona

    2016-01-01

    We investigated the correlation between the genetic variation within mef(A)-msr(D) determinants of efflux-mediated erythromycin resistance in Streptococcus pyogenes and the level of erythromycin resistance. Twenty-eight mef(A)-positive strains were selected according to erythromycin MIC (4-32 μg/mL), and their mef(A)-msr(D) regions were sequenced. Strains were classified according to the bacteriophage carrying mef(A)-msr(D). A new Φm46.1 genetic variant was found in 8 strains out of 28 and named VP_00501.1. Degree of allelic variation was higher in mef(A) than in msr(D). Hotspots for recombination were mapped within the locus that could have shaped the apparent mosaic structure of the region. There was a general correlation between mef(A)-msr(D) sequence and erythromycin resistance level. However, lysogenic conversion of susceptible strains by mef(A)-msr(D)-carrying Φm46.1 indicated that key determinants may not all reside within the mef(A)-msr(D) locus and that horizontal gene transfer could contribute to changes in the level of antibiotic resistance in S. pyogenes.

  19. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance.

    Science.gov (United States)

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E; Navarro, Pau; Perry, John R B; Rasmussen-Torvik, Laura J; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J; Tanaka, Toshiko; van Duijn, Cornelia M; An, Ping; de Andrade, Mariza; Andrews, Jeanette S; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S; Beilby, John P; Bellis, Claire; Bergman, Richard N; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Borecki, Ingrid B; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S; Clarke, Robert; Collins, Francis S; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R; Eriksson, Johan G; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A; Johnson, Paul C D; Jukema, J Wouter; Jula, Antti; Kao, W H; Kaprio, Jaakko; Kardia, Sharon L R; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J F; Luan, Jian'an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K E; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L; Mooser, Vincent; Morken, Mario A; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K; Oostra, Ben A; Palmer, Lyle J; Palotie, Aarno; Pankow, James S; Peden, John F; Pedersen, Nancy L; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P; Province, Michael A; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R; Sijbrands, Eric J G; Siscovick, David S; Smit, Johannes H; Small, Kerrin S; Smith, Nicholas L; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V; Swift, Amy J; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H; Willems, Sara M; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wright, Alan F; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J; McCarthy, Mark I; Barroso, Ines; Watanabe, Richard M; Florez, Jose C; Dupuis, Josée; Meigs, James B; Langenberg, Claudia

    2012-05-13

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

  20. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.

    Science.gov (United States)

    Das, Surajit; Dash, Hirak R; Chakraborty, Jaya

    2016-04-01

    Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.

  1. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    Science.gov (United States)

    Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo Riitta; Jhun, Min A.; Johnson, Paul C.D.; Jukema, J Wouter; Jula, Antti; Kao, W.H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J. F.; Luan, Jian’an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O’Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J.G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C.M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josée; Meigs, James B.; Langenberg, Claudia

    2013-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at Pdiscovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology. PMID:22581228

  2. Genetic ablation of lymphocytes and cytokine signaling in nonobese diabetic mice prevents diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Friedline, Randall H; Ko, Hwi Jin; Jung, Dae Young; Lee, Yongjin; Bortell, Rita; Dagdeviren, Sezin; Patel, Payal R; Hu, Xiaodi; Inashima, Kunikazu; Kearns, Caitlyn; Tsitsilianos, Nicholas; Shafiq, Umber; Shultz, Leonard D; Lee, Ki Won; Greiner, Dale L; Kim, Jason K

    2016-03-01

    Obesity is characterized by a dysregulated immune system, which may causally associate with insulin resistance and type 2 diabetes. Despite widespread use of nonobese diabetic (NOD) mice, NOD with severe combined immunodeficiency (scid) mutation (SCID) mice, and SCID bearing a null mutation in the IL-2 common γ chain receptor (NSG) mice as animal models of human diseases including type 1 diabetes, the underlying metabolic effects of a genetically altered immune system are poorly understood. For this, we performed a comprehensive metabolic characterization of these mice fed chow or after 6 wk of a high-fat diet. We found that NOD mice had ∼50% less fat mass and were 2-fold more insulin sensitive, as measured by hyperinsulinemic-euglycemic clamp, than C57BL/6 wild-type mice. SCID mice were also more insulin sensitive with increased muscle glucose metabolism and resistant to diet-induced obesity due to increased energy expenditure (∼10%) and physical activity (∼40%) as measured by metabolic cages. NSG mice were completely protected from diet-induced obesity and insulin resistance with significant increases in glucose metabolism in peripheral organs. Our findings demonstrate an important role of genetic background, lymphocytes, and cytokine signaling in diet-induced obesity and insulin resistance. © FASEB.

  3. Genetics of Erwinia resistance in Zantedeschia: impact of plastome-genome incompatibility

    NARCIS (Netherlands)

    Snijder, R.C.

    2004-01-01

    Soft rot caused by Erwinia carotovora subsp. carotovora ( Pectobacterium carotovorum subsp. carotovorum ) is the most important disease of Zantedeschia spp. Cultivation measures can protect the crop partially, but a combination with resistant cultivars could result in better control. Resistant

  4. Sustainable control of pea bacterial blight : approaches for durable genetic resistance and biocontrol by endophytic bacteria

    NARCIS (Netherlands)

    Elvira-Recuenco, M.

    2000-01-01

    Key-words: bacterial blight, biological control, biodiversity, endophytic bacteria, L-form, pea, PDRl retrotransposon, Pisum sativum, Pisum abyssinicum, Pseudomonas syringae pv. pisi, race specific resistance, race non-specific resistance, Spanish

  5. Cancer resistance of SR/CR mice in the genetic knockout backgrounds of leukocyte effector mechanisms: determinations for functional requirements

    Directory of Open Access Journals (Sweden)

    Sanders Anne M

    2010-03-01

    Full Text Available Abstract Background Spontaneous Regression/Complete Resistant (SR/CR mice are a colony of cancer-resistant mice that can detect and rapidly destroy malignant cells with innate cellular immunity, predominately mediated by granulocytes. Our previous studies suggest that several effector mechanisms, such as perforin, granzymes, or complements, may be involved in the killing of cancer cells. However, none of these effector mechanisms is known as critical for granulocytes. Additionally, it is unclear which effector mechanisms are required for the cancer killing activity of specific leukocyte populations and the survival of SR/CR mice against the challenges of lethal cancer cells. We hypothesized that if any of these effector mechanisms was required for the resistance to cancer cells, its functional knockout in SR/CR mice should render them sensitive to cancer challenges. This was tested by cross breeding SR/CR mice into the individual genetic knockout backgrounds of perforin (Prf-/-, superoxide (Cybb-/, or inducible nitric oxide (Nos2-/. Methods SR/CR mice were bred into individual Prf-/-, Cybb-/-, or Nos2-/- genetic backgrounds and then challenged with sarcoma 180 (S180. Their overall survival was compared to controls. The cancer killing efficiency of purified populations of macrophages and neutrophils from these immunodeficient mice was also examined. Results When these genetically engineered mice were challenged with cancer cells, the knockout backgrounds of Prf-/-, Cybb-/-, or Nos2-/- did not completely abolish the SR/CR cancer resistant phenotype. However, the Nos2-/- background did appear to weaken the resistance. Incidentally, it was also observed that the male mice in these immunocompromised backgrounds tended to be less cancer-resistant than SR/CR controls. Conclusion Despite the previously known roles of perforin, superoxide or nitric oxide in the effector mechanisms of innate immune responses, these effector mechanisms were not required

  6. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage

    Science.gov (United States)

    Lehtinen, Sonja; Blanquart, François; Croucher, Nicholas J.; Turner, Paul; Lipsitch, Marc; Fraser, Christophe

    2017-01-01

    Understanding how changes in antibiotic consumption affect the prevalence of antibiotic resistance in bacterial pathogens is important for public health. In a number of bacterial species, including Streptococcus pneumoniae, the prevalence of resistance has remained relatively stable despite prolonged selection pressure from antibiotics. The evolutionary processes allowing the robust coexistence of antibiotic sensitive and resistant strains are not fully understood. While allelic diversity can be maintained at a locus by direct balancing selection, there is no evidence for such selection acting in the case of resistance. In this work, we propose a mechanism for maintaining coexistence at the resistance locus: linkage to a second locus that is under balancing selection and that modulates the fitness effect of resistance. We show that duration of carriage plays such a role, with long duration of carriage increasing the fitness advantage gained from resistance. We therefore predict that resistance will be more common in strains with a long duration of carriage and that mechanisms maintaining diversity in duration of carriage will also maintain diversity in antibiotic resistance. We test these predictions in S. pneumoniae and find that the duration of carriage of a serotype is indeed positively correlated with the prevalence of resistance in that serotype. These findings suggest heterogeneity in duration of carriage is a partial explanation for the coexistence of sensitive and resistant strains and that factors determining bacterial duration of carriage will also affect the prevalence of resistance. PMID:28096340

  7. Genome Analysis of the First Extensively Drug-Resistant (XDR) Mycobacterium tuberculosis in Malaysia Provides Insights into the Genetic Basis of Its Biology and Drug Resistance.

    Science.gov (United States)

    Kuan, Chee Sian; Chan, Chai Ling; Yew, Su Mei; Toh, Yue Fen; Khoo, Jia-Shiun; Chong, Jennifer; Lee, Kok Wei; Tan, Yung-Chie; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2015-01-01

    The outbreak of extensively drug-resistant tuberculosis (XDR-TB) has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia.

  8. Genome Analysis of the First Extensively Drug-Resistant (XDR Mycobacterium tuberculosis in Malaysia Provides Insights into the Genetic Basis of Its Biology and Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Chee Sian Kuan

    Full Text Available The outbreak of extensively drug-resistant tuberculosis (XDR-TB has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia.

  9. Distinct genetic alterations occur in ovarian tumor cells selected for combined resistance to carboplatin and docetaxel

    Directory of Open Access Journals (Sweden)

    Armstrong Stephen R

    2012-11-01

    Full Text Available Abstract Background Current protocols for the treatment of ovarian cancer include combination chemotherapy with a platinating agent and a taxane. However, many patients experience relapse of their cancer and the development of drug resistance is not uncommon, making successful second line therapy difficult to achieve. The objective of this study was to develop and characterize a cell line resistant to both carboplatin and docetaxel (dual drug resistant ovarian cell line and to compare this cell line to cells resistant to either carboplatin or docetaxel. Methods The A2780 epithelial endometrioid ovarian cancer cell line was used to select for isogenic carboplatin, docetaxel and dual drug resistant cell lines. A selection method of gradually increasing drug doses was implemented to avoid clonal selection. Resistance was confirmed using a clonogenic assay. Changes in gene expression associated with the development of drug resistance were determined by microarray analysis. Changes in the expression of selected genes were validated by Quantitative Real-Time Polymerase Chain Reaction (QPCR and immunoblotting. Results Three isogenic cell lines were developed and resistance to each drug or the combination of drugs was confirmed. Development of resistance was accompanied by a reduced growth rate. The microarray and QPCR analyses showed that unique changes in gene expression occurred in the dual drug resistant cell line and that genes known to be involved in resistance could be identified in all cell lines. Conclusions Ovarian tumor cells can acquire resistance to both carboplatin and docetaxel when selected in the presence of both agents. Distinct changes in gene expression occur in the dual resistant cell line indicating that dual resistance is not a simple combination of the changes observed in cell lines exhibiting single agent resistance.

  10. Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: Disease and insect resistance in forest trees

    Science.gov (United States)

    Richard A. Sniezko; Alvin D. Yanchuk; John T. Kliejunas; Katharine M. Palmieri; Janice M. Alexander; Susan J. Frankel

    2012-01-01

    Individual papers are available at http://www.fs.fed.us/psw/publications/documents/psw_gtr240/The Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees...

  11. Genetic mapping and quantitative trait loci analysis for disease resistance using F2 and F5 generation-based genetic maps derived from 'Tifrunner' x'GT-C20' in peanut

    Science.gov (United States)

    One mapping population derived from Tifrunner × GT-C20 has shown great potential in developing a high dense genetic map and identification of QTLs for important disease resistance, Tomato spotted wilt virus (TSWV) and leaf spot (LS). Both F2 and F5 generation-based genetic maps were constructed prev...

  12. Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production.

    Science.gov (United States)

    Brueggeman, Andrew J; Kuehler, Daniel; Weeks, Donald P

    2014-09-01

    Genes conferring resistance to the herbicides glyphosate, oxyfluorfen and norflurazon were developed and tested for use as dominant selectable markers in genetic transformation of Chlamydomonas reinhardtii and as potential tools for the protection of commercial-scale algal production facilities against contamination by organisms sensitive to these broad-spectrum herbicides. A synthetic glyphosate acetyltransferase (GAT) gene, when fitted with a strong Chlamydomonas promoter, conferred a 2.7×-fold increase in tolerance to the EPSPS inhibitor, glyphosate, in transgenic cells compared with progenitor WT cells. A mutant Chlamydomonas protoporphyrinogen oxidase (protox, PPO) gene previously shown to produce an enzyme insensitive to PPO-inhibiting herbicides, when genetically engineered, generated transgenic cells able to tolerate up to 136× higher levels of the PPO inhibitor, oxyfluorfen, than nontransformed cells. Genetic modification of the Chlamydomonas phytoene desaturase (PDS) gene-based gene sequences found in various norflurazon-resistant organisms allowed production of transgenic cells tolerant to 40× higher levels of norflurazon than nontransgenic cells. The high efficiency of all three herbicide resistance genes in producing transgenic cells demonstrated their suitability as dominant selectable markers for genetic transformation of Chlamydomonas and, potentially, other eukaryotic algae. However, the requirement for high concentrations of glyphosate and its associated negative effects on cell growth rates preclude its consideration for use in large-scale production facilities. In contrast, only low doses of norflurazon and oxyfluorfen (~1.5 μm and ~0.1 μm, respectively) are required for inhibition of cell growth, suggesting that these two herbicides may prove effective in large-scale algal production facilities in suppressing growth of organisms sensitive to these herbicides.

  13. Population genetics, community of parasites, and resistance to rodenticides in an urban brown rat (Rattus norvegicus) population.

    Science.gov (United States)

    Desvars-Larrive, Amélie; Pascal, Michel; Gasqui, Patrick; Cosson, Jean-François; Benoît, Etienne; Lattard, Virginie; Crespin, Laurent; Lorvelec, Olivier; Pisanu, Benoît; Teynié, Alexandre; Vayssier-Taussat, Muriel; Bonnet, Sarah; Marianneau, Philippe; Lacôte, Sandra; Bourhy, Pascale; Berny, Philippe; Pavio, Nicole; Le Poder, Sophie; Gilot-Fromont, Emmanuelle; Jourdain, Elsa; Hammed, Abdessalem; Fourel, Isabelle; Chikh, Farid; Vourc'h, Gwenaël

    2017-01-01

    Brown rats are one of the most widespread urban species worldwide. Despite the nuisances they induce and their potential role as a zoonotic reservoir, knowledge on urban rat populations remains scarce. The main purpose of this study was to characterize an urban brown rat population from Chanteraines park (Hauts-de-Seine, France), with regards to haematology, population genetics, immunogenic diversity, resistance to anticoagulant rodenticides, and community of parasites. Haematological parameters were measured. Population genetics was investigated using 13 unlinked microsatellite loci. Immunogenic diversity was assessed for Mhc-Drb. Frequency of the Y139F mutation (conferring resistance to rodenticides) and two linked microsatellites were studied, concurrently with the presence of anticoagulant residues in the liver. Combination of microscopy and molecular methods were used to investigate the occurrence of 25 parasites. Statistical approaches were used to explore multiple parasite relationships and model parasite occurrence. Eighty-six rats were caught. The first haematological data for a wild urban R. norvegicus population was reported. Genetic results suggested high genetic diversity and connectivity between Chanteraines rats and surrounding population(s). We found a high prevalence (55.8%) of the mutation Y139F and presence of rodenticide residues in 47.7% of the sampled individuals. The parasite species richness was high (16). Seven potential zoonotic pathogens were identified, together with a surprisingly high diversity of Leptospira species (4). Chanteraines rat population is not closed, allowing gene flow and making eradication programs challenging, particularly because rodenticide resistance is highly prevalent. Parasitological results showed that co-infection is more a rule than an exception. Furthermore, the presence of several potential zoonotic pathogens, of which four Leptospira species, in this urban rat population raised its role in the maintenance

  14. Determining resistance to mastitis in a bovine subject involves detecting presence or absence of genetic marker associated with trait indicative of mastitis resistance of the bovine subject and/or off-spring from it

    DEFF Research Database (Denmark)

    2010-01-01

    subject. The bovine subject is a member of Finnish Ayrshire, Swedish Red and White, or Danish Red cattle breed (claimed). ADVANTAGE - The method efficiently selects bovine subjects with increased resistance to mastitis and thereby avoiding economic losses in connection with animals suffering from mastitis......NOVELTY - Determining (m1) resistance to mastitis in a bovine subject, involves detecting in a sample from the bovine subject the presence or absence of at least one genetic marker that is associated with at least one trait indicative of mastitis resistance of the bovine subject and/or off......-spring from it, where the genetic marker is located on the bovine chromosome BTA11 in the region flanked by and including the zeta-chain associated protein 70kD (ZAP70) and CD8B genes, where the presence or absence of the genetic marker is indicative of mastitis resistance. USE - For determining resistance...

  15. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps.

    Science.gov (United States)

    Teh, Soon Li; Fresnedo-Ramírez, Jonathan; Clark, Matthew D; Gadoury, David M; Sun, Qi; Cadle-Davidson, Lance; Luby, James J

    2017-01-01

    Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis) breeding program, although experimental families are typically unreplicated, the genetic backgrounds may contain similar progenitors previously selected due to their contribution of favorable alleles. In this study, we investigated the utility of joint QTL identification provided by analyzing half-sib families. The genetic control of powdery mildew was studied using two half-sib F1 families, namely GE0711/1009 (MN1264 × MN1214; N = 147) and GE1025 (MN1264 × MN1246; N = 125) with multiple species in their ancestry. Maternal genetic maps consisting of 1077 and 1641 single nucleotide polymorphism (SNP) markers, respectively, were constructed using a pseudo-testcross strategy. Ratings of field resistance to powdery mildew were obtained based on whole-plant evaluation of disease severity. This 2-year analysis uncovered two QTLs that were validated on a consensus map in these half-sib families with improved precision relative to the parental maps. Examination of haplotype combinations based on the two QTL regions identified strong association of haplotypes inherited from 'Seyval blanc', through MN1264, with powdery mildew resistance. This investigation also encompassed the use of microsatellite markers to establish a correlation between 206-bp (UDV-015b) and 357-bp (VViv67) fragment sizes with resistance-carrying haplotypes. Our work is one of the first reports in grapevine demonstrating the use of SNP-based maps and haplotypes for QTL identification and tagging of powdery mildew resistance in half-sib families.

  16. Collinearity Analysis and High-Density Genetic Mapping of the Wheat Powdery Mildew Resistance Gene Pm40 in PI 672538.

    Science.gov (United States)

    Zhong, Shengfu; Ma, Lixia; Fatima, Syeda Akash; Yang, Jiezhi; Chen, Wanquan; Liu, Taiguo; Hu, Yuting; Li, Qing; Guo, Jingwei; Zhang, Min; Lei, Li; Li, Xin; Tang, Shengwen; Luo, Peigao

    2016-01-01

    The wheat powdery mildew resistance gene Pm40, which is located on chromosomal arm 7BS, is effective against nearly all prevalent races of Blumeria graminis f. sp tritici (Bgt) in China and is carried by the common wheat germplasm PI 672538. A set of the F1, F2 and F2:3 populations from the cross of the resistant PI 672538 with the susceptible line L1034 were used to conduct genetic analysis of powdery mildew resistance and construct a high-density linkage map of the Pm40 gene. We constructed a high-density linkage genetic map with a total length of 6.18 cM and average spacing between markers of 0.48 cM.Pm40 is flanked by Xwmc335 and BF291338 at genetic distances of 0.58 cM and 0.26 cM, respectively, in deletion bin C-7BS-1-0.27. Comparative genomic analysis based on EST-STS markers established a high level of collinearity of the Pm40 genomic region with a 1.09-Mbp genomic region on Brachypodium chromosome 3, a 1.16-Mbp genomic region on rice chromosome 8, and a 1.62-Mbp genomic region on sorghum chromosome 7. We further anchored the Pm40 target intervals to the wheat genome sequence. A putative linear index of 85 wheat contigs containing 97 genes on 7BS was constructed. In total, 9 genes could be considered as candidates for the resistances to powdery mildew in the target genomic regions, which encoded proteins that were involved in the plant defense and response to pathogen attack. These results will facilitate the development of new markers for map-based cloning and marker-assisted selection of Pm40 in wheat breeding programs.

  17. Collinearity Analysis and High-Density Genetic Mapping of the Wheat Powdery Mildew Resistance Gene Pm40 in PI 672538

    Science.gov (United States)

    Fatima, Syeda Akash; Yang, Jiezhi; Chen, Wanquan; Liu, Taiguo; Hu, Yuting; Li, Qing; Guo, Jingwei; Zhang, Min; Lei, Li; Li, Xin; Tang, Shengwen; Luo, Peigao

    2016-01-01

    The wheat powdery mildew resistance gene Pm40, which is located on chromosomal arm 7BS, is effective against nearly all prevalent races of Blumeria graminis f. sp tritici (Bgt) in China and is carried by the common wheat germplasm PI 672538. A set of the F1, F2 and F2:3 populations from the cross of the resistant PI 672538 with the susceptible line L1034 were used to conduct genetic analysis of powdery mildew resistance and construct a high-density linkage map of the Pm40 gene. We constructed a high-density linkage genetic map with a total length of 6.18 cM and average spacing between markers of 0.48 cM.Pm40 is flanked by Xwmc335 and BF291338 at genetic distances of 0.58 cM and 0.26 cM, respectively, in deletion bin C-7BS-1-0.27. Comparative genomic analysis based on EST-STS markers established a high level of collinearity of the Pm40 genomic region with a 1.09-Mbp genomic region on Brachypodium chromosome 3, a 1.16-Mbp genomic region on rice chromosome 8, and a 1.62-Mbp genomic region on sorghum chromosome 7. We further anchored the Pm40 target intervals to the wheat genome sequence. A putative linear index of 85 wheat contigs containing 97 genes on 7BS was constructed. In total, 9 genes could be considered as candidates for the resistances to powdery mildew in the target genomic regions, which encoded proteins that were involved in the plant defense and response to pathogen attack. These results will facilitate the development of new markers for map-based cloning and marker-assisted selection of Pm40 in wheat breeding programs. PMID:27755575

  18. Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps.

    Directory of Open Access Journals (Sweden)

    Santiago Sandoval Motta

    Full Text Available Adaptive resistance emerges when populations of bacteria are subjected to gradual increases of antibiotics. It is characterized by a rapid emergence of resistance and fast reversibility to the non-resistant phenotype when the antibiotic is removed from the medium. Recent work shows that adaptive resistance requires epigenetic inheritance and heterogeneity of gene expression patterns that are, in particular, associated with the production of porins and efflux pumps. However, the precise mechanisms by which inheritance and variability govern adaptive resistance, and what processes cause its reversibility remain unclear. Here, using an efflux pump regulatory network (EPRN model, we show that the following three mechanisms are essential to obtain adaptive resistance in a bacterial population: 1 intrinsic variability in the expression of the EPRN transcription factors; 2 epigenetic inheritance of the transcription rate of EPRN associated genes; and 3 energetic cost of the efflux pumps activity that slows down cell growth. While the first two mechanisms acting together are responsible for the emergence and gradual increase of the resistance, the third one accounts for its reversibility. In contrast with the standard assumption, our model predicts that adaptive resistance cannot be explained by increased mutation rates. Our results identify the molecular mechanism of epigenetic inheritance as the main target for therapeutic treatments against the emergence of adaptive resistance. Finally, our theoretical framework unifies known and newly identified determinants such as the burden of efflux pumps that underlie bacterial adaptive resistance to antibiotics.

  19. Genetic dissection of tetraploid cotton resistant to Verticillium wilt using interspecific chromosome segment introgression lines

    Institute of Scientific and Technical Information of China (English)

    Peng; Wang; Zhiyuan; Ning; Ling; Lin; Hong; Chen; Hongxian; Mei; Jun; Zhao; Bingliang; Liu; Xin; Zhang; Wangzhen; Guo; Tianzhen; Zhang

    2014-01-01

    Verticillium wilt(caused by the pathogen Verticillium dahliae) is of high concern for cotton producers and consumers. The major strategy for controlling this disease is the development of resistant cotton(Gossypium spp.) cultivars. We used interspecific chromosome segment introgression lines(CSILs) to identify quantitative trait loci(QTL) associated with resistance to Verticillium wilt in cotton grown in greenhouse and inoculated with three defoliating V. dahliae isolates. A total of 42 QTL, including 23 with resistance-increasing and 19 with resistancedecreasing, influenced host resistance against the three isolates. These QTL were identified and mapped on 18 chromosomes(chromosomes A1, A3, A4, A5, A7, A8, A9, A12, A13, D1, D2,D3, D4, D5, D7, D8, D11, and D12), with LOD values ranging from 3.00 to 9.29. Among the positive QTL with resistance-increasing effect, 21 conferred resistance to only one V. dahliae isolate, suggesting that resistance to V. dahliae conferred by most QTL is pathogen isolate-specific. The At subgenome of cotton had greater effect on resistance to Verticillium wilt than the Dt subgenome. We conclude that pyramiding different resistant QTL could be used to breed cotton cultivars with broad-spectrum resistance to Verticillium wilt.

  20. Genetic resistance to Bacillus thuringiensis alters feeding behaviour in the cabbage looper, Trichoplusia ni.

    Directory of Open Access Journals (Sweden)

    Ikkei Shikano

    Full Text Available Evolved resistance to xenobiotics and parasites is often associated with fitness costs when the selection pressure is absent. Resistance to the widely used microbial insecticide Bacillus thuringiensis (Bt has evolved in several insect species through the modification of insect midgut binding sites for Bt toxins, and reports of costs associated with Bt resistance are common. Studies on the costs of Bt-resistance restrict the insect to a single artificial diet or host-plant. However, it is well documented that insects can self-select appropriate proportions of multiple nutritionally unbalanced foods to optimize life-history traits. Therefore, we examined whether Bt-resistant and susceptible cabbage loopers Trichoplusia ni differed in their nutrient intake and fitness costs when they were allowed to compose their own protein:carbohydrate diet. We found that Bt-resistant T. ni composed a higher ratio of protein to carbohydrate than susceptible T. ni. Bt-resistant males exhibited no fitness cost, while the fitness cost (reduced pupal weight was present in resistant females. The absence of the fitness cost in resistant males was associated with increased carbohydrate consumption compared to females. We demonstrate a sex difference in a fitness cost and a new behavioural outcome associated with Bt resistance.

  1. Genetic analysis of the resistance to eight anthracnose races in the common bean differential cultivar Kaboon.

    Science.gov (United States)

    Campa, Ana; Giraldez, Ramón; Ferreira, Juan José

    2011-06-01

    Resistance to the eight races (3, 7, 19, 31, 81, 449, 453, and 1545) of the pathogenic fungus Colletotrichum lindemuthianum (anthracnose) was evaluated in F(3) families derived from the cross between the anthracnose differential bean cultivars Kaboon and Michelite. Molecular marker analyses were carried out in the F(2) individuals in order to map and characterize the anthracnose resistance genes or gene clusters present in Kaboon. The analysis of the combined segregations indicates that the resistance present in Kaboon against these eight anthracnose races is determined by 13 different race-specific genes grouped in three clusters. One of these clusters, corresponding to locus Co-1 in linkage group (LG) 1, carries two dominant genes conferring specific resistance to races 81 and 1545, respectively, and a gene necessary (dominant complementary gene) for the specific resistance to race 31. A second cluster, corresponding to locus Co-3/9 in LG 4, carries six dominant genes conferring specific resistance to races 3, 7, 19, 449, 453, and 1545, respectively, and the second dominant complementary gene for the specific resistance to race 31. A third cluster of unknown location carries three dominant genes conferring specific resistance to races 449, 453, and 1545, respectively. This is the first time that two anthracnose resistance genes with a complementary mode of action have been mapped in common bean and their relationship with previously known Co- resistance genes established.

  2. Natural Combination of Genetic Systems for Degradation of Phenol and Resistance to Heavy Metals in Phenol and Cyanide Assimilating Bacteria

    Directory of Open Access Journals (Sweden)

    El-Deeb, B.

    2009-01-01

    Full Text Available Combination of genetic systems of degradation of xenobiotic compound and heavy metal resistance is one of the approaches to the creation of polyfunctional strains for bioremediation of soil after co-contamination with organic pollutants and heavy metals. A bacterial strain Pseudomonas putida PhCN (pPhCN1, pPhCN2 has been obtained. This bacterium contains two plasmids, a 120-kb catabolic plasmid that encodes for breakdown of phenol (pPhCN1 and pPhCN2 plasmid that codes for cadmium and copper resistant. Cyanide assimilation by this bacterium is encoded by chromosomal genes. The inhibitory effect of cadmium (Cd2+ or copper (Cu2+ on the degradation of phenol by P. putida strains PhCN and PhCN1 (contained pPhCN1 were investigated in the presence of phenol and cyanide as a sole carbon and nitrogen source, respectively. The resistant strain PhCN showed high ability to degrade phenol and cyanide in presence of Cd2+ or Cu2+ as compared to the sensitive strain PhCN1. In addition, Cd2+ or Cu2+ was also found to exert a strong inhibitory effect on the C23O dioxygenase enzyme activity in the presence of cyanide as a nitrogen source. However, the presence of heavy metal resistance plasmid alleviated the inhibitory effect of metals on the enzyme activity in resistant strain.

  3. Genetic Analysis and Molecular Tagging a Novel Yellow Rust Resistance Gene Derived from Synthetic Hexaploid Wheat Germplasm M08

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo-yue; LI Li-hui

    2008-01-01

    Yellow rust of wheat(caused by Puccinia striiformis Westend.f sp.tritici Eriks.)has been periodically epidemic and severely damaged wheat production in China.The development of resistant cultivars could be an effective way to reduce yield losses of wheat caused by yellow rust.Rust reaction tests and genetic analysis indicated that M08,the synthetic hexaploid wheat derived from hybridization between Triticum durum(2n=6X=28;genome AABB)and Aegilops tauschii (2n=2X=14;genome DD),showed resistance to current prevailing yellow rust races at seedling stage,which was controlled by a single dominant gene,designated as YrAm.Bulked segregant analysis was used to identify microsatellite markers linked to gene YrAm in an F2 population derived from cross M08(resistant)×Jinan 17(susceptible).Three microsatellite marker loci Xgwm77,Xgwm285,and Xgwm131 located on chromosome 3B were mapped to the YrAm locus. Xgwm131 was the closest marker locus and showed a linkage distance of 7.8 cM to the resistance locus.Thus,it is assumed that YrAm for resistance to yellow rust may be derived from Triticum durum and is located on the long arm of chromosome 3B.

  4. Genetic effects analysis of myeloid leukemia factor 2 and T cell receptor-beta on resistance to coccidiosis in chickens.

    Science.gov (United States)

    Kim, E-S; Hong, Y H; Lillehoj, H S

    2010-01-01

    Associations between the parameters of resistance to coccidiosis and SNP in 3 candidate genes located on chromosome 1 [T cell receptor-beta (TCR-beta), myeloid leukemia factor 2 (MLF2), and lymphotactin] were determined. Single nucleotide polymorphisms were genotyped in 24 F1 generation and 290 F2 generation birds. Four SNP were identified in the lymphotactin gene, 12 were located in the TCR-beta gene, and 4 in the MLF2 gene. At various times after experimental infection of the F2 generation with Eimeria maxima, BW, fecal oocyst shedding, and biochemical parameters were measured as parameters of coccidiosis resistance. Single marker association test was applied to determine the associations between the 20 SNP and the parameters of coccidiosis resistance. The maximum additive genetic effect on disease resistance of an SNP in MLF2 was explained by BW (P = 0.0002). The SNP in MLF2 significantly associated with BW was also associated with fecal oocyst shedding (P = 0.001). Four SNP associated with oocyst shedding were found within the coding region of TCR-beta (P coccidiosis resistance in chickens.

  5. 水生细菌耐药性的遗传机制%Genetic mechanisms of aquatic bacterial resistance

    Institute of Scientific and Technical Information of China (English)

    陈旭凌; 黄志坚

    2013-01-01

    水产养殖中抗生素的过度使用,导致耐药细菌以及多重耐药细菌大量出现,极大限制了我国水产养殖业的发展.本文根据水体特殊环境,针对抗生素进入水体后降解缓慢使水生细菌更容易产生耐药性的特点,从染色体介导的耐药性、质粒介导的耐药性、转座子介导的耐药性、整合子和基因盒介导的耐药性、插入序列共同区(ISCR)介导的耐药性5个方面对水生细菌产生耐药的遗传机制进行介绍,有助于正确使用抗生素,减少抗生素耐药基因的传播,对新抗生素药物的研发有一定的指导意义.本文同时指出ISCR因子具有强大的系统功能,尤其是ISCR1、ISCR2在水生细菌耐药性方面的介导作用,值得关注,不容忽视.%Excessive use of antibiotics leading to drug-resistant and multidrug-resistant bacteria,greatly limits the development of aquaculture in China.According to the special of water enviroment,and the characteristics that antibiotics degradate slowly in water to make aquatic bacteria more easily to drug-resistance.This paper describes five aspects of aquatic bacteria resistant genetic mechanisms,such as chromosome-mediated resistance,plasmid-mediated resistance,transposon-mediated resistance,integrons and gene cassette-mediated resistance,and resistance mediated by insertion sequence common region (ISCR).Contributing to the correct use of antibiotics,not only reduces the spread of antibiotic resistance genes,but also has a certain guiding significance for the development of new antibiotics.We must pay attention to the strong system function of ISCR factor,especially the role of resistance mediated by ISCR1,ISCR2 on aquatic bacteria.

  6. Analysis of the genetic diversity of vancomycin-resistant Staphylococcus aureus

    OpenAIRE

    Geraldo B. Melo; Melo,Michelle C.; Gama,Alexandre P.; Carvalho,Karinne S.; Teresa C. Jesus; Bonetti, Ana M.; Gontijo Filho,Paulo P.

    2005-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS) are among the most frequent causes of hospital infections worldwide, thus justifying the increasing use of vancomycin. In this study, we evaluated the presence of glycopeptide-resistant staphylococci, in 41 patients hospitalized in the Clinical Hospital of the Federal University of Uberlândia in Uberlândia, MG, who were being treated with vancomycin. All isolates were plated ...

  7. Tomato early blight (Alternaria solani): the pathogen, genetics and breeding for resistance

    OpenAIRE

    Chaerani, R.; Voorrips, R. E.

    2006-01-01

    Alternaria solani causes diseases on foliage (early blight), basal stems of seedlings (collar rot), stems of adult plants (stem lesions), and fruits (fruit rot) of tomato. Early blight is the most destructive of these diseases and hence receives considerable attention in breeding. For over 60 years, breeding for early blight resistance has been practiced, but the development of cultivars with high levels of resistance has been hampered by the lack of sources of strong resistance in the cultiv...

  8. Antimicrobial resistance, virulence factors and genetic diversity of Escherichia coli isolates from household water supply in Dhaka, Bangladesh.

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Talukdar

    Full Text Available BACKGROUND: Unsafe water supplies continue to raise public health concerns, especially in urban areas in low resource countries. To understand the extent of public health risk attributed to supply water in Dhaka city, Bangladesh, Escherichia coli isolated from tap water samples collected from different locations of the city were characterized for their antibiotic resistance, pathogenic properties and genetic diversity. METHODOLOGY/PRINCIPAL FINDINGS: A total of 233 E. coli isolates obtained from 175 tap water samples were analysed for susceptibility to 16 different antibiotics and for the presence of genes associated with virulence and antibiotic resistance. Nearly 36% (n = 84 of the isolates were multi-drug(≥ 3 classes of antibiotics resistant (MDR and 26% (n = 22 of these were positive for extended spectrum β-lactamase (ESBL. Of the 22 ESBL-producers, 20 were positive for bla CTX-M-15, 7 for bla OXA-1-group (all had bla OXA-47 and 2 for bla CMY-2. Quinolone resistance genes, qnrS and qnrB were detected in 6 and 2 isolates, respectively. Around 7% (n = 16 of the isolates carried virulence gene(s characteristic of pathogenic E. coli; 11 of these contained lt and/or st and thus belonged to enterotoxigenic E. coli and 5 contained bfp and eae and thus belonged to enteropathogenic E. coli. All MDR isolates carried multiple plasmids (2 to 8 of varying sizes ranging from 1.2 to >120 MDa. Ampicillin and ceftriaxone resistance were co-transferred in conjugative plasmids of 70 to 100 MDa in size, while ampicillin, trimethoprim-sulfamethoxazole and tetracycline resistance were co-transferred in conjugative plasmids of 50 to 90 MDa. Pulsed-field gel electrophoresis analysis revealed diverse genetic fingerprints of pathogenic isolates. SIGNIFICANCE: Multi-drug resistant E. coli are wide spread in public water supply in Dhaka city, Bangladesh. Transmission of resistant bacteria and plasmids through supply water pose serious threats to public health in

  9. Bovine salmonellosis in Northeast of Iran:Frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp.

    Institute of Scientific and Technical Information of China (English)

    Hessam A Halimi; Hesam A Seifi; Mehrnaz Rad

    2014-01-01

    Objective:To evaluate serovar and antimicrobial resistance patterns of Salmonella spp isolated from healthy, diseased and necropsied cows and calves in this observational study. Methods:Nineteen isolates recovered from feces and tissues of salmonellosis-affected animals of two commercial farms in north-east of Iran. In second part of the study, the two farms were sampled 4 times with an interval of 2 month. The samples included calves’ feces, adult cows’ feces, feeds, water, milk filters, and milk fed to calves. Five Salmonella were isolated from 332 fecal samples collected from calves and peri-parturient cows. No Salmonella was recovered from water, feed, milk filers and milk fed to calves. Results:Salmonella Typhimurium was the most frequently isolate among all sero-groups. S. Dublin was only accounted for 8%(two out of 24) of isolates. Isolated Salmonella strains were used for the ERIC PCR DNA fingerprinting assay. Our results grouped Salmonella isolates into 3 clusters, suggesting that specific genotypes were responsible for each sero-group of Salmonella. The results also revealed diversity among Salmonella isolates in cluster III (sero-group B). Eighteen out of 19 Salmonella spp. were resistant to oxytetracycline. Five isolates out of 19 showed more than one drug resistance. Multi-drug resistance was seen only among Salmonella Typhimurium isolates. Enrofloxacin was the most susceptible antibiotic against all isolates in this study. Conclusion:The emergence of multiple antibiotic-resistant strains of Salmonella Typhimurium should be of great concern to the public. No correlation between ERIC fingerprinting and resistance patterns of Salmonella isolates was found, which indicates resistance to antimicrobial agents was not related to specific genetic background.

  10. A First Assessment of Mycobacterium tuberculosis Genetic Diversity and Drug-Resistance Patterns in Twelve Caribbean Territories

    Directory of Open Access Journals (Sweden)

    Julie Millet

    2014-01-01

    Full Text Available With the exception of some French-speaking islands, data on tuberculosis (TB in the Caribbean are scarce. In this study, we report a first assessment of genetic diversity of a convenience sample of Mycobacterium tuberculosis strains received from twelve Caribbean territories by spoligotyping and describe their drug-resistance patterns. Of the 480 isolates, 40 (8.3% isolates showed resistance to at least one anti-TB drug. The proportion of drug-resistant strains was significantly higher in The Bahamas (21.4%; P=0.02, and Guyana (27.5%; P<0.0001, while it was significantly lower in Jamaica (2.4%; P=0.03 than in other countries of the present study. Regarding genetic diversity, 104 distinct spoligotype patterns were observed: 49 corresponded to clustered strains (2 to 93 strains per cluster, while 55 remained unclustered among which 16 patterns were not reported previously. Combining the study results with regional data retrieved from the international SITVIT2 database underlined a connection between frequency of certain M. tuberculosis phylogenetic lineages and the language spoken, suggesting historical (colonial and ongoing links (trade, tourism, and migratory flows with European countries with which they shared a common past.

  11. Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations

    National Research Council Canada - National Science Library

    PELEG, Z; FAHIMA, T; ABBO, S; KRUGMAN, T; NEVO, E; YAKIR, D; SARANGA, Y

    2005-01-01

    Wild emmer wheat ( Triticum turgidum spp. dicoccoides (Körn.) Thell.), the tetraploid progenitor of cultivated wheat, is a potential source for various agronomical traits, including drought resistance...

  12. Genetics and Improvement of Bacterial Blight Resistance of Hybrid Rice in China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi

    2009-01-01

    Since 1980s, rice breeding for resistance to bacterial blight has been rapidly progressing in China. The gene Xa4 was mainly used in three-line indica hybrid and two-line hybrid rice. The disease has been 'quiet' for 20 years in China, yet in recent years it has gradually emerged and been prevalent in fields planted with newly released rice varieties in the Changjiang River valley. Under the circumstances, scientists inevitably raised several questions: what causes the resurgence and what should we do next? And/or is resistance breeding still one of the main objectives in rice improvement? Which approach do we take on resistance breeding so that the resistance will be more durable, and the resistance gene will be used more efficiently? A combined strategy involving traditional method, molecular marker-assisted selection, and transgenic technology should bring a new era to the bacterial blight resistance hybrid rice breeding program. This review also briefly discusses and deliberates on issues related to the broadening of bacterial blight resistance, and suitable utilization of resistance genes, alternate planting of available resistance genes; and understands the virulent populations of the bacterial pathogen in China even in Asia.

  13. MECHANISMS OF RESISTANCE TO CIPROFLOXACIN AND GENETIC DIVERSITY OF ESCHERICHIA COLI STRAINS ORIGINATING FROM URINE CULTURES PERFORMED FOR ROMANIAN ADULTS.

    Science.gov (United States)

    Cristea, Violeta Corina; Oprea, Mihaela; Neacşu, Gabriela; Gîlcă, Ramona; Popa, Mircea Ioan; Usein, Codruţa-Romaniţa

    2015-01-01

    Urinary tract infections (UTI) with Escherichia coli are among the most common infections presenting in general practice. Fluoroquinolones (FQs) are relied on for their empirical therapy but recent reports indicate a concerning increase in the percentage of FQ-resistant E. coli isolates in many countries, including Romania. Sixty E. coli strains with ciprofloxacin resistance and cephalosporin susceptibility isolated from urine specimens of non-hospitalized patients during a five-month period (October 2014 - February 2015) were further analyzed to determine the molecular basis of FQ resistance (i.e. mutations in chromosomal gyrA, gyrB, parC genes and presence of plasmid-borne qnrA, qnrB, qnrS, and aac(6'-Ib-cr genes), the phylogenetic background (i.e. phylogenetic groups A, B1, B2, C, D, E, F or clade I), O25b/ST131 status, and genetic relatedness inferred from the XbaI pulsed-field gel electrophoresis (PFGE) profiles as a measure of isolate-specific genetic composition. The PCR-based phylotyping showed that most strains were assigned to non-B2 phylogenetic groups (i.e. group A/21 strains, group B1/14 strains, group B2/10 strains, group C/8 strains, group D/3 strains, group F/4 strains). Already described chromosomal mutations associated to FQ resistance were found, the strains being double gyrA mutants (i.e. Ser83Leu, Asp87Asn) with one or two parC mutations (e.g. Ala56Thr, Ser80Ile, Glu84Gly). Seven percent of the strains harboured plasmid-borne genes qnrS1 (2 strains) and aac(6'-Ib-cr (2 strains). Based on the PCR results, 15% of the strains were members of the O25b/ST131 clone and possessed the gyrA/parC allele combination which is considered as hallmark of H30 subclone. PFGE genotyping revealed a genetically diverse population of FQ-resistant E. coli. ST131 strains displayed more homogeneous PFGE profiles than non-ST131. The ST131 cluster extended to 77.74% similarity versus 60% overall. These findings underscore the need for ongoing surveillance to capture the

  14. Evaluation of a Diverse, Worldwide Collection of Wild, Cultivated, and Landrace Pepper (Capsicum annuum) for Resistance to Phytophthora Fruit Rot, Genetic Diversity, and Population Structure.

    Science.gov (United States)

    Naegele, R P; Tomlinson, A J; Hausbeck, M K

    2015-01-01

    Pepper is the third most important solanaceous crop in the United States and fourth most important worldwide. To identify sources of resistance for commercial breeding, 170 pepper genotypes from five continents and 45 countries were evaluated for Phytophthora fruit rot resistance using two isolates of Phytophthora capsici. Genetic diversity and population structure were assessed on a subset of 157 genotypes using 23 polymorphic simple sequence repeats. Partial resistance and isolate-specific interactions were identified in the population at both 3 and 5 days postinoculation (dpi). Plant introductions (PIs) 640833 and 566811 were the most resistant lines evaluated at 5 dpi to isolates 12889 and OP97, with mean lesion areas less than Criollo de Morelos. Genetic diversity was moderate (0.44) in the population. The program STRUCTURE inferred four genetic clusters with moderate to very great differentiation among clusters. Most lines evaluated were susceptible or moderately susceptible at 5 dpi, and no lines evaluated were completely resistant to Phytophthora fruit rot. Significant population structure was detected when pepper varieties were grouped by predefined categories of disease resistance, continent, and country of origin. Moderately resistant or resistant PIs to both isolates of P. capsici at 5 dpi were in genetic clusters one and two.

  15. Accelerating dynamic genetic conservation efforts: Use of FT-IR spectroscopy for the rapid identification of trees resistant to destructive pathogens

    Science.gov (United States)

    C. Villari; R.A. Sniezko; L.E. Rodriguez-Saona; P. Bonello

    2017-01-01

    A strong focus on tree germplasm that can resist threats such as non-native insects and pathogens, or a changing climate, is fundamental for successful genetic conservation efforts. However, the unavailability of tools for rapid screening of tree germplasm for resistance to critical pathogens and insect pests is becoming an increasingly serious bottleneck. Here we...

  16. Impact of the HIV-1 env genetic context outside HR1-HR2 on resistance to the fusion inhibitor enfuvirtide and viral infectivity in clinical isolates

    NARCIS (Netherlands)

    Baatz, F.; Nijhuis, M.; Lemaire, M.; Riedijk, M.; Wensing, A.M.; Servais, J.Y.; Ham, P.M. van; Hoepelman, A.I.; Koopmans, P.P.; Sprenger, H.G.; Devaux, C.; Schmit, J.C.; Perez Bercoff, D.

    2011-01-01

    Resistance mutations to the HIV-1 fusion inhibitor enfuvirtide emerge mainly within the drug's target region, HR1, and compensatory mutations have been described within HR2. The surrounding envelope (env) genetic context might also contribute to resistance, although to what extent and through which

  17. Impact of the HIV-1 env Genetic Context outside HR1-HR2 on Resistance to the Fusion Inhibitor Enfuvirtide and Viral Infectivity in Clinical Isolates

    NARCIS (Netherlands)

    Baatz, Franky; Nijhuis, Monique; Lemaire, Morgane; Riedijk, Martiene; Wensing, Annemarie M. J.; Servais, Jean-Yves; van Ham, Petra M.; Hoepelman, Andy I. M.; Koopmans, Peter P.; Sprenger, Herman G.; Devaux, Carole; Schmit, Jean-Claude; Bercoff, Danielle Perez

    2011-01-01

    Resistance mutations to the HIV-1 fusion inhibitor enfuvirtide emerge mainly within the drug's target region, HR1, and compensatory mutations have been described within HR2. The surrounding envelope (env) genetic context might also contribute to resistance, although to what extent and through which

  18. Efficacy of genetically modified Bt toxins alone and in combinations against pink bollworm resistant to Cry1Ac and Cry2Ab

    Science.gov (United States)

    Evolution of resistance in pests threatens the long-term success of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and ...

  19. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  20. Benefits of host genetic diversity for resistance to infection depend on parasite diversity.

    Science.gov (United States)

    Ganz, Holly H; Ebert, Dieter

    2010-05-01

    Host populations with high genetic diversity are predicted to have lower levels of infection prevalence. This theory assumes that host genetic diversity results in variation in susceptibility and that parasites exhibit variation in infectivity. Empirical studies on the effects of host heterogeneity typically neglect the role of parasite diversity. We conducted three laboratory experiments designed to test if genetic variation in Daphnia magna populations and genetic variation in its parasites together influence the course of parasite spread after introduction. We found that a natural D. magna population exhibited variation in susceptibility to infection by three parasite species and had strong host clone-parasite species interactions. There was no effect of host heterogeneity in experimental host populations (polycultures and monocultures) separately exposed to single strains of three parasite species. When we manipulated the genetic diversity of a single parasite species and exposed them to host monocultures and polycultures, we found that parasite prevalence increased with the number of parasite strains. Host monocultures exposed to several parasite strains had higher mean parasite prevalence and higher variance than polycultures. These results indicate that effect of host genetic diversity on the spread of infection depends on the level of genetic diversity in the parasite population.

  1. Sustainable control of pea bacterial blight : approaches for durable genetic resistance and biocontrol by endophytic bacteria

    NARCIS (Netherlands)

    Elvira-Recuenco, M.

    2000-01-01

    Key-words: bacterial blight, biological control, biodiversity, endophytic bacteria, L-form, pea, PDRl retrotransposon, Pisum sativum, Pisum abyssinicum, Pseudomonas syringae pv. pisi, race specific resistance, race non-specific resistance, Spanish landraces.Pea bacterial blight (Pseudom

  2. Money, Sex, and Drugs: A Case Study to Teach the Genetics of Antibiotic Resistance

    Science.gov (United States)

    Cloud-Hansen, Karen A.; Kuehner, Jason N.; Tong, Lillian; Miller, Sarah; Handelsman, Jo

    2008-01-01

    The goal of the work reported here was to help students expand their understanding of antibiotic resistance, the Central Dogma, and evolution. We developed a unit entitled "Ciprofloxacin Resistance in "Neisseria gonorrhoeae,"" which was constructed according to the principles of scientific teaching by a team of graduate students, science faculty,…

  3. Isolation and genetic mapping of NBS-LRR disease resistance gene analogs in watermelon

    Science.gov (United States)

    Sixty-six watermelon disease resistance gene analogs (WRGA) were isolated from genotypes possessing disease resistance to fusarium oxysporum f. sp. niveum races 0, 1, and 2, zucchini yellow mosaic virus, papaya ringspot virus watermelon strain, cucumber mosaic virus, and watermelon mosaic virus. Deg...

  4. Genetic dissection of Lactuca saligna nonhost resistance to downy mildew at various lettuce developmental stages

    NARCIS (Netherlands)

    Zhang, N.; Lindhout, P.; Niks, R.E.; Jeuken, M.J.W.

    2009-01-01

    This study used the pathosystem of lettuce (Lactuca spp.) and downy mildew (Bremia lactucae) as a model to investigate the inheritance of nonhost resistance, and focused on the contribution of quantitative trait loci (QTLs) to nonhost resistance at various developmental stages in the lettuce life cy

  5. Genetical studies of resistance to Phytophthora porri in Allium porrum, using a new early screening method.

    NARCIS (Netherlands)

    Smilde, W.D.; Nes, van M.; Reinink, K.; Kik, C.

    1997-01-01

    A new screening method was developed to evaluate resistance of leek (Allium porrum) to Phytophthora porri, based on inoculation by 24 h-immersion of leek plantlets in the 3–6 leaf stage in a suspension of ca. 100 zoospores.ml-1. The immersion test was used for identifying new sources of resistance a

  6. Genetic Mutations Associated with Pesticide Resistance in Rhipicephalus microplus and Haematobia irritans

    Science.gov (United States)

    A number of gene mutation in various arthropods have been found to be associated with pesticide resistance. Some of these mutations have been found in the two cattle pests, Rhipicephalus microplus and Haematobia irritans. Sodium channel gene mutations have been associated with pyrethroid resistance ...

  7. Money, Sex, and Drugs: A Case Study to Teach the Genetics of Antibiotic Resistance

    Science.gov (United States)

    Cloud-Hansen, Karen A.; Kuehner, Jason N.; Tong, Lillian; Miller, Sarah; Handelsman, Jo

    2008-01-01

    The goal of the work reported here was to help students expand their understanding of antibiotic resistance, the Central Dogma, and evolution. We developed a unit entitled "Ciprofloxacin Resistance in "Neisseria gonorrhoeae,"" which was constructed according to the principles of scientific teaching by a team of graduate students, science faculty,…

  8. Characterization and genetics of multiple soybean aphid biotype resistance in five soybean plant introductions

    Science.gov (United States)

    Soybean aphid (Aphis glycines Matsumura) is the most important soybean [Glycine max (L.) Merr.] insect pest in the USA. The objectives of this study were to characterize the resistance expressed in the five plant introductions (PIs) to four soybean aphid biotypes, determine the mode of resistance in...

  9. Breeding and genetics of lettuce for resistance against race 2 Verticillium wilt

    Science.gov (United States)

    Verticillium wilt, caused by Verticillium dahliae Kleb., is an economically important disease of lettuce in central coastal California. Most isolates of the pathogen detected in the Salinas Valley belong to race 1 for which complete resistance exists. However, adequate level of resistance is not ava...

  10. Genetics and mapping of a new anthracnose resistance Locus in Andean common bean Paloma

    Science.gov (United States)

    The Andean cultivar Paloma is resistant to Mesoamerican and Andean races of Colletotrichum lindemuthianum, the fungal pathogen that causes the destructive anthracnose disease of common bean. Remarkably, Paloma is resistant to Mesoamerican races 2047 and 3481, which are among the most virulent races ...

  11. Genetic architecture of resistance to stripe rust in a global winter wheat germplasm collection

    Science.gov (United States)

    Virulence shifts in populations of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of Pst, necessitating the identification and intr...

  12. Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean

    Science.gov (United States)

    Bi-parental mapping populations have been commonly utilized to identify and characterize quantitative trait loci (QTL) controlling resistance to soybean cyst nematode (SCN, Heterodera glycines Ichinohe). Although this approach successfully mapped a large number of SCN resistance QTL, it captures onl...

  13. Genetic factors determine the blood pressure response to insulin resistance and hyperinsulinemia: A call to refocus the insulin hypothesis of hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Mark, A.L.; Anderson, E.A. [Univ. of Iowa and the Veterons Medical Center, Iowa City , IA (United States)

    1995-04-01

    The hypothesis that insulin resistance and compensatory hyperinsulinemia contribute to the pathogenesis of essential hypertension and hypertension in obesity has gained enormous interest. We have concluded that future progress in evaluating the insulin hypothesis will require inclusion of the concept that there is {open_quotes}sensitivity or resistance{close_quotes} to the blood pressure effects of insulin resistance and that genetic factors may play a decisive influence in this effect. 58 refs., 3 figs.

  14. Development of Methods for Genetic Assessment of Antibiotic Resistance In Animal Herds

    DEFF Research Database (Denmark)

    Schmidt, Gunilla Veslemøy

    Antibiotic drugs are important in treating bacterial infectious diseases in humans and animals. There are severe consequences when infectious bacteria become resistant to antibiotics such as treatment failure and even death. Since antibiotics were discovered, their use has been associated...... with a parallel selection for resistant bacteria. Since the hazards related to antibiotic resistance development have been recognized, the prudent use of antibiotics has been in focus, especially concerning their use in animal production. For many years antibiotics have been, and still are, recklessly used...... in the animal production especially in the form of growth promoters. Due to the associated risks of resistant zoonotic bacteria transmission from animals to humans, it is of interest to keep antibiotic use and antibiotic resistance under strict surveillance.This PhD study was based on the development of real...

  15. Genetic diversity and antimicrobial resistance of Escherichia coli from Tagus estuary (Portugal).

    Science.gov (United States)

    Pereira, Anabela; Santos, André; Tacão, Marta; Alves, Artur; Henriques, Isabel; Correia, António

    2013-09-01

    Fecal pollution of surface waters is a current world-wide public health concern and may contribute for the dissemination of antibiotic resistance. The Tagus estuary located in the south of Portugal is one of the largest wetlands in the west coast of Europe. In this study, water samples were collected from seven stations with different anthropic pressures along the estuary and evaluated for water quality indicator bacteria. Escherichia coli isolates (n=350) were typed by REP-PCR. Representatives of each REP profile (n=220) were evaluated phenotypically for resistance to 17 antibiotics and characterized in terms of phylogenetic group. Resistant isolates were screened for the presence of antibiotic resistance genes (tet(A), tet(B), sul1, sul2, qnrA, qnrB, qnrS, aacA4-cr, bla(TEM), bla(SHV), bla(CTX-M), bla(CMY-like), bla(IMP), bla(VIM)) and integrase genes (intI1 and intI2). The highest antibiotic resistance prevalence was observed for streptomycin and tetracycline followed by β-lactams and sulphonamides. Among E. coli isolates, 65.16% were resistant to at least one of the 17 antibiotics tested and approximately 19% were multiresistant. In our E. coli population phylo-groups A and D were predominant and characterized by higher prevalence of the antibiotic resistance. intI1 and intI2 genes were found in 12% of the isolates with prevalence of class 1 integrons. A strong correlation between the prevalence of integrons and multiresistance was observed. Differences in terms of antibiotic resistance between phylogenetic groups and between sampling sites were statistically significant. The results demonstrate a high prevalence of antibiotic resistance among E. coli circulating in the Tagus estuary with emphasis on the occurrence of resistance to last-resort antibiotics and on the high incidence of multiresistance. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independent of obesity.

    Science.gov (United States)

    Scott, Robert A; Fall, Tove; Pasko, Dorota; Barker, Adam; Sharp, Stephen J; Arriola, Larraitz; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Boeing, Heiner; Clavel-Chapelon, Françoise; Crowe, Francesca L; Dekker, Jacqueline M; Fagherazzi, Guy; Ferrannini, Ele; Forouhi, Nita G; Franks, Paul W; Gavrila, Diana; Giedraitis, Vilmantas; Grioni, Sara; Groop, Leif C; Kaaks, Rudolf; Key, Timothy J; Kühn, Tilman; Lotta, Luca A; Nilsson, Peter M; Overvad, Kim; Palli, Domenico; Panico, Salvatore; Quirós, J Ramón; Rolandsson, Olov; Roswall, Nina; Sacerdote, Carlotta; Sala, Núria; Sánchez, María-José; Schulze, Matthias B; Siddiq, Afshan; Slimani, Nadia; Sluijs, Ivonne; Spijkerman, Annemieke Mw; Tjonneland, Anne; Tumino, Rosario; van der A, Daphne L; Yaghootkar, Hanieh; McCarthy, Mark I; Semple, Robert K; Riboli, Elio; Walker, Mark; Ingelsson, Erik; Frayling, Tim M; Savage, David B; Langenberg, Claudia; Wareham, Nicholas J

    2014-12-01

    We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterize their association with intermediate phenotypes, and to investigate their role in type 2 diabetes (T2D) risk among normal-weight, overweight, and obese individuals. We investigated the association of genetic scores with euglycemic-hyperinsulinemic clamp- and oral glucose tolerance test-based measures of insulin resistance and secretion and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight, and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (β in SDs per allele [95% CI], -0.03 [-0.04, -0.01]; P = 0.004). This score was associated with lower BMI (-0.01 [-0.01, -0.0]; P = 0.02) and gluteofemoral fat mass (-0.03 [-0.05, -0.02; P = 1.4 × 10(-6)) and with higher alanine transaminase (0.02 [0.01, 0.03]; P = 0.002) and γ-glutamyl transferase (0.02 [0.01, 0.03]; P = 0.001). While the secretion score had a stronger association with T2D in leaner individuals (Pinteraction = 0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI or waist strata (Pinteraction > 0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. Risk assessment of genetically engineered crops: fitness effects of virus-resistance transgenes in wild Cucurbita pepo.

    Science.gov (United States)

    Laughlin, Karen D; Power, Alison G; Snow, Allison A; Spencer, Lawrence J

    2009-07-01

    The development of crops genetically engineered for pathogen resistance has raised concerns that crop-to-wild gene flow could release wild or weedy relatives from regulation by the pathogens targeted by the transgenes that confer resistance. Investigation of these risks has also raised questions about the impact of gene flow from conventional crops into wild plant populations. Viruses in natural plant populations can play important roles in plant fecundity and competitive interactions. Here, we show that virus-resistance transgenes and conventional crop genes can increase fecundity of wild plants under virus pressure. We asked how gene flow from a cultivated squash (Cucurbita pepo) engineered for virus resistance would affect the fecundity of wild squash (C. pepo) in the presence and absence of virus pressure. A transgenic squash cultivar was crossed and backcrossed with wild C. pepo from Arkansas. Wild C. pepo, transgenic backcross plants, and non-transgenic backcross plants were compared in field plots in Ithaca, New York, USA. The second and third generations of backcrosses (BC2 and BC3) were used in 2002 and 2003, respectively. One-half of the plants were inoculated with zucchini yellow mosaic virus (ZYMV), and one-half of the plants were maintained as healthy controls. Virus pressure dramatically decreased the fecundity of wild C. pepo plants and non-transgenic backcross plants relative to transgenic backcross plants, which showed continued functioning of the virus-resistance transgene. In 2002, non-transgenic backcross fecundity was slightly higher than wild C. pepo fecundity under virus pressure, indicating a possible benefit of conventional crop alleles, but they did not differ in 2003 when fecundity was lower in both groups. We detected no fitness costs of the transgene in the absence of the virus. If viruses play a role in the population dynamics of wild C. pepo, we predict that gene flow from transgenic, virus-resistant squash and, to a much lesser

  18. New Insight for the Genetic Evaluation of Resistance to Ostreid Herpesvirus Infection, a Worldwide Disease, in Crassostrea gigas.

    Directory of Open Access Journals (Sweden)

    Lionel Dégremont

    Full Text Available The Pacific oyster, Crassostrea gigas, is the most important commercial oyster species cultivated in the world. Meanwhile, the ostreid herpesvirus 1 (OsHV-1 is one of the major pathogens affecting the Pacific oyster, and numerous mortality outbreaks related to this pathogen are now reported worldwide. To assess the genetic basis of resistance to OsHV-1 infection in spat C. gigas and to facilitate breeding programs for such a trait, if any exist, we compared the mortality of half- and full-sib families using three field methods and a controlled challenge by OsHV-1 in the laboratory. In the field, three methods were tested: (A one family per bag; (B one family per small soft mesh bag and all families inside one bag; (C same as the previous methods but the oysters were individually labelled and then mixed. The mean mortality ranged from 80 to 82% and was related to OsHV-1 based on viral DNA detection. The narrow-sense heritability for mortality, and thus OsHV-1 resistance, ranged from 0.49 to 0.60. The high positive genetic correlations across the field methods suggested no genotype by environment interaction. Ideally, selective breeding could use method B, which is less time- and space-consuming. The narrow sense heritability for mortality under OsHV-1 challenge was 0.61, and genetic correlation between the field and the laboratory was ranged from 0.68 to 0.75, suggesting a weak genotype by environment interaction. Thus, most of families showing the highest survival performed well in field and laboratory conditions, and a similar trend was also observed for families with the lowest survival. In conclusion, this is the first study demonstrating a large additive genetic variation for resistance to OsHV-1 infection in C. gigas, regardless of the methods used, which should help in selective breeding to improve resistance to viral infection in C. gigas.

  19. Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon.

    Science.gov (United States)

    Argyris, Jason M; Pujol, Marta; Martín-Hernández, Ana Montserrat; Garcia-Mas, Jordi

    2015-09-01

    The availability of the genome sequence of many crop species during the past few years has opened a new era in plant biology, allowing for the performance of massive genomic studies in plant species other than the classical models Arabidopsis and rice. One of these crop species is melon (Cucumis melo), a cucurbit of high economic value that has become an interesting model for the study of biological processes such as fruit ripening, sex determination and phloem transport. The recent availability of the melon genome sequence, together with a number of genetic and genomic resources, provides powerful tools that can be used to assist in the main melon breeding targets, namely disease resistance and fruit quality. In this review, we will describe recent data obtained combining the use of a melon near isogenic line (NIL) population and genomic resources to gain insight into agronomically important traits as fruit ripening, resistance to Cucumber Mosaic virus (CMV) and the accumulation of sugars in fruits.

  20. BILL E. KUNKLE INTERDISCIPLINARY BEEF SYMPOSIUM: Genetic resistance to the effects of grazing endophyte-infected tall fescue.

    Science.gov (United States)

    Smith, T; Cassady, J P

    2015-12-01

    Forages are the base source of nutrition for any cow-calf operation. Forage types vary based on soil type and climate. Tall fescue () is the most commonly used cultivated grass for grazing beef cattle in the United States. This cool-season perennial is easily established; is resistant to drought, insects, and nematodes; and has the ability to withstand heavy grazing pressure. Most tall fescue varieties are infected with the endophyte fungus () that is essential for the plant's survival but detrimental to cattle performance. Ergot alkaloids are the generally accepted toxic agents produced by the fescue endophyte. Cattle that consume forages infected with this endophyte can develop fescue foot, fat necrosis, or fescue toxicosis. It is estimated that the beef industry loses over US$500 million annually due to fescue toxicosis through heat stress, reduced weight gain, suppressed appetite, and decreased reproductive performance. Other symptoms include a retained or rough hair coat and increased body temperature, which can be detrimental when animals are located in hot and or humid environments. Different forages and forage systems, feed additives, and animal management strategies have been tested through the years allowing the use of tall fescue in beef production systems while minimizing the adverse effects. An animal genetics approach needs to identify and select animals less susceptible to the ergot alkaloids. Research in this area reports that different cattle within the same herd can respond differently when grazing tall fescue, and evidence exists that breed type may also play a role in genetic tolerance to the negative effects on performance. Some studies have looked at the potential of identifying genetic markers that may assist in the selection of more resistant animals. From these studies, there is evidence that genetic variation does exist for resistance to the ergot alkaloids present when grazing endophyte-infected tall fescue. Forage management coupled with

  1. Studies of the genetics of inheritance of stem rust resistance in ...

    African Journals Online (AJOL)

    User

    2013-05-22

    May 22, 2013 ... fungus could affect the entire wheat crop, especially during the early growth ... either through a single mutation event or deletion of the effector molecule of the host ..... Wheat Genotypes. Crop breeding, genetics and cytology.

  2. Emergence of Tetracycline Resistance in Helicobacter pylori: Multiple Mutational Changes in 16S Ribosomal DNA and Other Genetic Loci

    Science.gov (United States)

    Dailidiene, Daiva; Bertoli, M. Teresita; Miciuleviciene, Jolanta; Mukhopadhyay, Asish K.; Dailide, Giedrius; Pascasio, Mario Alberto; Kupcinskas, Limas; Berg, Douglas E.

    2002-01-01

    Tetracycline is useful in combination therapies against the gastric pathogen Helicobacter pylori. We found 6 tetracycline-resistant (Tetr) strains among 159 clinical isolates (from El Salvador, Lithuania, and India) and obtained the following four results: (i) 5 of 6 Tetr isolates contained one or two nucleotide substitutions in one part of the primary tetracycline binding site in 16S rRNA (AGA965-967 [Escherichia coli coordinates] changed to gGA, AGc, guA, or gGc [lowercase letters are used to represent the base changes]), whereas the sixth (isolate Ind75) retained AGA965-967; (ii) PCR products containing mutant 16S ribosomal DNA (rDNA) alleles transformed recipient strains to Tetr phenotypes, but transformants containing alleles with single substitutions (gGA and AGc) were less resistant than their Tetr parents; (iii) each of 10 Tetr mutants of reference strain 26695 (in which mutations were induced with metronidazole, a mutagenic anti-H. pylori agent) contained the normal AGA965-967 sequence; and (iv) transformant derivatives of Ind75 and of one of the Tetr 26695 mutants that had acquired mutant rDNA alleles were resistant to tetracycline at levels higher than those to which either parent strain was resistant. Thus, tetracycline resistance in H. pylori results from an accumulation of changes that may affect tetracycline-ribosome affinity and/or other functions (perhaps porins or efflux pumps). We suggest that the rarity of tetracycline resistance among clinical isolates reflects this need for multiple mutations and perhaps also the deleterious effects of such mutations on fitness. Formally equivalent mutations with small but additive effects are postulated to contribute importantly to traits such as host specificity and virulence and to H. pylori's great genetic diversity. PMID:12435699

  3. Maternal Western Diet Overrides Genetic Resistance to Obesity: : Role of TRH-DE

    OpenAIRE

    Frihauf, Jennifer Becker

    2014-01-01

    The dramatic rise in obesity rates in the United States over the last 30 years is likely a result of a combination of genetic and environmental factors. Genetic background can predispose an individual to obesity, while an environment rich in energy dense foods can promote overconsumption. Working in conjunction, genes and environment alter the regulatory systems responsible for maintaining energy balance. It has become increasingly clear that environmental factors can affect energy homeostasi...

  4. Genetic relatedness of methicillin-resistant Staphylococcus pseudintermedius (MRSP) isolated from a dog and the dog owner.

    Science.gov (United States)

    Soedarmanto, I; Kanbar, T; Ülbegi-Mohyla, H; Hijazin, M; Alber, J; Lämmler, C; Akineden, Ö; Weiss, R; Moritz, A; Zschöck, M

    2011-12-01

    In the present study four methicillin-resistant Staphylococcus pseudintermedius (MRSP) strains isolated from a dog (n=3) and the anterior nares of the dog owner (n=1) were investigated by conventional and molecular methods. The species identity of the four S. pseudintermedius strains was confirmed by conventional methods, by PCR mediated amplification of S. intermedius/S. pseudintermedius specific segments of thermonuclease encoding gene nuc and by restriction fragment length polymorphism analysis of phosphoacetyltransferase encoding gene pta. Investigation of the four S. pseudintermedius for toxinogenic potential revealed that all four strains were positive for the exfoliative toxin encoding gene siet and the leukotoxin encoding genes lukS, lukF. The oxacillin and penicillin resistance of the four S. pseudintermedius strains could be determined by cultivation of the strains on oxacillin resistant screening agar base, ChromID MRSA Agar and Brilliance MRSA Agar and by multiplex PCR detecting the resistance genes mecA and blaZ. The genetic relatedness of the strains was studied by macrorestriction analysis of their chromosomal DNA using pulsed field gel electrophoresis (PFGE). According to PFGE all four S. pseudintermedius strains represent an identical bacterial clone indicating a cross transmission between the dog and the dog owner.

  5. Molecular design and genetic optimization of antimicrobial peptides containing unnatural amino acids against antibiotic-resistant bacterial infections.

    Science.gov (United States)

    He, Yongkang; He, Xiaofeng

    2016-09-01

    Antimicrobial peptides (AMPs) have been the focus of intense research towards the finding of a viable alternative to current small-molecule antibiotics, owing to their commonly observed and naturally occurring resistance against pathogens. However, natural peptides have many problems such as low bioavailability and high allergenicity that largely limit the clinical applications of AMPs. In the present study, an integrative protocol that combined chemoinformatics modeling, molecular dynamics simulations, and in vitro susceptibility test was described to design AMPs containing unnatural amino acids (AMP-UAAs). To fulfill this, a large panel of synthetic AMPs with determined activity was collected and used to perform quantitative structure-activity relationship (QSAR) modeling. The obtained QSAR predictors were then employed to direct genetic algorithm (GA)-based optimization of AMP-UAA population, to which a number of commercially available, structurally diverse unnatural amino acids were introduced during the optimization process. Subsequently, several designed AMP-UAAs were confirmed to have high antibacterial potency against two antibiotic-resistant strains, i.e. multidrug-resistant Pseudomonas aeruginosa (MDRPA) and methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentration (MIC) < 10 μg/ml. Structural dynamics characterizations revealed that the most potent AMP-UAA peptide is an amphipathic helix that can spontaneously embed into an artificial lipid bilayer and exhibits a strong destructuring tendency associated with the embedding process. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 746-756, 2016.

  6. Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight

    Directory of Open Access Journals (Sweden)

    Nyla Jabeen

    2015-09-01

    Full Text Available This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3 gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol causing fusarium wilt and Alternaria solani causing early blight (EB. In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3 gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3.

  7. Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight

    Science.gov (United States)

    Jabeen, Nyla; Chaudhary, Zubeda; Gulfraz, Muhammad; Rashid, Hamid; Mirza, Bushra

    2015-01-01

    This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3. PMID:26361473

  8. Study on Insulin Resistance and Genetic Polymorphisms in Essential Hypertension Patients of Two Different Kinds of TCM Constitution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the relationship of insulin resistance and the polymorphisms of insulin receptor-related genes in essential hypertension patients of two different kinds of TCM constitution. Methods: Oral glucose tolerance test (OGTT) and insulin release test (InRT) were conducted in 217 essential hypertensive patients of either sluggish meticulous (SM) constitution (139 cases) or prosperous impetuous (PI) constitution (78 cases), and the polymorphism of three genes,including insulin-like growth factor-1 receptor (IGF-1R), insulin receptor substrate-1 (IRS-1) and 2 (IRS-2) genes were detected. Results: (1) OGTT, InRT and insulin resistance index (Homa-IR) were higher and insulin sensitive index (ISI) was lower in the patients of SM constitution than those in patients of PI constitution. (2) Significant difference of ISI and Homa-IR was shown in patients of both constitutions with genotype G of the 3 genes. Conclusion: Decrease of insulin sensitivity and increase of insulin resistance are more obvious in hypertensive patients with genotype G of the 3 genes of SM constitution than in those of PI constitution. Therefore, the difference in constitution might be one of the genetic characteristics for insulin resistance in hypertensive patients.

  9. Genetics, Development, and Application of Cytoplasmic Herbicide Resistance in Foxtail Millet

    Institute of Scientific and Technical Information of China (English)

    JI Gui-su; DU Rui-heng; HOU Sheng-lin; CHENG Ru-hong; WANG Xin-yu; ZHAO Xiu-ping

    2007-01-01

    The effect of cytoplasmic herbicide resistant gene in millet plants was studied. The heterozygous populations and isogenic lines with homocaryotic alloplasmic genes were obtained by crossing and reciprocal crossing of cytoplasmic herbicide resistant plants with susceptive plants of foxtail millet. The characters of F1, F2, backcross and composite cross groups, and the growth and development of isogenic lines were compared. The cytoplasmic herbicide resistant gene slowed the development of seedling, delayed heading, and shortened the milking stage in the foxtail millet plant. Yield capacity and main agronomic characters were all affected by the cytoplasmic herbicide resistant gene in most of the backcross, composite cross, and F2 populations. However, there was stronger hybrid vigor in F1. The backcrosses,composite crosses, and F2 populations were widely separated and some of them had good characters similar to those of susceptive groups. The plant characters and development of foxtail millet were negatively affected by the cytoplasmic herbicide resistant gene. The authors proposed a method of using hybrid vigor to obtain high yield and avoid the negative effects of herbicide resistance cytoplasm in plant growth. The expected results could be obtained by selecting individuals in separate populations of fast developed seedlings, well-developed roots, and with capacities of early heading and fast milking. Guided by the principal mentioned above, many high yield lines and hybrid crosses of foxtail millet with herbicide resistant cytoplasm were obtained.

  10. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation.

    Science.gov (United States)

    Sharma, C; Kumar, N; Pandey, R; Meis, J F; Chowdhary, A

    2016-09-01

    Candida auris is an emerging multidrug resistant yeast that causes nosocomial fungaemia and deep-seated infections. Notably, the emergence of this yeast is alarming as it exhibits resistance to azoles, amphotericin B and caspofungin, which may lead to clinical failure in patients. The multigene phylogeny and amplified fragment length polymorphism typing methods report the C. auris population as clonal. Here, using whole genome sequencing analysis, we decipher for the first time that C. auris strains from four Indian hospitals were highly related, suggesting clonal transmission. Further, all C. auris isolates originated from cases of fungaemia and were resistant to fluconazole (MIC >64 mg/L).

  11. Genetically engineered resistance to Plum pox virus infection in herbaceous and stone fruit hosts.

    Science.gov (United States)

    Ilardi, Vincenza; Nicola-Negri, Elisa Di

    2011-01-01

    Plum pox virus (PPV), a Potyvirus, is the causal agent of sharka, the most detrimental viral disease affecting stone fruit trees. This review focuses on research carried out to obtain PPV- resistant transgenic plants and on how biotechnological strategies evolved in light of the scientific advances made during the last several years. Successful RNA silencing strategies that confer high level of resistance to strains of PPV have been developed and tested under laboratory and greenhouse conditions. Moreover, field tests showed that transgene-mediated RNA silencing was effective in protecting plum plants against aphid-mediated PPV infection. The new emerging biotechnological approaches for conferring PPV resistance are discussed.

  12. Genetic pathway in acquisition and loss of vancomycin resistance in a methicillin resistant Staphylococcus aureus (MRSA strain of clonal type USA300.

    Directory of Open Access Journals (Sweden)

    Susana Gardete

    2012-02-01

    Full Text Available An isolate of the methicillin-resistant Staphylococcus aureus (MRSA clone USA300 with reduced susceptibility to vancomycin (SG-R (i.e, vancomycin-intermediate S. aureus, VISA and its susceptible "parental" strain (SG-S were recovered from a patient at the end and at the beginning of an unsuccessful vancomycin therapy. The VISA phenotype was unstable in vitro generating a susceptible revertant strain (SG-rev. The availability of these 3 isogenic strains allowed us to explore genetic correlates of antibiotic resistance as it emerged in vivo. Compared to the susceptible isolate, both the VISA and revertant strains carried the same point mutations in yycH, vraG, yvqF and lspA genes and a substantial deletion within an intergenic region. The revertant strain carried a single additional frameshift mutation in vraS which is part of two component regulatory system VraSR. VISA isolate SG-R showed complex alterations in phenotype: decreased susceptibility to other antibiotics, slow autolysis, abnormal cell division and increased thickness of cell wall. There was also altered expression of 239 genes including down-regulation of major virulence determinants. All phenotypic properties and gene expression profile returned to parental levels in the revertant strain. Introduction of wild type yvqF on a multicopy plasmid into the VISA strain caused loss of resistance along with loss of all the associated phenotypic changes. Introduction of the wild type vraSR into the revertant strain caused recovery of VISA type resistance. The yvqF/vraSR operon seems to function as an on/off switch: mutation in yvqF in strain SG-R turns on the vraSR system, which leads to increase in vancomycin resistance and down-regulation of virulence determinants. Mutation in vraS in the revertant strain turns off this regulatory system accompanied by loss of resistance and normal expression of virulence genes. Down-regulation of virulence genes may provide VISA strains with a "stealth

  13. Report: EPA Needs Better Data, Plans and Tools to Manage Insect Resistance to Genetically Engineered Corn

    Science.gov (United States)

    Report #16-P-0194, June 1, 2016. Bt crops have reduced insecticide applications by 123 million pounds. The EPA can preserve this significant public benefit through enhanced monitoring and preparation to address insect resistance in Bt corn.

  14. genetic analysis of resistance to soybean rust disease abstract résumé

    African Journals Online (AJOL)

    Administrator

    Environmental variation contributed most (53%) to total variation (VP) due to high “within .... enable selection of superior genotypes in self- ... to dominance interaction. ..... Thesis, University of ... F2 generation of winter wheat for resistance.

  15. Genetic transformation of calli from maize and regen-eration of herbicide-resistant plantlets

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The herbicide-resistant gene als of Arabidopsis thaliana has been transferred into embryonic calli of maize by microprojectile bombardment. We have obtained chlor-sulfuron-resistant calli and regenerated plantlets through selection by herbicide chlorsulfuron. The results of PCR analysis and Southern blotting indicate that gene als has been transferred into some plantlets. The test of spraying chlorsulfuron indicated that the transgenic plantlets had favorable herbicide-resistant trait. The purpose of the re-search was to obtain chlorsulfuron-resistant transgenic ma-ize and hope that this kind of high efficient herbicide could be widely used in rotation soil of wheat and maize. In addi-tion, through spraying herbicide, we could eliminate the hybrid plants and thereby increase the purity of F1 seeds.

  16. Analysis of genetic homology and genotyping in Carbapenems-resistant Klebsiella pneumonia

    Institute of Scientific and Technical Information of China (English)

    杨丽君

    2013-01-01

    Objective To investigate genotyping and homology of Carbapenems-resistant Klebsiella pneumonia isolated from clinical specimens.Methods A total of 175 clinical isolates of Carbapenemsresistant Klebsiella pneumoniae were isolated from clinical specimens from January 2011 to June 2012

  17. Genetic complementation analysis of two independently isolated hycanthone-resistant strains of Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Livia Pica-Mattoccia

    1992-01-01

    Full Text Available The objective of this study is to determine whether various hycanthone resistant strains of schistosomes which have been independently isolated are all affected in the same gene. A strain obtained from a Brazilian patient was compared with a strain of Puerto Rican origin selected in the laboratory. If the mutation conferring resistance involved two different genes, one would expect that the progeny of a cross between the two strains would show complementation, i.e. it would be sensitive to the drug. We have performed such a cross and obtained F1 hybrid worms wich were essentially all resistant, thus suggesting that the mutation conferring resistance in the two strains involves the same gene.

  18. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation

    OpenAIRE

    2016-01-01

    Candida auris is an emerging multidrug resistant yeast that causes nosocomial fungaemia and deep-seated infections. Notably, the emergence of this yeast is alarming as it exhibits resistance to azoles, amphotericin B and caspofungin, which may lead to clinical failure in patients. The multigene phylogeny and amplified fragment length polymorphism typing methods report the C. auris population as clonal. Here, using whole genome sequencing analysis, we decipher for the first time that C. auris ...

  19. Use of Nystatin-Resistant Mutations in Parasexual Genetic Analysis in DICTYOSTELIUM DISCOIDEUM

    OpenAIRE

    Kasbekar, Durgadas P.; Madigan, Sanford; Katz, Eugene R.

    1983-01-01

    Nystatin-resistant mutations exhibit extreme sensitivity to 1.3 mm coumarin. The mutations fall into three complementation groups so it is possible to select for nonallelic mutations conferring sensitivity to coumarin by selection on nystatin-containing nutrient agar plates. Complementation between such coumarin-sensitive mutations allows the selection of diploids on coumarin-containing nutrient agar. Two of the nystatin resistance genes, nysB and nysC, have been mapped tentatively to the pr...

  20. Genetic variation in dieback resistance in Fraxinus excelsior confirmed by progeny inoculation assay

    DEFF Research Database (Denmark)

    Lobo, Albin; McKinney, Lea Vig; Hansen, Jon Kehlet;

    2015-01-01

    Ash dieback caused by the pathogenic fungus Hymenoscyphus fraxineus [previously known as H. pseudoalbidus (sexual stage) and Chalara fraxinea (asexual stage)] is a widespread problem in Europe. Here, we assess crown damage from natural infection and necrosis development following artificial contr...... of heritable resistance and indicates that a bioassay based on controlled inoculations has the potential of becoming a fast and cost-effective tool for estimation of dieback susceptibility in breeding programmes for resistance in ash trees....

  1. Genetic mapping of resistance to purple seed stain in PI 80837 soybean.

    Science.gov (United States)

    Jackson, Eric Wayne; Feng, Chunda; Fenn, Patrick; Chen, Pengiun

    2008-01-01

    Purple seed stain (PSS) of soybean caused by Cercospora kikuchii is an important disease that reduces market grade and can affect seed germination and vigor. A single dominant gene was shown to confer PSS resistance in PI 80837. The objective of this research was to map the PSS resistance gene in PI 80837 using simple sequence repeat (SSR) markers. A cross was made between the PSS-susceptible cultivar Agripro 350 (AP 350) and PI 80837. The F2 population and parents were grown in the field, and the resistance or susceptibility of individual plants was determined by assaying the seed for infection by C. kikuchii. DNA of parent and F2 plants was extracted for SSR analysis and mapping. Segregation ratios for seed infection and for SSR markers showed that a single dominant gene conditions resistance to PSS in PI 80837. The candidate resistance gene was mapped between Sat_308 (6.6 cM) and Satt594 (11.6 cM) on molecular linkage group G. These markers may be useful in marker-assisted selection for utilizing PSS resistance from PI 80837 in a breeding program.

  2. Genetic Signature of Resistance to White Band Disease in the Caribbean Staghorn Coral Acropora cervicornis.

    Science.gov (United States)

    Libro, Silvia; Vollmer, Steven V

    2016-01-01

    Coral reefs are declining worldwide due to multiple factors including rising sea surface temperature, ocean acidification, and disease outbreaks. Over the last 30 years, White Band Disease (WBD) alone has killed up to 95% of the Caribbean`s dominant shallow-water corals--the staghorn coral Acropora cervicornis and the elkhorn coral A. palmata. Both corals are now listed on the US Endangered Species Act, and while their recovery has been slow, recent transmission surveys indicate that more than 5% of staghorn corals are disease resistant. Here we compared transcriptome-wide gene expression between resistant and susceptible staghorn corals exposed to WBD using in situ transmission assays. We identified constitutive gene expression differences underlying disease resistance that are independent from the immune response associated with disease exposure. Genes involved in RNA interference-mediated gene silencing, including Argonaute were up-regulated in resistant corals, whereas heat shock proteins (HSPs) were down-regulated. Up-regulation of Argonaute proteins indicates that post-transcriptional gene silencing plays a key, but previously unsuspected role in coral immunity and disease resistance. Constitutive expression of HSPs has been linked to thermal resilience in other Acropora corals, suggesting that the down-regulation of HSPs in disease resistant staghorn corals may confer a dual benefit of thermal resilience.

  3. Inheritance and genetic mapping of resistance to Asian soybean rust in cultivar TMG 803

    Directory of Open Access Journals (Sweden)

    Éder Matsuo

    2014-11-01

    Full Text Available This study analyzed the inheritance and identified microsatellite markers linked to the resistance gene to Phakopsora pachyrhizi in soybean cultivar TMG 803. Hybridization between the cultivars TMG 803 and BRS Valiosa RR was performed to obtain F1 progenies and the F2 population. The response of the parents ‘TMG 803’ and ‘BRS Valiosa RR’ to P. pachyrhizi was, respectively, resistant and susceptible, and among the 116 F2 plants, 93 were resistant and 23 susceptible, under natural infection and field conditions. It was found that the resistance of cultivar TMG 803 is controlled by one gene with complete dominance, mapped as resistance locus Rpp4 of linkage group G. Of the 16 tested, one microsatellite marker, sc21_3420, was completely linked to the resistance gene (distance 0.0cM and the favorable allelic form was present in cultivar TMG 803, which may therefore be useful in assisted selection in segregating populations.

  4. Genetic Signature of Resistance to White Band Disease in the Caribbean Staghorn Coral Acropora cervicornis.

    Directory of Open Access Journals (Sweden)

    Silvia Libro

    Full Text Available Coral reefs are declining worldwide due to multiple factors including rising sea surface temperature, ocean acidification, and disease outbreaks. Over the last 30 years, White Band Disease (WBD alone has killed up to 95% of the Caribbean`s dominant shallow-water corals--the staghorn coral Acropora cervicornis and the elkhorn coral A. palmata. Both corals are now listed on the US Endangered Species Act, and while their recovery has been slow, recent transmission surveys indicate that more than 5% of staghorn corals are disease resistant. Here we compared transcriptome-wide gene expression between resistant and susceptible staghorn corals exposed to WBD using in situ transmission assays. We identified constitutive gene expression differences underlying disease resistance that are independent from the immune response associated with disease exposure. Genes involved in RNA interference-mediated gene silencing, including Argonaute were up-regulated in resistant corals, whereas heat shock proteins (HSPs were down-regulated. Up-regulation of Argonaute proteins indicates that post-transcriptional gene silencing plays a key, but previously unsuspected role in coral immunity and disease resistance. Constitutive expression of HSPs has been linked to thermal resilience in other Acropora corals, suggesting that the down-regulation of HSPs in disease resistant staghorn corals may confer a dual benefit of thermal resilience.

  5. Genetic mapping of common bunt resistance and plant height QTL in wheat.

    Science.gov (United States)

    Singh, Arti; Knox, Ron E; DePauw, R M; Singh, A K; Cuthbert, R D; Kumar, S; Campbell, H L

    2016-02-01

    Breeding for field resistance to common bunt in wheat will need to account for multiple genes and epistatic and QTL by environment interactions. Loci associated with quantitative resistance to common bunt are co-localized with other beneficial traits including plant height and rust resistance. Common bunt, also known as stinking smut, is caused by seed borne fungi Tilletia tritici (Bjerk.) Wint. [syn. Tilletia caries (DC.) Tul.] and Tilletia laevis Kühn [syn. Tilletia foetida (Wallr.) Liro.]. Common bunt is known to cause grain yield and quality losses in wheat due to bunt ball formation and infestation of the grain. The objectives of this research were to identify and map quantitative trait loci (QTL) for common bunt resistance, to study the epistatic interactions between the identified QTL, and investigate the co-localization of bunt resistance with plant height. A population of 261 doubled haploid lines from the cross Carberry/AC Cadillac and checks were genotyped with polymorphic genome wide microsatellite and DArT(®) markers. The lines were grown in 2011, 2012, and 2013 in separate nurseries for common bunt incidence and height evaluation. AC Cadillac contributed a QTL (QCbt.spa-6D) for common bunt resistance on chromosome 6D at markers XwPt-1695, XwPt-672044, and XwPt-5114. Carberry contributed QTL for bunt resistance on chromosomes 1B (QCbt.spa-1B at XwPt743523) 4B (QCbt.spa-4B at XwPt-744434-Xwmc617), 4D (QCbt.spa-4D at XwPt-9747), 5B (QCbt.spa-5B at XtPt-3719) and 7D (QCbt.spa-7D at Xwmc273). Significant epistatic interactions were identified for percent bunt incidence between QCbt.spa-1B × QCbt.spa-4B and QCbt.spa-1B × QCbt.spa-6D, and QTL by environment interaction between QCbt.spa-1B × QCbt.spa-6D. Plant height QTL were found on chromosomes 4B (QPh.spa-4B) and 6D (QPh.spa-6D) that co-located with bunt resistance QTL. The identification of previously unreported common bunt resistance QTL (on chromosomes 4B, 4D and 7D), and new understanding of QTL

  6. Genetic determination of the enhanced drought resistance of rice maintainer HuHan2B by pedigree breeding.

    Science.gov (United States)

    Wei, Haibin; Feng, Fangjun; Lou, Qiaojun; Xia, Hui; Ma, Xiaosong; Liu, Yunhua; Xu, Kai; Yu, Xinqiao; Mei, Hanwei; Luo, Lijun

    2016-11-17

    The ongoing deficit of fresh water resource in rice growing regions has made the selection of water-saving and drought-resistance rice (WDR) a crucial factor in developing sustainable cultivation. HuHan2B, a new japonica maintainer for WDR breeding, had the same yield potential as recurrent parent HanFengB but showed improved drought resistance in fields. We investigated the genomic content accumulation and candidate genes passed from parent to offspring using the genomic and transcriptomic approaches. The genomic constitution indicated that the genetic similarity was 84% between HuHan2B and HanFengB; additionally, 7,256 genes with specific alleles were inherited by HuHan2B from parents other than HanFengB. The differentially expressed genes (DEGs) under drought stress showed that biological function was significantly enriched for transcript regulation in HuHan2B, while the oxidation-reduction process was primarily enriched in HanFengB. Furthermore, 36 DEGs with specific inherited alleles in HuHan2B were almost involved in the regulatory network of TFs and target genes. These findings suggested that major-effect genes were congregated and transformed into offspring in manner of interacting network by breeding. Thus, exploiting the potential biological function of allelic-influencing DEGs would be of great importance for improving selection efficiency and the overall genetic gain of multiple complex traits.

  7. Genetic relatedness, antimicrobial and biocide susceptibility comparative analysis of methicillin-resistant and -susceptible Staphylococcus pseudintermedius from Portugal.

    Science.gov (United States)

    Couto, Natacha; Belas, Adriana; Couto, Isabel; Perreten, Vincent; Pomba, Constança

    2014-08-01

    Forty methicillin-resistant and -susceptible Staphylococcus pseudintermedius (MRSP and MSSP, respectively) from colonization and infection in dogs and cats were characterized for clonality, antimicrobial, and biocide susceptibility. MSSP were genetically more diverse than MRSP by multi-locus sequence typing and pulsed-field gel electrophoresis. Three different spa types (t06, t02, t05) and two SCCmec types (II-III and V) were detected in the MRSP isolates. All MRSP and two MSSP strains were multidrug-resistant. Several antibiotic resistance genes (mecA, blaZ, tet(M), tet(K), aac(6')-Ie-aph(2')-Ia, aph(3')-III, ant(6)-Ia, sat4, erm(B), lnu(A), dfr(G), and catp(C221)) were identified by microarray and double mutations in the gyrA and grlA genes and a single mutation in the rpoB gene were detected by sequence analysis. No differences were detected between MSSP and MRSP in the chlorhexidine acetate (CHA) minimum inhibitory concentrations (MICs). However, two MSSP had elevated MIC to triclosan (TCL) and one to benzalkonium chloride and ethidium bromide. One MSSP isolate harboured a qacA gene, while in another a qacB gene was detected. None of the isolates harboured the sh-fabI gene. Three of the biocide products studied had high bactericidal activity (Otodine(®), Clorexyderm Spot Gel(®), Dermocanis Piocure-M(®)), while Skingel(®) failed to achieve a five log reduction in the bacterial counting. S. pseudintermedius have become a serious therapeutic challenge in particular if methicillin- resistance and/or multidrug-resistance are involved. Biocides, like CHA and TCL, seem to be clinically effective and safe topical therapeutic options.

  8. Genetic basis of differences in myxospore count between whirling disease-resistant and -susceptible strains of rainbow trout

    Science.gov (United States)

    Fetherman, Eric R.; Winkelman, Dana L.; Schisler, George J.; Antolin, Michael F.

    2012-01-01

    We used a quantitative genetics approach and estimated broad sense heritability (h2b) of myxospore count and the number of genes involved in myxospore formation to gain a better understanding of how resistance to Myxobolus cerebralis, the parasite responsible for whirling disease, is inherited in rainbow trout Oncorhynchus mykiss. An M. cerebralis-resistant strain of rainbow trout, the German Rainbow (GR), and a wild, susceptible strain of rainbow trout, the Colorado River Rainbow (CRR), were spawned to create 3 intermediate crossed populations (an F1 cross, F2 intercross, and a B2 backcross between the F1 and the CRR). Within each strain or cross, h2b was estimated from the between-family variance of myxospore counts using full-sibling families. Estimates of h2b and average myxospore counts were lowest in the GR strain, F1 cross, and F2 intercross (h2b = 0.34, 0.42, and 0.34; myxospores fish−1 = 275, 9566, and 45780, respectively), and highest in the B2 backcross and CRR strain (h2b = 0.93 and 0.89; myxospores fish−1 = 97865 and 187595, respectively). Comparison of means and a joint-scaling test suggest that resistance alleles arising from the GR strain are dominant to susceptible alleles from the CRR strain. Resistance was retained in the intermediate crosses but decreased as filial generation number increased (F2) or backcrossing occurred (B2). The estimated number of segregating loci responsible for differences in myxospore count in the parental strains was 9 ± 5. Our results indicate that resistance to M. cerebralis is a heritable trait within these populations and would respond to either artificial selection in hatcheries or natural selection in the wild.

  9. Genetic Structure and Antimicrobial Resistance of Escherichia coli and Cryptic Clades in Birds with Diverse Human Associations

    Science.gov (United States)

    Blyton, Michaela D. J.; Pi, Hongfei; Vangchhia, Belinda; Abraham, Sam; Trott, Darren J.; Johnson, James R.

    2015-01-01

    The manner and extent to which birds associate with humans may influence the genetic attributes and antimicrobial resistance of their commensal Escherichia communities through strain transmission and altered selection pressures. In this study, we determined whether the distribution of the different Escherichia coli phylogenetic groups and cryptic clades, the occurrence of 49 virulence associated genes, and/or the prevalence of resistance to 12 antimicrobials differed between four groups of birds from Australia with contrasting types of human association. We found that birds sampled in suburban and wilderness areas had similar Escherichia communities. The Escherichia communities of backyard domestic poultry were phylogenetically distinct from the Escherichia communities sourced from all other birds, with a large proportion (46%) of poultry strains belonging to phylogenetic group A and a significant minority (17%) belonging to the cryptic clades. Wild birds sampled from veterinary and wildlife rehabilitation centers (in-care birds) carried Escherichia isolates that possessed particular virulence-associated genes more often than Escherichia isolates from birds sampled in suburban and wilderness areas. The Escherichia isolates from both the backyard poultry and in-care birds were more likely to be multidrug resistant than the Escherichia isolates from wild birds. We also detected a multidrug-resistant E. coli strain circulating in a wildlife rehabilitation center, reinforcing the importance of adequate hygiene practices when handling and caring for wildlife. We suggest that the relatively high frequency of antimicrobial resistance in the in-care birds and backyard poultry is due primarily to the use of antimicrobials in these animals, and we recommend that the treatment protocols used for these birds be reviewed. PMID:26002899

  10. Genetic mapping reveals that sinefungin resistance in Toxoplasma gondii is controlled by a putative amino acid transporter locus that can be used as a negative selectable marker.

    Science.gov (United States)

    Behnke, Michael S; Khan, Asis; Sibley, L David

    2015-02-01

    Quantitative trait locus (QTL) mapping studies have been integral in identifying and understanding virulence mechanisms in the parasite Toxoplasma gondii. In this study, we interrogated a different phenotype by mapping sinefungin (SNF) resistance in the genetic cross between type 2 ME49-FUDR(r) and type 10 VAND-SNF(r). The genetic map of this cross was generated by whole-genome sequencing of the progeny and subsequent identification of single nucleotide polymorphisms (SNPs) inherited from the parents. Based on this high-density genetic map, we were able to pinpoint the sinefungin resistance phenotype to one significant locus on chromosome IX. Within this locus, a single nonsynonymous SNP (nsSNP) resulting in an early stop codon in the TGVAND_290860 gene was identified, occurring only in the sinefungin-resistant progeny. Using CRISPR/CAS9, we were able to confirm that targeted disruption of TGVAND_290860 renders parasites sinefungin resistant. Because disruption of the SNR1 gene confers resistance, we also show that it can be used as a negative selectable marker to insert either a positive drug selection cassette or a heterologous reporter. These data demonstrate the power of combining classical genetic mapping, whole-genome sequencing, and CRISPR-mediated gene disruption for combined forward and reverse genetic strategies in T. gondii.

  11. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites

    KAUST Repository

    Hunt, Paul

    2010-09-16

    Background: Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum.Results: A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (IlluminaSolexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme.Conclusions: This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. 2010 Hunt et al; licensee BioMed Central Ltd.

  12. 鲤抗病育种研究进展%Genetic improvement of disease resistance in common carp

    Institute of Scientific and Technical Information of China (English)

    贾智英; 石连玉; 孙效文

    2012-01-01

    尽管鲤养殖业取得了巨大成就,但病害问题仍然是其发展所面临的一个重要制约因素。病害防控方法,主要有环境防控、药物控制和疫苗法,而运用遗传改良来提高鲤抗病力被认为是一种切实可行的方法。虽然以提高生长为目的的多项鲤育种计划已经取得了成功,但有关抗病育种相关研究仍处于起步阶段。利用鲤群体所存在的有益遗传变异,选择合适的育种方法,积极开展抗病选育应该是今后鲤养殖业所必须关注的重要研究内容。从环境胁迫对抗病性状的影响、抗病性状的遗传学基础、抗病性状与其他性状的关系、抗病性状的测定、抗病育种具体方法等方面较系统地介绍了利用遗传改良来提高鲤抗病力的相关研究进展。研究亮点:抗病力是养殖鱼类一个重要经济性状,但由于基础研究薄弱、有效评价方法缺乏等原因,致使抗病选育工作远落后于以生长等性状为目标的育种研究。本文综述了鲤抗病育种相关研究进展,为鲤和其他鱼类的抗病育种工作提供了重要的参考。%Despite impressive progress in common carp farming during the last years, the impact of fish diseases is still an important problem in aquaculture. Current methods to control diseases consist, among others, of euhural environment control, medication or vaccination. Another alternative approach is to prevent diseases by improving the immune capacity of fish by or genetic selection. Selection breeding has made a great progress for common carp, but only limited to the growth characteristics, and resistance breeding research was only in the initial stage. In the future, common carp industry should focus on using of genetic variation, choosing suitable breeding methods, developing diseases resistance breeding program actively. In this review, stress effects on diseases resistance, genetic basis of diseases resistance, relationship between diseases

  13. Genetic analysis of partial resistance to basal stem rot (Sclerotinia sclerotiorum in sunflower

    Directory of Open Access Journals (Sweden)

    Amouzadeh Masoumeh

    2013-01-01

    Full Text Available Basal stem rot, caused by Sclerotinia sclerotiorum (Lib. de Bary, is one of the major diseases of sunflower (Helianthus annuus L. in the world. Quantitative trait loci (QTLs implicated in partial resistance to basal stem rot disease were identified using 99 recombinant inbred lines (RILs from the cross between sunflower parental lines PAC2 and RHA266. The study was undertaken in a completely randomized design with three replications under controlled conditions. The RILs and their parental lines were inoculated with a moderately aggressive isolate of S. sclerotiorum (SSKH41. Resistance to disease was evaluated by measuring the percentage of necrosis area three days after inoculation. QTLs were mapped using an updated high-density SSR and SNP linkage map. ANOVA showed significant differences among sunflower lines for resistance to basal stem rot (P≤0.05. The frequency distribution of lines for susceptibility to disease showed a continuous pattern. Composite interval mapping analysis revealed 5 QTLs for percentage of necrotic area, localized on linkage groups 1, 3, 8, 10 and 17. The sign of additive effect was positive in 5 QTLs, suggesting that the additive allele for partial resistance to basal stem rot came from the paternal line (RHA266. The phenotypic variance explained by QTLs (R2 ranged from 0.5 to 3.16%. Identified genes (HUCL02246_1, GST and POD, and SSR markers (ORS338, and SSL3 encompassing the QTLs for partial resistance to basal stem rot could be good candidates for marker assisted selection.

  14. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1.

    Science.gov (United States)

    Fradin, Emilie F; Zhang, Zhao; Juarez Ayala, Juan C; Castroverde, Christian D M; Nazar, Ross N; Robb, Jane; Liu, Chun-Ming; Thomma, Bart P H J

    2009-05-01

    Vascular wilt diseases caused by soil-borne pathogens are among the most devastating plant diseases worldwide. The Verticillium genus includes vascular wilt pathogens with a wide host range. Although V. longisporum infects various hosts belonging to the Cruciferaceae, V. dahliae and V. albo-atrum cause vascular wilt diseases in over 200 dicotyledonous species, including economically important crops. A locus responsible for resistance against race 1 strains of V. dahliae and V. albo-atrum has been cloned from tomato (Solanum lycopersicum) only. This locus, known as Ve, comprises two closely linked inversely oriented genes, Ve1 and Ve2, that encode cell surface receptor proteins of the extracellular leucine-rich repeat receptor-like protein class of disease resistance proteins. Here, we show that Ve1, but not Ve2, provides resistance in tomato against race 1 strains of V. dahliae and V. albo-atrum and not against race 2 strains. Using virus-induced gene silencing in tomato, the signaling cascade downstream of Ve1 is shown to require both EDS1 and NDR1. In addition, NRC1, ACIF, MEK2, and SERK3/BAK1 also act as positive regulators of Ve1 in tomato. In conclusion, Ve1-mediated resistance signaling only partially overlaps with signaling mediated by Cf proteins, type members of the receptor-like protein class of resistance proteins.

  15. Prevalence, antimicrobial resistance and genetic diversity of Yersinia enterocolitica isolated from retail frozen foods in China.

    Science.gov (United States)

    Ye, Qinghua; Wu, Qingping; Hu, Huijuan; Zhang, Jumei; Huang, Huixian

    2015-12-01

    In this study, our aim was to estimate the extent of Yersinia enterocolitica contamination in frozen foods in China and determine the bioserotype, virulotype, antimicrobial resistance, and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) genotyping profiles of recovered Y. enterocolitica isolates. Out of 455 samples collected between July 2011 and May 2014, 56 (12.3%) tested positive for Y. enterocolitica. The 70 isolated strains were grouped into five clusters and one singleton based on their ERIC-PCR fingerprint, at a similarity coefficient of 70%. All strains were of biotype 1A, and 35.7% were of bioserotype 1A/O:8. Most strains lacked the virulence genes ail, virF, ystA, and ystC, but harbored ystB, fepD, ymoA, fes and sat. All strains were sensitive to ticarcillin but resistant to two or more antibiotics, and 48.6% of the strains were resistant to four to nine antibiotics. High resistance rates were observed for ampicillin, cephalothin, trimethoprim/sulfamethoxazole, amoxicillin/clavulanic acid, nalidixic acid and chloramphenicol (98.6%, 95.7%, 74.3%, 28.6%, 18.6% and 12.9%, respectively). This study provides a systematic surveillance of Y. enterocolitica prevalence in frozen foods in China and indicates its high antibiotic resistance, which could serve as useful information for the government to control Y. enterocolitica contamination in frozen foods and the use of antibiotics.

  16. Whole Genome Sequencing and Plasmid Genomics of Antimicrobial Resistance – Salmonella’s mobile genetic elements and the antimicrobial resistance genes they carry

    Science.gov (United States)

    With the emergence of antibiotic resistance (AR), multidrug resistance (MDR), and carbapenem resistant Enterobacteriaceae (CRE), the specter of widespread untreatable bacterial infections threatens human and animal health. The ability of these emerging resistances to transfer between bacteria on mob...

  17. High prevalence of multidrug resistance and random distribution of mobile genetic elements among uropathogenic Escherichia coli (UPEC) of the four major phylogenetic groups.

    Science.gov (United States)

    Rijavec, Matija; Starcic Erjavec, Marjanca; Ambrozic Avgustin, Jerneja; Reissbrodt, Rolf; Fruth, Angelika; Krizan-Hergouth, Veronika; Zgur-Bertok, Darja

    2006-08-01

    One hundred and ten UTI Escherichia coli strains, from Ljubljana, Slovenia, were analyzed for antibiotic resistances, mobile DNA elements, serotype, and phylogenetic origin. A high prevalence of drug resistance and multidrug resistance was found. Twenty-six percent of the isolates harbored a class 1 integron, while a majority of the strains (56%) harbored rep sequences characteristic of F-like plasmids. int as well as rep sequences were found to be distributed in a random manner among strains of the four major phylogenetic groups indicating that all groups have a similar tendency to acquire and maintain mobile genetic elements frequently associated with resistance determinants.

  18. Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides.

    Directory of Open Access Journals (Sweden)

    Shuhong Ouyang

    Full Text Available Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90 via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172.

  19. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation

    Directory of Open Access Journals (Sweden)

    C. Sharma

    2016-09-01

    Full Text Available Candida auris is an emerging multidrug resistant yeast that causes nosocomial fungaemia and deep-seated infections. Notably, the emergence of this yeast is alarming as it exhibits resistance to azoles, amphotericin B and caspofungin, which may lead to clinical failure in patients. The multigene phylogeny and amplified fragment length polymorphism typing methods report the C. auris population as clonal. Here, using whole genome sequencing analysis, we decipher for the first time that C. auris strains from four Indian hospitals were highly related, suggesting clonal transmission. Further, all C. auris isolates originated from cases of fungaemia and were resistant to fluconazole (MIC >64 mg/L.

  20. Genetics of adult plant stripe rust resistance in CSP44, a selection from Australian wheat

    Indian Academy of Sciences (India)

    Renu Khanna; U. K. Bansal; R. G. Saini

    2005-12-01

    Wheat line CSP44, a selection from an Australian bread wheat cultivar Condor, has shown resistance to stripe rust in India since the last twenty years. Seedlings and adult plants of CSP44 showed susceptible infection types against stripe rust race 46S119 but displayed average terminal disease severity of 2.67 on adult plants against this race as compared to 70.33 of susceptible Indian cultivar, WL711. This suggests the presence of nonhypersensitive adult plant stripe rust resistance in the line CSP44. The evaluation of F1, F2 and F3 generations and F6 SSD families from the cross of CSP44 with susceptible wheat cultivar WL711 for stripe rust severity indicated that the resistance in CSP44 is based on two genes showing additive effect. One of these two genes is Yr18 and the second gene is not yet described.

  1. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia

    DEFF Research Database (Denmark)

    Rung, Johan; Cauchi, Stéphane; Albrechtsen, Anders;

    2009-01-01

    Genome-wide association studies have identified common variants that only partially explain the genetic risk for type 2 diabetes (T2D). Using genome-wide association data from 1,376 French individuals, we identified 16,360 SNPs nominally associated with T2D and studied these SNPs in an independen...

  2. Genetic diversity among synthetic hexaploid wheat accessions with resistance to several fungal diseases

    Science.gov (United States)

    Synthetic hexaploid wheat (SHW) is known to be an excellent vehicle for transferring large genetic variations especially the many useful traits present in the D genome of Aegilops tauschii Coss (2n=2x=14, DD) for improvement of cultivated wheat (Triticum aestivum L., 2n=6x=42, AABBDD). The objectiv...

  3. Maize Leaf Epiphytic Bacteria Diversity Patterns Are Genetically Correlated with Resistance to Fungal Pathogen Infection

    Science.gov (United States)

    Plant leaves host a specific set of microbial epiphytes. These phyllosphere organisms form a large community, with annual crops alone covering millions of hectares each year. Host plant genetic factors and abiotic stresses such as UV-B are key in shaping patterns of epiphyte diversity; we analyzed...

  4. Genetic and genomic dissection of resistance genes to the rice sheath blight pathogen

    Science.gov (United States)

    Rice sheath blight disease caused by the anastomosis group AG1-IA of the fungal pathogen Rhizoctonia solani is one of the most serious rice diseases in the southern US and the world. The use of fungicides is a popular but costly method to control this disease worldwide. Genetic analysis of host re...

  5. Antibiotic resistance determinants and genetic analysis of Salmonella enterica isolated from food in Morocco.

    Science.gov (United States)

    Murgia, Manuela; Bouchrif, Brahim; Timinouni, Mohammed; Al-Qahtani, Ahmed; Al-Ahdal, Mohammed N; Cappuccinelli, Pietro; Rubino, Salvatore; Paglietti, Bianca

    2015-12-23

    Antimicrobial-resistant non-typhoidal Salmonella (NTS) are an important cause of infection in Africa, but there is a lack of information on their molecular mechanisms of resistance and epidemiology. This study contributes to fill this gap through the characterization by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), plasmid profiling and analysis of antibiotic-resistance determinants of 94 Salmonella enterica strains isolated from food in Morocco. PFGE revealed considerable heterogeneity among the strains, showing 32 pulsotypes. MLST of strains representative of the different serovars evidenced 13 sequence types (STs), three of which were newly identified (ST1694, ST1768 and ST1818) and nine not previously reported in Morocco. Thirty-four strains harbored from one to four plasmids, of IncI1 group in S. Mbandaka, IncFIIA in S. Typhimurium, IncL/M in S. Hadar and S. Blockley. For the first time in Morocco an intact Salmonella Genomic Island 1 (SGI1) carrying the resistance genes aadA2, floR, tetG, blaPSE-1 and sul1 was detected in S. Typhimurium DT104. In serovar Hadar resistance to ampicillin, tetracycline and streptomycin was associated to blaTEM-1, tetA and strA genes respectively, whereas one mutation in gyrA (Asp87Asn) and one in parC (Thr54Ser) genes conferred resistance to nalidixic acid. These findings improve the information on foodborne Salmonella in Morocco, evidencing the presence of MDR strains potentially dangerous to humans, and provide useful data for future studies.

  6. Genetic characterisation of multidrug-resistant Salmonella enterica serotypes isolated from poultry in Cairo, Egypt

    Directory of Open Access Journals (Sweden)

    Mohammed Abdel-Maksoud

    2015-05-01

    Full Text Available Background: Food-borne diseases pose serious health problems, affecting public health and economic development worldwide.Methods: Salmonella was isolated from samples of chicken parts, skin samples of whole chicken carcasses, raw egg yolks, eggshells and chicken faeces. Resulting isolates were characterised by serogrouping, serotyping, antimicrobial susceptibility testing and detection of extended-spectrum β-lactamase (ESBL production. Antibiotic resistance genes and integrons were identified by polymerase chain reaction (PCR.Results: The detection rates of Salmonella were 60%, 64% and 62% in chicken parts, skin, and faeces, respectively, whereas the egg yolks and eggshells were uniformly negative. Salmonella Kentucky and S. Enteritidis serotypes comprised 43.6% and 2.6% of the isolates, respectively, whilst S. Typhimurium was absent. Variable resistance rates were observed against 16 antibiotics; 97% were resistant to sulfamethoxazole, 96% to nalidixic acid and tetracycline and 76% to ampicillin. Multidrug resistance was detected in 82% (64/78 of the isolates and ESBL production was detected in 8% (6/78. The β-lactamase blaTEM-1 gene was detected in 57.6% and blaSHV-1 in 6.8% of the isolates, whilst the blaOXA gene was absent. The sul1gene was detected in 97.3% and the sul2 gene in 5.3% of the isolates. Sixty-four of the 78 isolates (82% were positive for the integrase gene (int I from class 1 integrons, whilst int II was absent.Conclusion: This study reveals the presence of an alarming number of multidrug-resistant Salmonella isolates in the local poultry markets in Cairo. The high levels of drug resistance suggest an emerging problem that could impact negatively on efforts to prevent and treat poultry and poultry-transmitted human diseases in Egypt.

  7. Nucleotide Base Variation of Blast Disease Resistance Gene Pi33 in Rice Selected Broad Genetic Background

    OpenAIRE

    DWINITA WIKAN UTAMI; KALIA BARNITA; SITI YURIAH; IDA HANARIDA

    2011-01-01

    Rice is one of the most important crops for human beings, thus increasing productivity are continually persecuted. Blast disease can reduce the rate of productivity of rice cultivation. Therefore, the program of blast disease-resistant varieties needs to do effectively. One of broad-spectrum blast disease-resistant gene is Pi33. This study was aimed to identify the variation in the sequence of nucleotide bases of Pi33 gene in five interspesific lines which derived from Bio46 (IR64/Oryza rufip...

  8. Genetic analysis to identify good combiners for ToLCV resistance and yield components in tomato using interspecific hybridization

    Indian Academy of Sciences (India)

    Ramesh K. Singh; N. Rai; Major Singh; S. N. Singh; K. Srivastava

    2014-12-01

    The interspecific hybridization for tomato leaf curl virus (ToLCV) resistance was carried out among 10 genetically diverse tomato genotypes (diversified by 50 SSR markers). Among the 10 parents, four susceptible cultivars of Solanum lycopersicum were crossed with six resistant wilds, such as S. pimpinellifolium, S. habrochaites, S. chemielewskii, S. ceraseforme, S. peruvianum and S. chilense in a line × tester mating design. All the 24 hybrids and their parents were grown in the field and glasshouse conditions to determine the general-combining abilities (GCA) and specific-combining abilities (SCA). The variances due to SCA and GCA showed both additive and nonadditive gene effects. Based on GCA estimates, EC-520061 and WIR-5032 were good general combiners while based on SCA estimates, PBC × EC-520061 and PBC × EC-521080 were best specific combiners for coefficient of infection and fruit yield per plant in both the environments. These lines could be selected and utilized in ToLCV resistance and high yield breeding programme for improving the traits.

  9. 氯吡格雷抵抗与基因多态性%Clopidogrel resistance and genetic polymorphism

    Institute of Scientific and Technical Information of China (English)

    孙文珊; 李永坤; 徐格林

    2011-01-01

    Clopidogrel is an antiplatelet drug widely used in clinical practice now.It has been used as the secondary prevention medication for myocardial infarction,ischemic stroke,and peripheral vascular disease.However,the anti-platelet aggregation effect of clopidogrel has significant individual differences.A large part of patients have clopidogrel resistance phenomenon.The mechanism of clopidogrel resistance is not fully understood.The genetic polymorphism is an important cause of clopidogrel resistance,including ABCB1,CYP2C19,CYP3A4,CYP3A5,P2Y12,and ITGB3.%氯吡格雷是目前广泛应用于临床的一种抗血小板药,已作为心肌梗死、缺血性卒中和周围血管病的二级预防用药.然而,氯吡格雷的抗血小板聚集效果存在显著的个体差异,很大一部分患者存在抵抗现象.氯吡格雷抵抗的机制尚不完全清楚,基因多态性是氯吡格雷抵抗的一个重要原因,包括ABCB1、CYP2C19、CYP3 A4、CYP3A5、P2Y12和ITGB3等.

  10. [MALDI-ToF mass-spectrometry in analysis of genetically determined resistance of Streptococcus pneumoniae to fluoroquinolones].

    Science.gov (United States)

    Malakhova, M V; Vereshchagin, V A; Il'ina, E N; Govorun, V M; Filimonova, O Iu; Grudinina, S A; Sidorenko, S V

    2007-01-01

    New fluoroquinolones with higher antipneumococcal activity are considered promising in the treatment of respiratory tract infections. Still, their wide use in clinical practice is connected with possible selection and rapid distribution of the resistance, requiring constant monitoring. Development of resistance to fluoroquinolones results from step-wise accumulation of mutations in the genes of DNA-gyrase and topoisomerase IV, the mutations of the first step being not always accompanied by a significant increase of the MIC of the new fluoroquinolones. Therefore, to detect the first signs of the resistance development, it is necessary not only to detect the susceptibility of the circulating Streptococcus pneumoniae strains phenotypically, but also to detect the genetic changes. In the present study the minisequent reaction followed by detection of the reaction products by MALD-ToF mass-spectrometry was used to reveal the mutations in the genes of the fluoroquinolone targets of 38 S. pneumoniae strains with different levels of the resistance to ciprofloxacin, ofloxacin, levofloxacin and moxifloxacin. In the strains with high resistance to all the three fluoroquinolones (MIC 4-16 mcg/ml) there were detected mutations in GyrA (Ser81Tyr or Glu85Zys) and as well in ParC (Ser79Phe or Ser79Tyr). In the strains resistant to ofloxacin and ciprofloxacin (MIC 4-8 mcg/ml) with preserved susceptibility to levofloxacin and moxifloxacin, the mutations were detected only in GyrA (Ser114Gly). In the moderately resistant strains (MICs 4 and 2-4 mcg/ml respectively for ofloxacin and ciprofloxacin) there were detected the known mutations in ParC (Ser79Tyr or Ser79Phe or Asp83Tyr) and in GyrB (Glu475Lys) as well as the earlier not described mutations in ParE (ins Asn381a) and in Gyr B (Thr329Ala or Va1355Ile). The described method can be used in mass screening of S. pneumoniae strains for the presence of mutations in the genes of the fluoroquinolone targets.

  11. Genetic mapping and characterization of two novel Phytophthora resistance genes from soybean landrace PI567139B

    Science.gov (United States)

    Phytophthora root and stem rot (PRR) disease, caused by P. sojae, is a widespread soybean disease resulting in an annual yield loss of $1~2 billion worldwide. To control the disease, breeders primarily employ race-specific resistant genes which are named Rps genes which have been identified to be lo...

  12. Genetic characterization of quantitative resistance to Bremia lactucae, the causal organism of lettuce downy mildew

    Science.gov (United States)

    Lettuce (Lactuca sativa) is one of the most valuable vegetable crops in the United States. Downy mildew (DM), caused by Bremia lactucae, is the most important foliar disease of lettuce worldwide, which decreases the quality of the marketable portion of the crop. The use of resistant varieties carryi...

  13. Genetic Architecture of Charcoal Rot (Macrophomina phaseolina) Resistance in Soybean Revealed Using a Diverse Panel

    Science.gov (United States)

    Charcoal rot disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methodologies available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient ...

  14. Rapid increase of genetically diverse methicillin-resistant Staphylococcus aureus, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Bartels, Mette Damkjaer; Boye, Kit; Rhod Larsen, Anders;

    2007-01-01

    by pulsed-field gel electrophoresis, Staphylococcus protein A (spa) typing, multilocus sequence typing, staphylococcal chromosome cassette (SCC) mec typing, and detection of Panton-Valentine leukocidin (PVL) genes. Seventy-one percent of cases were community-onset MRSA (CO-MRSA); of these, 36% had......In Copenhagen, methicillin-resistant Staphylococcus aureus (MRSA) accounted for

  15. Rapid Increase of Genetically Diverse Methicillin-Resistant Staphylococcus aureus, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Bartels, Mette Damkjær; Boye, Kit; Larsen, Anders Rhod;

    2007-01-01

    by pulsed-field gel electrophoresis, Staphylococcus protein A (spa) typing, multilocus sequence typing, staphylococcal chromosome cassette (SCC) mec typing, and detection of Panton-Valentine leukocidin (PVL) genes. Seventy-one percent of cases were community-onset MRSA (CO-MRSA); of these, 36% had......In Copenhagen, methicillin-resistant Staphylococcus aureus (MRSA) accounted for

  16. Can Prunus serotina be genetically engineered for reproductive sterility and insect pest resistance?

    Science.gov (United States)

    Ying Wang; Paula M. Pijut

    2014-01-01

    Black cherry (Prunus serotina) is a valuable hardwood timber species, and its value highly depends on the wood quality which is often threatened by insect pests. Transgenic black cherry plants that are more resistant to cambial-mining insects may reduce the occurrence of gummosis and have great economic benefits to landowners and the forest products...

  17. Genetics of the partial resistance against race 2 of Verticillium dahliae in lettuce

    Science.gov (United States)

    Lettuce (Lactuca sativa L.) production on the Coastal California is threatened by Verticillium wilt, a soil borne fungal disease caused by Verticillium dahliae that diminishes yield and quality. Two races of V. dahliae were identified on lettuce, race 1 and race 2. Complete resistance to race 1 is c...

  18. Genetic characterization of the maize lipoxygenase gene family in relation to aflatoxin accumuation resistance.

    Science.gov (United States)

    Maize (Zea mays L.) is a globally important staple food crop. It is prone to contamination by aflatoxin, a secondary carcinogenic metabolite produced by the fungus Aspergillus flavus. An efficient approach to combat the accumulation of aflatoxin is the development of germplasm resistant to infection...

  19. Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis

    NARCIS (Netherlands)

    Trujillo, M.; Troeger, M.; Niks, R.E.; Kogel, K.H.; Huckelhoven, R.

    2004-01-01

    Non-host resistance of barley to Blumeria graminis f.sp. tritici (Bgt), an inappropriate forma specialis of the grass powdery mildew fungus, is associated with formation of cell wall appositions (papillae) at sites of attempted fungal penetration and a hypersensitive cell death reaction (HR) of sing

  20. Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple

    NARCIS (Netherlands)

    Durel, C.E.; Parisi, L.; Laurens, F.N.D.; Weg, van de W.E.; Liebhard, R.; Koller, B.; Jourjon, M.F.

    2003-01-01

    Scab, caused by the fungus Venturia inaequalis, is one of the most important diseases of apple (Malus × domestica). The major resistance gene, Vf, has been widely used in apple breeding programs, but two new races of the fungus (races 6 and 7) are able to overcome this gene. A mapped F1 progeny

  1. Quantitative resistance against Bemisia tabaci in Solanum pennellii : Genetics and metabolomics

    NARCIS (Netherlands)

    van den Oever-van den Elsen, Floor; Lucatti, Alejandro F.; van Heusden, Sjaak; Broekgaarden, Colette|info:eu-repo/dai/nl/314605894; Mumm, Roland; Dicke, Marcel; Vosman, Ben

    2016-01-01

    The whitefly Bemisia tabaci is a serious threat in tomato cultivation worldwide as all varieties grown today are highly susceptible to this devastating herbivorous insect. Many accessions of the tomato wild relative Solanum pennellii show a high resistance towards B. tabaci. A mapping approach was

  2. Genetics of resistance to stored grain weevil (Sitophilus oryzae L. in maize

    Directory of Open Access Journals (Sweden)

    Rajkumar Zunjare

    2015-12-01

    Full Text Available Stored grain weevil (Sitophilus oryzae has emerged as important storage grain pest of maize, causing substantial economic losses. Owing to high costs and environmental hazards of pesticides, host plant resistance holds promise for effective control of weevils. In the present study, a set of experimental maize hybrids generated using line × tester mating design were evaluated against S. oryzae. Significant variation for grain weight loss (GWL (6.0–49.1%, number of insect progeny emerged (NIP (17.8–203.3, grain hardness (GH (263.1–495.4 N, and pericarp thickness (PT (60.3–161.0 μm was observed. Strong positive association was observed between GWL and NIP. GH and PT did not show any correlation with GWL and NIP. Additive and non-additive gene actions were important for both GWL and NIP. Promising inbreds and experimental crosses identified can be effectively utilized in the resistance breeding programme. In majority of promising crosses having desirable SCA effects, one of the parents had desirable GCA effects, indicating that selection of inbred parents based on per se performance for generating resistant crosses may be possible. The commercial hybrid checks were highly susceptible compared to experimental hybrids. The inbreds and experimental hybrids identified hold promise in developing weevil resistant maize cultivars offering sustainable solution to management of weevils in maize.

  3. Drug-Resistant Tuberculosis: A Genetic Analysis Using Online Bioinformatics Tools

    Science.gov (United States)

    Taylor, Jessica M.; Davidson, Rebecca M.; Strong, Michael

    2014-01-01

    Tuberculosis (TB) continues to be a serious global health problem, resulting in >1.4 million deaths each year. Of increasing concern is the evolution of antibiotic resistant strains of the bacterium that causes TB. Using this real-world scenario, we created a 90-minute activity for high school or undergraduate students to use online…

  4. The Genetics of Leaf Flecking in Maize and Its Relationship to Plant Defense and Disease Resistance.

    Science.gov (United States)

    Olukolu, Bode A; Bian, Yang; De Vries, Brian; Tracy, William F; Wisser, Randall J; Holland, James B; Balint-Kurti, Peter J

    2016-11-01

    Physiological leaf spotting, or flecking, is a mild-lesion phenotype observed on the leaves of several commonly used maize (Zea mays) inbred lines and has been anecdotally linked to enhanced broad-spectrum disease resistance. Flecking was assessed in the maize nested association mapping (NAM) population, comprising 4,998 recombinant inbred lines from 25 biparental families, and in an association population, comprising 279 diverse maize inbreds. Joint family linkage analysis was conducted with 7,386 markers in the NAM population. Genome-wide association tests were performed with 26.5 million single-nucleotide polymorphisms (SNPs) in the NAM population and with 246,497 SNPs in the association population, resulting in the identification of 18 and three loci associated with variation in flecking, respectively. Many of the candidate genes colocalizing with associated SNPs are similar to genes that function in plant defense response via cell wall modification, salicylic acid- and jasmonic acid-dependent pathways, redox homeostasis, stress response, and vesicle trafficking/remodeling. Significant positive correlations were found between increased flecking, stronger defense response, increased disease resistance, and increased pest resistance. A nonlinear relationship with total kernel weight also was observed whereby lines with relatively high levels of flecking had, on average, lower total kernel weight. We present evidence suggesting that mild flecking could be used as a selection criterion for breeding programs trying to incorporate broad-spectrum disease resistance. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Screening a core collection of citrus genetic resources for resistance to Fusarium solani (Mart) Sacc

    Science.gov (United States)

    A causal agent for Dry root rot (DRR) of citrus has not been definitively identified, but the organism most consistently associated with DRR is Fusarium solani (Mart.) Sacc. To efficiently screen a citrus germplasm collection for resistance to F. solani, a core subset of the collection was evaluated...

  6. Drug-Resistant Tuberculosis: A Genetic Analysis Using Online Bioinformatics Tools

    Science.gov (United States)

    Taylor, Jessica M.; Davidson, Rebecca M.; Strong, Michael

    2014-01-01

    Tuberculosis (TB) continues to be a serious global health problem, resulting in >1.4 million deaths each year. Of increasing concern is the evolution of antibiotic resistant strains of the bacterium that causes TB. Using this real-world scenario, we created a 90-minute activity for high school or undergraduate students to use online…

  7. Plant basal resistance: genetics, biochemistry, and impacts on plant-biotic interactions

    NARCIS (Netherlands)

    Ahmad, S.

    2012-01-01

    Basal resistance depends largely on a diverse range of defence mechanisms that become active upon attack by pathogens or insects. These mechanisms range from rapid stomatal closure and production of reactive oxygen species, to callose deposition and defence gene induction. It is commonly assumed tha

  8. Genetic evaluation of barley (Hordeum vulgare L. germplasm for resistance components of spot blotch disease

    Directory of Open Access Journals (Sweden)

    Tejveer Singh, V. K. Mishra*, L. C. Prasad, Ankitand R. Chand

    2014-06-01

    Full Text Available Spot blotch caused by Bipolaris sorokiniana is an important fungal disease of Barley in warm humid areas of the world. In present study, 124 genotypes that includes 122 un-adapted germplasm accessions and 2 cultivars of barley were evaluated for three years, to select resistant and susceptible accessions based on five components of spot blotch resistance viz., disease severity, latent period, spore load, number of spots and incubation period. Significant differences were observed among the evaluated accessions for all of the components of resistance. A significant positive correlation was recorded between disease severity, number of spots, and spore load while a significant negative correlation of disease severity was recorded with latent period and incubation period. Multiple regression analysis revealed that number of spots contributed maximum followed by latent period, spore load and incubation period towards the variation in disease severity. Clustering of accessions based on different components identified three groups. Based on the studied components, accessions BCU422, BCU1204 and BCU5092 demonstrated good performance, while BCU711, K603 and RD2506 were the most susceptible to spot blotch pathogen. Identified accessions BCU422, BCU1204 and BCU5092 can be recommended for use in breeding programs that aim to generate barley genotypes resistant to Bipolaris sorokiniana.

  9. Implications of early selection for resistance to anthracnose in genetic breeding of common bean

    Directory of Open Access Journals (Sweden)

    José Maria Villela Pádua

    2015-08-01

    Full Text Available It is questionable if early selection for resistance to Colletotrichum lindemuthianum reduces the efficiency of selection for grain yield in common beans. For this, it was used the segregating population of the cross between two common bean lines: CI107 (susceptible x BRSMG Madrepérola (resistant. Selection for resistance was carried out in F2 and F3 , obtaining three types of progenies: not selected (A, selected only in F2 (B, and selected in F2 andF3 (C. The progenies obtained were evaluated for grain yield and pathogen occurrence in experiments. In F3:5, it was used 289 treatments (96 progenies A, 96 B, 95 C and 2 checks (T; in F3:6, 196 treatments (64 A, 64 B, 64 C and 4 T; in F3:7, 81 treatments (26 A, 26 B, 26 C and 3 T. Selection of plants resistant to anthracnose in early generations increases the successful selection for grain yield in later generations.

  10. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2

    NARCIS (Netherlands)

    Vila-Bedmar, Rocio; Cruces-Sande, Marta; Lucas, Elisa; Willemen, Hanneke L D M; Heijnen, Cobi J; Kavelaars, Annemieke; Mayor, Federico; Murga, Cristina

    2015-01-01

    Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologica

  11. Quantitative resistance against Bemisia tabaci in Solanum pennellii : Genetics and metabolomics

    NARCIS (Netherlands)

    van den Oever-van den Elsen, Floor; Lucatti, Alejandro F.; van Heusden, Sjaak; Broekgaarden, Colette; Mumm, Roland; Dicke, Marcel; Vosman, Ben

    2016-01-01

    The whitefly Bemisia tabaci is a serious threat in tomato cultivation worldwide as all varieties grown today are highly susceptible to this devastating herbivorous insect. Many accessions of the tomato wild relative Solanum pennellii show a high resistance towards B. tabaci. A mapping approach was u

  12. Importance of the Genetic Diversity within the Mycobacterium tuberculosis Complex for the Development of Novel Antibiotics and Diagnostic Tests of Drug Resistance

    KAUST Repository

    Koser, C. U.

    2012-09-24

    Despite being genetically monomorphic, the limited genetic diversity within the Mycobacterium tuberculosis complex (MTBC) has practical consequences for molecular methods for drug susceptibility testing and for the use of current antibiotics and those in clinical trials. It renders some representatives of MTBC intrinsically resistant against one or multiple antibiotics and affects the spectrum and consequences of resistance mutations selected for during treatment. Moreover, neutral or silent changes within genes responsible for drug resistance can cause false-positive results with hybridization-based assays, which have been recently introduced to replace slower phenotypic methods. We discuss the consequences of these findings and propose concrete steps to rigorously assess the genetic diversity of MTBC to support ongoing clinical trials.

  13. Antimicrobial resistance, virulence genes, and genetic lineages of Staphylococcus pseudintermedius in healthy dogs in tunisia.

    Science.gov (United States)

    Gharsa, Haythem; Ben Slama, Karim; Gómez-Sanz, Elena; Lozano, Carmen; Klibi, Naouel; Jouini, Ahlem; Messadi, Lilia; Boudabous, Abdellatif; Torres, Carmen

    2013-08-01

    Nasal swabs of 100 healthy dogs were obtained in 2011 in Tunisia and tested for Staphylococcus pseudintermedius recovery. Antimicrobial resistance profile and virulence gene content were determined. Multilocus-sequence-typing (MLST) and SmaI-pulsed-field gel electrophoresis (PFGE) were investigated. S. pseudintermedius was recovered in 55 of the 100 tested samples (55 %), and one isolate per sample was further studied. All 55 S. pseudintermedius isolates were susceptible to methicillin (MSSP) but showed resistance to the following antimicrobials (% resistant isolates/resistance gene): penicillin (56.4/blaZ), tetracycline (40/tetM), trimethoprim-sulfamethoxazole (23.7), fusidic acid (9), kanamycin (3.7/aph(3´)-Ia), erythromycin-clindamycin (1.8/erm(B)), streptomycin (1.8/ant(6)-Ia), chloramphenicol (1.8) and ciprofloxacin (1.8). The following toxin genes were identified (% of isolates): lukS/F-I (98.2), expA (5.5), se-int (98.2), sec canine (1.8), siet (100), sea (5.5), seb (3.6), sec (10.9), sed (54.5), sei (5.5), sej (29.1), sek (3.6), ser (9.1), and hlg v (38.2). Ten different sequence-types were detected among 11 representative MSSP isolates: ST20, ST44, ST69, ST70, ST78, ST100, ST108, ST160, ST161, and ST162, the last three ones revealing novel alleles or allele combinations. Eleven different PFGE-patterns were identified in these isolates. The nares of healthy dogs could be a reservoir of antimicrobial resistant and virulent MSSP, highlighting the presence of the recently described exfoliating gene expA and several enterotoxin genes.

  14. Genetic parameters for pathogen-specific mastitis resistance in Danish Holstein Cattle

    DEFF Research Database (Denmark)

    Sørensen, L P; Madsen, P; Mark, T

    2009-01-01

    The objective of this study was to estimate heritabilities for and genetic correlations among different pathogen-specific mastitis traits. The traits were unspecific mastitis, which is all mastitis treatments regardless of the causative pathogen as well as mastitis caused by Streptococcus...... and 2006 were used in the analyses. Variances and covariances were estimated using uni- and bivariate threshold models via Gibbs sampling. Posterior means of heritabilities of pathogen-specific mastitis were lower than the heritability of unspecific mastitis, ranging from 0.035 to 0.076 for S. aureus and S....... uberis, respectively. The heritabilities of groups of pathogen ranged from 0.053 to 0.087. Genetic correlations among the pathogen-specific mastitis traits ranged from 0.45 to 0.77. These estimates tended to be lowest for bacteria eliciting very different immune responses, which can be considered...

  15. Genetic transformation and expression of transgenic lines of Populus x euramericana with insect-resistance and salt-tolerance genes.

    Science.gov (United States)

    Yang, R L; Wang, A X; Zhang, J; Dong, Y; Yang, M S; Wang, J M

    2016-04-29

    We characterized new transgenic varieties of poplar with multiple insect-resistant and salt stress tolerant genes. Two insect-resistant Bacillus thuringiensis (Bt) genes, Cry1Ac and Cry3A, and a salt-tolerant gene, Betaine aldehyde dehydrogenase (BADH) were inserted into a vector, p209-Cry1Ac-Cry3A-BADH. The clone of Populus x euramericana was transformed by the vector using the Agrobacterium-mediated method. Three transgenic lines were assessed using genetic detection and resistance expression analysis. PCR revealed that exogenous genes Cry1Ac, Cry3A, BADH and selective marker gene NPTII were present in three transgenic lines. Quantitative real-time PCR (qPCR) showed significant differences in the transcriptional abundance of three exogenous genes in different lines. Results of assays for Bt toxic proteins showed that the Cry1Ac and Cry3A toxic protein content of each line was 12.83-26.32 and 2108.91-2724.79 ng/g, respectively. The Cry1Ac toxic protein content of different lines was significantly different; the Cry3A toxic protein content was about 100 times higher than that of the Cry1Ac toxic protein. The insect-resistance test revealed the mortality rate of transgenic lines to Hyphantria cunea L1 larvae varied by 42.2-66.7%, which was significantly higher than non-transgenic lines. The mortality rate of L1 and L2 Plagiodera versicolora larvae was 100%. The insecticidal effect of transgenic lines to P. versicolora larvae was higher than that to H. cunea larvae. NaCl stress tolerance of three transgenic lines under 3-6% NaCl concentration was significantly higher than that of non-transgenic lines.

  16. Three-generation reproduction toxicity study of genetically modified rice with insect resistant genes.

    Science.gov (United States)

    Hu, Yichun; Zhuo, Qin; Gong, Zhaolong; Piao, Jianhua; Yang, Xiaoguang

    2017-01-01

    In the present work, we evaluated the three generation reproductive toxicity of the genetically modified rice with insectresistant cry1Ac and sck genes. 120 Sprague-Dawley (SD) rats were divided into three groups which were fed with genetically modified rice diet (GM group), parental control rice diet (PR group) and AIN-93 control diet (both used as negative control) respectively. Bodyweight, food consumption, reproductive data, hematological parameters, serum chemistry, relative organ weights and histopathology for each generation were examined respectively. All the hematology and serum chemistry parameters, organ/body weight indicators were within the normal range or no change to the adverse direction was observed, although several differences in hematology and serum chemistry parameters (WBC, BUN, LDH of male rat, PLT, PCT, MPV of female rats), reproductive data (rate of morphologically abnormal sperm) were observed between GM rice group and two control groups. No macroscopic or histological adverse effects were found or considered as treatment-related, either. Overall, the three generation study of genetically modified rice with cry1Ac and sck genes at a high level showed no unintended adverse effects on rats's reproductive system. Copyright © 2016. Published by Elsevier Ltd.

  17. Non-hospital environment contamination with Staphylococcus aureus and methicillin-resistant Staphylococcus aureus: proportion meta-analysis and features of antibiotic resistance and molecular genetics.

    Science.gov (United States)

    Lin, Jialing; Lin, Dongxin; Xu, Ping; Zhang, Ting; Ou, Qianting; Bai, Chan; Yao, Zhenjiang

    2016-10-01

    Staphylococcus aureus (S. aureus), including methicillin-resistant Staphylococcus aureus (MRSA), survives in dry conditions and can persist for long periods on surfaces touched by humans. Studies that estimate the proportions and characteristics of S. aureus and MRSA contamination in non-hospital environments are lacking. Therefore, we conducted a proportion meta-analysis and reviewed the features of antibiotic resistance and molecular genetics. Articles published between January 2005 and December 2015 that studied proportions of S. aureus and MRSA contamination in non-hospital environments were retrieved from the Medline database, Ovid database and Science Direct database. All statistics were analyzed by STATA 14.1. Twenty-nine articles were included. The overall proportions of S. aureus and MRSA contamination were 41.1% (95%CI 29-54%) and 8.6% (95%CI 5-13%), respectively. The proportion of MRSA contamination increased over time. From the articles, the proportion of Panton-Valentine Leukociden (PVL) genes among MRSA isolates was 54.5%, and the proportion of the qac gene was 100.0%. Distribution of the multilocus sequence type (MLST) and pulsed-field gel electrophoresis (PFGE) of MRSA indicated that MRSA strains were from both hospitals and communities. The overall proportions of S. aureus and MRSA contamination in non-hospital environments were high. The outcomes of antibiotic resistance and high proportions of PVL genes indicated that the antibiotic resistance of S. aureus and MRSA were notable. According to the different distributions of MLST and SCCmec of MRSA, we can infer that cross-circulation is within hospitals, communities, and livestock. The results also show that the risk from the MRSA strains was cross-transmitted among the population. High proportions of the qac gene of MRSA might indicate that current disinfection of MRSA has not been achieved, and it might be better to further identify the efficiency of the sterilization processes in a non

  18. Codling Moth, Cydia pomonella (Lepidoptera: Tortricidae – Major Pest in Apple Production: an Overview of its Biology, Resistance, Genetic Structure and Control Strategies

    Directory of Open Access Journals (Sweden)

    Ivana Pajač

    2011-06-01

    Full Text Available The codling moth Cydia pomonella (CM (Linnaeus is a key pest in pome fruit production with a preference for apple. The pest is very adaptable to different climatic conditions and is known for developing resistance to several chemical groups of insecticides. Because of these reasons, the populations of codling moth are differentiated in many ecotypes of various biological and physiological development requirements. The article provides a bibliographic review of investigation about: morphology, biology, dispersal, damages, resistance to insecticides, population genetic structure and genetic control of this pest.

  19. [Genetic improvement of cotton varieties in Huang-Huai region in China since 1950's. III. Improvement on agronomy properties, disease resistance and stability].

    Science.gov (United States)

    Jiang, B G; Kong, F L; Zhang, Q Y; Yang, F X; Jiang, R Q

    2000-01-01

    Data from a set of 5-location and 2-year experiments on 10 representative historical cotton varieties and the data of Huang-Huai Regional Cotton Trials from 1973 to 1996 were analyzed to estimate the effects of genetic improvement in agronomy properties, disease resistance and stability of cotton in Huang-Huai Region in China. The results indicated that a great genetic progress of earliness and disease resistance had been achieved by breeding programs since 1950's. The maturity was shortened 3-5 days; The rate of preforst yield was increased about 7 percentages. The problem of resistance to Fususium wilt has been solved and the resistance to Verticillum wilt was improving. Some progress in stability of cotton varieties also has been achieved by breeding programs since 1950.

  20. Functional study of a genetic marker allele associated with resistance to Ascaris suum in pigs

    DEFF Research Database (Denmark)

    Skallerup, Per; Thamsborg, Stig M.; Jørgensen, Claus B.;

    2014-01-01

    trickle-infected with A. suum until necropsy at week 8 post first infection (PI), to test the hypothesis that pigs with the AA genotype would have higher levels of resistance than pigs of the AB genotype. We used different indicators of resistance (worm burden, faecal egg counts, number of liver white...... spots and A. suum-specific serum IgG antibody levels). Pigs of the AA genotype had lower mean macroscopic worm burden (2.4 vs. 19.3; P=0.06), lower mean total worm burden (26.5 vs. 70.1; P=0.06) and excreted fewer A. suum eggs at week 8 PI (mean number of eggs/g faeces: 238 vs. 1259; P=0.14) than pigs...

  1. How does insulin resistance arise, and how does it cause disease?: Human genetic lessons

    OpenAIRE

    Semple, Robert Kenneth

    2016-01-01

    This is the author accepted manuscript. The final version is available from BioScientifica via http://dx.doi.org/10.1530/EJE-15-1131 Insulin orchestrates physiological responses to ingested nutrients, however although it elicits widely ramifying metabolic and trophic responses from diverse tissues, "insulin resistance", a pandemic metabolic derangement commonly associated with obesity, is usually defined solely by blunting of insulin's hypoglycaemic effect. Recent study of monogenic forms ...

  2. Genetic polymorphisms in Plasmodium falciparum chloroquine resistance genes, pfcrt and pfmdr1, in North Sulawesi, Indonesia.

    Science.gov (United States)

    Reteng, Patrick; Vrisca, Visia; Sukarno, Inka; Djarkoni, Ilham Habib; Kalangi, Jane Angela; Jacobs, George Eduardo; Runtuwene, Lucky Ronald; Eshita, Yuki; Maeda, Ryuichiro; Suzuki, Yuta