WorldWideScience

Sample records for genetic recombination mechanisms

  1. Relationship among the repair mechanisms and the genetic recombination; Relacion entre los mecanismos de reparacion y la recombinacion genetica

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1987-12-15

    In accordance with the previous reports of the Project BZ87 of the Department of Radiobiology, a dependent stimulation of the system exists in E.coli SOS, of the recombination of the bacteriophage Lambda whose genetic material has not been damaged. This stimulation is not due to the increase of the cellular concentration of the protein RecA and the mechanism but probable for which we find that it is carried out, it is through a cooperation among the product of the gene rec N of E. coli and the system Net of recombination of Lambda. The gene recN belongs to the group of genes SOS and its expression is induced when damaging the bacterial DNA where it intervenes in the repair of breaks of the double helix of the molecule (Picksley et, 1984). If the repair of breaks of this type is a factor that limits the speed with which it happens the recombination among viral chromosomes, then the biggest readiness in the protein RecN, due to the induction of the functions SOS, would facilitate the repair of such ruptures. In this new project it is to enlarge the knowledge about this phenomenon, it was, on one hand of corroborating in a way but he/she specifies the relationship between the recombinogenic response of Lambda and the System SOS of E. coli and for the other one to determine the effect that has the inhibition of the duplication of the DNA on the stimulation of the viral recombination. Everything it with the idea of making it but evident and to be able to use it as a system of genotoxic agents detection in E. coli. (Author)

  2. Genetic Analyses of Meiotic Recombination in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Meiosis is essential for sexual reproduction and recombination is a critical step required for normal meiosis. Understanding the underlying molecular mechanisms that regulate recombination ie important for medical, agricultural and ecological reasons. Readily available molecular and cytological tools make Arabidopsis an excellent system to study meiosis. Here we review recent developments in molecular genetic analyses on meiotic recombination. These Include studies on plant homologs of yeast and animal genes, as well as novel genes that were first identified in plants. The characterizations of these genes have demonstrated essential functions from the initiation of recombination by double-strand breaks to repair of such breaks, from the formation of double-Holliday junctions to possible resolution of these junctions, both of which are critical for crossover formation. The recent advances have ushered a new era in plant meiosis, in which the combination of genetics, genomics, and molecular cytology can uncover important gene functions.

  3. Genetic battle between Helicobacter pylori and humans. The mechanism underlying homologous recombination in bacteria, which can infect human cells.

    Science.gov (United States)

    Hanada, Katsuhiro; Yamaoka, Yoshio

    2014-10-01

    Helicobacter pylori is a gram-negative pathogenic bacterium that colonises the human stomach. The chronic infection it causes results in peptic ulcers and gastric cancers. H. pylori can easily establish a chronic infection even if the immune system attacks this pathogen with oxidative stress agents and immunoglobulins. This is attributed to bacterial defence mechanisms against these stresses. As a defence mechanism against oxidative stresses, in bacterial genomes, homologous recombination can act as a repair pathway of DNA's double-strand breaks (DSBs). Moreover, homologous recombination is also involved in the antigenic variation in H. pylori. Gene conversion alters genomic structures of babA and babB (encoding outer membrane proteins), resulting in escape from immunoglobulin attacks. Thus, homologous recombination in bacteria plays an important role in the maintenance of a chronic infection. In addition, H. pylori infection causes DSBs in human cells. Homologous recombination is also involved in the repair of DSBs in human cells. In this review, we describe the roles of homologous recombination with an emphasis on the maintenance of a chronic infection.

  4. GARD: a genetic algorithm for recombination detection

    National Research Council Canada - National Science Library

    Kosakovsky Pond, Sergei L; Posada, David; Gravenor, Michael B; Woelk, Christopher H; Frost, Simon D W

    2006-01-01

    .... We developed a likelihood-based model selection procedure that uses a genetic algorithm to search multiple sequence alignments for evidence of recombination breakpoints and identify putative recombinant sequences...

  5. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga;

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse t......, and vaccine development....... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity...

  6. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga;

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse...... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity......, and vaccine development....

  7. FASEB Summer Research Conference. Genetic Recombination and Chromosome Rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Jinks-Robertson, Sue

    2002-02-01

    The 2001 meeting entitled ''Genetic Recombination and Genome Rearrangements'' was held July 21-26 in Snowmass, Colorado. The goal of the meeting was to bring together scientists using diverse approaches to study all aspects of genetic recombination. This goal was achieved by integrating talks covering the genetics, biochemistry and structural biology of homologous recombination, site-specific recombination, and nonhomologous recombination. The format of the meeting consisted of a keynote address on the opening evening, two formal plenary sessions on each of the four full meeting days, a single afternoon workshop consisting of short talks chosen from among submitted abstracts, and afternoon poster sessions on each of the four full meeting days. The eight plenary session were entitled: (1) Recombination Mechanisms, (2) Prokaryotic Recombination, (3) Repair and Recombination, (4) Site-specific Recombination and Transposition, (5) Eukaryotic Recombination I, (6) Genome Rearrangements, (7) Meiosis, and (8) Eukaryotic Recombination II. Each session included a mix of genetic, biochemical and structural talks; talks were limited to 20 minutes, followed by 10 minutes of very lively, general discussion. Much of the data presented in the plenary sessions was unpublished, thus providing attendees with the most up-to-date knowledge of this rapidly-moving field.

  8. Mechanisms and Factors that Influence High Frequency Retroviral Recombination

    Directory of Open Access Journals (Sweden)

    Krista Delviks-Frankenberry

    2011-09-01

    Full Text Available With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development.

  9. The Remarkable Frequency of Human Immunodeficiency Virus Type 1 Genetic Recombination

    OpenAIRE

    2009-01-01

    Summary: The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination—a copy choice mechanism involving the migration of reverse transcr...

  10. Genetics of meiosis and recombination in mice.

    Science.gov (United States)

    Bolcun-Filas, Ewelina; Schimenti, John C

    2012-01-01

    Meiosis is one of the most critical developmental processes in sexually reproducing organisms. One round of DNA replication followed by two rounds of cell divisions results in generation of haploid gametes (sperm and eggs in mammals). Meiotic failure typically leads to infertility in mammals. In the process of meiotic recombination, maternal and paternal genomes are shuffled, creating new allelic combinations and thus genetic variety. However, in order to achieve this, meiotic cells must self-inflict DNA damage in the form of programmed double-strand breaks (DSBs). Complex processes evolved to ensure proper DSB repair, and to do so in a way that favors interhomolog reciprocal recombination and crossovers. The hallmark of meiosis, a structurally conserved proteinaceous structure called the synaptonemal complex, is found only in meiotic cells. Conversely, meiotic homologous recombination is an adaptation of the mitotic DNA repair process but involving specialized proteins. In this chapter, we summarize current developments in mammalian meiosis enabled by genetically modified mice.

  11. The Contribution of Genetic Recombination to CRISPR Array Evolution.

    Science.gov (United States)

    Kupczok, Anne; Landan, Giddy; Dagan, Tal

    2015-06-16

    CRISPR (clustered regularly interspaced short palindromic repeats) is a microbial immune system against foreign DNA. Recognition sequences (spacers) encoded within the CRISPR array mediate the immune reaction in a sequence-specific manner. The known mechanisms for the evolution of CRISPR arrays include spacer acquisition from foreign DNA elements at the time of invasion and array erosion through spacer deletion. Here, we consider the contribution of genetic recombination between homologous CRISPR arrays to the evolution of spacer repertoire. Acquisition of spacers from exogenic arrays via recombination may confer the recipient with immunity against unencountered antagonists. For this purpose, we develop a novel method for the detection of recombination in CRISPR arrays by modeling the spacer order in arrays from multiple strains from the same species. Because the evolutionary signal of spacer recombination may be similar to that of pervasive spacer deletions or independent spacer acquisition, our method entails a robustness analysis of the recombination inference by a statistical comparison to resampled and perturbed data sets. We analyze CRISPR data sets from four bacterial species: two Gammaproteobacteria species harboring CRISPR type I and two Streptococcus species harboring CRISPR type II loci. We find that CRISPR array evolution in Escherichia coli and Streptococcus agalactiae can be explained solely by vertical inheritance and differential spacer deletion. In Pseudomonas aeruginosa, we find an excess of single spacers potentially incorporated into the CRISPR locus during independent acquisition events. In Streptococcus thermophilus, evidence for spacer acquisition by recombination is present in 5 out of 70 strains. Genetic recombination has been proposed to accelerate adaptation by combining beneficial mutations that arose in independent lineages. However, for most species under study, we find that CRISPR evolution is shaped mainly by spacer acquisition and

  12. Molecular genetics of DNA viruses: recombinant virus technology.

    Science.gov (United States)

    Neuhierl, Bernhard; Delecluse, Henri-Jacques

    2005-01-01

    Recombinant viral genomes cloned onto BAC vectors can be subjected to extensive molecular genetic analysis in the context of E. coli. Thus, the recombinant virus technology exploits the power of prokaryotic genetics to introduce all kinds of mutations into the recombinant genome. All available techniques are based on homologous recombination between a targeting vector carrying the mutated version of the gene of interest and the recombinant virus. After modification, the mutant viral genome is stably introduced into eukaryotic cells permissive for viral lytic replication. In these cells, mutant viral genomes can be packaged into infectious particles to evaluate the effect of these mutations in the context of the complete genome.

  13. Comparative analysis of the molecular mechanisms of recombination in hepatitis C virus

    DEFF Research Database (Denmark)

    Galli, Andrea; Bukh, Jens

    2014-01-01

    Genetic recombination is an important evolutionary mechanism for RNA viruses. The significance of this phenomenon for hepatitis C virus (HCV) has recently become evident, with the identification of circulating recombinant forms in HCV-infected individuals and by novel data from studies permitted...... by advances in HCV cell culture systems and genotyping protocols. HCV is readily able to produce viable recombinants, using replicative and non-replicative molecular mechanisms. However, our knowledge of the required molecular mechanisms remains limited. Understanding how HCV recombines might be instrumental...... will focus on current data available on HCV recombination, also in relation to more detailed data from other RNA viruses....

  14. Homologous recombination in Sulfolobus acidocaldarius: genetic assays and functional properties.

    Science.gov (United States)

    Grogan, Dennis W

    2009-02-01

    HR (homologous recombination) is expected to play important roles in the molecular biology and genetics of archaea, but, so far, few functional properties of archaeal HR have been measured in vivo. In the extreme thermoacidophile Sulfolobus acidocaldarius, a conjugational mechanism of DNA transfer enables quantitative analysis of HR between chromosomal markers. Early studies of this system indicated that HR occurred frequently between closely spaced mutations within the pyrE gene, and this result was later supported by various analyses involving defined point mutations and deletions. These properties of intragenic HR suggested a non-reciprocal mechanism in which donor sequences become incorporated into the recipient genome as short segments. Because fragmentation of donor DNA during cell-to-cell transfer could not be excluded from contributing to this result, subsequent analyses have focused on electroporation of selectable donor DNA directly into recipient strains. For example, S. acidocaldarius was found to incorporate synthetic ssDNA (single-stranded DNA) of more than approximately 20 nt readily into its genome. With respect to various molecular properties of the ssDNA substrates, the process resembled bacteriophage lambdaRed-mediated 'recombineering' in Escherichia coli. Another approach used electroporation of a multiply marked pyrE gene to measure donor sequence tracts transferred to the recipient genome in individual recombination events. Initial results indicate multiple discontinuous tracts in the majority of recombinants, representing a relatively broad distribution of tract lengths. This pattern suggests that properties of the HR process could, in principle, account for many of the apparent peculiarities of intragenic recombination initiated by S. acidocaldarius conjugation.

  15. Genetic recombination in bacteria: horizon of the beginnings of sexuality in living organisms

    Directory of Open Access Journals (Sweden)

    Rahela Carpa

    2010-07-01

    Full Text Available The current paper reviews the bacterian genetic recombination. Bacteria can transfergenes from one strain to another by three different mechanisms: transformation, conjugation andtransduction, these events showing the universality of sexuality in the living world. Besides geneticrecombination in bacteria, recent evidences of genetic recombination in some superior animals (suchas: fish, birds, mammals and humans at the sex-chromosomes level support the ‘gene concept ofsexuality’ as a general view of sexuality.

  16. Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference.

    Science.gov (United States)

    Segura, Joana; Ferretti, Luca; Ramos-Onsins, Sebastián; Capilla, Laia; Farré, Marta; Reis, Fernanda; Oliver-Bonet, Maria; Fernández-Bellón, Hugo; Garcia, Francisca; Garcia-Caldés, Montserrat; Robinson, Terence J; Ruiz-Herrera, Aurora

    2013-11-22

    Recombination allows faithful chromosomal segregation during meiosis and contributes to the production of new heritable allelic variants that are essential for the maintenance of genetic diversity. Therefore, an appreciation of how this variation is created and maintained is of critical importance to our understanding of biodiversity and evolutionary change. Here, we analysed the recombination features from species representing the major eutherian taxonomic groups Afrotheria, Rodentia, Primates and Carnivora to better understand the dynamics of mammalian recombination. Our results suggest a phylogenetic component in recombination rates (RRs), which appears to be directional, strongly punctuated and subject to selection. Species that diversified earlier in the evolutionary tree have lower RRs than those from more derived phylogenetic branches. Furthermore, chromosome-specific recombination maps in distantly related taxa show that crossover interference is especially weak in the species with highest RRs detected thus far, the tiger. This is the first example of a mammalian species exhibiting such low levels of crossover interference, highlighting the uniqueness of this species and its relevance for the study of the mechanisms controlling crossover formation, distribution and resolution.

  17. Copy-choice recombination by reverse transcriptases: Reshuffling of genetic markers mediated by RNA chaperones

    Science.gov (United States)

    Negroni, Matteo; Buc, Henri

    2000-01-01

    Copy-choice recombination efficiently reshuffles genetic markers in retroviruses. In vivo, the folding of the genomic RNA is controlled by the nucleocapsid protein (NC). We show that binding of NC onto the acceptor RNA molecule is sufficient to enhance recombination, providing evidence for a mechanism where the structure of the acceptor template determines the template switch. NC as well as another RNA chaperone (StpA) converts recombination into a widespread process no longer restricted to rare hot spots, an effect maximized when both the NC and the reverse transcriptase come from HIV-1. These data suggest that RNA chaperones confer a higher genetic flexibility to retroviruses. PMID:10829081

  18. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  19. Genetic recombination of ultraviolet-irradiated nonreplicating lambda DNA

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.A.G.

    1984-01-01

    Genetic recombination of ultraviolet-irradiated, nonreplicating lambda DNA was studied. Escherichia coli homoimmune lysogens were infected with ultraviolet-irradiated lambda phage whose DNA possessed a tandem duplication of the A to V genes. Recombination between duplicated segments produced lambda, DNA molecules possessing only one copy of the A to V region. DNA was extracted from cells and used to transfect recombination-deficient spheroplasts. Transfection lysates were assayed for total lambda phage and recombinant (EDTA-resistant) phage. Ultraviolet-stimulated recombination was shown to be completely RecA-dependent, mostly RecF-dependent, and RecBC and RecE-independent. Experiments with excision repair-deficient (uvr-) bacteria suggested that ultraviolet-stimulated recombination occurred by both Uvr-dependent and Uvr-independent processes. A role for pyrimidine dimers in recombination was indicated by the reduction in recombination frequency subsequent to photoreactivation and by experiments using lambda phase irradiated under conditions that produce almost exclusively pyrimidine dimers. A role for photoproducts other than pyrimidine dimers was suggested by the photo-reactivation-insensitive component of 254nm-stimulated recombination and by the observation that recombination frequencies of 254-irradiated phage were much greater than those of 313 nm/acetophenone-irradiated phage when both types of phage possessed the same number of pyridimidine dimers per lambda duplex.

  20. CRISPR-directed mitotic recombination enables genetic mapping without crosses.

    Science.gov (United States)

    Sadhu, Meru J; Bloom, Joshua S; Day, Laura; Kruglyak, Leonid

    2016-05-27

    Linkage and association studies have mapped thousands of genomic regions that contribute to phenotypic variation, but narrowing these regions to the underlying causal genes and variants has proven much more challenging. Resolution of genetic mapping is limited by the recombination rate. We developed a method that uses CRISPR (clustered, regularly interspaced, short palindromic repeats) to build mapping panels with targeted recombination events. We tested the method by generating a panel with recombination events spaced along a yeast chromosome arm, mapping trait variation, and then targeting a high density of recombination events to the region of interest. Using this approach, we fine-mapped manganese sensitivity to a single polymorphism in the transporter Pmr1. Targeting recombination events to regions of interest allows us to rapidly and systematically identify causal variants underlying trait differences.

  1. Estimation of recombination frequency in bi-parental genetic populations.

    Science.gov (United States)

    Sun, Ziqi; Li, Huihui; Zhang, Luyan; Wang, Jiankang

    2012-06-01

    Summary Linkage analysis plays an important role in genetic studies. In linkage analysis, accurate estimation of recombination frequency is essential. Many bi-parental populations have been used, and determining an appropriate population is of great importance in precise recombination frequency. In this study, we investigated the estimation efficiency of recombination frequency in 12 bi-parental populations. The criteria that we used for comparison were LOD score in testing linkage relationship, deviation between estimated and real recombination frequency, standard error (SE) of estimates and the least theoretical population size (PS) required to observe at least one recombinant and to declare the statistically significant linkage relationship. Theoretical and simulation results indicated that larger PS and smaller recombination frequency resulted in higher LOD score and smaller deviation. Lower LOD score, higher deviation and higher SE for estimating the recombination frequency in the advanced backcrossing and selfing populations are larger than those in backcross and F2 populations, respectively. For advanced backcrossing and selfing populations, larger populations were needed in order to observe at least one recombinant and to declare significant linkage. In comparison, in F2 and F3 populations higher LOD score, lower deviation and SE were observed for co-dominant markers. A much larger population was needed to observe at least one recombinant and to detect loose linkage for dominant and recessive markers. Therefore, advanced backcrossing and selfing populations had lower precision in estimating the recombination frequency. F2 and F3 populations together with co-dominant markers represent the ideal situation for linkage analysis and linkage map construction.

  2. Genetic recombination in plant-infecting messenger-sense RNA viruses: overview and research perspectives

    Directory of Open Access Journals (Sweden)

    Jozef Julian Bujarski

    2013-03-01

    Full Text Available RNA recombination is one of the driving forces of genetic variability in (+-strand RNA viruses. Various types of RNA-RNA crossovers were described including crosses between the same or different viral RNAs or between viral and cellular RNAs. Likewise, a variety of molecular mechanisms are known to support RNA recombination, such as replicative events (based on internal or end-to-end replicase switchings along with nonreplicative joining among RNA fragments of viral and/or cellular origin. Such mechanisms as RNA decay or RNA interference are responsible for RNA fragmentation and trans-esterification reactions which are likely accountable for ligation of RNA fragments. Numerous host factors were found to affect the profiles of viral RNA recombinants and significant differences in recombination frequency were observed among various RNA viruses. Comparative analyses of viral sequences allowed for the development of evolutionary models in order to explain adaptive phenotypic changes and co-evolving sites. Many questions remain to be answered by forthcoming RNA recombination research. (i How various factors modulate the ability of viral replicase to switch templates, (ii What is the intracellular location of RNA-RNA template switchings, (iii Mechanisms and factors responsible for non-replicative RNA recombination, (iv Mechanisms of integration of RNA viral sequences with cellular genomic DNA, and (v What is the role of RNA splicing and ribozyme activity. From an evolutionary stand point, it is not known how RNA viruses parasitize new host species via recombination, nor is it obvious what the contribution of RNA recombination is among other RNA modification pathways. We do not understand why the frequency of RNA recombination varies so much among RNA viruses and the status of RNA recombination as a form of sex is not well documented.

  3. Effect of sex, age, and breed on genetic recombination features in cattle

    Science.gov (United States)

    Meiotic recombination is a fundamental biological process which generates genetic diversity, affects fertility, and influences evolvability. Here we investigate the roles of sex, age, and breed in cattle recombination features, including recombination rate, location and crossover interference. Usin...

  4. Estimation of recombination frequency in genetic linkage studies.

    Science.gov (United States)

    Nordheim, E V; O'Malley, D M; Guries, R P

    1983-09-01

    A binomial-like model is developed that may be used in genetic linkage studies when data are generated by a testcross with parental phase unknown. Four methods of estimation for the recombination frequency are compared for data from a single group and also from several groups; these methods are maximum likelihood, two Bayesian procedures, and an ad hoc technique. The Bayes estimator using a noninformative prior usually has a lower mean squared error than the other estimators and because of this it is the recommended estimator. This estimator appears particularly useful for estimation of recombination frequencies indicative of weak linkage from samples of moderate size. Interval estimates corresponding to this estimator can be obtained numerically by discretizing the posterior distribution, thereby providing researchers with a range of plausible recombination values. Data from a linkage study on pitch pine are used as an example.

  5. Recombination between Poliovirus and Coxsackie A Viruses of Species C: A Model of Viral Genetic Plasticity and Emergence

    Directory of Open Access Journals (Sweden)

    Francis Delpeyroux

    2011-08-01

    Full Text Available Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV, an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs, which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C, in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.

  6. Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence.

    Science.gov (United States)

    Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis

    2011-08-01

    Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.

  7. Multiple mating but not recombination causes quantitative increase in offspring genetic diversity for varying genetic architectures.

    Directory of Open Access Journals (Sweden)

    Olav Rueppell

    Full Text Available Explaining the evolution of sex and recombination is particularly intriguing for some species of eusocial insects because they display exceptionally high mating frequencies and genomic recombination rates. Explanations for both phenomena are based on the notion that both increase colony genetic diversity, with demonstrated benefits for colony disease resistance and division of labor. However, the relative contributions of mating number and recombination rate to colony genetic diversity have never been simultaneously assessed. Our study simulates colonies, assuming different mating numbers, recombination rates, and genetic architectures, to assess their worker genotypic diversity. The number of loci has a strong negative effect on genotypic diversity when the allelic effects are inversely scaled to locus number. In contrast, dominance, epistasis, lethal effects, or limiting the allelic diversity at each locus does not significantly affect the model outcomes. Mating number increases colony genotypic variance and lowers variation among colonies with quickly diminishing returns. Genomic recombination rate does not affect intra- and inter-colonial genotypic variance, regardless of mating frequency and genetic architecture. Recombination slightly increases the genotypic range of colonies and more strongly the number of workers with unique allele combinations across all loci. Overall, our study contradicts the argument that the exceptionally high recombination rates cause a quantitative increase in offspring genotypic diversity across one generation. Alternative explanations for the evolution of high recombination rates in social insects are therefore needed. Short-term benefits are central to most explanations of the evolution of multiple mating and high recombination rates in social insects but our results also apply to other species.

  8. Genetic characterization of somatic recombination in Trichoderma pseudokoningii

    Directory of Open Access Journals (Sweden)

    Barcellos Fernando Gomes

    2003-01-01

    Full Text Available Crossing experiments via hyphal anastomosis between two strains contrasting for auxotrophic markers of Trichoderma pseudokoningii were conducted to characterize the somatic recombination process in this specie. Four crossings were made and a total of 1052 colonies obtained from conidial suspensions of the heterokaryotic colonies were analyzed. Sixty-eight recombinant colonies, from four growing generations, were analyzed for the auxotrophic markers. Of the 68 colonies analyzed, 58 were stable after four generations and the remainders were unstable, reverting to one of the parentals. Most of the recombinant colonies were unstable through subculture and after four growing generations they showed the leu ino met markers (auxotrophic for leucin, inositol and metionin respectively. The unstable recombinant colonies showed irregular growing borders, sparse sporulation and frequent sector formation. The results suggest the occurrence of recombination mechanisms in the heterokaryon (somatic recombination, different from those described for the parasexual cycle or parameiosis. Therefore, we proposed the ocurrence of nuclei degradation from one parental (non prevalent parental in the heterokaryon and that the resulting chromosomal fragments may be incorporated into whole nuclei of the another parental (prevalent parental. However the parameiosis as originally described cannot be excluded.

  9. Variation in human recombination rates and its genetic determinants.

    Directory of Open Access Journals (Sweden)

    Adi Fledel-Alon

    Full Text Available BACKGROUND: Despite the fundamental role of crossing-over in the pairing and segregation of chromosomes during human meiosis, the rates and placements of events vary markedly among individuals. Characterizing this variation and identifying its determinants are essential steps in our understanding of the human recombination process and its evolution. STUDY DESIGN/RESULTS: Using three large sets of European-American pedigrees, we examined variation in five recombination phenotypes that capture distinct aspects of crossing-over patterns. We found that the mean recombination rate in males and females and the historical hotspot usage are significantly heritable and are uncorrelated with one another. We then conducted a genome-wide association study in order to identify loci that influence them. We replicated associations of RNF212 with the mean rate in males and in females as well as the association of Inversion 17q21.31 with the female mean rate. We also replicated the association of PRDM9 with historical hotspot usage, finding that it explains most of the genetic variance in this phenotype. In addition, we identified a set of new candidate regions for further validation. SIGNIFICANCE: These findings suggest that variation at broad and fine scales is largely separable and that, beyond three known loci, there is no evidence for common variation with large effects on recombination phenotypes.

  10. Recombination drives genetic diversification of Streptococcus dysgalactiae subspecies equisimilis in a region of streptococcal endemicity.

    Science.gov (United States)

    McMillan, David J; Kaul, Santosh Y; Bramhachari, P V; Smeesters, Pierre R; Vu, Therese; Karmarkar, M G; Shaila, Melkote S; Sriprakash, Kadaba S

    2011-01-01

    Infection of the skin or throat by Streptococcus dysgalactiae subspecies equisimilis (SDSE) may result in a number of human diseases. To understand mechanisms that give rise to new genetic variants in this species, we used multi-locus sequence typing (MLST) to characterise relationships in the SDSE population from India, a country where streptococcal disease is endemic. The study revealed Indian SDSE isolates have sequence types (STs) predominantly different to those reported from other regions of the world. Emm-ST combinations in India are also largely unique. Split decomposition analysis, the presence of emm-types in unrelated clonal complexes, and analysis of phylogenetic trees based on concatenated sequences all reveal an extensive history of recombination within the population. The ratio of recombination to mutation (r/m) events (11:1) and per site r/m ratio (41:1) in this population is twice as high as reported for SDSE from non-endemic regions. Recombination involving the emm-gene is also more frequent than recombination involving housekeeping genes, consistent with diversification of M proteins offering selective advantages to the pathogen. Our data demonstrate that genetic recombination in endemic regions is more frequent than non-endemic regions, and gives rise to novel local SDSE variants, some of which may have increased fitness or pathogenic potential.

  11. Recombination drives genetic diversification of Streptococcus dysgalactiae subspecies equisimilis in a region of streptococcal endemicity.

    Directory of Open Access Journals (Sweden)

    David J McMillan

    Full Text Available Infection of the skin or throat by Streptococcus dysgalactiae subspecies equisimilis (SDSE may result in a number of human diseases. To understand mechanisms that give rise to new genetic variants in this species, we used multi-locus sequence typing (MLST to characterise relationships in the SDSE population from India, a country where streptococcal disease is endemic. The study revealed Indian SDSE isolates have sequence types (STs predominantly different to those reported from other regions of the world. Emm-ST combinations in India are also largely unique. Split decomposition analysis, the presence of emm-types in unrelated clonal complexes, and analysis of phylogenetic trees based on concatenated sequences all reveal an extensive history of recombination within the population. The ratio of recombination to mutation (r/m events (11:1 and per site r/m ratio (41:1 in this population is twice as high as reported for SDSE from non-endemic regions. Recombination involving the emm-gene is also more frequent than recombination involving housekeeping genes, consistent with diversification of M proteins offering selective advantages to the pathogen. Our data demonstrate that genetic recombination in endemic regions is more frequent than non-endemic regions, and gives rise to novel local SDSE variants, some of which may have increased fitness or pathogenic potential.

  12. Genetic mapping and genomic selection using recombination breakpoint data.

    Science.gov (United States)

    Xu, Shizhong

    2013-11-01

    The correct models for quantitative trait locus mapping are the ones that simultaneously include all significant genetic effects. Such models are difficult to handle for high marker density. Improving statistical methods for high-dimensional data appears to have reached a plateau. Alternative approaches must be explored to break the bottleneck of genomic data analysis. The fact that all markers are located in a few chromosomes of the genome leads to linkage disequilibrium among markers. This suggests that dimension reduction can also be achieved through data manipulation. High-density markers are used to infer recombination breakpoints, which then facilitate construction of bins. The bins are treated as new synthetic markers. The number of bins is always a manageable number, on the order of a few thousand. Using the bin data of a recombinant inbred line population of rice, we demonstrated genetic mapping, using all bins in a simultaneous manner. To facilitate genomic selection, we developed a method to create user-defined (artificial) bins, in which breakpoints are allowed within bins. Using eight traits of rice, we showed that artificial bin data analysis often improves the predictability compared with natural bin data analysis. Of the eight traits, three showed high predictability, two had intermediate predictability, and two had low predictability. A binary trait with a known gene had predictability near perfect. Genetic mapping using bin data points to a new direction of genomic data analysis.

  13. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

    Science.gov (United States)

    Billeter, M A; Naim, H Y; Udem, S A

    2009-01-01

    An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

  14. A case study of a multiobjective recombinative genetic algorithm with coevolutionary sharing

    NARCIS (Netherlands)

    Neef, R.M.; Thierens, D.; Arciszewski, H.F.R.

    1999-01-01

    We present a multiobjective genetic algorithm that incorporates various genetic algorithm techniques that have been proven to be efficient and robust in their problem domain. More specifically, we integrate rank based selection, adaptive niching through coevolutionary sharing, elitist recombination,

  15. A Case Study of a Multiobjective Elitist Recombinative Genetic Algorithm with Coevolutionary Sharing

    NARCIS (Netherlands)

    Neef, R.M.; Thierens, D.; Arciszewski, H.F.R.

    1999-01-01

    We present a multiobjective genetic algorithm that incorporates various genetic algorithm techniques that have been proven to be efficient and robust in their problem domain. More specifically, we integrate rank based selection, adaptive niching through coevolutionary sharing, elitist recombination,

  16. A Case Study of a Multiobjective Elitist Recombinative Genetic Algorithm with Coevolutionary Sharing

    NARCIS (Netherlands)

    Neef, R.M.; Thierens, D.; Arciszewski, H.F.R.

    1999-01-01

    We present a multiobjective genetic algorithm that incorporates various genetic algorithm techniques that have been proven to be efficient and robust in their problem domain. More specifically, we integrate rank based selection, adaptive niching through coevolutionary sharing, elitist recombination,

  17. A case study of a multiobjective recombinative genetic algorithm with coevolutionary sharing

    NARCIS (Netherlands)

    Neef, R.M.; Thierens, D.; Arciszewski, H.F.R.

    1999-01-01

    We present a multiobjective genetic algorithm that incorporates various genetic algorithm techniques that have been proven to be efficient and robust in their problem domain. More specifically, we integrate rank based selection, adaptive niching through coevolutionary sharing, elitist recombination,

  18. Population genetics provides evidence for recombination in Giardia.

    Science.gov (United States)

    Cooper, Margarethe A; Adam, Rodney D; Worobey, Michael; Sterling, Charles R

    2007-11-20

    Giardia lamblia (syn. Giardia intestinalis, Giardia duodenalis) is an enteric protozoan parasite with two nuclei, and it might be one of the earliest branching eukaryotes. However, the discovery of at least rudimentary forms of certain features, such as Golgi and mitochondria, has refuted the proposal that its emergence from the eukaryotic lineage predated the development of certain eukaryotic features. The recent recognition of many of the genes known to be required for meiosis in the genome has also cast doubt on the idea that Giardia is primitively asexual, but so far there has been no direct evidence of sexual reproduction in Giardia, and population data have suggested clonal reproduction. We did a multilocus sequence evaluation of the genotype A2 reference strain, JH, and five genotype A2 isolates from a highly endemic area in Peru. Loci from different chromosomes yielded significantly different phylogenetic trees, indicating that they do not share the same evolutionary history; within individual loci, tests for recombination yielded significant statistical support for meiotic recombination. These observations provide genetic data supportive of sexual reproduction in Giardia.

  19. Exploratory study of mechanical kinematic innovation design based on gene recombination operation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yixiong; Gao, Yicong; Tan, Jianrong [Zhejiang University, Hangzhou (China); Hagiwara, Ichiro [Tokyo Institute of Technology, Tokyo (Korea, Republic of)

    2013-03-15

    This paper analyzes the influencing factor of motion output of the inspired mechanism under the premise that the motion input is invariant. These factors are respectively expressed as kinematic pair chromosome number, kinematic pair feature gene and distance relationship vector gene by virtue of several concepts and principles in genetics, and then they are encoded. Mechanism chromosome model is established, which is constituted by mechanism chromosome relationship graph and mechanism chromosome matrix. Three kinematic pair chromosome gene recombination operations on mechanism chromosome model (dominance, translocation and metastasis), are proposed by using meiosis and chromosome variance in genetics for reference. Finally the paper takes shaper as the original mechanism and acquires its inspired mechanism, which proves the convenience and practicality of the methods.

  20. Telomere recombination and alternative telomere lengthening mechanisms

    NARCIS (Netherlands)

    Draskovic, I.; Londono Vallejo, A.

    2013-01-01

    Telomeres are nucleoprotein structures at the ends of linear chromosomes that protect them from being recognized as DNA double stranded breaks. Telomeres shorten with every cell division and in the absence of the checkpoint mechanisms critical telomere shortening leads to chromosome end fusions and

  1. Building up and breaking down: mechanisms controlling recombination during replication.

    Science.gov (United States)

    Branzei, Dana; Szakal, Barnabas

    2017-08-01

    The complete and faithful duplication of the genome is an essential prerequisite for proliferating cells to maintain genome integrity. This objective is greatly challenged by DNA damage encountered during replication, which causes fork stalling and in certain cases, fork breakage. DNA damage tolerance (DDT) pathways mitigate the effects on fork stability induced by replication fork stalling by mediating damage-bypass and replication fork restart. These DDT mechanisms, largely relying on homologous recombination (HR) and specialized polymerases, can however contribute to genome rearrangements and mutagenesis. There is a profound connection between replication and recombination: recombination proteins protect replication forks from nuclease-mediated degradation of the nascent DNA strands and facilitate replication completion in cells challenged by DNA damage. Moreover, in case of fork collapse and formation of double strand breaks (DSBs), the recombination factors present or recruited to the fork facilitate HR-mediated DSB repair, which is primarily error-free. Disruption of HR is inexorably linked to genome instability, but the premature activation of HR during replication often leads to genome rearrangements. Faithful replication necessitates the downregulation of HR and disruption of active RAD51 filaments at replication forks, but upon persistent fork stalling, building up of HR is critical for the reorganization of the replication fork and for filling-in of the gaps associated with discontinuous replication induced by DNA lesions. Here we summarize and reflect on our understanding of the mechanisms that either suppress recombination or locally enhance it during replication, and the principles that underlie this regulation.

  2. Detecting and Analyzing Genetic Recombination Using RDP4.

    Science.gov (United States)

    Martin, Darren P; Murrell, Ben; Khoosal, Arjun; Muhire, Brejnev

    2017-01-01

    Recombination between nucleotide sequences is a major process influencing the evolution of most species on Earth. The evolutionary value of recombination has been widely debated and so too has its influence on evolutionary analysis methods that assume nucleotide sequences replicate without recombining. When nucleic acids recombine, the evolution of the daughter or recombinant molecule cannot be accurately described by a single phylogeny. This simple fact can seriously undermine the accuracy of any phylogenetics-based analytical approach which assumes that the evolutionary history of a set of recombining sequences can be adequately described by a single phylogenetic tree. There are presently a large number of available methods and associated computer programs for analyzing and characterizing recombination in various classes of nucleotide sequence datasets. Here we examine the use of some of these methods to derive and test recombination hypotheses using multiple sequence alignments.

  3. Mechanisms underlying allergy vaccination with recombinant hypoallergenic allergen derivatives.

    Science.gov (United States)

    Linhart, Birgit; Valenta, Rudolf

    2012-06-19

    Hundred years ago therapeutic vaccination with allergen-containing extracts has been introduced as a clinically effective, disease-modifying, allergen-specific and long-lasting form of therapy for allergy, a hypersensitivity disease affecting more than 25% of the population. Today, the structures of most of the disease-causing allergens have been elucidated and recombinant hypoallergenic allergen derivatives with reduced allergenic activity have been engineered to reduce side effects during allergen-specific immunotherapy (SIT). These recombinant hypoallergens have been characterized in vitro, in experimental animal models and in clinical trials in allergic patients. This review provides a summary of the molecular, immunological and preclinical evaluation criteria applied for this new generation of allergy vaccines. Furthermore, we summarize the mechanisms underlying SIT with recombinant hypoallergens which are thought to be responsible for their therapeutic effect.

  4. Genetic recombination in Escherichia coli : II. Calculation of incorporation frequency and relative map distance by recombinant analysis

    NARCIS (Netherlands)

    Haan, P.G. de; Verhoef, C.

    1966-01-01

    In this paper a mathematical analysis based on the physical exchange of genetic material is presented for a four-factor cross. The incorporation frequency of donor markers and the relative map distances may be accurately estimated from the frequencies of the eight recombinant classes. The results ob

  5. Similarity in recombination rate estimates highly correlates with genetic differentiation in humans.

    Directory of Open Access Journals (Sweden)

    Hafid Laayouni

    Full Text Available Recombination varies greatly among species, as illustrated by the poor conservation of the recombination landscape between humans and chimpanzees. Thus, shorter evolutionary time frames are needed to understand the evolution of recombination. Here, we analyze its recent evolution in humans. We calculated the recombination rates between adjacent pairs of 636,933 common single-nucleotide polymorphism loci in 28 worldwide human populations and analyzed them in relation to genetic distances between populations. We found a strong and highly significant correlation between similarity in the recombination rates corrected for effective population size and genetic differentiation between populations. This correlation is observed at the genome-wide level, but also for each chromosome and when genetic distances and recombination similarities are calculated independently from different parts of the genome. Moreover, and more relevant, this relationship is robustly maintained when considering presence/absence of recombination hotspots. Simulations show that this correlation cannot be explained by biases in the inference of recombination rates caused by haplotype sharing among similar populations. This result indicates a rapid pace of evolution of recombination, within the time span of differentiation of modern humans.

  6. Genetically-Engineered Poxviruses and the Construction of Live Recombinant Vaccines

    Science.gov (United States)

    1990-08-01

    A DNA ligase function with obvious implications in recombination was identified. It was shown to be an early protein. Genetic manipulation revealed...1990) A DNA ligase gene in the Copenhagen strain of vaccinia virus is nonessential for viral replication and recombination. Virology (in press). 3

  7. Heteroduplex formation, mismatch resolution, and genetic sectoring during homologous recombination in the hyperthermophilic archaeon Sulfolobus acidocaldarius

    Directory of Open Access Journals (Sweden)

    Dennis W. Grogan

    2012-06-01

    Full Text Available Hyperthermophilic archaea exhibit certain molecular-genetic features not seen in bacteria or eukaryotes, and their systems of homologous recombination (HR remain largely unexplored in vivo. We transformed a Sulfolobus acidocaldarius pyrE mutant with short DNAs that contained multiple non-selected genetic markers within the pyrE gene. From 20 to 40% of the resulting colonies were found to contain two Pyr+ clones with distinct sets of the non-selected markers. The dual-genotype colonies could not be attributed to multiple DNAs entering the cells or conjugation between transformed and non-transformed cells. These colonies thus appear to represent genetic sectoring in which stretches of heteroduplex DNA formed during HR and segregated without complete resolution of inter-strand differences. Surprisingly, sectoring was also frequent in transformation with single-stranded DNAs. Oligonucleotides, for example, produced somewhat more sectored transformants when electroporated as single strands than as a duplex, although all forms (positive-strand, negative-strand, and duplex produced a diversity of genotypes from the limited number of markers. The marker patterns in the recombinants indicate that S. acidocaldarius resolves individual mismatches through un-coordinated short-patch excision followed by re-filling of the resulting gap. These gene-conversion events exhibit little strand bias, and can occur in pre-formed heteroduplex. These properties suggest that this process does not play a central role in the fidelity of genome replication, but may generate 3’ single-strand tails, and thereby initiate the incorporation of duplex DNA into the recipient chromosome. Regardless of the molecular details of its mechanism, HR between the S. acidocaldarius chromosome and a multiply-marked DNA produces a strikingly high level of genetic diversity in a very short chromosomal interval, and suggests that HR in Sulfolobus has significant mutagenic potential if not

  8. New strategies for genetic engineering Pseudomonas syringae using recombination

    Science.gov (United States)

    Here we report that DNA oligonucleotides (oligos) introduced directly into bacteria by electroporation can recombine with the bacterial chromosome. This phenomenon was identified in Pseudomonas syringae and we subsequently found that Escherichia coli, Salmonella typhimurium and Shigella flexneri are...

  9. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers.

    Science.gov (United States)

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.

  10. Genetic confirmation of mungbean (Vigna radiata and mashbean (Vigna mungo interspecific recombinants using molecular markers

    Directory of Open Access Journals (Sweden)

    Ghulam eAbbas

    2015-12-01

    Full Text Available The present study was conducted with the aim to investigate recombination between mungbean (female and mashbean (male interspecific crosses using molecular markers i.e., URP (Universal Rice Primers, RAPD (Random Amplified Polymorphic DNA and SSR (Simple Sequence Repeats. As a first step parental screening was performed and polymorphic markers differentiating parent genotypes were identified. Recombinations were then confirmed through polymorphic DNA markers in many of the hybrids. The NM 2006 × Mash 88 was found to be most successful interspecific cross as many of true recombinants, confirmed by molecular markers, belonged to this cross combination. The SSR markers were more efficient in detecting genetic variability and recombinations with reference to specific chromosomes and particular loci, while SSR (RIS and RAPD identified variability dispersed throughout the genome. The DNA based marker assisted approach provided evidence for genetic confirmation of mungbean and mashbean interspecific recombinants and escalated the authenticity of selection in mungbean improvement programme.

  11. Radical recombination in interstellar ices, a not so simple mechanism.

    Science.gov (United States)

    Butscher, Teddy; Duvernay, Fabrice; Rimola, Albert; Segado-Centellas, Mireia; Chiavassa, Thierry

    2017-01-25

    Many complex organic molecules (hereafter COMs) have been detected in different regions of the interstellar medium (ISM). In each region, different energetic processes - UV irradiation, atom bombardments, etc. - that could be linked to the formation of detected COMs may occur depending on the environment. Several formation mechanisms were proposed but increasing attention is paid to radical recombination reactions. Previous studies showed that glycolaldehyde (HC(O)CH2OH) and ethylene glycol (HOCH2CH2OH) are formed by radical recombination between HC˙O and ˙CH2OH, and by ˙CH2OH dimerisation, respectively. Formyl (HC˙O), one of the most famous astrophysically-relevant radical species, has been detected as a gaseous component of the ISM. Its reactivity was already attributed to the formation of several COMs. This work aims to study the dimerisation of formyl radical HC˙O using a cryogenic matrix technique. The evolution of the chemical sample composition is monitored by infrared spectroscopy and by mass spectrometry during temperature programmed desorption (TPD) monitoring. Results indicate that the reaction of one HC˙O with another does not lead to the direct formation of glyoxal (HC(O)C(O)H) but yields H2CO and CO. Results are also compared with those for the reaction between two ˙CH2OH radicals and the recombination between HC˙O and ˙CH2OH. Also, glyceraldehyde was tentatively detected in our experiment using different spectroscopic techniques. A radical mechanism is proposed to explain its formation in our experiments. Complementary quantum chemical calculations provide an atomistic interpretation of the experimental findings.

  12. Genetic recombination variation in wild Robertsonian mice: on the role of chromosomal fusions and Prdm9 allelic background

    Science.gov (United States)

    Capilla, Laia; Medarde, Nuria; Alemany-Schmidt, Alexandra; Oliver-Bonet, Maria; Ventura, Jacint; Ruiz-Herrera, Aurora

    2014-01-01

    Despite the existence of formal models to explain how chromosomal rearrangements can be fixed in a population in the presence of gene flow, few empirical data are available regarding the mechanisms by which genome shuffling contributes to speciation, especially in mammals. In order to shed light on this intriguing evolutionary process, here we present a detailed empirical study that shows how Robertsonian (Rb) fusions alter the chromosomal distribution of recombination events during the formation of the germline in a Rb system of the western house mouse (Mus musculus domesticus). Our results indicate that both the total number of meiotic crossovers and the chromosomal distribution of recombination events are reduced in mice with Rb fusions and that this can be related to alterations in epigenetic signatures for heterochromatinization. Furthermore, we detected novel house mouse Prdm9 allelic variants in the Rb system. Remarkably, mean recombination rates were positively correlated with a decrease in the number of ZnF domains in the Prdm9 gene. The suggestion that recombination can be modulated by both chromosomal reorganizations and genetic determinants that control the formation of double-stranded breaks during meiosis opens new avenues for understanding the role of recombination in chromosomal speciation. PMID:24850922

  13. The $\\Lambda_0$ Polarization and the Recombination Mechanism

    CERN Document Server

    Herrera-Corral, G; Montaño-Zetina, L M; Simão, F R A; Montaño, Luis M.

    1997-01-01

    We use the recombination and the Thomas Precession Model to obtain a prediction for the $\\Lambda _0$ polarization in the $p+p \\to \\Lambda_0+X$ reaction. We study the effect of the recombination function on the

  14. Optimal recombination in genetic algorithms for combinatorial optimization problems: Part II

    Directory of Open Access Journals (Sweden)

    Eremeev Anton V.

    2014-01-01

    Full Text Available This paper surveys results on complexity of the optimal recombination problem (ORP, which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. In Part II, we consider the computational complexity of ORPs arising in genetic algorithms for problems on permutations: the Travelling Salesman Problem, the Shortest Hamilton Path Problem and the Makespan Minimization on Single Machine and some other related problems. The analysis indicates that the corresponding ORPs are NP-hard, but solvable by faster algorithms, compared to the problems they are derived from.

  15. Genetic construction of recombinant Pseudomonas chlororaphis for improved glycerol utilization

    Science.gov (United States)

    The objective of this study is to improve by genetic engineering the glycerol metabolic capability of Pseudomonas chlororaphis which is capable of producing commercially valuable biodegradable poly(hydroxyalkanoate) (PHA) and biosurfactant rhamnolipids (RLs). In the study, glycerol uptake facilitat...

  16. Unraveling genetic mechanisms in headache syndromes

    NARCIS (Netherlands)

    Weller, Claudia Mandina

    2015-01-01

    Migraine and cluster headache are disabling brain disorders. Current treatment is ineffective in many patients. The research performed in this thesis aimed at elucidating some of the molecular genetic mechanisms in these two headache disorders by means of clinical and genetic studies in complex and/

  17. Unraveling genetic mechanisms in headache syndromes

    NARCIS (Netherlands)

    Weller, Claudia Mandina

    2015-01-01

    Migraine and cluster headache are disabling brain disorders. Current treatment is ineffective in many patients. The research performed in this thesis aimed at elucidating some of the molecular genetic mechanisms in these two headache disorders by means of clinical and genetic studies in complex and/

  18. Genetic diversity, recombination, and divergence in animal associated Penicillium dipodomyis.

    Directory of Open Access Journals (Sweden)

    Daniel A Henk

    Full Text Available Penicillium dipodomyis is thought to be an exclusively asexual fungus associated with Kangaroo Rats, Dipodomys species, and is unique among Penicillium species in growing at 37°C but producing no known toxins. Lack of recombination within P. dipodomyis would result in limited adaptive flexibility but possibly enhance local adaptation and host selection via maintenance of favourable genotypes. Here, analysis of DNA sequence data from five protein-coding genes shows that recombination occurs within P. dipodomyis on a small spatial scale. Furthermore, detection of mating-type alleles supports outcrossing and a sexual cycle in P. dipodomyis. P. dipodomyis was a weaker competitor in in vitro assays with other Penicillium species found in association with Kanagaroo rats. Bayesian species level analysis suggests that the P. dipodomyis lineage diverged from closely related species also found in cheek pouches of Kangaroo Rats and their stored seeds about 11 million years ago, a similar divergence time as Dipodomys from its sister rodent taxa.

  19. Advances in directed protein evolution by recursive genetic recombination: applications to therapeutic proteins.

    Science.gov (United States)

    Kurtzman, A L; Govindarajan, S; Vahle, K; Jones, J T; Heinrichs, V; Patten, P A

    2001-08-01

    Recent developments in directed evolution technologies combined with innovations in robotics and screening methods have revolutionized protein engineering. These methods are being applied broadly to many fields of biotechnology, including chemical engineering, agriculture and human therapeutics. More specifically, DNA shuffling and other methods of genetic recombination and mutation have resulted in the improvement of proteins of therapeutic interest. Optimizing genetic diversity and fitness through iterative directed evolution will accelerate improvements in engineered protein therapeutics.

  20. Genetic Recombination in Coprinus. IV. a Kinetic Study of the Temperature Effect on Recombination Frequency.

    Science.gov (United States)

    Lu, B C

    1974-10-01

    At the restrictive conditions (35 degrees under continuous light) Coprinus lagopus is unable to initiate premeiotic S phase which takes place normally within 8-10 h of karyogamy. A shift-up to the restrictive conditions causes an arrest of the basidiocarps at this critical stage. A prolonged arrest causes a reversal to mitosis (Lu 1974b). Incubation of basidiocarps at the restrictive conditions before this critical stage causes no increase in recombination frequency (R.F.) in the loci studied. An arrest of 4 h at the critical stage still causes no R.F. increase, but 12-13 h and 18-19 h arrests cause increases of 50% and 90% over the controls, respectively. Thus R.F. can be increased even before the cells are fully committed to meiosis.-A 3-h heat treatment at the beginning of S phase (or 8 h before karyogamy) also causes some (30%) increase in R.F. while the same treatment at late S phase (or 3 h before karyogamy) causes a substantial (164%) increase in R.F. over the controls. A 3-h heat treatment before S phase causes no increase in R.F.-Pachytene is also responsive to temperature treatments (Lu 1969). The maximum R.f. increase is 100% by heat and 220% by cold treatment. The shortest time that can cause the maximum increase in recombination by high temperature is 3 h and that by cold treatment is 7 h. These durations are correlated with the length of the pachytene stage under the treatment conditions. The kinetic data show that the increase in R.F. caused by high and low temperatures follows two-hit kinetics and their rate of increase is almost identical. The higher increase in R.F. by low temperature can be attributed to the increased duration of pachytene and therefore R.F. is a function of time. The longer the homologous chromosomes are held together, the higher the recombination frequency.

  1. Genetic differences in recombination frequency in the pig (Sus scrofa).

    Science.gov (United States)

    Ollivier, L

    1995-10-01

    A comparison has been performed on 3 recently published linkage maps of the pig, hereafter designated as the American (A), European (E), and Swedish (S) maps. The cumulated distances between common markers in these 3 maps were in the ratio 1.00 (A):0.88 (E):0.77 (S), in keeping with the ratio of the percentages of domestic genome in the reference families used to build the corresponding maps, i.e., 1.00 (A):0.81 (E):0.50 (S). From further recombination frequencies reported in wild boars (in the S report), the wild pig genome length (in centimorgans) is expected to represent 66% of the domestic pig genome length. These observations tend to confirm a general result of Burt and Bell (Nature (London), 326: 803-805 (1987)), showing higher chiasma frequencies in domestic mammalian species compared with wild species. Consequences for mapping studies are discussed.

  2. Genetic crossovers are predicted accurately by the computed human recombination map.

    Directory of Open Access Journals (Sweden)

    Pavel P Khil

    2010-01-01

    Full Text Available Hotspots of meiotic recombination can change rapidly over time. This instability and the reported high level of inter-individual variation in meiotic recombination puts in question the accuracy of the calculated hotspot map, which is based on the summation of past genetic crossovers. To estimate the accuracy of the computed recombination rate map, we have mapped genetic crossovers to a median resolution of 70 Kb in 10 CEPH pedigrees. We then compared the positions of crossovers with the hotspots computed from HapMap data and performed extensive computer simulations to compare the observed distributions of crossovers with the distributions expected from the calculated recombination rate maps. Here we show that a population-averaged hotspot map computed from linkage disequilibrium data predicts well present-day genetic crossovers. We find that computed hotspot maps accurately estimate both the strength and the position of meiotic hotspots. An in-depth examination of not-predicted crossovers shows that they are preferentially located in regions where hotspots are found in other populations. In summary, we find that by combining several computed population-specific maps we can capture the variation in individual hotspots to generate a hotspot map that can predict almost all present-day genetic crossovers.

  3. Genetic Analysis of Health-Related Secondary Metabolites in a Brassica rapa Recombinant Inbred Line Population

    NARCIS (Netherlands)

    Bagheri, H.; Soda, El M.; Kim, H.K.; Fritsche, S.; Jung, C.; Aarts, M.G.M.

    2013-01-01

    The genetic basis of the wide variation for nutritional traits in Brassica rapa is largely unknown. A new Recombinant Inbred Line (RIL) population was profiled using High Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR) analysis to detect quantitative trait loci (QTLs) c

  4. Cattle sex-specific recombination and genetic control from a very large pedigree

    Science.gov (United States)

    Meiotic recombination is an essential biological process that generates novel genetic variants and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half million genotyped animals, we extracted 186,927 three-generation families, identified ov...

  5. An efficient quantum mechanical method for radical pair recombination reactions

    Science.gov (United States)

    Lewis, Alan M.; Fay, Thomas P.; Manolopoulos, David E.

    2016-12-01

    The standard quantum mechanical expressions for the singlet and triplet survival probabilities and product yields of a radical pair recombination reaction involve a trace over the states in a combined electronic and nuclear spin Hilbert space. If this trace is evaluated deterministically, by performing a separate time-dependent wavepacket calculation for each initial state in the Hilbert space, the computational effort scales as O (Z2log ⁡Z ) , where Z is the total number of nuclear spin states. Here we show that the trace can also be evaluated stochastically, by exploiting the properties of spin coherent states. This results in a computational effort of O (M Z log ⁡Z ) , where M is the number of Monte Carlo samples needed for convergence. Example calculations on a strongly coupled radical pair with Z >106 show that the singlet yield can be converged to graphical accuracy using just M =200 samples, resulting in a speed up by a factor of >5000 over a standard deterministic calculation. We expect that this factor will greatly facilitate future quantum mechanical simulations of a wide variety of radical pairs of interest in chemistry and biology.

  6. Molecular mechanisms of recombination restriction in the envelope gene of the human immunodeficiency virus.

    Directory of Open Access Journals (Sweden)

    Etienne Simon-Loriere

    2009-05-01

    Full Text Available The ability of pathogens to escape the host's immune response is crucial for the establishment of persistent infections and can influence virulence. Recombination has been observed to contribute to this process by generating novel genetic variants. Although distinctive recombination patterns have been described in many viral pathogens, little is known about the influence of biases in the recombination process itself relative to selective forces acting on newly formed recombinants. Understanding these influences is important for determining how recombination contributes to pathogen genome and proteome evolution. Most previous research on recombination-driven protein evolution has focused on relatively simple proteins, usually in the context of directed evolution experiments. Here, we study recombination in the envelope gene of HIV-1 between primary isolates belonging to subtypes that recombine naturally in the HIV/AIDS pandemic. By characterizing the early steps in the generation of recombinants, we provide novel insights into the evolutionary forces that shape recombination patterns within viral populations. Specifically, we show that the combined effects of mechanistic processes that determine the locations of recombination breakpoints across the HIV-1 envelope gene, and purifying selection acting against dysfunctional recombinants, can explain almost the entire distribution of breakpoints found within this gene in nature. These constraints account for the surprising paucity of recombination breakpoints found in infected individuals within this highly variable gene. Thus, the apparent randomness of HIV evolution via recombination may in fact be relatively more predictable than anticipated. In addition, the dominance of purifying selection in localized areas of the HIV genome defines regions where functional constraints on recombinants appear particularly strong, pointing to vulnerable aspects of HIV biology.

  7. Molecular mechanisms of recombination restriction in the envelope gene of the human immunodeficiency virus.

    Science.gov (United States)

    Simon-Loriere, Etienne; Galetto, Roman; Hamoudi, Meriem; Archer, John; Lefeuvre, Pierre; Martin, Darren P; Robertson, David L; Negroni, Matteo

    2009-05-01

    The ability of pathogens to escape the host's immune response is crucial for the establishment of persistent infections and can influence virulence. Recombination has been observed to contribute to this process by generating novel genetic variants. Although distinctive recombination patterns have been described in many viral pathogens, little is known about the influence of biases in the recombination process itself relative to selective forces acting on newly formed recombinants. Understanding these influences is important for determining how recombination contributes to pathogen genome and proteome evolution. Most previous research on recombination-driven protein evolution has focused on relatively simple proteins, usually in the context of directed evolution experiments. Here, we study recombination in the envelope gene of HIV-1 between primary isolates belonging to subtypes that recombine naturally in the HIV/AIDS pandemic. By characterizing the early steps in the generation of recombinants, we provide novel insights into the evolutionary forces that shape recombination patterns within viral populations. Specifically, we show that the combined effects of mechanistic processes that determine the locations of recombination breakpoints across the HIV-1 envelope gene, and purifying selection acting against dysfunctional recombinants, can explain almost the entire distribution of breakpoints found within this gene in nature. These constraints account for the surprising paucity of recombination breakpoints found in infected individuals within this highly variable gene. Thus, the apparent randomness of HIV evolution via recombination may in fact be relatively more predictable than anticipated. In addition, the dominance of purifying selection in localized areas of the HIV genome defines regions where functional constraints on recombinants appear particularly strong, pointing to vulnerable aspects of HIV biology.

  8. Molecular Mechanisms of Recombination Restriction in the Envelope Gene of the Human Immunodeficiency Virus

    Science.gov (United States)

    Simon-Loriere, Etienne; Galetto, Roman; Hamoudi, Meriem; Archer, John; Lefeuvre, Pierre; Martin, Darren P.; Robertson, David L.; Negroni, Matteo

    2009-01-01

    The ability of pathogens to escape the host's immune response is crucial for the establishment of persistent infections and can influence virulence. Recombination has been observed to contribute to this process by generating novel genetic variants. Although distinctive recombination patterns have been described in many viral pathogens, little is known about the influence of biases in the recombination process itself relative to selective forces acting on newly formed recombinants. Understanding these influences is important for determining how recombination contributes to pathogen genome and proteome evolution. Most previous research on recombination-driven protein evolution has focused on relatively simple proteins, usually in the context of directed evolution experiments. Here, we study recombination in the envelope gene of HIV-1 between primary isolates belonging to subtypes that recombine naturally in the HIV/AIDS pandemic. By characterizing the early steps in the generation of recombinants, we provide novel insights into the evolutionary forces that shape recombination patterns within viral populations. Specifically, we show that the combined effects of mechanistic processes that determine the locations of recombination breakpoints across the HIV-1 envelope gene, and purifying selection acting against dysfunctional recombinants, can explain almost the entire distribution of breakpoints found within this gene in nature. These constraints account for the surprising paucity of recombination breakpoints found in infected individuals within this highly variable gene. Thus, the apparent randomness of HIV evolution via recombination may in fact be relatively more predictable than anticipated. In addition, the dominance of purifying selection in localized areas of the HIV genome defines regions where functional constraints on recombinants appear particularly strong, pointing to vulnerable aspects of HIV biology. PMID:19424420

  9. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts.

    Science.gov (United States)

    Huang, Chao-Li; Pu, Pei-Hua; Huang, Hao-Jen; Sung, Huang-Mo; Liaw, Hung-Jiun; Chen, Yi-Min; Chen, Chien-Ming; Huang, Ming-Ban; Osada, Naoki; Gojobori, Takashi; Pai, Tun-Wen; Chen, Yu-Tin; Hwang, Chi-Chuan; Chiang, Tzen-Yuh

    2015-03-15

    Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification.

  10. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts

    KAUST Repository

    Huang, Chao-Li

    2015-03-15

    Background: Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Results: Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Conclusion: Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification. © Huang et al.

  11. Genetic recombination pathways and their application for genome modification of human embryonic stem cells.

    Science.gov (United States)

    Nieminen, Mikko; Tuuri, Timo; Savilahti, Harri

    2010-10-01

    Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens.

  12. Robotics for recombinant DNA and human genetics research

    Energy Technology Data Exchange (ETDEWEB)

    Beugelsdijk, T.J.

    1990-01-01

    In October of 1989, molecular biologists throughout the world formally embarked on ultimately determining the set of genetic instructions for a human being. Called by some the Manhattan Project'' a molecular biology, pursuit of this goal is projected to require approximately 3000 man years of effort over a 15-year period. The Humane Genome Initiative is a worldwide research effort that has the goal of analyzing the structure of human deoxyribonucleic acid (DNA) and determining the location of all human genes. The Department of Energy (DOE) has designated three of its national laboratories as centers for the Human Genome Project. These are Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Lawrence Berkeley Laboratory (LBL). These laboratories are currently working on different, but complementary technology development areas in support of the Human Genome Project. The robotics group at LANL is currently working at developing the technologies that address the problems associated with physical mapping. This article describes some of these problems and discusses some of the robotics approaches and engineering tolls applicable to their solution. 7 refs., 8 figs., 1 tab.

  13. Relationship among the repair and genetic recombination mechanisms. II. Effect of gamma radiation on the lambda recombination in E. coli AB1157 and AB1886; Relacion entre los mecanismos de reparacion y la recombinacion genetica. II. efecto de la radiacion gamma sobre la recombinacion de lambda en E. Coli AB1157 y AB1886

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1988-08-15

    The objective of the present work is to determine if the radiation gamma that is a good inductor of the answer SOS of Escherichia Coli but that it produces alterations in the DNA very different to those taken place by the light UV, it is able to stimulate the viral recombination. (Author)

  14. Giardia duodenalis: genetic recombination and its implications for taxonomy and molecular epidemiology.

    Science.gov (United States)

    Cacciò, Simone M; Sprong, Hein

    2010-01-01

    Traditionally, species within the Giardia genus have been considered as eukaryotic organisms that show an absence of sexual reproduction in their simple life cycles. This apparent lack of sex has been challenged by a number of studies that have demonstrated (i) the presence in the Giardia duodenalis genome of true homologs of genes specifically involved in meiosis in other eukaryotes, and their stage-specific expression; (ii) the exchange of genetic material in different chromosomal regions among human isolates of the parasite; (iii) the fusion between cyst nuclei (karyogamy) and the transfer of genetic material (episomal plasmids) between them. These results are pivotal for the existence of sexual recombination. However, many details of the process remain elusive, and experimental data are still scarce. This review summarizes the experimental approaches and the results obtained, and discusses the implications of recombination from the standpoint of the taxonomy and molecular epidemiology of this widespread pathogen.

  15. Recombination Is a Major Driving Force of Genetic Diversity in the Anaplasmataceae Ehrlichia ruminantium

    Science.gov (United States)

    Cangi, Nídia; Gordon, Jonathan L.; Bournez, Laure; Pinarello, Valérie; Aprelon, Rosalie; Huber, Karine; Lefrançois, Thierry; Neves, Luís; Meyer, Damien F.; Vachiéry, Nathalie

    2016-01-01

    The disease, Heartwater, caused by the Anaplasmataceae E. ruminantium, represents a major problem for tropical livestock and wild ruminants. Up to now, no effective vaccine has been available due to a limited cross protection of vaccinal strains on field strains and a high genetic diversity of Ehrlichia ruminantium within geographical locations. To address this issue, we inferred the genetic diversity and population structure of 194 E. ruminantium isolates circulating worldwide using Multilocus Sequence Typing based on lipA, lipB, secY, sodB, and sucA genes. Phylogenetic trees and networks were generated using BEAST and SplitsTree, respectively, and recombination between the different genetic groups was tested using the PHI test for recombination. Our study reveals the repeated occurrence of recombination between E. ruminantium strains, suggesting that it may occur frequently in the genome and has likely played an important role in the maintenance of genetic diversity and the evolution of E. ruminantium. Despite the unclear phylogeny and phylogeography, E. ruminantium isolates are clustered into two main groups: Group 1 (West Africa) and a Group 2 (worldwide) which is represented by West, East, and Southern Africa, Indian Ocean, and Caribbean strains. Some sequence types are common between West Africa and Caribbean and between Southern Africa and Indian Ocean strains. These common sequence types highlight two main introduction events due to the movement of cattle: from West Africa to Caribbean and from Southern Africa to the Indian Ocean islands. Due to the long branch lengths between Group 1 and Group 2, and the propensity for recombination between these groups, it seems that the West African clusters of Subgroup 2 arrived there more recently than the original divergence of the two groups, possibly with the original waves of domesticated ruminants that spread across the African continent several thousand years ago. PMID:27747194

  16. Lederberg on bacterial recombination, Haldane, and cold war genetics: an interview.

    Science.gov (United States)

    Sarkar, Sahotra

    2014-01-01

    Joshua Lederberg (1925-2008), was one of the pioneers of molecular genetics perhaps best known for his discovery of genetic recombination in bacteria which earned him a Nobel Prize in 1958 (shared with George Beadle and Edward Tatum). Lederberg's interests were broad including the origin of life, exobiology (a term that he coined) and emerging diseases and artificial intelligence in his, later years. This article contains the transcription of an interview in excerpts, docu- menting the interactions between Lederberg and fellow biologist J.B.S. Haldane wlich lasted from 1946 until Haldane's death in Kolkata (then Calcutta) in 1964.

  17. Genetic variability of rice recurrent selection populations as affected by male sterility or manual recombination

    Directory of Open Access Journals (Sweden)

    Letícia da Silveira Pinheiro

    2012-06-01

    Full Text Available The objective of this work was to determine the effect of male sterility or manual recombination on genetic variability of rice recurrent selection populations. The populations CNA-IRAT 4, with a gene for male sterility, and CNA 12, which was manually recombined, were evaluated. Genetic variability among selection cycles was estimated using14 simple sequence repeat (SSR markers. A total of 926 plants were analyzed, including ten genitors and 180 individuals from each of the evaluated cycles (1, 2 and 5 of the population CNA-IRAT 4, and 16 genitors and 180 individuals from each of the cycles (1 and 2 of CNA 12. The analysis allowed the identification of alleles not present among the genitors for both populations, in all cycles, especially for the CNA-IRAT 4 population. These alleles resulted from unwanted fertilization with genotypes that were not originally part of the populations. The parameters of Wright's F-statistic (F IS and F IT indicated that the manual recombination expands the genetic variability of the CNA 12 population, whereas male sterility reduces the one of CNA-IRAT 4.

  18. The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites.

    Science.gov (United States)

    Kover, P X; Caicedo, A L

    2001-01-01

    Parasites represent strong selection on host populations because they are ubiquitous and can drastically reduce host fitness. It has been hypothesized that parasite selection could explain the widespread occurrence of recombination because it is a coevolving force that favours new genetic combinations in the host. A review of deterministic models for the maintenance of recombination reveals that for recombination to be favoured, multiple genes that interact with each other must be under selection. To evaluate whether parasite selection can explain the maintenance of recombination, we review 85 studies that investigated the genetic architecture of plant disease resistance and discuss whether they conform to the requirements that emerge from theoretical models. General characteristics of disease resistance in plants and problems in evaluating resistance experimentally are also discussed. We found strong evidence that disease resistance in plants is determined by multiple loci. Furthermore, in most cases where loci were tested for interactions, epistasis between loci that affect resistance was found. However, we found weak support for the idea that specific allelic combinations determine resistance to different host genotypes and there was little data on whether epistasis between resistance genes is negative or positive. Thus, the current data indicate that it is possible that parasite selection can favour recombination, but more studies in natural populations that specifically address the nature of the interactions between resistance genes are necessary. The data summarized here suggest that disease resistance is a complex trait and that environmental effects and fitness trade-offs should be considered in future models of the coevolutionary dynamics of host and parasites.

  19. Induced mutation and somatic recombination as tools for genetic analysis and breeding of imperfect fungi.

    NARCIS (Netherlands)

    Bos, C.J.

    1986-01-01

    Many fungi which are important in Agriculture as plant pathogens or in Biotechnology as producers of organic acids, antibiotics or enzymes, are imperfect fungi. These fungi do not have a sexual stage, which implies that they lack a meiotic recombination mechanism.However, many imperfect fungi have e

  20. Induced mutation and somatic recombination as tools for genetic analysis and breeding of imperfect fungi

    NARCIS (Netherlands)

    Bos, C.J.

    1986-01-01

    Many fungi which are important in Agriculture as plant pathogens or in Biotechnology as producers of organic acids, antibiotics or enzymes, are imperfect fungi. These fungi do not have a sexual stage, which implies that they lack a meiotic recombination mechanism.

    However, many

  1. Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire.

    Science.gov (United States)

    Briney, Bryan S; Willis, Jordan R; Hicar, Mark D; Thomas, James W; Crowe, James E

    2012-09-01

    Antibody heavy-chain recombination that results in the incorporation of multiple diversity (D) genes, although uncommon, contributes substantially to the diversity of the human antibody repertoire. Such recombination allows the generation of heavy chain complementarity determining region 3 (HCDR3) regions of extreme length and enables junctional regions that, because of the nucleotide bias of N-addition regions, are difficult to produce through normal V(D)J recombination. Although this non-classical recombination process has been observed infrequently, comprehensive analysis of the frequency and genetic characteristics of such events in the human peripheral blood antibody repertoire has not been possible because of the rarity of such recombinants and the limitations of traditional sequencing technologies. Here, through the use of high-throughput sequencing of the normal human peripheral blood antibody repertoire, we analysed the frequency and genetic characteristics of V(DD)J recombinants. We found that these recombinations were present in approximately 1 in 800 circulating B cells, and that the frequency was severely reduced in memory cell subsets. We also found that V(DD)J recombination can occur across the spectrum of diversity genes, indicating that virtually all recombination signal sequences that flank diversity genes are amenable to V(DD)J recombination. Finally, we observed a repertoire bias in the diversity gene repertoire at the upstream (5') position, and discovered that this bias was primarily attributable to the order of diversity genes in the genomic locus.

  2. Drosophila transposon insertions as unknowns for structured inquiry recombination mapping exercises in an undergraduate genetics course.

    Science.gov (United States)

    Marcus, Jeffrey M; Hughes, Tia M

    2009-06-01

    Structured inquiry approaches, in which students receive a Drosophila strain of unknown genotype to analyze and map the constituent mutations, are a common feature of many genetics teaching laboratories. The required crosses frustrate many students because they are aware that they are participating in a fundamentally trivial exercise, as the map locations of the genes are already established and have been recalculated thousands of times by generations of students. We modified the traditional structured inquiry approach to include a novel research experience for the students in our undergraduate genetics laboratories. Students conducted crosses with Drosophila strains carrying P[lacW] transposon insertions in genes without documented recombination map positions, representing a large number of unique, but equivalent genetic unknowns. Using the eye color phenotypes associated with the inserts as visible markers, it is straightforward to calculate recombination map positions for the interrupted loci. Collectively, our students mapped 95 genetic loci on chromosomes 2 and 3. In most cases, the calculated 95% confidence interval for meiotic map location overlapped with the predicted map position based on cytology. The research experience evoked positive student responses and helped students better understand the nature of scientific research for little additional cost or instructor effort.

  3. Genetic control of mammalian meiotic recombination. I. Variation in exchange frequencies among males from inbred mouse strains.

    Science.gov (United States)

    Koehler, Kara E; Cherry, Jonathan P; Lynn, Audrey; Hunt, Patricia A; Hassold, Terry J

    2002-09-01

    Genetic background effects on the frequency of meiotic recombination have long been suspected in mice but never demonstrated in a systematic manner, especially in inbred strains. We used a recently described immunostaining technique to assess meiotic exchange patterns in male mice. We found that among four different inbred strains--CAST/Ei, A/J, C57BL/6, and SPRET/Ei--the mean number of meiotic exchanges per cell and, thus, the recombination rates in these genetic backgrounds were significantly different. These frequencies ranged from a low of 21.5 exchanges in CAST/Ei to a high of 24.9 in SPRET/Ei. We also found that, as expected, these crossover events were nonrandomly distributed and displayed positive interference. However, we found no evidence for significant differences in the patterns of crossover positioning between strains with different exchange frequencies. From our observations of >10,000 autosomal synaptonemal complexes, we conclude that achiasmate bivalents arise in the male mouse at a frequency of 0.1%. Thus, special mechanisms that segregate achiasmate chromosomes are unlikely to be an important component of mammalian male meiosis.

  4. Hierarchical clustering of genetic diversity associated to different levels of mutation and recombination in Escherichia coli: a study based on Mexican isolates.

    Science.gov (United States)

    González-González, Andrea; Sánchez-Reyes, Luna L; Delgado Sapien, Gabriela; Eguiarte, Luis E; Souza, Valeria

    2013-01-01

    Escherichia coli occur as either free-living microorganisms, or within the colons of mammals and birds as pathogenic or commensal bacteria. Although the Mexican population of intestinal E. coli maintains high levels of genetic diversity, the exact mechanisms by which this occurs remain unknown. We therefore investigated the role of homologous recombination and point mutation in the genetic diversification and population structure of Mexican strains of E. coli. This was explored using a multi locus sequence typing (MLST) approach in a non-outbreak related, host-wide sample of 128 isolates. Overall, genetic diversification in this sample appears to be driven primarily by homologous recombination, and to a lesser extent, by point mutation. Since genetic diversity is hierarchically organized according to the MLST genealogy, we observed that there is not a homogeneous recombination rate, but that different rates emerge at different clustering levels such as phylogenetic group, lineage and clonal complex (CC). Moreover, we detected clear signature of substructure among the A+B1 phylogenetic group, where the majority of isolates were differentiated into four discrete lineages. Substructure pattern is revealed by the presence of several CCs associated to a particular life style and host as well as to different genetic diversification mechanisms. We propose these findings as an alternative explanation for the maintenance of the clear phylogenetic signal of this species despite the prevalence of homologous recombination. Finally, we corroborate using both phylogenetic and genetic population approaches as an effective mean to establish epidemiological surveillance tailored to the ecological specificities of each geographic region.

  5. Genetic recombination within the human T-cell receptor. cap alpha. -chain gene complex

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, M.A.; Kindt, T.J.

    1987-12-01

    Genetic analyses of the human T-cell receptor (TCR) ..cap alpha..-chain genes indicate that recombination events may occur frequently within this gene complex. Examination of the inheritance of restriction fragment length polymorphisms (RFLP) detected by using probes for constant or variable region gene segments made it possible to assign TCR..cap alpha.. haplotypes to the 16 parents and 43 offspring of eight families studied. A total of six RFLP, three for the constant region and three for variable region segments, were examined in the present studies. Most enzyme and probe combinations tested revealed no polymorphism and those finally selected for the study showed limited polymorphism in that only two or, in one case, three allelic forms of the gene were seen. In spite of limited variability at this level, extensive heterogeneity was observed for the combinations of markers present in haplotypes, suggesting that frequent recombination events have occurred. Most strikingly, multiple combinations of RFLP occurring in close proximity of the TCR..cap alpha.. constant region gene were observed in this study. A high recombination frequency for the TCR..cap alpha.. gene complex is further supported by the observation that two children, one in each of two families, inherited recombinant TCR..cap alpha.. haplotypes.

  6. Molecular mechanism of recombinant liver fatty acid binding protein's antioxidant activity

    OpenAIRE

    YAN, JING; Gong, Yuewen; She, Yi-Min; Wang, Guqi; Roberts, Michael S; Burczynski, Frank J.

    2009-01-01

    Hepatocytes expressing liver fatty acid binding protein (L-FABP) are known to be more resistant to oxidative stress than those devoid of this protein. The mechanism for the observed antioxidant activity is not known. We examined the antioxidant mechanism of a recombinant rat L-FABP in the presence of a hydrophilic (AAPH) or lipophilic (AMVN) free radical generator. Recombinant L-FABP amino acid sequence and its amino acid oxidative products following oxidation were identified by MALDI quadrup...

  7. Recombination networks as genetic markers in a human variation study of the Old World.

    Science.gov (United States)

    Javed, Asif; Melé, Marta; Pybus, Marc; Zalloua, Pierre; Haber, Marc; Comas, David; Netea, Mihai G; Balanovsky, Oleg; Balanovska, Elena; Jin, Li; Yang, Yajun; Arunkumar, Ganeshprasad; Pitchappan, Ramasamy; Bertranpetit, Jaume; Calafell, Francesc; Parida, Laxmi

    2012-04-01

    We have analyzed human genetic diversity in 33 Old World populations including 23 populations obtained through Genographic Project studies. A set of 1,536 SNPs in five X chromosome regions were genotyped in 1,288 individuals (mostly males). We use a novel analysis employing subARG network construction with recombining chromosomal segments. Here, a subARG is constructed independently for each of five gene-free regions across the X chromosome, and the results are aggregated across them. For PCA, MDS and ancestry inference with STRUCTURE, the subARG is processed to obtain feature vectors of samples and pairwise distances between samples. The observed population structure, estimated from the five short X chromosomal segments, supports genome-wide frequency-based analyses: African populations show higher genetic diversity, and the general trend of shared variation is seen across the globe from Africa through Middle East, Europe, Central Asia, Southeast Asia, and East Asia in broad patterns. The recombinational analysis was also compared with established methods based on SNPs and haplotypes. For haplotypes, we also employed a fixed-length approach based on information-content optimization. Our recombinational analysis suggested a southern migration route out of Africa, and it also supports a single, rapid human expansion from Africa to East Asia through South Asia.

  8. Development of a reverse genetics system to generate recombinant Marburg virus derived from a bat isolate.

    Science.gov (United States)

    Albariño, César G; Uebelhoer, Luke S; Vincent, Joel P; Khristova, Marina L; Chakrabarti, Ayan K; McElroy, Anita; Nichol, Stuart T; Towner, Jonathan S

    2013-11-01

    Recent investigations have shown the Egyptian fruit bat (Rousettus aegyptiacus) to be a natural reservoir for marburgviruses. To better understand the life cycle of these viruses in the natural host, a new reverse genetics system was developed for the reliable rescue of a Marburg virus (MARV) originally isolated directly from a R. aegyptiacus bat (371Bat). To develop this system, the exact terminal sequences were first determined by 5' and 3' RACE, followed by the cloning of viral proteins NP, VP35, VP30 and L into expression plasmids. Novel conditions were then developed to efficiently replicate virus mini-genomes followed by the construction of full-length genomic clones from which recombinant wild type and GFP-containing MARVs were rescued. Surprisingly, when these recombinant MARVs were propagated in primary human macrophages, a dramatic difference was found in their ability to grow and to elicit anti-viral cytokine responses.

  9. Mechanism of Homologous Recombination and Implications for Aging-Related Deletions in Mitochondrial DNA

    Science.gov (United States)

    2013-01-01

    SUMMARY Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells. PMID:24006472

  10. Mechanism of charge recombination in organic-inorganic hybrid perovskite solar cells

    Science.gov (United States)

    Yang, Wenchao; Yao, Yao; Wu, Chang-Qin; organic Group Team

    2015-03-01

    In the recent popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and open circuit voltages, but the underlying mechanism remains unclear. In this work we study the recombination mechanism in perovskite solar cells and its roles on determining the device performance. Based on macroscopic device model simulations, the recombination resistances (Rrec) under different applied voltages are calculated to characterize the recombination mechanism, and the current density-voltage (J - V) curves are simulated to describe the device performance under at the same time. Through comparison with the impedance spectroscopy (IS) extracted Rrec data, it is found that bimolecular recombination (BR) is the dominant recombination process in the whole applied voltage regime and can determine the open circuit voltage, while the trap-assisted SRH monomolecular recombination (MR) is only important if the trap density is high or the BR rate is significantly reduced. The different electron injection barriers at the contact can induce different patterns for the Rrec- V characteristics. Under the cases of increased band gap or decreased BR rate, the Rrec's are enhanced which leads to high open circuit voltages. We are grateful to the support from the state key laboratory of surface physics, Fudan University.

  11. Genetic linkage map of a wild genome: genomic structure, recombination and sexual dimorphism in bighorn sheep

    Directory of Open Access Journals (Sweden)

    Miller Joshua M

    2010-09-01

    Full Text Available Abstract Background The construction of genetic linkage maps in free-living populations is a promising tool for the study of evolution. However, such maps are rare because it is difficult to develop both wild pedigrees and corresponding sets of molecular markers that are sufficiently large. We took advantage of two long-term field studies of pedigreed individuals and genomic resources originally developed for domestic sheep (Ovis aries to construct a linkage map for bighorn sheep, Ovis canadensis. We then assessed variability in genomic structure and recombination rates between bighorn sheep populations and sheep species. Results Bighorn sheep population-specific maps differed slightly in contiguity but were otherwise very similar in terms of genomic structure and recombination rates. The joint analysis of the two pedigrees resulted in a highly contiguous map composed of 247 microsatellite markers distributed along all 26 autosomes and the X chromosome. The map is estimated to cover about 84% of the bighorn sheep genome and contains 240 unique positions spanning a sex-averaged distance of 3051 cM with an average inter-marker distance of 14.3 cM. Marker synteny, order, sex-averaged interval lengths and sex-averaged total map lengths were all very similar between sheep species. However, in contrast to domestic sheep, but consistent with the usual pattern for a placental mammal, recombination rates in bighorn sheep were significantly greater in females than in males (~12% difference, resulting in an autosomal female map of 3166 cM and an autosomal male map of 2831 cM. Despite differing genome-wide patterns of heterochiasmy between the sheep species, sexual dimorphism in recombination rates was correlated between orthologous intervals. Conclusions We have developed a first-generation bighorn sheep linkage map that will facilitate future studies of the genetic architecture of trait variation in this species. While domestication has been hypothesized

  12. Cardiac channelopathies: genetic and molecular mechanisms.

    Science.gov (United States)

    Abriel, Hugues; Zaklyazminskaya, Elena V

    2013-03-15

    Channelopathies are diseases caused by dysfunctional ion channels, due to either genetic or acquired pathological factors. Inherited cardiac arrhythmic syndromes are among the most studied human disorders involving ion channels. Since seminal observations made in 1995, thousands of mutations have been found in many of the different genes that code for cardiac ion channel subunits and proteins that regulate the cardiac ion channels. The main phenotypes observed in patients carrying these mutations are congenital long QT syndrome (LQTS), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), short QT syndrome (SQTS) and variable types of conduction defects (CD). The goal of this review is to present an update of the main genetic and molecular mechanisms, as well as the associated phenotypes of cardiac channelopathies as of 2012. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Gated rotation mechanism of site-specific recombination by ϕC31 integrase.

    Science.gov (United States)

    Olorunniji, Femi J; Buck, Dorothy E; Colloms, Sean D; McEwan, Andrew R; Smith, Margaret C M; Stark, W Marshall; Rosser, Susan J

    2012-11-27

    Integrases, such as that of the Streptomyces temperate bacteriophage ϕC31, promote site-specific recombination between DNA sequences in the bacteriophage and bacterial genomes to integrate or excise the phage DNA. ϕC31 integrase belongs to the serine recombinase family, a large group of structurally related enzymes with diverse biological functions. It has been proposed that serine integrases use a "subunit rotation" mechanism to exchange DNA strands after double-strand DNA cleavage at the two recombining att sites, and that many rounds of subunit rotation can occur before the strands are religated. We have analyzed the mechanism of ϕC31 integrase-mediated recombination in a topologically constrained experimental system using hybrid "phes" recombination sites, each of which comprises a ϕC31 att site positioned adjacent to a regulatory sequence recognized by Tn3 resolvase. The topologies of reaction products from circular substrates containing two phes sites support a right-handed subunit rotation mechanism for catalysis of both integrative and excisive recombination. Strand exchange usually terminates after a single round of 180° rotation. However, multiple processive "360° rotation" rounds of strand exchange can be observed, if the recombining sites have nonidentical base pairs at their centers. We propose that a regulatory "gating" mechanism normally blocks multiple rounds of strand exchange and triggers product release after a single round.

  14. A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125

    Directory of Open Access Journals (Sweden)

    Marino Gennaro

    2006-12-01

    Full Text Available Abstract Background The final aim of recombinant protein production is both to have a high specific production rate and a high product quality. It was already shown that using cold-adapted bacteria as host vectors, some "intractable" proteins can be efficiently produced at temperature as low as 4°C. Results A novel genetic system for the production and secretion of recombinant proteins in the Antarctic Gram-negative bacterium Pseudoalteromonas haloplanktis TAC125 was set up. This system aims at combining the low temperature recombinant product production with the advantages of extra-cellular protein targeting. The psychrophilic α-amylase from Pseudoalteromonas haloplanktis TAB23 was used as secretion carrier. Three chimerical proteins were produced by fusing intra-cellular proteins to C-terminus of the psychrophilic α-amylase and their secretion was analysed. Data reported in this paper demonstrate that all tested chimeras were translocated with a secretion yield always higher than 80%. Conclusion Data presented here demonstrate that the "cold" gene-expression system is efficient since the secretion yield of tested chimeras is always above 80%. These secretion performances place the α-amylase derived secretion system amongst the best heterologous secretion systems in Gram-negative bacteria reported so far. As for the quality of the secreted passenger proteins, data presented suggest that the system also allows the correct disulphide bond formation of chimera components, secreting a fully active passenger.

  15. Heteroduplex formation, mismatch resolution, and genetic sectoring during homologous recombination in the hyperthermophilic archaeon sulfolobus acidocaldarius.

    Science.gov (United States)

    Mao, Dominic; Grogan, Dennis W

    2012-01-01

    Hyperthermophilic archaea exhibit certain molecular-genetic features not seen in bacteria or eukaryotes, and their systems of homologous recombination (HR) remain largely unexplored in vivo. We transformed a Sulfolobus acidocaldariuspyrE mutant with short DNAs that contained multiple non-selected genetic markers within the pyrE gene. From 20 to 40% of the resulting colonies were found to contain two Pyr(+) clones with distinct sets of the non-selected markers. The dual-genotype colonies could not be attributed to multiple DNAs entering the cells, or to conjugation between transformed and non-transformed cells. These colonies thus appear to represent genetic sectoring in which regions of heteroduplex DNA formed and then segregated after partial resolution of inter-strand differences. Surprisingly, sectoring was also frequent in cells transformed with single-stranded DNAs. Oligonucleotides produced more sectored transformants when electroporated as single strands than as a duplex, although all forms of donor DNA (positive-strand, negative-strand, and duplex) produced a diversity of genotypes, despite the limited number of markers. The marker patterns in the recombinants indicate that S. acidocaldarius resolves individual mismatches through un-coordinated short-patch excision followed by re-filling of the resulting gap. The conversion events that occur during transformation by single-stranded DNA do not show the strand bias necessary for a system that corrects replication errors effectively; similar events also occur in pre-formed heteroduplex electroporated into the cells. Although numerous mechanistic details remain obscure, the results demonstrate that the HR system of S. acidocaldarius can generate remarkable genetic diversity from short intervals of moderately diverged DNAs.

  16. Overexpressed of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Schild, David; Wiese, Claudia

    2009-10-15

    RAD51, a key protein in the homologous recombinational DNA repair (HRR) pathway, is the major strand-transferase required for mitotic recombination. An important early step in HRR is the formation of single-stranded DNA (ss-DNA) coated by RPA (a ss-DNA binding protein). Displacement of RPA by RAD51 is highly regulated and facilitated by a number of different proteins known as the 'recombination mediators'. To assist these recombination mediators, a second group of proteins also is required and we are defining these proteins here as 'recombination co-mediators'. Defects in either recombination mediators or comediators, including BRCA1 and BRCA2, lead to impaired HRR that can genetically be complemented for (i.e. suppressed) by overexpression of RAD51. Defects in HRR have long been known to contribute to genomic instability leading to tumor development. Since genomic instability also slows cell growth, precancerous cells presumably require genomic restabilization to gain a growth advantage. RAD51 is overexpressed in many tumors, and therefore, we hypothesize that the complementing ability of elevated levels of RAD51 in tumors with initial HRR defects limits genomic instability during carcinogenic progression. Of particular interest, this model may also help explain the high frequency of TP53 mutations in human cancers, since wild-type p53 represses RAD51.

  17. Polymorphism, genetic exchange and intragenic recombination of the aureolysin gene among Staphylococcus aureus strains

    Directory of Open Access Journals (Sweden)

    Kowal Julia

    2008-07-01

    Full Text Available Abstract Background Staphylococcus aureus expresses several proteases, which are thought to contribute to the virulence of this bacterium. Here we focus on aureolysin, the major thermolysin-like metalloprotease. Despite the importance of aureolysin in the physiology and pathogenesis of S. aureus, relatively little information was so far available concerning the aur gene diversity and mobility within and between the major subdivisions of the S. aureus population. Therefore, an epidemiologically and genetically diverse collection of S. aureus strains was used to determine the range of aureolysin (aur gene polymorphism. Results Sequence analyses support the conclusion that the aur gene occurs in two distinct types of related sequences. The aur gene was much more polymorphic but, at the same time, showed higher purifying selection than genes utilized for multilocus sequence typing (MLST. Gene trees constructed from aur and concatenated MLST genes revealed several putative assortative recombination events (i.e. entire aur gene exchanges between divergent lineages of S. aureus. Evidence for intragenic recombination events (i.e. exchanges of internal aur segments across aur genes was also found. The biochemical properties and substrate specificity of the two types of aureolysin purified to homogeneity were studied, revealing minor differences in their affinity to low molecular weight synthetic substrates. Conclusion Although numerous nucleotide differences were identified between the aur alleles studied, our findings showed that a strong purifying selection is acting on the aur gene. Moreover, our study distinguishes between homologous exchanges of the entire aur gene (assortative recombination between divergent S. aureus lineages and recombination events within aur genes.

  18. Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus

    OpenAIRE

    2014-01-01

    The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for unders...

  19. Use of Recombination-Mediated Genetic Engineering for Construction of Rescue Human Cytomegalovirus Bacterial Artificial Chromosome Clones

    Directory of Open Access Journals (Sweden)

    Kalpana Dulal

    2012-01-01

    Full Text Available Bacterial artificial chromosome (BAC technology has contributed immensely to manipulation of larger genomes in many organisms including large DNA viruses like human cytomegalovirus (HCMV. The HCMV BAC clone propagated and maintained inside E. coli allows for accurate recombinant virus generation. Using this system, we have generated a panel of HCMV deletion mutants and their rescue clones. In this paper, we describe the construction of HCMV BAC mutants using a homologous recombination system. A gene capture method, or gap repair cloning, to seize large fragments of DNA from the virus BAC in order to generate rescue viruses, is described in detail. Construction of rescue clones using gap repair cloning is highly efficient and provides a novel use of the homologous recombination-based method in E. coli for molecular cloning, known colloquially as recombineering, when rescuing large BAC deletions. This method of excising large fragments of DNA provides important prospects for in vitro homologous recombination for genetic cloning.

  20. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhucheng; Yang, Haijuan; Pavletich, Nikola P [HHMI

    2008-07-08

    The RecA family of ATPases mediates homologous recombination, a reaction essential for maintaining genomic integrity and for generating genetic diversity. RecA, ATP and single-stranded DNA (ssDNA) form a helical filament that binds to double-stranded DNA (dsDNA), searches for homology, and then catalyses the exchange of the complementary strand, producing a new heteroduplex. Here we have solved the crystal structures of the Escherichia coli RecA-ssDNA and RecA-heteroduplex filaments. They show that ssDNA and ATP bind to RecA-RecA interfaces cooperatively, explaining the ATP dependency of DNA binding. The ATP {gamma}-phosphate is sensed across the RecA-RecA interface by two lysine residues that also stimulate ATP hydrolysis, providing a mechanism for DNA release. The DNA is underwound and stretched globally, but locally it adopts a B-DNA-like conformation that restricts the homology search to Watson-Crick-type base pairing. The complementary strand interacts primarily through base pairing, making heteroduplex formation strictly dependent on complementarity. The underwound, stretched filament conformation probably evolved to destabilize the donor duplex, freeing the complementary strand for homology sampling.

  1. Conjugational genetic exchange in the hyperthermophilic archaeon Sulfolobus acidocaldarius: intragenic recombination with minimal dependence on marker separation.

    Science.gov (United States)

    Hansen, Josh E; Dill, Amy C; Grogan, Dennis W

    2005-01-01

    In Sulfolobus acidocaldarius conjugation assays, recombinant frequency was relatively constant for marker separations from 1,154 bp down to about 50 bp and readily detectable at 10 bp. Three-factor crosses revealed little, if any, genetic linkage over distances of 500 to 600 bp, and large deletion mutants were good donors but poor recipients in matings. The results indicate that most intragenic recombination events occur at one of the mutations, not in the interval between them.

  2. Evaluation of terrestrial microcosms for detection, fate, and survival analysis of genetically engineered microorganisms and their recombinant genetic material

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, J.K.; Seidler, R.J.

    1989-02-01

    The research included in this document represents the current scientific information available regarding the applicability of terrestrial microcosms and related methodologies for evaluating detection methods and the fate and survival of microorganisms in the environment. The three terrestrial microcosms described in this document were used to evaluate the survival and fate of recombinant bacteria in soils and in association with plant surfaces and insects and their transport through soil with percolating water and root systems, and to test new methods and procedures to improve detection and enumeration of bacteria in soil. Simple (potting soil composed of peat mix and perlite, lacking environmental control and monitoring) and complex microcosms (agricultural soil with partial control and monitoring of environmental conditions) were demonstrated to be useful tools for preliminary assessments of microbial viability in terrestrial ecosystems. These studies evaluated the survival patterns of Enterobacter cloacae (pBR322) in soil and on plant surfaces and the ingestion of this same microorganism by cutworms and survival in the foregut and frass. The Versacore microcosm design was used to monitor the fate and competitiveness of genetically engineered bacteria in soil. Both selective media and gene probes were used successfully to follow the fate of two recombinant Pseudomonas sp. introduced into Versacore microcosms. Intact soil-core microcosms were employed to evaluate the fate and transport of genetically altered Azospirillum sp. and Pseudomonas sp. in soil and the plant rhizosphere. The usefulness of these various microcosms as a tool for risk assessment is underscored by the ease in obtaining soil from a proposed field release site to evaluate subsequent GEM fate and survival.

  3. Kinetic mechanism of streptomycin adenylyltransferase from a recombinant Escherichia coli.

    Science.gov (United States)

    Jana, Snehasis; Deb, J K

    2005-04-01

    Bacterial resistance to the aminoglycoside antibiotics is manifested primarily by enzymic modification of these drugs. One important mechanism of streptomycin modification is through ATP-dependent O-adenylation, catalyzed by streptomycin adenylyltransferase. Initial velocity patterns deduced from steady state kinetics indicate a sequential mechanism. Dead-end inhibition by tobramycin and neomycin is non-competitive versus streptomycin and uncompetitive versus ATP, indicative of ordered substrate binding where ATP binds first and then streptomycin. These results surmise that streptomycin adenylyltransferase follows an ordered, sequential kinetic mechanism in which one substrate (ATP) binds prior to the antibiotic and pyrophosphate is released prior to formation of AMP-streptomycin.

  4. DNA同源重组机制的确立%The establishment of homologous recombination mechanisms

    Institute of Scientific and Technical Information of China (English)

    向义和

    2015-01-01

    The establishment of homologous recombination mechanisms is introduced. The key events include the discover of gene linkage and recombination phenomena, the proposition of chiasmatype hypothesis, the appear of breakage, reunion and copy choice hypothesis, the establishment of three models of homologous recombination: Holliday model, single-strand-break and double-strand-break repair model for recombination.%介绍了DNA同源重组机制确立的过程.其主要内容包括基因连锁和重组现象的发现,交叉假设的提出,断裂重接假设和复制选择假设的出现,同源重组的三个模型(Holliday模型、单链断裂模型和双链断裂模型)的确立.

  5. Genetic mapping on chromosome 20 near the MODY gene: Is there suppression of recombination?

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T.D.; Rothschild, C.B.; Bowden, D.W. [Wake Forest Univ., Winston-Salem, NC (United States)] [and others

    1994-09-01

    Maturity onset diabetes of the young (MODY) is a rare, autosomal dominant form of non-insulin-dependent diabetes mellitus. We are evaluating a chromosome 20-linked form of MODY in a large, well-characterized pedigree known as the R-W family. DNA from 97 family members, including spouses, have been genotyped with nine microsatellite markers and four RFLPs from 20q12-13.1. The highest likelihood order of loci in this 9.8 cM (sex-average) interval is: cen-ADA-D20S119-D20S17-PPGB-D20S178-D20S197-D20S213-D20S16A-D20S22-D20S16B-qter. Two polymorphic loci separable by recombination comprise D20S16 (called A and B here). The highest twopoint LOD scores were observed with D20S16 (Zmax = 17.0, {theta} = 0.001) and ADA (Zmax = 16.4, {theta} = 0.001). Multipoint analysis limits MODY to a sex-average interval of approximately 10 cM (calculated from CEPH family data) defined by ADA and D20S16. The maximum multipoint LOD score observed in this region was 17.22. No recombination events have been observed within this 10 cM interval in affected individuals. The probability of this occurring by chance is P = (1-{theta}){sup n}, where n = number of meioses. With the present data there are 57 (equivalent) informative meioses, so the probability of finding no recombination within the 10 cM inteval is 0.002. In the R-W family, however, there is a 3:1 ratio of male:female meioses. When this is taken into consideration, and the sex-specific genetic distances are used (15.9 cM for female map, 6.8 cM for male map), the probability of observing no recombination in this region is still quite low: P = 0.004, suggesting the possibility that recombination is suppressed in this family.

  6. V(D)J recombination in mature B cells: a mechanism for altering antibody responses.

    Science.gov (United States)

    Papavasiliou, F; Casellas, R; Suh, H; Qin, X F; Besmer, E; Pelanda, R; Nemazee, D; Rajewsky, K; Nussenzweig, M C

    1997-10-10

    The clonal selection theory states that B lymphocytes producing high-affinity immunoglobulins are selected from a pool of cells undergoing antibody gene mutation. Somatic hypermutation is a well-documented mechanism for achieving diversification of immune responses in mature B cells. Antibody genes were also found to be modified in such cells in germinal centers by recombination of the variable (V), diversity (D), and joining (J) segments. The ability to alter immunoglobulin expression by V(D)J recombination in the selective environment of the germinal center may be an additional mechanism for inactivation or diversification of immune responses.

  7. Complex genetic mechanisms in glaucoma: An overview

    Directory of Open Access Journals (Sweden)

    Rao Kollu

    2011-12-01

    Full Text Available Glaucomas comprise a group of hereditary optic neuropathies characterized by progressive and irreversible visual field loss and damage to the optic nerve head. It is a complex disease with multiple molecular mechanisms underlying its pathogenesis. Genetic heterogeneity is the hallmark of all glaucomas and multiple chromosomal loci have been linked to the disease, but only a few genes have been characterized, viz. myocilin (MYOC, optineurin (OPTN, WDR36 and neurotrophin-4 (NTF4 in primary open angle glaucoma (POAG and CYP1B1 and LTBP2 in congenital and developmental glaucomas. Case-control-based association studies on candidate genes involved in different stages of glaucoma pathophysiology have indicated a very limited involvement. The complex mechanisms leading to glaucoma pathogenesis indicate that it could be attributed to multiple genes with varying magnitudes of effect. In this review, we provide an appraisal of the various efforts in unraveling the molecular mystery in glaucoma and also some future directions based on the available scientific knowledge and technological developments.

  8. Complex genetic mechanisms in glaucoma: an overview.

    Science.gov (United States)

    Rao, Kollu N; Nagireddy, Srujana; Chakrabarti, Subhabrata

    2011-01-01

    Glaucomas comprise a group of hereditary optic neuropathies characterized by progressive and irreversible visual field loss and damage to the optic nerve head. It is a complex disease with multiple molecular mechanisms underlying its pathogenesis. Genetic heterogeneity is the hallmark of all glaucomas and multiple chromosomal loci have been linked to the disease, but only a few genes have been characterized, viz. myocilin (MYOC), optineurin (OPTN), WDR36 and neurotrophin-4 (NTF4) in primary open angle glaucoma (POAG) and CYP1B1 and LTBP2 in congenital and developmental glaucomas. Case-control-based association studies on candidate genes involved in different stages of glaucoma pathophysiology have indicated a very limited involvement. The complex mechanisms leading to glaucoma pathogenesis indicate that it could be attributed to multiple genes with varying magnitudes of effect. In this review, we provide an appraisal of the various efforts in unraveling the molecular mystery in glaucoma and also some future directions based on the available scientific knowledge and technological developments.

  9. Gene targeting using homologous recombination in embryonic stem cells: The future for behavior genetics?

    Directory of Open Access Journals (Sweden)

    Robert eGerlai

    2016-04-01

    Full Text Available Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targeting became highly popular. However, with this popularity came the realization that like other methods, gene targeting also suffered from some technical and principal problems. For example, two decades ago, issues about compensatory changes and about genetic linkage were raised. Since then, the technology developed, and its utility has been better delineated. This review will discuss the pros and cons of the technique along with these advancements from the perspective of the neuroscientist user. It will also compare and contrast methods that may represent novel alternatives to the homologous recombination based gene targeting approach, including the TALEN and the CRISPR/Cas9 systems. The goal of the review is not to provide detailed recipes, but to attempt to present a short summary of these approaches a behavioral geneticist or neuroscientist may consider for the analysis of brain function and behavior.

  10. The joint effects of background selection and genetic recombination on local gene genealogies.

    Science.gov (United States)

    Zeng, Kai; Charlesworth, Brian

    2011-09-01

    Background selection, the effects of the continual removal of deleterious mutations by natural selection on variability at linked sites, is potentially a major determinant of DNA sequence variability. However, the joint effects of background selection and genetic recombination on the shape of the neutral gene genealogy have proved hard to study analytically. The only existing formula concerns the mean coalescent time for a pair of alleles, making it difficult to assess the importance of background selection from genome-wide data on sequence polymorphism. Here we develop a structured coalescent model of background selection with recombination and implement it in a computer program that efficiently generates neutral gene genealogies for an arbitrary sample size. We check the validity of the structured coalescent model against forward-in-time simulations and show that it accurately captures the effects of background selection. The model produces more accurate predictions of the mean coalescent time than the existing formula and supports the conclusion that the effect of background selection is greater in the interior of a deleterious region than at its boundaries. The level of linkage disequilibrium between sites is elevated by background selection, to an extent that is well summarized by a change in effective population size. The structured coalescent model is readily extendable to more realistic situations and should prove useful for analyzing genome-wide polymorphism data.

  11. Gene Targeting Using Homologous Recombination in Embryonic Stem Cells: The Future for Behavior Genetics?

    Science.gov (United States)

    Gerlai, Robert

    2016-01-01

    Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targeting became highly popular. However, with this popularity came the realization that like other methods, gene targeting also suffered from some technical and principal problems. For example, two decades ago, issues about compensatory changes and about genetic linkage were raised. Since then, the technology developed, and its utility has been better delineated. This review will discuss the pros and cons of the technique along with these advancements from the perspective of the neuroscientist user. It will also compare and contrast methods that may represent novel alternatives to the homologous recombination based gene targeting approach, including the TALEN and the CRISPR/Cas9 systems. The goal of the review is not to provide detailed recipes, but to attempt to present a short summary of these approaches a behavioral geneticist or neuroscientist may consider for the analysis of brain function and behavior.

  12. Genetics of Bone Mineralization and Morphology in Inbred Mice: Analysis of the HcB/Dem Recombinant Congenic Strains

    Science.gov (United States)

    2005-04-01

    data for parameters with skewed distil- 3- PONT BEND MODULUS butions. Results of this analysis are summarized in Table 2. Ir TT . We used these data to...the pathogenesis of osteoporosis. I Bone Miner Res 9:739- [be murine strength is achieved. 743. 1002 YERSHOV ET AL. 16. Demant P, Hart AA 1986...Recombinant congenic strains--a 37. Linder E, Schork N 1994 Genetic dissection of complex traits. new tool for analyzing genetic traits determined by more than

  13. Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination.

    Science.gov (United States)

    Pines, Gur; Freed, Emily F; Winkler, James D; Gill, Ryan T

    2015-11-20

    The ability to specifically modify bacterial genomes in a precise and efficient manner is highly desired in various fields, ranging from molecular genetics to metabolic engineering and synthetic biology. Much has changed from the initial realization that phage-derived genes may be employed for such tasks to today, where recombineering enables complex genetic edits within a genome or a population. Here, we review the major developments leading to recombineering becoming the method of choice for in situ bacterial genome editing while highlighting the various applications of recombineering in pushing the boundaries of synthetic biology. We also present the current understanding of the mechanism of recombineering. Finally, we discuss in detail issues surrounding recombineering efficiency and future directions for recombineering-based genome editing.

  14. On the intrinsic charm and the recombination mechanisms in charm hadron production

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, J.C.; Magnin, J. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: janjos@cbpf.br; jmagnin@cbpf.br; Herrera, G. [Centro de Investigacion y de Estudios Avanzados, Mexico, DF (Mexico)]. E-mail: gherrera@fis.cinvestav.mx

    2001-09-01

    We study {lambda}{sub c}{sup {+-}} production in pN and {pi}{sup -} N interactions. Recent experimental data from the SELEX and E791 Collaborations at FNAL provide important information on the production mechanism of charm hadrons. In particular, the production of the {lambda}{sub c} baryon provides a good test of the intrinsic charm and the recombination mechanisms, which have been proposed to explain the so called leading particle effects. (author)

  15. Mechanism of HIV-1 recombination%HIV-1重组机制

    Institute of Scientific and Technical Information of China (English)

    姚瑾; 李佩璐; 张驰宇

    2013-01-01

    HIV is a retrovirus, which contains two copies of plus-strand RNA genome. During synthesis of provirus DNA, the reverse transcriptase template switching that causes HIV genetic recombination occurs between two genomic RNAs. This genetic recombination plays a central role in shaping HIV diversity, and brings great challenges in HIV diagnosis, therapy and vaccine development. Here, we review the recent advances on HIV-1 recombination and discuss the effects on HIV-1 prevention and control.%人类免疫缺陷病毒(HIV)属于逆转录病毒,包含2个正链的RNA基因组.其复制过程需要逆转录酶发生模板转换,这样极容易导致重组.重组是导致HIV多样性的重要原因,给病毒的诊断、治疗以及疫苗研发带来巨大困难.本文综述了HIV-1重组的条件、机制、特性以及重组对于HIV-1防控和疫苗研究的影响.

  16. Nasal bone shape is under complex epistatic genetic control in mouse interspecific recombinant congenic strains.

    Directory of Open Access Journals (Sweden)

    Gaétan Burgio

    Full Text Available BACKGROUND: Genetic determinism of cranial morphology in the mouse is still largely unknown, despite the localization of putative QTLs and the identification of genes associated with Mendelian skull malformations. To approach the dissection of this multigenic control, we have used a set of interspecific recombinant congenic strains (IRCS produced between C57BL/6 and mice of the distant species Mus spretus (SEG/Pas. Each strain has inherited 1.3% of its genome from SEG/Pas under the form of few, small-sized, chromosomal segments. RESULTS: The shape of the nasal bone was studied using outline analysis combined with Fourier descriptors, and differential features were identified between IRCS BcG-66H and C57BL/6. An F2 cross between BcG-66H and C57BL/6 revealed that, out of the three SEG/Pas-derived chromosomal regions present in BcG-66H, two were involved. Segments on chromosomes 1 (∼32 Mb and 18 (∼13 Mb showed additive effect on nasal bone shape. The three chromosomal regions present in BcG-66H were isolated in congenic strains to study their individual effect. Epistatic interactions were assessed in bicongenic strains. CONCLUSIONS: Our results show that, besides a strong individual effect, the QTL on chromosome 1 interacts with genes on chromosomes 13 and 18. This study demonstrates that nasal bone shape is under complex genetic control but can be efficiently dissected in the mouse using appropriate genetic tools and shape descriptors.

  17. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Arnaud De Muyt

    2009-09-01

    Full Text Available Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes.

  18. Space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b and screening of higher yielding strains.

    Science.gov (United States)

    Wang, Junfeng; Liu, Changting; Liu, Jinyi; Fang, Xiangqun; Xu, Chen; Guo, Yinghua; Chang, De; Su, Longxiang

    2014-03-01

    The aim of this study was to investigate the space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b. The genetically engineered bacteria expressing the recombinant interferon α1b were sent into outer space on the Chinese Shenzhou VIII spacecraft. After the 17 day space flight, mutant strains that highly expressed the target gene were identified. After a series of screening of spaceflight-treated bacteria and the quantitative comparison of the mutant strains and original strain, we found five strains that showed a significantly higher production of target proteins, compared with the original strain. Our results support the notion that the outer space environment has unique effects on the mutation breeding of microorganisms, including genetically engineered strains. Mutant strains that highly express the target protein could be obtained through spaceflight-induced mutagenesis.

  19. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2012-08-01

    Full Text Available Abstract Background A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. Results Of the 606 markers used to assemble the genetic map, 588 (97% were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT markers, 72 simple sequence repeat (SSR, one insertion site-based polymorphism (ISBP, and two high-molecular-weight glutenin subunit (HMW-GS markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL, including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. Conclusions A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of

  20. Cis-effects on meiotic recombination across distinct a1-sh2 intervals in a common Zea genetic background.

    Science.gov (United States)

    Yao, Hong; Schnable, Patrick S

    2005-08-01

    Genetic distances across the a1-sh2 interval varied threefold in three near-isogenic stocks that carry structurally distinct teosinte A1 Sh2 haplotypes (from Z. mays spp. mexicana Chalco, Z. mays spp. parviglumis, and Z. luxurians) and a common maize a1::rdt sh2 haplotype. In each haplotype >85% of recombination events resolved in the proximal 10% of the approximately 130-kb a1-sh2 interval. Even so, significant differences in the distributions of recombination breakpoints were observed across subintervals among haplotypes. Each of the three previously detected recombination hot spots was detected in at least one of the three teosinte haplotypes and two of these hot spots were not detected in at least one teosinte haplotype. Moreover, novel hot spots were detected in two teosinte haplotypes. Due to the near-isogenic nature of the three stocks, the observed variation in the distribution of recombination events is the consequence of cis-modifications. Although generally negatively correlated with rates of recombination per megabase, levels of sequence polymorphisms do not fully account for the nonrandom distribution of recombination breakpoints. This study also suggests that estimates of linkage disequilibrium must be interpreted with caution when considering whether a gene has been under selection.

  1. Double-strand break repair and genetic recombination in topoisomerase and primase mutants of bacteriophage T4.

    Science.gov (United States)

    Shcherbakov, Victor P; Kudryashova, Elena

    2014-09-01

    The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i×j) and three-factor (i k×j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1×i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1-i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1×i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1×i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII(+) recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss

  2. [Genetic and epigenetic mechanisms in obesity].

    Science.gov (United States)

    Hinney, A; Herrfurth, N; Schonnop, L; Volckmar, A-L

    2015-02-01

    Obesity is a relevant medical problem. Around 60 % of German adults are overweight, 20 % are obese. The hereditary contribution to the variance of body weight is high. Nevertheless, molecular genetic studies have as yet explained only a small part of the inter-individual variability in the body mass index (BMI). Monogenic forms of obesity, in which loss of a single gene product leads to extreme obesity, are very infrequent. Variance of body weight is commonly explained by a complex interplay of many genetic variants (polygenic obesity). Each variant contributes only a small amount to the body weight. Currently, the largest published analysis of individuals of European origin identified 32 genetic variations (single nucleotide polymorphisms, SNPs) associated with BMI (obesity). Overall, these polygenic obesity variants only explain about 5 % of the variance of the BMI. In addition to the DNA variants epigenetic factors seem to also play a role in body weight regulation. These epigenetic marks can change in the course of life. They might provide an interface between genetic and environmental influences. It is conceivable that in future it will be possible to use epigenetic and genetic markers to detect a predisposition for obesity and to improve prevention and therapy.

  3. Multilocus sequence analysis of nectar pseudomonads reveals high genetic diversity and contrasting recombination patterns.

    Directory of Open Access Journals (Sweden)

    Sergio Alvarez-Pérez

    Full Text Available The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas 'sensu stricto' isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA of four core housekeeping genes (rrs, gyrB, rpoB and rpoD. A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1; P. fluorescens, P. lutea and P. syringae (NG 2; and P. rhizosphaerae (NG 3. Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria.

  4. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages

    KAUST Repository

    Phelan, Jody E.

    2016-02-29

    Background Approximately 10 % of the Mycobacterium tuberculosis genome is made up of two families of genes that are poorly characterized due to their high GC content and highly repetitive nature. The PE and PPE families are typified by their highly conserved N-terminal domains that incorporate proline-glutamate (PE) and proline-proline-glutamate (PPE) signature motifs. They are hypothesised to be important virulence factors involved with host-pathogen interactions, but their high genetic variability and complexity of analysis means they are typically disregarded in genome studies. Results To elucidate the structure of these genes, 518 genomes from a diverse international collection of clinical isolates were de novo assembled. A further 21 reference M. tuberculosis complex genomes and long read sequence data were used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was consistent with lineage. Several recombination hotspots were identified, notably pe_pgrs3 and pe_pgrs17. Evidence of positive selection was revealed in 65 pe/ppe genes, including epitopes potentially binding to major histocompatibility complex molecules. Conclusions This, the first comprehensive study of the pe and ppe genes, provides important insight into M. tuberculosis diversity and has significant implications for vaccine development.

  5. Genetic Analysis of Health-Related Secondary Metabolites in a Brassica rapa Recombinant Inbred Line Population

    Directory of Open Access Journals (Sweden)

    Mark G. M. Aarts

    2013-07-01

    Full Text Available The genetic basis of the wide variation for nutritional traits in Brassica rapa is largely unknown. A new Recombinant Inbred Line (RIL population was profiled using High Performance Liquid Chromatography (HPLC and Nuclear Magnetic Resonance (NMR analysis to detect quantitative trait loci (QTLs controlling seed tocopherol and seedling metabolite concentrations. RIL population parent L58 had a higher level of glucosinolates and phenylpropanoids, whereas levels of sucrose, glucose and glutamate were higher in the other RIL population parent, R-o-18. QTL related to seed tocopherol (α-, β-, γ-, δ-, α-⁄γ- and total tocopherol concentrations were detected on chromosomes A3, A6, A9 and A10, explaining 11%–35% of the respective variation. The locus on A3 co-locates with the BrVTE1gene, encoding tocopherol cyclase. NMR spectroscopy identified the presence of organic/amino acid, sugar/glucosinolate and aromatic compounds in seedlings. QTL positions were obtained for most of the identified compounds. Compared to previous studies, novel loci were found for glucosinolate concentrations. This work can be used to design markers for marker-assisted selection of nutritional compounds in B. rapa.

  6. Perturbing A-to-I RNA editing using genetics and homologous recombination.

    Science.gov (United States)

    Staber, Cynthia J; Gell, Selena; Jepson, James E C; Reenan, Robert A

    2011-01-01

    Evidence for the chemical conversion of adenosine-to-inosine (A-to-I) in messenger RNA (mRNA) has been detected in numerous metazoans, especially those "most successful" phyla: Arthropoda, Mollusca, and Chordata. The requisite enzymes for A-to-I editing, ADARs (adenosine deaminases acting on RNA) are highly conserved and are present in every higher metazoan genome sequenced to date. The fruit fly, Drosophila melanogaster, represents an ideal model organism for studying A-to-I editing, both in terms of fundamental biochemistry and in relation to determining adaptive downstream effects on physiology and behavior. The Drosophila genome contains a single structural gene for ADAR (dAdar), yet the fruit fly transcriptome has the widest range of conserved and validated ADAR targets in coding mRNAs of any known organism. In addition, many of the genes targeted by dADAR have been genetically identified as playing a role in nervous system function, providing a rich source of material to investigate the biological relevance of this intriguing process. Here, we discuss how recent advances in the use of ends-out homologous recombination (HR) in Drosophila make possible both the precise control of the editing status for defined adenosine residues and the engineering of flies with globally altered RNA editing of the fly transcriptome. These new approaches promise to significantly improve our understanding of how mRNA modification contributes to insect physiology and ethology.

  7. Biotechnology and genetic engineering in the new drug development. Part I. DNA technology and recombinant proteins.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Pharmaceutical biotechnology has a long tradition and is rooted in the last century, first exemplified by penicillin and streptomycin as low molecular weight biosynthetic compounds. Today, pharmaceutical biotechnology still has its fundamentals in fermentation and bioprocessing, but the paradigmatic change affected by biotechnology and pharmaceutical sciences has led to an updated definition. The biotechnology revolution redrew the research, development, production and even marketing processes of drugs. Powerful new instruments and biotechnology related scientific disciplines (genomics, proteomics) make it possible to examine and exploit the behavior of proteins and molecules. Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. This technology, now approximately 25 years old, is becoming one of the most important technologies developed in the 20(th) century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances regarding rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we describe these processes.

  8. Analysis of recombination mechanisms in heterojunction silicon solar cells with rapid thermally annealed thin film emitters

    Science.gov (United States)

    Baldus-Jeursen, C.; Tarighat, R. S.; Sivoththaman, S.

    2017-05-01

    A new family of silicon (Si) wafer heterojunction solar cells fabricated by solid phase crystallization of PECVD amorphous silicon emitters by rapid thermal annealing (RTA) has been analyzed in order to understand the dominant recombination mechanisms. Solar cells fabricated with a broad RTA temperature range of 600-1000 °C were characterized through quantum efficiency, illuminated I-V, and capacitance-voltage measurements. Using the experimental data and theoretical considerations, the influence of carrier recombination in the quasi-neutral and space charge zones as well as at the heterojunction interface were studied. It is established that the carrier recombination in the quasi-neutral base region in the p-type Si substrate predominantly limits the device open circuit voltage. The analysis also showed that the interface recombination velocities at the heterojunction were less than 100 cm s-1. It is also qualitatively established that a post-fabrication forming gas anneal reduces the defect density at the hetero-interface.

  9. Development of a Recombination System for the Generation of Occlusion Positive Genetically Modified Anticarsia Gemmatalis Multiple Nucleopolyhedrovirus

    Directory of Open Access Journals (Sweden)

    Santiago Haase

    2015-03-01

    Full Text Available Anticarsia gemmatalis is an important pest in legume crops in South America and it has been successfully controlled using Anticarsia gemmatalis Multiple Nucleopolyhedrovirus (AgMNPV in subtropical climate zones. Nevertheless, in temperate climates its speed of kill is too slow. Taking this into account, genetic modification of AgMNPV could lead to improvements of its biopesticidal properties. Here we report the generation of a two-component system that allows the production of recombinant AgMNPV. This system is based on a parental AgMNPV in which the polyhedrin gene (polh was replaced by a bacterial β-galactosidase (lacZ gene flanked by two target sites for the homing endonuclease I-PpoI. Co-transfection of insect cells with linearized (I-PpoI-digested parental genome and a transfer vector allowed the restitution of polh and the expression of a heterologous gene upon homologous recombination, with a low background of non-recombinant AgMNPV. The system was validated by constructing a recombinant occlusion-positive (polh+ AgMNPV expressing the green fluorescent protein gene (gfp. This recombinant virus infected larvae normally per os and led to the expression of GFP in cell culture as well as in A. gemmatalis larvae. These results demonstrate that the system is an efficient method for the generation of recombinant AgMNPV expressing heterologous genes, which can be used for manifold purposes, including biotechnological and pharmaceutical applications and the production of orally infectious recombinants with improved biopesticidal properties.

  10. The correlation between the length of repetitive domain and mechanical properties of the recombinant flagelliform spidroin

    Directory of Open Access Journals (Sweden)

    Xue Li

    2017-03-01

    Full Text Available Spider silk is an attractive biopolymer with numerous potential applications due to its remarkable characteristics. Among the six categories of spider silks, flagelliform (Flag spider silk possesses longer and more repetitive core domains than others, therefore performing the highest extensibility. To investigate the correlation between the recombinant spidroin size and the synthetic fiber properties, four recombinant proteins with different sizes [N-Scn-C (n=1-4] were constructed and expressed using IMPACT system. Subsequently, different recombinant spidroins were spun into fibers through wet-spinning via a custom-made continuous post-drawing device. Mechanical tests of the synthetic fibers with four parameters (maximum stress, maximum extension, Young's modulus and toughness demonstrated that the extensibility of the fibers showed a positive correlation with spidroin size, consequently resulting in the extensibility of N-Sc4-C fiber ranked the highest (58.76% among four fibers. Raman data revealed the relationship between secondary structure content and mechanical properties. The data here provide a deeper insight into the relationship between the function and structure of Flag silk for future design of artificial fibers.

  11. Molecular Mechanism of V(D)J Recombination from Synaptic RAG1-RAG2 Complex Structures.

    Science.gov (United States)

    Ru, Heng; Chambers, Melissa G; Fu, Tian-Min; Tong, Alexander B; Liao, Maofu; Wu, Hao

    2015-11-19

    Diverse repertoires of antigen-receptor genes that result from combinatorial splicing of coding segments by V(D)J recombination are hallmarks of vertebrate immunity. The (RAG1-RAG2)2 recombinase (RAG) recognizes recombination signal sequences (RSSs) containing a heptamer, a spacer of 12 or 23 base pairs, and a nonamer (12-RSS or 23-RSS) and introduces precise breaks at RSS-coding segment junctions. RAG forms synaptic complexes only with one 12-RSS and one 23-RSS, a dogma known as the 12/23 rule that governs the recombination fidelity. We report cryo-electron microscopy structures of synaptic RAG complexes at up to 3.4 Å resolution, which reveal a closed conformation with base flipping and base-specific recognition of RSSs. Distortion at RSS-coding segment junctions and base flipping in coding segments uncover the two-metal-ion catalytic mechanism. Induced asymmetry involving tilting of the nonamer-binding domain dimer of RAG1 upon binding of HMGB1-bent 12-RSS or 23-RSS underlies the molecular mechanism for the 12/23 rule. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Teaching Evolutionary Mechanisms: Genetic Drift and M&M's.

    Science.gov (United States)

    Staub, Nancy L.

    2002-01-01

    Describes a classroom activity that teaches the mechanism of genetic drift to undergraduates. Illustrates a number of concepts that are critical in developing evolution literacy by sampling M&M milk chocolate candies. (MM)

  13. Exploring the Mechanism Responsible for Cellulase Thermostability by Structure-Guided Recombination.

    Directory of Open Access Journals (Sweden)

    Chia-Jung Chang

    Full Text Available Cellulases from Bacillus and Geobacillus bacteria are potentially useful in the biofuel and animal feed industries. One of the unique characteristics of these enzymes is that they are usually quite thermostable. We previously identified a cellulase, GsCelA, from thermophilic Geobacillus sp. 70PC53, which is much more thermostable than its Bacillus homolog, BsCel5A. Thus, these two cellulases provide a pair of structures ideal for investigating the mechanism regarding how these cellulases can retain activity at high temperature. In the present study, we applied the SCHEMA non-contiguous recombination algorithm as a novel tool, which assigns protein sequences into blocks for domain swapping in a way that lessens structural disruption, to generate a set of chimeric proteins derived from the recombination of GsCelA and BsCel5A. Analyzing the activity and thermostability of this designed library set, which requires only a limited number of chimeras by SCHEMA calculations, revealed that one of the blocks may contribute to the higher thermostability of GsCelA. When tested against swollen Avicel, the highly thermostable chimeric cellulase C10 containing this block showed significantly higher activity (22%-43% and higher thermostability compared to the parental enzymes. With further structural determinations and mutagenesis analyses, a 310 helix was identified as being responsible for the improved thermostability of this block. Furthermore, in the presence of ionic calcium and crown ether (CR, the chimeric C10 was found to retain 40% residual activity even after heat treatment at 90°C. Combining crystal structure determinations and structure-guided SCHEMA recombination, we have determined the mechanism responsible for the high thermostability of GsCelA, and generated a novel recombinant enzyme with significantly higher activity.

  14. Genetic Characterization of a Novel HIV-1 Circulating Recombinant Form (CRF74_01B) Identified among Intravenous Drug Users in Malaysia: Recombination History and Phylogenetic Linkage with Previously Defined Recombinant Lineages.

    Science.gov (United States)

    Cheong, Hui Ting; Chow, Wei Zhen; Takebe, Yutaka; Chook, Jack Bee; Chan, Kok Gan; Al-Darraji, Haider Abdulrazzaq Abed; Koh, Clayton; Kamarulzaman, Adeeba; Tee, Kok Keng

    2015-01-01

    In many parts of Southeast Asia, the HIV-1 epidemic has been driven by the sharing of needles and equipment among intravenous drug users (IDUs). Over the last few decades, many studies have proven time and again that the diversity of HIV-1 epidemics can often be linked to the route of infection transmission. That said, the diversity and complexity of HIV-1 molecular epidemics in the region have been increasing at an alarming rate, due in part to the high tendency of the viral RNA to recombine. This scenario was exemplified by the discovery of numerous circulating recombinant forms (CRFs), especially in Thailand and Malaysia. In this study, we characterized a novel CRF designated CRF74_01B, which was identified in six epidemiologically unlinked IDUs in Kuala Lumpur, Malaysia. The near-full length genomes were composed of CRF01_AE and subtype B', with eight breakpoints dispersed in the gag-pol and nef regions. Remarkably, this CRF shared four and two recombination hotspots with the previously described CRF33_01B and the less prevalent CRF53_01B, respectively. Genealogy-based Bayesian phylogenetic analysis of CRF74_01B genomic regions showed that it is closely related to both CRF33_01B and CRF53_01B. This observation suggests that CRF74_01B was probably a direct descendent from specific lineages of CRF33_01B, CRF53_01B and subtype B' that could have emerged in the mid-1990s. Additionally, it illustrated the active recombination processes between prevalent HIV-1 subtypes and recombinants in Malaysia. In summary, we report a novel HIV-1 genotype designated CRF74_01B among IDUs in Kuala Lumpur, Malaysia. The characterization of the novel CRF74_01B is of considerable significance towards the understanding of the genetic diversity and population dynamics of HIV-1 circulating in the region.

  15. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  16. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18.

    Directory of Open Access Journals (Sweden)

    Stephen D Bentley

    2007-02-01

    Full Text Available The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an

  17. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18.

    Directory of Open Access Journals (Sweden)

    Stephen D Bentley

    2007-02-01

    Full Text Available The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an

  18. A current genetic and epigenetic view on human aging mechanisms.

    Science.gov (United States)

    Ostojić, Sala; Pereza, Nina; Kapović, Miljenko

    2009-06-01

    The process of aging is one of the most complex and intriguing biological phenomenons. Aging is a genetically regulated process in which the organism's maximum lifespan potential is pre-determined, while the rate of aging is influenced by environmental factors and lifestyle. Considering the complexity of mechanisms involved in the regulation of aging process, up to this date there isn't a major, unifying theory which could explain them. As genetic/epigenetic and environmental factors both inevitably influence the aging process, here we present a review on the genetic and epigenetic regulation of the most important molecular and cellular mechanisms involved in the process of aging. Based on the studies on oxidative stress, metabolism, genome stability, epigenetic modifications and cellular senescence in animal models and humans, we give an overview of key genetic and molecular pathways related to aging. As most of genetic manipulations which influence the aging process also affect reproduction, we discuss aging in humans as a post-reproductive genetically determined process. After the age of reproductive success, aging continously progresses which clinically coincides with the onset of most chronic diseases, cancers and dementions. As evolution shapes the genomes for reproductive success and not for post-reproductive survival, aging could be defined as a protective mechanism which ensures the preservation and progress of species through the modification, trasmission and improvement of genetic material.

  19. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.; Nichol, Stuart T.; Towner, Jonathan S.

    2015-10-15

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulness as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.

  20. [Molecular genetic mechanism of the kidney cancer].

    Science.gov (United States)

    Nakaigawa, N; Yao, M; Kishida, T; Kubota, Y

    2001-01-01

    The oncogenic mechanisms of renal cell carcinoma(RCC) are becoming elucidated with recent advances in molecular biology. von Hipple-Lindau disease(VHL) tumor suppressor gene is mutated and inactivated frequently in clear cell type RCCs. The VHL protein forms a complex which shows a ubiquitin ligase activity. The lost of the ubiquitin ligase activity of VHL protein may be a key step for clear cell tumorigenesis. Papillary renal cell carcinomas are caused by activating mutation in the tyrosine kinase domain of the MET gene. This tumorigenic pathway is regulated by c-Src. Immunogene therapies have been started for the patients with advanced RCC. The information based on microarray and Serial Analysis of Gene Expression(SAGE) will provide novel diagnosis and therapy which focus on the tumorigenic mechanism of RCC in the near future.

  1. Efficient generation of recombinant influenza A viruses employing a new approach to overcome the genetic instability of HA segments.

    Directory of Open Access Journals (Sweden)

    Ahmed Mostafa

    Full Text Available Influenza A viruses (IAVs are the most relevant and continual source of severe infectious respiratory complications in humans and different animal species, especially poultry. Therefore, an efficient vaccination that elicits protective and neutralizing antibodies against the viral hemagglutinin (HA and neuraminidase (NA is an important strategy to counter annual epidemics or occasional pandemics. With the help of plasmid-based reverse genetics technology, it is possible that IAV vaccine strains (IVVS are rapidly generated. However, the genetic instability of some cloned HA-cDNAs after transformation into competent bacteria represents a major obstacle. Herein, we report efficient cloning strategies of different genetically volatile HA segments (H5- and H9-subtypes employing either a newly constructed vector for reverse genetics (pMKPccdB or by the use of the Escherichia coli strain HB101. Both approaches represent improved and generalizable strategies to establish functional reverse genetics systems preventing genetic changes to the cloned (HA segments of IAV facilitating more efficient rescue of recombinant IAV for basic research and vaccine development.

  2. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA.

    Directory of Open Access Journals (Sweden)

    Matthew G Cottingham

    Full Text Available The production, manipulation and rescue of a bacterial artificial chromosome clone of Vaccinia virus (VAC-BAC in order to expedite construction of expression vectors and mutagenesis of the genome has been described (Domi & Moss, 2002, PNAS99 12415-20. The genomic BAC clone was 'rescued' back to infectious virus using a Fowlpox virus helper to supply transcriptional machinery. We apply here a similar approach to the attenuated strain Modified Vaccinia virus Ankara (MVA, now widely used as a safe non-replicating recombinant vaccine vector in mammals, including humans. Four apparently full-length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A46R or B7R did not significantly affect CD8(+ T cell immunogenicity in BALB/c mice, but deletion of B15R enhanced specific CD8(+ T cell responses to one of two endogenous viral epitopes (from the E2 and F2 proteins, in accordance with published work (Staib et al., 2005, J. Gen. Virol.86, 1997-2006. In addition, we found a higher frequency of triple-positive IFN-gamma, TNF-alpha and IL-2 secreting E3-specific CD8+ T-cells 8 weeks after vaccination with MVA lacking B15R. Furthermore, a recombinant vaccine capable of inducing CD8(+ T cells against an epitope from Plasmodium berghei was created using GalK counterselection to insert an antigen expression cassette lacking a tandem marker gene into the traditional thymidine kinase locus of MVA-BAC. MVA continues to feature prominently in clinical trials of recombinant vaccines against diseases such as HIV-AIDS, malaria and tuberculosis. Here we demonstrate in proof-of-concept experiments that MVA-BAC recombineering is a viable route to more rapid and efficient generation of new candidate mutant and recombinant

  3. Specialized Genetic Recombination Systems in Bacteria: Their Involvement in Gene Expression and Evolution,

    Science.gov (United States)

    1980-01-01

    Classical genetics’and recent studies in molecular ga,- enetics have revealed a variet: of’ genetic exchange s, stems in bacteria. These recobination s- stems ...not drawn to scale?) .The borer geneous terminal sequences, turcne by i .’u . consist of random bacterial sequenco s that va’ y in conmpostlon and3 1’ n...eonts, originally used to define mobile genetic elements in maize (McClintock 1952), has been used colloquially to refer to all transposable genetic

  4. The HSV-1 exonuclease, UL12, stimulates recombination by a single strand annealing mechanism.

    Science.gov (United States)

    Schumacher, April J; Mohni, Kareem N; Kan, Yinan; Hendrickson, Eric A; Stark, Jeremy M; Weller, Sandra K

    2012-01-01

    Production of concatemeric DNA is an essential step during HSV infection, as the packaging machinery must recognize longer-than-unit-length concatemers; however, the mechanism by which they are formed is poorly understood. Although it has been proposed that the viral genome circularizes and rolling circle replication leads to the formation of concatemers, several lines of evidence suggest that HSV DNA replication involves recombination-dependent replication reminiscent of bacteriophages λ and T4. Similar to λ, HSV-1 encodes a 5'-to-3' exonuclease (UL12) and a single strand annealing protein [SSAP (ICP8)] that interact with each other and can perform strand exchange in vitro. By analogy with λ phage, HSV may utilize viral and/or cellular recombination proteins during DNA replication. At least four double strand break repair pathways are present in eukaryotic cells, and HSV-1 is known to manipulate several components of these pathways. Chromosomally integrated reporter assays were used to measure the repair of double strand breaks in HSV-infected cells. Single strand annealing (SSA) was increased in HSV-infected cells, while homologous recombination (HR), non-homologous end joining (NHEJ) and alternative non-homologous end joining (A-NHEJ) were decreased. The increase in SSA was abolished when cells were infected with a viral mutant lacking UL12. Moreover, expression of UL12 alone caused an increase in SSA, which was completely eliminated when a UL12 mutant lacking exonuclease activity was expressed. UL12-mediated stimulation of SSA was decreased in cells lacking the cellular SSAP, Rad52, and could be restored by coexpressing the viral SSAP, ICP8, indicating that an SSAP is also required. These results demonstrate that UL12 can specifically stimulate SSA and that either ICP8 or Rad52 can function as an SSAP. We suggest that SSA is the homology-mediated repair pathway utilized during HSV infection.

  5. The HSV-1 exonuclease, UL12, stimulates recombination by a single strand annealing mechanism.

    Directory of Open Access Journals (Sweden)

    April J Schumacher

    Full Text Available Production of concatemeric DNA is an essential step during HSV infection, as the packaging machinery must recognize longer-than-unit-length concatemers; however, the mechanism by which they are formed is poorly understood. Although it has been proposed that the viral genome circularizes and rolling circle replication leads to the formation of concatemers, several lines of evidence suggest that HSV DNA replication involves recombination-dependent replication reminiscent of bacteriophages λ and T4. Similar to λ, HSV-1 encodes a 5'-to-3' exonuclease (UL12 and a single strand annealing protein [SSAP (ICP8] that interact with each other and can perform strand exchange in vitro. By analogy with λ phage, HSV may utilize viral and/or cellular recombination proteins during DNA replication. At least four double strand break repair pathways are present in eukaryotic cells, and HSV-1 is known to manipulate several components of these pathways. Chromosomally integrated reporter assays were used to measure the repair of double strand breaks in HSV-infected cells. Single strand annealing (SSA was increased in HSV-infected cells, while homologous recombination (HR, non-homologous end joining (NHEJ and alternative non-homologous end joining (A-NHEJ were decreased. The increase in SSA was abolished when cells were infected with a viral mutant lacking UL12. Moreover, expression of UL12 alone caused an increase in SSA, which was completely eliminated when a UL12 mutant lacking exonuclease activity was expressed. UL12-mediated stimulation of SSA was decreased in cells lacking the cellular SSAP, Rad52, and could be restored by coexpressing the viral SSAP, ICP8, indicating that an SSAP is also required. These results demonstrate that UL12 can specifically stimulate SSA and that either ICP8 or Rad52 can function as an SSAP. We suggest that SSA is the homology-mediated repair pathway utilized during HSV infection.

  6. Genetic differentiation and recombination among geographic populations of the fungal pathogen Colletotrichum truncatum from chili peppers in China.

    Science.gov (United States)

    Diao, Yongzhao; Zhang, Can; Xu, Jianping; Lin, Dong; Liu, Li; Mtung'e, Olivo G; Liu, Xili

    2015-01-01

    Colletotrichum truncatum is an extremely important fungal pathogen. It can cause diseases both in humans and in over 460 plant species. However, little is known about its genetic diversity within and among populations. One of the major plant hosts of C. truncatum is pepper, and China is one of the main pepper-producing countries in the world. Here, we propose the hypotheses that geography has a major influence on the relationships among populations of C. truncatum in China and that infections in different populations need to be managed differently. To test these hypotheses, we obtained and analyzed 266 C. truncatum isolates from 13 regions representing the main pepper-growing areas throughout China. The analysis based on nine microsatellite markers identified high intrapopulation genetic diversity, evidence of sexual recombination, and geographic differentiation. The genetic differentiation was positively correlated with geographic distance, with the southern and northern China populations grouped in two distinct clusters. Interestingly, isolates collected from the pepper-breeding center harbored the most private alleles. The results suggest that the geographic populations of C. truncatum on peppers in China are genetically differentiated and should be managed accordingly. Our study also provides a solid foundation from which to further explore the global genetic epidemiology of C. truncatum in both plants and humans.

  7. Understanding of mitotic recombination in Genetics%关于遗传学中有丝分裂重组的理解

    Institute of Scientific and Technical Information of China (English)

    马伯军; 顾志敏

    2011-01-01

    Mitotic recombination is the important content of Genetics. However there is less introductions to mitotic recombination in the current classroom teaching of genetics. In this paper, contents concerning about mitotic recombination from the discovery of mitotic recombination , mitotic recombination in fungi and mitotic recombination map were introduced in order to offer some relevant suggestions for the classroom teaching and help the students better understand the genetic recombination.%有丝分裂重组是遗传学的重要内容,但当前遗传学教学中对有丝分裂重组部分的课堂教学较少.从有丝分裂重组的发现、真茵系统中的有丝分裂重组、有丝分裂重组作图等几个方面较为详细的介绍了有丝分裂重组现象,希望为教师课堂教学提供参考,并有助于学生对基因重组内容的全面认识.

  8. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    Science.gov (United States)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, Precombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  9. Respiratory mechanics in an infant with perinatal lethal hypophosphatasia treated with human recombinant enzyme replacement therapy.

    Science.gov (United States)

    Rodriguez, Elena; Bober, Michael B; Davey, Lauren; Zamora, Arlene; Li Puma, Annelise B; Chidekel, Aaron; Shaffer, Thomas H

    2012-09-01

    Hypophosphatasia is a rare autosomal recessive disorder caused by deficient activity of tissue nonspecific alkaline phosphatase (TNSALP) and characterized by defective bone mineralization. In the perinatal lethal form, respiratory complications due to rachitic deformities of the thoracic cage and associated hypoplastic lungs are present. ENB-0040 is a bone-targeted human recombinant TNSALP fusion protein that aims to restore skeletal mineralization. The goal of this study was to characterize pulmonary and thoracic cage mechanics in an infant with the perinatal lethal form of hypophosphatasia under enzyme replacement therapy. Pulmonary function testing was performed on a preterm, 8-week-old patient with hypophosphatasia who was mechanically ventilated since birth because of severe chest wall insufficiency. The measurements consisted of respiratory impulse oscillation measurements (resistance and reactance), ventilatory mechanics (compliance and resistance), and thoracoabdominal motion (TAM) analysis. At baseline, chest wall compliance was 50% of normal, and the TAM indicated predominantly abdominal displacement. After 12 weeks of treatment, a consistent decrease in ventilator requirements and improvement in lung function and chest wall mechanics were observed and correlated with thoracic cage radiologic findings. Measurable changes in chest wall dynamics and respiratory mechanics using noninvasive technology were useful for respiratory management and therapeutic guidance of ENB-0040 treatment in this patient.

  10. Mechanistic features of recombination in HIV.

    Science.gov (United States)

    Galetto, Román; Negroni, Matteo

    2005-01-01

    The importance of recombination in retroviral evolution has been acknowledged for several decades. Consequently, after the identification of HIV as the etiological agent of AIDS, it was suspected that recombination could also play a central role in the evolution of this virus. However, only recently, extensive epidemiologic studies of HIV infections worldwide have provided an estimate for the occurrence of recombination in vivo, unveiling recombination frequencies that dwarf those initially expected. Nowadays, recombination is regarded as an integral part of the infectious cycle of this retrovirus, which impacts on diagnosis and treatment of infections, especially when genetically distant viruses have been at the origin of the recombinant forms. Retroviral recombination is observed when two genetically divergent genomic RNA molecules are present in the same viral particle, and arises during the reverse transcription step. This review focuses on the mechanisms that have been proposed to account for the occurrence of recombination in retroviruses, from the strand displacement model, according to which recombination occurs during second DNA strand synthesis; to the description of the factors responsible for copy-choice recombination during first DNA strand synthesis, such as the presence of breaks, pause sites, or secondary structures in the genomic RNA. Most of these models have been supported by experimental data obtained from in vitro reconstituted systems or from cell infection studies using academic model sequences. The situation in vivo is expected to be more complex, since several factors come into play when recombination involves relatively distant isolates, as in the case of inter-subtype recombination. At present, it is clear that further studies are needed in order to evaluate whether a prevailing mechanism exists for in vivo recombination, and these studies will also be essential for understanding how the underlying mechanisms of recombination contribute

  11. Psychological mechanisms in hyperactivity: II. The role of genetic factors.

    Science.gov (United States)

    Kuntsi, J; Stevenson, J

    2001-02-01

    The main aim of this study was to combine two research approaches to hyperactivity: the behaviour genetic approach and the testing of psychological theories of hyperactivity. For a sample of 268 twin pairs aged 7-11 years we obtained ratings on the Conners' scales from both teachers (CTRS-28) and parents (CPRS-48). Forty-six hyperactive twin pairs (pairs in which at least one twin was pervasively hyperactive) and 47 control twin pairs were assessed on a psychological test battery. Confirming findings from previous twin studies, a substantial proportion of the variance in hyperactivity considered as a dimension was due to genetic effects. There was significant evidence of genetic effects also on extreme hyperactivity, although the present group heritability estimates were somewhat lower than those reported in most previous studies. We investigated the possibility that the psychological mechanisms we reported to be associated with hyperactivity (Kuntsi, Oosterlaan, & Stevenson, 2001) share common genetic factors with hyperactive behaviour. The data produced significant evidence of such shared genetic effects only on hyperactivity and the variability of reaction times. Given that the high variability in speed of responding would indicate a state-regulation problem, this is the psychological mechanism that could possibly be the "link" between genetic effects and hyperactive behaviour.

  12. Molecular mechanisms underlying noncoding risk variations in psychiatric genetic studies.

    Science.gov (United States)

    Xiao, X; Chang, H; Li, M

    2017-01-03

    Recent large-scale genetic approaches such as genome-wide association studies have allowed the identification of common genetic variations that contribute to risk architectures of psychiatric disorders. However, most of these susceptibility variants are located in noncoding genomic regions that usually span multiple genes. As a result, pinpointing the precise variant(s) and biological mechanisms accounting for the risk remains challenging. By reviewing recent progresses in genetics, functional genomics and neurobiology of psychiatric disorders, as well as gene expression analyses of brain tissues, here we propose a roadmap to characterize the roles of noncoding risk loci in the pathogenesis of psychiatric illnesses (that is, identifying the underlying molecular mechanisms explaining the genetic risk conferred by those genomic loci, and recognizing putative functional causative variants). This roadmap involves integration of transcriptomic data, epidemiological and bioinformatic methods, as well as in vitro and in vivo experimental approaches. These tools will promote the translation of genetic discoveries to physiological mechanisms, and ultimately guide the development of preventive, therapeutic and prognostic measures for psychiatric disorders.Molecular Psychiatry advance online publication, 3 January 2017; doi:10.1038/mp.2016.241.

  13. Targeted Genome Editing by Recombinant Adeno-Associated Virus (rAAV) Vectors for Generating Genetically Modified Pigs

    Institute of Scientific and Technical Information of China (English)

    Yonglun Luo; Emil Kofod-Olsen; Rikke Christensen; Charlotte Brandt S(φ)rensen; Lars Bolund

    2012-01-01

    Recombinant adeno-associated virus (rAAV) vectors have been extensively used for experimental gene therapy of inherited human diseases.Several advantages,such as simple vector construction,high targeting frequency by homologous recombination,and applicability to many cell types,make rAAV an attractive approach for targeted genome editing.Combined with cloning by somatic cell nuclear transfer (SCNT),this technology has recently been successfully adapted to generate gene-targeted pigs as models for cystic fibrosis,hereditary tyrosinemia type 1,and breast cancer.This review summarizes the development of rAAV for targeted genome editing in mammalian cells and provides strategies for enhancing the rAAV-mediated targeting frequency by homologous recombination.We discuss current development and application of the rAAV vectors for targeted genome editing in porcine primary fibroblasts,which are subsequently used as donor cells for SCNT to generate cloned genetically designed pigs and provide positive perspectives for the generation of gene-targeted pigs with rAAV in the future.

  14. Genetic classification and molecular mechanisms of primary dystonia

    Institute of Scientific and Technical Information of China (English)

    Xueping Chen; Huifang Shang; Zuming Luo

    2008-01-01

    BACKGROUND: Primary dystonia is a heterogeneous disease, with a complex genetic basis. In previous studies, primary dystonia was classified according to age of onset, involved regions, and other clinical characteristics. With the development of molecular genetics, new virulence genes and sites have been discovered. Therefore, there is a gradual understanding of the various forms of dystonia, based on new viewpoints. There are 15 subtypes of dystonia, based on the molecular level, i.e., DYT1 to DYT15. OBJECTIVE: To analyze the genetic development of dystonia in detail, and to further investigate molecular mechanisms of dystonia. RETRIEVAL STRATEGY: A computer-based online search was conducted in PubMed for English language publications containing the keywords "dystonia and genetic" from January 1980 to March 2007. There were 105 articles in total. Inclusion criteria: ① the contents of the articles should closely address genetic classification and molecular mechanisms of primary dystonia; ② the articles published in recent years or in high-impact journals took preference. Exclusion criteria: duplicated articles. LITERATURE EVALUATION: The selected articles were on genetic classification and molecular genetics mechanism of primary dystonia. Of those, 27 were basic or clinical studies. DATA SYNTHESIS: ① Dystonia is a heterogeneous disease, with a complex genetic basis. According to the classification of the Human Genome Organization, there are 15 dystonia subtypes, based on genetics, i.e., DYT1-DYT15,including primary dystonia, dystonia plus syndrome, degeneration plus dystonia, and paroxysmal dyskinesia plus dystonia. ② To date, the chromosomes of 13 subtypes have been localized; however, DYT2 and DYT4 remain unclear. Six subtypes have been located within virulence genes. Specifically, torsinA gene expression results in the DYT1 genotype; autosomal dominant GTP cyclohydrolase I gene expression and recessive tyrosine hydroxylase expression result in the DYT5

  15. Bacteriophage recombination systems and biotechnical applications.

    Science.gov (United States)

    Nafissi, Nafiseh; Slavcev, Roderick

    2014-04-01

    Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses' life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed.

  16. Malformations of cortical development: genetic mechanisms and diagnostic approach

    Science.gov (United States)

    2017-01-01

    Malformations of cortical development are rare congenital anomalies of the cerebral cortex, wherein patients present with intractable epilepsy and various degrees of developmental delay. Cases show a spectrum of anomalous cortical formations with diverse anatomic and morphological abnormalities, a variety of genetic causes, and different clinical presentations. Brain magnetic resonance imaging has been of great help in determining the exact morphologies of cortical malformations. The hypothetical mechanisms of malformation include interruptions during the formation of cerebral cortex in the form of viral infection, genetic causes, and vascular events. Recent remarkable developments in genetic analysis methods have improved our understanding of these pathological mechanisms. The present review will discuss normal cortical development, the current proposed malformation classifications, and the diagnostic approach for malformations of cortical development. PMID:28203254

  17. Antigenic variation: Molecular and genetic mechanisms of relapsing disease

    Energy Technology Data Exchange (ETDEWEB)

    Cruse, J.M.; Lewis, R.E.

    1987-01-01

    This book contains 10 chapters. They are: Contemporary Concepts of Antigenic Variation; Antigenic Variation in the Influenza Viruses; Mechanisms of Escape of Visna Lentiviruses from Immunological Control; A Review of Antigenic Variation by the Equine Infectious Anemia Virus; Biologic and Molecular Variations in AIDS Retrovirus Isolates; Rabies Virus Infection: Genetic Mutations and the Impact on Viral Pathogenicity and Immunity; Immunobiology of Relapsing Fever; Antigenic Variation in African Trypanosomes; Antigenic Variation and Antigenic Diversity in Malaria; and Mechanisms of Immune Evasion in Schistosomiasis.

  18. The genetics of insomnia--evidence for epigenetic mechanisms?

    Science.gov (United States)

    Palagini, Laura; Biber, Knut; Riemann, Dieter

    2014-06-01

    Sleep is a complex physiological process and still remains one of the great mysteries of science. Over the past 10 y, genetic research has provided a new avenue to address the regulation and function of sleep. Gene loci that contribute quantitatively to sleep characteristics and variability have already been identified. However, up to now, a genetic basis has been established only for a few sleep disorders. Little is yet known about the genetic background of insomnia, one of the most common sleep disorders. According to the conceptualisation of the 3P model of insomnia, predisposing, precipitating and perpetuating factors contribute to the development and maintenance of insomnia. Growing evidence from studies of predisposing factors suggests a certain degree of heritability for insomnia and for a reactivity of sleep patterns to stressful events, explaining the emergence of insomnia in response to stressful life events. While a genetic susceptibility may modulate the impact of stress on the brain, this finding does not provide us with a complete understanding of the capacity of stress to produce long-lasting perturbations of brain and behaviour. Epigenetic gene-environment interactions have been identified just recently and may provide a more complex understanding of the genetic control of sleep and its disorders. It was recently hypothesised that stress-response-related brain plasticity might be epigenetically controlled and, moreover, several epigenetic mechanisms have been assumed to be involved in the regulation of sleep. Hence, it might be postulated that insomnia may be influenced by an epigenetic control process of both sleep mechanisms and stress-response-related gene-environment interactions having an impact on brain plasticity. This paper reviews the evidence for the genetic basis of insomnia and recent theories about epigenetic mechanisms involved in both sleep regulation and brain-stress response, leading to the hypothesis of an involvement of epigenetic

  19. Genetic Mechanisms of Antimicrobial Resistance of Acinetobacter baumannii.

    Science.gov (United States)

    Esterly, John S; Richardson, Chad L; Eltoukhy, Noha S; Qi, Chao; Scheetz, Marc H

    2011-02-01

    To summarize published data identifying known genetic mechanisms of antibiotic resistance in Acinetobacter baumannii and the correlating phenotypic expression of antibiotic resistance. MEDLINE databases (1966-July 15, 2010) were searched to identify original reports of genetic mechanisms of antibiotic resistance in A. baumannii. Numerous genetic mechanisms of resistance to multiple classes of antibiotics are known to exist in A. baumannii, a gram-negative bacterium increasingly implicated in nosocomial infections. Mechanisms may be constitutive or acquired via plasmids, integrons, and transposons. Methods of resistance include enzymatic modification of antibiotic molecules, modification of antibiotic target sites, expression of efflux pumps, and downregulation of cell membrane porin channel expression. Resistance to β-lactams appears to be primarily caused by β-lactamase production, including extended spectrum β-lactamases (b/aTEM, blaSHV, b/aTX-M,b/aKPC), metallo-β-lactamases (blaMP, blaVIM, bla, SIM), and most commonly, oxacillinases (blaOXA). Antibiotic target site alterations confer resistance to fluoroquinolones (gyrA, parC) and aminoglycosides (arm, rmt), and to a much lesser extent, β-lactams. Efflux pumps (tet, ade, abe) contribute to resistance against β-lactams, tetracyclines, fluoroquinolones, and aminoglycosides. Finally, porin channel deletion (carO, oprD) appears to contribute to β-lactam resistance and may contribute to rarely seen polymyxin resistance. Of note, efflux pumps and porin deletions as solitary mechanisms may not render clinical resistance to A. baumannii. A. baumannii possesses copious genetic resistance mechanisms. Knowledge of local genotypes and expressed phenotypes for A. baumannii may aid clinicians more than phenotypic susceptibilities reported in large epidemiologic studies. © 2011 SAGE Publications.

  20. Genetic variability of hepatitis B virus in Uruguay: D/F, A/F genotype recombinants.

    Science.gov (United States)

    Lopez, L; Flichman, D; Mojsiejczuk, L; Gonzalez, M V; Uriarte, R; Campos, R; Cristina, J; Garcia-Aguirre, Laura

    2015-09-01

    Hepatitis B virus (HBV) infection is a serious global health problem. Approximately 2 billion people worldwide have been infected, and approximately 350 million individuals currently suffer from HBV-induced chronic liver infection, which causes 600,000 deaths annually from chronic hepatitis, cirrhosis and hepatocellular carcinoma. HBV is classified in eight genotypes (A-H), and two more have been proposed (I-J). In this paper, complete genome sequences of nine Uruguayan HBV are reported. Five samples belong to genotype F1b and one to genotype A2. Three HBV recombinants were detected: A1/F1b, A2/F1b and D3/F1b. The following mutations were detected: a G1896A substitution, a 33-nucleotide deletion from position 2896 to 2928 in the Pre-S1 region involving Pre-S1 residues 3-13, a 33-nt deletion in the Pre-S1 region involving nt 2913-2945 and Pre-S1 residues 9-19. More F genotypes strains than expected were detected in this study, supporting the hypothesis that there are more people of indigenous origin than declared in our population. Also, one third of the samples analyzed were recombinants. This cannot be explained by the low HBV prevalence in Uruguay, but a high HBV infection rate in drug addicts and dialysis patients could act in favor of multiple-genotype HBV infections that could lead to recombination.

  1. A new recombinant factor VIII: from genetics to clinical use

    Directory of Open Access Journals (Sweden)

    Santagostino E

    2014-12-01

    Full Text Available Elena Santagostino Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy Abstract: Advances in recombinant technology and knowledge about coagulation factor VIII (FVIII are building a platform for new therapeutic options in patients with hemophilia A. The development of turoctocog alfa, a novel, high-purity, third-generation, B-domain truncated recombinant FVIII, has been produced and formulated without the use of animal-derived or human serum-derived components, in the wake of understanding of the new biochemical characteristics of FVIII, namely its protein structure, and glycosylation and sulfating patterns. Culture conditions and a five-step purification process have been developed to optimize the safety of turoctocog alfa. The results of two pilot clinical trials using turoctocog alfa confirmed high safety levels, with no patient developing inhibitors during the period of observation. The purpose of this review is to describe briefly the molecular and biological properties of turoctocog alfa, together with details of its clinical development, with emphasis on the needs of patients with hemophilia A. Keywords: hemophilia A, recombinant factor VIII, turoctocog alfa, purification, inhibitor, safety

  2. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    Science.gov (United States)

    Yang, Wenchao; Yao, Yao; Wu, Chang-Qin

    2015-04-01

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (Rrec-V) and the current density-voltage (J-V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted Rrec data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the Rrec-V characteristics. For the perovskites of increased band gaps, the Rrec's are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the Rrec decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  3. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenchao; Yao, Yao, E-mail: yaoyao@fudan.edu.cn; Wu, Chang-Qin, E-mail: cqw@fudan.edu.cn [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2015-04-21

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (R{sub rec}−V) and the current density-voltage (J–V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted R{sub rec} data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the R{sub rec}–V characteristics. For the perovskites of increased band gaps, the R{sub rec}'s are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the R{sub rec} decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  4. Morphological Transformation between Nanocoils and Nanoribbons via Defragmentation Structural Rearrangement or Fragmentation-recombination Mechanism

    Science.gov (United States)

    Zhang, Yibin; Zheng, Yingxuan; Xiong, Wei; Peng, Cheng; Zhang, Yifan; Duan, Ran; Che, Yanke; Zhao, Jincai

    2016-06-01

    Kinetic control over the assembly pathways towards novel metastable functional materials or far-from-equilibrium systems has been much less studied compared to the thermodynamic equilibrium self-assembly. Herein, we report the distinct morphological transformation between nanocoils and nanoribbons in the self-assembly of unsymmetric perylene diimide (PDI) molecules. We demonstrate that the morphological transformation of the kinetically trapped assemblies into the thermodynamically stable forms proceeds via two distinct mechanisms, i.e., a direct structural rearrangement (molecule 1 or 2) and a fragmentation-recombination mechanism (molecule 4), respectively. The subtle interplay of the steric hindrance of the bulky substituents and the flexibility of the linker structure between the bulky moiety and the perylene core was demonstrated to enable the effective modulation of the energetic landscape of the assemblies and thus modulation of the assembly pathways. Herein, our work presents a new approach to control the self-assembly pathways and thereby can be used to achieve novel far-from-equilibrium systems.

  5. Advances on Seed Vigor Physiological and Genetic Mechanisms

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Seed vigor is a more promising seed quality character reflecting potential seed germination, field emergence and seed storage ability under different conditions than standard germination. Standard germination is influenced by genetic background and environmental effects during seed development and storage conditions. The latest research on physiological mechanism in seed vigor showed that at the late stage of seed development, the development of seed vigor involves some stress-resistant substances including late embryogenesis abundant (LEA) protein, oligosaccharides and abscisic acid (ABA). Whereas the loss of seed vigor, or seed aging and deterioration, could be attributed to lipid peroxidation, chromosome deformation and genes aberrance, and embryo protein degradation, etc. Seed vigor is a quantitative character controlled by multi-genes. Genetic and quantitative trait locus (QTL) analyses on seed-vigor trait in model plants, such as Arabidopsis and rice, are mostly concentrated on related morphology traits, whereas few physiological traits have been researched. It was concluded that, all of the QTL genetic characteristics of seed vigorincluding QTL quantities, its locus on chromosome, genetic effects, and interaction effects between genetic and environment, differed with plant species and used seed-vigor traits.

  6. Mechanisms of capture- and recombination-enhanced defect reactions in semiconductors

    Science.gov (United States)

    Shinozuka, Yuzo

    2001-12-01

    Proposed mechanisms on defect reactions in semiconductors (defect creation, annihilation, multiplication, reconstruction, impurity diffusion, etc.) are reexamined with particular attention to the instability of the lattice and the transient lattice vibration induced by successive carrier captures. (1) Thermal activation process to overcome the potential barrier Un: it which depends on the electronic state n the reaction rate is given by p 0 exp(-U n/k BT) . (2) Instability mechanism: the lattice relaxation after an electronic transition at a defect promptly induces the reaction coordinate QR. (3) Phonon kick mechanism (single capture): if the relaxation mode Q1 partially includes QR, an electronic transition to the state n enhances the defect reaction during the lattice relaxation time τ∼2 π⧸Δ ω where Δ ω is the width of the frequency distribution of related phonons. (4) Phonon kick mechanism (recombination): if N pairs of electron and hole are captured within a short period τ∼2 π/Δ ω and the central frequency ωR of QR is not so different from ω0 of Q1, the band gap energy Eg is transformed by a series of coherent carrier captures into the lattice vibration energy. The defect reaction rate is given by ( ω0/2 π)exp(- Eiact/ kBT) because only the first capture ( i=e,h) is to be activated. On the other hand, if ωR is much different from ω0, the rate is ( ω0/2 π)exp(- U0*/ kBT) with U0-( Eiact+ Eith) because the N phonon-kicks are out of phase.

  7. A Puzzle-Based Genetic Algorithm with Block Mining and Recombination Heuristic for the Traveling Salesman Problem

    Institute of Scientific and Technical Information of China (English)

    Pei-Chann Chang; Wei-Hsiu Huang; Zhen-Zhen Zhang

    2012-01-01

    In this research,we introduce a new heuristic approach using the concept of ant colony optimization (ACO)to extract patterns from the chromosomes generated by previous generations for solving the generalized traveling salesman problem.The proposed heuristic is composed of two phases.In the first phase the ACO technique is adopted to establish an archive consisting of a set of non-overlapping blocks and of a set of remaining cities (nodes) to be visited.The second phase is a block recombination phase where the set of blocks and the rest of cities are combined to form an artificial chromosome.The generated artificial chromosomes (ACs) will then be injected into a standard genetic algorithm (SGA) to speed up the convergence.The proposed method is called "Puzzle-Based Genetic Algorithm" or "p-ACGA".We demonstrate that p-ACGA performs very well on all TSPLIB problems,which have been solved to optimality by other researchers.The proposed approach can prevent the early convergence of the genetic algorithm (GA) and lead the algorithm to explore and exploit the search space by taking advantage of the artificial chromosomes.

  8. The mechanism of electron-cation geminate recombination in liquid isooctane

    Science.gov (United States)

    Zhang, Tieqiao; Lee, Young Jong; Kee, Tak W.; Barbara, Paul F.

    2005-02-01

    Electron-cation geminate recombination in isooctane has been reinvestigated by femtosecond spectroscopy. The observed recombination kinetics are well-fit by a single exponential decay ( τ = 400 ± 40 fs) and exhibit a significant hydrogen/deuterium kinetic isotope effect. The kinetics are not affected by varying the incident intensity or by exciting the recombining electrons with a high power 800 nm pulse. These observations strongly suggest that the recombination rate is not limited by diffusive motion of the ions to form a contact ion pair, but rather by the electron transfer reaction rate between the ions in a contact ion pair.

  9. Optimizing production of recombinant tissue plasminogen activator in non-pathogenic Leishmania by two genetic constructs

    Directory of Open Access Journals (Sweden)

    Hemayatkar M

    2011-02-01

    Full Text Available "nBackground: Recombinant tissue plasminogen activator (rt-PA is one of the most important thrombolytic agents used in patients with vascular occlusions such as acute ischemic stroke or myocardial infarction. A variety of recombinant protein expression systems have been developed for heterologous gene expression in prokaryotic and eukaryotic hosts. In recent years, Leishmania tarentolae (L. tarentolae, a non-pathogenic trypanosomatid protozoa, has come under consideration because of its safety and immunogenicity as a vaccine vector and special attributes in the expression of complex proteins. This study was done to improve rt-PA expression in this protozoon and create the opportunity for the replacement of rt-PA gene with other genes for the production of other complex proteins."n "n Methods: Two expression cassettes were used for the integration of two copies of t-PA cDNA, one copy in each cassette, into the parasite genome by electroporation. The transformed clones were selected by antibiotic resistancy. The expression of active secreted rt-PA was confirmed by Western blot analysis and Chromolize assay."n "n Results: Appearance of a 64 kD band in nitrocellulose membrane in the Western blot analysis confirmed the presence of full-length rt-PA in the culture media. Chromolize assay showed the expression levels of active recombinant t-PA in single and double transfected L. tarentolae clones- 375 IU/ml and 480 IU/ml of the culture media, respectively."n "n Conclusion: The produced rt-PA in the culture media containing the transfected cells was at least seven times higher than what has been reported in previous studies on L. tarentolae or on some other eukaryotic systems.

  10. Enhanced sialylation of recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells.

    Science.gov (United States)

    Jeong, Yeon Tae; Choi, One; Son, Young Dok; Park, Seung Yeol; Kim, Jung Hoe

    2009-04-01

    Sialic acid, the terminal sugar in N-linked complex glycans, is usually found in glycoproteins and plays a major role in determining the circulatory lifespan of glycoproteins. In the present study we attempted to enhance the sialylation of recombinant EPO (erythropoietin) in CHO (Chinese-hamster ovary) cells. To enhance EPO sialylation, we introduced human alpha2,3-ST (alpha2,3-sialyltransferase) and CMP-SAS (CMP-sialic acid synthase) into recombinant human EPO-producing CHO cells. The sialylation of EPO was increased by the expression of alpha2,3-ST alone. Although the co-expression of alpha2,3-ST and CMP-SAS did not further increase sialylation, an increase in the intracellular pool of CMP-sialic acid was noted. On the basis of these observations, it was postulated that the transport capacity of CMP-sialic acid into the Golgi lumen was limited, thereby causing the reduced availability of CMP-sialic acid substrate for sialylation. Therefore, we co-expressed human alpha2,3-ST and CMP-SAS, as well as overexpress Chinese hamster CMP-sialic acid transporter (CMP-SAT) in CHO cells, which produced recombinant human EPO. When alpha2,3-ST, CMP-SAS, and CMP-SAT were overexpressed in CHO cells, there was a corresponding increase in sialylation compared with the co-expression of alpha2,3-ST and CMP-SAS. The present study provides a useful strategy for enhancing the sialylation of therapeutic glycoproteins produced in CHO cells.

  11. Phylogenetic analysis of VP1 gene sequences of waterfowl parvoviruses from the Mainland of China revealed genetic diversity and recombination.

    Science.gov (United States)

    Wang, Shao; Cheng, Xiao-Xia; Chen, Shao-Ying; Lin, Feng-Qiang; Chen, Shi-Long; Zhu, Xiao-Li; Wang, Jin-Xiang; Huang, Mei-Qing; Zheng, Min

    2016-03-01

    To determine the origin and evolution of goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) in the Mainland of China, phylogenetic and recombination analyses in the present study were performed on 32 complete VP1 gene sequences from China and other countries. Based on the phylogenetic analysis of the VP1 gene, GPV strains studied here from Mainland China (PRC) could be divided into three genotypes, namely PRC-I, PRC-II and PRC-III. Genotype PRC-I is indigenous to Mainland China. Only one GPV strain from Northeast China was of Genotype PRC-II and was thought to be imported from Europe. Genotype PRC-III, which was the most isolated genotype during 1999-2012, is related to GPVs in Taiwan and has been the predominant pathogen responsible for recent Derzy's disease outbreaks in Mainland China. Current vaccine strains used in Mainland China belong to Genotype PRC-I that is evolutionary distant from Genotypes PRC-II and PRC-III. In comparison, MDPV strains herein from Mainland China are clustered in a single group which is closely related to Taiwanese MDPV strains, and the full-length sequences of the VP1 gene of China MDPVs are phylogenetic closely related to the VP1 sequence of a Hungarian MDPV strain. Moreover, We also found that homologous recombination within VP1 gene plays a role in generating genetic diversity in GPV evolution. The GPV GDFSh from Guangdong Province appears to be the evolutionary product of a recombination event between parental GPV strains GD and B, while the major parent B proved to be a reference strain for virulent European GPVs. Our findings provide valuable information on waterfowl parvoviral evolution in Mainland China.

  12. Immature Oils in China and Their Genetic Mechanisms

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Immature crude oils are a kind of unconventional petroleum resources. They are generated through early low-temperature biochemical/chemical reactions of some specific organic matter. Their geological reserves explored are as high as several hundred million tons in China. Based on a detailed organic geochemical study, five genetic mechanisms of immature oils have been proposed in this paper for early hydrocarbon generation from suberinite, resinite, bacteria-reworked terrestrial organic matter, biolipids and sulphur-rich macromolecules respectively.

  13. A distinct alleles and genetic recombination of pmrCAB operon in species of Acinetobacter baumannii complex isolates.

    Science.gov (United States)

    Kim, Dae Hun; Ko, Kwan Soo

    2015-07-01

    To investigate pmrCAB sequence divergence in 5 species of Acinetobacter baumannii complex, a total of 80 isolates from a Korean hospital were explored. We evaluated nucleotide and amino acid polymorphisms of pmrCAB operon, and phylogenetic trees were constructed for each gene of prmCAB operon. Colistin and polymyxin B susceptibility was determined for all isolates, and multilocus sequence typing was also performed for A. baumannii isolates. Our results showed that each species of A. baumannii complex has divergent pmrCAB operon sequences. We identified a distinct pmrCAB allele allied with Acinetobacter nosocomialis in gene trees. Different grouping in each gene tree suggests sporadic recombination or emergence of pmrCAB genes among Acinetobacter species. Sequence polymorphisms among Acinetobacter species might not be associated with colistin resistance. We revealed that a distinct pmrCAB allele may be widespread across the continents such as North America and Asia and that sporadic genetic recombination or emergence of pmrCAB genes might occur.

  14. A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system

    Science.gov (United States)

    Chai, Xiu-Li; Gan, Zhi-Hua; Lu, Yang; Zhang, Miao-Hui; Chen, Yi-Ran

    2016-10-01

    Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional (4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes, and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203094 and 61305042), the Natural Science Foundation of the United States (Grant Nos. CNS-1253424 and ECCS-1202225), the Science and Technology Foundation of Henan Province, China (Grant No. 152102210048), the Foundation and Frontier Project of Henan Province, China (Grant No. 162300410196), the Natural Science Foundation of Educational Committee of Henan Province, China (Grant No. 14A413015), and the Research Foundation of Henan University, China (Grant No. xxjc20140006).

  15. Detection of genomic variations and DNA polymorphisms and impact on analysis of meiotic recombination and genetic mapping.

    Science.gov (United States)

    Qi, Ji; Chen, Yamao; Copenhaver, Gregory P; Ma, Hong

    2014-07-08

    DNA polymorphisms are important markers in genetic analyses and are increasingly detected by using genome resequencing. However, the presence of repetitive sequences and structural variants can lead to false positives in the identification of polymorphic alleles. Here, we describe an analysis strategy that minimizes false positives in allelic detection and present analyses of recently published resequencing data from Arabidopsis meiotic products and individual humans. Our analysis enables the accurate detection of sequencing errors, small insertions and deletions (indels), and structural variants, including large reciprocal indels and copy number variants, from comparisons between the resequenced and reference genomes. We offer an alternative interpretation of the sequencing data of meiotic products, including the number and type of recombination events, to illustrate the potential for mistakes in single-nucleotide polymorphism calling. Using these examples, we propose that the detection of DNA polymorphisms using resequencing data needs to account for nonallelic homologous sequences.

  16. ama1 genes of sympatric Plasmodium vivax and P. falciparum from Venezuela differ significantly in genetic diversity and recombination frequency.

    Directory of Open Access Journals (Sweden)

    Rosalynn L Ord

    Full Text Available BACKGROUND: We present the first population genetic analysis of homologous loci from two sympatric human malaria parasite populations sharing the same human hosts, using full-length sequences of ama1 genes from Plasmodium vivax and P. falciparum collected in the Venezuelan Amazon. METHODOLOGY/PRINCIPAL FINDINGS: Significant differences between the two species were found in genetic diversity at the ama1 locus, with 18 distinct haplotypes identified among the 73 Pvama1 sequences obtained, compared to 6 unique haplotypes from 30 Pfama1 sequences, giving overall diversity estimates of h = 0.9091, and h = 0.538 respectively. Levels of recombination were also found to differ between the species, with P. falciparum exhibiting very little recombination across the 1.77 kb sequence. In contrast, analysis of patterns of nucleotide substitutions provided evidence that polymorphisms in the ama1 gene of both species are maintained by balancing selection, particularly in domain I. The two distinct population structures observed are unlikely to result from different selective forces acting upon the two species, which share both human and mosquito hosts in this setting. Rather, the highly structured P. falciparum population appears to be the result of a population bottleneck, while the much less structured P. vivax population is likely to be derived from an ancient pool of diversity, as reflected in a larger estimate of effective population size for this species. Greatly reduced mosquito transmission in 1997, due to low rainfall prior to the second survey, was associated with far fewer P. falciparum infections, but an increase in P. vivax infections, probably due to hypnozoite activation. CONCLUSIONS/SIGNIFICANCE: The relevance of these findings to putative competitive interactions between these two important human pathogen species is discussed. These results highlight the need for future control interventions to employ strategies targeting each of the parasite

  17. An in vitro recombination-based reverse genetic system for rapid mutagenesis of structural genes of the Japanese encephalitis virus

    Institute of Scientific and Technical Information of China (English)

    Ruikun; Du; Manli; Wang; Zhihong; Hu; Hualin; Wang; Fei; Deng

    2015-01-01

    Japanese encephalitis virus(JEV) is one of the most common pathogens of severe viral encephalitis, which is a severe threat to human health. Despite instability of the JEV genome in bacteria, many strategies have been developed to establish molecular clone systems of JEV, providing convenient tools for studying the virus life cycle and virus–host interactions. In this study, we adapted an In-Fusion enzyme-based in vitro recombination method to construct a reverse genetic system of JEV, thereby providing a rapid approach to introduce mutations into the structural genes. A truncated genome without the structural genes was constructed as the backbone, and the complementary segment containing the structural genes was recombined in vitro, which was then transfected directly into virus-permissive cells. The progeny of the infectious virus was successfully detected in the supernatant of the transfected cells, and showed an identical phenotype to its parental virus. To provide a proof-of-principle, the 12 conserved cysteine residues in the envelope(E) protein of JEV were respectively mutated using this approach, and all mutations resulted in a complete failure to generate infectious virus. However, a leucine-tophenylanine mutation at amino acid 107 of the E protein did not interfere with the production of the infectious virus. These results suggested that all 12 cysteines in the E protein are essential for the JEV life cycle. In summary, a novel reverse genetic system of JEV was established for rapidly introducing mutations into structural genes, which will serve as a useful tool for functional studies.

  18. Genetic control of the immune response to staphylococcal nuclease. IX. Recombination between genes determining BALB/c antinuclease idiotypes and the heavy chain allotype locus.

    Science.gov (United States)

    Pisetsky, D S; Riordan, S E; Sachs, D H

    1979-03-01

    The genetic linkage relationship of two antinuclease idiotypes produced by the BALB/c strain was investigated in the backcross (BALB/c x CB.20) X CB.20. These two idiotypes were detected by Lewis rat anti-idiotypic antisera prepared against affinity-purified A/J and SJL antinuclease antibodies, termed the A/J and SJL idiotypes, respectively. Both idiotypes were found to be linked to the IgCHa immunoglobulin heavy chain allotype locus. There was, however, a high frequency of recombination observed between both markers and the IgCHa locus, with eight of 83 backcross animals recombinant for the A/J idiotype and five of 83 recombinant for the SJL idiotype. All such recombinant animals were IgCHb/b homozygotes that had gained one or both idiotypes. These results are consistent with a genetic map of VHr region genes in the BALB/c strain in which genes determining the SJL idiotype are closer to the IgCHa allotype locus than are genes determining the A/J idiotype. This high frequency of recombination may indicate that the chromosome segment containing VH region genes is very large or that it has structural features that promote recombination.

  19. Genetic linkage in the horse. II. Distribution of male recombination estimates and the influence of age, breed and sex on recombination frequency.

    Science.gov (United States)

    Andersson, L; Sandberg, K

    1984-01-01

    In the present study an extensive amount of data, comprising more than 30,000 offspring in total, was analyzed to evaluate the influence of age and sex on the recombination frequency in the K-PGD segment of the equine linkage group (LG) I and the influence of age, breed and sex on recombination in the Al-Es segment of LG II. A highly significant sex difference is reported for both segments. Male and female recombination values in the K-PGD segment were estimated at 25.8 +/- 0.8 and 33.3 +/- 2.5%, respectively. Similarly, recombination was less frequent in the male (36.6 +/- 0.7%) than in the female (46.6 +/- 1.2%) in the Al-Es segment. Comparison of data from two Swedish horse breeds revealed no significant breed differences in either sex for recombination in the Al-Es segment. No evidence of an age effect was found in any segment or sex. The distribution of individual male recombination estimates was also investigated, and a significant heterogeneity among stallions was revealed in the K-PGD segment. The results are discussed in relation to previous studies on factors affecting recombination in mammals.

  20. Distribution of mating types and genetic diversity induced by sexual recombination in Setosphaeria turcica in northern China

    Institute of Scientific and Technical Information of China (English)

    FAN Yongshan; MA Jifang; GUI Xiumei; AN Xinlong; SUN Shuqin; DONG Jingao

    2007-01-01

    Mature ascocarps and ascospores in the heterothallic ascomycete fungus,Setosphaeria turcica,were successfully produced in Sach's medium with barley culm as the mating stimulator after four weeks' coincubation of two opposite mating type isolates at 25℃ in darkness.A single isolate could not produce ascospores or ascocarps.The ascocarps were produced on the exposed surface and embedded parts of barley culm or in the upper layer of the medium.The asci linked themselves to ascocarp with their short handles and assembled at the bottom of the ascocarp.Many asci had four to six colorless mature ascospores with one to six septa.But asci with eight ascospores were also found.Using isolate 9914 and isolate 9961 as standard testers for mating types (MAT1 and MAT2),respectively,94 isolates of S.turcica collected from northern China in 1999,2003,and 2004 were grouped into three mating types:MAT1 (53 isolates),MAT2 (31 isolates) and MAT12 (10 isolates).The MAT12 isolates,which were first found in China,were compatible with not only MAT1 isolates but also MAT2 isolates.No MAT12 isolates were found in 1999,but 2 MAT12 isolates and 8 MAT12 isolates were found in 2001 and 2003,respectively.The geographic distribution of different mating types was unequal among locations.Generally the frequency of MAT1 was significantly higher than that of MAT2 and MAT12.The unequal distribution of mating types suggested a low frequency of genetic recombination.The pathogenicity of different mating type isolates was tested on the susceptible corn inbred B37 and the results revealed that the disease latency period,disease incidence,lesion area and conidia production were not significantly different among the three mating type groups.However,the pathogenicity of the progeny isolates of isolate 99-12 (MAT2,race 1) and isolate 99-15 (MAT1,race 0) was significantly different from the parent isolates,isolate 99-12 and isolate 99-15,suggesting that sexual recombination could cause significantly virulence

  1. Recombination networks as genetic markers in a human variation study of the Old World.

    NARCIS (Netherlands)

    Javed, A.; Mele, M.; Pybus, M.; Zalloua, P.; Haber, M.; Comas, D.; Netea, M.G.; Balanovsky, O.; Balanovska, E.; Jin, L.; Yang, Y.; Arunkumar, G.; Pitchappan, R.; Bertranpetit, J.; Calafell, F.; Parida, L.

    2012-01-01

    We have analyzed human genetic diversity in 33 Old World populations including 23 populations obtained through Genographic Project studies. A set of 1,536 SNPs in five X chromosome regions were genotyped in 1,288 individuals (mostly males). We use a novel analysis employing subARG network

  2. Genetic recombination in Escherichia coli : I. Relation between linkage of unselected markers and map distance

    NARCIS (Netherlands)

    Verhoef, C.; Haan, P.G. de

    1966-01-01

    A relation between linkage frequency of an unselected marker and transfer time based on a physical exchange of genetic material was developed for Escherichia coli crosses. Crosses performed under standardised conditions have shown that the relation was valid. The linkage frequency is determined by t

  3. Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer

    Science.gov (United States)

    Strakova, Andrea; Ní Leathlobhair, Máire; Wang, Guo-Dong; Yin, Ting-Ting; Airikkala-Otter, Ilona; Allen, Janice L; Allum, Karen M; Bansse-Issa, Leontine; Bisson, Jocelyn L; Castillo Domracheva, Artemio; de Castro, Karina F; Corrigan, Anne M; Cran, Hugh R; Crawford, Jane T; Cutter, Stephen M; Delgadillo Keenan, Laura; Donelan, Edward M; Faramade, Ibikunle A; Flores Reynoso, Erika; Fotopoulou, Eleni; Fruean, Skye N; Gallardo-Arrieta, Fanny; Glebova, Olga; Häfelin Manrique, Rodrigo F; Henriques, Joaquim JGP; Ignatenko, Natalia; Koenig, Debbie; Lanza-Perea, Marta; Lobetti, Remo; Lopez Quintana, Adriana M; Losfelt, Thibault; Marino, Gabriele; Martincorena, Inigo; Martínez Castañeda, Simón; Martínez-López, Mayra F; Meyer, Michael; Nakanwagi, Berna; De Nardi, Andrigo B; Neunzig, Winifred; Nixon, Sally J; Onsare, Marsden M; Ortega-Pacheco, Antonio; Peleteiro, Maria C; Pye, Ruth J; Reece, John F; Rojas Gutierrez, Jose; Sadia, Haleema; Schmeling, Sheila K; Shamanova, Olga; Ssuna, Richard K; Steenland-Smit, Audrey E; Svitich, Alla; Thoya Ngoka, Ismail; Vițălaru, Bogdan A; de Vos, Anna P; de Vos, Johan P; Walkinton, Oliver; Wedge, David C; Wehrle-Martinez, Alvaro S; van der Wel, Mirjam G; Widdowson, Sophie AE; Murchison, Elizabeth P

    2016-01-01

    Canine transmissible venereal tumour (CTVT) is a clonally transmissible cancer that originated approximately 11,000 years ago and affects dogs worldwide. Despite the clonal origin of the CTVT nuclear genome, CTVT mitochondrial genomes (mtDNAs) have been acquired by periodic capture from transient hosts. We sequenced 449 complete mtDNAs from a global population of CTVTs, and show that mtDNA horizontal transfer has occurred at least five times, delineating five tumour clades whose distributions track two millennia of dog global migration. Negative selection has operated to prevent accumulation of deleterious mutations in captured mtDNA, and recombination has caused occasional mtDNA re-assortment. These findings implicate functional mtDNA as a driver of CTVT global metastatic spread, further highlighting the important role of mtDNA in cancer evolution. DOI: http://dx.doi.org/10.7554/eLife.14552.001 PMID:27185408

  4. An experimental genetic system using Berberis vulgaris confirms sexual recombination in Puccinia striiformis

    DEFF Research Database (Denmark)

    Rodriguez Algaba, Julian; Walter, Stephanie; Sørensen, Chris Khadgi

    , the use of B. vulgaris plants originating from nature reserves in Sweden and Denmark proved to be successful for infection and selfing a European Pst isolate in the Danish laboratory in 2013. The progeny isolates in the S1 generation were genotyped with microsatellite markers to confirm parental origin...... and to study genotypic diversity. The markers confirmed the parental origin and markers that were heterozygous in the parent generally segregated in the S1 progenies. A largest number of multilocus genotypes observed among the progeny isolates confirmed successful sexual recombination. Segregation...... for avirulence and virulence was investigated using 15 single R-gene wheat lines. The sexual structures and spore forms were documented by microscopic and macroscopic imaging at crucial time points during the life cycle of Pst on the alternate host....

  5. [Innate immune mechanisms against recombinant adeno-associated virus vectors--a review].

    Science.gov (United States)

    Diao, Yong; Xu, Ruian

    2012-05-04

    Recombinant adeno-associated virus (rAAV) is one of the most commonly used vectors for gene therapy. Despite the promising safety profile demonstrated in preclinical trials, the clinic efficacy of using rAAV was hampered by undesired response from the immune system. It is important to understand the mechanisms that lead to the induction of immune response against rAAV. Although a crucial role for innate immunity is shaping adaptive immune responses, the innate immune to rAAV was ignored in the past. Till now, at least three human cell types (dendritic cells, macrophages and endothelial cells) were discovered to be involved in sensing rAAV infection. The engagement of TLR9 by rAAV vector genomes triggers the activation of NF-kappaB signaling cascades, leading to the induction of pro-inflammatory cytokine genes. The viral capsid components are detected by TLR2, and this leads to the production of type I interferon mediated by interferon regulatory factors (IRFs) pathway. Self-complementary rAAV vectors induced higher TLR9 dependent innate immune response than single stranded rAAV. This review highlights the recent findings regarding the innate immune responses to rAAV vectors, the signaling pathways involved, and the impacts of innate immunity on the adaptive immune response to rAAV and its transgene expression.

  6. Radiative recombination mechanisms in CdTe thin films deposited by elemental vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Shamara [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Vatavu, Sergiu, E-mail: svatavu@usm.md [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., Chisinau, MD-2009, Republic of Moldova (Moldova, Republic of); Evani, Vamsi; Khan, Md; Bakhshi, Sara; Palekis, Vasilios [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Rotaru, Corneliu [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., Chisinau, MD-2009, Republic of Moldova (Moldova, Republic of); Ferekides, Chris [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States)

    2015-05-01

    A photoluminesence (PL) study of the radiative recombination mechanisms for CdTe films deposited under different Cd and Te overpressure by elemental vapor transport is presented. The experiment and analysis have been carried out in the temperature range of 12-130 K. The intensity of the PL laser excitation beam was varied by two orders of magnitude. It has been established that the bands in the 1.47-1.50 eV are determined by transitions involving shallow D and A states and the 1.36x-1.37x eV band is due to band to level transitions. Deep transitions at 1.042 eV and 1.129 eV are due to radiative transitions to levels determined by CdTe native defects. - Highlights: • Photoluminescense (PL) of CdTe thin films is present in the 0.8-1.6 eV spectral region. • High intensity excitonic peaks are among the main radiative paths. • Radiative transitions at 1.36x eV are assisted by dislocations caused levels. • Extremal Cd/Te overpressure ratios enhance PL for 1.497 eV, 1.486 eV, 1.474 eV bands. • PL intensity reaches its max value for the 0.45 and 1.25 Cd/Te overpressure ratios.

  7. Analysis of the kinetic mechanism of recombinant human isoprenylcysteine carboxylmethyltransferase (Icmt

    Directory of Open Access Journals (Sweden)

    Baron Rudi A

    2004-12-01

    Full Text Available Abstract Background Isoprenylcysteine carboxyl methyltransferase (Icmt is the third of three enzymes that posttranslationally modify proteins that contain C-terminal CaaX motifs. The processing of CaaX proteins through this so-called prenylation pathway via a route initiated by addition of an isoprenoid lipid is required for both membrane targeting and function of the proteins. The involvement of many CaaX proteins such as Ras GTPases in oncogenesis and other aberrant proliferative disorders has led to the targeting of the enzymes involved in their processing for therapeutic development, necessitating a detailed understanding of the mechanisms of the enzymes. Results In this study, we have investigated the kinetic mechanism of recombinant human Icmt. In the reaction catalyzed by Icmt, S-adenosyl-L-methionine (AdoMet provides the methyl group that is transferred to the second substrate, the C-terminal isoprenylated cysteine residue of a CaaX protein, thereby generating a C-terminal prenylcysteine methyl ester on the protein. To facilitate the kinetic analysis of Icmt, we synthesized a new small molecule substrate of the enzyme, biotin-S-farnesyl-L-cysteine (BFC. Initial kinetic analysis of Icmt suggested a sequential mechanism for the enzyme that was further analyzed using a dead end competitive inhibitor, S-farnesylthioacetic acid (FTA. Inhibition by FTA was competitive with respect to BFC and uncompetitive with respect to AdoMet, indicating an ordered mechanism with SAM binding first. To investigate the order of product dissociation, product inhibition studies were undertaken with S-adenosyl-L-homocysteine (AdoHcy and the N-acetyl-S-farnesyl-L-cysteine methylester (AFCME. This analysis indicated that AdoHcy is a competitive inhibitor with respect to AdoMet, while AFCME shows a noncompetitive inhibition with respect to BFC and a mixed-type inhibition with respect to AdoMet. These studies established that AdoHcy is the final product released, and

  8. Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD recombinant inbred mouse strains

    Directory of Open Access Journals (Sweden)

    Parsons Michael J

    2012-09-01

    Full Text Available Abstract Background miRNAs are short single-stranded non-coding RNAs involved in post-transcriptional gene regulation that play a major role in normal biological functions and diseases. Little is currently known about how expression of miRNAs is regulated. We surveyed variation in miRNA abundance in the hippocampus of mouse inbred strains, allowing us to take a genetic approach to the study of miRNA regulation, which is novel for miRNAs. The BXD recombinant inbred panel is a very well characterized genetic reference panel which allows quantitative trait locus (QTL analysis of miRNA abundance and detection of correlates in a large store of brain and behavioural phenotypes. Results We found five suggestive trans QTLs for the regulation of miRNAs investigated. Further analysis of these QTLs revealed two genes, Tnik and Phf17, under the miR-212 regulatory QTLs, whose expression levels were significantly correlated with miR-212 expression. We found that miR-212 expression is correlated with cocaine-related behaviour, consistent with a reported role for this miRNA in the control of cocaine consumption. miR-31 is correlated with anxiety and alcohol related behaviours. KEGG pathway analysis of each miRNA’s expression correlates revealed enrichment of pathways including MAP kinase, cancer, long-term potentiation, axonal guidance and WNT signalling. Conclusions The BXD reference panel allowed us to establish genetic regulation and characterize biological function of specific miRNAs. QTL analysis enabled detection of genetic loci that regulate the expression of these miRNAs. eQTLs that regulate miRNA abundance are a new mechanism by which genetic variation influences brain and behaviour. Analysis of one of these QTLs revealed a gene, Tnik, which may regulate the expression of a miRNA, a molecular pathway and a behavioural phenotype. Evidence of genetic covariation of miR-212 abundance and cocaine related behaviours is strongly supported by previous

  9. Genetic mapping of QTLs associated with seed macronutrients accumulation in 'MD96-5722' by 'Spencer' recombinant inbred lines of soybean

    Science.gov (United States)

    Research of genetic mapping of QTLs for macronutrient accumulation in soybean seed is limited. Therefore, the objective of this research was to identify QTLs related to macronutrients (N, C, S, P, K, Ca, and Mg) in seeds in 92 F5:7 recombinant inbred lines developed from a cross between MD 96-5722 (...

  10. Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber.

    Science.gov (United States)

    Lou, Qunfeng; He, Yuhua; Cheng, Chunyan; Zhang, Zhonghua; Li, Ji; Huang, Sanwen; Chen, Jinfeng

    2013-01-01

    Cucumber is an important model crop and the first species sequenced in Cucurbitaceae family. Compared to the fast increasing genetic and genomics resources, the molecular cytogenetic researches in cucumber are still very limited, which results in directly the shortage of relation between plenty of physical sequences or genetic data and chromosome structure. We mapped twenty-three fosmids anchored by SSR markers from LG-3, the longest linkage group, and LG-4, the shortest linkage group on pachytene chromosomes 3 and 4, using uorescence in situ hybridization (FISH). Integrated molecular cytogenetic maps of chromosomes 3 and 4 were constructed. Except for three SSR markers located on heterochromatin region, the cytological order of markers was concordant with those on the linkage maps. Distinct structural differences between chromosomes 3 and 4 were revealed by the high resolution pachytene chromosomes. The extreme difference of genetic length between LG-3 and LG-4 was mainly attributed to the difference of overall recombination frequency. The significant differentiation of heterochromatin contents in chromosomes 3 and 4 might have a direct correlation with recombination frequency. Meanwhile, the uneven distribution of recombination frequency along chromosome 4 was observed, and recombination frequency of the long arm was nearly 3.5 times higher than that of the short arm. The severe suppression of recombination was exhibited in centromeric and heterochromatin domains of chromosome 4. Whereas a close correlation between the gene density and recombination frequency was observed in chromosome 4, no significant correlation was observed between them along chromosome 3. The comparison between cytogenetic and sequence maps revealed a large gap on the pericentromeric heterochromatin region of sequence map of chromosome 4. These results showed that integrated molecular cytogenetic maps can provide important information for the study of genetic and genomics in cucumber.

  11. Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber.

    Directory of Open Access Journals (Sweden)

    Qunfeng Lou

    Full Text Available Cucumber is an important model crop and the first species sequenced in Cucurbitaceae family. Compared to the fast increasing genetic and genomics resources, the molecular cytogenetic researches in cucumber are still very limited, which results in directly the shortage of relation between plenty of physical sequences or genetic data and chromosome structure. We mapped twenty-three fosmids anchored by SSR markers from LG-3, the longest linkage group, and LG-4, the shortest linkage group on pachytene chromosomes 3 and 4, using uorescence in situ hybridization (FISH. Integrated molecular cytogenetic maps of chromosomes 3 and 4 were constructed. Except for three SSR markers located on heterochromatin region, the cytological order of markers was concordant with those on the linkage maps. Distinct structural differences between chromosomes 3 and 4 were revealed by the high resolution pachytene chromosomes. The extreme difference of genetic length between LG-3 and LG-4 was mainly attributed to the difference of overall recombination frequency. The significant differentiation of heterochromatin contents in chromosomes 3 and 4 might have a direct correlation with recombination frequency. Meanwhile, the uneven distribution of recombination frequency along chromosome 4 was observed, and recombination frequency of the long arm was nearly 3.5 times higher than that of the short arm. The severe suppression of recombination was exhibited in centromeric and heterochromatin domains of chromosome 4. Whereas a close correlation between the gene density and recombination frequency was observed in chromosome 4, no significant correlation was observed between them along chromosome 3. The comparison between cytogenetic and sequence maps revealed a large gap on the pericentromeric heterochromatin region of sequence map of chromosome 4. These results showed that integrated molecular cytogenetic maps can provide important information for the study of genetic and genomics

  12. Charge recombination mechanism to explain the negative capacitance in dye-sensitized solar cells

    Science.gov (United States)

    Lie-Feng, Feng; Kun, Zhao; Hai-Tao, Dai; Shu-Guo, Wang; Xiao-Wei, Sun

    2016-03-01

    Negative capacitance (NC) in dye-sensitized solar cells (DSCs) has been confirmed experimentally. In this work, the recombination behavior of carriers in DSC with semiconductor interface as a carrier’s transport layer is explored theoretically in detail. Analytical results indicate that the recombination behavior of carriers could contribute to the NC of DSCs under small signal perturbation. Using this recombination capacitance we propose a novel equivalent circuit to completely explain the negative terminal capacitance. Further analysis based on the recombination complex impedance show that the NC is inversely proportional to frequency. In addition, analytical recombination resistance is composed by the alternating current (AC) recombination resistance (Rrac) and the direct current (DC) recombination resistance (Rrdc), which are caused by small-signal perturbation and the DC bias voltage, respectively. Both of two parts will decrease with increasing bias voltage. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204209 and 60876035) and the Natural Science Foundation of Tianjin City, China (Grant No. 13JCZDJC32800).

  13. Evidence for repair of ultraviolet light-damaged herpes virus in human fibroblasts by a recombination mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Hall, J.D.; Featherston, J.D.; Almy, R.E.

    1980-09-01

    Human cells were either singly or multiply infected with herpes simplex virus (HSV-1) damaged by ultraviolet (uv) light, and the fraction of cells able to produce infectious virus was measured. The fraction of virus-producing cells was considerably greater for multiply infected cells than for singly infected cells at each uv dose examined. These high survival levels of uv-irradiated virus in multiply infected cells demonstrated that multiplicity-dependent repair, possibly due to genetic exchanges between damaged HSV-1 genomes, was occurring in these cells. To test whether uv light is recombinogenic for HSV-1, the effect of uv irradiation on the yield of temperature-resistant viral recombinants in cells infected with pairs of temperature-sensitive mutants was also investigated. The results of these experiments showed that the defective functions in these mutant host cells are not required for multiplicity-dependent repair or uv-stimulated viral recombination in herpes-infected cells.

  14. Controlled release from recombinant polymers.

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-09-28

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed.

  15. Effectiveness of vaccination with recombinant HpaA from Helicobacter pylori is influenced by host genetic background.

    Science.gov (United States)

    Sutton, Philip; Doidge, Christopher; Pinczower, Gideon; Wilson, John; Harbour, Stacey; Swierczak, Agnieszka; Lee, Adrian

    2007-07-01

    Several studies have explored the production and immunogenicity of HpaA as a potential protective antigen against Helicobacter pylori but little is known regarding its protective capabilities. We therefore evaluated the protective efficacy of recombinant HpaA (rHpaA) as a candidate vaccine antigen against H. pylori. To explore the impact of genetic diversity, inbred and outbred mice were prophylactically and therapeutically immunized with rHpaA adjuvanted with cholera toxin (CT). Prophylactic immunization induced a reduction in bacterial colonization in BALB/c and QS mice, but was ineffective in C57BL/6 mice, despite induction of antigen-specific antibodies. By contrast, therapeutic immunization was effective in all three strains of mice. Prophylactic immunization with CT-adjuvanted rHpaA was more effective when delivered via the nasal route than following intragastric delivery in BALB/c mice. However, HpaA-mediated protection was inferior to that induced by bacterial lysate. Hence, protective efficacy is inducible with vaccines containing HpaA, most relevantly shown in an outbred population of mice. The effectiveness of protection induced by HpaA antigen was influenced by host genetics and was less effective than lysate. HpaA therefore has potential for the development of effective immunization against H. pylori but this would probably entail the antigen to be one component of a multiantigenic vaccine.

  16. Genetic analysis of morphological traits in a new, versatile, rapid-cycling Brassica rapa recombinant inbred line population

    Directory of Open Access Journals (Sweden)

    Hedayat eBagheri

    2012-08-01

    Full Text Available A recombinant inbred line (RIL population was produced based on a wide cross between the rapid-cycling and self-compatible genotypes L58, a Caixin vegetable type, and R-o-18, a yellow sarson oil type. A linkage map based on 160 F7 lines was constructed using 100 SNP, 130 AFLP®, 27 InDel and 13 publicly available SSR markers. The map covers a total length of 1150 cM with an average resolution of 4.3 cM/marker. To demonstrate the versatility of this new population, 17 traits, related to plant architecture and seed characteristics, were subjected to QTL analysis. A total of 47 QTLs were detected, each explaining between 6 to 54% of the total phenotypic variance for the concerned trait. The genetic analysis shows that this population is a useful new tool for analyzing genetic variation for interesting traits in B. rapa, and for further exploitation of the recent availability of the B. rapa whole genome sequence for gene cloning and gene function analysis.

  17. Involvement of BDNF and NGF in the mechanism of neuroprotective effect of human recombinant erythropoietin nanoforms.

    Science.gov (United States)

    Solev, I N; Balabanyan, V Yu; Volchek, I A; Elizarova, O S; Litvinova, S A; Garibova, T L; Voronina, T A

    2013-06-01

    Human recombinant erythropoietin adsorbed on poly(butyl)cyanoacrylate nanoparticles and administered intraperitoneally in a dose of 0.05 mg/kg exhibited a neuroprotective effect in experimental intracerebral posttraumatic hematomas (hemorrhagic stroke) and reduced animal mortality. Human recombinant erythropoietin, native and adsorbed on lactic and glycolic acid copolymer-based nanoparticles, exhibited no antistroke effect on this model. Analysis of reverse transcription PCR products showed that human recombinant erythropoietin adsorbed on poly(butyl)cyanoacrylate nanoparticles more than 2-fold increased the expression of BDNF and NGF neurotrophins in the rat brain frontal cortex and hippocampus.

  18. Gated rotation mechanism of site-specific recombination by  C31 integrase

    National Research Council Canada - National Science Library

    Olorunniji, F. J; Buck, D. E; Colloms, S. D; McEwan, A. R; Smith, M. C. M; Stark, W. M; Rosser, S. J

    2012-01-01

    Integrases, such as that of the Streptomyces temperate bacteriophage [phi]C31, promote site-specific recombination between DNA sequences in the bacteriophage and bacterial genomes to integrate or excise the phage DNA. [phi...

  19. Selection of new clones of linalool chemotype from genetic recombination in Lippia alba

    Directory of Open Access Journals (Sweden)

    Elcio Rodrigo Rufino

    2012-01-01

    Full Text Available The aromatic and medicinal species Lippia alba is vigorous and rugged native to the South America (Atlantic Rainforest. Because it is an allogamous and self-incompatible species, natural populations have high morphological and chemical variability. This work had as objective to conduct a preliminary screening to identify new promising clones from a novel (recombinant base population of Lippia alba with regard to its agronomic and phytochemical traits, using the linalool oil or chemotype as model. The two superior linalool clones, obtained by collection, were used as controls. Traits evaluated included: dry mass of leaves (DML, oil yield percentage (EOY%, oil production per plant (OP, and linalool percentage (LN%. Forty linalool chemotype clones were evaluated in three experiments, in a random block design with four replicates and four cuttings (clones per plot. Besides means comparisons, multivariate analysis was used in order to aid in the preliminary selection of clones. There were positive correlations from moderate to strong for DML vs. EOY%, OP vs. EOY% and DML vs. OP. Linalool clones superior or similar to both controls were identified for the DML, EOY%, OP, and LN% traits (univariate analyses, aimed at further validating experimentation. Five distinct groups were defined in the cluster analysis (UPGMA, each containing subgroups as well.

  20. Phenotype and genetics of progressive sensorineural hearing loss (Snhl1 in the LXS set of recombinant inbred strains of mice.

    Directory of Open Access Journals (Sweden)

    Konrad Noben-Trauth

    Full Text Available Progressive sensorineural hearing loss is the most common form of acquired hearing impairment in the human population. It is also highly prevalent in inbred strains of mice, providing an experimental avenue to systematically map genetic risk factors and to dissect the molecular pathways that orchestrate hearing in peripheral sensory hair cells. Therefore, we ascertained hearing function in the inbred long sleep (ILS and inbred short sleep (ISS strains. Using auditory-evoked brain stem response (ABR and distortion product otoacoustic emission (DPOAE measurements, we found that ISS mice developed a high-frequency hearing loss at twelve weeks of age that progressed to lower frequencies by 26 weeks of age in the presence of normal endocochlear potentials and unremarkable inner ear histology. ILS mice exhibited milder hearing loss, showing elevated thresholds and reduced DPOAEs at the higher frequencies by 26 weeks of age. To map the genetic variants that underlie this hearing loss we computed ABR thresholds of 63 recombinant inbred stains derived from the ISS and ILS founder strains. A single locus was linked to markers associated with ISS alleles on chromosome 10 with a highly significant logarithm of odds (LOD score of 15.8. The 2-LOD confidence interval spans approximately 4 Megabases located at position 54-60 Mb. This locus, termed sensorineural hearing loss 1 (Snhl1, accounts for approximately 82% of the phenotypic variation. In summary, this study identifies a novel hearing loss locus on chromosome 10 and attests to the prevalence and genetic heterogeneity of progressive hearing loss in common mouse strains.

  1. Coupling mechanism of interface-induced generation-recombination current with the floating source in nMOSFET

    Science.gov (United States)

    Chen, Haifeng; Xie, Duan; Guo, Lixin

    2016-11-01

    This paper presents a detailed investigation of the interface trap-induced generation-recombination current IGR in an n-type MOSFET. Under the positive drain bias VD-step-mode measurement, IGR demonstrates some abnormal changes and even transforms from the generation current to the recombination current. These phenomena ascribe to the coupling mechanism of IGR with the floating source. The core of this mechanism is that the floating source leads to the variable ΔEFN, which is the difference of the electron's quasi-Fermi levels between the source and the drain. The plus-minus sign of ΔEFN determines the function of the interface trap serving as the generation or recombination center, and the magnitude of ΔEFN determines the shape of IGR curve. Additionally, the area Ω of IGR curve is introduced to verify and quantitatively describe this coupling mechanism. It is found that Ω has the linear relationship with ΔEFN and the slope is 19 p/eV. This coupling mechanism provides a potential way to control the pA current based on the interface trap.

  2. Effect of recombinant platelet-derived growth factor (Regranex) on wound closure in genetically diabetic mice.

    Science.gov (United States)

    Chan, Rodney K; Liu, Perry H; Pietramaggiori, Giorgio; Ibrahim, Shahrul I; Hechtman, Herbert B; Orgill, Dennis P

    2006-01-01

    Burns, especially those involving large surface areas, represent a complex wound healing problem. Platelet-derived growth factor (PDGF) is released by activated platelets to recruit inflammatory cells toward the wound bed. It has effects on promoting angiogenesis and granulation tissue formation. However, the effectiveness of topical PDGF on wound closure is variable, ranging from little improvement observed in pig models to dramatic improvement reported in a diabetic mouse model. Here, we sought to determine the effectiveness of commercially sold PDGF-BB (Regranex) on wound closure in genetically diabetic mice. C57BL/KsJ db+/db+ mice and its host strain bearing dorsal 1.5-cm wounds were divided into groups (n = 8 in each group) receiving topical application of either Regranex (10 microg/wound) or vehicle for 5 consecutive days after wounding. The rate of wound closure was analyzed using computerized planimetry. The amount of granulation tissue was determined histologically. Our data indicate that diabetic mice exhibit a significant delay in wound closure when compared with their host strain. Topical application of Regranex did not improve the time to wound closure but did significantly increase the amount of granulation tissue. Our current study using commercially available Regranex failed to reproduce the previously reported finding that PDGF improved wound closure in healing impaired genetically diabetic mice.

  3. Recombinant human erythropoietin stimulates angiogenesis and wound healing in the genetically diabetic mouse.

    Science.gov (United States)

    Galeano, Mariarosaria; Altavilla, Domenica; Cucinotta, Domenico; Russo, Giuseppina T; Calò, Margherita; Bitto, Alessandra; Marini, Herbert; Marini, Rolando; Adamo, Elena B; Seminara, Paolo; Minutoli, Letteria; Torre, Valerio; Squadrito, Francesco

    2004-09-01

    The effects of recombinant human erythropoietin (rHuEPO) in diabetes-related healing defects were investigated by using an incisional skin-wound model produced on the back of female diabetic C57BL/KsJ-m(+/+)Lept(db) mice (db(+)/db(+)) and their normoglycemic littermates (db(+/+)m). Animals were treated with rHuEPO (400 units/kg in 100 microl s.c.) or its vehicle alone (100 microl). Mice were killed on different days (3, 6, and 12 days after skin injury) for measurement of vascular endothelial growth factor (VEGF) mRNA expression and protein synthesis, for monitoring angiogenesis by CD31 expression, and for evaluating histological changes. Furthermore, we evaluated wound-breaking strength at day 12. At day 6, rHuEPO injection in diabetic mice resulted in an increase in VEGF mRNA expression (vehicle = 0.33 +/- 0.1 relative amount of mRNA; rHuEPO = 0.9 +/- 0.09 relative amount of mRNA; P < 0.05) and protein wound content (vehicle = 23 +/- 5 pg/wound; rHuEPO = 92 +/- 12 pg/wound; P < 0.05) and caused a marked increase in CD31 gene expression (vehicle = 0.18 +/- 0.05 relative amount of mRNA; rHuEPO = 0.98 +/- 0.21 relative amount of mRNA; P < 0.05) and protein synthesis. Furthermore, rHuEPO injection improved the impaired wound healing and, at day 12, increased the wound-breaking strength in diabetic mice (vehicle = 12 +/- 2 g/mm; rHuEPO 21 +/- 5 g/mm; P < 0.05). Erythropoietin may have a potential application in diabetes-related wound disorders.

  4. Transplantation of genetically engineered cardiac fibroblasts producing recombinant human erythropoietin to repair the infarcted myocardium

    Directory of Open Access Journals (Sweden)

    Ruvinov Emil

    2008-11-01

    Full Text Available Abstract Background Erythropoietin possesses cellular protection properties. The aim of the present study was to test the hypothesis that in situ expression of recombinant human erythropoietin (rhEPO would improve tissue repair in rat after myocardial infarction (MI. Methods and results RhEPO-producing cardiac fibroblasts were generated ex vivo by transduction with retroviral vector. The anti-apoptotic effect of rhEPO-producing fibroblasts was evaluated by co-culture with rat neonatal cardiomyocytes exposed to H2O2-induced oxidative stress. Annexin V/PI assay and DAPI staining showed that compared with control, rhEPO forced expression markedly attenuated apoptosis and improved survival of cultured cardiomyocytes. To test the effect of rhEPO on the infarcted myocardium, Sprague-Dawley rats were subjected to permanent coronary artery occlusion, and rhEPO-producing fibroblasts, non-transduced fibroblasts, or saline, were injected into the scar tissue seven days after infarction. One month later, immunostaining identified rhEPO expression in the implanted engineered cells but not in controls. Compared with non-transduced fibroblasts or saline injection, implanted rhEPO-producing fibroblasts promoted vascularization in the scar, and prevented cell apoptosis. By two-dimensional echocardiography and postmortem morphometry, transplanted EPO-engineered fibroblasts did not prevent left ventricular (LV dysfunction and adverse LV remodeling 5 and 9 weeks after MI. Conclusion In situ expression of rhEPO enhances vascularization and reduces cell apoptosis in the infarcted myocardium. However, local EPO therapy is insufficient for functional improvement after MI in rat.

  5. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes.

    Science.gov (United States)

    Goh, Yong Jun; Klaenhammer, Todd R

    2015-01-01

    Recent insights into the relationship between the human gut and its resident microbiota have revolutionized our appreciation of this symbiosis and its impact on health and disease development. Accumulating evidence on probiotic and prebiotic interventions has demonstrated promising effects on promoting gastrointestinal health by modulating the microbiota toward the enrichment of beneficial microorganisms. However, the precise mechanisms of how prebiotic nondigestible oligosaccharides are metabolized by these beneficial microbes in vivo remain largely unknown. Genome sequencing of probiotic lactobacilli and bifidobacteria has revealed versatile carbohydrate metabolic gene repertoires dedicated to the catabolism of various oligosaccharides. In this review, we highlight recent findings on the genetic mechanisms involved in the utilization of prebiotic fructooligosaccharides, β-galactooligosaccharides, human milk oligosaccharides, and other prebiotic candidates by these probiotic microbes.

  6. Genetic insights into the mechanisms of Fgf signaling.

    Science.gov (United States)

    Brewer, J Richard; Mazot, Pierre; Soriano, Philippe

    2016-04-01

    The fibroblast growth factor (Fgf) family of ligands and receptor tyrosine kinases is required throughout embryonic and postnatal development and also regulates multiple homeostatic functions in the adult. Aberrant Fgf signaling causes many congenital disorders and underlies multiple forms of cancer. Understanding the mechanisms that govern Fgf signaling is therefore important to appreciate many aspects of Fgf biology and disease. Here we review the mechanisms of Fgf signaling by focusing on genetic strategies that enable in vivo analysis. These studies support an important role for Erk1/2 as a mediator of Fgf signaling in many biological processes but have also provided strong evidence for additional signaling pathways in transmitting Fgf signaling in vivo.

  7. Molecular genetics and mechanisms of disease in distal hereditary motor neuropathies: insights directing future genetic studies.

    Science.gov (United States)

    Drew, A P; Blair, I P; Nicholson, G A

    2011-11-01

    The distal hereditary motor neuropathies (dHMNs) are a clinically and genetically heterogeneous group of disorders that primarily affect motor neurons, without significant sensory involvement. New dHMN genes continue to be identified. There are now 11 causative genes described for dHMN, and an additional five genetic loci with unidentified genes. This genetic heterogeneity has further delineated the classification of dHMN, which was previously classified according to mode of inheritance, age at onset, and additional complicating features. Some overlap between phenotypically distinct forms of dHMN is also apparent. The mutated genes identified to-date in dHMN include HSPB1, HSPB8, HSPB3, DCTN1, GARS, PLEKHG5, BSCL2, SETX, IGHMBP2, ATP7A and TRPV4. The pathogenesis of mutations remains to be fully elucidated, however common pathogenic mechanisms are emerging. These include disruption of axonal transport, RNA processing defects, protein aggregation and inclusion body formation, disrupted calcium channel activity, and loss of neuroprotective signalling. Some of these dHMN genes are also mutated in Charcot-Marie-Tooth (CMT) disease and spinal muscular atrophy (SMA). This review examines the growing number of identified dHMN genes, discusses recent insights into the functions of these genes and possible pathogenic mechanisms, and looks at the increasing overlap between dHMN and the other neuropathies CMT2 and SMA.

  8. Genetic adjuvantation of recombinant MVA with CD40L potentiates CD8 T cell mediated immunity

    Directory of Open Access Journals (Sweden)

    Henning eLauterbach

    2013-08-01

    Full Text Available Modified vaccinia Ankara (MVA is a safe and promising viral vaccine vector that is currently investigated in several clinical and pre-clinical trials. In contrast to inactivated or sub-unit vaccines, MVA is able to induce strong humoral as well as cellular immune responses. In order to further improve its CD8 T cell inducing capacity, we genetically adjuvanted MVA with the coding sequence of murine CD40L, a member of the tumor necrosis factor (TNF superfamily. Immunization of mice with this new vector led to strongly enhanced primary and memory CD8 T cell responses. Concordant with the enhanced CD8 T cell response, we could detect stronger activation of dendritic cells and higher systemic levels of innate cytokines (including IL-12p70 early after immunization. Interestingly, acquisition of memory characteristics (i.e., IL-7R expression was accelerated after immunization with MVA-CD40L in comparison to non-adjuvanted MVA. Furthermore, the generated CTLs also showed improved functionality as demonstrated by intracellular cytokine staining and in vivo killing activity. Importantly, the superior CTL response after a single MVA-CD40L immunization was able to protect B cell deficient mice against a fatal infection with ectromelia virus. Taken together, we show that genetic adjuvantation of MVA can change strength, quality and functionality of innate and adaptive immune responses. These data should facilitate a rational vaccine design with a focus on rapid induction of large numbers of CD8 T cells able to protect against specific diseases.

  9. Limits on the Fill Factor in Organic Photovoltaics: Distinguishing Nongeminate and Geminate Recombination Mechanisms.

    Science.gov (United States)

    Dibb, George F A; Jamieson, Fiona C; Maurano, Andrea; Nelson, Jenny; Durrant, James R

    2013-03-07

    In this Letter, we present transient optoelectronic experimental studies of the recombination processes limiting the fill factor (FF) in three conjugated polymer:fullerene systems, poly(3-hexylthiophene) (P3HT) and two lower-band-gap polymers that exhibit lower FFs poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole) (PCPDTBT) and poly(2,7-(9,9-dioctylfluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)) (APFO-3). Using transient absorption spectroscopy, charge extraction, and transient photovoltage experiments, we show that the lower FF observed for the PCPDTBT-based device results from enhanced nongeminate recombination even at short circuit, In contrast, we show that for APFO-3 devices, the FF is primarily limited by a voltage-dependent free charge generation, which we assign to a geminate recombination process.

  10. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination.

    Directory of Open Access Journals (Sweden)

    Sjoerd H E van den Worm

    Full Text Available Severe acute respiratory syndrome (SARS is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV. Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs. In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E. Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.

  11. Reverse Genetics of SARS-Related Coronavirus Using Vaccinia Virus-Based Recombination

    Science.gov (United States)

    Zevenhoven, Jessika C.; Weber, Friedemann; Züst, Roland; Kuri, Thomas; Dijkman, Ronald; Chang, Guohui; Siddell, Stuart G.; Snijder, Eric J.; Thiel, Volker; Davidson, Andrew D.

    2012-01-01

    Severe acute respiratory syndrome (SARS) is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV) that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime) as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV). Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs). In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E). Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs. PMID:22412934

  12. Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species

    Science.gov (United States)

    Szymczak, Paula; Neves, Ana Rute; Kot, Witold; Hansen, Lars H.; Lametsch, René; Neve, Horst; Franz, Charles M. A. P.

    2016-01-01

    ABSTRACT Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos- or pac-type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos- or pac-type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed. IMPORTANCE Streptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations. PMID:28039135

  13. Safety, tolerability, and immunogenicity of a recombinant, genetically engineered, live-attenuated vaccine against canine blastomycosis.

    Science.gov (United States)

    Wüthrich, Marcel; Krajaejun, Theerapong; Shearn-Bochsler, Valerie; Bass, Chris; Filutowicz, Hanna I; Legendre, Alfred M; Klein, Bruce S

    2011-05-01

    Blastomycosis is a severe, commonly fatal infection caused by the dimorphic fungus Blastomyces dermatitidis in dogs that live in the United States, Canada, and parts of Africa. The cost of treating an infection can be expensive, and no vaccine against this infection is commercially available. A genetically engineered live-attenuated strain of B. dermatitidis lacking the major virulence factor BAD-1 successfully vaccinates against lethal experimental infection in mice. Here we studied the safety, toxicity, and immunogenicity of this strain as a vaccine in dogs, using 25 beagles at a teaching laboratory and 78 foxhounds in a field trial. In the beagles, escalating doses of live vaccine ranging from 2 × 10⁴ to 2 × 10⁷ yeast cells given subcutaneously were safe and did not disseminate to the lung or induce systemic illness, but a dose of vaccine dose of 10⁵ yeast cells was also well tolerated in vaccinated foxhounds who had never had blastomycosis; however, vaccinated dogs with prior infection had more local reactions at the vaccine site. The draining lymph node cells and peripheral blood lymphocytes from vaccinated dogs demonstrated gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) specifically in response to stimulation with Blastomyces antigens. Thus, the live-attenuated vaccine against blastomycosis studied here proved safe, well tolerated, and immunogenic in dogs and merits further studies of vaccine efficacy.

  14. Streptococcus pneumoniae R6 interspecies transformation: genetic analysis of penicillin resistance determinants and genome-wide recombination events.

    Science.gov (United States)

    Sauerbier, Julia; Maurer, Patrick; Rieger, Martin; Hakenbeck, Regine

    2012-11-01

    Interspecies gene transfer has been implicated as the major driving force for the evolution of penicillin resistance in Streptococcus pneumoniae. Genomic alterations of S. pneumoniae R6 introduced during four successive transformations with DNA of the high-level penicillin-resistant Streptococcus mitis B6 with beta-lactam selection have now been determined and the contribution of genes to high resistance levels was analysed genetically. Essential for high level resistance to penicillins of the transformant CCCB was the combination of murM(B) (6) and the 3' region of pbp2b(B) (6) . Sequences of both genes were detected in clinical isolates of S. pneumoniae, confirming the participation of S. mitis in the global gene pool of beta-lactam resistance determinants. The S. mitis PBP1b gene which contains an authentic stop codon within the transpeptidase domain is now shown to contribute only marginal to resistance, but it is possible that the presence of its transglycosylase domain is important in the context of cognate PBPs. The genome sequence of CCCB revealed 36 recombination events, including deletion and acquisition of genes and repeat elements. A total of 78 genes were affected representing 67 kb or 3.3% of the genome, documenting extensive alterations scattered throughout the genome.

  15. High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon.

    Science.gov (United States)

    Reddy, Umesh K; Nimmakayala, Padma; Levi, Amnon; Abburi, Venkata Lakshmi; Saminathan, Thangasamy; Tomason, Yan R; Vajja, Gopinath; Reddy, Rishi; Abburi, Lavanya; Wehner, Todd C; Ronin, Yefim; Karol, Abraham

    2014-09-15

    We used genotyping by sequencing to identify a set of 10,480 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1096 cM for watermelon. We assessed the genome-wide variation in recombination rate (GWRR) across the map and found an association between GWRR and genome-wide nucleotide diversity. Collinearity between the map and the genome-wide reference sequence for watermelon was studied to identify inconsistency and chromosome rearrangements. We assessed genome-wide nucleotide diversity, linkage disequilibrium (LD), and selective sweep for wild, semi-wild, and domesticated accessions of Citrullus lanatus var. lanatus to track signals of domestication. Principal component analysis combined with chromosome-wide phylogenetic study based on 1563 SNPs obtained after LD pruning with minor allele frequency of 0.05 resolved the differences between semi-wild and wild accessions as well as relationships among worldwide sweet watermelon. Population structure analysis revealed predominant ancestries for wild, semi-wild, and domesticated watermelons as well as admixture of various ancestries that were important for domestication. Sliding window analysis of Tajima's D across various chromosomes was used to resolve selective sweep. LD decay was estimated for various chromosomes. We identified a strong selective sweep on chromosome 3 consisting of important genes that might have had a role in sweet watermelon domestication. Copyright © 2014 Reddy et al.

  16. Supplementary Material for: Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Approximately 10 % of the Mycobacterium tuberculosis genome is made up of two families of genes that are poorly characterized due to their high GC content and highly repetitive nature. The PE and PPE families are typified by their highly conserved N-terminal domains that incorporate proline-glutamate (PE) and proline-proline-glutamate (PPE) signature motifs. They are hypothesised to be important virulence factors involved with host-pathogen interactions, but their high genetic variability and complexity of analysis means they are typically disregarded in genome studies. Results To elucidate the structure of these genes, 518 genomes from a diverse international collection of clinical isolates were de novo assembled. A further 21 reference M. tuberculosis complex genomes and long read sequence data were used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was consistent with lineage. Several recombination hotspots were identified, notably pe_pgrs3 and pe_pgrs17. Evidence of positive selection was revealed in 65 pe/ppe genes, including epitopes potentially binding to major histocompatibility complex molecules. Conclusions This, the first comprehensive study of the pe and ppe genes, provides important insight into M. tuberculosis diversity and has significant implications for vaccine development.

  17. Valproic acid increases conservative homologous recombination frequency and reactive oxygen species formation: a potential mechanism for valproic acid-induced neural tube defects.

    Science.gov (United States)

    Defoort, Ericka N; Kim, Perry M; Winn, Louise M

    2006-04-01

    Valproic acid, a commonly used antiepileptic agent, is associated with a 1 to 2% incidence of neural tube defects when taken during pregnancy; however, the molecular mechanism by which this occurs has not been elucidated. Previous research suggests that valproic acid exposure leads to an increase in reactive oxygen species (ROS). DNA damage due to ROS can result in DNA double-strand breaks, which can be repaired through homologous recombination (HR), a process that is not error-free and can result in detrimental genetic changes. Because the developing embryo requires tight regulation of gene expression to develop properly, we propose that the loss or dysfunction of genes involved in embryonic development through aberrant HR may ultimately cause neural tube defects. To determine whether valproic acid induces HR, Chinese hamster ovary 3-6 cells, containing a neomycin direct repeat recombination substrate, were exposed to valproic acid for 4 or 24 h. A significant increase in HR after exposure to valproic acid (5 and 10 mM) for 24 h was observed, which seems to occur through a conservative HR mechanism. We also demonstrated that exposure to valproic acid (5 and 10 mM) significantly increased intracellular ROS levels, which were attenuated by preincubation with polyethylene glycol-conjugated (PEG)-catalase. A significant change in the ratio of 8-hydroxy-2'-deoxyguanosine/2'-de-oxyguanosine, a measure of DNA oxidation, was not observed after valproic acid exposure; however, preincubation with PEG-catalase significantly blocked the increase in HR. These data demonstrate that valproic acid increases HR frequency and provides a possible mechanism for valproic acid-induced neural tube defects.

  18. Mechanism of action of recombinant interleukin-2 combined with allicin in treatment of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    ZHU Lining

    2016-10-01

    Full Text Available Objective To investigate the effect of recombinant interleukin-2 (rIL-2 combined with allicin in the treatment of pancreatic cancer and related mechanisms. Methods A nude mouse xenograft model was established. A total of 60 nude mice were randomized into control group, rIL-2 treatment group, allicin treatment group, and combined treatment group. At 4 weeks after treatment, peripheral blood was collected, tumor volume, tumor weight, and survival time were recorded, and survival rates were calculated. Flow cytometry was used to analyze the apoptosis of tumor cells and measure the percentages of CD4+ T, CD8+ T, and natural killer (NK cells, ELISA was used to measure the level of interferonγ (IFNγ, and Western blot was used to measure the expression of Bcl-2 protein in tumor tissue. An analysis of variance was used for comparison of continuous data between groups, and SNK-q test was used for further comparison between any two groups. Results At 4 weeks after treatment, the rIL-2 treatment group, allicin treatment group, and combined treatment group showed significant reductions in tumor volume compared with the control group (all P<0.05, and the combined treatment group showed the greatest reduction (P<0.01. The combined treatment group had a tumor inhibition rate of 90.5% and a prolonged survival time (60% of the mice survived at 55 days. Compared with the control group, the combined treatment group showed significant increases in the apoptosis rate of tumor cells (23.3%±4.3% vs 9.0%±3.7%, P<0.05 and the expression of pro-apoptotic protein Bcl-2. The treatment groups showed significant increases in the percentages of CD4+ T, CD8+ T, and NK cells compared with the control group (F=23.74, 26.38, and 19.72, all P<0.001. Compared with the other three groups, the combined treatment group showed a significant increase in the IFNγ level (F=9.84, P=0.026. Conclusion Combined treatment with allicin and rIL-2 can enhance the innate immunity and

  19. Dss1 interaction with Brh2 as a regulatory mechanism for recombinational repair

    DEFF Research Database (Denmark)

    Zhou, Qingwen; Kojic, Milorad; Cao, Zhimin;

    2007-01-01

    Brh2, the BRCA2 ortholog in Ustilago maydis, enables recombinational repair of DNA by controlling Rad51 and is in turn regulated by Dss1. Interplay with Rad51 is conducted via the BRC element located in the N-terminal region of the protein and through an unrelated domain, CRE, at the C terminus...

  20. Mechanisms of suppression: The wiring of genetic resilience.

    Science.gov (United States)

    van Leeuwen, Jolanda; Pons, Carles; Boone, Charles; Andrews, Brenda J

    2017-07-01

    Recent analysis of genome sequences has identified individuals that are healthy despite carrying severe disease-associated mutations. A possible explanation is that these individuals carry a second genomic perturbation that can compensate for the detrimental effects of the disease allele, a phenomenon referred to as suppression. In model organisms, suppression interactions are generally divided into two classes: genomic suppressors which are secondary mutations in the genome that bypass a mutant phenotype, and dosage suppression interactions in which overexpression of a suppressor gene rescues a mutant phenotype. Here, we describe the general properties of genomic and dosage suppression, with an emphasis on the budding yeast. We propose that suppression interactions between genetic variants are likely relevant for determining the penetrance of human traits. Consequently, an understanding of suppression mechanisms may guide the discovery of protective variants in healthy individuals that carry disease alleles, which could direct the rational design of new therapeutics. © 2017 WILEY Periodicals, Inc.

  1. STAT4: genetics, mechanisms, and implications for autoimmunity.

    Science.gov (United States)

    Korman, Benjamin D; Kastner, Daniel L; Gregersen, Peter K; Remmers, Elaine F

    2008-09-01

    Recent advances in genetics and technology have led to breakthroughs in understanding the genes that predispose individuals to autoimmune diseases. A common haplotype of the signal transducer and activator of transcription 4 (STAT4) gene has been shown to be associated with susceptibility to rheumatoid arthritis, systemic lupus erythematosus, and primary Sjögren's syndrome. STAT4 is a transcription factor that transduces interleukin-12, interleukin-23, and type 1 interferon cytokine signals in T cells and monocytes, leading to T-helper type 1 and T-helper type 17 differentiation, monocyte activation, and interferon-gamma production. Although the evidence for this association is very strong and well replicated, the exact mechanism by which polymorphisms in this gene lead to disease remains unknown. In concert with the identification of other disease-associated loci, elucidating how the variant form of STAT4 modulates immune function should lead to an improved understanding of the pathophysiology of autoimmunity.

  2. Genetic Differences among the a/J x C57bl/6j Recombinant Inbred Mouse Lines and Their Degree of Association with Glucocorticoid-Induced Cleft Palate

    OpenAIRE

    Liu, Sharon L.; Erickson, Robert P.

    1986-01-01

    Hydrocortisone sodium phosphate was injected intramuscularly into A/J, C57BL/6J and recombinant inbred lines from these two parental lines to study the genetics of steroid-induced cleft palate in a situation of identical maternal and fetal genotypes. The strains were typed for H-2 (the major histocompatibility locus), β-glucuronidase and β2-microglobulin, which served as markers on chromosomes 17, 5 and 2, respectively. Hepatic glucocorticoid binding capacity had been previously measured in H...

  3. Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    LONG Jiangqi; LAN Fengchong; CHEN Jiqing; YU Ping

    2009-01-01

    For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM(R) Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.

  4. Dual selection mechanisms drive efficient single-gene reverse genetics for rotavirus

    OpenAIRE

    Trask, Shane D.; Taraporewala, Zenobia F.; Boehme, Karl W.; Dermody, Terence S.; Patton, John T.

    2010-01-01

    Current methods for engineering the segmented double-stranded RNA genome of rotavirus (RV) are limited by inefficient recovery of the recombinant virus. In an effort to expand the utility of RV reverse genetics, we developed a method to recover recombinant viruses in which independent selection strategies are used to engineer single-gene replacements. We coupled a mutant SA11 RV encoding a temperature-sensitive (ts) defect in the NSP2 protein with RNAi-mediated degradation of NSP2 mRNAs to is...

  5. Radiative recombination mechanisms in polar and non-polar InGaN/GaN quantum well LED structures

    Science.gov (United States)

    Badcock, T. J.; Ali, M.; Zhu, T.; Pristovsek, M.; Oliver, R. A.; Shields, A. J.

    2016-10-01

    We study the photoluminescence internal quantum efficiency (IQE) and recombination dynamics in a pair of polar and non-polar InGaN/GaN quantum well (QW) light-emitting diode (LED) structures as a function of excess carrier density and temperature. In the polar LED at 293 K, the variation of radiative and non-radiative lifetimes is well described by a modified ABC type model which accounts for the background carrier concentration in the QWs due to unintentional doping. As the temperature is reduced, the sensitivity of the radiative lifetime to excess carrier density becomes progressively weaker. We attribute this behaviour to the reduced mobility of the localised electrons and holes at low temperatures, resulting in a more monomolecular like radiative process. Thus we propose that in polar QWs, the degree of carrier localisation determines the sensitivity of the radiative lifetime to the excess carrier density. In the non-polar LED, the radiative lifetime is independent of excitation density at room temperature, consistent with a wholly excitonic recombination mechanism. These findings have significance for the interpretation of LED efficiency data within the context of the ABC recombination model.

  6. Lumbosacral lordosis in fetal spine: genetic or mechanic parameter.

    Science.gov (United States)

    Choufani, Elie; Jouve, Jean-Luc; Pomero, Vincent; Adalian, Pascal; Chaumoitre, Kathia; Panuel, Michel

    2009-09-01

    lordosis was not correlated statistically to gestational age which means that it is not related to growth and might be genetically determined. Mechanical factors may play a major role in the determination of the shape of the growing pelvis. One can ask if the pelvis morphology is genetically determined or if it is mechanically determined under muscular and ligamentous stresses. This study shows that the sacrum of human fetuses is oriented posteriorly mathematically in 100% of cases, and in 60% of cases based on the morphologic appearance of the lumbosacral junction. So beside the effect of progressive acquisition of erect posture and bipedalism in determining the formation of lumbosacral angle, we believe that genetics play an important role in the formation of the lumbosacral angle.

  7. [Advance on genetic mechanism of adolescent idiopathic scoliosis and genetic relationship map].

    Science.gov (United States)

    Wang, Wei; Ma, Jun; Li, Shu-yuan; Wu, Xian; Hu, Bin; Wang, Xiao-feng; Zhou, Xu-hui

    2015-09-01

    Identification of genetic risk factors is the hotspot of adolescent idiopathic scoliosis (AIS). Through candidate gene approach and genome-wide association studies (GWAS), some genes were preliminary identified. To review AIS related genes,and construct the gene network map of AIS gene. We searched on NCBI PubMed and Web of Science database using search terms "adolescent idiopathic scoliosis" and "gene", to classify induction genes. We then constructed gene diagram using string-db. We found 35 AIS genes relating to connective tissue, nervous system active substances, melatonin synthesis and metabolism, puberty and growth, and genes whose function is unknown. Gene diagram shows that a network relationship between gene and other genes,in which IL6, ESR1, ESR2, VDR, TGFB1, IGF1 gene may as the key gene about AIS' genetic mechanism. Two sites of 3 GWAS results outside the network, it is suggesting new pathway that need to be explored. The study about AIS susceptibility gene is still preliminary, requiring in-depth research to identify the new networks.

  8. Integration-free reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) without viral vectors, recombinant DNA, and genetic modification.

    Science.gov (United States)

    Heng, Boon Chin; Fussenegger, Martin

    2014-01-01

    Stem cells are envisaged to be integral components of multicellular systems engineered for therapeutic applications. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) via recombinant expression of a limited number of transcription factors, which was first achieved by Yamanaka and colleagues in 2007, heralded a major breakthrough in the stem cell field. Since then, there has been rapid progress in the field of iPSC generation, including the identification of various small molecules that can enhance reprogramming efficiency and reduce the number of different transcription factors required for reprogramming. Nevertheless, the major obstacles facing clinical applications of iPSCs are safety concerns associated with the use of viral vectors and recombinant DNA for expressing the appropriate transcription factors during reprogramming. In particular, permanent genetic modifications to newly reprogrammed iPSCs have to be avoided in order to meet stringent safety requirements for clinical therapy. These safety challenges can be overcome by new technology platforms that enable cellular reprogramming to iPSCs without the need to utilize either recombinant DNA or viral vectors. The use of recombinant cell-penetrating peptides and direct transfection of synthetic mRNA encoding appropriate transcription factors have both been shown to successfully reprogram somatic cells to iPSCs. It has also been shown more recently that the direct transfection of certain miRNA species can reprogram somatic cells to pluripotency without the need for any of the transcription factors commonly utilized for iPSC generation. This chapter describes protocols for iPSC generation with these new techniques, which would obviate the use of recombinant DNA and viral vectors in cellular reprogramming, thus avoiding permanent genetic modification to the reprogrammed cells.

  9. CRISPR Technology Reveals RAD(51)-ical Mechanisms of Repair in Roundworms: An Educational Primer for Use with "Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans".

    Science.gov (United States)

    Turcotte, Carolyn A; Andrews, Nicolas P; Sloat, Solomon A; Checchi, Paula M

    2016-11-01

    The mechanisms cells use to maintain genetic fidelity via DNA repair and the accuracy of these processes have garnered interest from scientists engaged in basic research to clinicians seeking improved treatment for cancer patients. Despite the continued advances, many details of DNA repair are still incompletely understood. In addition, the inherent complexity of DNA repair processes, even at the most fundamental level, makes it a challenging topic. This primer is meant to assist both educators and students in using a recent paper, "Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in Caenorhabditis elegans," to understand mechanisms of DNA repair. The goals of this primer are to highlight and clarify several key techniques utilized, with special emphasis on the clustered, regularly interspaced, short palindromic repeats technique and the ways in which it has revolutionized genetics research, as well as to provide questions for deeper in-class discussion.

  10. Differential requirements of singleplex and multiplex recombineering of large DNA constructs.

    Science.gov (United States)

    Reddy, Thimma R; Kelsall, Emma J; Fevat, Léna M S; Munson, Sarah E; Cowley, Shaun M

    2015-01-01

    Recombineering is an in vivo genetic engineering technique involving homologous recombination mediated by phage recombination proteins. The use of recombineering methodology is not limited by size and sequence constraints and therefore has enabled the streamlined construction of bacterial strains and multi-component plasmids. Recombineering applications commonly utilize singleplex strategies and the parameters are extensively tested. However, singleplex recombineering is not suitable for the modification of several loci in genome recoding and strain engineering exercises, which requires a multiplex recombineering design. Defining the main parameters affecting multiplex efficiency especially the insertion of multiple large genes is necessary to enable efficient large-scale modification of the genome. Here, we have tested different recombineering operational parameters of the lambda phage Red recombination system and compared singleplex and multiplex recombineering of large gene sized DNA cassettes. We have found that optimal multiplex recombination required long homology lengths in excess of 120 bp. However, efficient multiplexing was possible with only 60 bp of homology. Multiplex recombination was more limited by lower amounts of DNA than singleplex recombineering and was greatly enhanced by use of phosphorothioate protection of DNA. Exploring the mechanism of multiplexing revealed that efficient recombination required co-selection of an antibiotic marker and the presence of all three Red proteins. Building on these results, we substantially increased multiplex efficiency using an ExoVII deletion strain. Our findings elucidate key differences between singleplex and multiplex recombineering and provide important clues for further improving multiplex recombination efficiency.

  11. Differential requirements of singleplex and multiplex recombineering of large DNA constructs.

    Directory of Open Access Journals (Sweden)

    Thimma R Reddy

    Full Text Available Recombineering is an in vivo genetic engineering technique involving homologous recombination mediated by phage recombination proteins. The use of recombineering methodology is not limited by size and sequence constraints and therefore has enabled the streamlined construction of bacterial strains and multi-component plasmids. Recombineering applications commonly utilize singleplex strategies and the parameters are extensively tested. However, singleplex recombineering is not suitable for the modification of several loci in genome recoding and strain engineering exercises, which requires a multiplex recombineering design. Defining the main parameters affecting multiplex efficiency especially the insertion of multiple large genes is necessary to enable efficient large-scale modification of the genome. Here, we have tested different recombineering operational parameters of the lambda phage Red recombination system and compared singleplex and multiplex recombineering of large gene sized DNA cassettes. We have found that optimal multiplex recombination required long homology lengths in excess of 120 bp. However, efficient multiplexing was possible with only 60 bp of homology. Multiplex recombination was more limited by lower amounts of DNA than singleplex recombineering and was greatly enhanced by use of phosphorothioate protection of DNA. Exploring the mechanism of multiplexing revealed that efficient recombination required co-selection of an antibiotic marker and the presence of all three Red proteins. Building on these results, we substantially increased multiplex efficiency using an ExoVII deletion strain. Our findings elucidate key differences between singleplex and multiplex recombineering and provide important clues for further improving multiplex recombination efficiency.

  12. Expression, refolding and preliminary characterization of recombinant snake venom metalloproteinases: Implication for the hemorrhagic mechanism

    Institute of Scientific and Technical Information of China (English)

    XIANG Kaijun; ZOU Chunsen; ZHU Zhiqiang; TENG Maikun; NIU Liwen; LIU Jing

    2003-01-01

    Two cDNAs encoding hemorrhagic snake venom metalloproteinase acutolysin A and non-hemorrhagic metalloproteinase (BR) were cloned into the expression vector pET-22b, respectively, and the corresponding two recombinant proteins, A-22b and BR-22b, were produced in inclusion bodies in E. coli BL21(DE3). The recombinant proteins were then subjected to solubilization, purification and refolding in vitro. A-22b showed hemorrhagic activity but no detectable proteolytic activities toward fibrinogen and fibronectin. Natural acutolysin A had both hemorrhagic activity and proteolytic activity toward these substrates. BR-22b showed the proteolytic activities toward fibrinogen, but no hemorrhagic activity. In addition, two chimeric genes, Cl and C2, were constructed and cloned into pET-22b, and the corresponding recombinant proteins, C1-22b and C2-22b,were also expressed in inclusion bodies. C1-22b involved N-terminal 110 amino acids of BR and C-terminal 95 amino acids of acutolysin A, while C2-22b contained N-terminal 108amino acids of acutolysin A and C-terminal 112 amino acids of BR. The biological activities of C2-22b and C1-22b were similar to those of A-22b and BR-22b, respectively. Our results suggested that N-terminal major subdomain of a snake venom metalloproteinase might play a key role in hemorrhagic activity and have an appreciable effect on the selectivity for protein substrates.

  13. Novel intragenotype recombination in sapovirus.

    Science.gov (United States)

    Phan, Tung Gia; Yan, Hainian; Khamrin, Pattara; Quang, Trinh Duy; Dey, Shuvra Kanti; Yagyu, Fumihiro; Okitsu, Shoko; Müller, Werner E G; Ushijima, Hiroshi

    2006-01-01

    Based on the genetic analysis, a novel, naturally occurring recombination between two distinct sapovirus subtypes (subtype a and subtype b) within genogroup I genotype 1 was identified. Breakpoint analysis of recombinant sapovirus showed that the recombination site was at the polymerase-capsid junction. This is the first report of the existence of acute gastroenteritis caused by intragenotype recombinant sapovirus. The results also provided evidence that the natural recombination occurs not only in sapovirus genogroup II but also in sapovirus genogroup I.

  14. Integration of a transfected gene into the genome of Babesia bovis occurs by legitimate homologous recombination mechanisms.

    Science.gov (United States)

    Suarez, Carlos E; Johnson, Wendell C; Herndon, David R; Laughery, Jacob M; Davis, William C

    2015-08-01

    This study examines the patterns of gene integration of gfp-bsd upon stable transfection into the T3Bo strain of Babesia bovis using a plasmid designed to integrate homologous sequences of the parasite's two identical ef-1α A and B genes. While the transfected BboTf-149-6 cell line displayed two distinct patterns of gene integration, clonal lines derived from this strain by cell sorting contained only single gfp-bsd insertions. Whole genome sequencing of two selected clonal lines, E9 and C6, indicated two distinct patterns of gfp-bsd insertion occurring by legitimate homologous recombination mechanisms: one into the expected ef-1α orf B, and another into the ef-1α B promoter. The data suggest that expression of the ef-1α orf B is not required for development of B. bovis in cultured erythrocyte stages. Use of legitimate homologous recombination mechanisms in transfected B. bovis supports the future use of transfection methods for developing efficient gene function assignment experiments using gene knockout techniques. Published by Elsevier B.V.

  15. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Ole A Andreassen

    Full Text Available Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS to investigate shared single nucleotide polymorphisms (SNPs between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals, applying new False Discovery Rate (FDR methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG, low density lipoproteins (LDL, high density lipoproteins (HDL] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis. We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88, LDL (n = 87 and HDL (n = 52. Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2 and intestinal host-microbe interactions (e.g. ATG16L1. We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.

  16. The Recombination Mechanism and True Green Amplified Spontaneous Emission in CH3NH3PbBr3 Perovskite

    KAUST Repository

    Priante, Davide

    2015-08-01

    True-green wavelength emitters at 555 nm are currently dominated by III-V semiconductor-based inorganic materials. Nevertheless, due to high lattice- and thermal-mismatch, the overall power efficiency in this range tends to decline for high current density showing the so-called efficiency droop in the green region (“green gap”). In order to fill the research green gap, this thesis examines the low cost solution-processability of organometal halide perovskites, which presents a unique opportunity for light-emitting devices in the green-yellow region owing to their superior photophysic properties such as high photoluminescence quantum efficiency, small capture cross section of defect states as well as optical bandgap tunability across the visible light regime. Specifically, the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material were investigated using low-temperature, power-dependent (77 K), temperature-dependent photoluminescence (PL) measurements. We noted three recombination peaks at 77K, one of which originated from bulk defect states, and other two from surface defect states. The latter were identified as bound-excitonic (BE) radiative transitions related to particle size inhomogeneity or grain size induced surface state in the sample. Both transitions led to PL spectra broadening as a result of concurrent blue- and red-shifts of these excitonic peaks. The blue-shift is most likely due to the Burstein-Moss (band filling) effect. Interestingly, the red-shift of the second excitonic peak becomes pronounced with increasing temperature leading to a true-green wavelength of 553 nm for CH3NH3PbBr3. On the other hand, red-shifted peak originates from the strong absorption in the second excitonic peak owed to the high density of surface states and carrier filling of these states due to the excitation from the first excitonic recombination. We also achieved amplified spontaneous emission around excitation threshold energy of 350 μJ/cm2

  17. Reconciling genetic evolution and the associative learning account of mirror neurons through data-acquisition mechanisms.

    Science.gov (United States)

    Lotem, Arnon; Kolodny, Oren

    2014-04-01

    An associative learning account of mirror neurons should not preclude genetic evolution of its underlying mechanisms. On the contrary, an associative learning framework for cognitive development should seek heritable variation in the learning rules and in the data-acquisition mechanisms that construct associative networks, demonstrating how small genetic modifications of associative elements can give rise to the evolution of complex cognition.

  18. Plasticity of BRCA2 function in homologous recombination: genetic interactions of the PALB2 and DNA binding domains.

    Directory of Open Access Journals (Sweden)

    Nicolas Siaud

    2011-12-01

    Full Text Available The breast cancer suppressor BRCA2 is essential for the maintenance of genomic integrity in mammalian cells through its role in DNA repair by homologous recombination (HR. Human BRCA2 is 3,418 amino acids and is comprised of multiple domains that interact with the RAD51 recombinase and other proteins as well as with DNA. To gain insight into the cellular function of BRCA2 in HR, we created fusions consisting of various BRCA2 domains and also introduced mutations into these domains to disrupt specific protein and DNA interactions. We find that a BRCA2 fusion peptide deleted for the DNA binding domain and active in HR is completely dependent on interaction with the PALB2 tumor suppressor for activity. Conversely, a BRCA2 fusion peptide deleted for the PALB2 binding domain is dependent on an intact DNA binding domain, providing a role for this conserved domain in vivo; mutagenesis suggests that both single-stranded and double-stranded DNA binding activities in the DNA binding domain are required for its activity. Given that PALB2 itself binds DNA, these results suggest alternative mechanisms to deliver RAD51 to DNA. In addition, the BRCA2 C terminus contains both RAD51-dependent and -independent activities which are essential to HR in some contexts. Finally, binding the small peptide DSS1 is essential for activity when its binding domain is present, but not when it is absent. Our results reveal functional redundancy within the BRCA2 protein and emphasize the plasticity of this large protein built for optimal HR function in mammalian cells. The occurrence of disease-causing mutations throughout BRCA2 suggests sub-optimal HR from a variety of domain modulations.

  19. Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast.

    Directory of Open Access Journals (Sweden)

    Bilge Argunhan

    Full Text Available Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs. The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI whereas no significant reduction was found in smaller chromosomes (III and VI. On the other hand, the absence of Rad17 (a critical component of the ATR pathway lead to an increase in DSB formation (chromosomes VII and II were tested. We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation.

  20. Catalytic properties and heat stabilities of novel recombinant human N-acetyltransferase 2 allozymes support existence of genetic heterogeneity within the slow acetylator phenotype.

    Science.gov (United States)

    Hein, David W; Doll, Mark A

    2017-08-01

    Human N-acetyltransferase 2 (NAT2) catalyzes the N-acetylation of numerous aromatic amine drugs such as sulfamethazine (SMZ) and hydrazine drugs such as isoniazid (INH). NAT2 also catalyzes the N-acetylation of aromatic amine carcinogens such as 2-aminofluorene and the O- and N,O-acetylation of aromatic amine and heterocyclic amine metabolites. Genetic polymorphism in NAT2 modifies drug efficacy and toxicity as well as cancer risk. Acetyltransferase catalytic activities and heat stability associated with six novel NAT2 haplotypes (NAT2*6C, NAT2*14C, NAT2*14D, NAT2*14E, NAT2*17, and NAT2*18) were compared with that of the reference NAT2*4 haplotype following recombinant expression in Escherichia coli. N-acetyltransferase activities towards SMZ and INH were significantly (p N-acetyltransferase activities catalyzed by NAT2 14C and NAT2 14D were significantly lower (p N-Acetylation catalyzed by recombinant human NAT2 17 was over several hundred-fold lower than by recombinant NAT2 4 precluding measurement of its kinetic or heat inactivation constants. Similar results were observed for the O-acetylation of N-hydroxy-2-aminofluorene and N-hydroxy-2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine and the intramolecular N,O-acetylation of N-hydroxy-N-acetyl-2-aminofluorene. The apparent V max of the novel recombinant NAT2 allozymes NAT2 6C, NAT2 14C, NAT2 14D, and NAT2 14E towards AF, 4-aminobiphenyl (ABP), and 3,2'-dimethyl-4-aminobiphenyl (DMABP) were each significantly (p  0.05) from recombinant NAT2 4. The apparent V max catalyzed by NAT2 14C and NAT2 14D were significantly lower (p < 0.05) than the apparent V max catalyzed by NAT2 6C and NAT2 14E towards AF, ABP, and DMABP. Heat inactivation rate constants for recombinant human NAT2 14C, 14D, 14E, and 18 were significantly (p < 0.05) higher than NAT2 4. These results provide further evidence of genetic heterogeneity within the NAT2 slow acetylator phenotype.

  1. The genetic mechanisms of primary angle closure glaucoma.

    Science.gov (United States)

    Ahram, D F; Alward, W L; Kuehn, M H

    2015-10-01

    Primary Angle Closure Glaucoma (PACG) is one of the most common types of glaucoma affecting over 15 million individuals worldwide. Family history and ethnicity are strongly associated with the development of the disease, suggesting that one or more genetic factors contribute to PACG. Although strictly heritable disease-causing mutations have not been identified, a number of recent association studies have pointed out genetic factors that appear to contribute to an individual's risk to develop PACG. In addition, genetic factors have been identified that modify PACG endophenotypes for example, axial length. Herein we review the current literature on this important topic.

  2. A FIELD STUDY WITH GENETICALLY ENGINEERED ALFALFA INOCULATED WITH RECOMBINANT SINORHIZOBIUM MELILOTI: EFFECTS ON THE SOIL ECOSYSTEM

    Science.gov (United States)

    The agricultural use of genetically engineered plants and microorganisms has become increasingly common. Because genetically engineered plants and microorganisms can produce compounds foreign to their environment, there is concern that they may become established outside of thei...

  3. A FIELD STUDY WITH GENETICALLY ENGINEERED ALFALFA INOCULATED WITH RECOMBINANT SINORHIZOBIUM MELILOTI: EFFECTS ON THE SOIL ECOSYSTEM

    Science.gov (United States)

    The agricultural use of genetically engineered plants and microorganisms has become increasingly common. Because genetically engineered plants and microorganisms can produce compounds foreign to their environment, there is concern that they may become established outside of thei...

  4. A model of the effect of pseudothecia on genetic recombination and epidemic development in populations of ¤Mycosphaerella graminicola¤

    DEFF Research Database (Denmark)

    Eriksen, L.; Shaw, M.W.; Østergård, Hanne

    2001-01-01

    . A considerable proportion of spores released at the end of the growing season may be sexual descendants of the initial population. However, ascospores are unlikely to affect the severity of the epidemic during the growing season. This is due to the much longer latent period for pseudothecia compared...... of the two spore types to the epidemic over the growing season, a model simulating disease caused by both types of spores was constructed and analyzed. The conclusion from the analysis of this model is that sexual recombination will affect the genetic composition of the population during a growing season...

  5. Correlated responses to clonal selection in populations of Daphnia pulicaria: mechanisms of genetic correlation and the creative power of sex.

    Science.gov (United States)

    Dudycha, Jeffry L; Snoke-Smith, Margaret; Alía, Ricardo

    2013-02-01

    Genetic correlations among traits alter evolutionary trajectories due to indirect selection. Pleiotropy, chance linkage, and selection can all lead to genetic correlations, but have different consequences for phenotypic evolution. We sought to assess the mechanisms contributing to correlations with size at maturity in the cyclic parthenogen Daphnia pulicaria. We selected on size in each of four populations that differ in the frequency of sex, and evaluated correlated responses in a life table. Size at advanced adulthood, reproductive output, and adult growth rate clearly showed greater responses in high-sex populations, with a similar pattern in neonate size and r. This pattern is expected only when trait correlations are favored by selection and the frequency of sex favors the creation and demographic expansion of highly fit clones. Juvenile growth and age at maturity did not diverge consistently. The inter-clutch interval appeared to respond more strongly in low-sex populations, but this was not statistically significant. Our data support the hypothesis that correlated selection is the strongest driver of genetic correlations, and suggest that in organisms with both sexual and asexual reproduction, adaptation can be enhanced by recombination.

  6. A genetic linkage map for Tribolium confusum based on random amplified polymorphic DNAs and recombinant inbred lines.

    Science.gov (United States)

    Yezerski, A; Stevens, L; Ametrano, J

    2003-10-01

    Tribolium beetles provide an excellent and easily manipulated model system for the study of genetics. However, despite significant increases in the availability of molecular markers for the study of genetics in recent years, a significant genetic linkage map for these beetles remains undeveloped. We present the first molecular genetic linkage map for Tribolium confusum using random amplified polymorphic DNA markers. The linkage map contains 137 loci mapped on to eight linkage groups totaling 968.5 cM.

  7. Characterization of mechanical properties of transgenic tobacco roots expressing a recombinant monoclonal antibody against tooth decay.

    Science.gov (United States)

    Hassan, Sally; Liu, Wei; Ma, Julian K-C; Thomas, Colin R; Keshavarz-Moore, Eli

    2008-07-01

    In this article, we describe a new approach that allows the determination of the magnitude of force required to break single plant roots. Roots were taken from transgenic tobacco plants, expressing a secreted monoclonal antibody. They were divided into four key developmental stages. A novel micromanipulation technique was used to pull to breakage, single tobacco roots in buffer in order to determine their breaking force. A characteristic uniform step-wise increase in the force up to a peak force for breakage was observed. The mean breaking force and mean work done were 101mN and 97microJ per root respectively. However, there was a significant increase in breaking force from the youngest white roots to the oldest, dark red-brown roots. We speculate that this was due to increasing lignin deposition with root stage of development (shown by phloroglucinol staining). No significant differences between fresh root mass, original root length, or mean root diameter for any of the root categories were found, displaying their uniformity, which would be beneficial for bioprocessing. In addition, no significant difference in antibody yield from the different root categories was found. These data show that it is possible to characterise the force requirements for root breakage and should assist in the optimisation of recombinant protein extraction from these roots. (c) 2008 Wiley Periodicals, Inc.

  8. Effect of the genetic background on recombination frequency in the cn-vg region of the second chromosome of natural populations of Drosophila melanogaster.

    Science.gov (United States)

    Hofmanová, J

    1975-01-01

    Newly established test stocks made it possible to follow the effect of three different defined genetic backgrounds (first and third chromosomes) on recombination frequency in the cn-vg region of the second chromosomes isolated from four natural populations of Drosophila melanogaster. One background was composed of the chromosomes with inversions obtained from the stock (see article) and another two backgrounds were of the standard type consisting one-half of the original chromosomes from the natural population and one-half of the chromosomes of the stocks Oregon R or Samarkand. Using the analysis of variance significant differences in RF values were found between and within populations and especially between the different backgrounds. Some simple and double interactions between the above factors played a role. The highest RF values were obtained on the background [corrected] with inversions. The effect of the different genetic backgrounds [corrected] by the action of the genetic modifiers of RF. The different genetic backgrounds affected the variations in RF values in individual populations and the different populations reacted differentially to the changed genetic background. The design of the experiment permitted an estimation of the causal compoenents of variance and heritability of RF from the sib analysis. The additive component of variance was present in only two of the populations under test; the respective estimates of heritability were very low.

  9. Live-Cell Imaging of Vaccinia Virus Recombination.

    Directory of Open Access Journals (Sweden)

    Patrick Paszkowski

    2016-08-01

    Full Text Available Recombination between co-infecting poxviruses provides an important mechanism for generating the genetic diversity that underpins evolution. However, poxviruses replicate in membrane-bound cytoplasmic structures known as factories or virosomes. These are enclosed structures that could impede DNA mixing between co-infecting viruses, and mixing would seem to be essential for this process. We hypothesize that virosome fusion events would be a prerequisite for recombination between co-infecting poxviruses, and this requirement could delay or limit viral recombination. We have engineered vaccinia virus (VACV to express overlapping portions of mCherry fluorescent protein fused to a cro DNA-binding element. In cells also expressing an EGFP-cro fusion protein, this permits live tracking of virus DNA and genetic recombination using confocal microscopy. Our studies show that different types of recombination events exhibit different timing patterns, depending upon the relative locations of the recombining elements. Recombination between partly duplicated sequences is detected soon after post-replicative genes are expressed, as long as the reporter gene sequences are located in cis within an infecting genome. The same kinetics are also observed when the recombining elements are divided between VACV and transfected DNA. In contrast, recombination is delayed when the recombining sequences are located on different co-infecting viruses, and mature recombinants aren't detected until well after late gene expression is well established. The delay supports the hypothesis that factories impede inter-viral recombination, but even after factories merge there remain further constraints limiting virus DNA mixing and recombinant gene assembly. This delay could be related to the continued presence of ER-derived membranes within the fused virosomes, membranes that may once have wrapped individual factories.

  10. High-throughput plasmid construction using homologous recombination in yeast: its mechanisms and application to protein production for X-ray crystallography.

    Science.gov (United States)

    Mizutani, Kimihiko

    2015-01-01

    Homologous recombination is a system for repairing the broken genomes of living organisms by connecting two DNA strands at their homologous sequences. Today, homologous recombination in yeast is used for plasmid construction as a substitute for traditional methods using restriction enzymes and ligases. This method has various advantages over the traditional method, including flexibility in the position of DNA insertion and ease of manipulation. Recently, the author of this review reported the construction of plasmids by homologous recombination in the methanol-utilizing yeast Pichia pastoris, which is known to be an excellent expression host for secretory proteins and membrane proteins. The method enabled high-throughput construction of expression systems of proteins using P. pastoris; the constructed expression systems were used to investigate the expression conditions of membrane proteins and to perform X-ray crystallography of secretory proteins. This review discusses the mechanisms and applications of homologous recombination, including the production of proteins for X-ray crystallography.

  11. Atrial Fibrillation Genetic Risk and Ischemic Stroke Mechanisms.

    Science.gov (United States)

    Lubitz, Steven A; Parsons, Owen E; Anderson, Christopher D; Benjamin, Emelia J; Malik, Rainer; Weng, Lu-Chen; Dichgans, Martin; Sudlow, Cathie L; Rothwell, Peter M; Rosand, Jonathan; Ellinor, Patrick T; Markus, Hugh S; Traylor, Matthew

    2017-06-01

    Atrial fibrillation (AF) is a leading cause of cardioembolic stroke, but the relationship between AF and noncardioembolic stroke subtypes are unclear. Because AF may be unrecognized, and because AF has a substantial genetic basis, we assessed for predisposition to AF across ischemic stroke subtypes. We examined associations between AF genetic risk and Trial of Org 10172 in Acute Stroke Treatment stroke subtypes in 2374 ambulatory individuals with ischemic stroke and 5175 without from the Wellcome Trust Case-Control Consortium 2 using logistic regression. We calculated AF genetic risk scores using single-nucleotide polymorphisms associated with AF in a previous independent analysis across a range of preselected significance thresholds. There were 460 (19.4%) individuals with cardioembolic stroke, 498 (21.0%) with large vessel, 474 (20.0%) with small vessel, and 814 (32.3%) individuals with strokes of undetermined cause. Most AF genetic risk scores were associated with stroke, with the strongest association (P=6×10(-)(4)) attributed to scores of 944 single-nucleotide polymorphisms (each associated with AF at Pgenetic risk and stroke were enriched in the cardioembolic stroke subset (strongest P=1.2×10(-)(9), 944 single-nucleotide polymorphism score). In contrast, AF genetic risk was not significantly associated with noncardioembolic stroke subtypes. Comprehensive AF genetic risk scores were specific for cardioembolic stroke. Incomplete workups and subtype misclassification may have limited the power to detect associations with strokes of undetermined pathogenesis. Future studies are warranted to determine whether AF genetic risk is a useful biomarker to enhance clinical discrimination of stroke pathogeneses. © 2017 American Heart Association, Inc.

  12. Different immunological mechanisms govern protection from experimental stroke in young and older mice with recombinant TCR ligand therapy

    Directory of Open Access Journals (Sweden)

    HALINA eOFFNER

    2014-09-01

    Full Text Available Stroke is a leading cause of death and disability in the United States. The lack of clinical success in stroke therapies can be attributed, in part, to inadequate basic research on aging rodents. The current study demonstrates that recombinant TCR ligand therapy uses different immunological mechanisms to protect young and older mice from experimental stroke. In young mice, RTL1000 therapy inhibited splenocyte efflux while reducing frequency of T cells and macrophages in the spleen. Older mice treated with RTL1000 exhibited a significant reduction in inflammatory cells in the brain and inhibition of splenic atrophy. Our data suggest age specific differences in immune response to stroke that allow unique targeting of stroke immunotherapies.

  13. Mechanism of action of recombinant acc-royalisin from royal jelly of Asian honeybee against gram-positive bacteria.

    Science.gov (United States)

    Shen, Lirong; Liu, Dandan; Li, Meilu; Jin, Feng; Din, Meihui; Parnell, Laurence D; Lai, Chao-Qiang

    2012-01-01

    The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees, has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Asian honeybee Apis cerana cerana, was expressed by fusing with glutathione S-transferase (GST) in Escherichia coli BL21, isolated and purified. The agar dilution assays with inhibition zone showed that RAcc-royalisin, similar to nisin, inhibits the growth of Gram-positive bacteria. The antibacterial activity of RAcc-royalisin was associated with its concentration, and was weakened by heat treatment ranging from 55°C to 85°C for 15 min. Both RAcc-royalisin and nisin exhibited the minimum inhibitory concentrations (MIC) of 62.5 µg/ml, 125 µg/ml, and 250 µg/ml against Gram-positive bacterial strains, Bacillus subtilis and Micrococcus flavus and Staphyloccocus aureus in the microplate assay, respectively. However, RAcc-royalisin did not show antimicrobial activity against tested Gram-negative bacterial and fungal strains. The antibacterial activity of RAcc-royalisin agrees well with the decrease in bacterial cell hydrophobicity, the leakage of 260-nm absorbing materials, and the observation by transmission electron microscopy, all indicating that RAcc-royalisin induced the disruption and dysfunction of cell walls and membranes. This is the first report detailing the antibacterial mechanism of royalisin against Gram-positive bacteria, and provides insight into the application of recombinant royalisin in food and pharmaceutical industries as an antimicrobial agent.

  14. Mechanism of action of recombinant acc-royalisin from royal jelly of Asian honeybee against gram-positive bacteria.

    Directory of Open Access Journals (Sweden)

    Lirong Shen

    Full Text Available The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees, has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Asian honeybee Apis cerana cerana, was expressed by fusing with glutathione S-transferase (GST in Escherichia coli BL21, isolated and purified. The agar dilution assays with inhibition zone showed that RAcc-royalisin, similar to nisin, inhibits the growth of Gram-positive bacteria. The antibacterial activity of RAcc-royalisin was associated with its concentration, and was weakened by heat treatment ranging from 55°C to 85°C for 15 min. Both RAcc-royalisin and nisin exhibited the minimum inhibitory concentrations (MIC of 62.5 µg/ml, 125 µg/ml, and 250 µg/ml against Gram-positive bacterial strains, Bacillus subtilis and Micrococcus flavus and Staphyloccocus aureus in the microplate assay, respectively. However, RAcc-royalisin did not show antimicrobial activity against tested Gram-negative bacterial and fungal strains. The antibacterial activity of RAcc-royalisin agrees well with the decrease in bacterial cell hydrophobicity, the leakage of 260-nm absorbing materials, and the observation by transmission electron microscopy, all indicating that RAcc-royalisin induced the disruption and dysfunction of cell walls and membranes. This is the first report detailing the antibacterial mechanism of royalisin against Gram-positive bacteria, and provides insight into the application of recombinant royalisin in food and pharmaceutical industries as an antimicrobial agent.

  15. Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues.

    Science.gov (United States)

    Andel, F; Murphy, J T; Haas, J A; McDowell, M T; van der Hoef, I; Lugtenburg, J; Lagarias, J C; Mathies, R A

    2000-03-14

    Resonance Raman spectra of native and recombinant analogues of oat phytochrome have been obtained and analyzed in conjunction with normal mode calculations. On the basis of frequency shifts observed upon methine bridge deuteration and vinyl and C(15)-methine bridge saturation of the chromophore, intense Raman lines at 805 and 814 cm(-)(1) in P(r) and P(fr), respectively, are assigned as C(15)-hydrogen out-of-plane (HOOP) wags, lines at 665 cm(-)(1) in P(r) and at 672 and 654 cm(-)(1) in P(fr) are assigned as coupled C=C and C-C torsions and in-plane ring twisting modes, and modes at approximately 1300 cm(-)(1) in P(r) are coupled N-H and C-H rocking modes. The empirical assignments and normal mode calculations support proposals that the chromophore structures in P(r) and P(fr) are C(15)-Z,syn and C(15)-E,anti, respectively. The intensities of the C(15)-hydrogen out-of-plane, C=C and C-C torsional, and in-plane ring modes in both P(r) and P(fr) suggest that the initial photochemistry involves simultaneous bond rotations at the C(15)-methine bridge coupled to C(15)-H wagging and D-ring rotation. The strong nonbonded interactions of the C- and D-ring methyl groups in the C(15)-E,anti P(fr) chromophore structure indicated by the intense 814 cm(-1) C(15) HOOP mode suggest that the excited state of P(fr) and its photoproduct states are strongly coupled.

  16. Recombinant acylation stimulating protein administration to C3-/- mice increases insulin resistance via adipocyte inflammatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Mercedes Nancy Munkonda

    Full Text Available BACKGROUND: Complement 3 (C3, a key component of the innate immune system, is involved in early inflammatory responses. Acylation stimulating protein (ASP; aka C3adesArg, a C3 cleavage product, is produced in adipose tissue and stimulates lipid storage. We hypothesized that, depending on the diet, chronic ASP administration in C3(-/- mice would affect lipid metabolism and insulin sensitivity via an adaptive adipose tissue inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: C3(-/- mice on normal low fat diet (ND or high fat diet (HFD were chronically administered recombinant ASP (rASP for 25 days via an osmotic mini-pump. While there was no effect on food intake, there was a decrease in activity, with a relative increase in adipose tissue weight on ND, and a shift in adipocyte size distribution. While rASP administration to C3(-/- mice on a ND increased insulin sensitivity, on a HFD, rASP administration had the opposite effect. Specifically, rASP administration in C3(-/- HFD mice resulted in decreased gene expression of IRS1, GLUT4, SREBF1 and NFκB in muscle, and decreased C5L2 but increased JNK, CD36, CD11c, CCR2 and NFκB gene expression in adipose tissue as well as increased secretion of proinflammatory cytokines (Rantes, KC, MCP-1, IL-6 and G-CSF. In adipose tissue, although IRS1 and GLUT4 mRNA were unchanged, insulin response was reduced. CONCLUSION: The effects of chronic rASP administration are tissue and diet specific, rASP administration enhances the HFD induced inflammatory response leading to an insulin-resistant state. These results suggest that, in humans, the increased plasma ASP associated with obesity and cardiovascular disease could be an additional factor directly contributing to development of metabolic syndrome, insulin resistance and diabetes.

  17. Polyploidization increases meiotic recombination frequency in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Rehmsmeier Marc

    2011-04-01

    Full Text Available Abstract Background Polyploidization is the multiplication of the whole chromosome complement and has occurred frequently in vascular plants. Maintenance of stable polyploid state over generations requires special mechanisms to control pairing and distribution of more than two homologous chromosomes during meiosis. Since a minimal number of crossover events is essential for correct chromosome segregation, we investigated whether polyploidy has an influence on the frequency of meiotic recombination. Results Using two genetically linked transgenes providing seed-specific fluorescence, we compared a high number of progeny from diploid and tetraploid Arabidopsis plants. We show that rates of meiotic recombination in reciprocal crosses of genetically identical diploid and autotetraploid Arabidopsis plants were significantly higher in tetraploids compared to diploids. Although male and female gametogenesis differ substantially in meiotic recombination frequency, both rates were equally increased in tetraploids. To investigate whether multivalent formation in autotetraploids was responsible for the increased recombination rates, we also performed corresponding experiments with allotetraploid plants showing strict bivalent pairing. We found similarly increased rates in auto- and allotetraploids, suggesting that the ploidy effect is independent of chromosome pairing configurations. Conclusions The evolutionary success of polyploid plants in nature and under domestication has been attributed to buffering of mutations and sub- and neo-functionalization of duplicated genes. Should the data described here be representative for polyploid plants, enhanced meiotic recombination, and the resulting rapid creation of genetic diversity, could have also contributed to their prevalence.

  18. New subtypes and genetic recombination in HIV type 1-infecting patients with highly active antiretroviral therapy in Peru (2008-2010).

    Science.gov (United States)

    Yabar, Carlos Augusto; Acuña, Maribel; Gazzo, Cecilia; Salinas, Gabriela; Cárdenas, Fanny; Valverde, Ada; Romero, Soledad

    2012-12-01

    HIV-1 subtype B is the most frequent strain in Peru. However, there is no available data about the genetic diversity of HIV-infected patients receiving highly active antiretroviral therapy (HAART) here. A group of 267 patients in the Peruvian National Treatment Program with virologic failure were tested for genotypic evidence of HIV drug resistance at the Instituto Nacional de Salud (INS) of Peru between March 2008 and December 2010. Viral RNA was extracted from plasma and the segments of the protease (PR) and reverse transcriptase (RT) genes were amplified by reverse transcriptase polymerase chain reaction (RT-PCR), purified, and fully sequenced. Consensus sequences were submitted to the HIVdb Genotypic Resistance Interpretation Algorithm Database from Stanford University, and then aligned using Clustal X v.2.0 to generate a phylogenetic tree using the maximum likelihood method. Intrasubtype and intersubtype recombination analyses were performed using the SCUEAL program (Subtype Classification by Evolutionary ALgo-rithms). A total of 245 samples (91%) were successfully genotyped. The analysis obtained from the HIVdb program showed 81.5% resistance cases (n=198). The phylogenetic analysis revealed that subtype B was predominant in the population (98.8%), except for new cases of A, C, and H subtypes (n=4). Of these cases, only subtype C was imported. Likewise, recombination analysis revealed nine intersubtype and 20 intrasubtype recombinant cases. This is the first report of the presence of HIV-1 subtypes C and H in Peru. The introduction of new subtypes and circulating recombinants forms can make it difficult to distinguish resistance profiles in patients and consequently affect future treatment strategies against HIV in this country.

  19. Dimensional Synthesis of Four Bar Mechanism Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    S. S. Shete

    2015-03-01

    Full Text Available The dimensional synthesis is done by using Genetic Algorithm to achieve a desired trajectory. Three problems are analyzed having different curvature. The program is authored in MATLAB® 2010a. The error is seen to be in the permissible prescribed limit. The prototyping of straight line trajectory analysis is also done in ADAMS®

  20. Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression

    NARCIS (Netherlands)

    Fu, Jingyuan; Wolfs, Marcel G M; Deelen, Patrick; Westra, Harm Jan; Fehrmann, Rudolf S N; te Meerman, Gerhardus; Buurman, Wim A; Rensen, Sander S M; Groen, Hendricus; Weersma, Rinse K; van den Berg, Leonard H; Veldink, Jan; Ophoff, Roel A; Snieder, Harold; van Heel, David; Jansen, Ritsert C; Hofker, Marten H; Wijmenga, Cisca; Franke, Lude

    2012-01-01

    It is known that genetic variants can affect gene expression, but it is not yet completely clear through what mechanisms genetic variation mediate this expression. We therefore compared the cis-effect of single nucleotide polymorphisms (SNPs) on gene expression between blood samples from 1,240 human

  1. THE APPLICATION OF GENETIC ALGORITHM IN NON-LINEAR INVERSION OF ROCK MECHANICS PARAMETERS

    Institute of Scientific and Technical Information of China (English)

    赵晓东

    1998-01-01

    The non-linear inversion of rock mechanics parameters based on genetic algorithm ispresented. The principle and step of genetic algorithm is also given. A brief discussion of thismethod and an application example is presented at the end of this paper. From the satisfied re-sult, quick, convenient and practical new approach is developed to solve this kind of problems.

  2. Mechanical and physical properties of recombinant spider silk films using organic and aqueous solvents.

    Science.gov (United States)

    Tucker, Chauncey L; Jones, Justin A; Bringhurst, Heidi N; Copeland, Cameron G; Addison, J Bennett; Weber, Warner S; Mou, Qiushi; Yarger, Jeffery L; Lewis, Randolph V

    2014-08-11

    Spider silk has exceptional mechanical and biocompatibility properties. The goal of this study was optimization of the mechanical properties of synthetic spider silk thin films made from synthetic forms of MaSp1 and MaSp2, which compose the dragline silk of Nephila clavipes. We increased the mechanical stress of MaSp1 and 2 films solubilized in both HFIP and water by adding glutaraldehyde and then stretching them in an alcohol based stretch bath. This resulted in stresses as high as 206 MPa and elongations up to 35%, which is 4× higher than the as-poured controls. Films were analyzed using NMR, XRD, and Raman, which showed that the secondary structure after solubilization and film formation in as-poured films is mainly a helical conformation. After the post-pour stretch in a methanol/water bath, the MaSp proteins in both the HFIP and water-based films formed aligned β-sheets similar to those in spider silk fibers.

  3. Genetic Mouse Models of Huntington's Disease: Focus on Electrophysiological Mechanisms

    Directory of Open Access Journals (Sweden)

    Carlos Cepeda

    2010-03-01

    Full Text Available The discovery of the HD (Huntington's disease gene in 1993 led to the creation of genetic mouse models of the disease and opened the doors for mechanistic studies. In particular, the early changes and progression of the disease could be followed and examined systematically. The present review focuses on the contribution of these genetic mouse models to the understanding of functional changes in neurons as the HD phenotype progresses, and concentrates on two brain areas: the striatum, the site of most conspicuous pathology in HD, and the cortex, a site that is becoming increasingly important in understanding the widespread behavioural abnormalities. Mounting evidence points to synaptic abnormalities in communication between the cortex and striatum and cell-cell interactions as major determinants of HD symptoms, even in the absence of severe neuronal degeneration and death.

  4. Asthma and endocrine disorders: shared mechanisms and genetic pleiotropy.

    Science.gov (United States)

    Tesse, Riccardina; Schieck, Maximilian; Kabesch, Michael

    2011-02-20

    Asthma is a common inflammatory disease for which the cause is not yet known. Studies of the epidemiology and natural history of childhood asthma into adulthood demonstrate a change in gender prevalence with age. Hormones and inflammation may interact in asthma pathogenesis and determine its course. The same may be true for some endocrine disorders, including diabetes and obesity. Obesity plays a major role in the development of the metabolic syndrome and has been identified as an important risk factor for chronic diseases such as type 2 diabetes mellitus. The prevalence of asthma has paralleled the rise in obesity, suggesting that shared environmental factors could affect both conditions. In addition, endocrine diseases and asthma may share common genetic determinants. In the first part of this review we assess endocrine influences on asthma and overlaps between endocrine disorders and asthma while in the second part we explore the potential benefit of comparative genetic analyses between asthma and endocrine diseases.

  5. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA)

    DEFF Research Database (Denmark)

    Cottingham, Matthew G; Andersen, Rikke F; Spencer, Alexandra J

    2008-01-01

    The production, manipulation and rescue of a bacterial artificial chromosome clone of Vaccinia virus (VAC-BAC) in order to expedite construction of expression vectors and mutagenesis of the genome has been described (Domi & Moss, 2002, PNAS99 12415-20). The genomic BAC clone was 'rescued' back...... to infectious virus using a Fowlpox virus helper to supply transcriptional machinery. We apply here a similar approach to the attenuated strain Modified Vaccinia virus Ankara (MVA), now widely used as a safe non-replicating recombinant vaccine vector in mammals, including humans. Four apparently full......-2006). In addition, we found a higher frequency of triple-positive IFN-gamma, TNF-alpha and IL-2 secreting E3-specific CD8+ T-cells 8 weeks after vaccination with MVA lacking B15R. Furthermore, a recombinant vaccine capable of inducing CD8(+) T cells against an epitope from Plasmodium berghei was created using Gal...

  6. MECHANISMS IN ENDOCRINOLOGY: Novel genetic causes of short stature.

    Science.gov (United States)

    Wit, Jan M; Oostdijk, Wilma; Losekoot, Monique; van Duyvenvoorde, Hermine A; Ruivenkamp, Claudia A L; Kant, Sarina G

    2016-04-01

    The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFκB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature. Heterozygous NPR2 or SHOX defects may be found in ∼3% of short children, and also rasopathies (e.g., Noonan syndrome) can be found in children without clear syndromic appearance. Numerous other syndromes associated with short stature are caused by genetic defects in fundamental cellular processes, chromosomal abnormalities, CNVs, and imprinting disorders.

  7. Genetic mechanisms underlying the pathogenesis of tropical calcific pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Swapna Mahurkar; D Nageshwar Reddy; G Venkat Rao; Giriraj Ratan Chandak

    2009-01-01

    Chronic pancreatitis is known to be a heterogeneous disease with varied etiologies. Tropical calcific pancreatitis (TCP) is a severe form of chronic pancreatitis unique to developing countries. With growing evidence of genetic factors contributing to the pathogenesis of TCP, this review is aimed at compiling the available information in this field. We also propose a two hit model to explain the sequence of events in the pathogenesis of TCP.

  8. Molecular mechanisms in atopic eczema: insights gained from genetic studies.

    Science.gov (United States)

    Brown, Sara J

    2017-01-01

    Atopic eczema (synonymous with atopic dermatitis) is a common heterogeneous phenotype with a wide spectrum of severity, from mild transient disease to a severe chronic disorder with atopic and non-atopic comorbidities. Eczema is a complex trait, resulting from the interaction of multiple genetic and environmental factors. The skin, as an organ that can be biopsied easily, provides opportunities for detailed molecular genetic analysis. Strategies applied to the investigation of atopic eczema include candidate gene and genome-wide studies, extreme phenotypes, and comparative analysis of inflammatory skin diseases. Genetic studies have identified a central role for skin barrier impairment in eczema predisposition and perpetuation; this has brought about a paradigm shift in understanding atopic disease, but specific molecular targets to improve skin barrier function remain elusive. The role of Th2-mediated immune dysfunction is also central to atopic inflammation, and has proved to be a powerful target for biological therapy in atopic eczema. Advances in understanding eczema pathogenesis have provided opportunities for patient stratification, primary prevention, and therapy development, but there remain considerable challenges in the application of this knowledge to optimize benefit for patients with atopic eczema in the era of personalized medicine. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  9. The Molecular Genetics and Cellular Mechanisms Underlying Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Rajiv D. Machado

    2012-01-01

    Full Text Available Pulmonary arterial hypertension (PAH is an incurable disorder clinically characterised by a sustained elevation of mean arterial pressure in the absence of systemic involvement. As the adult circulation is a low pressure, low resistance system, PAH represents a reversal to a foetal state. The small pulmonary arteries of patients exhibit luminal occlusion resultant from the uncontrolled growth of endothelial and smooth muscle cells. This vascular remodelling is comprised of hallmark defects, most notably the plexiform lesion. PAH may be familial in nature but the majority of patients present with spontaneous disease or PAH associated with other complications. In this paper, the molecular genetic basis of the disorder is discussed in detail ranging from the original identification of the major genetic contributant to PAH and moving on to current next-generation technologies that have led to the rapid identification of additional genetic risk factors. The impact of identified mutations on the cell is examined, particularly, the determination of pathways disrupted in disease and critical to pulmonary vascular maintenance. Finally, the application of research in this area to the design and development of novel treatment options for patients is addressed along with the future directions PAH research is progressing towards.

  10. A Proposed Mechanism for the Thermal Denaturation of a Recombinant Bacillus Halmapalus Alpha-amylase - the Effect of Calcium Ions

    Science.gov (United States)

    Nielsen, Anders D.; Pusey, Marc L.; Fuglsang, Claus C.; Westh, Peter

    2003-01-01

    The thermal stability of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been investigated using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). This alpha-amylase is homologous to other Bacillus alpha-amylases where previous crystallographic studies have identified the existence of 3 calcium binding sites in the structure. Denaturation of BHA is irreversible with a Tm of approximately 89 C, and DSC thermograms can be described using a one-step irreversible model. A 5 C increase in T(sub m) in the presence of 10 fold excess CaCl2 was observed. However, a concomitant increase in the tendency to aggregate was also observed. The presence of 30-40 fold excess calcium chelator (EDTA or EGTA) results in a large destabilization of BHA corresponding to about 40 C lower T(sub m), as determined by both CD and DSC. Ten fold excess EGTA reveals complex DSC thermograms corresponding to both reversible and irreversible transitions, which possibly originate from different populations of BHA:calcium complexes. The observations in the present study have, in combination with structural information of homologous alpha-amylases, provided the basis for the proposal of a simple denaturation mechanism of BHA. The proposed mechanism describes the irreversible thermal denaturation of different BHA:calcium complexes and the calcium binding equilibrium involved. Furthermore, the model accounts for a temperature induced reversible structural change associated with calcium binding.

  11. Effect and Mechanism of Mitomycin C Combined with Recombinant Adeno-Associated Virus Type II against Glioma

    Directory of Open Access Journals (Sweden)

    Hong Ma

    2013-12-01

    Full Text Available The effect of chemotherapy drug Mitomycin C (MMC in combination with recombinant adeno-associated virus II (rAAV2 in cancer therapy was investigated, and the mechanism of MMC affecting rAAV2’s bioactivity was also studied. The combination effect was evaluated by the level of GFP and TNF expression in a human glioma cell line, and the mechanism of MMC effects on rAAV mediated gene expression was investigated by AAV transduction related signal molecules. C57 and BALB/c nude mice were injected with rAAV-EGFP or rAAV-TNF alone, or mixed with MMC, to evaluate the effect of MMC on AAV-mediated gene expression and tumor suppression. MMC was shown to improve the infection activity of rAAV2 both in vitro and in vivo. Enhancement was found to be independent of initial rAAV2 receptor binding stage or subsequent second-strand synthesis of target DNA, but was related to cell cycle retardation followed by blocked genome degradation. In vivo injection of MMC combined with rAAV2 into the tumors of the animals resulted in significant suppression of tumor growth. It was thus demonstrated for the first time that MMC could enhance the expression level of the target gene mediated by rAAV2. The combination of rAAV2 and MMC may be a promising strategy in cancer therapy.

  12. Perspective: Identification of genetic variants associated with dopaminergic compensatory mechanisms in early Parkinson's disease

    OpenAIRE

    2013-01-01

    Parkinson's disease (PD) is slowly progressive, and heterogeneity of its severity among individuals may be due to endogenous mechanisms that counterbalance the striatal dopamine loss. In this perspective paper, we introduce a neuroimaging-genetic approach to identify genetic variants, which may contribute to this compensation. First, we briefly review current known potential compensatory mechanisms for premotor and early disease PD, located in the striatum and other brain regions. Then, we c...

  13. Use of Genetic Models to Study the Urinary Concentrating Mechanism

    DEFF Research Database (Denmark)

    Olesen, Emma Tina Bisgaard; Kortenoeven, Marleen L.A.; Fenton, Robert A.

    2015-01-01

    Maintenance of body water homeostasis is a fundamental homeostatic mechanism in mammals. Understanding the basic mechanisms of how water balance is maintained, or dysfunctional in certain diseases is thus of clinical importance. In recent years, application of transgenic and knockout mouse techno...

  14. Genetic diversity and drug resistance among newly diagnosed and antiretroviral treatment-naive HIV-infected individuals in western Yunnan: a hot area of viral recombination in China

    Science.gov (United States)

    2012-01-01

    Background The emergence of an HIV-1 epidemic in China was first recognized in Dehong, western Yunnan. Due to its geographic location, Dehong contributed greatly in bridging HIV-1 epidemics in Southeast Asia and China through drug trafficking and injection drug use; and also extensively to the HIV genetic diversity in Yunnan and China. We attempt to monitor HIV-1 in this area by studying the HIV-1 genetic distribution and transmitted drug resistance (TDR) in various at-risk populations. Methods Blood samples from a total of 320 newly HIV-1 diagnosed individuals, who were antiretroviral therapy (ART)-naive, were collected from January 2009 to December 2010 in 2 counties in Dehong. HIV-1 subtypes and pol gene drug resistance (DR) mutations were genotyped. Results Among 299 pol sequences successfully genotyped (93.4%), subtype C accounted for 43.1% (n=129), unique recombinant forms (URFs) for 18.4% (n=55), CRF01_AE for 17.7% (n=54), B for 10.7% (n=32), CRF08_BC for 8.4% (n=25) and CRF07_BC for 1.7% (n=5). Subtype distribution in patients infected by different transmission routes varied. In contract to the previous finding of CRF01_AE predominance in 2002-2006, subtype C predominated in both injecting drug users (IDUs) and heterosexually transmitted populations in this study. Furthermore, we found a high level of BC, CRF01_AE/C and CRF01_AE/B/C recombinants suggesting the presence of active viral recombination in the area. TDR associated mutations were identified in 4.3% (n=13) individuals. A total of 1.3% of DR were related to protease inhibitors (PIs), including I85IV, M46I and L90M; 0.3% to nucleoside reverse transcriptase inhibitors (NRTIs), including M184I; and 2.7% to non-nucleoside reverse transcriptase inhibitors (NNRTIs), including K103N/S, Y181C, K101E and G190A. Conclusion Our work revealed diverse HIV-1 subtype distributions and intersubtype recombinations. We also identified a low but significant TDR mutation rate among ART-naive patients. These findings

  15. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    Directory of Open Access Journals (Sweden)

    Mark W. Jackwood

    2011-09-01

    Full Text Available Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus.

  16. Homologous Recombination as a Replication Fork Escort: Fork-Protection and Recovery

    Directory of Open Access Journals (Sweden)

    Audrey Costes

    2012-12-01

    Full Text Available Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.

  17. Homologous recombination as a replication fork escort: fork-protection and recovery.

    Science.gov (United States)

    Costes, Audrey; Lambert, Sarah A E

    2012-12-27

    Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.

  18. ama1 Genes of Sympatric Plasmodium vivax and P. falciparum from Venezuela Differ Significantly in Genetic Diversity and Recombination Frequency

    OpenAIRE

    Ord, RL; Tami, A; Sutherland, CJ

    2008-01-01

    BACKGROUND: We present the first population genetic analysis of homologous loci from two sympatric human malaria parasite populations sharing the same human hosts, using full-length sequences of ama1 genes from Plasmodium vivax and P. falciparum collected in the Venezuelan Amazon. METHODOLOGY/PRINCIPAL FINDINGS: Significant differences between the two species were found in genetic diversity at the ama1 locus, with 18 distinct haplotypes identified among the 73 Pvama1 sequences obtained, compa...

  19. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages.

    Science.gov (United States)

    Bikard, David; Marraffini, Luciano A

    2012-02-01

    Bacteria are constantly challenged by bacteriophages (viruses that infect bacteria), the most abundant microorganism on earth. Bacteria have evolved a variety of immunity mechanisms to resist bacteriophage infection. In response, bacteriophages can evolve counter-resistance mechanisms and launch a 'virus versus host' evolutionary arms race. In this context, rapid evolution is fundamental for the survival of the bacterial cell. Programmed genetic variation mechanisms at loci involved in immunity against bacteriophages generate diversity at a much faster rate than random point mutation and enable bacteria to quickly adapt and repel infection. Diversity-generating retroelements (DGRs) and phase variation mechanisms enhance the generic (innate) immune response against bacteriophages. On the other hand, the integration of small bacteriophage sequences in CRISPR loci provide bacteria with a virus-specific and sequence-specific adaptive immune response. Therefore, although using different molecular mechanisms, both prokaryotes and higher organisms rely on programmed genetic variation to increase genetic diversity and fight rapidly evolving infectious agents.

  20. A recombinant vesicular stomatitis virus-based Lassa fever vaccine protects guinea pigs and macaques against challenge with geographically and genetically distinct Lassa viruses.

    Directory of Open Access Journals (Sweden)

    David Safronetz

    2015-04-01

    Full Text Available Lassa virus (LASV is endemic in several West African countries and is the etiological agent of Lassa fever. Despite the high annual incidence and significant morbidity and mortality rates, currently there are no approved vaccines to prevent infection or disease in humans. Genetically, LASV demonstrates a high degree of diversity that correlates with geographic distribution. The genetic heterogeneity observed between geographically distinct viruses raises concerns over the potential efficacy of a "universal" LASV vaccine. To date, several experimental LASV vaccines have been developed; however, few have been evaluated against challenge with various genetically unique Lassa virus isolates in relevant animal models.Here we demonstrate that a single, prophylactic immunization with a recombinant vesicular stomatitis virus (VSV expressing the glycoproteins of LASV strain Josiah from Sierra Leone protects strain 13 guinea pigs from infection / disease following challenge with LASV isolates originating from Liberia, Mali and Nigeria. Similarly, the VSV-based LASV vaccine yields complete protection against a lethal challenge with the Liberian LASV isolate in the gold-standard macaque model of Lassa fever.Our results demonstrate the VSV-based LASV vaccine is capable of preventing morbidity and mortality associated with non-homologous LASV challenge in two animal models of Lassa fever. Additionally, this work highlights the need for the further development of disease models for geographical distinct LASV strains, particularly those from Nigeria, in order to comprehensively evaluate potential vaccines and therapies against this prominent agent of viral hemorrhagic fever.

  1. Genetic diversity, distant phylogenetic relationships and the occurrence of recombination events among cucumber mosaic virus isolates from zucchini in Poland.

    Science.gov (United States)

    Hasiów-Jaroszewska, Beata; Chrzanowski, Mateusz; Budzyńska, Daria; Rymelska, Natalia; Borodynko-Filas, Natasza

    2017-06-01

    In recent years, the occurrence of cucumber mosaic virus (CMV) has been noted in zucchini crops in Poland. Beside characteristic isolates, which displayed mosaics and chlorosis on infected plants, new necrotic isolates have also been identified. Here, we analysed the molecular variability of 27 isolates of CMV collected from zucchini in various regions of the country. Sequence and phylogenetic analysis based on the genes encoding the coat (CP) and movement (MP) proteins revealed that the Polish isolates belong to two subgroups: IA and II, with the prevalence of subgroup II. New recombinant variants with an IA-MP/II-CP pattern for RNA3 were also detected.

  2. Organization of DNA partners and strand exchange mechanisms during Flp site-specific recombination analyzed by difference topology, single molecule FRET and single molecule TPM.

    Science.gov (United States)

    Ma, Chien-Hui; Liu, Yen-Ting; Savva, Christos G; Rowley, Paul A; Cannon, Brian; Fan, Hsiu-Fang; Russell, Rick; Holzenburg, Andreas; Jayaram, Makkuni

    2014-02-20

    Flp site-specific recombination between two target sites (FRTs) harboring non-homology within the strand exchange region does not yield stable recombinant products. In negatively supercoiled plasmids containing head-to-tail sites, the reaction produces a series of knots with odd-numbered crossings. When the sites are in head-to-head orientation, the knot products contain even-numbered crossings. Both types of knots retain parental DNA configuration. By carrying out Flp recombination after first assembling the topologically well defined Tn3 resolvase synapse, it is possible to determine whether these knots arise by a processive or a dissociative mechanism. The nearly exclusive products from head-to-head and head-to-tail oriented "non-homologous" FRT partners are a 4-noded knot and a 5-noded knot, respectively. The corresponding products from a pair of native (homologous) FRT sites are a 3-noded knot and a 4-noded catenane, respectively. These results are consistent with non-homology-induced two rounds of dissociative recombination by Flp, the first to generate reciprocal recombinants containing non-complementary base pairs and the second to produce parental molecules with restored base pairing. Single molecule fluorescence resonance energy transfer (smFRET) analysis of geometrically restricted FRTs, together with single molecule tethered particle motion (smTPM) assays of unconstrained FRTs, suggests that the sites are preferentially synapsed in an anti-parallel fashion. This selectivity in synapse geometry occurs prior to the chemical steps of recombination, signifying early commitment to a productive reaction path. The cumulative topological, smFRET and smTPM results have implications for the relative orientation of DNA partners and the directionality of strand exchange during recombination mediated by tyrosine site-specific recombinases.

  3. Genetic mechanisms and age-related macular degeneration: common variants, rare variants, copy number variations, epigenetics, and mitochondrial genetics

    Directory of Open Access Journals (Sweden)

    Liu Melissa M

    2012-08-01

    Full Text Available Abstract Age-related macular degeneration (AMD is a complex and multifaceted disease involving contributions from both genetic and environmental influences. Previous work exploring the genetic contributions of AMD has implicated numerous genomic regions and a variety of candidate genes as modulators of AMD susceptibility. Nevertheless, much of this work has revolved around single-nucleotide polymorphisms (SNPs, and it is apparent that a significant portion of the heritability of AMD cannot be explained through these mechanisms. In this review, we consider the role of common variants, rare variants, copy number variations, epigenetics, microRNAs, and mitochondrial genetics in AMD. Copy number variations in regulators of complement activation genes (CFHR1 and CFHR3 and glutathione S transferase genes (GSTM1 and GSTT1 have been associated with AMD, and several additional loci have been identified as regions of potential interest but require further evaluation. MicroRNA dysregulation has been linked to the retinal pigment epithelium degeneration in geographic atrophy, ocular neovascularization, and oxidative stress, all of which are hallmarks in the pathogenesis of AMD. Certain mitochondrial DNA haplogroups and SNPs in mitochondrially encoded NADH dehydrogenase genes have also been associated with AMD. The role of these additional mechanisms remains only partly understood, but the importance of their further investigation is clear to elucidate more completely the genetic basis of AMD.

  4. Recombination, Pairing, and Synapsis of Homologs during Meiosis

    Science.gov (United States)

    Zickler, Denise; Kleckner, Nancy

    2015-01-01

    Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships. PMID:25986558

  5. Recombination, Pairing, and Synapsis of Homologs during Meiosis.

    Science.gov (United States)

    Zickler, Denise; Kleckner, Nancy

    2015-05-18

    Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.

  6. Inflammatory, metabolic, and genetic mechanisms of vascular calcification.

    Science.gov (United States)

    Demer, Linda L; Tintut, Yin

    2014-04-01

    This review centers on updating the active research area of vascular calcification. This pathology underlies substantial cardiovascular morbidity and mortality, through adverse mechanical effects on vascular compliance, vasomotion, and, most likely, plaque stability. Biomineralization is a complex, regulated process occurring widely throughout nature. Decades ago, its presence in the vasculature was considered a mere curiosity and an unregulated, dystrophic process that does not involve biological mechanisms. Although it remains controversial whether the process has any adaptive value or past evolutionary advantage, substantial advances have been made in understanding the biological mechanisms driving the process. Different types of calcific vasculopathy, such as inflammatory versus metabolic, have parallel mechanisms in skeletal bone calcification, such as intramembranous and endochondral ossification. Recent work has identified important regulatory roles for inflammation, oxidized lipids, elastin, alkaline phosphatase, osteoprogenitor cells, matrix γ-carboxyglutamic acid protein, transglutaminase, osteoclastic regulatory factors, phosphate regulatory hormones and receptors, apoptosis, prelamin A, autophagy, and microvesicles or microparticles similar to the matrix vesicles of skeletal bone. Recent work has uncovered fascinating interactions between matrix γ-carboxyglutamic acid protein, vitamin K, warfarin, and transport proteins. And, lastly, recent breakthroughs in inherited forms of calcific vasculopathy have identified the genes responsible as well as an unexpected overlap of phenotypes. Until recently, vascular calcification was considered a purely degenerative, unregulated process. Since then, investigative groups around the world have identified a wide range of causative mechanisms and regulatory pathways, and some of the recent developments are highlighted in this review.

  7. Electroactive bacteria--molecular mechanisms and genetic tools.

    Science.gov (United States)

    Sydow, Anne; Krieg, Thomas; Mayer, Florian; Schrader, Jens; Holtmann, Dirk

    2014-10-01

    In nature, different bacteria have evolved strategies to transfer electrons far beyond the cell surface. This electron transfer enables the use of these bacteria in bioelectrochemical systems (BES), such as microbial fuel cells (MFCs) and microbial electrosynthesis (MES). The main feature of electroactive bacteria (EAB) in these applications is the ability to transfer electrons from the microbial cell to an electrode or vice versa instead of the natural redox partner. In general, the application of electroactive organisms in BES offers the opportunity to develop efficient and sustainable processes for the production of energy as well as bulk and fine chemicals, respectively. This review describes and compares key microbiological features of different EAB. Furthermore, it focuses on achievements and future prospects of genetic manipulation for efficient strain development.

  8. Recombinant Deg/HtrA proteases from Synechocystis sp. PCC 6803 differ in substrate specificity, biochemical characteristics and mechanism

    Science.gov (United States)

    Huesgen, Pitter F.; Miranda, Helder; Lam, XuanTam; Perthold, Manuela; Schuhmann, Holger; Adamska, Iwona; Funk, Christiane

    2011-01-01

    Cyanobacteria require efficient protein-quality-control mechanisms to survive under dynamic, often stressful, environmental conditions. It was reported that three serine proteases, HtrA (high temperature requirement A), HhoA (HtrA homologue A) and HhoB (HtrA homologue B), are important for survival of Synechocystis sp. PCC 6803 under high light and temperature stresses and might have redundant physiological functions. In the present paper, we show that all three proteases can degrade unfolded model substrates, but differ with respect to cleavage sites, temperature and pH optima. For recombinant HhoA, and to a lesser extent for HtrA, we observed an interesting shift in the pH optimum from slightly acidic to alkaline in the presence of Mg2+ and Ca2+ ions. All three proteases formed different homo-oligomeric complexes with and without substrate, implying mechanistic differences in comparison with each other and with the well-studied Escherichia coli orthologues DegP (degradation of periplasmic proteins P) and DegS. Deletion of the PDZ domain decreased, but did not abolish, the proteolytic activity of all three proteases, and prevented substrate-induced formation of complexes higher than trimers by HtrA and HhoA. In summary, biochemical characterization of HtrA, HhoA and HhoB lays the foundation for a better understanding of their overlapping, but not completely redundant, stress-resistance functions in Synechocystis sp. PCC 6803. PMID:21332448

  9. Development of a Rapid Immunochromatographic Lateral Flow Device Capable of Differentiating Phytase Expressed from Recombinant Aspergillus niger phyA2 and Genetically Modified Corn.

    Science.gov (United States)

    Zhou, Xiaojin; Hui, Elizabeth; Yu, Xiao-Lin; Lin, Zhen; Pu, Ling-Kui; Tu, Zhiguan; Zhang, Jun; Liu, Qi; Zheng, Jian; Zhang, Juan

    2015-05-06

    Phytase is a phosphohydrolase considered highly specific for the degradation of phytate to release bound phosphorus for animal consumption and aid in the reduction of environmental nutrient loading. New sources of phytase have been sought that are economically and efficiently productive including the construction of genetically modified (GM) phytase products designed to bypass the costs associated with feed processing. Four monoclonal antibodies (EH10a, FA7, AF9a, and CC1) raised against recombinant Aspergillus niger phyA2 were used to develop a highly specific and sensitive immunochromatographic lateral flow device for rapid detection of transgenic phytase, such as in GM corn. Antibodies sequentially paired and tested along lateral flow strips showed that the EH10a-FA7 antibody pair was able to detect the recombinant yeast-phytase at 5 ng/mL, whereas the AF9a-CC1 antibody pair to GM phytase corn was able to detect at 2 ng/mL. Concurrent to this development, evidence was revealed which suggests that antibody binding sites may be glycosylated.

  10. A mutation in Caenorhabditis elegans that increases recombination frequency more than threefold.

    Science.gov (United States)

    Rose, A M; Baillie, D L

    1979-10-18

    In higher organisms the rate of recombination between genetic loci is presumably responsive to selective pressure. Recently, selective pressures and mutational events that influence recombination have been reviewed. Mutational sites and chromosomal rearrangements that enhance or suppress recombination frequency in specific regions are known, but general mechanisms that enhance recombination have not yet been discovered. We describe here the isolation and characterisation of a strain of the hermaphroditic nematode, Caenorhabditis elegans, that has a recombination frequency at least threefold higher than that found in the wild type. In this strain, rec-1, the number of reciprocal recombination events between linked loci is increased. This is true for all pairs of linked loci studies so far. The high recombination strain behaves as if it carries a classical recessive mutation, although a second mutation exists which can alter the recessive behaviour of rec-1.

  11. Recombination hotspots and host susceptibility modulate the adaptive value of recombination during maize streak virus evolution

    Directory of Open Access Journals (Sweden)

    Monjane Adérito L

    2011-12-01

    Full Text Available Abstract Background Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae, the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Results Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots

  12. Genetic variation and recombination of RdRp and HSP 70h genes of Citrus tristeza virus isolates from orange trees showing symptoms of citrus sudden death disease

    Directory of Open Access Journals (Sweden)

    Pappas Georgios J

    2008-01-01

    Full Text Available Abstract Background Citrus sudden death (CSD, a disease that rapidly kills orange trees, is an emerging threat to the Brazilian citrus industry. Although the causal agent of CSD has not been definitively determined, based on the disease's distribution and symptomatology it is suspected that the agent may be a new strain of Citrus tristeza virus (CTV. CTV genetic variation was therefore assessed in two Brazilian orange trees displaying CSD symptoms and a third with more conventional CTV symptoms. Results A total of 286 RNA-dependent-RNA polymerase (RdRp and 284 heat shock protein 70 homolog (HSP70h gene fragments were determined for CTV variants infecting the three trees. It was discovered that, despite differences in symptomatology, the trees were all apparently coinfected with similar populations of divergent CTV variants. While mixed CTV infections are common, the genetic distance between the most divergent population members observed (24.1% for RdRp and 11.0% for HSP70h was far greater than that in previously described mixed infections. Recombinants of five distinct RdRp lineages and three distinct HSP70h lineages were easily detectable but respectively accounted for only 5.9 and 11.9% of the RdRp and HSP70h gene fragments analysed and there was no evidence of an association between particular recombinant mosaics and CSD. Also, comparisons of CTV population structures indicated that the two most similar CTV populations were those of one of the trees with CSD and the tree without CSD. Conclusion We suggest that if CTV is the causal agent of CSD, it is most likely a subtle feature of population structures within mixed infections and not merely the presence (or absence of a single CTV variant within these populations that triggers the disease.

  13. A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia.

    Science.gov (United States)

    Andras, J P; Ebert, D

    2013-02-01

    The population structure of parasites is central to the ecology and evolution of host-parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well-separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host-a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host-parasite system.

  14. Angelman Syndrome: Genetic Mechanisms and Relationship to Prader-Willi Syndrome.

    Science.gov (United States)

    Smith, Arabella

    1994-01-01

    Research points to two distinct regions within the Prader-Willi chromosome region: one for Prader Willi syndrome and one for Angelman syndrome. Genetic mechanisms in Angelman syndrome are complex, and at present, three mechanisms are recognized: maternal deletion, paternal uniparental disomy, and a nondeleted nondisomic form. (Author/JDD)

  15. Cognitive mechanisms underlying disorganization of thought in a genetic syndrome (47,XXY)

    NARCIS (Netherlands)

    Van Rijn, Sophie; Aleman, Andre; De Sonneville, Leo; Swaab, Hanna

    2009-01-01

    Because of the risk for development of psychopathology such as psychotic symptoms, it has been suggested that studying men with the XXY karyotype may help in the search for underlying cognitive, neural and genetic mechanisms. The aim of this study was to identify cognitive mechanisms that may contri

  16. [Genetic mechanism and evolutionary significance of the origin of parthenogenetic insects].

    Science.gov (United States)

    Wang, Cheng-Ye

    2011-12-01

    There is a high proportion of parthenogenesis in insecta, and the parthenogenetic potential of insects is an important but often ignored threaten factor for the agricultural and forestry production. The maintenance of parthenogenetic species is a puzzling issue in evolutionary biology. In recent years, although the cellular mechanisms during parthenogenesis in some species have been well studied, the underlying genetic mechanisms that cause the switch from sexual reproduction to parthenogenesis have not been defined. While, understanding the genetic mechanism and evolutionary significance of the origin of parthenogenetic insects is crucial for preventing the pests in agricultural and forestry production. Here we summarized recent studies aimed at identifying the underlying genetic mechanism of parthenogenesis in insects, and briefly discussed its potential application in this filed.

  17. Genetic Variation in Field Populations of Baculoviruses: Mechanisms for Generating Variation and Its Potential Role in Baculovirus Epizootiology

    Institute of Scientific and Technical Information of China (English)

    Martin A. Erlandson

    2009-01-01

    Baculoviridae is a family of insect-specific DNA viruses that have been used as biological control agents for insect pest control. In most cases these baculovirus control agents are natural field isolates that have been selected based on their infectivity and virulence. The advent of molecular tools such as restriction endonucleases, targeted polymerase chain reaction and new DNA sequencing strategies have allowed for efficient detection and characterization of genotypic variants within and among geographic and temporal isolates of baculovirus species. It has become evident that multiple genotypic variants occur even within individual infected larvae. Clonal strains of baculovirus species derived either by in vitro or in vivo approaches have been shown to vary with respect to infectivity and virulence. Many of the cell culture derived plague-purified strains have deletions that interrupt egt expression leading to virus strains that kill infected hosts more quickly. As well, in vitro clones often involve larger genomic deletions with the loss of pif gene function, resulting in strains deficient for oral infectivity. There are an increasing number of baculovirus species for which complete genome sequences are available for more than one strain or field isolate. Results of comparative analysis of these strains indicated that hr regions and bro genes often mark "hot spots" of genetic variability between strains and of potential recombination events. In addition, the degree of nucleotide polymorphisms between and within strains and their role in amino acid substitutions within ORFs and changes in promoter motifs is also beginning to be appreciated. In this short review the potential mechanisms that generate and maintain this genetic diversity within baculovirus populations is discussed, as is the potential role of genetic variation in host-pathogen interactions.

  18. Classical mechanics approach applied to analysis of genetic oscillators.

    Science.gov (United States)

    Vasylchenkova, Anastasiia; Mraz, Miha; Zimic, Nikolaj; Moskon, Miha

    2016-04-05

    Biological oscillators present a fundamental part of several regulatory mechanisms that control the response of various biological systems. Several analytical approaches for their analysis have been reported recently. They are, however, limited to only specific oscillator topologies and/or to giving only qualitative answers, i.e., is the dynamics of an oscillator given the parameter space oscillatory or not. Here we present a general analytical approach that can be applied to the analysis of biological oscillators. It relies on the projection of biological systems to classical mechanics systems. The approach is able to provide us with relatively accurate results in the meaning of type of behaviour system reflects (i.e. oscillatory or not) and periods of potential oscillations without the necessity to conduct expensive numerical simulations. We demonstrate and verify the proposed approach on three different implementations of amplified negative feedback oscillator.

  19. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Jageman, Robert J

    2009-09-12

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereas long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by

  20. Mechanisms of noise-resistance in genetic oscillators

    CERN Document Server

    Gómez-Vilar, J M; Barkai, N; Leibler, S; Vilar, Jose M.G.; Kueh, Hao Yuan; Barkai, Naama; Leibler, Stanislas

    2002-01-01

    A wide range of organisms use circadian clocks to keep internal sense of daily time and regulate their behavior accordingly. Most of these clocks use intracellular genetic networks based on positive and negative regulatory elements. The integration of these "circuits" at the cellular level imposes strong constraints on their functioning and design. Here we study a recently proposed model [N. Barkai and S. Leibler, Nature, 403:267--268, 2000] that incorporates just the essential elements found experimentally. We show that this type of oscillator is driven mainly by two elements: the concentration of a repressor protein and the dynamics of an activator protein forming an inactive complex with the repressor. Thus the clock does not need to rely on mRNA dynamics to oscillate, which makes it especially resistant to fluctuations. Oscillations can be present even when the time average of the number of mRNA molecules goes below one. Under some conditions, this oscillator is not only resistant to but paradoxically als...

  1. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Christian Kosan

    2016-01-01

    Full Text Available All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.

  2. BMP 2--Genetics Institute/ Medtronic-Sofamor Danek/Integra. Bone morphogenetic protein 2--Genetics Institute/ Medtronic-Sofamor Danek/Integra, INFUSE Bone Graft, recombinant human bone morphogenetic protein 2--Genetics Institute/Medtronic-Sofamor Danek/Integra, RhBMP 2--Genetics Institute/Medtronic-Sofamor Danek/Integra.

    Science.gov (United States)

    2002-01-01

    Genetics Institute (Wyeth) is collaborating with Medtronic-Sofamor Danek (which specialises in spinal reconstruction) and Integra Life Sciences to develop a BMP 2 product [INFUSE Bone Graft] for use in spinal reconstruction in North America. The INFUSE Bone Graft product has been approved for use in lumbar interbody spinal fusion procedures in the USA and is in phase III trials for use in lumbar posterolateral spinal fusion procedures. During the procedure, damaged disc is replaced with a collagen sponge (Integra's Absorbable Collagen Sponge) soaked with BMP 2, which is held in place within an implanted cage device (LT-CAGE Lumbar Tapered Fusion Devise); the fusion process subsequently requires several months to complete. However, the patient is able to leave hospital the day after the operation, whereas in conventional spinal surgery a longer recovery time is required. The procedure supersedes the use of autograft bone as it uses a recombinant human bone morphogenic protein, rhBMP-2, which induces the body to grow its own bone where required. Genetics Institute has cloned and expressed bone morphogenic proteins 1-7 and established manufacturing processes by recombinant DNA technology. Bone morphogenic proteins may be useful in the treatment of osteoporosis and orthopaedic trauma. BMP 2 is also being developed for bone regeneration as an implanted device and as an injectable formulation. Genetics Institute is also collaborating with Integra LifeSciences to develop a formulation of BMP 2 with Integra's absorbable collagen-based structures for fracture treatment, which is awaiting approval in the USA.

  3. Genetic probing of homologous recombination and non-homologous end joining during meiotic prophase in irradiated mouse spermatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Emad A. [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Philippens, Marielle E.P.; Kal, Henk B. [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Rooij, Dirk G. de, E-mail: d.g.derooij@uu.nl [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands); Boer, Peter de [Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen (Netherlands)

    2010-06-01

    This study was designed to obtain a better insight into the relative contribution of homologous recombination (HR) and non-homologous end joining (NHEJ) to the repair of radiation-induced DNA double-strand breaks (DSBs) at first meiotic prophase. Early and late pachytene and early diplotene spermatocytes that had completed crossing over were sampled. We studied the kinetics of {gamma}-H2AX chromatin foci removal after irradiation of mice deficient for HR and mice deficient for NHEJ. Analyzing {gamma}-H2AX signals in unirradiated RAD54/RAD54B deficient spermatocytes indicated incomplete meiotic recombination repair due to the pronounced increase of {gamma}-H2AX foci in late prophase primary spermatocytes. In these mice, 8 h after irradiation, early pachytene spermatocytes showed a reduction of the numbers of {gamma}-H2AX foci by 52% compared to 82% in the wild type, the difference being significant. However, after crossing over (in late pachytene and early diplotene), no effect of RAD54/RAD54B deficiency on the reduction of irradiation-induced foci was observed. In NHEJ deficient SCID mice, repair kinetics in early spermatocytes were similar to those in wild type mice. However, 1 h after irradiation in late pachytene and early diplotene spermatocytes 1.7 times more foci were found than in wild type mice. This difference might be related to the absence of a DNA-PKcs dependent fast repair component in SCID mice. As subsequent repair is normal, HR likely is taking over. Taken together, the results obtained in RAD54/RAD54B deficient mice and in SCID mice indicate that DSB repair in early pachytene spermatocytes is mainly carried out through HR. In late spermatocytes (late pachytenes and early diplotenes) NHEJ is active. However, probably there is an interplay between these repair pathways and when in late spermatocytes the NHEJ pathway is compromised HR may take over.

  4. Dissection of Genetic Mechanism of Abnormal Heading in Hybrid Rice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-jun; QU Li-jun; XIANG Chao; WANG Hui; XIA Jia-fa; LI Ze-fu; GAO Yong-ming; SHI Ying-yao

    2014-01-01

    Abnormal heading in hybrid rice production has caused great economic loss in recent years, but the genetic basis of this phenomenon remains elusive. In this study, we developed four testcross populations using 38 introgression lines (ILs) from Shuhui 527 (SH527)/Fuhui 838 (FH838)//SH527 population as male parents and four male sterile lines (MSLs; namely II-32A, Xieqingzao A, Gang 46A and Jin 23A) as female parents. Progeny testing allowed us to identify 55 abnormal heading combinations in Hefei, but had late heading date in Hangzhou and Guangzhou of China. By one-and two-way analysis of variance, a total of 21 QTLs and 31 pairs of epistatic QTLs associated with photosensitivity were identified in the four populations, respectively. Genotypic analysis showed that the IL parent of most abnormal heading combinations showed some introgressions at markers RM331 and RM3395 on chromosome 8 (strongly associated with the known genes OsHAP3H/DTH8/Ghd8/LHD1) of donor FH838 alleles, and these two markers were also identified as affecting photosensitivity. The observation that the recipient parent (SH527), donor parent (FH838), their testcross combinations with four MSLs, and the IL parents of abnormal heading combinations had normal heading date in Hefei suggested that OsHAP3H/DTH8/Ghd8/LHD1 showed no independent regulation on abnormal heading in the abnormal heading combinations. It is noteworthy that complex epistasis among RM331 or RM3395 with other loci, including dominant × additive, additive × dominant, and dominant × dominant epistases, were identified only in the four testcross populations of the current study, but not in the SH527/FH838//SH527 population, suggesting the cause of abnormal heading in abnormal heading combinations in Hefei and delayed heading in Hangzhou and Guangzhou.

  5. Improvement of a Genetic Back Propagation Algorithm and Its Application to Diagnosis in Mechanical Failure

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new improved genetic BP algorithm was put forward in the paper. To deter-mine whether the network falls into local minimum point, a discriminant of local minimum was put forth in the training process of a neural network. A genetic algorithm was used to revise the weights of the neural network if the BP algorithm fell into minimums. The me-chanical faults were diagnosed using the algorithm put forward in the paper, which veri-fied the validity of this improved genetic BP algorithm.

  6. Worming forward: amyotrophic lateral sclerosis toxicity mechanisms and genetic interactions in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Martine eTherrien

    2014-04-01

    Full Text Available Neurodegenerative diseases share pathogenic mechanisms at the cellular level including protein misfolding, excitotoxicity and altered RNA homeostasis among others. Recent advances have shown that the genetic causes underlying these pathologies overlap, hinting at the existence of a genetic network for neurodegeneration. This is perhaps best illustrated by the recent discoveries of causative mutations for amyotrophic lateral sclerosis (ALS and frontotemporal degeneration (FTD. Once thought to be distinct entities, it is now recognized that these diseases exist along a genetic spectrum. With this wealth of discoveries comes the need to develop new genetic models of ALS and FTD to investigate not only pathogenic mechanisms linked to causative mutations, but to uncover potential genetic interactions that may point to new therapeutic targets. Given the conservation of many disease genes across evolution, Caenorhabditis elegans is an ideal system to investigate genetic interactions amongst these genes. Here we review the use of C. elegans to model ALS and investigate a putative genetic network for ALS/FTD that may extend to other neurological disorders.

  7. [Processing and Modification of Recombinant Spider Silk Proteins].

    Science.gov (United States)

    Liu, Bin; Wang, Tao; Liu, Xiaobing; Luo, Yongen

    2015-08-01

    Due to its special sequence structure, spider silk protein has unique physical and chemical properties, mechanical properties and excellent biological properties. With the expansion of the application value of spider silk in many fields as a functional material, progress has been made in the studies on the expression of recombinant spider silk proteins through many host systems by gene recombinant techniques. Recombinant spider silk proteins can be processed into high performance fibers, and a wide range of nonfibrous morphologies. Moreover, for their excellent biocompatibility and low immune response they are ideal for biomedical applications. Here we review the process and mechanism of preparation in vitro, chemistry and genetic engineering modification on recombinant spider silk protein.

  8. RNA structures facilitate recombination-mediated gene swapping in HIV-1.

    Science.gov (United States)

    Simon-Loriere, Etienne; Martin, Darren P; Weeks, Kevin M; Negroni, Matteo

    2010-12-01

    Many viruses, including retroviruses, undergo frequent recombination, a process which can increase their rate of adaptive evolution. In the case of HIV, recombination has been responsible for the generation of numerous intersubtype recombinant variants with epidemiological importance in the AIDS pandemic. Although it is known that fragments of genetic material do not combine randomly during the generation of recombinant viruses, the mechanisms that lead to preferential recombination at specific sites are not fully understood. Here we reanalyze recent independent data defining (i) the structure of a complete HIV-1 RNA genome and (ii) favorable sites for recombination. We show that in the absence of selection acting on recombinant genomes, regions harboring RNA structures in the NL4-3 model strain are strongly predictive of recombination breakpoints in the HIV-1 env genes of primary isolates. In addition, we found that breakpoints within recombinant HIV-1 genomes sampled from human populations, which have been acted upon extensively by natural selection, also colocalize with RNA structures. Critically, junctions between genes are enriched in structured RNA elements and are also preferred sites for generating functional recombinant forms. These data suggest that RNA structure-mediated recombination allows the virus to exchange intact genes rather than arbitrary subgene fragments, which is likely to increase the overall viability and replication success of the recombinant HIV progeny.

  9. RNA Structures Facilitate Recombination-Mediated Gene Swapping in HIV-1 ▿

    Science.gov (United States)

    Simon-Loriere, Etienne; Martin, Darren P.; Weeks, Kevin M.; Negroni, Matteo

    2010-01-01

    Many viruses, including retroviruses, undergo frequent recombination, a process which can increase their rate of adaptive evolution. In the case of HIV, recombination has been responsible for the generation of numerous intersubtype recombinant variants with epidemiological importance in the AIDS pandemic. Although it is known that fragments of genetic material do not combine randomly during the generation of recombinant viruses, the mechanisms that lead to preferential recombination at specific sites are not fully understood. Here we reanalyze recent independent data defining (i) the structure of a complete HIV-1 RNA genome and (ii) favorable sites for recombination. We show that in the absence of selection acting on recombinant genomes, regions harboring RNA structures in the NL4-3 model strain are strongly predictive of recombination breakpoints in the HIV-1 env genes of primary isolates. In addition, we found that breakpoints within recombinant HIV-1 genomes sampled from human populations, which have been acted upon extensively by natural selection, also colocalize with RNA structures. Critically, junctions between genes are enriched in structured RNA elements and are also preferred sites for generating functional recombinant forms. These data suggest that RNA structure-mediated recombination allows the virus to exchange intact genes rather than arbitrary subgene fragments, which is likely to increase the overall viability and replication success of the recombinant HIV progeny. PMID:20881047

  10. Genetic and environmental modification of the mechanical properties of wood

    Science.gov (United States)

    Sederoff, R.; Allona, I.; Whetten, R.

    1996-02-01

    Wood is one of the nation's leading raw materials and is used for a wide variety of products, either directly as wood, or as derived materials in pulp and paper. Wood is a biological material and evolved to provide mechanical support and water transport to the early plants that conquered the land. Wood is a tissue that results from the differentiation and programmed cell death of cells that derive from a tissue known as the vascular cambium. The vascular cambium is a thin cylinder of undifferentiated tissue in plant stems and roots that gives rise to several different cell types. Cells that differentiate on the internal side of the cambium form xylem, a tissue composed in major part, of long thin cells that die leaving a network of interconnected cell walls that serve to transport water and to provide mechanical support for the woody plant. The shape and chemical composition of the cells in xylem are well suited for these functions. The structure of cells in xylem determines the mechanical properties of the wood because of the strength derived from the reinforced matrix of the wall. The hydrophobic phenolic surface of the inside of the cell walls is essential to maintain surface tension upon which water transport is based and to resist decay caused by microorganisms. The properties of wood derived from the function of xylem also determine its structural and chemical properties as wood and paper products. Therefore, the physical and chemical properties of wood and paper products also depend on the morphology and composition of the cells from which they are derived. Wood (xylem cell walls) is an anisotropic material, a composite of lignocellulose. It is a matrix of cellulose microfibrils, complexed with hemicelluloses, (carbohydrate polymers which contain sugars other than glucose, both pentoses and hexoses), embedded together in a phenolic matrix of lignin. The high tensile strength of wood in the longitudinal direction, is due to the structure of cellulose and the

  11. 重组人甲状旁腺激素基因工程研究进展%Research Advances in Genetic Engineering of Recombinant Human Parathyroid Hormone

    Institute of Scientific and Technical Information of China (English)

    宋佳欢; 李敏; 高金湖; 邬敏辰

    2011-01-01

    Parathyroid hormone (PTH) is an alkaline polypeptide hormone which is secreted by the parathyroid gland cell. It mainly regulates metabolism of calcium and phosphorus in vertebrates. Currently, PTH and its analogues have been exploited into first-choice drugs for the treatment of osteoporosis. With the elucidation of PTH gene sequence, it has become a research hotspot to obtain recombinant PTH of high-efficiency, iow-toxicity and stability by means of genetic engineering. Here we present an overview of structure function, genetic engineering research and clinical application of PTH.%甲状旁腺激素(parathyroid hormone,PTH)是由甲状旁腺主细胞分泌的碱性单链多肽类激素.它主要调节脊椎动物体内钙和磷的代谢.目前,PTH及其类似物已成为治疗骨质疏松症的首选药物.随着PTH基因序列的阐明,通过基因工程手段获得高效、低毒、稳定的重组PTH,已成为研究热点.本文对PTH的结构功能、基因工程研究及临床应用问题进行综述.

  12. Mammalian life histories: their evolution and molecular-genetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, G.A.

    1978-01-01

    Survival curves for various species of mammals are discussed and a table is presented to show recorded maximum life spans of about 30 species of mammals. The range of longevities is from one year for shrews and moles up to more than 80 years for the fin whale. The constitutional correlates of longevity are discussed with regard to body size, brain weight,metabolic rates, and body temperature. It is concluded that longevity evolved as a positive trait, associated with the evolution of large body size and brain size. Life table data for man, the thorough-bred horse, beagle dogs, and the laboratory rodents, Mus musculus and Peromyscus leucopus are discussed. The data show a pattern of exponential increase of death rate with age. A laboratory model using Mus musculus and Peromyscus leucopus for the study of the longevity-assurance mechanisms is described. (HLW)

  13. Genetics of the complementary restriction systems DpnI and DpnII revealed by cloning and recombination in Streptococcus pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.; Mannarelli, B.M.; Springhorn, S.S.; Greenberg, B.; de la Campa, A.G.

    1986-05-01

    Transformation and cloning of the DpnI and DpnII endonuclease genes has clarified the genetic basis of the two restriction systems. Molecular cloning was carried out in the Gram-positive S. pneumoniae host/vector system. Cloned chromosomal fragments from both DpnI- and DpnII-producing strains were subjected to nucleotide sequence determination and were used as probes for DNA hybridization analysis. It was shown that the restriction enzyme phenotype of S. pneumoniae depended on an intercellular genetic cassette mechanism. In this review some aspects of the evolution of restriction systems in S. pneumoniae and other bacterial will be discussed. 42 refs., 7 figs., 1 tab.

  14. RNA structures, genomic organization and selection of recombinant HIV.

    Science.gov (United States)

    Simon-Loriere, Etienne; Rossolillo, Paola; Negroni, Matteo

    2011-01-01

    Recombination is an evolutionary mechanism intrinsic to the evolution of many RNA viruses. In retroviruses and notably in the case of HIV, recombination is so frequent that it can be considered as part of its mode of replication. This process not only plays a central role in shaping HIV genetic diversity worldwide, but has also been involved in immune escape and development of resistance to antiviral treatments. Recombination does not create new mutations in the existing genetic repertoire of the virus, but creates new combinations of pre-existing polymorphisms. The simultaneous insertion of multiple substitutions in a single replication cycle leaves little room for the progressive coevolution of regions of proteins, RNA or, more in general, genomes, to accommodate these drastic sequence changes. Therefore, recombination, while allowing the virus to rapidly explore larger sequence space than the slow accumulation of point mutations, also runs the risk of generating non functional viruses. Recombination is the consequence of a switch in the template used during reverse transcription and is promoted by the presence of structured regions in the genomic RNA template. In this review, we discuss new observations suggesting that the distribution of RNA structures along the HIV genome may enhance recombination rates in regions where the resultant progeny is less likely to be impaired, and could therefore maximize the evolutionary value of this source of genetic diversity.

  15. Carcinogenesis of basal cell carcinomas: genetics and molecular mechanisms.

    Science.gov (United States)

    Lacour, J P

    2002-04-01

    Basal cell carcinoma (BCC) of the skin is the most common type of cancer in humans. Like squamous cell carcinomas, they are also believed to be ultraviolet (UV)-induced, but several data suggest that some differences might exist in the mechanisms of their UV induction. The originating cells may arise from interfollicular basal cells, hair follicles or sebaceous glands, thus from a deeper zone than the SCC ones, which probably means exposure to different doses or wavelengths of UV. The p53 gene and the patched gene (PTCH) are major targets of UV for BCC induction. Mutations in p53 are present in about 56% of human BCC, even small early lesions. The "UV signature" is observed in 65% of them. Mutations in the PTCH play also a major role in BCC development, being responsible for hereditary BCCs in Gorlin's syndrome, sporadic BCC, and BCCs isolated from xeroderma pigmentosum, although with a lower incidence of "UV signature". Smoothened-activating mutations and PTCH2 mutations are also involved in BCC formation. Transgenic mice overexpressing Smoothened or Sonic hedgehog in the skin spontaneously produce skin lesions resembling human BCCs, but contrary to findings in the hairless albino mouse and with SCC, no data on experimental UV induction of BCCs are available.

  16. MHF1–2/CENP-S-X performs distinct roles in centromere metabolism and genetic recombination

    Science.gov (United States)

    Bhattacharjee, Sonali; Osman, Fekret; Feeney, Laura; Lorenz, Alexander; Bryer, Claire; Whitby, Matthew C.

    2013-01-01

    The histone-fold proteins Mhf1/CENP-S and Mhf2/CENP-X perform two important functions in vertebrate cells. First, they are components of the constitutive centromere-associated network, aiding kinetochore assembly and function. Second, they work with the FANCM DNA translocase to promote DNA repair. However, it has been unclear whether there is crosstalk between these roles. We show that Mhf1 and Mhf2 in fission yeast, as in vertebrates, serve a dual function, aiding DNA repair/recombination and localizing to centromeres to promote chromosome segregation. Importantly, these functions are distinct, with the former being dependent on their interaction with the FANCM orthologue Fml1 and the latter not. Together with Fml1, they play a second role in aiding chromosome segregation by processing sister chromatid junctions. However, a failure of this activity does not manifest dramatically increased levels of chromosome missegregation due to the Mus81–Eme1 endonuclease, which acts as a failsafe to resolve DNA junctions before the end of mitosis. PMID:24026537

  17. Genetic transformation of marine Actinomycete sp. Isolate M048 and expression of a recombinant plasmid carrying the apc gene

    Institute of Scientific and Technical Information of China (English)

    HOU Yanhua; LI Fuchao; QIN Song; WANG Quanfu

    2006-01-01

    Optimal conditions for protoplasts formation of marine Actinomycete sp. isolate M048 were described, dense and disperse mycelia were cultured in SGGP medium, 0.5% glycine, lysozyme exposure (2 mg/cm3, 37 ℃, 40 min), and the concentration of sucrose in protoplast buffer was 0.4 mol/dm3 for keeping the balance of osmotic pressure. Using PEG-mediated protoplasts transformation, the transformation frequency was 89 transformants per microgramme of pIJ702. Meanwhile, an effective transformation procedure was established based on intergeneric conjugation from E. coli ET12567 (pUZ8002) using shuttle vectors pPM801, pPM803 and a(ψ)C31-derived integration vector pIJ8600 containing oriT and attP fragments. Transformation frequencies were 5.30×10-4±0.26×10-4, 8.92×10-4±0.19×10-4 and 6.38×10-5±0.41×10-5, respectively. Further, the heterologous expression of the allophycocyanin gene (apc) in the strain M048 was used to demonstrate this transformation system. SDS-PAGE and Western blot analysis confirmed the expression of recombinant APC (rAPC).

  18. Probing the HIV-1 genomic RNA trafficking pathway and dimerization by genetic recombination and single virion analyses.

    Directory of Open Access Journals (Sweden)

    Michael D Moore

    2009-10-01

    Full Text Available Once transcribed, the nascent full-length RNA of HIV-1 must travel to the appropriate host cell sites to be translated or to find a partner RNA for copackaging to form newly generated viruses. In this report, we sought to delineate the location where HIV-1 RNA initiates dimerization and the influence of the RNA transport pathway used by the virus on downstream events essential to viral replication. Using a cell-fusion-dependent recombination assay, we demonstrate that the two RNAs destined for copackaging into the same virion select each other mostly within the cytoplasm. Moreover, by manipulating the RNA export element in the viral genome, we show that the export pathway taken is important for the ability of RNA molecules derived from two viruses to interact and be copackaged. These results further illustrate that at the point of dimerization the two main cellular export pathways are partially distinct. Lastly, by providing Gag in trans, we have demonstrated that Gag is able to package RNA from either export pathway, irrespective of the transport pathway used by the gag mRNA. These findings provide unique insights into the process of RNA export in general, and more specifically, of HIV-1 genomic RNA trafficking.

  19. Genetics

    Science.gov (United States)

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  20. Genetic differentiation and recombination among geographic populations of the fungal pathogen Colletotrichum truncatum from chili peppers in China

    OpenAIRE

    Diao, Yongzhao; Zhang, Can; Xu, Jianping; Lin, Dong; Liu, Li; Mtung'e, Olivo G; Liu, Xili

    2014-01-01

    Colletotrichum truncatum is an extremely important fungal pathogen. It can cause diseases both in humans and in over 460 plant species. However, little is known about its genetic diversity within and among populations. One of the major plant hosts of C. truncatum is pepper, and China is one of the main pepper-producing countries in the world. Here, we propose the hypotheses that geography has a major influence on the relationships among populations of C. truncatum in China and that infections...

  1. Novel recombinant sapovirus in Bangladesh.

    Science.gov (United States)

    Dey, Shuvra Kanti; Mizuguchi, Masashi; Okitsu, Shoko; Ushijima, Hiroshi

    2011-01-01

    Recombination of RNA viruses plays an important part in molecular epidemiological study, virus evolution, vaccine design, and viral control programs. Sapovirus, a member of the family Caliciviridae, is one of the major causative agents of viral gastroenteritis affecting all age groups. Sapovirus capsid and polymerase regions were amplified by PCR using specific primers. PCR products were sequenced directly and sequence analysis was performed using CLUSTAL X, SimPlot, and MEGA 4 software package. Based on the genetic analysis, a novel, naturally occurring recombinant sapovirus strain was identified in Bangladesh. Breakpoint analysis of the recombinant sapovirus showed that the recombination site was at the open reading frame ORF1/ORF2 overlap. We described the genetic characterization of a novel, naturally occurring recombinant sapovirus and provided the first evidence of recombination in sapovirus in Bangladesh.

  2. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future.

    Science.gov (United States)

    Valenta, Rudolf; Campana, Raffaela; Focke-Tejkl, Margit; Niederberger, Verena

    2016-02-01

    In the past, the development of more effective, safe, convenient, broadly applicable, and easy to manufacture vaccines for allergen-specific immunotherapy (AIT) has been limited by the poor quality of natural allergen extracts. Progress made in the field of molecular allergen characterization has now made it possible to produce defined vaccines for AIT and eventually for preventive allergy vaccination based on recombinant DNA technology and synthetic peptide chemistry. Here we review the characteristics of recombinant and synthetic allergy vaccines that have reached clinical evaluation and discuss how molecular vaccine approaches can make AIT more safe and effective and thus more convenient. Furthermore, we discuss how new technologies can facilitate the reproducible manufacturing of vaccines of pharmaceutical grade for inhalant, food, and venom allergens. Allergy vaccines in clinical trials based on recombinant allergens, recombinant allergen derivatives, and synthetic peptides allow us to target selectively different immune mechanisms, and certain of those show features that might make them applicable not only for therapeutic but also for prophylactic vaccination.

  3. RNA:DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination.

    Science.gov (United States)

    Daniels, G A; Lieber, M R

    1995-01-01

    Central the regulation and mechanism of class switch recombination is the understanding of the relationship between transcription and DNA recombination. We demonstrated previously, using mini-chromosome substrates, that physiologically oriented transcription is required for recombination to occur between switch regions. In this report, we demonstrate the formation of an RNA:DNA complex under in vitro transcription conditions for these same and other switch DNA fragments. We find that cell-free transcription of repetitive murine switch regions (Smu, S gamma 2b and S gamma 3) leads to altered DNA mobility on agarose gels. These altered mobilities are resistant to RNase A but sensitive to RNase H. Transcription in the presence of labeled ribonucleotides demonstrates the stable physical association of the RNA with the DNA. Importantly, complex formation only occurs upon transcription in the physiologic orientation. Reaban and Griffin [1990 Nature, 348, 342-344] found an RNA:DNA hybrid structure that was limited to an atypical 143 nucleotide purine region within a 2.3 kb S alpha segment. Here we demonstrate RNA:DNA hybrid formation in more typical switch sequences (lacking the atypical 143 nucleotide purine tract) from a variety of switch regions that are only 60-70% purine on the non-template strand. These results suggest a general model involving an RNA:DNA complex as an intermediate during class switch recombination. Images PMID:8559658

  4. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance.

    Science.gov (United States)

    Tabashnik, Bruce E; Huang, Fangneng; Ghimire, Mukti N; Leonard, B Rogers; Siegfried, Blair D; Rangasamy, Murugesan; Yang, Yajun; Wu, Yidong; Gahan, Linda J; Heckel, David G; Bravo, Alejandra; Soberón, Mario

    2011-10-09

    Transgenic crops that produce Bacillus thuringiensis (Bt) toxins are grown widely for pest control, but insect adaptation can reduce their efficacy. The genetically modified Bt toxins Cry1AbMod and Cry1AcMod were designed to counter insect resistance to native Bt toxins Cry1Ab and Cry1Ac. Previous results suggested that the modified toxins would be effective only if resistance was linked with mutations in genes encoding toxin-binding cadherin proteins. Here we report evidence from five major crop pests refuting this hypothesis. Relative to native toxins, the potency of modified toxins was >350-fold higher against resistant strains of Plutella xylostella and Ostrinia nubilalis in which resistance was not linked with cadherin mutations. Conversely, the modified toxins provided little or no advantage against some resistant strains of three other pests with altered cadherin. Independent of the presence of cadherin mutations, the relative potency of the modified toxins was generally higher against the most resistant strains.

  5. Expression of rabbit IL-4 by recombinant myxoma viruses enhances virulence and overcomes genetic resistance to myxomatosis.

    Science.gov (United States)

    Kerr, P J; Perkins, H D; Inglis, B; Stagg, R; McLaughlin, E; Collins, S V; Van Leeuwen, B H

    2004-06-20

    Rabbit IL-4 was expressed in the virulent standard laboratory strain (SLS) and the attenuated Uriarra (Ur) strain of myxoma virus with the aim of creating a Th2 cytokine environment and inhibiting the development of an antiviral cell-mediated response to myxomatosis in infected rabbits. This allowed testing of a model for genetic resistance to myxomatosis in wild rabbits that have undergone 50 years of natural selection for resistance to myxomatosis. Expression of IL-4 significantly enhanced virulence of both virulent and attenuated virus strains in susceptible (laboratory) and resistant (wild) rabbits. SLS-IL-4 completely overcame genetic resistance in wild rabbits. The pathogenesis of SLS-IL-4 was compared in susceptible and resistant rabbits. The results support a model for resistance to myxomatosis of an enhanced innate immune response controlling virus replication and allowing an effective antiviral cell-mediated immune response to develop in resistant rabbits. Expression of IL-4 did not overcome immunity to myxomatosis induced by immunization.

  6. Genetic approaches to the molecular/neuronal mechanisms underlying learning and memory in the mouse.

    Science.gov (United States)

    Nakajima, Akira; Tang, Ya-Ping

    2005-09-01

    Learning and memory is an essential component of human intelligence. To understand its underlying molecular and neuronal mechanisms is currently an extensive focus in the field of cognitive neuroscience. We have employed advanced mouse genetic approaches to analyze the molecular and neuronal bases for learning and memory, and our results showed that brain region-specific genetic manipulations (including transgenic and knockout), inducible/reversible knockout, genetic/chemical kinase inactivation, and neuronal-based genetic approach are very powerful tools for studying the involvements of various molecules or neuronal substrates in the processes of learning and memory. Studies using these techniques may eventually lead to the understanding of how new information is acquired and how learned information is memorized in the brain.

  7. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj

    2014-01-01

    -wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum......-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers...... of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens....

  8. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds.

    Science.gov (United States)

    Cristofari, Robin; Trucchi, Emiliano; Whittington, Jason D; Vigetta, Stéphanie; Gachot-Neveu, Hélène; Stenseth, Nils Christian; Le Maho, Yvon; Le Bohec, Céline

    2015-01-01

    How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the importance of

  9. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds.

    Directory of Open Access Journals (Sweden)

    Robin Cristofari

    Full Text Available How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the

  10. Antitumor mechanisms when pRb and p53 are genetically inactivated.

    Science.gov (United States)

    Zhu, L; Lu, Z; Zhao, H

    2015-08-27

    pRb and p53 are the two major tumor suppressors. Their inactivation is frequent when cancers develop and their reactivation is rationale of most cancer therapeutics. When pRb and p53 are genetically inactivated, cells irreparably lose the antitumor mechanisms afforded by them. Cancer genome studies document recurrent genetic inactivation of RB1 and TP53, and the inactivation becomes more frequent in more advanced cancers. These findings may explain why more advanced cancers are more likely to resist current therapies. Finding successful treatments for more advanced and multi-therapy-resistant cancers will depend on finding antitumor mechanisms that remain effective when pRb and p53 are genetically inactivated. Here, we review studies that have begun to make progress in this direction.

  11. Patterns and mechanisms of evolutionary transitions between genetic sex-determining systems

    NARCIS (Netherlands)

    van Doorn, G. Sander

    2014-01-01

    The diversity and patchy phylogenetic distribution of genetic sex-determining mechanisms observed in some taxa is thought to have arisen by the addition, modification, or replacement of regulators at the upstream end of the sex-determining pathway. Here, I review the various evolutionary forces acti

  12. Three Decades of Recombinant DNA.

    Science.gov (United States)

    Palmer, Jackie

    1985-01-01

    Discusses highlights in the development of genetic engineering, examining techniques with recombinant DNA, legal and ethical issues, GenBank (a national database of nucleic acid sequences), and other topics. (JN)

  13. Data of the recombination loss mechanisms analysis on Al2O3 PERC cell using PC1D and PC2D simulations.

    Science.gov (United States)

    Huang, Haibing; Lv, Jun; Bao, Yameng; Xuan, Rongwei; Sun, Shenghua; Sneck, Sami; Li, Shuo; Modanese, Chiara; Savin, Hele; Wang, Aihua; Zhao, Jianhua

    2017-04-01

    This data article is related to our recently published article ('20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%', Huang et al., 2017 [1]) where we have presented a systematic evaluation of the overall cell processing and a cost-efficient industrial roadmap for PERC cells. Aside from the information already presented in Huang et al., 2017 [1], here we provide data related to Sectin 3 in Huang et al., 2017 [1] concerning the analysis of the recombination losses׳ mechanisms by PC1D V5.9 and PC2D simulations (Clugston and Basore, 1997, Basore and Cabanas-Holmen, 2011, Cabanas-Holmen and Basore, 2012 and Cabanas-Holmen and Basore, 2012.) [2], [3], [4], [5] on our current industrial Al2O3 PERC cell. The data include: i) PC2D simulations on J02, ii) the calculation of series resistance and back surface recombination velocity (BSRV) on the rear side metallization of PERC cell for the case of a point contact, and iii) the PC1D simulation on the cumulative photo-generation and recombination along the distance from the front surface. Finally, the roadmap of the solar cell efficiency for an industrial PERC technology up to 24% is presented, with the aim of providing a potential guideline for industrial researchers.

  14. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Larionov, V.; Kouprina, N. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States)]|[Institute of Cytology, St. Petersburg, (Russian Federation); Edlarov, M. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States)]|[Center of Bioengineering, Moscow, (Russian Federation); Perkins, E.; Porter, G.; Resnick, M.A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States)

    1993-12-31

    Rearrangement and deletion within plasmid DNA is commonly observed during transformation. We have examined the mechanisms of transformation-associated recombination in the yeast Saccharomyces cerevisiae using a plasmid system which allowed the effects of physical state and/or extent of homology on recombination to be studied. The plasmid contains homologous or diverged (19%) DNA repeats separated by a genetically detectable color marker. Recombination during transformation for covalently closed circular plasmids was over 100-fold more frequent than during mitotic growth. The frequency of recombination is partly dependent on the method of transformation in that procedures involving lithium acetate or spheroplasting yield higher frequencies than electroporation. When present in the repeats, unique single-strand breaks that are ligatable, as well as double-strand breaks, lead to high levels of recombination between diverged and identical repeats. The transformation-associated recombination between repeat DNA`s is under the influence of the RADS2, RADI and the RNCI genes,

  15. Novel recombinant binary vectors harbouring Basta (bar) gene as a plant selectable marker for genetic transformation of plants.

    Science.gov (United States)

    Nada, Reham M

    2016-04-01

    Genetic transformation is one of the most widely used technique in crop improvement. However, most of the binary vectors used in this technique, especially cloning based, contain antibiotic genes as selection marker that raise serious consumer and environmental concerns; moreover, they could be transferred to non-target hosts with deleterious effects. Therefore, the goal of this study was reconstruction of the widely used pBI121 binary vector by substituting the harmful antibiotic selection marker gene with a less-harmful selection marker, Basta (herbicide resistance gene). The generated vectors were designated as pBI121NB and pBI121CB, in which Basta gene was expressed under the control of Nos or CaMV 35S promoter, respectively. The successful integration of the new inserts into both the vectors was confirmed by PCR, restriction digestion and sequencing. Both these vectors were used in transforming Arabidopsis, Egyptian wheat and barley varieties using LBA4404 and GV3101 Agrobacterium strains. The surfactant Tween-20 resulted in an efficient transformation and the number of Arabidopsis transformants was about 6-9 %. Soaked seeds of wheat and barley were transformed with Agrobacterium to introduce the bacteria to the growing shoot apices. The percentage of transgenic lines was around 16-17 and 14-15 % for wheat and barley, respectively. The quantitative studies presented in this work showed that both LBA4404 and GV3101 strains were suitable for transforming Egyptian wheat and barley.

  16. A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast- and Agrobacterium-mediated transformation.

    Science.gov (United States)

    Cardoza, Rosa Elena; Vizcaino, Juan Antonio; Hermosa, Maria Rosa; Monte, Enrique; Gutiérrez, Santiago

    2006-08-01

    Four different Trichoderma strains, T. harzianum CECT 2413, T. asperellum T53, T. atroviride T11 and T. longibrachiatum T52, which represent three of the four sections contained in this genus, were transformed by two different techniques: a protocol based on the isolation of protoplasts and a protocol based on Agrobacterium-mediated transformation. Both methods were set up using hygromycin B or phleomycin resistance as the selection markers. Using these techniques, we obtained phenotypically stable transformants of these four different strains. The highest transformation efficiencies were obtained with the T. longibrachiatum T52 strain: 65-70 transformants/microg DNA when transformed with the plasmid pAN7-1 (hygromycin B resistance) and 280 transformants/107 spores when the Agrobacterium-mediated transformation was performed with the plasmid pUR5750 (hygromycin B resistance). Overall, the genetic analysis of the transformants showed that some of the strains integrated and maintained the transforming DNA in their genome throughout the entire transformation and selection process. In other cases, the integrated DNA was lost.

  17. Genetic Toxicity Study about Recombinant Kringle 5 Protein of Plasminogen%基因重组Kringle 5蛋白遗传毒性试验研究

    Institute of Scientific and Technical Information of China (English)

    陈显久; 解军; 张悦红; 牛勃

    2011-01-01

    目的 检测基因重组Kringle 5蛋白的遗传毒性,为其临床应用提供医学毒理学依据.方法 采用国内外遗传毒性试验指导原则推荐的标准组合中Ames试验、小鼠骨髓嗜多染红细胞微核试验和小鼠精子畸形试验检测基因重组Kringle 5蛋白的致突变作用.结果 Ames试验中,Kringle 5蛋白各组回变菌落数均未超过自发回变菌落数2倍,且无剂量-反应关系,故Ames试验结果为阴性,说明Kringle 5蛋白对鼠伤寒沙门菌组氨酸缺陷型TA97、TA98、TA100和TA102 4个菌株均未呈现遗传毒性.小鼠骨髓嗜多染红细胞微核试验中,Kringle 5蛋白各剂量组雌雄性别微核形成率与阴性对照结果比较,差异无统计学意义(P>0.05),表明该Kringle 5蛋白骨髓微核试验结果为阴性.小鼠精子畸形试验中,各实验组与阴性对照组结果比较,差异无统计学意义(P>0.05),表明该Kringle 5蛋白精子畸形试验结果为阴性.结论 基因重组Kringle 5蛋白无遗传毒性.%[ Objective ] To detect the genotoxicity of recombinant Kringle 5, and provide toxicological evidence for clinical application. [ Methods] Ames test, mice marrow PCE micronucleus test and mice sperm deformity test recommended by the standard combination of domestic and international guidelines for genetic toxicity tests were adopted to detect mutagenicity of recombinant protein Kringle5. [ Results]The Ames test's result showed the number of colonies of back mutation in did not exceed 2 times in Kringle 5 dose groups, without dose-response relationship. Therefore, the Ames test is negative which indicated that Kringle 5 were not present genetic toxicity on the histidine-deficient Salmonella typhimurium TA97, TA98, TA100, and TA1024 strains. The mice marrow PCE micronucleus test's result showed the difference of micronucleus formation rates was not significant between Kringle 5 dose groups and the negative control group ( P > 0.05 ), indicating the Kringle 5 was

  18. Genetic dissection of maize seedling root system architecture traits using an ultra-high density bin-map and a recombinant inbred line population

    Institute of Scientific and Technical Information of China (English)

    Weibin Song; Baobao Wang; Andrew L Hauck; Xiaomei Dong; Jieping Li; Jinsheng Lai

    2016-01-01

    Maize (Zea mays) root system architecture (RSA) mediates the key functions of plant anchorage and acquisition of nutrients and water. In this study, a set of 204 recombinant inbred lines (RILs) was derived from the widely adapted Chinese hybrid ZD958(Zheng58 ? Chang7-2), genotyped by sequencing (GBS) and evaluated as seedlings for 24 RSA related traits divided into primary, seminal and total root classes. Significant differences between the means of the parental phenotypes were detected for 18 traits, and extensive transgressive segregation in the RIL population was observed for all traits. Moderate to strong relationships among the traits were discovered. A total of 62 quantitative trait loci (QTL) were identified that individually explained from 1.6% to 11.6% (total root dry weight/total seedling shoot dry weight) of the phenotypic variation. Eighteen, 24 and 20 QTL were identified for primary, seminal and total root classes of traits, respectively. We found hotspots of 5, 3, 4 and 12 QTL in maize chromosome bins 2.06, 3.02-03, 9.02-04, and 9.05-06, respectively, implicating the presence of root gene clusters or pleiotropic effects. These results characterized the phenotypic variation and genetic architecture of seedling RSA in a population derived from a successful maize hybrid.

  19. Repetitive control mechanism of disturbance cancellation using a hybrid regression and genetic algorithm

    Science.gov (United States)

    Lin, Jeng-Wen; Shen, Pu Fun; Wen, Hao-Ping

    2015-10-01

    The application of a repetitive control mechanism for use in a mechanical control system has been a topic of investigation. The fundamental purpose of repetitive control is to eliminate disturbances in a mechanical control system. This paper presents two different repetitive control laws using individual types of basis function feedback and their combinations. These laws adjust the command given to a feedback control system to eliminate tracking errors, generally resulting from periodic disturbance. Periodic errors can be reduced through linear basis functions using regression and a genetic algorithm. The results illustrate that repetitive control is most effective method for eliminating disturbances. When the data are stabilized, the tracking error of the obtained convergence value, 10-14, is the optimal solution, verifying that the proposed regression and genetic algorithm can satisfactorily reduce periodic errors.

  20. Molecular Mechanisms and Genetic Basis of Heavy Metal Tolerance/Hyperaccumulation in Plants

    Institute of Scientific and Technical Information of China (English)

    Xiao-E YANG; Xiao-Fen JIN; Ying FENG; Ejazul ISLAM

    2005-01-01

    Phytoremediation has gained increased attention as a cost-effective method for the remediation of heavy metal-contaminated sites. Because some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration,which is manifested by an interaction between a genotype and its environment. The growing application of molecular genetic technologies has led to increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance,as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. In the present review, our major objective is to concisely evaluate the progress made so far in understanding the molecular/cellular mechanisms and genetic basis that control the uptake and detoxification of metals by plants.

  1. Assembly and dynamics of the bacteriophage T4 homologous recombination machinery

    Directory of Open Access Journals (Sweden)

    Morrical Scott W

    2010-12-01

    Full Text Available Abstract Homologous recombination (HR, a process involving the physical exchange of strands between homologous or nearly homologous DNA molecules, is critical for maintaining the genetic diversity and genome stability of species. Bacteriophage T4 is one of the classic systems for studies of homologous recombination. T4 uses HR for high-frequency genetic exchanges, for homology-directed DNA repair (HDR processes including DNA double-strand break repair, and for the initiation of DNA replication (RDR. T4 recombination proteins are expressed at high levels during T4 infection in E. coli, and share strong sequence, structural, and/or functional conservation with their counterparts in cellular organisms. Biochemical studies of T4 recombination have provided key insights on DNA strand exchange mechanisms, on the structure and function of recombination proteins, and on the coordination of recombination and DNA synthesis activities during RDR and HDR. Recent years have seen the development of detailed biochemical models for the assembly and dynamics of presynaptic filaments in the T4 recombination system, for the atomic structure of T4 UvsX recombinase, and for the roles of DNA helicases in T4 recombination. The goal of this chapter is to review these recent advances and their implications for HR and HDR mechanisms in all organisms.

  2. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis).

    Science.gov (United States)

    Funk, W Chris; Lovich, Robert E; Hohenlohe, Paul A; Hofman, Courtney A; Morrison, Scott A; Sillett, T Scott; Ghalambor, Cameron K; Maldonado, Jesus E; Rick, Torben C; Day, Mitch D; Polato, Nicholas R; Fitzpatrick, Sarah W; Coonan, Timothy J; Crooks, Kevin R; Dillon, Adam; Garcelon, David K; King, Julie L; Boser, Christina L; Gould, Nicholas; Andelt, William F

    2016-05-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.

  3. An expanded genetic linkage map of an intervarietal Agaricus bisporus var. bisporusxA. bisporus var. burnettii hybrid based on AFLP, SSR and CAPS markers sheds light on the recombination behaviour of the species.

    Science.gov (United States)

    Foulongne-Oriol, Marie; Spataro, Cathy; Cathalot, Vincent; Monllor, Sarah; Savoie, Jean-Michel

    2010-03-01

    A genetic linkage map for the edible basidiomycete Agaricus bisporus was constructed from 118 haploid homokaryons derived from an intervarietal A. bisporus var. bisporus x A. bisporus var. burnettii hybrid. Two hundred and thirty-one AFLP, 21 SSR, 68 CAPS markers together with the MAT, BSN, PPC1 loci and one allozyme locus (ADH) were evenly spread over 13 linkage groups corresponding to the chromosomes of A. bisporus. The map covers 1156cM, with an average marker spacing of 3.9cM and encompasses nearly the whole genome. The average number of crossovers per chromosome per individual is 0.86. Normal recombination over the entire genome occurs in the heterothallic variety, burnettii, contrary to the homothallic variety, bisporus, which showed adaptive genome-wide suppressed recombination. This first comprehensive genetic linkage map for A. bisporus provides foundations for quantitative trait analyses and breeding programme monitoring, as well as genome organisation studies.

  4. [Modern evolutional developmental biology: mechanical and molecular genetic or phenotypic approaches?].

    Science.gov (United States)

    Vorob'eva, É I

    2010-01-01

    Heightened interest in the evolutionary problems of developmental biology in the 1980s was due to the success of molecular genetics and disappointment in the synthetic theory of evolution, where the chapters of embryology and developmental biology seem to have been left out. Modern evo-devo, which turned out to be antipodean to the methodology of the synthetic theory of evolution, propagandized in the development of evolutionary problems only the mechanical and molecular genetic approach to the evolution of ontogenesis, based on cellular and intercellular interactions. The phonotypical approach to the evaluation of evolutionary occurrences in ontogenesis, which aids in the joining of the genetic and epigenetic levels of research, the theory of natural selection, the nomogenetic conception, and the problem of the wholeness of the organism in onto- and phylogenesis may be against this. The phenotypic approach to ontogenesis is methodologically the most perspective for evolutionary developmental biology.

  5. New insights into mechanisms of small vessel disease stroke from genetics.

    Science.gov (United States)

    Tan, Rhea; Traylor, Matthew; Rutten-Jacobs, Loes; Markus, Hugh

    2017-04-01

    Cerebral small vessel disease (SVD) is a common cause of lacunar strokes, vascular cognitive impairment (VCI) and vascular dementia. SVD is thought to result in reduced cerebral blood flow, impaired cerebral autoregulation and increased blood-brain barrier (BBB) permeability. However, the molecular mechanisms underlying SVD are incompletely understood. Recent studies in monogenic forms of SVD, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and 'sporadic' SVD have shed light on possible disease mechanisms in SVD. Proteomic and biochemical studies in post-mortem monogenic SVD patients, as well as in animal models of monogenic disease have suggested that disease pathways are shared between different types of monogenic disease, often involving the impairment of extracellular matrix (ECM) function. In addition, genetic studies in 'sporadic' SVD have also shown that the disease is highly heritable, particularly among young-onset stroke patients, and that common variants in monogenic disease genes may contribute to disease processes in some SVD subtypes. Genetic studies in sporadic lacunar stroke patients have also suggested distinct genetic mechanisms between subtypes of SVD. Genome-wide association studies (GWAS) have also shed light on other potential disease mechanisms that may be shared with other diseases involving the white matter, or with pathways implicated in monogenic disease. This review brings together recent data from studies in monogenic SVD and genetic studies in 'sporadic' SVD. It aims to show how these provide new insights into the pathogenesis of SVD, and highlights the possible convergence of disease mechanisms in monogenic and sporadic SVD. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  6. Study on mechanism of C-H radicals' recombination into acetylene in the process of coal pyrolysis in hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.D.; Fan, Y.S.; Dai, B.; Deng, W.W.; Liu, X.L. [Tsing Hua University, Beijing, (China). Dept. of Engineering Mechanics

    2001-06-30

    According to computation results of C-K equilibrium systems, C{sub 2}H{sub 2} and C{sub 2}H are the main hydrocarbons in the C-H equilibrium system at the temperature of approximately 3500 K. Because hydrogen plasma has the advantage of high temperature (over 3500 K), acetylene can be directly produced by coal pyrolysis in hydrogen plasma. In order to obtain high yields of acetylene, a quenching process is needed to fix the acetylene produced at high temperature. A dynamic chemical method is employed to study the mechanism of C{sub 2}H radicals' recombination into acetylene in the quenching process. Primary experiments have also been carried out to study the process of coal pyrolysis in hydrogen plasma. It is shown by the calculation results that: (1) the reaction that really has an effect on acetylene yield in the quenching process is the recombination of C{sub 2}H and H{sub 2}, and not that of C{sub 2}H and H in traditional opinions; (2) if the recombination of C{sub 2}H and H{sub 2} is taken into account, the total mass content of acetylene in the quenched gas may increase from 58% to 78% at the quenching rate which can prevent acetylene from decomposing.

  7. Evidence of recombination within human alpha-papillomavirus

    Directory of Open Access Journals (Sweden)

    Carvajal-Rodríguez Antonio

    2007-03-01

    topic deserves further study because recombination is an important evolutionary mechanism that could have high impact both in pharmacogenomics (i.e. on the influence of genetic variation on the response to drugs and for vaccine development.

  8. A New Chaotic Genetic Hybrid Algorithm and Its Applications in Mechanical Optimization Design

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-min; DAI Yi

    2010-01-01

    A new chaotic genetic hybrid algorithm (CGHA) based on float point coding was put forward in this paper.Firstly, it used chaos optimization to search coarsely and produced a better initial population. Then, a power function carri-er was adopted to improve the ergodicity and the sufficiency of the chaos optimization. Secondly, the genetic algorithm (GA) was used to search finely and guaranteed the population's evolution. To avoid the search being trapped in local minimum, a chaos degenerate mutation operator was designed to make the search converge to a global optimum quickly. Finally, CGHA was used to solve a typical mechanical optimization problem of shear stress checking for a cylinder helix spring.Compared with traditional penalty function method, chaos-Powell hybrid algorithm and standard GA, CGHA shows better performance in solution precision and convergence speed than those of the algorithms. Therefore, CGHA is a new effective way to solve the problems in mechanical optimization design.

  9. The Molecular Genetics of Autism Spectrum Disorders: Genomic Mechanisms, Neuroimmunopathology, and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Daniel J. Guerra

    2011-01-01

    Full Text Available Autism spectrum disorders (ASDs have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD.

  10. The molecular genetics of autism spectrum disorders: genomic mechanisms, neuroimmunopathology, and clinical implications.

    Science.gov (United States)

    Guerra, Daniel J

    2011-01-01

    Autism spectrum disorders (ASDs) have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD.

  11. Two pathways of homologous recombination in Trypanosoma brucei.

    Science.gov (United States)

    Conway, Colin; Proudfoot, Chris; Burton, Peter; Barry, J David; McCulloch, Richard

    2002-09-01

    African trypanosomes are unicellular parasites that use DNA recombination to evade the mammalian immune response. They do this in a process called antigenic variation, in which the parasites periodically switch the expression of VSG genes that encode distinct Variant Surface Glycoprotein coats. Recombination is used to move new VSG genes into specialised bloodstream VSG transcription sites. Genetic and molecular evidence has suggested that antigenic variation uses homologous recombination, but the detailed reaction pathways are not understood. In this study, we examine the recombination pathways used by trypanosomes to integrate transformed DNA into their genome, and show that they possess at least two pathways of homologous recombination. The primary mechanism is dependent upon RAD51, but a subsidiary pathway exists that is RAD51-independent. Both pathways contribute to antigenic variation. We show that the RAD51-independent pathway is capable of recombining DNA substrates with very short lengths of sequence homology and in some cases aberrant recombination reactions can be detected using such microhomologies.

  12. Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective.

    Science.gov (United States)

    Albuquerque, David; Stice, Eric; Rodríguez-López, Raquel; Manco, Licíno; Nóbrega, Clévio

    2015-08-01

    It is well-known that obesity is a complex multifactorial and heterogeneous condition with an important genetic component. Recently, major advances in obesity research emerged concerning the molecular mechanisms contributing to the obese condition. This review outlines several studies and data concerning the genetics and other important factors in the susceptibility risk to develop obesity. Based in the genetic etiology three main categories of obesity are considered: monogenic, syndromic, and common obesity. For the monogenic forms of obesity, the gene causing the phenotype is clearly identified, whereas for the common obesity the loci architecture underlying the phenotype is still being characterized. Given that, in this review we focus mainly in this obesity form, reviewing loci found until now by genome-wide association studies related with the susceptibility risk to develop obesity. Moreover, we also detail the obesity-related loci identified in children and in different ethnic groups, trying to highlight the complexity of the genetics underlying the common obese phenotype. Importantly, we also focus in the evolutionary hypotheses that have been proposed trying to explain how natural selection favored the spread of genes that increase the risk for an obese phenotype and how this predisposition to obesity evolved. Other factors are important in the obesity condition, and thus, we also discuss the epigenetic mechanisms involved in the susceptibility and development of obesity. Covering all these topics we expect to provide a complete and recent perspective about the underlying mechanisms involved in the development and origin of obesity. Only with a full understanding of the factors and mechanisms contributing to obesity, it will be possible to provide and allow the development of new therapeutic approaches to this condition.

  13. The Molecular Genetics of Autism Spectrum Disorders: Genomic Mechanisms, Neuroimmunopathology, and Clinical Implications

    OpenAIRE

    Guerra, Daniel J.

    2011-01-01

    Autism spectrum disorders (ASDs) have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting th...

  14. Recombination instability

    DEFF Research Database (Denmark)

    D'Angelo, N.

    1967-01-01

    A recombination instability is considered which may arise in a plasma if the temperature dependence of the volume recombination coefficient, alpha, is sufficiently strong. Two cases are analyzed: (a) a steady-state plasma produced in a neutral gas by X-rays or high energy electrons; and (b) an af...

  15. Buffering mechanisms in aging: a systems approach toward uncovering the genetic component of aging.

    Directory of Open Access Journals (Sweden)

    Aviv Bergman

    2007-08-01

    Full Text Available An unrealized potential to understand the genetic basis of aging in humans, is to consider the immense survival advantage of the rare individuals who live 100 years or more. The Longevity Gene Study was initiated in 1998 at the Albert Einstein College of Medicine to investigate longevity genes in a selected population: the "oldest old" Ashkenazi Jews, 95 years of age and older, and their children. The study proved the principle that some of these subjects are endowed with longevity-promoting genotypes. Here we reason that some of the favorable genotypes act as mechanisms that buffer the deleterious effect of age-related disease genes. As a result, the frequency of deleterious genotypes may increase among individuals with extreme lifespan because their protective genotype allows disease-related genes to accumulate. Thus, studies of genotypic frequencies among different age groups can elucidate the genetic determinants and pathways responsible for longevity. Borrowing from evolutionary theory, we present arguments regarding the differential survival via buffering mechanisms and their target age-related disease genes in searching for aging and longevity genes. Using more than 1,200 subjects between the sixth and eleventh decades of life (at least 140 subjects in each group, we corroborate our hypotheses experimentally. We study 66 common allelic site polymorphism in 36 candidate genes on the basis of their phenotype. Among them we have identified a candidate-buffering mechanism and its candidate age-related disease gene target. Previously, the beneficial effect of an advantageous cholesteryl ester transfer protein (CETP-VV genotype on lipoprotein particle size in association with decreased metabolic and cardiovascular diseases, as well as with better cognitive function, have been demonstrated. We report an additional advantageous effect of the CETP-VV (favorable genotype in neutralizing the deleterious effects of the lipoprotein(a (LPA gene

  16. Pathogen stress increases somatic recombination frequency in Arabidopsis.

    Science.gov (United States)

    Lucht, Jan M; Mauch-Mani, Brigitte; Steiner, Henry-York; Metraux, Jean-Pierre; Ryals, John; Hohn, Barbara

    2002-03-01

    Evolution is based on genetic variability and subsequent phenotypic selection. Mechanisms that modulate the rate of mutation according to environmental cues, and thus control the balance between genetic stability and flexibility, might provide a distinct evolutionary advantage. Stress-induced mutations stimulated by unfavorable environments, and possible mechanisms for their induction, have been described for several organisms, but research in this area has mainly focused on microorganisms. We have analyzed the influence of adverse environmental conditions on the genetic stability of the higher plant Arabidopsis thaliana. Here we show that a biotic stress factor-attack by the oomycete pathogen Peronospora parasitica-can stimulate somatic recombination in Arabidopsis. The same effect was observed when plant pathogen-defense mechanisms were activated by the chemicals 2,6-dichloroisonicotinic acid (INA) or benzothiadiazole (BTH), or by a mutation (cim3). Together with previous studies of recombination induced by abiotic factors, these findings suggest that increased somatic recombination is a general stress response in plants. The increased genetic flexibility might facilitate evolutionary adaptation of plant populations to stressful environments.

  17. Perspective: Identification of genetic variants associated with dopaminergic compensatory mechanisms in early Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Lior eGreenbaum

    2013-04-01

    Full Text Available Parkinson's disease (PD is slowly progressive, and heterogeneity of its severity among individuals may be due to endogenous mechanisms that counterbalance the striatal dopamine loss. In this perspective paper, we introduce a neuroimaging-genetic approach to identify genetic variants, which may contribute to this compensation. First, we briefly review current known potential compensatory mechanisms for premotor and early disease PD, located in the striatum and other brain regions. Then, we claim that a mismatch between mild symptomatic disease, manifested by low motor score on the Unified PD Rating Scale (UPDRS and extensive Nigro-Striatal degeneration, manifested by reduced uptake of [123I]FP-CIT is indicative of compensatory processes. If genetic variants are associated with the severity of motor symptoms, while the level of striatal terminals degeneration measured by ligand uptake is taken into account and controlled in the analysis, then these variants may be involved in functional compensatory mechanisms for striatal dopamine deficit. To demonstrate feasibility of this approach, we performed a small "proof of concept" study (candidate gene design in a sample of 28 Jewish PD patients, and preliminary results are presented.

  18. Mobile genetic elements in the genus Bacteroides, and their mechanism(s) of dissemination

    Science.gov (United States)

    Nguyen, Mai

    2011-01-01

    Bacteroides spp organisms, the predominant commensal bacteria in the human gut have become increasingly resistant to many antibiotics. They are now also considered to be reservoirs of antibiotic resistance genes due to their capacity to harbor and disseminate these genes via mobile transmissible elements that occur in bewildering variety. Gene dissemination occurs within and from Bacteroides spp primarily by conjugation, the molecular mechanisms of which are still poorly understood in the genus, even though the need to prevent this dissemination is urgent. One current avenue of research is thus focused on interventions that use non-antibiotic methodologies to prevent conjugation-based DNA transfer. PMID:22479685

  19. Malicious Botnet Survivability Mechanism Evolution Forecasting by Means of a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Nikolaj Goranin

    2012-04-01

    Full Text Available Botnets are considered to be among the most dangerous modern malware types and the biggest current threats to global IT infrastructure. Botnets are rapidly evolving, and therefore forecasting their survivability strategies is important for the development of countermeasure techniques. The article propose the botnet-oriented genetic algorithm based model framework, which aimed at forecasting botnet survivability mechanisms. The model may be used as a framework for forecasting the evolution of other characteristics. The efficiency of different survivability mechanisms is evaluated by applying the proposed fitness function. The model application area also covers scientific botnet research and modelling tasks.

  20. Impact of recombination on bacterial evolution

    OpenAIRE

    2010-01-01

    Genetic exchange plays a defining role in the evolution of many bacteria. The recent accumulation of nucleotide sequence data from multiple members of diverse bacterial genera has facilitated comparative studies that have revealed many features of this process. Here we focus on genetic exchange that has involved homologous recombination and illustrate how nucleotide sequence data have furthered our understanding of: (i) the frequency of recombination; (ii) the impact of recombination in diffe...

  1. Preliminary study on nitrite degradation by nirS recombinant genetic engineering bacteria%nirS基因重组工程菌降解亚硝酸盐的初步研究

    Institute of Scientific and Technical Information of China (English)

    杨兴兴; 陈学萍; 刘冬秀; 沈洁; 陆永生

    2014-01-01

    通过基因工程手段增加厌氧氨氧化菌亚硝酸盐还原酶(nitrite reductase, nirS)的表达量,运用质粒载体pGEM-T克隆nirS基因。琼脂糖凝胶电泳检测显示, nirS基因重组工程菌在440 bp处有明显的目的条带; nirS基因重组工程菌扩大培养7~8h后即达到生长曲线稳定期,引入外加氮源后,菌体生长情况更优。通过不同菌液投加量以及处理不同初始浓度的亚硝酸钠溶液,检测nirS基因重组工程菌的性能。结果表明,当nirS基因重组工程菌投加30 mL(细菌数为2.3×107个∕mL),亚硝酸盐初始质量浓度为40 mg∕L时,亚硝酸盐去除率达到90%以上。nirS基因重组工程菌可适用于亚硝酸盐废水的处理。%In order to improve the expression quantity of nitrite reductase (nirS) in ANAMMOX bacteria through bioengineering means, nirS gene was cloned using the plasmid vector pGEM-T. A target band of 440 bp PCR products from the recombinant genetic engineering bacter was observed by agarose gel electrophoresis. The nirS recombinant genetic engineering bacteria reached stationary phase after 7-8 hours incubation, the addition of nitrogen source was advantageous to the growth of bacteria significantly. The performance of nirS recombinant genetic engineering bacteria was tested by adding different dosages of bacteria and treating sodium nitrite solu‐tion with different initial concentrations. The results showed that, when 30 mL of nirS recombinant genetic engi‐neering bacteria(2.3 × 107 cells/mL) inoculates was added to the solution with 40 mg/L of initial mass concentra‐tion of nitrite, the removal rate of nitrite reached above 90%. It was indicated that nirS recombinant genetic en‐gineering bacteria could be applied for nitrite-containing wastewater treatment in the future.

  2. Transcript-RNA-templated DNA recombination and repair.

    Science.gov (United States)

    Keskin, Havva; Shen, Ying; Huang, Fei; Patel, Mikir; Yang, Taehwan; Ashley, Katie; Mazin, Alexander V; Storici, Francesca

    2014-11-20

    Homologous recombination is a molecular process that has multiple important roles in DNA metabolism, both for DNA repair and genetic variation in all forms of life. Generally, homologous recombination involves the exchange of genetic information between two identical or nearly identical DNA molecules; however, homologous recombination can also occur between RNA molecules, as shown for RNA viruses. Previous research showed that synthetic RNA oligonucleotides can act as templates for DNA double-strand break (DSB) repair in yeast and human cells, and artificial long RNA templates injected in ciliate cells can guide genomic rearrangements. Here we report that endogenous transcript RNA mediates homologous recombination with chromosomal DNA in yeast Saccharomyces cerevisiae. We developed a system to detect the events of homologous recombination initiated by transcript RNA following the repair of a chromosomal DSB occurring either in a homologous but remote locus, or in the same transcript-generating locus in reverse-transcription-defective yeast strains. We found that RNA-DNA recombination is blocked by ribonucleases H1 and H2. In the presence of H-type ribonucleases, DSB repair proceeds through a complementary DNA intermediate, whereas in their absence, it proceeds directly through RNA. The proximity of the transcript to its chromosomal DNA partner in the same locus facilitates Rad52-driven homologous recombination during DSB repair. We demonstrate that yeast and human Rad52 proteins efficiently catalyse annealing of RNA to a DSB-like DNA end in vitro. Our results reveal a novel mechanism of homologous recombination and DNA repair in which transcript RNA is used as a template for DSB repair. Thus, considering the abundance of RNA transcripts in cells, RNA may have a marked impact on genomic stability and plasticity.

  3. Mechanisms of assembly of the enzyme-ssDNA complexes required for recombination-dependent DNA synthesis and repair in bacteriophage T4

    Energy Technology Data Exchange (ETDEWEB)

    Morrical, S.; Hempstead, K.; Morrical, M. [Univ. of Vermont College of Medicine, Burlington, VT (United States)

    1994-12-31

    During late stages of bacteriophage T4 infection in E. coli, the initiation of phage DNA replication is dependent on the homologous recombination activity of the T4 uvsX protein. In vitro, uvsX protein initiates DNA synthesis on a duplex template by inserting the 3{prime} end of a homologous ssDNA molecule into the duplex. The resulting D-loop structure serves as a primer-template junction for the assembly of the T4 replication fork. Two key steps in this initiation process are (A) the assembly of uvsX-ssDNA complexes necessary for recombination activity and for the priming of lead-strand DNA synthesis, and (B) the assembly of the T4 primosome (gp41 helicase/gp61 primase complex) onto the single-stranded template for lagging-strand synthesis. Our laboratory is focusing on the mechanisms of these two different but related enzyme-ssDNA assembly processes. In this extended abstract, we describe recent efforts in our laboratory to elucidate the mechanism by which the gp41 helicase enzyme is assembled onto gp32-covered ssDNA, a process requiring the activity of a special helicase assembly factor, the T4 gp59 protein.

  4. Recombination at the DNA level. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Abstracts of papers in the following areas are presented: (1) chromosome mechanics; (2) yeast systems; (3) mammalian homologous recombination; (4) transposons; (5) Mu; (6) plant transposons/T4 recombination; (7) topoisomerase, resolvase, and gyrase; (8) Escherichia coli general recombination; (9) recA; (10) repair; (11) eucaryotic enzymes; (12) integration and excision of bacteriophage; (13) site-specific recombination; and (14) recombination in vitro. (ACR)

  5. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants.

    Directory of Open Access Journals (Sweden)

    Steven C Bagley

    2016-04-01

    Full Text Available Patterns of disease co-occurrence that deviate from statistical independence may represent important constraints on biological mechanism, which sometimes can be explained by shared genetics. In this work we study the relationship between disease co-occurrence and commonly shared genetic architecture of disease. Records of pairs of diseases were combined from two different electronic medical systems (Columbia, Stanford, and compared to a large database of published disease-associated genetic variants (VARIMED; data on 35 disorders were available across all three sources, which include medical records for over 1.2 million patients and variants from over 17,000 publications. Based on the sources in which they appeared, disease pairs were categorized as having predominant clinical, genetic, or both kinds of manifestations. Confounding effects of age on disease incidence were controlled for by only comparing diseases when they fall in the same cluster of similarly shaped incidence patterns. We find that disease pairs that are overrepresented in both electronic medical record systems and in VARIMED come from two main disease classes, autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared within these disease groups.

  6. Regulation of Rad51-Mediated Homologous Recombination by BRCA2, DSS1 and RAD52

    DEFF Research Database (Denmark)

    Rants, Louise Olthaver Juhl

    Homologous recombination (HR) provides a mechanism to restore integrity and maintain stability of the genetic material. HR is a major pathway for repair of DNA double-strand breaks (DSB), recovery of broken replication forks and generation of meiotic crossovers. The defining step in HR...... in governing the activity of Rad51 and to learn how other recombination-associated proteins such as DSS1 and RAD52 contribute to its regulation. We use the yeast-like fungus Ustilago maydis and the avian DT40 cell line as experimental systems since both have a well-conserved BRCA2-based recombinational repair...

  7. [Genetics and epigenetics. Explanatory approaches for (gender-specific) mechanisms of disease development].

    Science.gov (United States)

    Zerres, K; Eggermann, T

    2014-09-01

    Whereas the central role of DNA as the carrier of genetic information has long been well known, the impact of epigenetic mechanisms as mediators between genes and environment is now becoming increasingly clear. Epigenetics helps explain the partially reversible interplay between gene function and environment and even permits observation of the transgenerational transmission of epigenetic modifications. Of special interest are gender-specific mechanisms of gene regulation which, among others, offer an explanation for gender differences in human diseases. Since the study of epigenetic mechanisms and their impact on the etiology of common diseases is in its infancy, it is too early to draw general conclusions from the current state of knowledge. Moreover, completely new strategies are needed to research these effects. In addition to molecular findings, definitions of specific phenotypes are required, including biographic data of affected individuals and their ancestors. Epigenetics needs to be viewed in the context of the theory of evolution, classical genetics, and environmental research. Its aim is not to substitute the knowledge in these disciplines, but rather to provide a key to link their findings, thereby opening up new possibilities in terms of interpretation and understanding of gender differences in medicine. If these epigenetic mechanisms are better understood, particularly in terms of specific diseases, it is conceivable that these disorders could be influenced and treated in a more targeted manner in the future.

  8. Improved NSGA-Ⅱ Multi-objective Genetic Algorithm Based on Hybridization-encouraged Mechanism

    Institute of Scientific and Technical Information of China (English)

    Sun Yijie; Shen Gongzhang

    2008-01-01

    To improve performances of muhi-objective optimization algorithms, such as convergence and diversity, a hybridization-encour-aged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm (NSGA-Ⅱ). This mechanism uses the nor-malized distance to evaluate the difference among genes in a population. Three possible modes of crossover operators--"Max Distance", "Min-Max Distance", and "Neighboring-Max"--are suggested and analyzed. The mode of "Neighboring-Max", which not only takes advantage of hybridization but also improves the distribution of the population near Pareto optimal front, is chosen and used in NSGA-Ⅱ on the basis of bybridization-encouraged mechanism (short for HEM-based NSGA-II). To prove the HEM-based algorithm, several problems are studied by using standard NSGA-Ⅱ and the presented method. Different evaluation criteria are also used to judge these algorithms in terms of distribution of solutions, convergence, diversity, and quality of solutions. The numerical results indicate that the application of hybridization-encouraged mechanism could effectively improve the performances of genetic algorithm. Finally, as an example in engineering practices, the presented method is used to design a longitudinal flight control system, which demonstrates the obtainability of a reasonable and correct Pareto front.

  9. Herpes simplex type 1:lacZ recombinant viruses. I. Characterization and application to defining the mechanisms of action of known antiherpes agents.

    Science.gov (United States)

    Dicker, I B; Seetharam, S

    1995-11-01

    Recombinant viruses with the lacZ gene placed under the control of the HSV-1 ICP4, TK and gD regulatory regions were constructed by recombination into the TK locus of HSV-1. Difficulty in isolating ICP4 and gD recombinant viruses with high level, regulated expression of beta-galactosidase was overcome by the use of HSV-1 translational initiation sequences of these genes in place of vector-derived sequences. beta-Galactosidase expression displayed the kinetics particular to each viral class. The maximal expression of beta-galactosidase from the recombinant viruses within a 22-h period (m.o.i. 5) (relative to the ICP4 virus) was gD(3) > gC(2) > ICP4(1) > TK(0.5). The ICP4 virus produces easily quantifiable levels of beta-galactosidase activity for multiplicities of infection from 5 x 10(-4) through 5 over 48 h postinfection. At multiplicities of infection between 2 and 5, ICP4-driven activity was measurable within 2 h postinfection from a monolayer of 3 x 10(4) Vero cells in microtiter wells. Mechanisms of inhibition of several antivirals were probed by using the regulated expression of beta-galactosidase from the ICP4 virus as a marker for viral growth. An experimental antiviral (E3925, IC50 1 microgram/ml) and a neutralizing gD MAb (DUP55306, IC50 0.6 microgram/ml) acted prior to immediate early synthesis, consistent with inhibition of viral entry or uncoating. IFN-gamma inhibited expression of immediate-early synthesis, while having no effect on viral entry. IC50 values for E3925 obtained using either the ICP4 or gD viruses at m.o.i. 0.005, were in good agreement with those obtained by standard plaque assays, but were determined in only 1 day, using a microtiter plate format. Thus, these reporter viruses are useful tools for defining the mechanisms of action of antiherpes agents, while quantitatively reproducing the results for IC50 determinations from standard plaque assays within 24 h in a microtiter plate format.

  10. DNA Sequence Alignment during Homologous Recombination.

    Science.gov (United States)

    Greene, Eric C

    2016-05-27

    Homologous recombination allows for the regulated exchange of genetic information between two different DNA molecules of identical or nearly identical sequence composition, and is a major pathway for the repair of double-stranded DNA breaks. A key facet of homologous recombination is the ability of recombination proteins to perfectly align the damaged DNA with homologous sequence located elsewhere in the genome. This reaction is referred to as the homology search and is akin to the target searches conducted by many different DNA-binding proteins. Here I briefly highlight early investigations into the homology search mechanism, and then describe more recent research. Based on these studies, I summarize a model that includes a combination of intersegmental transfer, short-distance one-dimensional sliding, and length-specific microhomology recognition to efficiently align DNA sequences during the homology search. I also suggest some future directions to help further our understanding of the homology search. Where appropriate, I direct the reader to other recent reviews describing various issues related to homologous recombination.

  11. Evidence for homologous recombination in Chikungunya Virus.

    Science.gov (United States)

    Casal, Pablo E; Chouhy, Diego; Bolatti, Elisa M; Perez, Germán R; Stella, Emma J; Giri, Adriana A

    2015-04-01

    Chikungunya Virus (CHIKV), a mosquito-transmitted alphavirus, causes acute fever and joint pain in humans. Recently, endemic CHIKV infection outbreaks have jeopardized public health in wider geographical regions. Here, we analyze the phylogenetic associations of CHIKV and explore the potential recombination events on 152 genomic isolates deposited in GenBank database. The CHIKV genotypes [West African, Asian, East/Central/South African (ECSA)], and a clear division of ECSA clade into three sub-groups (I-II-III), were defined by Bayesian analysis; similar results were obtained using E1 gene sequences. A nucleotide identity-based approach is provided to facilitate CHIKV classification within ECSA clade. Using seven methods to detect recombination, we found a statistically significant event (p-values range: 1.14×10(-7)-4.45×10(-24)) located within the nsP3 coding region. This finding was further confirmed by phylogenetic networks (PHI Test, p=0.004) and phylogenetic tree incongruence analysis. The recombinant strain, KJ679578/India/2011 (ECSA III), derives from viruses of ECSA III and ECSA I. Our study demonstrates that recombination is an additional mechanism of genetic diversity in CHIKV that might assist in the cross-species transmission process.

  12. DNA Sequence Alignment during Homologous Recombination*

    Science.gov (United States)

    Greene, Eric C.

    2016-01-01

    Homologous recombination allows for the regulated exchange of genetic information between two different DNA molecules of identical or nearly identical sequence composition, and is a major pathway for the repair of double-stranded DNA breaks. A key facet of homologous recombination is the ability of recombination proteins to perfectly align the damaged DNA with homologous sequence located elsewhere in the genome. This reaction is referred to as the homology search and is akin to the target searches conducted by many different DNA-binding proteins. Here I briefly highlight early investigations into the homology search mechanism, and then describe more recent research. Based on these studies, I summarize a model that includes a combination of intersegmental transfer, short-distance one-dimensional sliding, and length-specific microhomology recognition to efficiently align DNA sequences during the homology search. I also suggest some future directions to help further our understanding of the homology search. Where appropriate, I direct the reader to other recent reviews describing various issues related to homologous recombination. PMID:27129270

  13. Optimal Design of a Cam Mechanism with Translating Flat-Face Follower using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    I. Tsiafis

    2013-12-01

    Full Text Available The optimum design of a cam mechanism is a time consuming task, due to the numerous alternatives considerations. In the present work, the problem of design parameters optimization of a cam mechanism with translating flat - face follower is investigated from a multi - objective point of view. The design parameters, just like the cam base circle radius, the follower face width and the follower offset can be determined considering as the optimization criteria minimization of the cam size, of the input torque and of the contact stress. During the optimization procedure, a number of constraints regarding the pressure angle, the contact stress, etcare taken into account. The optimization approach, based on genetic algorithm, is applied to find the optimal solutions with respect to the a fore - mentioned objective function and to Ensure the kinematic requirements. Finally, the dynamic behavior of the designed cam mechanism is investigated considering the frictional forces.

  14. Epigenetics and genetics in endometrial cancer: new carcinogenic mechanisms and relationship with clinical practice.

    Science.gov (United States)

    Banno, Kouji; Kisu, Iori; Yanokura, Megumi; Masuda, Kenta; Ueki, Arisa; Kobayashi, Yusuke; Susumu, Nobuyuki; Aoki, Daisuke

    2012-04-01

    Endometrial cancer is the seventh most common cancer worldwide among females. An increased incidence and a younger age of patients are also predicted to occur, and therefore elucidation of the pathological mechanisms is important. However, several aspects of the mechanism of carcinogenesis in the endometrium remain unclear. Associations with genetic mutations of cancer-related genes have been shown, but these do not provide a complete explanation. Therefore, epigenetic mechanisms have been examined. Silencing of genes by DNA hypermethylation, hereditary epimutation of DNA mismatch repair genes and regulation of gene expression by miRNAs may underlie carcinogenesis in endometrial cancer. New therapies include targeting epigenetic changes using histone deacetylase inhibitors. Some cases of endometrial cancer may also be hereditary. Thus, patients with Lynch syndrome which is a hereditary disease, have a higher risk for developing endometrial cancer than the general population. Identification of such disease-related genes may contribute to early detection and prevention of endometrial cancer.

  15. Evidence of recombination in Hepatitis C Virus populations infecting a hemophiliac patient

    Directory of Open Access Journals (Sweden)

    Cristina Juan

    2009-11-01

    Full Text Available Abstract Background/Aim Hepatitis C virus (HCV infection is an important cause of morbidity and mortality in patients affected by hereditary bleeding disorders. HCV, as others RNA virus, exploit all possible mechanisms of genetic variation to ensure their survival, such as recombination and mutation. In order to gain insight into the genetic variability of HCV virus strains circulating in hemophiliac patients, we have performed a phylogenetic analysis of HCV strains isolated from 10 patients with this kind of pathology. Methods Putative recombinant sequence was identified with the use of GARD program. Statistical support for the presence of a recombination event was done by the use of LARD program. Results A new intragenotypic recombinant strain (1b/1a was detected in 1 out of the 10 hemophiliac patient studied. The recombination event was located at position 387 of the HCV genome (relative to strain AF009606, sub-type 1a corresponding to the core gene region. Conclusion Although recombination may not appear to be common among natural populations of HCV it should be considered as a possible mechanism for generating genetic diversity in hemophiliacs patients.

  16. Toward elucidation of genetic and functional genetic mechanisms in corn host resistance to Aspergillus flavus infection and aflatoxin contamination

    Directory of Open Access Journals (Sweden)

    Xueyan eShan

    2014-07-01

    Full Text Available Aflatoxins are carcinogenic mycotoxins produced by some species in the Aspergillus genus, such as A. flavus and A. parasiticus. Contamination of aflatoxins in corn profusely happens at pre-harvest stage when heat and drought field conditions favor A. flavus colonization. Commercial corn hybrids are generally susceptible to A. flavus infection. An ideal strategy for preventing aflatoxin contamination is through the enhancement of corn host resistance to Aspergillus infection and aflatoxin production. Constant efforts have been made by corn breeders to develop resistant corn genotypes. Significantly low levels of aflatoxin accumulation have been determined in certain resistant corn inbred lines. A number of reports of quantitative trait loci (QTLs have provided compelling evidence supporting the quantitative trait genetic basis of corn host resistance to aflatoxin accumulation. Important findings have also been obtained from the investigation on candidate resistance genes through transcriptomics approach. Elucidation of molecular mechanisms will provide in-depth understanding of the host-pathogen interactions and hence facilitate the breeding of corn with resistance to A. falvus infection and aflatoxin accumulation.

  17. Recombination monitor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-02-03

    This is a brief report on LEReC recombination monitor design considerations. The recombination produced Au78+ ion rate is reviewed. Based on this two designs are discussed. One is to use the large dispersion lattice. It is shown that even with the large separation of the Au78+ beam from the Au79+ beam, the continued monitoring of the recombination is not possible. Accumulation of Au78+ ions is needed, plus collimation of the Au79+ beam. In another design, it is shown that the recombination monitor can be built based on the proposed scheme with the nominal lattice. From machine operation point of view, this design is preferable. Finally, possible studies and the alternative strategies with the basic goal of the monitor are discussed.

  18. Genetics implicate common mechanisms in autism and schizophrenia: synaptic activity and immunity.

    Science.gov (United States)

    Liu, Xiaoming; Li, Zhengwei; Fan, Conghai; Zhang, Dongli; Chen, Jiao

    2017-08-01

    The diagnosis of debilitating psychiatric disorders like autism spectrum disorder (ASD) and schizophrenia (SCHZ) is on the rise. These are severe conditions that lead to social isolation and require lifelong professional care. Improved diagnosis of ASD and SCHZ provides early access to medication and therapy, but the reality is that the mechanisms and the cellular pathology underlying these conditions are mostly unknown at this time. Although both ASD and SCHZ have strong inherited components, genetic risk seems to be distributed in hundreds of variants, each conferring low risk. The poor understanding of the genetics of ASD and SCHZ is a significant hurdle to developing effective treatments for these costly conditions. The recent implementation of next-generation sequencing technologies and the creation of large consortia have started to reveal the genetic bases of ASD and SCHZ. Alterations in gene expression regulation, synaptic architecture and activity and immunity seem to be the main cellular mechanisms contributing to both ASD and SCHZ, a surprising overlap given the distinct phenotypes and onset of these conditions. These diverse pathways seem to converge in aberrant synaptic plasticity and remodelling, which leads to altered connectivity between relevant brain regions. Continuous efforts to understand the genetic basis of ASD and SCHZ will soon lead to significant progress in the mechanistic understanding of these prominent psychiatric disorders and enable the development of disease-modifying therapies for these devastating conditions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Evidence for natural recombination between mink enteritis virus and canine parvovirus

    Directory of Open Access Journals (Sweden)

    Wang Jianke

    2012-10-01

    Full Text Available Abstract A virus was isolated from mink showing clinical and pathological signs of enteritis in China. This virus, designated MEV/LN-10, was identified as mink enteritis virus (MEV based on its cytopathic effect in the feline F81 cell line, the hemagglutination (HA and hemagglutination inhibition (HI assay, electron microscopy (EM and animal infection experiments. The complete viral genome was cloned and sequenced. Phylogenetic and recombination analyses on the complete MEV/LN-10 genome showed evidence of recombination between MEV and canine parvovirus (CPV. The genome was composed of the NS1 gene originating from CPV while the VP1 gene was of MEV origin. This is the first demonstration of recombination between a CPV and MEV in nature. Our findings not only provide valuable evidence indicating that recombination is an important genetic mechanism contributing to the variation and evolution of MEV, but also that heterogeneous recombination can occur in the feline parvovirus subspecies.

  20. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiao-Qin; Li, Ding-Hong; Xue, Jia-Yu; Yang, Si-Hai; Zhang, Yan-Mei; Li, Mi-Mi; Hang, Yue-Yu

    2016-08-01

    Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional β-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency  >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution.

  1. Review:Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods

    Institute of Scientific and Technical Information of China (English)

    WANG Jun-ping; RAMAN Harsh; ZHANG Guo-ping; MENDHAM Neville; ZHOU Mei-xue

    2006-01-01

    Aluminium (Al) toxicity is one of the major limiting factors for barley production on acid soils. It inhibits root cell division and elongation, thus reducing water and nutrient uptake, consequently resulting in poor plant growth and yield. Plants tolerate Al either through external resistance mechanisms, by which Al is excluded from plant tissues or internal tolerance mechanisms, conferring the ability of plants to tolerate Al ion in the plant symplasm where Al that has permeated the plasmalemma is sequestered or converted into an innocuous form. Barley is considered to be most sensitive to Al toxicity among cereal species. Al tolerance in barley has been assessed by several methods, such as nutrient solution culture, soil bioassay and field screening. Genetic and molecular mapping research has shown that Al tolerance in barley is controlled by a single locus which is located on chromosome 4H. Molecular markers linked with Al tolerance loci have been identified and validated in a range of diverse populations. This paper reviews the (1) screening methods for evaluating Al tolerance, (2) genetics and (3) mechanisms underlying Al tolerance in barley.

  2. Genetic characterization of eight full-length HIV type 1 genomes from the Democratic Republic of Congo (DRC) reveal a new subsubtype, A5, in the A radiation that predominates in the recombinant structure of CRF26_A5U.

    Science.gov (United States)

    Vidal, Nicole; Bazepeo, Samuel Edidi; Mulanga, Claire; Delaporte, Eric; Peeters, Martine

    2009-08-01

    In this study, we characterized HIV-1 strains from the Democratic Republic of Congo (DRC), previously described as divergent subtype A (n = 1, 97CD.KMST91) or untypable (n = 7) in the V3-V5 env region. Four strains had the same structure over the entire genome, including alternating fragments of a new subsubtype, A5, within the subtype A radiation and fragments that remain unclassified. Therefore, the cluster of new viruses represents a new circulating recombinant, CRF26_A5U. Three additional strains were unique recombinants with the newly described CRF26_A5U and subtype C. Finally, the nearly full-length sequence of 97CD.KMST91 showed that this strain also consisted of alternating fragments of a divergent subtype A lineage and unclassified fragments, although different from previously reported A and U sequences. The high genetic distances among the different CRF26-A5U strains suggest their longstanding presence in the DRC.

  3. The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts.

    Science.gov (United States)

    MacLean, R Craig; Hall, Alex R; Perron, Gabriel G; Buckling, Angus

    2010-06-01

    Despite efforts from a range of disciplines, our ability to predict and combat the evolution of antibiotic resistance in pathogenic bacteria is limited. This is because resistance evolution involves a complex interplay between the specific drug, bacterial genetics and both natural and treatment ecology. Incorporating details of the molecular mechanisms of drug resistance and ecology into evolutionary models has proved useful in predicting the dynamics of resistance evolution. However, putting these models to practical use will require extensive collaboration between mathematicians, molecular biologists, evolutionary ecologists and clinicians.

  4. Osmoregulation Mechanism of Drought Stress and Genetic Engineering Strategies for Improving Drought Resistance in Plants

    Institute of Scientific and Technical Information of China (English)

    Du Jinyou; Chen Xiaoyang; Li Wei; Gao Qiong

    2004-01-01

    Drought, one of the main adverse environmental factors, obviously affected plant growth and development. Many adaptive strategies have been developed in plants for coping with drought or water stress, among which osmoregulation is one of the important factors of plant drought tolerance. Many substances play important roles in plant osmoregulation for drought resistance, including proline, glycine betaine, Lea proteins and soluble sugars such as levan, trehalose, sucrose, etc. The osmoregulation mechanism and the genetic engineering of plant drought-tolerance are reviewed in this paper.

  5. Consistency and stability of recombinant fermentations.

    Science.gov (United States)

    Wiebe, M E; Builder, S E

    1994-01-01

    Production of proteins of consistent quality in heterologous, genetically-engineered expression systems is dependent upon identifying the manufacturing process parameters which have an impact on product structure, function, or purity, validating acceptable ranges for these variables, and performing the manufacturing process as specified. One of the factors which may affect product consistency is genetic instability of the primary product sequence, as well as instability of genes which code for proteins responsible for post-translational modification of the product. Approaches have been developed for mammalian expression systems to assure that product quality is not changing through mechanisms of genetic instability. Sensitive protein analytical methods, particularly peptide mapping, are used to evaluate product structure directly, and are more sensitive in detecting genetic instability than is direct genetic analysis by nucleotide sequencing of the recombinant gene or mRNA. These methods are being employed to demonstrate that the manufacturing process consistently yields a product of defined structure from cells cultured through the range of cell ages used in the manufacturing process and well beyond the maximum cell age defined for the process. The combination of well designed validation studies which demonstrate consistent product quality as a function of cell age, and rigorous quality control of every product lot by sensitive protein analytical methods provide the necessary assurance that product structure is not being altered through mechanisms of mutation and selection.

  6. 基于企业基因重组理论的供应链构建%Based on the Theory of Genetic Recombination to Build the Supply Chain

    Institute of Scientific and Technical Information of China (English)

    周韬

    2009-01-01

    In the new business model, the supply chain has become the primary unit of competition, supply chain and supply chain than the competition among enerprises and the competition among enterprises become more complex, the the-ory of genetic recombination enterprise supply chain, providing a new competitive perspective, the competitiveness of enter-prises in a single continuous dependent on the competitiveness of the supply chain, we also can be used to study the per-spective of enterprise supply chain gene by enterprises, com-panies will have a recombinant gene of supply chain, supply chain, the idea of genetic recombination. Supply chain gene recombination is the use of such thinking and innovation, an important theoretical value and practical significance.%在新的商业模式下.供应链已成为竞争的主要单位,供应链与供应链之问的竞争比企业与企业之间的竞争更加复杂.企业基因重组理论为供应链的竞争提供了全新的视角.在单个企业竞争力不断依附于供应链的竞争条件下,我们也可以运用企业的视角来研究供应链,由企业基因、企业基因重组也就产生了供应链基因、供应链基因重组的思想.基因重组供应链正是这种思想的运用和创新,具有重要的理论价值和实践意义.

  7. Comparative population genetics of two invading ticks: Evidence of the ecological mechanisms underlying tick range expansions.

    Science.gov (United States)

    Nadolny, Robyn; Gaff, Holly; Carlsson, Jens; Gauthier, David

    2015-10-01

    Two species of ixodid tick, Ixodes affinis Neumann and Amblyomma maculatum Koch, are simultaneously expanding their ranges throughout the mid-Atlantic region of the US. Although we have some understanding of the ecology and life history of these species, the ecological mechanisms governing where and how new populations establish and persist are unclear. To assess population connectivity and ancestry, we sequenced a fragment of the 16S mitochondrial rRNA gene from a representative sample of individuals of both species from populations throughout the eastern US. We found that despite overlapping host preferences throughout ontogeny, each species exhibited very different genetic and geographic patterns of population establishment and connectivity. I. affinis was of two distinct mitochondrial clades, with a clear geographic break separating northern and southern populations. Both I. affinis populations showed evidence of recent expansion, although the southern population was more genetically diverse, indicating a longer history of establishment. A. maculatum exhibited diverse haplotypes that showed no significant relationship with geographic patterns and little apparent connectivity between sites. Heteroplasmy was also observed in the 16S mitochondrial rRNA gene in 3.5% of A. maculatum individuals. Genetic evidence suggests that these species rely on different key life stages to successfully disperse into novel environments, and that host vagility, habitat stability and habitat connectivity all play critical roles in the establishment of new tick populations.

  8. Structural mapping: how to study the genetic architecture of a phenotypic trait through its formation mechanism.

    Science.gov (United States)

    Tong, Chunfa; Shen, Lianying; Lv, Yafei; Wang, Zhong; Wang, Xiaoling; Feng, Sisi; Li, Xin; Sui, Yihan; Pang, Xiaoming; Wu, Rongling

    2014-01-01

    Traditional approaches for genetic mapping are to simply associate the genotypes of a quantitative trait locus (QTL) with the phenotypic variation of a complex trait. A more mechanistic strategy has emerged to dissect the trait phenotype into its structural components and map specific QTLs that control the mechanistic and structural formation of a complex trait. We describe and assess such a strategy, called structural mapping, by integrating the internal structural basis of trait formation into a QTL mapping framework. Electrical impedance spectroscopy (EIS) has been instrumental for describing the structural components of a phenotypic trait and their interactions. By building robust mathematical models on circuit EIS data and embedding these models within a mixture model-based likelihood for QTL mapping, structural mapping implements the EM algorithm to obtain maximum likelihood estimates of QTL genotype-specific EIS parameters. The uniqueness of structural mapping is to make it possible to test a number of hypotheses about the pattern of the genetic control of structural components. We validated structural mapping by analyzing an EIS data collected for QTL mapping of frost hardiness in a controlled cross of jujube trees. The statistical properties of parameter estimates were examined by simulation studies. Structural mapping can be a powerful alternative for genetic mapping of complex traits by taking account into the biological and physical mechanisms underlying their formation.

  9. Cross-talk between nucleotide excision and homologous recombination DNA repair pathways in the mechanism of action of antitumor trabectedin.

    Science.gov (United States)

    Herrero, Ana B; Martín-Castellanos, Cristina; Marco, Esther; Gago, Federico; Moreno, Sergio

    2006-08-15

    Trabectedin (Yondelis) is a potent antitumor drug that has the unique characteristic of killing cells by poisoning the DNA nucleotide excision repair (NER) machinery. The basis for the NER-dependent toxicity has not yet been elucidated but it has been proposed as the major determinant for the drug's cytotoxicity. To study the in vivo mode of action of trabectedin and to explore the role of NER in its cytotoxicity, we used the fission yeast Schizosaccharomyces pombe as a model system. Treatment of S. pombe wild-type cells with trabectedin led to cell cycle delay and activation of the DNA damage checkpoint, indicating that the drug causes DNA damage in vivo. DNA damage induced by the drug is mostly caused by the NER protein, Rad13 (the fission yeast orthologue to human XPG), and is mainly repaired by homologous recombination. By constructing different rad13 mutants, we show that the DNA damage induced by trabectedin depends on a 46-amino acid region of Rad13 that is homologous to a DNA-binding region of human nuclease FEN-1. More specifically, an arginine residue in Rad13 (Arg961), conserved in FEN1 (Arg314), was found to be crucial for the drug's cytotoxicity. These results lead us to propose a model for the action of trabectedin in eukaryotic cells in which the formation of a Rad13/DNA-trabectedin ternary complex, stabilized by Arg961, results in cell death.

  10. Radiative recombination mechanisms in individual wurtzite ZnSe nanowires with a defect-free single-crystalline microstructure.

    Science.gov (United States)

    Saxena, Ankur; Pan, Qi; Ruda, Harry E

    2013-04-07

    Photoluminescence (PL) spectroscopy performed on arrays of semiconductor nanowires (NWs) suffers from ensemble broadening of PL lines, and fails to separate the PL from NWs of different crystal structures in the ensemble. Even the results on PL from single NWs are not devoid of ambiguity. This is because the influence of structural defects in NWs, such as stacking faults, twin boundaries and dislocations, on their optical spectra cannot be accounted for since the structural characteristics of the same NW remain largely unknown. We performed low-temperature PL spectroscopy on individual wurtzite (WZ) ZnSe NWs, and confirmed a homogeneous single-crystalline microstructure without any extended defects in these NWs, thus excluding any role of structural imperfections in their optical spectra. The luminescence is shown to be dominated solely by native point defects, while no role of extrinsic impurities was found. The radiative recombination is shown to originate from excitons bound to vacancies of Zn (VZn), VZn-complexes, and their phonon replicas. The binding energies of the acceptor-bound excitons, ionization energies of the acceptors, and average number of phonons emitted for shallow donor-VZn acceptor pair related transition were determined. Distinct from previous studies on PL from arrays of ZnSe NWs, this work provides an unambiguous interpretation of the PL spectra and assignment of PL peaks to WZ ZnSe. Narrow excitonic emission of linewidths 2.9 meV indicate excellent optical quality of WZ ZnSe NWs.

  11. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    KAUST Repository

    Priante, Davide

    2015-02-23

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  12. New developments on the neurobiological and pharmaco-genetic mechanisms underlying internet and videogame addiction.

    Science.gov (United States)

    Weinstein, Aviv; Lejoyeux, Michel

    2015-03-01

    There is emerging evidence that the psychobiological mechanisms underlying behavioral addictions such as internet and videogame addiction resemble those of addiction for substances of abuse. Review of brain imaging, treatment and genetic studies on videogame and internet addiction. Literature search of published articles between 2009 and 2013 in Pubmed using "internet addiction" and "videogame addiction" as the search word. Twenty-nine studies have been selected and evaluated under the criteria of brain imaging, treatment, and genetics. Brain imaging studies of the resting state have shown that long-term internet game playing affected brain regions responsible for reward, impulse control and sensory-motor coordination. Brain activation studies have shown that videogame playing involved changes in reward and loss of control and that gaming pictures have activated regions similarly to those activated by cue-exposure to drugs. Structural studies have shown alterations in the volume of the ventral striatum possible as result of changes in reward. Furthermore, videogame playing was associated with dopamine release similar in magnitude to those of drugs of abuse and that there were faulty inhibitory control and reward mechanisms videogame addicted individuals. Finally, treatment studies using fMRI have shown reduction in craving for videogames and reduced associated brain activity. Videogame playing may be supported by similar neural mechanisms underlying drug abuse. Similar to drug and alcohol abuse, internet addiction results in sub-sensitivity of dopamine reward mechanisms. Given the fact that this research is in its early stage it is premature to conclude that internet addiction is equivalent to substance addictions. © American Academy of Addiction Psychiatry.

  13. A universal BMV-based RNA recombination system--how to search for general rules in RNA recombination.

    Science.gov (United States)

    Alejska, Magdalena; Figlerowicz, Magdalena; Malinowska, Nelli; Urbanowicz, Anna; Figlerowicz, Marek

    2005-07-07

    At present, there is no doubt that RNA recombination is one of the major factors responsible for the generation of new RNA viruses and retroviruses. Numerous experimental systems have been created to investigate this complex phenomenon. Consequently, specific RNA structural motifs mediating recombination have been identified in several viruses. Unfortunately, up till now a unified model of genetic RNA recombination has not been formulated, mainly due to difficulties with the direct comparison of data obtained for different RNA-based viruses. To solve this problem, we have attempted to construct a universal system in which the recombination activity of various RNA sequences could be tested. To this end, we have used brome mosaic virus, a model (+)RNA virus of plants, for which the structural requirements of RNA recombination are well defined. The effectiveness of the new homomolecular system has been proven in an experiment involving two RNA sequences derived from the hepatitis C virus genome. In addition, comparison of the data obtained with the homomolecular system with those generated earlier using the heteromolecular one has provided new evidence that the mechanisms of homologous and non-homologous recombination are different and depend on the virus' mode of replication.

  14. Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli.

    Science.gov (United States)

    Thomason, Lynn C; Costantino, Nina; Court, Donald L

    2016-09-13

    Recombineering, in vivo genetic engineering with bacteriophage homologous recombination systems, is a powerful technique for making genetic modifications in bacteria. Two systems widely used in Escherichia coli are the Red system from phage λ and RecET from the defective Rac prophage. We investigated the in vivo dependence of recombineering on DNA replication of the recombining substrate using plasmid targets. For λ Red recombination, when DNA replication of a circular target plasmid is prevented, recombination with single-stranded DNA oligonucleotides is greatly reduced compared to that under replicating conditions. For RecET recombination, when DNA replication of the targeted plasmid is prevented, the recombination frequency is also reduced, to a level identical to that seen for the Red system in the absence of replication. The very low level of oligonucleotide recombination observed in the absence of any phage recombination functions is the same in the presence or absence of DNA replication. In contrast, both the Red and RecET systems recombine a nonreplicating linear dimer plasmid with high efficiency to yield a circular monomer. Therefore, the DNA replication requirement is substrate dependent. Our data are consistent with recombination by both the Red and RecET systems occurring predominately by single-strand annealing rather than by strand invasion. Bacteriophage homologous recombination systems are widely used for in vivo genetic engineering in bacteria. Single- or double-stranded linear DNA substrates containing short flanking homologies to chromosome targets are used to generate precise and accurate genetic modifications when introduced into bacteria expressing phage recombinases. Understanding the molecular mechanism of these recombination systems will facilitate improvements in the technology. Here, two phage-specific systems are shown to require exposure of complementary single-strand homologous targets for efficient recombination; these single

  15. Transcriptome analysis of genetic mechanism of growth curve inflection point using a pig model

    Directory of Open Access Journals (Sweden)

    Linyuan Shen

    2015-12-01

    Full Text Available Animal growth curves play an important role for animal breeders to optimize feeding and management strategies (De Lange et al., 2001 [1]; Brossard et al., 2009 [2]; Strathe et al., 2010 [3]. However, the genetic mechanism of the phenotypic difference between the inflection point and noninflection points of the growth curve remains unclear. Here, we report the differentially expressed gene pattern in pig longissimus dorsi among three typical time points of the growth curve, inflection point (IP, before inflection point (BIP and after inflection point (AIP. The whole genome RNA-seq data was deposited at GenBank under the accession number PRJNA2284587. The RNA-seq libraries generated 117 million reads of 5.89 gigabases in length. Totals of 21,331, 20,996 and 20,139 expressed transcripts were identified in IP, UIP and AIP, respectively. Furthermore, we identified 757 differentially expressed genes (DEGs between IP and UIP, and 271 DEGs between AIP and IP. Function enrichment analysis of DEGs found that the highly expressed genes in IP were mainly enriched in energy metabolism, global transcriptional activity and bone development intensity. This study contributes to reveal the genetic mechanism of growth curve inflection point.

  16. Anti-tumor Effects of pNEgr-mIL-12 Recombinant Plasmid Induced by X-irradiation and Its Mechanisms

    Institute of Scientific and Technical Information of China (English)

    YING YANG; SHU-ZHENG LIU; SHI-BO FU

    2004-01-01

    Objective To study the effect of gene radiotherapy combining injection of recombinant plasmid pNEgr-mIL-12 with local X-irradiation on cancer growth and to elucidate the mechanisms of tumor inhibition. Methods Alkaline lysis was used to extract the plasmid and polyethylene glycol 8000 (PEG 8000) was applied for further purification of plasmids. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of IL-12 protein. C57BL/6J mice were subcutaneously inoculated with B16 melanoma cells and the plasmid was injected directly into the tumor. Gene-radiotherapy combining pNEgr-mIL-12 recombinant plasmid with X-irradiation was given three times to C57BL/6J mice bearing B16 melanoma. Changes in immunologic parameters of tumor-bearing mice were detected with relevant immunologic assays. Results Results showed a significant decrease in tumor growth rate (P<0.05-0.001) after 3 times of gene-radiotherapy with IL-12 and X-irradiation. Immunologic studies showed a significant increase in CTL and NK cytolytic activity (P<0.05-0.001) and an up-regulated secretion of IFN-γ and TNF-α (P<0.01-0.001). Moreover, the expression of mIL-12 in B16 melanoma cells of the treated tumor-bearing mice was found to be higher than that of control. Conclusion pNEgr-mIL-12 plasmid combined with X-irradiation can increase tumor control and the mechanism of increased tumor inhibition is related to the enhancement of anticancer immunity in tumor-bearing mice.

  17. The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms.

    Science.gov (United States)

    Tiley, George P; Burleigh, J Gordon; Burleigh, Gordon

    2015-09-16

    Although homologous recombination affects the efficacy of selection in populations, the pattern of recombination rate evolution and its effects on genome evolution across plants are largely unknown. Recombination can reduce genome size by enabling the removal of LTR retrotransposons, alter codon usage by GC biased gene conversion, contribute to complex histories of gene duplication and loss through tandem duplication, and enhance purifying selection on genes. Therefore, variation in recombination rate across species may explain some of the variation in genomic architecture as well as rates of molecular evolution. We used phylogenetic comparative methods to investigate the evolution of global meiotic recombination rate in angiosperms and its effects on genome architecture and selection at the molecular level using genetic maps and genome sequences from thirty angiosperm species. Recombination rate is negatively correlated with genome size, which is likely caused by the removal of LTR retrotransposons. After correcting recombination rates for euchromatin content, we also found an association between global recombination rate and average gene family size. This suggests a role for recombination in the preservation of duplicate genes or expansion of gene families. An analysis of the correlation between the ratio of nonsynonymous to synonymous substitution rates (dN/dS) and recombination rate in 3748 genes indicates that higher recombination rates are associated with an increased efficacy of purifying selection, suggesting that global recombination rates affect variation in rates of molecular evolution across distantly related angiosperm species, not just between populations. We also identified shifts in dN/dS for recombination proteins that are associated with shifts in global recombination rate across our sample of angiosperms. Although our analyses only reveal correlations, not mechanisms, and do not include potential covariates of recombination rate, like effective

  18. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  19. Recombineering linear BACs.

    Science.gov (United States)

    Chen, Qingwen; Narayanan, Kumaran

    2015-01-01

    Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.

  20. The interplay of genetic influences and social processes in developmental theory: specific mechanisms are coming into view.

    Science.gov (United States)

    Reiss, D; Neiderhiser, J M

    2000-01-01

    In the coming years we can look forward to research that clarifies specific mechanisms that account for the interplay between genetic and environmental influences on psychological development. Certain misconceptions, arising from research traditions initiated by Francis Galton on the one hand and G. Stanley Hall on the other, may now be set aside in the light of new evidence. Three important findings promise a new synthesis. First, while each of us is born with about 100,000 genes that, under ordinary circumstances, do not change, the expression of these genes on behavior is dynamic. Some genetic influences are expressed early in development, but others are manifest many years later. Second, genetic factors often account not only for some of the individual differences in the measures of adjustments we typically use to monitor development but also for individual differences in environmental experiences that covary with those measures of adjustment. Indeed, genetic factors have been found to account for a surprising amount of covariance between measures of the social environment and of adjustment in young children, adolescents, and adults. Third, the expression of genetic influences are very malleable and responsive to the social environment. These new findings are revealing specific mechanisms for the interplay of genetic and social environmental factors in four domains. First, the social environment may play both a necessary and specific role in the expression of particular genetic influences on a range of behaviors from depression to social responsibility. Second, an understanding of the interplay between the social environment and genetics may lead to a clearer definition of the phenotypic manifestations of particular genetic influences. Third, we will-as a result of these studies-have a clearer fix on the timing of important events and their sequence in development. Fourth, this new genre of work promises to illumine more completely mechanisms by which the

  1. Heterogeneous duplications in patients with Pelizaeus-Merzbacher disease suggest a mechanism of coupled homologous and nonhomologous recombination.

    NARCIS (Netherlands)

    Woodward, K.J.; Cundall, M.; Sperle, K.; Sistermans, E.A.; Ross, M.; Howell, G.R.; Gribble, S.M.; Burford, D.C.; Carter, N.P.; Hobson, D.L.; Garbern, J.Y.; Kamholz, J.A.; Heng, H.; Hodes, M.E.; Malcolm, S.; Hobson, G.M.

    2005-01-01

    We describe genomic structures of 59 X-chromosome segmental duplications that include the proteolipid protein 1 gene (PLP1) in patients with Pelizaeus-Merzbacher disease. We provide the first report of 13 junction sequences, which gives insight into underlying mechanisms. Although proximal breakpoin

  2. High frequency of microsatellites in S. cerevisiae meiotic recombination hotspots

    Directory of Open Access Journals (Sweden)

    Pitt Joel PW

    2008-01-01

    Full Text Available Abstract Background Microsatellites are highly abundant in eukaryotic genomes but their function and evolution are not yet well understood. Their elevated mutation rate makes them ideal markers of genetic difference, but high levels of unexplained heterogeneity in mutation rates among microsatellites at different genomic locations need to be elucidated in order to improve the power and accuracy of the many types of study that use them as genetic markers. Recombination could contribute to this heterogeneity, since while replication errors are thought to be the predominant mechanism for microsatellite mutation, meiotic recombination is involved in some mutation events. There is also evidence suggesting that microsatellites could function as recombination signals. The yeast S. cerevisiae is a useful model organism with which to further explore the link between microsatellites and recombination, since it is very amenable to genetic study, and meiotic recombination hotspots have been mapped throughout its entire genome. Results We examined in detail the relationship between microsatellites and hotspots of meiotic double-strand breaks, the precursors of meiotic recombination, throughout the S. cerevisiae genome. We included all tandem repeats with motif length (repeat period between one and six base pairs. Long, short and two-copy arrays were considered separately. We found that long, mono-, di- and trinucleotide microsatellites are around twice as frequent in hot than non-hot intergenic regions. The associations are weak or absent for repeats with less than six copies, and also for microsatellites with 4–6 base pair motifs, but high-copy arrays with motif length greater than three are relatively very rare throughout the genome. We present evidence that the association between high-copy, short-motif microsatellites and recombination hotspots is not driven by effects on microsatellite distribution of other factors previously linked to both

  3. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction.

    Science.gov (United States)

    Engleman, Eric A; Katner, Simon N; Neal-Beliveau, Bethany S

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission

  4. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases

    Science.gov (United States)

    Bettencourt, Conceição; Hensman‐Moss, Davina; Flower, Michael; Wiethoff, Sarah; Brice, Alexis; Goizet, Cyril; Stevanin, Giovanni; Koutsis, Georgios; Karadima, Georgia; Panas, Marios; Yescas‐Gómez, Petra; García‐Velázquez, Lizbeth Esmeralda; Alonso‐Vilatela, María Elisa; Lima, Manuela; Raposo, Mafalda; Traynor, Bryan; Sweeney, Mary; Wood, Nicholas; Giunti, Paola; Durr, Alexandra; Holmans, Peter; Houlden, Henry; Tabrizi, Sarah J.

    2016-01-01

    Objective The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are among the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does not account for all of the difference, and the existence of additional genetic modifying factors has been suggested in these diseases. A recent genome‐wide association study (GWAS) in HD found association between age at onset and genetic variants in DNA repair pathways, and we therefore tested whether the modifying effects of variants in DNA repair genes have wider effects in the polyglutamine diseases. Methods We assembled an independent cohort of 1,462 subjects with HD and polyglutamine SCAs, and genotyped single‐nucleotide polymorphisms (SNPs) selected from the most significant hits in the HD study. Results In the analysis of DNA repair genes as a group, we found the most significant association with age at onset when grouping all polyglutamine diseases (HD+SCAs; p = 1.43 × 10–5). In individual SNP analysis, we found significant associations for rs3512 in FAN1 with HD+SCAs (p = 1.52 × 10–5) and all SCAs (p = 2.22 × 10–4) and rs1805323 in PMS2 with HD+SCAs (p = 3.14 × 10–5), all in the same direction as in the HD GWAS. Interpretation We show that DNA repair genes significantly modify age at onset in HD and SCAs, suggesting a common pathogenic mechanism, which could operate through the observed somatic expansion of repeats that can be modulated by genetic manipulation of DNA repair in disease models. This offers novel therapeutic opportunities in multiple diseases. Ann Neurol 2016;79:983–990 PMID:27044000

  5. Replicated high-density genetic maps of two great tit populations reveal fine-scale genomic departures from sex-equal recombination rates

    NARCIS (Netherlands)

    Van Oers, K.; Santure, A.W.; de Cauwer, I.; Van Bers, N.E.M.; Crooijmans, R.P.M.A.; Sheldon, B.C.; Visser, M.E.; Slate, J.; Groenen, M.A.M.

    2014-01-01

    Linking variation in quantitative traits to variation in the genome is an important, but challenging task in the study of life-history evolution. Linkage maps provide a valuable tool for the unravelling of such trait−gene associations. Moreover, they give insight into recombination landscapes and be

  6. CRYSTAL-STRUCTURE OF RECOMBINANT HUMAN TRIOSEPHOSPHATE ISOMERASE AT 2.8 ANGSTROM RESOLUTION - TRIOSEPHOSPHATE ISOMERASE-RELATED HUMAN GENETIC-DISORDERS AND COMPARISON WITH THE TRYPANOSOMAL ENZYME

    NARCIS (Netherlands)

    MANDE, SC; MAINFROID, [No Value; KALK, KH; GORAJ, K; MARTIAL, JA; HOL, WGJ

    1994-01-01

    The crystal structure of recombinant human triosephosphate isomerase (hTIM) has been determined complexed with the transition-state analogue 2-phosphoglycolate at a resolution of 2.8 Angstrom. After refinement, the R-factor is 16.7% with good geometry. The asymmetric unit contains 1 complete dimer o

  7. Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering.

    Science.gov (United States)

    Stucken, Karina; Koch, Robin; Dagan, Tal

    2013-01-01

    Cyanobacteria display a large diversity of cellular forms ranging from unicellular to complex multicellular filaments or aggregates. Species in the group present a wide range of metabolic characteristics including the fixation of atmospheric nitrogen, resistance to extreme environments, production of hydrogen, secondary metabolites and exopolysaccharides. These characteristics led to the growing interest in cyanobacteria across the fields of ecology, evolution, cell biology and biotechnology. The number of available cyanobacterial genome sequences has increased considerably in recent years, with more than 140 fully sequenced genomes to date. Genetic engineering of cyanobacteria is widely applied to the model unicellular strains Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. However the establishment of transformation protocols in many other cyanobacterial strains is challenging. One obstacle to the development of these novel model organisms is that many species have doubling times of 48 h or more, much longer than the bacterial models E. coli or B. subtilis. Furthermore, cyanobacterial defense mechanisms against foreign DNA pose a physical and biochemical barrier to DNA insertion in most strains. Here we review the various barriers to DNA uptake in the context of lateral gene transfer among microbes and the various mechanisms for DNA acquisition within the prokaryotic domain. Understanding the cyanobacterial defense mechanisms is expected to assist in the development and establishment of novel transformation protocols that are specifically suitable for this group.

  8. A genetic strategy for the dynamic and graded control of cell mechanics, motility, and matrix remodeling.

    Science.gov (United States)

    MacKay, Joanna L; Keung, Albert J; Kumar, Sanjay

    2012-02-08

    Cellular mechanical properties have emerged as central regulators of many critical cell behaviors, including proliferation, motility, and differentiation. Although investigators have developed numerous techniques to influence these properties indirectly by engineering the extracellular matrix (ECM), relatively few tools are available to directly engineer the cells themselves. Here we present a genetic strategy for obtaining graded, dynamic control over cellular mechanical properties by regulating the expression of mutant mechanotransductive proteins from a single copy of a gene placed under a repressible promoter. With the use of constitutively active mutants of RhoA GTPase and myosin light chain kinase, we show that varying the expression level of either protein produces graded changes in stress fiber assembly, traction force generation, cellular stiffness, and migration speed. Using this approach, we demonstrate that soft ECMs render cells maximally sensitive to changes in RhoA activity, and that by modulating the ability of cells to engage and contract soft ECMs, we can dynamically control cell spreading, migration, and matrix remodeling. Thus, in addition to providing quantitative relationships between mechanotransductive signaling, cellular mechanical properties, and dynamic cell behaviors, this strategy enables us to control the physical interactions between cells and the ECM and thereby dictate how cells respond to matrix properties.

  9. Origin of microbial life: Nano- and molecular events, thermodynamics/entropy, quantum mechanisms and genetic instructions.

    Science.gov (United States)

    Trevors, J T

    2011-03-01

    Currently, there are no agreed upon mechanisms and supporting evidence for the origin of the first microbial cells on the Earth. However, some hypotheses have been proposed with minimal supporting evidence and experimentation/observations. The approach taken in this article is that life originated at the nano- and molecular levels of biological organization, using quantum mechanic principles that became manifested as classical microbial cell(s), allowing the origin of microbial life on the Earth with a core or minimal, organic, genetic code containing the correct instructions for cell(s) for growth and division, in a micron dimension environment, with a local entropy range conducive to life (present about 4 billion years ago), and obeying the laws of thermodynamics. An integrated approach that explores all encompassing factors necessary for the origin of life, may bring forth plausible hypotheses (and mechanisms) with much needed supporting experimentation and observations for an origin of life theory. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Genetic evidence that Drosophila frizzled controls planar cell polarity and Armadillo signaling by a common mechanism.

    Science.gov (United States)

    Povelones, Michael; Howes, Rob; Fish, Matt; Nusse, Roel

    2005-12-01

    The frizzled (fz) gene in Drosophila controls two distinct signaling pathways: it directs the planar cell polarization (PCP) of epithelia and it regulates cell fate decisions through Armadillo (Arm) by acting as a receptor for the Wnt protein Wingless (Wg). With the exception of dishevelled (dsh), the genes functioning in these two pathways are distinct. We have taken a genetic approach, based on a series of new and existing fz alleles, for identifying individual amino acids required for PCP or Arm signaling. For each allele, we have attempted to quantify the strength of signaling by phenotypic measurements. For PCP signaling, the defect was measured by counting the number of cells secreting multiple hairs in the wing. We then examined each allele for its ability to participate in Arm signaling by the rescue of fz mutant embryos with maternally provided fz function. For both PCP and Arm signaling we observed a broad range of phenotypes, but for every allele there is a strong correlation between its phenotypic strength in each pathway. Therefore, even though the PCP and Arm signaling pathways are genetically distinct, the set of signaling-defective fz alleles affected both pathways to a similar extent. This suggests that fz controls these two different signaling activities by a common mechanism. In addition, this screen yielded a set of missense mutations that identify amino acids specifically required for fz signaling function.

  11. Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder ( Platichthys flesus L.)

    DEFF Research Database (Denmark)

    Hansen, Jakob Hemmer; Eg Nielsen, Einar; Grønkjær, P.

    2007-01-01

    A number of evolutionary mechanisms have been suggested for generating low but significant genetic structuring among marine fish populations. We used nine microsatellite loci and recently developed methods in landscape genetics and coalescence-based estimation of historical gene flow and effective...... population sizes to assess temporal and spatial dynamics of the population structure in European flounder (Platichthys flesus L.). We collected 1062 flounders from 13 localities in the northeast Atlantic and Baltic Seas and found temporally stable and highly significant genetic differentiation among samples...... with the extreme isolation of the island population at the Faroe Islands. A sharp genetic break was associated with a change in life history from pelagic to benthic spawners in the Baltic Sea. Partial Mantel tests showed that geographical distance per se was not related with genetic structuring among Atlantic...

  12. Genetic Diversity of Spike, 3a, 3b and E Genes of Infectious Bronchitis Viruses and Emergence of New Recombinants in Korea

    Directory of Open Access Journals (Sweden)

    Chang-Seon Song

    2013-01-01

    Full Text Available The nucleotide sequences of a region including S1, S2, 3a, 3b and E genes of twenty-seven infectious bronchitis virus (IBV isolates in Korea between 1990–2011 were determined and phylogenetic and computational recombination analyses were conducted. The sizes of coding regions of some genes varied among IBV isolates due to deletion or insertion of nucleotides; the nucleotide similarities of S1, S2, 3a, 3b and E genes among the 27 isolates were 75.9%–100.0%, 85%–100.0%, 64.0%–100.0%, 60.4%–100.0% and 83.1%–100.0%, respectively. According to phylogenetic analysis of S1 gene, the 27 isolates were divided into five genotypes, Mass, Korean-I (K-I, QX-like, KM91-like and New cluster 1. The phylogenetic trees based on the S2, 3a, 3b, E genes and S1-S2-3a-3b-E (S1-E region nucleotide sequences did not closely follow the clustering based on the S1 sequence. The New cluster 1 prevalent during 2009 and 2010 was not found in 2011 but QX-like viruses became prevalent in 2011. The recombination analysis revealed two new S gene recombinants, 11036 and 11052 which might have been derived from recombinations between the New cluster 1 and QX-like viruses and between the K-I and H120 (vaccine viruses, respectively. In conclusion, multiple IBV genotypes have co-circulated; QX-like viruses have recurred and new recombinants have emerged in Korea. This has enriched molecular epidemiology information of IBV and is useful for the control of IB in Korea.

  13. Mitotic illegitimate recombination is a mechanism for novel changes in high-molecular-weight glutenin subunits in wheat-rye hybrids.

    Directory of Open Access Journals (Sweden)

    Zhongwei Yuan

    Full Text Available Wide hybrids can have novel traits or changed expression of a quantitative trait that their parents do not have. These phenomena have long been noticed, yet the mechanisms are poorly understood. High-molecular-weight glutenin subunits (HMW-GS are seed storage proteins encoded by Glu-1 genes that only express in endosperm in wheat and its related species. Novel HMW-GS compositions have been observed in their hybrids. This research elucidated the molecular mechanisms by investigating the causative factors of novel HMW-GS changes in wheat-rye hybrids. HMW-GS compositions in the endosperm and their coding sequences in the leaves of F(1 and F(2 hybrids between wheat landrace Shinchunaga and rye landrace Qinling were investigated. Missing and/or additional novel HMW-GSs were observed in the endosperm of 0.5% of the 2078 F(1 and 22% of 36 F(2 hybrid seeds. The wildtype Glu-1Ax null allele was found to have 42 types of short repeat sequences of 3-60 bp long that appeared 2 to 100 times. It also has an in-frame stop codon in the central repetitive region. Analyzing cloned allele sequences of HMW-GS coding gene Glu-1 revealed that deletions involving the in-frame stop codon had happened, resulting in novel ∼1.8-kb Glu-1Ax alleles in some F(1 and F(2 plants. The cloned mutant Glu-1Ax alleles were expressed in Escherichia coli, and the HMW-GSs produced matched the novel HMW-GSs found in the hybrids. The differential changes between the endosperm and the plant of the same hybrids and the data of E. coli expression of the cloned deletion alleles both suggested that mitotic illegitimate recombination between two copies of a short repeat sequence had resulted in the deletions and thus the changed HMW-GS compositions. Our experiments have provided the first direct evidence to show that mitotic illegitimate recombination is a mechanism that produces novel phenotypes in wide hybrids.

  14. Fuzzy Optimization of an Elevator Mechanism Applying the Genetic Algorithm and Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Considering the indefinite character of the value of design parameters and being satisfied with load-bearing capacity and stiffness, the fuzzy optimization mathematical model is set up to minimize the volume of tooth corona of a worm gear in an elevator mechanism. The method of second-class comprehensive evaluation was used based on the optimal level cut set, thus the optimal level value of every fuzzy constraint can be attained; the fuzzy optimization is transformed into the usual optimization.The Fast Back Propagation of the neural networks algorithm are adopted to train feed-forward networks so as to fit a relative coefficient. Then the fitness function with penalty terms is built by a penalty strategy, a neural networks program is recalled, and solver functions of the Genetic Algorithm Toolbox of Matlab software are adopted to solve the optimization model.

  15. [The molecular physiological and genetic mechanisms underlying the superb efficacy of quinolones].

    Science.gov (United States)

    Long, Quan-xin; He, Ying; Xie, Jian-ping

    2012-08-01

    The fluoroquinolones are the most widely used broad-spectrum antibiotics, accounting for 18% of global antibacterial market share. They can kill bacteria rapidly with variety of derivatives available. Different quinolones vary significantly in rate and spectrum of killing, oxygen requirement for metabolism and reliance upon protein synthesis. Further understanding the sophisticated mechanisms of action of this important antibiotic family based on the molecular genetic response of bacteria can facilitate the discovery of better quinolone derivatives. Factors such as SOS response, bacterial toxin-antitoxin system, programmed death, chromosome fragmentation and reactive oxygen have been implicated in the action to some extent. "Two steps characteristic" of quinolones killing is also emphasized, which might inspire future better quinolones modification.

  16. STAT4: Genetics, Mechanisms, and Implications for Autoimmunity Review for Current Allergy and Asthma Reports

    Science.gov (United States)

    Korman, Benjamin D.; Kastner, Daniel L.; Gregersen, Peter K.

    2008-01-01

    Recent advances in genetics and technology have led to breakthroughs in understanding the genes that predispose individuals to autoimmune diseases. A common haplotype of the signal transducer and activator of transcription 4 (STAT4) gene has been shown to be associated with susceptibility to rheumatoid arthritis, systemic lupus erythematosus, and primary Sjögren’s syndrome. STAT4 is a transcription factor that transduces interleukin-12, interleukin-23, and type I interferon cytokine signals in T cells and monocytes, leading to T-helper type 1 and T-helper type 17 differentiation, monocyte activation, and production of interferon-γ. Although the evidence for this association is very strong and well replicated, the exact mechanism by which polymorphisms in this gene lead to disease remains unknown. In concert with the identification of other disease-associated loci, elucidating how the variant form of STAT4 modulates immune function should lead to an improved understanding of the pathophysiology of autoimmunity. PMID:18682104

  17. Recombinant DNA production of spider silk proteins

    Science.gov (United States)

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-01-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. PMID:24119078

  18. Recombinant DNA production of spider silk proteins.

    Science.gov (United States)

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-11-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks.

  19. RNA recombination in animal and plant viruses.

    OpenAIRE

    1992-01-01

    An increasing number of animal and plant viruses have been shown to undergo RNA-RNA recombination, which is defined as the exchange of genetic information between nonsegmented RNAs. Only some of these viruses have been shown to undergo recombination in experimental infection of tissue culture, animals, and plants. However, a survey of viral RNA structure and sequences suggests that many RNA viruses were derived form homologous or nonhomologous recombination between viruses or between viruses ...

  20. Recombinant Escherichia coli GMP reductase: kinetic, catalytic and chemical mechanisms, and thermodynamics of enzyme-ligand binary complex formation.

    Science.gov (United States)

    Martinelli, Leonardo Krás Borges; Ducati, Rodrigo Gay; Rosado, Leonardo Astolfi; Breda, Ardala; Selbach, Bruna Pelegrim; Santos, Diógenes Santiago; Basso, Luiz Augusto

    2011-04-01

    Guanosine monophosphate (GMP) reductase catalyzes the reductive deamination of GMP to inosine monophosphate (IMP). GMP reductase plays an important role in the conversion of nucleoside and nucleotide derivatives of guanine to adenine nucleotides. In addition, as a member of the purine salvage pathway, it also participates in the reutilization of free intracellular bases. Here we present cloning, expression and purification of Escherichia coli guaC-encoded GMP reductase to determine its kinetic mechanism, as well as chemical and thermodynamic features of this reaction. Initial velocity studies and isothermal titration calorimetry demonstrated that GMP reductase follows an ordered bi-bi kinetic mechanism, in which GMP binds first to the enzyme followed by NADPH binding, and NADP(+) dissociates first followed by IMP release. The isothermal titration calorimetry also showed that GMP and IMP binding are thermodynamically favorable processes. The pH-rate profiles showed groups with apparent pK values of 6.6 and 9.6 involved in catalysis, and pK values of 7.1 and 8.6 important to GMP binding, and a pK value of 6.2 important for NADPH binding. Primary deuterium kinetic isotope effects demonstrated that hydride transfer contributes to the rate-limiting step, whereas solvent kinetic isotope effects arise from a single protonic site that plays a modest role in catalysis. Multiple isotope effects suggest that protonation and hydride transfer steps take place in the same transition state, lending support to a concerted mechanism. Pre-steady-state kinetic data suggest that product release does not contribute to the rate-limiting step of the reaction catalyzed by E. coli GMP reductase.

  1. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.

    Directory of Open Access Journals (Sweden)

    Gabriela Silva

    Full Text Available BACKGROUND: Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS and acute myeloid leukaemia (AML. Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action. METHODOLOGY/PRINCIPAL FINDINGS: Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33(+ cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3 and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1 and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1. CONCLUSION: This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.

  2. Genetics and preliminary mechanism of chlorpyrifos resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae).

    Science.gov (United States)

    Afzal, Muhammad Babar Shahzad; Ijaz, Mamuna; Farooq, Zahra; Shad, Sarfraz Ali; Abbas, Naeem

    2015-03-01

    Cotton mealybug, Phenacoccus solenopsis Tinsley, is a serious pest of cotton and other crops and infestation by this pest results in yield losses that affect the economy of Pakistan. Various groups of insecticides have been used to control this pest but resistance development is a major factor that inhibits its control in the field. Chlorpyrifos is a common insecticide used against many pests including P. solenopsis. The present experiment was designed to assess the genetics and mechanism of chlorpyrifos resistance and to develop a better resistance management strategy and assess the genetics and mechanism of chlorpyrifos resistance. Before selection, the field strain showed 3.1-fold resistance compared to the susceptible strain (CSS). After 8 rounds of selection with chlorpyrifos, a selected population developed a 191.0-fold resistance compared to the CSS. The LC50 values of F1 (CRR ♀ × CSS ♂) and F1(†) (CRR ♂ × CSS ♀) strains were not significantly different and dominance (DLC) values were 0.42 and 0.55. Reciprocal crosses between chlorpyrifos susceptible and resistant strains indicated that resistance was autosomal and incompletely recessive. The monogenic model of fit test and calculation of number of genes segregating in the chlorpyrifos resistant strain demonstrated that resistance is controlled by multiple genes. A value of 0.59 was calculated for realized heritability for chlorpyrifos resistance. Synergism bioassays with piperonyl butoxide and S, S, S-butyl phosphorotrithioate showed that chlorpyrifos resistance was associated with microsomal oxidases and esterases. It was concluded that chlorpyrifos resistance in P. solenopsis was autosomally inherited, incompletely recessive and polygenic. These findings would be helpful to improve the management of P. solenopsis.

  3. Monoamine Oxidase Inhibitory Constituents of Propolis: Kinetics and Mechanism of Inhibition of Recombinant Human MAO-A and MAO-B

    Directory of Open Access Journals (Sweden)

    Narayan D. Chaurasiya

    2014-11-01

    Full Text Available Propolis is the resinous material that bees gather from leaf buds, flowers and vegetables. Propolis extracts contain constituents with a broad spectra of pharmacological properties and are important ingredients of popular dietary supplements. Propolis extracts were evaluated in vitro for inhibition of recombinant human monoamine oxidase (MAO-A and MAO-B. The dichloromethane extract of propolis showed potent inhibition of human MAO-A and MAO-B. Further fractionation identified the most active fractions as rich in flavonoids. Galangin and apigenin were identified as the principal MAO-inhibitory constituents. Inhibition of MAO-A by galangin was about 36 times more selective than MAO-B, while apigenin selectivity for MAO-A vs. MAO-B was about 1.7 fold. Apigenin inhibited MAO-B significantly more potently than galangin. Galangin and apigenin were further evaluated for kinetic characteristics and the mechanism for the enzymes’ inhibition. Binding of galangin and apigenin with MAO-A and -B was not time-dependent and was reversible, as suggested by enzyme-inhibitor binding and dissociation-dialysis assay. The inhibition kinetics studies suggested that galangin and apigenin inhibited MAO-A and -B by a competitive mechanism. Presence of prominent MAO inhibitory constituents in propolis products suggests their potential for eliciting pharmacological effects that might be useful in depression or other neurological disorders. The results may also have important implications in drug-dietary supplement interactions.

  4. Rad51 and Rad52 are involved in homologous recombination of replicating herpes simplex virus DNA.

    Directory of Open Access Journals (Sweden)

    Ka-Wei Tang

    Full Text Available Replication of herpes simplex virus 1 is coupled to recombination, but the molecular mechanisms underlying this process are poorly characterized. The role of Rad51 and Rad52 recombinases in viral recombination was examined in human fibroblast cells 1BR.3.N (wild type and in GM16097 with replication defects caused by mutations in DNA ligase I. Intermolecular recombination between viruses, tsS and tsK, harboring genetic markers gave rise to ∼17% recombinants in both cell lines. Knock-down of Rad51 and Rad52 by siRNA reduced production of recombinants to 11% and 5%, respectively, in wild type cells and to 3% and 5%, respectively, in GM16097 cells. The results indicate a specific role for Rad51 and Rad52 in recombination of replicating herpes simplex virus 1 DNA. Mixed infections using clinical isolates with restriction enzyme polymorphisms in the US4 and US7 genes revealed recombination frequencies of 0.7%/kbp in wild type cells and 4%/kbp in GM16097 cells. Finally, tandem repeats in the US7 gene remained stable upon serial passage, indicating a high fidelity of recombination in infected cells.

  5. High genetic diversity of Vibrio cholerae in the European lake Neusiedler See is associated with intensive recombination in the reed habitat and the long-distance transfer of strains.

    Science.gov (United States)

    Pretzer, Carina; Druzhinina, Irina S; Amaro, Carmen; Benediktsdóttir, Eva; Hedenström, Ingela; Hervio-Heath, Dominique; Huhulescu, Steliana; Schets, Franciska M; Farnleitner, Andreas H; Kirschner, Alexander K T

    2017-01-01

    Coastal marine Vibrio cholerae populations usually exhibit high genetic diversity. To assess the genetic diversity of abundant V. cholerae non-O1/non-O139 populations in the Central European lake Neusiedler See, we performed a phylogenetic analysis based on recA, toxR, gyrB and pyrH loci sequenced for 472 strains. The strains were isolated from three ecologically different habitats in a lake that is a hot-spot of migrating birds and an important bathing water. We also analyzed 76 environmental and human V. cholerae non-O1/non-O139 isolates from Austria and other European countries and added sequences of seven genome-sequenced strains. Phylogenetic analysis showed that the lake supports a unique endemic diversity of V. cholerae that is particularly rich in the reed stand. Phylogenetic trees revealed that many V. cholerae isolates from European countries were genetically related to the strains present in the lake belonging to statistically supported monophyletic clades. We hypothesize that the observed phenomena can be explained by the high degree of genetic recombination that is particularly intensive in the reed stand, acting along with the long distance transfer of strains most probably via birds and/or humans. Thus, the Neusiedler See may serve as a bioreactor for the appearance of new strains with new (pathogenic) properties. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina

    2010-01-01

    to genetic disabilities, including birth defects. The basis by which centromeric meiotic recombination is repressed has been largely unknown. We report here that, in fission yeast, RNAi functions and Clr4-Rik1 (histone H3 lysine 9 methyltransferase) are required for repression of centromeric recombination...

  7. Bimolecular recombination in organic photovoltaics.

    Science.gov (United States)

    Lakhwani, Girish; Rao, Akshay; Friend, Richard H

    2014-01-01

    The recombination of electrons and holes is a major loss mechanism in photovoltaic devices that controls their performance. We review scientific literature on bimolecular recombination (BR) in bulk heterojunction organic photovoltaic devices to bring forward existing ideas on the origin and nature of BR and highlight both experimental and theoretical work done to quantify its extent. For these systems, Langevin theory fails to explain BR, and recombination dynamics turns out to be dependent on mobility, temperature, electric field, charge carrier concentration, and trapped charges. Relationships among the photocurrent, open-circuit voltage, fill factor, and morphology are discussed. Finally, we highlight the recent emergence of a molecular-level picture of recombination, taking into account the spin and delocalization of charges. Together with the macroscopic picture of recombination, these new insights allow for a comprehensive understanding of BR and provide design principles for future materials and devices.

  8. Genomic imprinting: genetic mechanisms and phenotypic consequences in Prader-Willi and Angelman syndromes

    Directory of Open Access Journals (Sweden)

    Cintia Fridman

    2000-12-01

    Full Text Available Chromosomal 15q11-q13 region is of great interest in Human Genetics because many structural rearrangements have been described for it (deletions, duplications and translocations leading to phenotypes resulting in conditions such as the Prader-Willi (PWS and Angelman (AS syndromes which were the first human diseases found to be related to the differential expression of parental alleles (genomic imprinting. Contrary to Mendelian laws where the parental inheritance of genetic information does not influence gene expression, genomic imprinting is characterized by DNA modifications that produce different phenotypes depending on the parental origin of the mutation. Clinical manifestation of PWS appears when the loss of paternally expressed genes occurs and AS results from the loss of a maternally expressed gene. Different genetic mechanisms can lead to PWS or AS, such as deletions, uniparental disomy or imprinting mutation. In AS patients an additional class occurs with mutations on the UBE3A gene. Studies of PWS and AS patients can help us to understand the imprinting process, so that other genomic regions with similar characteristics can be located, and different syndromes can have their genetic mechanisms elucidated.O segmento cromossômico 15q11-q13 é de grande interesse em Genética Humana uma vez que diversos rearranjos estruturais têm sido descritos nessa região (deleções, duplicações e translocações resultando em fenótipos diferentes como os das síndromes de Prader-Willi (PWS e Angelman (AS, que foram as primeiras doenças humanas a serem relacionadas com a expressão diferencial de alelos parentais (imprinting genômico. Contrário às leis de Mendel onde a herança parental da informação genética não influencia a expressão gênica, o imprinting genômico é caracterizado por modificações no DNA que produzem diferentes fenótipos dependendo da origem parental da mutação. A manifestação clínica da PWS aparece quando

  9. What monozygotic twins discordant for phenotype illustrate about mechanisms influencing genetic forms of neurodegeneration

    NARCIS (Netherlands)

    Ketelaar, M. E.; Hofstra, R. M. W.; Hayden, M. R.

    2012-01-01

    As monozygotic (MZ) twins are believed to be genetically identical, discordance for disease phenotype between MZ twins has been used in genetic research to understand the contribution of genetic vs environmental factors in disease development. However, recent studies show that MZ twins can differ bo

  10. Uncovering the microscopic mechanism of strand exchange during RecA mediated homologous recombination using all-atom molecular dynamics simulations

    Science.gov (United States)

    Shankla, Manish; Yoo, Jejoong; Aksimentiev, Aleksei

    2012-02-01

    Homologous recombination (HR) is a key step during the repair process of double-stranded DNA (dsDNA) breakage. RecA is a protein that mediates HR in bacteria. RecA monomers polymerize on a single-stranded DNA (ssDNA) separated from the broken dsDNA to form a helical filament, thus allowing strand exchange to occur. Recent crystal structures depict each RecA monomer in contact with three contiguous nucleotides called DNA triplets. Surprisingly, the conformation of each triplet is similar to that of a triplet in B-form DNA. However, in the filament the neighboring triplets are separated by loops of the RecA proteins. Single molecule experiments demonstrated that strand exchange propagation occurs in 3 base-pair increments. However, the temporal resolution of the experiments was insufficient to determine the exact molecular mechanism of the triplet propagation. Using all-atom molecular dynamics simulations, we investigated the effect of both the RecA protein and the conformation of the bound ssDNA fragment on the stability of the duplex DNA intermediate formed during the strand-exchange process. Specifically, we report simulations of force-induced unzipping of duplex DNA in the presence and absence of the RecA filament that explored the effect of the triplet ladder conformation.

  11. The structure of HIV-1 genomic RNA in the gp120 gene determines a recombination hot spot in vivo.

    Science.gov (United States)

    Galetto, Román; Moumen, Abdeladim; Giacomoni, Véronique; Véron, Michel; Charneau, Pierre; Negroni, Matteo

    2004-08-27

    By frequently rearranging large regions of the genome, genetic recombination is a major determinant in the plasticity of the human immunodeficiency virus type I (HIV-1) population. In retroviruses, recombination mostly occurs by template switching during reverse transcription. The generation of retroviral vectors provides a means to study this process after a single cycle of infection of cells in culture. Using HIV-1-derived vectors, we present here the first characterization and estimate of the strength of a recombination hot spot in HIV-1 in vivo. In the hot spot region, located within the C2 portion of the gp120 envelope gene, the rate of recombination is up to ten times higher than in the surrounding regions. The hot region corresponds to a previously identified RNA hairpin structure. Although recombination breakpoints in vivo cluster in the top portion of the hairpin, the bias for template switching in this same region appears less marked in a cell-free system. By modulating the stability of this hairpin we were able to affect the local recombination rate both in vitro and in infected cells, indicating that the local folding of the genomic RNA is a major parameter in the recombination process. This characterization of reverse transcription products generated after a single cycle of infection provides insights in the understanding of the mechanism of recombination in vivo and suggests that specific regions of the genome might be prompted to yield different rates of evolution due to the presence of circumscribed recombination hot spots.

  12. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    Directory of Open Access Journals (Sweden)

    Maria Balcova

    2016-04-01

    Full Text Available Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm and Mus m. domesticus (Mmd, it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2 genomic locus on Chromosome X (Chr X by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s responsible for variation in the global recombination rate between closely related mouse subspecies.

  13. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    Science.gov (United States)

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-04-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.

  14. The de-ubiquitylating enzymes USP26 and USP37 regulate homologous recombination by counteracting RAP80

    DEFF Research Database (Denmark)

    Typas, Dimitris; Luijsterburg, Martijn S; Wiegant, Wouter W

    2015-01-01

    conjugates through RAP80 is known to be inhibitory to DSB repair by homologous recombination (HR). However, the precise regulation of this mechanism remains poorly understood. Through genetic screens we identified USP26 and USP37 as key de-ubiquitylating enzymes (DUBs) that limit the repressive impact of RNF...

  15. AFLP and single-strand conformation polymorphism studies of recombination in the entomopathogenic fungus Nomuraea rileyi.

    Science.gov (United States)

    Devi, Uma K; Reineke, Annette; Rao, Uma C Maheswara; Reddy, Nageswara Rao N; Khan, Akbar P Ali

    2007-06-01

    In most putative asexual fungi analysed through population genetic studies, recombination has been detected. However, the mechanism by which it is achieved is still not known. A parasexual cycle is known to occur in asexual fungi but there is no evidence, as yet, of its prevalence in natural populations. This study was undertaken to investigate the possibility of a parasexual cycle mediating recombination in the mitosporic fungus Nomuraea rileyi. The genotypic diversity in isolates sampled from an epizootic population from South India was studied through AFLP. The AFLP data were subjected to analysis of molecular variance (AMOVA) and cluster analysis. Great genetic variation was observed in the population including the isolates from a single insect. To assess the occurrence of recombination in the population, single-strand conformation polymorphism (SSCP) of partial regions of two mitochondrial (mt) genes (rRNA genes of LSU and SSU) and a nuclear gene (beta tubulin) was performed. The SSCP data were analysed using MP, the tree length permutation test, and multilocus analysis. Recombination was inferred from the SSCP analysis. The occurrence of isolates with diverse genotypes in a single insect; the fact that fungi multiply as hyphal bodies (cell wall-less) in the insect haemolymph; and the inference of recombination in mitochondrial genes (suggesting cytomixis), all indicate that recombination is accomplished by fusion of hyphal bodies of different isolates infecting the insect.

  16. Recombinant Tissue Plasminogen Activator Induces Neurological Side Effects Independent on Thrombolysis in Mechanical Animal Models of Focal Cerebral Infarction: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Mei-Xue Dong

    Full Text Available Recombinant tissue plasminogen activator (rtPA is the only effective drug approved by US FDA to treat ischemic stroke, and it contains pleiotropic effects besides thrombolysis. We performed a meta-analysis to clarify effect of tissue plasminogen activator (tPA on cerebral infarction besides its thrombolysis property in mechanical animal stroke.Relevant studies were identified by two reviewers after searching online databases, including Pubmed, Embase, and ScienceDirect, from 1979 to 2016. We identified 6, 65, 17, 12, 16, 12 and 13 comparisons reporting effect of endogenous tPA on infarction volume and effects of rtPA on infarction volume, blood-brain barrier, brain edema, intracerebral hemorrhage, neurological function and mortality rate in all 47 included studies. Standardized mean differences for continuous measures and risk ratio for dichotomous measures were calculated to assess the effects of endogenous tPA and rtPA on cerebral infarction in animals. The quality of included studies was assessed using the Stroke Therapy Academic Industry Roundtable score. Subgroup analysis, meta-regression and sensitivity analysis were performed to explore sources of heterogeneity. Funnel plot, Trim and Fill method and Egger's test were obtained to detect publication bias.We found that both endogenous tPA and rtPA had not enlarged infarction volume, or deteriorated neurological function. However, rtPA would disrupt blood-brain barrier, aggravate brain edema, induce intracerebral hemorrhage and increase mortality rate.This meta-analysis reveals rtPA can lead to neurological side effects besides thrombolysis in mechanical animal stroke, which may account for clinical exacerbation for stroke patients that do not achieve vascular recanalization with rtPA.

  17. Anti-hepatitis B virus activity and mechanisms of recombinant human serum albumin-interferon-alpha-2b fusion protein in vitro and in vivo.

    Science.gov (United States)

    Bingfa, Xu; Qinglin, Fan; Hui, Huang; Canjun, Wang; Wei, Wei; Lihua, Song

    2009-01-01

    To evaluate the anti-hepatitis B virus (anti-HBV) effects and mechanisms of recombinant human serum albumin-interferon-alpha-2b fusion protein (rHSA-IFNalpha-2b) in vitro and in vivo. The inhibiting effects on HBV replication were examined in the HepG2 2.2.15 cell line and in ducks, and the expressions of signal transducers and transactivator 1 (STAT1), IFN-stimulated gene factor 3 (ISGF3) and 2',5'-oligoadenylate synthetase 1 (OAS1) were investigated by the reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. In vitro,at concentrations from 0.075 to 1.2 nmol/l, rHSA-IFNalpha-2b inhibited the releases of extracellular hepatitis B surface antigen, hepatitis B e antigen and HBV DNA in a dose-dependent manner; rHSA- IFNalpha-2b also increased the levels of STAT1, ISGF3 and OAS1. In vivo, rHSA-IFNalpha-2b reduced the levels of alanine aminotransferase, aspartate aminotransferase, total bilirubin and duck hepatitis B virus (DHBV) DNA in the sera of DHBV-infected ducks. We provide the first evidence that rHSA-IFNalpha-2b significantly inhibits HBV replication in HepG2 2.2.15 cells and in ducks, and that the antiviral effect of rHSA-IFNalpha-2b in vivo is more potent than that of IFNalpha-2b. The anti-HBV mechanism probably operates by triggering the JAK-STAT signaling pathway and increasing the expression of OAS1. Copyright 2009 S. Karger AG, Basel.

  18. Recombinant Tissue Plasminogen Activator Induces Neurological Side Effects Independent on Thrombolysis in Mechanical Animal Models of Focal Cerebral Infarction: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Wei, You-Dong; Liu, Yi-Yun; Ren, Yi-Fei; Liang, Zi-Hong; Wang, Hai-Yang; Zhao, Li-Bo; Xie, Peng

    2016-01-01

    Background and Purpose Recombinant tissue plasminogen activator (rtPA) is the only effective drug approved by US FDA to treat ischemic stroke, and it contains pleiotropic effects besides thrombolysis. We performed a meta-analysis to clarify effect of tissue plasminogen activator (tPA) on cerebral infarction besides its thrombolysis property in mechanical animal stroke. Methods Relevant studies were identified by two reviewers after searching online databases, including Pubmed, Embase, and ScienceDirect, from 1979 to 2016. We identified 6, 65, 17, 12, 16, 12 and 13 comparisons reporting effect of endogenous tPA on infarction volume and effects of rtPA on infarction volume, blood-brain barrier, brain edema, intracerebral hemorrhage, neurological function and mortality rate in all 47 included studies. Standardized mean differences for continuous measures and risk ratio for dichotomous measures were calculated to assess the effects of endogenous tPA and rtPA on cerebral infarction in animals. The quality of included studies was assessed using the Stroke Therapy Academic Industry Roundtable score. Subgroup analysis, meta-regression and sensitivity analysis were performed to explore sources of heterogeneity. Funnel plot, Trim and Fill method and Egger’s test were obtained to detect publication bias. Results We found that both endogenous tPA and rtPA had not enlarged infarction volume, or deteriorated neurological function. However, rtPA would disrupt blood-brain barrier, aggravate brain edema, induce intracerebral hemorrhage and increase mortality rate. Conclusions This meta-analysis reveals rtPA can lead to neurological side effects besides thrombolysis in mechanical animal stroke, which may account for clinical exacerbation for stroke patients that do not achieve vascular recanalization with rtPA. PMID:27387385

  19. 应用SSR分子标记分析小麦品种(系)的遗传重组%Genetic Recombination in Wheat Using SSR Markers

    Institute of Scientific and Technical Information of China (English)

    李小军; 冯素伟; 李淦; 董娜; 陈向东; 宋杰; 茹振钢

    2013-01-01

    To understand the characteristics of inheritance and recombination of parental chromosome fragments in wheat proge-nies, we screened the genomes of 23 genotypes derived from Zhoumai 18 and Bainong AK58 with 340 SSR markers covering the whole wheat genome, together with the parents. The average recombination frequency in cultivars from single-cross was 12.3, which was smaller than that in cultivars from single backcross (13.9). Recombination mostly occurred on chromosomes 4A, 5A, 7A, 1B, 3B, 4B, 7B, 1D, 2D, 3D, 5D, 6D, and 7D. The distal and central chromosomal regions had similar frequencies of recom-bination which were 6.1, and 6.0, respectively. Some chromosomal regions were hot in recombination, such as marker intervals gwm358–wmc357 on chromosome 5D, cfd49–barc196 on chromosome 6D, wmc158–barc23 on chromosome 7A, and gwm274–gwm146 on chromosome 7B, with 35, 19, 15, and 14 recombination events, respectively. The analysis for inheritance of large linkage blocks indicated that large chromosome fragments inherited from one parent varied from 14 to 29 in each derivative, with 2–8 consecutive and informative SSR loci in a fragment. These large fragments were mainly distributed on chromosomes 4A, 5A, 5B, 5D, and 7D, which might harbor genes controlling important agronomic traits.%  为了解小麦品种形成中亲本基因组的遗传重组和遗传保留区段的分布特点,对周麦18和百农AK58及其衍生品系共23个材料进行了全基因组SSR扫描分析.遗传重组分析表明,单交组合的平均重组数(12.3)低于回交组合(13.9);染色体4A、5A、7A、1B、3B、4B、7B、1D、2D、3D、5D、6D和7D重组发生较多,其余染色体重组相对较少,染色体的中间区段与远端区段重组数相当,分别为6.1和6.0.子代间基因组比较发现,一些染色体区段成为重组的多发区,如5D的gwm358–wmc357、6D的cfd49–barc196、7A的wmc158–barc23和7B的gwm274–gwm146区段,分别有35、19

  20. Population genetic analysis of the intertidal limpet Lottia scabra and inference of the causes and mechanisms of range limits

    OpenAIRE

    Lehman, Joan

    2010-01-01

    Range limits have been described for many species, and the interest in range limits has increased in the wake of climate change, but few researchers attempt to document the causes and mechanisms of these limits and empirical tests of range limit theory remain sparse. Three principle mechanisms have been proposed to limit species’ range in models incorporating environmental heterogeneity and evolution: genetic impoverishment, migration load, or a physical barrier to dispersal. O...

  1. Genetic analysis of foot-and-mouth disease virus serotype A of Indian origin and detection of positive selection and recombination in leader protease- and capsid-coding regions

    Indian Academy of Sciences (India)

    S B Nagendrakumar; M Madhanmohan; P N Rangarajan; V A Srinivasan

    2009-03-01

    The leader protease (Lpro) and capsid-coding sequences (P1) constitute approximately 3 kb of the foot-and-mouth disease virus (FMDV). We studied the phylogenetic relationship of 46 FMDV serotype A isolates of Indian origin collected during the period 1968–2005 and also eight vaccine strains using the neighbour-joining tree and Bayesian tree methods. The viruses were categorized under three major groups – Asian, Euro-South American and European. The Indian isolates formed a distinct genetic group among the Asian isolates. The Indian isolates were further classified into different genetic subgroups (< 5% divergence). Post-1995 isolates were divided into two subgroups while a few isolates which originated in the year 2005 from Andhra Pradesh formed a separate group. These isolates were closely related to the isolates of the 1970s. The FMDV isolates seem to undergo reverse mutation or convergent evolution wherein sequences identical to the ancestors are present in the isolates in circulation. The eight vaccine strains included in the study were not related to each other and belonged to different genetic groups. Recombination was detected in the Lpro region in one isolate (A IND 20/82) and in the VP1 coding 1D region in another isolate (A RAJ 21/96). Positive selection was identified at aa positions 23 in the Lpro ( < 0.05; 0.046*) and at aa 171 in the capsid protein VP1 ( < 0.01; 0.003**).

  2. Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate insecticide resistance mechanisms.

    Directory of Open Access Journals (Sweden)

    Predrag Kalajdzic

    Full Text Available Insecticide resistance is a worldwide problem with major impact on agriculture and human health. Understanding the underlying molecular mechanisms is crucial for the management of the phenomenon; however, this information often comes late with respect to the implementation of efficient counter-measures, particularly in the case of metabolism-based resistance mechanisms. We employed a genome-wide insertional mutagenesis screen to Drosophila melanogaster, using a Minos-based construct, and retrieved a line (MiT[w(-]3R2 resistant to the neonicotinoid insecticide Imidacloprid. Biochemical and bioassay data indicated that resistance was due to increased P450 detoxification. Deep sequencing transcriptomic analysis revealed substantial over- and under-representation of 357 transcripts in the resistant line, including statistically significant changes in mixed function oxidases, peptidases and cuticular proteins. Three P450 genes (Cyp4p2, Cyp6a2 and Cyp6g1 located on the 2R chromosome, are highly up-regulated in mutant flies compared to susceptible Drosophila. One of them (Cyp6g1 has been already described as a major factor for Imidacloprid resistance, which validated the approach. Elevated expression of the Cyp4p2 was not previously documented in Drosophila lines resistant to neonicotinoids. In silico analysis using the Drosophila reference genome failed to detect transcription binding factors or microRNAs associated with the over-expressed Cyp genes. The resistant line did not contain a Minos insertion in its chromosomes, suggesting a hit-and-run event, i.e. an insertion of the transposable element, followed by an excision which caused the mutation. Genetic mapping placed the resistance locus to the right arm of the second chromosome, within a ∼1 Mb region, where the highly up-regulated Cyp6g1 gene is located. The nature of the unknown mutation that causes resistance is discussed on the basis of these results.

  3. Genetic Algorithm for the Design of Electro-Mechanical Sigma Delta Modulator MEMS Sensors

    Directory of Open Access Journals (Sweden)

    Michael Kraft

    2011-09-01

    Full Text Available This paper describes a novel design methodology using non-linear models for complex closed loop electro-mechanical sigma-delta modulators (EMΣΔM that is based on genetic algorithms and statistical variation analysis. The proposed methodology is capable of quickly and efficiently designing high performance, high order, closed loop, near-optimal systems that are robust to sensor fabrication tolerances and electronic component variation. The use of full non-linear system models allows significant higher order non-ideal effects to be taken into account, improving accuracy and confidence in the results. To demonstrate the effectiveness of the approach, two design examples are presented including a 5th order low-pass EMΣΔM for a MEMS accelerometer, and a 6th order band-pass EMΣΔM for the sense mode of a MEMS gyroscope. Each example was designed using the system in less than one day, with very little manual intervention. The strength of the approach is verified by SNR performances of 109.2 dB and 92.4 dB for the low-pass and band-pass system respectively, coupled with excellent immunities to fabrication tolerances and parameter mismatch.

  4. Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish

    Science.gov (United States)

    Ohnmacht, Jochen; Yang, Yujie; Maurer, Gianna W.; Barreiro-Iglesias, Antón; Tsarouchas, Themistoklis M.; Wehner, Daniel; Sieger, Dirk; Becker, Catherina G.; Becker, Thomas

    2016-01-01

    ABSTRACT In adult zebrafish, relatively quiescent progenitor cells show lesion-induced generation of motor neurons. Developmental motor neuron generation from the spinal motor neuron progenitor domain (pMN) sharply declines at 48 hours post-fertilisation (hpf). After that, mostly oligodendrocytes are generated from the same domain. We demonstrate here that within 48 h of a spinal lesion or specific genetic ablation of motor neurons at 72 hpf, the pMN domain reverts to motor neuron generation at the expense of oligodendrogenesis. By contrast, generation of dorsal Pax2-positive interneurons was not altered. Larval motor neuron regeneration can be boosted by dopaminergic drugs, similar to adult regeneration. We use larval lesions to show that pharmacological suppression of the cellular response of the innate immune system inhibits motor neuron regeneration. Hence, we have established a rapid larval regeneration paradigm. Either mechanical lesions or motor neuron ablation is sufficient to reveal a high degree of developmental flexibility of pMN progenitor cells. In addition, we show an important influence of the immune system on motor neuron regeneration from these progenitor cells. PMID:26965370

  5. Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    Science.gov (United States)

    Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Goncalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Borringer, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex SF; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian’an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Perry, John RB; Platou, Carl GP; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth JF; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin NA; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O’Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine-mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in/near KCNQ1. “Credible sets” of variants most likely to drive each distinct signal mapped predominantly to non-coding sequence, implying that T2D association is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine-mapping implicated rs10830963 as driving T2D association. We confirmed that this T2D-risk allele increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D-risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease. PMID:26551672

  6. A novel genetic mechanism regulates dorsolateral hinge-point formation during zebrafish cranial neurulation.

    Science.gov (United States)

    Nyholm, Molly K; Abdelilah-Seyfried, Salim; Grinblat, Yevgenya

    2009-06-15

    During neurulation, vertebrate embryos form a neural tube (NT), the rudiment of the central nervous system. In mammals and birds, a key step in cranial NT morphogenesis is dorsolateral hinge-point (DLHP) bending, which requires an apical actomyosin network. The mechanism of DLHP formation is poorly understood, although several essential genes have been identified, among them Zic2, which encodes a zinc-finger transcription factor. We found that DLHP formation in the zebrafish midbrain also requires actomyosin and Zic function. Given this conservation, we used the zebrafish to study how genes encoding Zic proteins regulate DLHP formation. We demonstrate that the ventral zic2a expression border predicts DLHP position. Using morpholino (MO) knockdown, we show zic2a and zic5 are required for apical F-actin and active myosin II localization and junction integrity. Furthermore, myosin II activity can function upstream of junction integrity during DLHP formation, and canonical Wnt signaling, an activator of zic gene transcription, is necessary for apical active myosin II localization, junction integrity and DLHP formation. We conclude that zic genes act downstream of Wnt signaling to control cytoskeletal organization, and possibly adhesion, during neurulation. This study identifies zic2a and zic5 as crucial players in the genetic network linking patterned gene expression to morphogenetic changes during neurulation, and strengthens the utility of the zebrafish midbrain as a NT morphogenesis model.

  7. Genetic algorithm for the design of electro-mechanical sigma delta modulator MEMS sensors.

    Science.gov (United States)

    Wilcock, Reuben; Kraft, Michael

    2011-01-01

    This paper describes a novel design methodology using non-linear models for complex closed loop electro-mechanical sigma-delta modulators (EMΣΔM) that is based on genetic algorithms and statistical variation analysis. The proposed methodology is capable of quickly and efficiently designing high performance, high order, closed loop, near-optimal systems that are robust to sensor fabrication tolerances and electronic component variation. The use of full non-linear system models allows significant higher order non-ideal effects to be taken into account, improving accuracy and confidence in the results. To demonstrate the effectiveness of the approach, two design examples are presented including a 5th order low-pass EMΣΔM for a MEMS accelerometer, and a 6th order band-pass EMΣΔM for the sense mode of a MEMS gyroscope. Each example was designed using the system in less than one day, with very little manual intervention. The strength of the approach is verified by SNR performances of 109.2 dB and 92.4 dB for the low-pass and band-pass system respectively, coupled with excellent immunities to fabrication tolerances and parameter mismatch.

  8. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

    Science.gov (United States)

    Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji; Raimondo, Anne; Mägi, Reedik; Reschen, Michael E; Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Gonçalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Bottinger, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kao, Wen-Hong L; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian'an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Peltonen, Leena; Perry, John R B; Platou, Carl G P; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wiltshire, Steven; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth J F; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöcke, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin N A; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O'Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-12-01

    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.

  9. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions

    NARCIS (Netherlands)

    Sameith, Katrin; Amini, Saman; Groot Koerkamp, Marian J A; van Leenen, Dik|info:eu-repo/dai/nl/304817236; Brok, Mariel; Brabers, Nathalie; Lijnzaad, Philip|info:eu-repo/dai/nl/311462197; van Hooff, Sander R; Benschop, Joris J.; Lenstra, Tineke L.; Apweiler, Eva; van Wageningen, Sake; Snel, Berend; Holstege, Frank C P|info:eu-repo/dai/nl/149308035; Kemmeren, Patrick|info:eu-repo/dai/nl/304817228

    2015-01-01

    Background: Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering

  10. High genetic variation and recombination events in the vicinity of non-autonomous transposable elements from ‘Candidatus Liberibacter asiaticus’

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-feng; CHEN Jiao-yue; TAN Jin; DUAN Suo; DENG Xiao-ling; CHEN Jian-chi; ZHOU Chang-yong

    2015-01-01

    Two miniature inverted-repeat transposable elements (MITEs), MCLas-A and MCLas-B, were recently identiifed from ‘Candidatus Liberibacter asiaticus’ known to be associated with citrus Huanglongbing (HLB, yelow shoot disease). MCLas-A was suggested as an active MITE because of its mobility. The immediate upstream gene of the two MITEs was predicted to be a putative transposase. The goal of this study is to analyze the sequence variation in the upstream putative transposase of MITEs and explore the possible correlation between sequence variation of transposase gene and MITE activity. PCR and sequence analysis showed that 12 sequence types were found in six major amplicon types from 43 representative ‘Ca. L. asiaticus’ isolates from China, the United States and Brazil. Out of the 12 sequence types, three (T4, T5-2, T6) were reported for the ifrst time. Recombination events were found in the two unique sequence types (T5-2 and T6) which were detected in al Brazilian isolates. Notably, no sequence variation or recombination events were detected in the upstream putative transposase gene of MCLas-A, suggesting the conservation of the transposase gene might be closely related with the MITE activity. Phylogenetic analysis demonstrated two wel supported clades including ifve subclades were identiifed, clearly relfecting the geographical origins of isolates, especialy that of Ruili isolates, São Paulo isolates and a few Florida isolates.

  11. Construction and immune protection evaluation of recombinant polyvalent OmpAs derived from genetically divergent ompA by DNA shuffling.

    Science.gov (United States)

    Li, Hui; Chu, Xiao; Li, Dan; Zeng, Zao-Hai; Peng, Xuan-Xian

    2016-02-01

    A wide variety of bacterial infections is a major challenge in aquaculture. Development of polyvalent vaccines that can fight against as many pathogens as possible is especially necessary. The present study uses DNA shuffling to create a new hybrid OmpA with improved cross-protection against Vibrio alginolyticus and Edwardsiella tarda through the recombination of six OmpA genes from Vibrio parahaemolyticus, V. alginolyticus, E. tarda and Escherichia coli. Out of the 43 recombinant chimeras genes constructed using VA0764 primers, EompAs-19 was demonstrated as an ideal polyvalent vaccine against infections caused V. alginolyticus and E. tarda. Compared with VA0764, OmpAs-19 had three mutations, which may be a molecular basis of EompAs-19 as an efficient polyvalent vaccine against both V. alginolyticus and E. tarda infections. These results develop a polyvalent vaccine that prevents the infections caused by extracellular and intracellular bacteria. Thus, the present study highlights the way to develop polyvalent vaccines against microbial infections by DNA shuffling.

  12. The population and evolutionary dynamics of homologous gene recombination in bacterial populations.

    Directory of Open Access Journals (Sweden)

    Bruce R Levin

    2009-08-01

    Full Text Available In bacteria, recombination is a rare event, not a part of the reproductive process. Nevertheless, recombination -- broadly defined to include the acquisition of genes from external sources, i.e., horizontal gene transfer (HGT -- plays a central role as a source of variation for adaptive evolution in many species of bacteria. Much of niche expansion, resistance to antibiotics and other environmental stresses, virulence, and other characteristics that make bacteria interesting and problematic, is achieved through the expression of genes and genetic elements obtained from other populations of bacteria of the same and different species, as well as from eukaryotes and archaea. While recombination of homologous genes among members of the same species has played a central role in the development of the genetics and molecular biology of bacteria, the contribution of homologous gene recombination (HGR to bacterial evolution is not at all clear. Also, not so clear are the selective pressures responsible for the evolution and maintenance of transformation, the only bacteria-encoded form of HGR. Using a semi-stochastic simulation of mutation, recombination, and selection within bacterial populations and competition between populations, we explore (1 the contribution of HGR to the rate of adaptive evolution in these populations and (2 the conditions under which HGR will provide a bacterial population a selective advantage over non-recombining or more slowly recombining populations. The results of our simulation indicate that, under broad conditions: (1 HGR occurring at rates in the range anticipated for bacteria like Streptococcus pneumoniae, Escherichia coli, Haemophilus influenzae, and Bacillus subtilis will accelerate the rate at which a population adapts to environmental conditions; (2 once established in a population, selection for this capacity to increase rates of adaptive evolution can maintain bacteria-encoded mechanisms of recombination and prevent

  13. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Michelle R Jones

    2015-08-01

    Full Text Available Genome wide association studies (GWAS have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS, a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  14. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Science.gov (United States)

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  15. Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum

    OpenAIRE

    2010-01-01

    The dynamics of herbicide resistance evolution in plants are influenced by many factors, especially the biochemical and genetic basis of resistance. Herbicide resistance can be endowed by enhanced rates of herbicide metabolism because of the activity of cytochrome P450 enzymes, although in weedy plants the genetic control of cytochrome P450-endowed herbicide resistance is poorly understood. In this study we have examined the genetic control of P450 metabolism-based herbicide resistance in a w...

  16. The underlying mechanisms of genetic innovation and speciation in the family Corynebacteriaceae: A phylogenomics approach.

    Science.gov (United States)

    Zhi, Xiao-Yang; Jiang, Zhao; Yang, Ling-Ling; Huang, Ying

    2017-02-01

    The pangenome of a bacterial species population is formed by genetic reduction and genetic expansion over the long course of evolution. Gene loss is a pervasive source of genetic reduction, and (exogenous and endogenous) gene gain is the main driver of genetic expansion. To understand the genetic innovation and speciation of the family Corynebacteriaceae, which cause a wide range of serious infections in humans and animals, we analyzed the pangenome of this family, and reconstructed its phylogeny using a phylogenomics approach. Genetic variations have occurred throughout the whole evolutionary history of the Corynebacteriaceae. Gene loss has been the primary force causing genetic changes, not only in terms of the number of protein families affected, but also because of its continuity on the time series. The variation in metabolism caused by these genetic changes mainly occurred for membrane transporters, two-component systems, and metabolism related to amino acids and carbohydrates. Interestingly, horizontal gene transfer (HGT) not only caused changes related to pathogenicity, but also triggered the acquisition of antimicrobial resistance. The Darwinian theory of evolution did not adequately explain the effects of dispersive HGT and/or gene loss in the evolution of the Corynebacteriaceae. These findings provide new insight into the evolution and speciation of Corynebacteriaceae and advance our understanding of the genetic innovation in microbial populations.

  17. Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology.

    Science.gov (United States)

    Ling, Jiqiang; O'Donoghue, Patrick; Söll, Dieter

    2015-11-01

    The genetic code, initially thought to be universal and immutable, is now known to contain many variations, including biased codon usage, codon reassignment, ambiguous decoding and recoding. As a result of recent advances in the areas of genome sequencing, biochemistry, bioinformatics and structural biology, our understanding of genetic code flexibility has advanced substantially in the past decade. In this Review, we highlight the prevalence, evolution and mechanistic basis of genetic code variations in microorganisms, and we discuss how this flexibility of the genetic code affects microbial physiology.

  18. Dissection of a circumscribed recombination hot spot in HIV-1 after a single infectious cycle.

    Science.gov (United States)

    Galetto, Román; Giacomoni, Véronique; Véron, Michel; Negroni, Matteo

    2006-02-03

    Recombination is a major source of genetic heterogeneity in the human immunodeficiency virus type 1 (HIV-1) population. The main mechanism responsible for the generation of recombinant viruses is a process of copy choice between the two copies of genomic RNA during reverse transcription. We previously identified, after a single cycle of infection of cells in culture, a recombination hot spot within the gp120 gene, corresponding to the top portion of a RNA hairpin. Here, we determine that the hot region is circumscribed to 18 nucleotides located in the descending strand of the stem, following the sense of reverse transcription. Three factors appeared to be important, albeit at different extents, for the high rate of recombination observed in this region. The position of the hot sequence in the context of the RNA structure appears crucial, because changing its location within this structure triggered differences in recombination up to 20-fold. Another pivotal factor is the presence of a perfectly identical sequence between donor and acceptor RNA in the region of transfer, because single or double nucleotide differences in the hot spot were sufficient to almost completely abolish recombination in the region. Last, the primary structure of the hot region also influenced recombination, although with effects only in the 2-3-fold range. Altogether, these results provide the first molecular dissection of a hot spot in infected cells and indicate that several factors contribute to the generation of a site of preferential copy choice.

  19. An automatic modeling system of the reaction mechanisms for chemical vapor deposition processes using real-coded genetic algorithms.

    Science.gov (United States)

    Takahashi, Takahiro; Nakai, Hiroyuki; Kinpara, Hiroki; Ema, Yoshinori

    2011-09-01

    The identification of appropriate reaction models is very helpful for developing chemical vapor deposition (CVD) processes. In this study, we have developed an automatic system to model reaction mechanisms in the CVD processes by analyzing the experimental results, which are cross-sectional shapes of the deposited films on substrates with micrometer- or nanometer-sized trenches. We designed the inference engine to model the reaction mechanism in the system by the use of real-coded genetic algorithms (RCGAs). We studied the dependence of the system performance on two methods using simple genetic algorithms (SGAs) and the RCGAs; the one involves the conventional GA operators and the other involves the blend crossover operator (BLX-alpha). Although we demonstrated that the systems using both the methods could successfully model the reaction mechanisms, the RCGAs showed the better performance with respect to the accuracy and the calculation cost for identifying the models.

  20. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-22

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  1. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  2. Replication and recombination factors contributing to recombination-dependent bypass of DNA lesions by template switch.

    Directory of Open Access Journals (Sweden)

    Fabio Vanoli

    2010-11-01

    Full Text Available Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase δ, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase δ, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different

  3. The Bipolar Filaments Formed by Herpes Simplex Virus Type 1 SSB/Recombination Protein (ICP8) Suggest a Mechanism for DNA Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Makhov, A.M.; Simon, M.; Sen, A.; Yu, X.; Griffith, J. D.; Egelman, E. H.

    2009-02-20

    Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is {approx} 250 {angstrom}, with {approx} 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing {approx} 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.

  4. Reversal Effect and Mechanisms of Recombinant Human Tumor Necrosis Factor-NC Against the Doxorubicin Resistance in Leukemia K562/Doxorubicin Cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jing-hong; CHEN Bo-hua

    2015-01-01

    Objective: To explore the reversal effect and mechanisms of recombinant human tumor necrosis factor-NC (rhTNF-NC) against the doxorubicin (Dox) resistance in chronic myelogenous leukemia (CML) K562/Dox cells. Methods: The chemo-sensitivity of tumor cells dealt with different concentrations of rhTNF-NC to Dox was detected by tetrazolium dye assay (MTT). The intra-cellular Dox accumulation represented by lfuorescence intensity was determined by lfow cytometry (FCM) at the excitation wave length of 488 nm and emission wave length of 550 nm. The expression of multidrug resistance (MDR)-related genes and proteins was analyzed by reverse transcription polymerase chain reaction (RT-PCR) and Western blot assays. Results:After being exposed to gradually increasing concentrations of Dox for 10 consecutive months, K562/Dox cells were more resistant to Dox (nearly 132 times) than Dox-sensitive K562 cells. The IC50 of Dox for K562 and K562/Dox cells were (0.04±0.01) and (5.55±0.08) μmol/L, respectively. When K562/Dox cells were treated with rhTNF-NC at 500, 2 500 or 5 000U/mL, the IC50 of Dox was decreased to (2.22±0.34), (1.41±0.13) and (1.04±0.09) μmol/L, respectively. The concentration-response curves were moved upward by the treatment of rhTNF-NC (P Conclusion: rhTNF-NC can effectively augment the drug accumulation in tumor cells. This is due to the up-regulation of TopoIIα and down-regulation of MDR1, MRP and GSTπ at mRNA expression as well as reduction of P-gp and PKCα expression.

  5. The OECD Blue Book on Recombinant DNA Safety Considerations: it's influence on ISBR and EFSA activities.

    Science.gov (United States)

    Schiemann, Joachim

    2006-01-01

    Biosafety regulatory frameworks are intended to serve as mechanisms for ensuring the safe use of biotechnology products without imposing unacceptable risk to human health or the environment, or unintended constraints to technology transfer. The OECD Blue Book on "Recombinant DNA Safety Considerations", setting out principles and concepts for handling genetically modified organisms safely outside of contained laboratory conditions, was a milestone in the history of biotechnology. The "Recombinant DNA Safety Considerations" definitively became the major resource for the formulation of national regulatory frameworks and international regulations, including the Cartagena Protocol.

  6. Choreography of recombination proteins during the DNA damage response.

    Science.gov (United States)

    Lisby, Michael; Rothstein, Rodney

    2009-09-02

    Genome integrity is frequently challenged by DNA lesions from both endogenous and exogenous sources. A single DNA double-strand break (DSB) is lethal if unrepaired and may lead to loss of heterozygosity, mutations, deletions, genomic rearrangements and chromosome loss if repaired improperly. Such genetic alterations are the main causes of cancer and other genetic diseases. Consequently, DNA double-strand break repair (DSBR) is an important process in all living organisms. DSBR is also the driving mechanism in most strategies of gene targeting, which has applications in both genetic and clinical research. Here we review the cell biological response to DSBs in mitotically growing cells with an emphasis on homologous recombination pathways in yeast Saccharomyces cerevisiae and in mammalian cells.

  7. Choreography of recombination proteins during the DNA damage response

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2009-01-01

    Genome integrity is frequently challenged by DNA lesions from both endogenous and exogenous sources. A single DNA double-strand break (DSB) is lethal if unrepaired and may lead to loss of heterozygosity, mutations, deletions, genomic rearrangements and chromosome loss if repaired improperly....... Such genetic alterations are the main causes of cancer and other genetic diseases. Consequently, DNA double-strand break repair (DSBR) is an important process in all living organisms. DSBR is also the driving mechanism in most strategies of gene targeting, which has applications in both genetic and clinical...... research. Here we review the cell biological response to DSBs in mitotically growing cells with an emphasis on homologous recombination pathways in yeast Saccharomyces cerevisiae and in mammalian cells....

  8. Population-specific recombination sites within the human MHC region

    OpenAIRE

    2013-01-01

    Genetic rearrangement by recombination is one of the major driving forces for genome evolution, and recombination is known to occur in non-random, discreet recombination sites within the genome. Mapping of recombination sites has proved to be difficult, particularly, in the human MHC region that is complicated by both population variation and highly polymorphic HLA genes. To overcome these problems, HLA-typed individuals from three representative populations: Asian, European an...

  9. Genetics of immune-mediated disorders : from genome-wide association to molecular mechanism

    NARCIS (Netherlands)

    Kumar, Vinod; Wijmenga, Cisca; Xavier, Ramnik J.

    2014-01-01

    Genetic association studies have identified not only hundreds of susceptibility loci to immune-mediated diseases but also pinpointed causal amino-acid variants of HLA genes that contribute to many autoimmune reactions. Majority of non-HLA genetic variants are located within non-coding regulatory

  10. Current trends of HIV recombination worldwide

    Directory of Open Access Journals (Sweden)

    Katherine A. Lau

    2013-06-01

    Full Text Available One of the major characteristics of HIV-1 is its high genetic variability and extensive heterogeneity. This characteristic is due to its molecular traits, which in turn allows it to vary, recombine, and diversify at a high frequency. As such, it generates complex molecular forms, termed recombinants, which evade the human immune system and so survive. There is no sequence constraint to the recombination pattern as it appears to occur at inter-group (between groups M and O, as well as inter- and intra-subtype within group M. Rapid emergence and active global transmission of HIV-1 recombinants, known as circulating recombinant forms (CRFs and unique recombinant forms (URFs, requires urgent attention. To date, 55 CRFs have been reported around the world. The first CRF01_AE originated from Central Africa but spread widely in Asia. The most recent CRF; CRF55_01B is a recombinant form of CRF01_AE and subtype B, although its origin is yet to be publicly disclosed. HIV-1 recombination is an ongoing event and plays an indispensable role in HIV epidemics in different regions. Africa, Asia and South America are identified as recombination hot-spots. They are affected by continual emergence and co-circulation of newly emerging CRFs and URFs, which are now responsible for almost 20% of HIV-1 infections worldwide. Better understanding of recombinants is necessary to determine their biological and molecular attributes.

  11. Genetics of immune-mediated disorders: from genome-wide association to molecular mechanism

    Science.gov (United States)

    Kumar, Vinod; Wijmenga, Cisca; Xavier, Ramnik J.

    2016-01-01

    Genetic association studies have identified not only hundreds of susceptibility loci to immune-mediated diseases but also pinpointed causal amino-acid variants of HLA genes that contribute to many autoimmune reactions. Majority of non-HLA genetic variants are located within non-coding regulatory region. Expression QTL studies have shown that these variants affect disease mainly by regulating gene expression. We discuss recent findings on shared genetic loci between infectious and immune-mediated diseases and provide potential clues to explore genetic associations in the context of these infectious agents. We propose that the interdisciplinary studies (genetics-genomics-immunology-infection-bioinformatics) are the future post-GWAS approaches to advance our understanding of the pathogenesis of immune-mediated diseases. PMID:25458995

  12. Atypical beta(s) haplotypes are generated by diverse genetic mechanisms.

    Science.gov (United States)

    Zago, M A; Silva, W A; Dalle, B; Gualandro, S; Hutz, M H; Lapoumeroulie, C; Tavella, M H; Araujo, A G; Krieger, J E; Elion, J; Krishnamoorthy, R

    2000-02-01

    The majority of the chromosomes with the beta(S) gene have one of the five common haplotypes, designated as Benin, Bantu, Senegal, Cameroon, and Arab-Indian haplotypes. However, in every large series of sickle cell patients, 5-10% of the chromosomes have less common haplotypes, usually referred to as "atypical" haplotypes. In order to explore the genetic mechanisms that could generate these atypical haplotypes, we extended our analysis to other rarely studied polymorphic markers of the beta(S)-gene cluster, in a total of 40 chromosomes with uncommon haplotypes from Brazil and Cameroon. The following polymorphisms were examined: seven restriction site polymorphisms of the epsilongammadeltabeta-cluster, the pre-(G)gamma framework sequence including the 6-bp deletion/insertion pattern, HS-2 LCR (AT)xR(AT)y and pre-beta (AT)xTy repeat motifs, the GC/TT polymorphism at -1105-1106 of (G)gamma-globin gene, the C/T polymorphism at -551 of the beta-globin gene, and the intragenic beta-globin gene framework. Among the Brazilian subjects, the most common atypical structure (7/16) was a Bantu 3'-subhaplotype associated with different 5'-sequences, while in two chromosomes a Benin 3'-subhaplotype was associated with two different 5'-subhaplotypes. A hybrid Benin/Bantu configuration was also observed. In three chromosomes, the atypical haplotype differed from the typical one by the change of a single restriction site. In 2/134 chromosomes identified as having a typical Bantu RFLP-haplotype, a discrepant LCR repeat sequence was observed, probably owing to a crossover 5' to the epsilon-gene. Among 80 beta(S) chromosomes from Cameroon, 22 were associated with an atypical haplotype. The most common structure was represented by a Benin haplotype (from the LCR to the beta-gene) with a non-Benin segment 3' to the beta-globin gene. In two cases a Bantu LCR was associated with a Benin haplotype and a non-Benin segment 3' to the beta-globin gene. In three other cases, a more complex

  13. Molecular mechanisms of paraptosis induction: implications for a non-genetically modified tumor vaccine.

    Directory of Open Access Journals (Sweden)

    Neil Hoa

    Full Text Available Paraptosis is the programmed cell death pathway that leads to cellular necrosis. Previously, rodent and human monocytes/macrophages killed glioma cells bearing the membrane macrophage colony stimulating factor (mM-CSF through paraptosis, but the molecular mechanism of this killing process was never identified. We have demonstrated that paraptosis of rat T9 glioma cells can be initiated through a large potassium channel (BK-dependent process initiated by reactive oxygen species. Macrophage mediated cytotoxicity upon the mM-CSF expressing T9-C2 cells was not prevented by the addition of the caspase inhibitor, zVAD-fmk. By a combination of fluorescent confocal and electron microscopy, flow cytometry, electrophysiology, pharmacology, and genetic knock-down approaches, we demonstrated that these ion channels control cellular swelling and vacuolization of rat T9 glioma cells. Cell lysis is preceded by a depletion of intracellular ATP. Six-hour exposure to BK channel activation caused T9 cells to over express heat shock proteins (Hsp 60, 70, 90 and gp96. This same treatment forced HMGB1 translocation from the nuclear region to the periphery. These last molecules are "danger signals" that can stimulate immune responses. Similar inductions of mitochondrial swelling and increased Hsp70 and 90 expressions by BK channel activation were observed with the non-immunogenic F98 glioma cells. Rats injected with T9 cells which were killed by prolonged BK channel activation developed immunity against the T9 cells, while the injection of x-irradiated apoptotic T9 cells failed to produce the vaccinating effect. These results are the first to show that glioma cellular death induced by prolonged BK channel activation improves tumor immunogenicity; this treatment reproduces the vaccinating effects of mM-CSF transduced cells. Elucidation of strategies as described in this study may prove quite valuable in the development of clinical immunotherapy against cancer.

  14. When genetics meets epigenetics: deciphering the mechanisms controlling inter-individual variation in immune responses to infection.

    Science.gov (United States)

    Pacis, Alain; Nédélec, Yohann; Barreiro, Luis B

    2014-08-01

    The response of host immune cells to microbial stimuli is dependent on robust and coordinated gene expression programs involving the transcription of thousands of genes. The dysregulation of such regulatory programs is likely to significantly contribute to the marked differences in susceptibility to infectious diseases observed among individuals and between human populations. Although the specific factors leading to a dysfunctional immune response to infection remain largely unknown, we are increasingly appreciating the importance of genetic variants in altering the expression levels of immune-related genes, possibly via epigenetic changes. This review describes how recent technological advances have profoundly contributed to our current understanding of the genetic architecture and the epigenetic rules controlling immune responses to infectious agents and how genetic and epigenetic data can be combined to unravel the mechanisms associated with host variation in transcriptional responses to infection.

  15. Repetitive recombinant human bone morphogenetic protein 2 injections improve the callus microarchitecture and mechanical stiffness in a sheep model of distraction osteogenesis

    Directory of Open Access Journals (Sweden)

    Marc-Frederic Pastor

    2012-03-01

    Full Text Available Evidence suggests that recombinant human bone morphogenetic protein 2 (rhBMP-2 increases the mechanical integrity of callus tissue during bone healing. This effect may be either explained by an increase of callus formation or a modification of the trabecular microarchitecture. Therefore the purpose of the study was to evaluate the potential benefit of rhBMP-2 on the trabecular microarchitecture and on multidirectional callus stiffness. Further we asked, whether microarchitecture changes correlate with optimized callus stiffness. In this study a tibial distraction osteogenesis (DO model in 12 sheep was used to determine, whether percutaneous injection of rhBMP-2 into the distraction zone influences the microarchitecture of the bone regenerate. After a latency period of 4 days, the tibiae were distracted at a rate of 1.25 mm/day over a period of 20 days, resulting in total lengthening of 25 mm. The operated limbs were randomly assigned to one treatment groups and one control group: (A triple injection of rhBMP-2 (4 mg rhBMP-2/injection and (B no injection. The tibiae were harvested after 74 days and scanned by μCT (90 μm/voxel. In addition, we conducted a multidirectional mechanical testing of the tibiae by using a material testing system to assess the multidirectional strength. The distraction zones were tested for torsional stiffness and bending stiffness antero-posterior (AP and medio-lateral (ML direction, compression strength and maximum axial torsion. Statistical analysis was performed using multivariate analysis of variance (ANOVA followed by student’s t-test and Regression analysis using power functions with a significance level of P<0.05. Triple injections of rhBMP-2 induced significant changes in the trabecular architecture of the regenerate compared with the control: increased trabecular number (Tb.N. (treatment group 1.73 mm/1 vs. control group 1.2 mm/1, increased cortical bone volume fraction (BV/TV (treatment group 0.68 vs

  16. The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity.

    Science.gov (United States)

    Crispo, Erika

    2007-11-01

    Two different, but related, evolutionary theories pertaining to phenotypic plasticity were proposed by James Mark Baldwin and Conrad Hal Waddington. Unfortunately, these theories are often confused with one another. Baldwin's notion of organic selection posits that plasticity influences whether an individual will survive in a new environment, thus dictating the course of future evolution. Heritable variations can then be selected upon to direct phenotypic evolution (i.e., "orthoplasy"). The combination of these two processes (organic selection and orthoplasy) is now commonly referred to as the "Baldwin effect." Alternately, Waddington's genetic assimilation is a process whereby an environmentally induced phenotype, or "acquired character," becomes canalized through selection acting upon the developmental system. Genetic accom